aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-01-14 12:17:21 +0000
committerdos-reis <gdr@axiomatics.org>2008-01-14 12:17:21 +0000
commit4a4b92d282fbe89881b469ed0a8ac25bf33cad05 (patch)
treed730a25c62f6cddf337d4dedf55de6002ebb73da /src/share
parentef3e16960ee4d9d1c02c1f63a7f8125a489d1373 (diff)
downloadopen-axiom-4a4b92d282fbe89881b469ed0a8ac25bf33cad05.tar.gz
* interp/compiler.boot (compSymbol): Don't handle possible
case views here. (hasUniqueCaseView): Rename from getUniqueCaseView. Take the target mode as second argument. (compForm2): Use calling convention vector to determine infer flag parameter types. (compCase1): Uniformly handle `case-expressions'. Call genDeltaEntry for selected operator. (coerceExtraHard): Handle coercions from UnionType domains. (autoCoerceByModemap): Tidy. * interp/g-opt.boot (optCall): Be more verbose in diagnostics. * algebra/syntax.spad (Syntax): Rework. * algebra/coerce.spad.pamphlet (UnionType): New. * algebra/Makefile.pamphlet (axiom_algebra_layer_0): Include UTYPE.o * share/algebra: Update databases.
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase2112
-rw-r--r--src/share/algebra/category.daase2316
-rw-r--r--src/share/algebra/compress.daase1100
-rw-r--r--src/share/algebra/interp.daase9290
-rw-r--r--src/share/algebra/operation.daase20935
5 files changed, 25960 insertions, 9793 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index b72c00da..555f8866 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2205538 . 3404712024)
+(2224445 . 3409262765)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4180 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4176 . T) (-4181 . T) (-4175 . T) (-3371 . T))
+((-4187 . T) (-4185 . T) (-4184 . T) ((-4192 "*") . T) (-4183 . T) (-4188 . T) (-4182 . T) (-2180 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1709)
+(-31 R -1724)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
+((|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4183)))
+((|HasAttribute| |#1| (QUOTE -4190)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1709 UP UPUP -3668)
+(-39 -1724 UP UPUP -3326)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3782 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3782 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
-(-40 R -1709)
+((-4183 |has| (-377 |#2|) (-333)) (-4188 |has| (-377 |#2|) (-333)) (-4182 |has| (-377 |#2|) (-333)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3745 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3745 (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-40 R -1724)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -102,31 +102,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-278))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
+((-4187 |has| |#1| (-509)) (-4185 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (-3782 (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|))))))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (-3745 (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (LIST (QUOTE -953) (QUOTE (-517)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1709)
+(-53 |Base| R -1724)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-59 -1214)
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-59 -2987)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -1214)
+(-60 -2987)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -1214)
+(-61 -2987)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1214)
+(-62 -2987)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -1214)
+(-63 -2987)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1214)
+(-64 -2987)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1214)
+(-65 -2987)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1214)
+(-66 -2987)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -1214)
+(-67 -2987)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -1214)
+(-68 -2987)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1214)
+(-69 -2987)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -1214)
+(-70 -2987)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -1214)
+(-71 -2987)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -1214)
+(-72 -2987)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -1214)
+(-75 -2987)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -1214)
+(-76 -2987)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -1214)
+(-77 -2987)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -1214)
+(-78 -2987)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -1214)
+(-79 -2987)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1214)
+(-80 -2987)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1214)
+(-81 -2987)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -1214)
+(-82 -2987)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1214)
+(-83 -2987)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1214)
+(-84 -2987)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1214)
+(-85 -2987)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1214)
+(-86 -2987)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -1214)
+(-87 -2987)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4183 . T))
+((-4190 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4183 . T) ((-4185 "*") . T) (-4184 . T) (-4180 . T) (-4178 . T) (-4177 . T) (-4176 . T) (-4181 . T) (-4175 . T) (-4174 . T) (-4173 . T) (-4172 . T) (-4171 . T) (-4179 . T) (-4182 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4170 . T))
+((-4190 . T) ((-4192 "*") . T) (-4191 . T) (-4187 . T) (-4185 . T) (-4184 . T) (-4183 . T) (-4188 . T) (-4182 . T) (-4181 . T) (-4180 . T) (-4179 . T) (-4178 . T) (-4186 . T) (-4189 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4177 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4185 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4192 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4183 . T))
+((-4190 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,23 +338,23 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3782 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-938))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1051))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3745 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-104)
((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-105)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1004))) (-12 (|HasCategory| (-107) (QUOTE (-1004))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
(-106 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
(-107)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -368,25 +368,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-110 -1709 UP)
+(-110 -1724 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-111 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-111 |#1|) (QUOTE (-831))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-937))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1050))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3782 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-111 |#1|) (QUOTE (-832))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-938))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1051))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3745 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-832)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
(-113 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)))
+((|HasAttribute| |#1| (QUOTE -4191)))
(-114 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-115 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -394,15 +394,15 @@ NIL
NIL
(-116 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-117 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-118)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
(-119 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -410,16 +410,16 @@ NIL
NIL
(-120 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-123)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -430,20 +430,20 @@ NIL
NIL
(-125)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4185 "*") . T))
+(((-4192 "*") . T))
NIL
-(-126 |minix| -2839 S T$)
+(-126 |minix| -3131 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-127 |minix| -2839 R)
+(-127 |minix| -3131 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-128)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4183 . T) (-4173 . T) (-4184 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3782 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+((-4190 . T) (-4180 . T) (-4191 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1004))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3745 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
(-129 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -458,7 +458,7 @@ NIL
NIL
(-132)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-133 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -466,9 +466,9 @@ NIL
NIL
(-134)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-135 -1709 UP UPUP)
+(-135 -1724 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -479,14 +479,14 @@ NIL
(-137 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -4183)))
+((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasAttribute| |#1| (QUOTE -4190)))
(-138 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-139 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4178 . T) (-4177 . T) (-4180 . T))
+((-4185 . T) (-4184 . T) (-4187 . T))
NIL
(-140)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -500,7 +500,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-143 R -1709)
+(-143 R -1724)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -527,10 +527,10 @@ NIL
(-149 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-1095))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4179)) (|HasAttribute| |#2| (QUOTE -4182)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-1096))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4186)) (|HasAttribute| |#2| (QUOTE -4189)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
(-150 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4176 -3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4179 |has| |#1| (-6 -4179)) (-4182 |has| |#1| (-6 -4182)) (-3417 . T) (-3371 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 -3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4186 |has| |#1| (-6 -4186)) (-4189 |has| |#1| (-6 -4189)) (-3887 . T) (-2180 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-151 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -542,8 +542,8 @@ NIL
NIL
(-153 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4176 -3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4179 |has| |#1| (-6 -4179)) (-4182 |has| |#1| (-6 -4182)) (-3417 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1095))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1095)))) (|HasCategory| |#1| (QUOTE (-502))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3782 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-207))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1095)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4179)) (|HasAttribute| |#1| (QUOTE -4182)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-319)))))
+((-4183 -3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4186 |has| |#1| (-6 -4186)) (-4189 |has| |#1| (-6 -4189)) (-3887 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1096))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-1096)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1096)))) (|HasCategory| |#1| (QUOTE (-502))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3745 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-207))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1096)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-832))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-832))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4186)) (|HasAttribute| |#1| (QUOTE -4189)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075))))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-319)))))
(-154 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -554,11 +554,11 @@ NIL
NIL
(-156)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-157 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4185 "*") . T) (-4176 . T) (-4181 . T) (-4175 . T) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") . T) (-4183 . T) (-4188 . T) (-4182 . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-158 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
@@ -571,7 +571,7 @@ NIL
(-160 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-874 |#2|) (LIST (QUOTE -808) (|devaluate| |#1|))))
+((|HasCategory| (-875 |#2|) (LIST (QUOTE -809) (|devaluate| |#1|))))
(-161 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -584,7 +584,7 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-164 R -1709)
+(-164 R -1724)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -688,19 +688,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-190 -1709 UP UPUP R)
+(-190 -1724 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-191 -1709 FP)
+(-191 -1724 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-192)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3782 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
-(-193 R -1709)
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-938))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1051))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3745 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-193 R -1724)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -714,19 +714,19 @@ NIL
NIL
(-196 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-197 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-198 R -1709)
+(-198 R -1724)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-199)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3405 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2202 . T) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-200)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -734,23 +734,23 @@ NIL
NIL
(-201 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4192 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-202 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-203 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-204 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))))
+((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))))
(-205 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-206 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -758,36 +758,36 @@ NIL
NIL
(-207)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-208 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4183)))
+((|HasAttribute| |#1| (QUOTE -4190)))
(-209 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-210)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-211 S -2839 R)
+(-211 S -3131 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003))))
-(-212 -2839 R)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4187)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1004))))
+(-212 -3131 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T) (-3371 . T))
+((-4184 |has| |#2| (-962)) (-4185 |has| |#2| (-962)) (-4187 |has| |#2| (-6 -4187)) ((-4192 "*") |has| |#2| (-156)) (-4190 . T) (-2180 . T))
NIL
-(-213 -2839 A B)
+(-213 -3131 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-214 -2839 R)
+(-214 -3131 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3782 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3782 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
+((-4184 |has| |#2| (-962)) (-4185 |has| |#2| (-962)) (-4187 |has| |#2| (-6 -4187)) ((-4192 "*") |has| |#2| (-156)) (-4190 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3745 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#2| (QUOTE (-962))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasAttribute| |#2| (QUOTE -4187)) (|HasCategory| |#2| (QUOTE (-123))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-25))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004))))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3745 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-215)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -798,47 +798,47 @@ NIL
NIL
(-217)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4176 . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-218 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-219 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-220 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-221 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4192 "*") |has| |#2| (-156)) (-4183 |has| |#2| (-509)) (-4188 |has| |#2| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-222)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: November 13,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 12,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-223 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4180 -3782 (-4032 (|has| |#4| (-961)) (|has| |#4| (-207))) (-4032 (|has| |#4| (-961)) (|has| |#4| (-822 (-1074)))) (|has| |#4| (-6 -4180)) (-4032 (|has| |#4| (-961)) (|has| |#4| (-579 (-517))))) (-4177 |has| |#4| (-961)) (-4178 |has| |#4| (-961)) ((-4185 "*") |has| |#4| (-156)) (-4183 . T))
-((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3782 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3782 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961)))) (-3782 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3782 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-207))) (-3782 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3782 (|HasCategory| |#4| (QUOTE (-961))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003)))) (-3782 (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003))))) (-3782 (|HasAttribute| |#4| (QUOTE -4180)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3782 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1074)))))))
+((-4187 -3745 (-3992 (|has| |#4| (-962)) (|has| |#4| (-207))) (-3992 (|has| |#4| (-962)) (|has| |#4| (-823 (-1075)))) (|has| |#4| (-6 -4187)) (-3992 (|has| |#4| (-962)) (|has| |#4| (-579 (-517))))) (-4184 |has| |#4| (-962)) (-4185 |has| |#4| (-962)) ((-4192 "*") |has| |#4| (-156)) (-4190 . T))
+((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3745 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3745 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-962)))) (-3745 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3745 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#4| (QUOTE (-207))) (-3745 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517)))))) (-3745 (|HasCategory| |#4| (QUOTE (-962))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1004)))) (-3745 (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1004))))) (-3745 (|HasAttribute| |#4| (QUOTE -4187)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3745 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-224 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4180 -3782 (-4032 (|has| |#3| (-961)) (|has| |#3| (-207))) (-4032 (|has| |#3| (-961)) (|has| |#3| (-822 (-1074)))) (|has| |#3| (-6 -4180)) (-4032 (|has| |#3| (-961)) (|has| |#3| (-579 (-517))))) (-4177 |has| |#3| (-961)) (-4178 |has| |#3| (-961)) ((-4185 "*") |has| |#3| (-156)) (-4183 . T))
-((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3782 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-207))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3782 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3782 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3782 (|HasAttribute| |#3| (QUOTE -4180)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3782 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))))
+((-4187 -3745 (-3992 (|has| |#3| (-962)) (|has| |#3| (-207))) (-3992 (|has| |#3| (-962)) (|has| |#3| (-823 (-1075)))) (|has| |#3| (-6 -4187)) (-3992 (|has| |#3| (-962)) (|has| |#3| (-579 (-517))))) (-4184 |has| |#3| (-962)) (-4185 |has| |#3| (-962)) ((-4192 "*") |has| |#3| (-156)) (-4190 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3745 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962)))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-207))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517)))))) (-3745 (|HasCategory| |#3| (QUOTE (-962))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3745 (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1004))))) (-3745 (|HasAttribute| |#3| (QUOTE -4187)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3745 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))))
(-225 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-207))))
(-226 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
(-227 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
(-228)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -878,8 +878,8 @@ NIL
NIL
(-237 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-238 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -924,11 +924,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-249 R -1709)
+(-249 R -1724)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-250 R -1709)
+(-250 R -1724)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -943,10 +943,10 @@ NIL
(-253 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
+((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))))
(-254 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-255 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -967,18 +967,18 @@ NIL
(-259 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)))
+((|HasAttribute| |#1| (QUOTE -4191)))
(-260 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-261 S R |Mod| -2137 -1676 |exactQuo|)
+(-261 S R |Mod| -3334 -3798 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-262)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4176 . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-263 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
@@ -990,21 +990,21 @@ NIL
NIL
(-265 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4180 -3782 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4177 |has| |#1| (-961)) (-4178 |has| |#1| (-961)))
-((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1015))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-21))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3782 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1003)))))
+((-4187 -3745 (|has| |#1| (-962)) (|has| |#1| (-442))) (-4184 |has| |#1| (-962)) (-4185 |has| |#1| (-962)))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-962)))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1016))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-21))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-962)))) (-3745 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-962)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1004)))))
(-266 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-267)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-268 -1709 S)
+(-268 -1724 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-269 E -1709)
+(-269 E -1724)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1019,7 +1019,7 @@ NIL
(-272 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-961))))
+((|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-962))))
(-273)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1042,7 +1042,7 @@ NIL
NIL
(-278)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-279 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1052,7 +1052,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-281 -1709)
+(-281 -1724)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1062,8 +1062,8 @@ NIL
NIL
(-283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-1050))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1141) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3782 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))) (-3782 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1141 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132))))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3745 (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| $ (QUOTE (-132)))) (-3745 (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1142 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| $ (QUOTE (-132))))))
(-284 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1074,9 +1074,9 @@ NIL
NIL
(-286 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4180 -3782 (-4032 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3782 (-4032 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-961)) (|has| |#1| (-442)))) (|has| |#1| (-961)) (|has| |#1| (-442))) (-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-509)) (-4175 |has| |#1| (-509)))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-961))) (-3782 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3782 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3782 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1015))) (-3782 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3782 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
-(-287 R -1709)
+((-4187 -3745 (-3992 (|has| |#1| (-962)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3745 (-3992 (|has| |#1| (-962)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-962)) (|has| |#1| (-442)))) (|has| |#1| (-962)) (|has| |#1| (-442))) (-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) ((-4192 "*") |has| |#1| (-509)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4182 |has| |#1| (-509)))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-962))) (-3745 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-962)))) (-3745 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-962)))) (-3745 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1016))) (-3745 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1016)))) (-3745 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (LIST (QUOTE -953) (QUOTE (-517)))))
+(-287 R -1724)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1086,8 +1086,8 @@ NIL
NIL
(-289 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
(-290 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1098,7 +1098,7 @@ NIL
NIL
(-292 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724))))
(-293 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1114,19 +1114,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-296 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-297 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
-(-298 S -1709)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-298 S -1724)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))))
-(-299 -1709)
+(-299 -1724)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-300)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1144,54 +1144,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-304 S -1709 UP UPUP R)
+(-304 S -1724 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-305 -1709 UP UPUP R)
+(-305 -1724 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-306 -1709 UP UPUP R)
+(-306 -1724 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-307 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
(-308 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-309 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (LIST (QUOTE -953) (QUOTE (-517)))))
(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-311 S -1709 UP UPUP)
+(-311 S -1724 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333))))
-(-312 -1709 UP UPUP)
+(-312 -1724 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 |has| (-377 |#2|) (-333)) (-4188 |has| (-377 |#2|) (-333)) (-4182 |has| (-377 |#2|) (-333)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-313 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3782 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3745 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
(-314 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-315 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-316 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1206,33 +1206,33 @@ NIL
NIL
(-319)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-320 R UP -1709)
+(-320 R UP -1724)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3782 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3745 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
(-322 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-324 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3782 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-833 |#1|) (QUOTE (-134))) (|HasCategory| (-833 |#1|) (QUOTE (-338))) (|HasCategory| (-833 |#1|) (QUOTE (-132))) (-3745 (|HasCategory| (-833 |#1|) (QUOTE (-132))) (|HasCategory| (-833 |#1|) (QUOTE (-338)))))
(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
-(-326 -1709 GF)
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-326 -1724 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1240,21 +1240,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-328 -1709 FP FPP)
+(-328 -1724 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-329 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
(-330 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-331 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-332 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1262,7 +1262,7 @@ NIL
NIL
(-333)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-334 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1278,7 +1278,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-509))))
(-337 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
+((-4187 |has| |#1| (-509)) (-4185 . T) (-4184 . T))
NIL
(-338)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1290,7 +1290,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333))))
(-340 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-341 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1299,14 +1299,14 @@ NIL
(-342 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
+((|HasAttribute| |#1| (QUOTE -4191)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))))
(-343 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4183 . T) (-3371 . T))
+((-4190 . T) (-2180 . T))
NIL
(-344 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4185 . T) (-4184 . T))
NIL
(-345 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1318,7 +1318,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))))
(-347 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4180 . T))
+((-4187 . T))
NIL
(-348 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1326,7 +1326,7 @@ NIL
NIL
(-349)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4166 . T) (-4174 . T) (-3405 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4173 . T) (-4181 . T) (-2202 . T) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-350 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1334,23 +1334,23 @@ NIL
NIL
(-351 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-352 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
(-353)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-354)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3371 . T))
+((-2180 . T))
NIL
(-355 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-156))))
(-356 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1358,7 +1358,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-779))))
(-357)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-358)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1370,13 +1370,13 @@ NIL
NIL
(-360 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
(-361)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-362 -1709 UP UPUP R)
+(-362 -1724 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1390,27 +1390,27 @@ NIL
NIL
(-365)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-366)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3371 . T))
+((-2180 . T))
NIL
(-367)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-368 -1214 |returnType| |arguments| |symbols|)
+(-368 -2987 |returnType| |arguments| |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-369 -1709 UP)
+(-369 -1724 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-370 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-3371 . T))
+((-2180 . T))
NIL
(-371 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1418,15 +1418,15 @@ NIL
NIL
(-372)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-373 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4166)) (|HasAttribute| |#1| (QUOTE -4174)))
+((|HasAttribute| |#1| (QUOTE -4173)) (|HasAttribute| |#1| (QUOTE -4181)))
(-374)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3405 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2202 . T) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-375 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1438,20 +1438,20 @@ NIL
NIL
(-377 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4170 -12 (|has| |#1| (-6 -4181)) (|has| |#1| (-421)) (|has| |#1| (-6 -4170))) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4181)) (|HasAttribute| |#1| (QUOTE -4170)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+((-4177 -12 (|has| |#1| (-6 -4188)) (|has| |#1| (-421)) (|has| |#1| (-6 -4177))) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4188)) (|HasAttribute| |#1| (QUOTE -4177)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3745 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-378 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-379 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-380 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))
+((|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))
(-381 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1460,14 +1460,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-383 R -1709 UP A)
+(-383 R -1724 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-384 R -1709 UP A |ibasis|)
+(-384 R -1724 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -952) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -953) (|devaluate| |#2|))))
(-385 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1478,12 +1478,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-387 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4180 |has| |#1| (-509)) (-4178 . T) (-4177 . T))
+((-4187 |has| |#1| (-509)) (-4185 . T) (-4184 . T))
NIL
(-388 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1113)))))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1114)))))
(-389 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1510,37 +1510,37 @@ NIL
((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-395 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4183 . T) (-4173 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4180 . T) (-4191 . T) (-2180 . T))
NIL
-(-396 R -1709)
+(-396 R -1724)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-397 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4170 -12 (|has| |#1| (-6 -4170)) (|has| |#2| (-6 -4170))) (-4177 . T) (-4178 . T) (-4180 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4170)) (|HasAttribute| |#2| (QUOTE -4170))))
-(-398 R -1709)
+((-4177 -12 (|has| |#1| (-6 -4177)) (|has| |#2| (-6 -4177))) (-4184 . T) (-4185 . T) (-4187 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4177)) (|HasAttribute| |#2| (QUOTE -4177))))
+(-398 R -1724)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-399 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
+((|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
(-400 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4180 -3782 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-509)) (-4175 |has| |#1| (-509)) (-3371 . T))
+((-4187 -3745 (|has| |#1| (-962)) (|has| |#1| (-442))) (-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) ((-4192 "*") |has| |#1| (-509)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4182 |has| |#1| (-509)) (-2180 . T))
NIL
-(-401 R -1709)
+(-401 R -1724)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-402 R -1709)
+(-402 R -1724)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-403 R -1709)
+(-403 R -1724)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1548,10 +1548,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-405 R -1709 UP)
+(-405 R -1724 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-47)))))
+((|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-47)))))
(-406)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1566,17 +1566,17 @@ NIL
NIL
(-409)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-410)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-3371 . T))
+((-2180 . T))
NIL
(-411 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-412 R UP -1709)
+(-412 R UP -1724)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1614,16 +1614,16 @@ NIL
NIL
(-421)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-422 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4180 |has| (-377 (-874 |#1|)) (-509)) (-4178 . T) (-4177 . T))
-((|HasCategory| (-377 (-874 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-874 |#1|)) (QUOTE (-509))))
+((-4187 |has| (-377 (-875 |#1|)) (-509)) (-4185 . T) (-4184 . T))
+((|HasCategory| (-377 (-875 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-875 |#1|)) (QUOTE (-509))))
(-423 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4192 "*") |has| |#2| (-156)) (-4183 |has| |#2| (-509)) (-4188 |has| |#2| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-424 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1650,7 +1650,7 @@ NIL
NIL
(-430 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
(-431 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1658,8 +1658,8 @@ NIL
NIL
(-432 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1004))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-433 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1688,7 +1688,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-440 |lv| -1709 R)
+(-440 |lv| -1724 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1698,45 +1698,45 @@ NIL
NIL
(-442)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-443 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
(-444 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
+((-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-445 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1004))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
(-446)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-447 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-448)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-449 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-450 -2839 S)
+(((-4192 "*") |has| |#2| (-156)) (-4183 |has| |#2| (-509)) (-4188 |has| |#2| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-450 -3131 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3782 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3782 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
+((-4184 |has| |#2| (-962)) (-4185 |has| |#2| (-962)) (-4187 |has| |#2| (-6 -4187)) ((-4192 "*") |has| |#2| (-156)) (-4190 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3745 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#2| (QUOTE (-962))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasAttribute| |#2| (QUOTE -4187)) (|HasCategory| |#2| (QUOTE (-123))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-25))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004))))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3745 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-451 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-452 -1709 UP UPUP R)
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-452 -1724 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1746,15 +1746,15 @@ NIL
NIL
(-454)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3782 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-938))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1051))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3745 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-455 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4183)) (|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
+((|HasAttribute| |#1| (QUOTE -4190)) (|HasAttribute| |#1| (QUOTE -4191)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
(-456 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-457 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
@@ -1764,34 +1764,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-459 -1709 UP |AlExt| |AlPol|)
+(-459 -1724 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-460)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (LIST (QUOTE -953) (QUOTE (-517)))))
(-461 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-462 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-463 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-464 R UP -1709)
+(-464 R UP -1724)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-465 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1004))) (-12 (|HasCategory| (-107) (QUOTE (-1004))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787)))))
(-466 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1804,10 +1804,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-469 -1709 |Expon| |VarSet| |DPoly|)
+(-469 -1724 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1074)))))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1075)))))
(-470 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1850,32 +1850,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-724))))
(-480 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-481 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3782 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3745 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
(-482 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-483 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-484 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4184)))
+((|HasAttribute| |#3| (QUOTE -4191)))
(-485 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4184)))
+((|HasAttribute| |#7| (QUOTE -4191)))
(-486 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4192 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-487 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1888,7 +1888,7 @@ NIL
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-490 K -1709 |Par|)
+(-490 K -1724 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1908,7 +1908,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-495 K -1709 |Par|)
+(-495 K -1724 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1938,17 +1938,17 @@ NIL
NIL
(-502)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4188 . T) (-4189 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-503 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
-(-504 R -1709)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-504 R -1724)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-505 R0 -1709 UP UPUP R)
+(-505 R0 -1724 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -1958,7 +1958,7 @@ NIL
NIL
(-507 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3405 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2202 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-508 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1966,9 +1966,9 @@ NIL
NIL
(-509)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-510 R -1709)
+(-510 R -1724)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -1980,7 +1980,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-513 R -1709 L)
+(-513 R -1724 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
@@ -1988,31 +1988,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-515 -1709 UP UPUP R)
+(-515 -1724 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-516 -1709 UP)
+(-516 -1724 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-517)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4165 . T) (-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4172 . T) (-4178 . T) (-4182 . T) (-4177 . T) (-4188 . T) (-4189 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-518)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-519 R -1709 L)
+(-519 R -1724 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
-(-520 R -1709)
+(-520 R -1724)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
-(-521 -1709 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
+(-521 -1724 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2020,54 +2020,54 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-523 -1709)
+(-523 -1724)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-524 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3405 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2202 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-525)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-526 R -1709)
+(-526 R -1724)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
-(-527 -1709 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
+(-527 -1724 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-528 R -1709)
+(-528 R -1724)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-529 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-530 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
(-531)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-532 R -1709)
+(-532 R -1724)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-533 E -1709)
+(-533 E -1724)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-534 -1709)
+(-534 -1724)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4178 . T) (-4177 . T))
-((|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1074)))))
+((-4185 . T) (-4184 . T))
+((|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-1075)))))
(-535 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2090,19 +2090,19 @@ NIL
NIL
(-540 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-3782 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3782 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3782 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1004))) (-3745 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1004)))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3745 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
(-541 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-542 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))))
(-543 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4178 |has| |#1| (-509)) (-4177 |has| |#1| (-509)) ((-4185 "*") |has| |#1| (-509)) (-4176 |has| |#1| (-509)) (-4180 . T))
+((-4185 |has| |#1| (-509)) (-4184 |has| |#1| (-509)) ((-4192 "*") |has| |#1| (-509)) (-4183 |has| |#1| (-509)) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-509))))
(-544 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2112,7 +2112,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-546 R -1709 FG)
+(-546 R -1724 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2122,31 +2122,31 @@ NIL
NIL
(-548 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-549 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4183)) (|HasCategory| |#3| (QUOTE (-1003))))
+((|HasAttribute| |#1| (QUOTE -4191)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4190)) (|HasCategory| |#3| (QUOTE (-1004))))
(-550 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-551 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4180 -3782 (-4032 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4178 . T) (-4177 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4187 -3745 (-3992 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4185 . T) (-4184 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-552 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#1|)))))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1058) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (QUOTE (-1058))) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))))
(-553 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-554 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-555 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2155,7 +2155,7 @@ NIL
(-556 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))))
(-557 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-559 -1709 UP)
+(-559 -1724 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2174,20 +2174,20 @@ NIL
NIL
(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-562 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-777))))
-(-563 R -1709)
+(-563 R -1724)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-564 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4176 . T) (-4180 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
+((-4185 . T) (-4184 . T) ((-4192 "*") . T) (-4183 . T) (-4187 . T))
+((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))))
(-565 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2198,7 +2198,7 @@ NIL
NIL
(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2208,30 +2208,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-570 R -1709)
+(-570 R -1724)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-571 |lv| -1709)
+(-571 |lv| -1724)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4184 . T))
-((|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1338) (QUOTE (-51))))))) (-3782 (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))))
+((-4191 . T))
+((|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1058) (QUOTE (-779))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1004))) (-12 (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (QUOTE (-1058))) (LIST (QUOTE |:|) (QUOTE -1860) (QUOTE (-51))))))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-51) (QUOTE (-1004)))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
(-573 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-574 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4185 . T) (-4184 . T))
NIL
(-575 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4180 -3782 (-4032 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4178 . T) (-4177 . T))
-((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+((-4187 -3745 (-3992 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4185 . T) (-4184 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2243,10 +2243,10 @@ NIL
(-578 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-333))) (-2650 (|HasCategory| |#1| (QUOTE (-333)))))
+((|HasCategory| |#1| (QUOTE (-333))) (-2477 (|HasCategory| |#1| (QUOTE (-333)))))
(-579 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-580 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2262,12 +2262,12 @@ NIL
NIL
(-583 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-584 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-585 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2279,39 +2279,39 @@ NIL
(-587 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)))
+((|HasAttribute| |#1| (QUOTE -4191)))
(-588 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-589 R -1709 L)
+(-589 R -1724 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-590 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-591 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-592 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
(-593 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-594 -1709 UP)
+(-594 -1724 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-595 A -2994)
+(-595 A -3175)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-596 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
@@ -2326,7 +2326,7 @@ NIL
NIL
(-599 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
((|HasCategory| |#1| (QUOTE (-723))))
(-600 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2334,7 +2334,7 @@ NIL
NIL
(-601 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4178 . T) (-4177 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4185 . T) (-4184 . T))
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156))))
(-602 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2342,13 +2342,13 @@ NIL
NIL
(-603 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-604 -1709)
+(-604 -1724)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-605 -1709 |Row| |Col| M)
+(-605 -1724 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2358,8 +2358,8 @@ NIL
NIL
(-607 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4180 . T) (-4183 . T) (-4177 . T) (-4178 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3782 (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3782 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#2| (QUOTE (-156))))
+((-4187 . T) (-4190 . T) (-4184 . T) (-4185 . T))
+((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4192 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3745 (|HasAttribute| |#2| (QUOTE (-4192 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3745 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
(-608 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2370,12 +2370,12 @@ NIL
NIL
(-610 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-3371 . T))
+((-2180 . T))
NIL
(-611 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-612 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2411,10 +2411,10 @@ NIL
(-620 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
+((|HasAttribute| |#2| (QUOTE (-4192 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
(-621 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
(-622 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2422,13 +2422,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))))
(-623 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4185 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4192 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
(-624 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-625 S -1709 FLAF FLAS)
+(-625 S -1724 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2438,11 +2438,11 @@ NIL
NIL
(-627)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4176 . T) (-4181 |has| (-632) (-333)) (-4175 |has| (-632) (-333)) (-3417 . T) (-4182 |has| (-632) (-6 -4182)) (-4179 |has| (-632) (-6 -4179)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3782 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-937))) (|HasCategory| (-632) (QUOTE (-1095))) (-12 (|HasCategory| (-632) (QUOTE (-918))) (|HasCategory| (-632) (QUOTE (-1095)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-970))) (-12 (|HasCategory| (-632) (QUOTE (-970))) (|HasCategory| (-632) (QUOTE (-1095)))) (-3782 (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3782 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-831))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4182)) (|HasAttribute| (-632) (QUOTE -4179)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3782 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3782 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-319)))))
+((-4183 . T) (-4188 |has| (-632) (-333)) (-4182 |has| (-632) (-333)) (-3887 . T) (-4189 |has| (-632) (-6 -4189)) (-4186 |has| (-632) (-6 -4186)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3745 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-938))) (|HasCategory| (-632) (QUOTE (-1096))) (-12 (|HasCategory| (-632) (QUOTE (-919))) (|HasCategory| (-632) (QUOTE (-1096)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-971))) (-12 (|HasCategory| (-632) (QUOTE (-971))) (|HasCategory| (-632) (QUOTE (-1096)))) (-3745 (|HasCategory| (-632) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3745 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-832))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4189)) (|HasAttribute| (-632) (QUOTE -4186)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-832))))) (-3745 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-832)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-832))))) (-3745 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-832)))) (|HasCategory| (-632) (QUOTE (-319)))))
(-628 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
(-629 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2452,13 +2452,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-631 OV E -1709 PG)
+(-631 OV E -1724 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-632)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3405 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2202 . T) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-633 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2466,7 +2466,7 @@ NIL
NIL
(-634)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4182 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4189 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-635 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2488,7 +2488,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-640 S -2738 I)
+(-640 S -3340 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2498,31 +2498,31 @@ NIL
NIL
(-642 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-643 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-644 R |Mod| -2137 -1676 |exactQuo|)
+(-644 R |Mod| -3334 -3798 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-645 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4186 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-646 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-647 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
+((-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
-(-648 R |Mod| -2137 -1676 |exactQuo|)
+(-648 R |Mod| -3334 -3798 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4180 . T))
+((-4187 . T))
NIL
(-649 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2530,11 +2530,11 @@ NIL
NIL
(-650 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
-(-651 -1709)
+(-651 -1724)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-652 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2558,7 +2558,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))))
(-657 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4176 |has| |#1| (-333)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 |has| |#1| (-333)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-658 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2568,7 +2568,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-660 -1709 UP)
+(-660 -1724 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2586,8 +2586,8 @@ NIL
NIL
(-664 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(((-4192 "*") |has| |#2| (-156)) (-4183 |has| |#2| (-509)) (-4188 |has| |#2| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-665 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2602,16 +2602,16 @@ NIL
NIL
(-668 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
+((-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) (-4187 . T))
((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779))))
(-669 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4173 . T) (-4184 . T) (-3371 . T))
+((-4180 . T) (-4191 . T) (-2180 . T))
NIL
(-670 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4183 . T) (-4173 . T) (-4184 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4190 . T) (-4180 . T) (-4191 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
(-671)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2622,7 +2622,7 @@ NIL
NIL
(-673 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
(-674 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2638,7 +2638,7 @@ NIL
NIL
(-677 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
(-678)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2720,15 +2720,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-698 -1709)
+(-698 -1724)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-699 P -1709)
+(-699 P -1724)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-700 UP -1709)
+(-700 UP -1724)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2742,9 +2742,9 @@ NIL
NIL
(-703)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4185 "*") . T))
+(((-4192 "*") . T))
NIL
-(-704 R -1709)
+(-704 R -1724)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2764,7 +2764,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-709 -1709 |ExtF| |SUEx| |ExtP| |n|)
+(-709 -1724 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2778,28 +2778,28 @@ NIL
NIL
(-712 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2650 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2650 (|HasCategory| |#1| (QUOTE (-502)))) (-2650 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2650 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2650 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1074)))) (-2650 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-517))))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))) (-2477 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))) (-2477 (|HasCategory| |#1| (QUOTE (-502)))) (-2477 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))) (-2477 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2477 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1075)))) (-2477 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-517))))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-713 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-714 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4186 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-715 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
(-716 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
(-717 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-156))))
+((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-156))))
(-718)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -2843,28 +2843,28 @@ NIL
(-728 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
(-729 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-730 -3782 R OS S)
+(-730 -3745 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-731 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3782 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-916 |#1|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-916 |#1|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (|HasCategory| (-916 |#1|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (-3745 (|HasCategory| (-916 |#1|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))))
(-732)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-733 R -1709 L)
+(-733 R -1724 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-734 R -1709)
+(-734 R -1724)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2872,7 +2872,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-736 R -1709)
+(-736 R -1724)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2880,11 +2880,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-738 -1709 UP UPUP R)
+(-738 -1724 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-739 -1709 UP L LQ)
+(-739 -1724 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2892,41 +2892,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-741 -1709 UP L LQ)
+(-741 -1724 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-742 -1709 UP)
+(-742 -1724 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-743 -1709 L UP A LO)
+(-743 -1724 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-744 -1709 UP)
+(-744 -1724 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-745 -1709 LO)
+(-745 -1724 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-746 -1709 LODO)
+(-746 -1724 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-747 -2839 S |f|)
+(-747 -3131 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4177 |has| |#2| (-961)) (-4178 |has| |#2| (-961)) (-4180 |has| |#2| (-6 -4180)) ((-4185 "*") |has| |#2| (-156)) (-4183 . T))
-((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3782 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4180)) (|HasCategory| |#2| (QUOTE (-123))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3782 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3782 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))))
+((-4184 |has| |#2| (-962)) (-4185 |has| |#2| (-962)) (-4187 |has| |#2| (-6 -4187)) ((-4192 "*") |has| |#2| (-156)) (-4190 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3745 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#2| (QUOTE (-962))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasAttribute| |#2| (QUOTE -4187)) (|HasCategory| |#2| (QUOTE (-123))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-25))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-962)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004))))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3745 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
(-748 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1074)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1075)) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1075)) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1075)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1075)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1075)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-749 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4185 "*") |has| |#2| (-333)) (-4176 |has| |#2| (-333)) (-4181 |has| |#2| (-333)) (-4175 |has| |#2| (-333)) (-4180 . T) (-4178 . T) (-4177 . T))
+(((-4192 "*") |has| |#2| (-333)) (-4183 |has| |#2| (-333)) (-4188 |has| |#2| (-333)) (-4182 |has| |#2| (-333)) (-4187 . T) (-4185 . T) (-4184 . T))
((|HasCategory| |#2| (QUOTE (-333))))
(-750 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2938,7 +2938,7 @@ NIL
NIL
(-752)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-753)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -2966,7 +2966,7 @@ NIL
NIL
(-759 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207))))
(-760)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4183 . T) (-4173 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4180 . T) (-4191 . T) (-2180 . T))
NIL
(-763)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -2990,11 +2990,11 @@ NIL
NIL
(-765 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4180 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3782 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3782 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4187 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3745 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3745 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-766 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
+((-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
(-767)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3018,13 +3018,13 @@ NIL
NIL
(-772 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4180 |has| |#1| (-777)))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3782 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3782 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+((-4187 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3745 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3745 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
(-773)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-774 -2839 S)
+(-774 -3131 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3038,7 +3038,7 @@ NIL
NIL
(-777)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4180 . T))
+((-4187 . T))
NIL
(-778 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3054,20 +3054,20 @@ NIL
((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
(-781 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-782 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
-(-783 R |sigma| -4125)
+(-783 R |sigma| -1856)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
-(-784 |x| R |sigma| -4125)
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+(-784 |x| R |sigma| -1856)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
+((-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
(-785 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
@@ -3090,7 +3090,7 @@ NIL
NIL
(-790 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
+((-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
(-791 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3102,20 +3102,20 @@ NIL
NIL
(-793 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-794 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
(-795 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-794 |#1|) (QUOTE (-831))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-937))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1050))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3782 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-794 |#1|) (QUOTE (-832))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-938))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1051))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3745 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-832)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
(-796 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3782 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3745 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
(-797)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3140,1517 +3140,1525 @@ NIL
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-803 CF1 CF2)
+(-803)
+((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
+NIL
+NIL
+(-804 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-804 |ComponentFunction|)
+(-805 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-805)
+(-806)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-806 R)
+(-807 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-807 R S L)
+(-808 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-808 S)
+(-809 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-809 |Base| |Subject| |Pat|)
+(-810 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (-12 (-2650 (|HasCategory| |#2| (QUOTE (-961)))) (-2650 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2650 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))))
-(-810 R A B)
+((|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))) (-12 (-2477 (|HasCategory| |#2| (QUOTE (-962)))) (-2477 (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2477 (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))))))
+(-811 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-811 R S)
+(-812 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-812 R -2738)
+(-813 R -3340)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-813 R S)
+(-814 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-814 R)
+(-815 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-815 |VarSet|)
+(-816 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-816 UP R)
+(-817 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-817)
+(-818)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-818 UP -1709)
+(-819 UP -1724)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-819)
+(-820)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-820)
+(-821)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-821 A S)
+(-822 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-822 S)
+(-823 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-823 S)
+(-824 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-824 |n| R)
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-825 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-825 S)
+(-826 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-826 S)
+(-827 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-827 S)
+(-828 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4180 . T))
-((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
-(-828 R E |VarSet| S)
+((-4187 . T))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3745 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
+(-829 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-829 R S)
+(-830 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-830 S)
+(-831 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-132))))
-(-831)
+(-832)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-832 |p|)
+(-833 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
-(-833 R0 -1709 UP UPUP R)
+(-834 R0 -1724 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-834 UP UPUP R)
+(-835 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-835 UP UPUP)
+(-836 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-836 R)
+(-837 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-837 R)
+(-838 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-838 E OV R P)
+(-839 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-839)
+(-840)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-840 -1709)
+(-841 -1724)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-841 R)
+(-842 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-842)
+(-843)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-843)
+(-844)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4185 "*") . T))
+(((-4192 "*") . T))
NIL
-(-844 -1709 P)
+(-845 -1724 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-845 |xx| -1709)
+(-846 |xx| -1724)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-846 R |Var| |Expon| GR)
+(-847 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-847 S)
+(-848 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-848)
+(-849)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-849)
+(-850)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-850)
+(-851)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-851 R -1709)
+(-852 R -1724)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-852)
+(-853)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-853 S A B)
+(-854 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-854 S R -1709)
+(-855 S R -1724)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-855 I)
+(-856 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-856 S E)
+(-857 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-857 S R L)
+(-858 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-858 S E V R P)
+(-859 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -808) (|devaluate| |#1|))))
-(-859 R -1709 -2738)
+((|HasCategory| |#3| (LIST (QUOTE -809) (|devaluate| |#1|))))
+(-860 R -1724 -3340)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-860 -2738)
+(-861 -3340)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-861 S R Q)
+(-862 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-862 S)
+(-863 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-863 S R P)
+(-864 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-864)
+(-865)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-865 R)
+(-866 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
-(-866 |lv| R)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-867 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-867 |TheField| |ThePols|)
+(-868 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-868 R S)
+(-869 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-869 |x| R)
+(-870 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-870 S R E |VarSet|)
+(-871 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
-(-871 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-832))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
+(-872 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
-(-872 E V R P -1709)
+(-873 E V R P -1724)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-873 E |Vars| R P S)
+(-874 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-874 R)
+(-875 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-875 E V R P -1709)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-876 E V R P -1724)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-421))))
-(-876)
+(-877)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-877 R L)
+(-878 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-878 A B)
+(-879 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-879 S)
+(-880 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-880)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-881)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-881 -1709)
+(-882 -1724)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-882 I)
+(-883 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-883)
+(-884)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-884 R E)
+(-885 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)))
-(-885 A B)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)))
+(-886 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4180 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
-((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
-(-886 S)
+((-4187 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
+((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
+(-887 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
-(-887 R |polR|)
+(-888 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-421))))
-(-888)
+(-889)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-889 S |Coef| |Expon| |Var|)
+(-890 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-890 |Coef| |Expon| |Var|)
+(-891 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-891)
+(-892)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-892 S R E |VarSet| P)
+(-893 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-509))))
-(-893 R E |VarSet| P)
+(-894 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4183 . T) (-3371 . T))
+((-4190 . T) (-2180 . T))
NIL
-(-894 R E V P)
+(-895 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-421))))
-(-895 K)
+(-896 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-896 |VarSet| E RC P)
+(-897 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-897 R)
+(-898 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-898 R1 R2)
+(-899 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-899 R)
+(-900 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-900 K)
+(-901 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-901 R E OV PPR)
+(-902 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-902 K R UP -1709)
+(-903 K R UP -1724)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-903 |vl| |nv|)
+(-904 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-904 R |Var| |Expon| |Dpoly|)
+(-905 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))))
-(-905 R E V P TS)
+(-906 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-906)
+(-907)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-907 A B R S)
+(-908 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-908 A S)
+(-909 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1050))))
-(-909 S)
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1051))))
+(-910 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3371 . T) (-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2180 . T) (-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-910 |n| K)
+(-911 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-911 S)
+(-912 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
-(-912 S R)
+(-913 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
-(-913 R)
+((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
+(-914 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4176 |has| |#1| (-262)) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 |has| |#1| (-262)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-914 QR R QS S)
+(-915 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-915 R)
+(-916 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4176 |has| |#1| (-262)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3782 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
-(-916 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+((-4183 |has| |#1| (-262)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3745 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-502))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
(-917 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-918 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-918)
+(-919)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-919 -1709 UP UPUP |radicnd| |n|)
+(-920 -1724 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4176 |has| (-377 |#2|) (-333)) (-4181 |has| (-377 |#2|) (-333)) (-4175 |has| (-377 |#2|) (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3782 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3782 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
-(-920 |bb|)
+((-4183 |has| (-377 |#2|) (-333)) (-4188 |has| (-377 |#2|) (-333)) (-4182 |has| (-377 |#2|) (-333)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3745 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3745 (|HasCategory| (-377 |#2|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-921 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1050))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1074)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3782 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
-(-921)
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-517) (QUOTE (-832))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-938))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1051))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1075)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3745 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-832)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-922)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-922)
+(-923)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-923 RP)
+(-924 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-924 S)
+(-925 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-925 A S)
+(-926 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)) (|HasCategory| |#2| (QUOTE (-1003))))
-(-926 S)
+((|HasAttribute| |#1| (QUOTE -4191)) (|HasCategory| |#2| (QUOTE (-1004))))
+(-927 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-927 S)
+(-928 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-928)
+(-929)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4176 . T) (-4181 . T) (-4175 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4180 . T))
+((-4183 . T) (-4188 . T) (-4182 . T) (-4185 . T) (-4184 . T) ((-4192 "*") . T) (-4187 . T))
NIL
-(-929 R -1709)
+(-930 R -1724)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-930 R -1709)
+(-931 R -1724)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-931 -1709 UP)
+(-932 -1724 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-932 -1709 UP)
+(-933 -1724 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-933 S)
+(-934 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-934 F1 UP UPUP R F2)
+(-935 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-935 |Pol|)
+(-936 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936 |Pol|)
+(-937 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-937)
+(-938)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-938)
+(-939)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-939 |TheField|)
+(-940 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4176 . T) (-4181 . T) (-4175 . T) (-4178 . T) (-4177 . T) ((-4185 "*") . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (-3782 (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
-(-940 -1709 L)
+((-4183 . T) (-4188 . T) (-4182 . T) (-4185 . T) (-4184 . T) ((-4192 "*") . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -953) (QUOTE (-517)))) (-3745 (|HasCategory| (-377 (-517)) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517))))))
+(-941 -1724 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-941 S)
+(-942 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))))
-(-942 R E V P)
+((|HasCategory| |#1| (QUOTE (-1004))))
+(-943 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
-(-943 R)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1004))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-944 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4185 "*"))))
-(-944 R)
+((|HasAttribute| |#1| (QUOTE (-4192 "*"))))
+(-945 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-278))))
-(-945 S)
+(-946 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946)
+(-947)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-947 S)
+(-948 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-948 S)
+(-949 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-949 -1709 |Expon| |VarSet| |FPol| |LFPol|)
+(-950 -1724 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-950)
+(-951)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -1338) (QUOTE (-51))))))) (|HasCategory| (-1074) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
-(-951 A S)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -1860) (QUOTE (-51))))))) (|HasCategory| (-1075) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-51) (QUOTE (-1004)))) (-12 (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
+(-952 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-952 S)
+(-953 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-953 Q R)
+(-954 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-954)
+(-955)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-955 UP)
+(-956 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-956 R)
+(-957 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-957 R)
+(-958 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-958 R |ls|)
+(-959 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))))
-(-959)
+((-4191 . T) (-4190 . T))
+((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1004))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))))
+(-960)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-960 S)
+(-961 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-961)
+(-962)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4180 . T))
+((-4187 . T))
NIL
-(-962 |xx| -1709)
+(-963 |xx| -1724)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-963 S |m| |n| R |Row| |Col|)
+(-964 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156))))
-(-964 |m| |n| R |Row| |Col|)
+(-965 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4183 . T) (-3371 . T) (-4178 . T) (-4177 . T))
+((-4190 . T) (-2180 . T) (-4185 . T) (-4184 . T))
NIL
-(-965 |m| |n| R)
+(-966 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4183 . T) (-4178 . T) (-4177 . T))
-((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3782 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
-(-966 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4190 . T) (-4185 . T) (-4184 . T))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3745 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
+(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-967 R)
+(-968 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-968)
+(-969)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-969 S)
+(-970 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-970)
+(-971)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-971 |TheField| |ThePolDom|)
+(-972 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-972)
+(-973)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4178 . T) (-4182 . T) (-4177 . T) (-4188 . T) (-4189 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-973)
+(-974)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -1338) (QUOTE (-51))))))) (|HasCategory| (-1074) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
-(-974 S R E V)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -1860) (QUOTE (-51))))))) (|HasCategory| (-1075) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-51) (QUOTE (-1004)))) (-12 (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1004))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))))
+(-975 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1074)))))
-(-975 R E V)
+((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1075)))))
+(-976 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
-(-976 S |TheField| |ThePols|)
+(-977 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-977 |TheField| |ThePols|)
+(-978 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-978 R E V P TS)
+(-979 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-979 S R E V P)
+(-980 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-980 R E V P)
+(-981 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-981 R E V P TS)
+(-982 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-982 |f|)
+(-983 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-983 |Base| R -1709)
+(-984 |Base| R -1724)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-984 |Base| R -1709)
+(-985 |Base| R -1724)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-985 R |ls|)
+(-986 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-986 UP SAE UPA)
+(-987 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-987 R UP M)
+(-988 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4176 |has| |#1| (-333)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
-(-988 UP SAE UPA)
+((-4183 |has| |#1| (-333)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
+(-989 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-989)
+(-990)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-990 S)
+(-991 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-991 R)
+(-992 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-992 R)
+(-993 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-993 (-1074)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-993 S)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-994 (-1075)) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-994 (-1075)) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-994 (-1075)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-994 (-1075)) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-994 (-1075)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-994 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-994 R S)
+(-995 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-995 R S)
+(-996 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-996 S)
+(-997 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))))
-(-997 S)
+((|HasCategory| |#1| (QUOTE (-1004))))
+(-998 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-998 S)
+(-999 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
-(-999 S L)
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1004))))
+(-1000 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-1000 A S)
+(-1001 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1001 S)
+(-1002 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4173 . T) (-3371 . T))
+((-4180 . T) (-2180 . T))
NIL
-(-1002 S)
+(-1003 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1003)
+(-1004)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1004 |m| |n|)
+(-1005 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1005 S)
+(-1006 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4183 . T) (-4173 . T) (-4184 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
-(-1006 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4190 . T) (-4180 . T) (-4191 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1007 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1007)
+(-1008)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1008 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1009 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1009 R FS)
+(-1010 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1010 R E V P TS)
+(-1011 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1011 R E V P TS)
+(-1012 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1012 R E V P)
+(-1013 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1013)
+(-1014)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1014 S)
+(-1015 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1015)
+(-1016)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1016 |dimtot| |dim1| S)
+(-1017 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4177 |has| |#3| (-961)) (-4178 |has| |#3| (-961)) (-4180 |has| |#3| (-6 -4180)) ((-4185 "*") |has| |#3| (-156)) (-4183 . T))
-((|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3782 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3782 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-207))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3782 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-123))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-25))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3782 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3782 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3782 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3782 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1074)))))))
-(-1017 R |x|)
+((-4184 |has| |#3| (-962)) (-4185 |has| |#3| (-962)) (-4187 |has| |#3| (-6 -4187)) ((-4192 "*") |has| |#3| (-156)) (-4190 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3745 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962)))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3745 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-207))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962)))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-3745 (|HasCategory| |#3| (QUOTE (-962))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1004)))) (|HasAttribute| |#3| (QUOTE -4187)) (|HasCategory| |#3| (QUOTE (-123))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-25))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1004)))) (-3745 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-962)))) (-3745 (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1004))))) (-3745 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3745 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#3| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1004)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (LIST (QUOTE -823) (QUOTE (-1075))))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1004))) (|HasCategory| |#3| (LIST (QUOTE -953) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1018 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-421))))
-(-1018 R -1709)
+(-1019 R -1724)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1019 R)
+(-1020 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1020)
+(-1021)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1021)
+(-1022)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4171 . T) (-4175 . T) (-4170 . T) (-4181 . T) (-4182 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4178 . T) (-4182 . T) (-4177 . T) (-4188 . T) (-4189 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1022 S)
+(-1023 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4183 . T) (-4184 . T) (-3371 . T))
+((-4190 . T) (-4191 . T) (-2180 . T))
NIL
-(-1023 S |ndim| R |Row| |Col|)
+(-1024 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4185 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
-(-1024 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4192 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
+(-1025 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-3371 . T) (-4183 . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-2180 . T) (-4190 . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1025 R |Row| |Col| M)
+(-1026 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1026 R |VarSet|)
+(-1027 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1027 |Coef| |Var| SMP)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1028 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1028 R E V P)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1029 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1029 UP -1709)
+(-1030 UP -1724)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1030 R)
+(-1031 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1031 R)
+(-1032 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1032 R)
+(-1033 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1033 S A)
+(-1034 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-779))))
-(-1034 R)
+(-1035 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1035 R)
+(-1036 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1036)
+(-1037)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1037)
+(-1038)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1038)
+(-1039)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1039 V C)
+(-1040 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1040 V C)
+(-1041 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-1039 |#1| |#2|) (QUOTE (-1003))) (-12 (|HasCategory| (-1039 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1039) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1039 |#1| |#2|) (QUOTE (-1003)))))
-(-1041 |ndim| R)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1004))) (-12 (|HasCategory| (-1040 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1040) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1004)))) (|HasCategory| (-1040 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-1040 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-1040 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1040) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1004))))))
+(-1042 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4180 . T) (-4172 |has| |#2| (-6 (-4185 "*"))) (-4183 . T) (-4177 . T) (-4178 . T))
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (-3782 (|HasAttribute| |#2| (QUOTE (-4185 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3782 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (|HasCategory| |#2| (QUOTE (-156))))
-(-1042 S)
+((-4187 . T) (-4179 |has| |#2| (-6 (-4192 "*"))) (-4190 . T) (-4184 . T) (-4185 . T))
+((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4192 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-333))) (-3745 (|HasAttribute| |#2| (QUOTE (-4192 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3745 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156))))
+(-1043 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1043)
+(-1044)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1044 R E V P TS)
+(-1045 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1045 R E V P)
+(-1046 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
-(-1046 S)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1004))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1047 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-1047 A S)
+((-4190 . T) (-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1048 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1048 S)
+(-1049 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-1049 |Key| |Ent| |dent|)
+(-1050 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
-(-1050)
+((-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1051)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1051 |Coef|)
+(-1052 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1052 S)
+(-1053 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1053 A B)
+(-1054 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1054 A B C)
+(-1055 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1055 S)
+(-1056 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4184 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))))
-(-1056)
+((-4191 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1057)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1057)
+(-1058)
NIL
-((-4184 . T) (-4183 . T))
-((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3782 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
-(-1058 |Entry|)
+((-4191 . T) (-4190 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1004))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3745 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1004))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1059 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (QUOTE (-1057))) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#1|)))))) (|HasCategory| (-1057) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
-(-1059 A)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (QUOTE (-1058))) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#1|)))))) (|HasCategory| (-1058) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1060 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
-(-1060 |Coef|)
+(-1061 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1061 |Coef|)
+(-1062 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1062 R UP)
+(-1063 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-278))))
-(-1063 |n| R)
+(-1064 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1064 S1 S2)
+(-1065 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1065 |Coef| |var| |cen|)
+(-1066 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4185 "*") -3782 (-4032 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4032 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-831)))) (-4176 -3782 (-4032 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4032 (|has| |#1| (-333)) (|has| (-1072 |#1| |#2| |#3|) (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1072) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-3782 (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1072 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1066 R -1709)
+(((-4192 "*") -3745 (-3992 (|has| |#1| (-333)) (|has| (-1073 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-3992 (|has| |#1| (-333)) (|has| (-1073 |#1| |#2| |#3|) (-832)))) (-4183 -3745 (-3992 (|has| |#1| (-333)) (|has| (-1073 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-3992 (|has| |#1| (-333)) (|has| (-1073 |#1| |#2| |#3|) (-832)))) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -1073) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-3745 (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1073 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1067 R -1724)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1067 R)
+(-1068 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1068 R S)
+(-1069 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1069 E OV R P)
+(-1070 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1070 R)
+(-1071 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#1| (QUOTE (-421))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1071 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4186 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4188)) (|HasCategory| |#1| (QUOTE (-421))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-1072 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
+(-1073 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
-(-1073)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1016))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
+(-1074)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1074)
+(-1075)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1075 R)
+(-1076 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1076 R)
+(-1077 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-6 -4181)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-888) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4181)))
-(-1077)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-6 -4188)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-889) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4188)))
+(-1078)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1078)
+(-1079)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1079)
-((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|buildSyntax| (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|convert| (($ (|String|)) "\\spad{convert(s)} injects the string value \\spad{`s'} into the syntax domain") (($ (|Symbol|)) "\\spad{convert(s)} injects the symbol \\spad{`s'} into the syntax domain.") (($ (|DoubleFloat|)) "\\spad{convert(f)} injects the float value \\spad{`f'} into the syntax domain") (($ (|Integer|)) "\\spad{convert(i)} injects the integer value `i' into the syntax domain") (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+(-1080)
+((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extract the string value \\spad{`s'} from the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts the symbol \\spad{`s'} from the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(f)} extracts the float value \\spad{`f'} from the Syntax domain") (((|Integer|) $) "\\spad{coerce(i)} extracts the integer value `i' from the Syntax domain")) (|autoCoerce| (($ (|String|)) "\\spad{autoCoerce(s)} injects the string value \\spad{`s'} into the syntax domain") (($ (|Symbol|)) "\\spad{autoCoerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (($ (|DoubleFloat|)) "\\spad{autoCoerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (($ (|Integer|)) "\\spad{autoCoerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1080 R)
+(-1081 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1081 S)
+(-1082 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1082 S)
+(-1083 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1083 |Key| |Entry|)
+(-1084 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4183 . T) (-4184 . T))
-((|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3458) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1338) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3782 (|HasCategory| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
-(-1084 R)
+((-4190 . T) (-4191 . T))
+((|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (-12 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2581) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1860) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1004))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (QUOTE (-1004))) (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3745 (|HasCategory| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1085 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1085 S |Key| |Entry|)
+(-1086 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1086 |Key| |Entry|)
+(-1087 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4184 . T) (-3371 . T))
+((-4191 . T) (-2180 . T))
NIL
-(-1087 |Key| |Entry|)
+(-1088 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1088)
+(-1089)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1089 S)
+(-1090 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1090)
+(-1091)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1091)
+(-1092)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1092 R)
+(-1093 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1093)
+(-1094)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1094 S)
+(-1095 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1095)
+(-1096)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1096 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-1097 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (QUOTE (-1004))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1098 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1098)
+(-1099)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1099 R -1709)
+(-1100 R -1724)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1100 R |Row| |Col| M)
+(-1101 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1101 R -1709)
+(-1102 R -1724)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -808) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -808) (|devaluate| |#1|)))))
-(-1102 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -815) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -809) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -809) (|devaluate| |#1|)))))
+(-1103 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-338))))
-(-1103 R E V P)
+(-1104 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1104 |Coef|)
+(-1105 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1105 |Curve|)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1106 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1106)
+(-1107)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1107 S)
+(-1108 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
-(-1108 -1709)
+((|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1109 -1724)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1109)
+(-1110)
((|constructor| (NIL "The fundamental Type.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-1110 S)
+(-1111 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-779))))
-(-1111)
+(-1112)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1112 S)
+(-1113 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1113)
+(-1114)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1114 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1115 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1115 |Coef|)
+(-1116 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1116 S |Coef| UTS)
+(-1117 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-333))))
-(-1117 |Coef| UTS)
+(-1118 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-3371 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-2180 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1118 |Coef| UTS)
+(-1119 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-831))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3782 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1074)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
-(-1119 |Coef| |var| |cen|)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-938)))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-832))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3745 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1075)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
+(-1120 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4185 "*") -3782 (-4032 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4032 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-831)))) (-4176 -3782 (-4032 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4032 (|has| |#1| (-333)) (|has| (-1147 |#1| |#2| |#3|) (-831)))) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1074)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))) (-3782 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1120 ZP)
+(((-4192 "*") -3745 (-3992 (|has| |#1| (-333)) (|has| (-1148 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-3992 (|has| |#1| (-333)) (|has| (-1148 |#1| |#2| |#3|) (-832)))) (-4183 -3745 (-3992 (|has| |#1| (-333)) (|has| (-1148 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-3992 (|has| |#1| (-333)) (|has| (-1148 |#1| |#2| |#3|) (-832)))) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1075)) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-3745 (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1148 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1121 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1121 R S)
+(-1122 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-777))))
-(-1122 S)
+(-1123 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
-(-1123 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1004))))
+(-1124 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1124 R Q UP)
+(-1125 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1125 R UP)
+(-1126 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1126 R UP)
+(-1127 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1127 R U)
+(-1128 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1128 |x| R)
+(-1129 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4185 "*") |has| |#2| (-156)) (-4176 |has| |#2| (-509)) (-4179 |has| |#2| (-333)) (-4181 |has| |#2| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (-3782 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-421))) (-3782 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3782 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-1129 R PR S PS)
+(((-4192 "*") |has| |#2| (-156)) (-4183 |has| |#2| (-509)) (-4186 |has| |#2| (-333)) (-4188 |has| |#2| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-349))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -809) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -809) (QUOTE (-517))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-349)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -815) (QUOTE (-517)))))) (-12 (|HasCategory| (-990) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4188)) (|HasCategory| |#2| (QUOTE (-421))) (-3745 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (-3745 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-1130 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1130 S R)
+(-1131 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1050))))
-(-1131 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1051))))
+(-1132 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4179 |has| |#1| (-333)) (-4181 |has| |#1| (-6 -4181)) (-4178 . T) (-4177 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4186 |has| |#1| (-333)) (-4188 |has| |#1| (-6 -4188)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
-(-1132 S |Coef| |Expon|)
+(-1133 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2254) (LIST (|devaluate| |#2|) (QUOTE (-1074))))))
-(-1133 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2269) (LIST (|devaluate| |#2|) (QUOTE (-1075))))))
+(-1134 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1134 RC P)
+(-1135 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1135 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1136 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1136 |Coef|)
+(-1137 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1137 S |Coef| ULS)
+(-1138 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1138 |Coef| ULS)
+(-1139 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1139 |Coef| ULS)
+(-1140 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
-(-1140 |Coef| |var| |cen|)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
+(-1141 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4181 |has| |#1| (-333)) (-4175 |has| |#1| (-333)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3782 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
-(-1141 R FE |var| |cen|)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4188 |has| |#1| (-333)) (-4182 |has| |#1| (-333)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3745 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
+(-1142 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4185 "*") |has| (-1140 |#2| |#3| |#4|) (-156)) (-4176 |has| (-1140 |#2| |#3| |#4|) (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-421))) (-3782 (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1140 |#2| |#3| |#4|) (QUOTE (-509))))
-(-1142 A S)
+(((-4192 "*") |has| (-1141 |#2| |#3| |#4|) (-156)) (-4183 |has| (-1141 |#2| |#3| |#4|) (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| (-1141 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1141 |#2| |#3| |#4|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1141 |#2| |#3| |#4|) (LIST (QUOTE -953) (QUOTE (-517)))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-421))) (-3745 (|HasCategory| (-1141 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1141 |#2| |#3| |#4|) (LIST (QUOTE -953) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1141 |#2| |#3| |#4|) (QUOTE (-509))))
+(-1143 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4184)))
-(-1143 S)
+((|HasAttribute| |#1| (QUOTE -4191)))
+(-1144 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-3371 . T))
+((-2180 . T))
NIL
-(-1144 |Coef1| |Coef2| UTS1 UTS2)
+(-1145 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1145 S |Coef|)
+(-1146 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-1095))) (|HasSignature| |#2| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3563) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1074))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
-(-1146 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-881))) (|HasCategory| |#2| (QUOTE (-1096))) (|HasSignature| |#2| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1518) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1075))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
+(-1147 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1147 |Coef| |var| |cen|)
+(-1148 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4185 "*") |has| |#1| (-156)) (-4176 |has| |#1| (-509)) (-4177 . T) (-4178 . T) (-4180 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3782 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1074)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (QUOTE (-1074)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3782 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1095))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1074))))) (|HasSignature| |#1| (LIST (QUOTE -1357) (LIST (LIST (QUOTE -583) (QUOTE (-1074))) (|devaluate| |#1|)))))))
-(-1148 |Coef| UTS)
+(((-4192 "*") |has| |#1| (-156)) (-4183 |has| |#1| (-509)) (-4184 . T) (-4185 . T) (-4187 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3745 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -823) (QUOTE (-1075)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1016))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2269) (LIST (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3745 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-881))) (|HasCategory| |#1| (QUOTE (-1096))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -1518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (LIST (QUOTE -2096) (LIST (LIST (QUOTE -583) (QUOTE (-1075))) (|devaluate| |#1|)))))))
+(-1149 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1149 -1709 UP L UTS)
+(-1150 -1724 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-509))))
-(-1150 |sym|)
+(-1151)
+((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
+((-2180 . T))
+NIL
+(-1152 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1151 S R)
+(-1153 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1152 R)
+((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1154 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4184 . T) (-4183 . T) (-3371 . T))
+((-4191 . T) (-4190 . T) (-2180 . T))
NIL
-(-1153 A B)
+(-1155 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1154 R)
+(-1156 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3782 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3782 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
-(-1155)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004))) (-3745 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1004)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3745 (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1157)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1156)
+(-1158)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1157)
+(-1159)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1158)
+(-1160)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1159)
+(-1161)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1160 A S)
+(-1162 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1161 S)
+(-1163 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4178 . T) (-4177 . T))
+((-4185 . T) (-4184 . T))
NIL
-(-1162 R)
+(-1164 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1163 K R UP -1709)
+(-1165 K R UP -1724)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1164 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1166 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4178 |has| |#1| (-156)) (-4177 |has| |#1| (-156)) (-4180 . T))
+((-4185 |has| |#1| (-156)) (-4184 |has| |#1| (-156)) (-4187 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
-(-1165 R E V P)
+(-1167 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4184 . T) (-4183 . T))
-((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
-(-1166 R)
+((-4191 . T) (-4190 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1004))) (-12 (|HasCategory| |#4| (QUOTE (-1004))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1168 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4177 . T) (-4178 . T) (-4180 . T))
+((-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1167 |vl| R)
+(-1169 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4180 . T) (-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4176)))
-(-1168 R |VarSet| XPOLY)
+((-4187 . T) (-4183 |has| |#2| (-6 -4183)) (-4185 . T) (-4184 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4183)))
+(-1170 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1169 |vl| R)
+(-1171 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
+((-4183 |has| |#2| (-6 -4183)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
-(-1170 S -1709)
+(-1172 S -1724)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))))
-(-1171 -1709)
+(-1173 -1724)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4175 . T) (-4181 . T) (-4176 . T) ((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+((-4182 . T) (-4188 . T) (-4183 . T) ((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
-(-1172 |VarSet| R)
+(-1174 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4176)))
-(-1173 |vl| R)
+((-4183 |has| |#2| (-6 -4183)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4183)))
+(-1175 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
+((-4183 |has| |#2| (-6 -4183)) (-4185 . T) (-4184 . T) (-4187 . T))
NIL
-(-1174 R)
+(-1176 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4176 |has| |#1| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4176)))
-(-1175 R E)
+((-4183 |has| |#1| (-6 -4183)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4183)))
+(-1177 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4180 . T) (-4181 |has| |#1| (-6 -4181)) (-4176 |has| |#1| (-6 -4176)) (-4178 . T) (-4177 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4180)) (|HasAttribute| |#1| (QUOTE -4181)) (|HasAttribute| |#1| (QUOTE -4176)))
-(-1176 |VarSet| R)
+((-4187 . T) (-4188 |has| |#1| (-6 -4188)) (-4183 |has| |#1| (-6 -4183)) (-4185 . T) (-4184 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4187)) (|HasAttribute| |#1| (QUOTE -4188)) (|HasAttribute| |#1| (QUOTE -4183)))
+(-1178 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4176 |has| |#2| (-6 -4176)) (-4178 . T) (-4177 . T) (-4180 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4176)))
-(-1177 A)
+((-4183 |has| |#2| (-6 -4183)) (-4185 . T) (-4184 . T) (-4187 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4183)))
+(-1179 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1178 R |ls| |ls2|)
+(-1180 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1179 R)
+(-1181 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1180 |p|)
+(-1182 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4185 "*") . T) (-4177 . T) (-4178 . T) (-4180 . T))
+(((-4192 "*") . T) (-4184 . T) (-4185 . T) (-4187 . T))
NIL
NIL
NIL
@@ -4672,4 +4680,4 @@ NIL
NIL
NIL
NIL
-((-1185 NIL 2205518 2205523 2205528 2205533) (-3 NIL 2205498 2205503 2205508 2205513) (-2 NIL 2205478 2205483 2205488 2205493) (-1 NIL 2205458 2205463 2205468 2205473) (0 NIL 2205438 2205443 2205448 2205453) (-1180 "ZMOD.spad" 2205247 2205260 2205376 2205433) (-1179 "ZLINDEP.spad" 2204291 2204302 2205237 2205242) (-1178 "ZDSOLVE.spad" 2194140 2194162 2204281 2204286) (-1177 "YSTREAM.spad" 2193633 2193644 2194130 2194135) (-1176 "XRPOLY.spad" 2192853 2192873 2193489 2193558) (-1175 "XPR.spad" 2190582 2190595 2192571 2192670) (-1174 "XPOLY.spad" 2190137 2190148 2190438 2190507) (-1173 "XPOLYC.spad" 2189454 2189470 2190063 2190132) (-1172 "XPBWPOLY.spad" 2187891 2187911 2189234 2189303) (-1171 "XF.spad" 2186352 2186367 2187793 2187886) (-1170 "XF.spad" 2184793 2184810 2186236 2186241) (-1169 "XFALG.spad" 2181817 2181833 2184719 2184788) (-1168 "XEXPPKG.spad" 2181068 2181094 2181807 2181812) (-1167 "XDPOLY.spad" 2180682 2180698 2180924 2180993) (-1166 "XALG.spad" 2180280 2180291 2180638 2180677) (-1165 "WUTSET.spad" 2176175 2176192 2179982 2180009) (-1164 "WP.spad" 2175189 2175233 2176033 2176100) (-1163 "WFFINTBS.spad" 2172752 2172774 2175179 2175184) (-1162 "WEIER.spad" 2170966 2170977 2172742 2172747) (-1161 "VSPACE.spad" 2170639 2170650 2170934 2170961) (-1160 "VSPACE.spad" 2170332 2170345 2170629 2170634) (-1159 "VOID.spad" 2169922 2169931 2170322 2170327) (-1158 "VIEW.spad" 2167544 2167553 2169912 2169917) (-1157 "VIEWDEF.spad" 2162741 2162750 2167534 2167539) (-1156 "VIEW3D.spad" 2146576 2146585 2162731 2162736) (-1155 "VIEW2D.spad" 2134313 2134322 2146566 2146571) (-1154 "VECTOR.spad" 2132990 2133001 2133241 2133268) (-1153 "VECTOR2.spad" 2131617 2131630 2132980 2132985) (-1152 "VECTCAT.spad" 2129505 2129516 2131573 2131612) (-1151 "VECTCAT.spad" 2127214 2127227 2129284 2129289) (-1150 "VARIABLE.spad" 2126994 2127009 2127204 2127209) (-1149 "UTSODETL.spad" 2126287 2126311 2126950 2126955) (-1148 "UTSODE.spad" 2124475 2124495 2126277 2126282) (-1147 "UTS.spad" 2119264 2119292 2122942 2123039) (-1146 "UTSCAT.spad" 2116715 2116731 2119162 2119259) (-1145 "UTSCAT.spad" 2113810 2113828 2116259 2116264) (-1144 "UTS2.spad" 2113403 2113438 2113800 2113805) (-1143 "URAGG.spad" 2108025 2108036 2113383 2113398) (-1142 "URAGG.spad" 2102621 2102634 2107981 2107986) (-1141 "UPXSSING.spad" 2100267 2100293 2101705 2101838) (-1140 "UPXS.spad" 2097294 2097322 2098399 2098548) (-1139 "UPXSCONS.spad" 2095051 2095071 2095426 2095575) (-1138 "UPXSCCA.spad" 2093509 2093529 2094897 2095046) (-1137 "UPXSCCA.spad" 2092109 2092131 2093499 2093504) (-1136 "UPXSCAT.spad" 2090690 2090706 2091955 2092104) (-1135 "UPXS2.spad" 2090231 2090284 2090680 2090685) (-1134 "UPSQFREE.spad" 2088643 2088657 2090221 2090226) (-1133 "UPSCAT.spad" 2086236 2086260 2088541 2088638) (-1132 "UPSCAT.spad" 2083535 2083561 2085842 2085847) (-1131 "UPOLYC.spad" 2078513 2078524 2083377 2083530) (-1130 "UPOLYC.spad" 2073383 2073396 2078249 2078254) (-1129 "UPOLYC2.spad" 2072852 2072871 2073373 2073378) (-1128 "UP.spad" 2069902 2069917 2070410 2070563) (-1127 "UPMP.spad" 2068792 2068805 2069892 2069897) (-1126 "UPDIVP.spad" 2068355 2068369 2068782 2068787) (-1125 "UPDECOMP.spad" 2066592 2066606 2068345 2068350) (-1124 "UPCDEN.spad" 2065799 2065815 2066582 2066587) (-1123 "UP2.spad" 2065161 2065182 2065789 2065794) (-1122 "UNISEG.spad" 2064514 2064525 2065080 2065085) (-1121 "UNISEG2.spad" 2064007 2064020 2064470 2064475) (-1120 "UNIFACT.spad" 2063108 2063120 2063997 2064002) (-1119 "ULS.spad" 2053667 2053695 2054760 2055189) (-1118 "ULSCONS.spad" 2047710 2047730 2048082 2048231) (-1117 "ULSCCAT.spad" 2045307 2045327 2047530 2047705) (-1116 "ULSCCAT.spad" 2043038 2043060 2045263 2045268) (-1115 "ULSCAT.spad" 2041254 2041270 2042884 2043033) (-1114 "ULS2.spad" 2040766 2040819 2041244 2041249) (-1113 "UFD.spad" 2039831 2039840 2040692 2040761) (-1112 "UFD.spad" 2038958 2038969 2039821 2039826) (-1111 "UDVO.spad" 2037805 2037814 2038948 2038953) (-1110 "UDPO.spad" 2035232 2035243 2037761 2037766) (-1109 "TYPE.spad" 2035154 2035163 2035212 2035227) (-1108 "TWOFACT.spad" 2033804 2033819 2035144 2035149) (-1107 "TUPLE.spad" 2033190 2033201 2033703 2033708) (-1106 "TUBETOOL.spad" 2030027 2030036 2033180 2033185) (-1105 "TUBE.spad" 2028668 2028685 2030017 2030022) (-1104 "TS.spad" 2027257 2027273 2028233 2028330) (-1103 "TSETCAT.spad" 2014372 2014389 2027213 2027252) (-1102 "TSETCAT.spad" 2001485 2001504 2014328 2014333) (-1101 "TRMANIP.spad" 1995851 1995868 2001191 2001196) (-1100 "TRIMAT.spad" 1994810 1994835 1995841 1995846) (-1099 "TRIGMNIP.spad" 1993327 1993344 1994800 1994805) (-1098 "TRIGCAT.spad" 1992839 1992848 1993317 1993322) (-1097 "TRIGCAT.spad" 1992349 1992360 1992829 1992834) (-1096 "TREE.spad" 1991143 1991154 1992179 1992206) (-1095 "TRANFUN.spad" 1990974 1990983 1991133 1991138) (-1094 "TRANFUN.spad" 1990803 1990814 1990964 1990969) (-1093 "TOPSP.spad" 1990477 1990486 1990793 1990798) (-1092 "TOOLSIGN.spad" 1990140 1990151 1990467 1990472) (-1091 "TEXTFILE.spad" 1988697 1988706 1990130 1990135) (-1090 "TEX.spad" 1985714 1985723 1988687 1988692) (-1089 "TEX1.spad" 1985270 1985281 1985704 1985709) (-1088 "TEMUTL.spad" 1984825 1984834 1985260 1985265) (-1087 "TBCMPPK.spad" 1982918 1982941 1984815 1984820) (-1086 "TBAGG.spad" 1981942 1981965 1982886 1982913) (-1085 "TBAGG.spad" 1980986 1981011 1981932 1981937) (-1084 "TANEXP.spad" 1980362 1980373 1980976 1980981) (-1083 "TABLE.spad" 1979335 1979358 1979605 1979632) (-1082 "TABLEAU.spad" 1978816 1978827 1979325 1979330) (-1081 "TABLBUMP.spad" 1975599 1975610 1978806 1978811) (-1080 "SYSSOLP.spad" 1973072 1973083 1975589 1975594) (-1079 "syntax.spad" 1971412 1971421 1973062 1973067) (-1078 "SYMTAB.spad" 1969468 1969477 1971402 1971407) (-1077 "SYMS.spad" 1965453 1965462 1969458 1969463) (-1076 "SYMPOLY.spad" 1964463 1964474 1964545 1964672) (-1075 "SYMFUNC.spad" 1963938 1963949 1964453 1964458) (-1074 "SYMBOL.spad" 1961274 1961283 1963928 1963933) (-1073 "SWITCH.spad" 1958031 1958040 1961264 1961269) (-1072 "SUTS.spad" 1954930 1954958 1956498 1956595) (-1071 "SUPXS.spad" 1951944 1951972 1953062 1953211) (-1070 "SUP.spad" 1948721 1948732 1949502 1949655) (-1069 "SUPFRACF.spad" 1947826 1947844 1948711 1948716) (-1068 "SUP2.spad" 1947216 1947229 1947816 1947821) (-1067 "SUMRF.spad" 1946182 1946193 1947206 1947211) (-1066 "SUMFS.spad" 1945815 1945832 1946172 1946177) (-1065 "SULS.spad" 1936361 1936389 1937467 1937896) (-1064 "SUCH.spad" 1936041 1936056 1936351 1936356) (-1063 "SUBSPACE.spad" 1928048 1928063 1936031 1936036) (-1062 "SUBRESP.spad" 1927208 1927222 1928004 1928009) (-1061 "STTF.spad" 1923307 1923323 1927198 1927203) (-1060 "STTFNC.spad" 1919775 1919791 1923297 1923302) (-1059 "STTAYLOR.spad" 1912173 1912184 1919656 1919661) (-1058 "STRTBL.spad" 1911252 1911269 1911401 1911428) (-1057 "STRING.spad" 1910719 1910728 1910733 1910760) (-1056 "STRICAT.spad" 1910495 1910504 1910675 1910714) (-1055 "STREAM.spad" 1907486 1907497 1910243 1910258) (-1054 "STREAM3.spad" 1907031 1907046 1907476 1907481) (-1053 "STREAM2.spad" 1906099 1906112 1907021 1907026) (-1052 "STREAM1.spad" 1905803 1905814 1906089 1906094) (-1051 "STINPROD.spad" 1904709 1904725 1905793 1905798) (-1050 "STEP.spad" 1903910 1903919 1904699 1904704) (-1049 "STBL.spad" 1902998 1903026 1903165 1903180) (-1048 "STAGG.spad" 1902063 1902074 1902978 1902993) (-1047 "STAGG.spad" 1901136 1901149 1902053 1902058) (-1046 "STACK.spad" 1900710 1900721 1900966 1900993) (-1045 "SREGSET.spad" 1898470 1898487 1900412 1900439) (-1044 "SRDCMPK.spad" 1897015 1897035 1898460 1898465) (-1043 "SRAGG.spad" 1892100 1892109 1896971 1897010) (-1042 "SRAGG.spad" 1887217 1887228 1892090 1892095) (-1041 "SQMATRIX.spad" 1884899 1884917 1885807 1885894) (-1040 "SPLTREE.spad" 1879766 1879779 1884650 1884677) (-1039 "SPLNODE.spad" 1876354 1876367 1879756 1879761) (-1038 "SPFCAT.spad" 1875131 1875140 1876344 1876349) (-1037 "SPECOUT.spad" 1873681 1873690 1875121 1875126) (-1036 "spad-parser.spad" 1873146 1873155 1873671 1873676) (-1035 "SPACEC.spad" 1857159 1857170 1873136 1873141) (-1034 "SPACE3.spad" 1856935 1856946 1857149 1857154) (-1033 "SORTPAK.spad" 1856480 1856493 1856891 1856896) (-1032 "SOLVETRA.spad" 1854237 1854248 1856470 1856475) (-1031 "SOLVESER.spad" 1852757 1852768 1854227 1854232) (-1030 "SOLVERAD.spad" 1848767 1848778 1852747 1852752) (-1029 "SOLVEFOR.spad" 1847187 1847205 1848757 1848762) (-1028 "SNTSCAT.spad" 1846775 1846792 1847143 1847182) (-1027 "SMTS.spad" 1845035 1845061 1846340 1846437) (-1026 "SMP.spad" 1842477 1842497 1842867 1842994) (-1025 "SMITH.spad" 1841320 1841345 1842467 1842472) (-1024 "SMATCAT.spad" 1839418 1839448 1841252 1841315) (-1023 "SMATCAT.spad" 1837460 1837492 1839296 1839301) (-1022 "SKAGG.spad" 1836409 1836420 1837416 1837455) (-1021 "SINT.spad" 1834717 1834726 1836275 1836404) (-1020 "SIMPAN.spad" 1834445 1834454 1834707 1834712) (-1019 "SIGNRF.spad" 1833553 1833564 1834435 1834440) (-1018 "SIGNEF.spad" 1832822 1832839 1833543 1833548) (-1017 "SHP.spad" 1830740 1830755 1832778 1832783) (-1016 "SHDP.spad" 1822846 1822873 1823355 1823484) (-1015 "SGROUP.spad" 1822312 1822321 1822836 1822841) (-1014 "SGROUP.spad" 1821776 1821787 1822302 1822307) (-1013 "SGCF.spad" 1814657 1814666 1821766 1821771) (-1012 "SFRTCAT.spad" 1813573 1813590 1814613 1814652) (-1011 "SFRGCD.spad" 1812636 1812656 1813563 1813568) (-1010 "SFQCMPK.spad" 1807273 1807293 1812626 1812631) (-1009 "SFORT.spad" 1806708 1806722 1807263 1807268) (-1008 "SEXOF.spad" 1806551 1806591 1806698 1806703) (-1007 "SEX.spad" 1806443 1806452 1806541 1806546) (-1006 "SEXCAT.spad" 1803547 1803587 1806433 1806438) (-1005 "SET.spad" 1801903 1801914 1803024 1803063) (-1004 "SETMN.spad" 1800337 1800354 1801893 1801898) (-1003 "SETCAT.spad" 1799822 1799831 1800327 1800332) (-1002 "SETCAT.spad" 1799305 1799316 1799812 1799817) (-1001 "SETAGG.spad" 1795828 1795839 1799273 1799300) (-1000 "SETAGG.spad" 1792371 1792384 1795818 1795823) (-999 "SEGXCAT.spad" 1791484 1791496 1792351 1792366) (-998 "SEG.spad" 1791298 1791308 1791403 1791408) (-997 "SEGCAT.spad" 1790118 1790128 1791278 1791293) (-996 "SEGBIND.spad" 1789191 1789201 1790073 1790078) (-995 "SEGBIND2.spad" 1788888 1788900 1789181 1789186) (-994 "SEG2.spad" 1788314 1788326 1788844 1788849) (-993 "SDVAR.spad" 1787591 1787601 1788304 1788309) (-992 "SDPOL.spad" 1784990 1785000 1785280 1785407) (-991 "SCPKG.spad" 1783070 1783080 1784980 1784985) (-990 "SCACHE.spad" 1781753 1781763 1783060 1783065) (-989 "SAOS.spad" 1781626 1781634 1781743 1781748) (-988 "SAERFFC.spad" 1781340 1781359 1781616 1781621) (-987 "SAE.spad" 1779519 1779534 1780129 1780264) (-986 "SAEFACT.spad" 1779221 1779240 1779509 1779514) (-985 "RURPK.spad" 1776863 1776878 1779211 1779216) (-984 "RULESET.spad" 1776305 1776328 1776853 1776858) (-983 "RULE.spad" 1774510 1774533 1776295 1776300) (-982 "RULECOLD.spad" 1774363 1774375 1774500 1774505) (-981 "RSETGCD.spad" 1770742 1770761 1774353 1774358) (-980 "RSETCAT.spad" 1760515 1760531 1770698 1770737) (-979 "RSETCAT.spad" 1750320 1750338 1760505 1760510) (-978 "RSDCMPK.spad" 1748773 1748792 1750310 1750315) (-977 "RRCC.spad" 1747158 1747187 1748763 1748768) (-976 "RRCC.spad" 1745541 1745572 1747148 1747153) (-975 "RPOLCAT.spad" 1724902 1724916 1745409 1745536) (-974 "RPOLCAT.spad" 1703978 1703994 1724487 1724492) (-973 "ROUTINE.spad" 1700424 1700432 1703207 1703234) (-972 "ROMAN.spad" 1699657 1699665 1700290 1700419) (-971 "ROIRC.spad" 1698738 1698769 1699647 1699652) (-970 "RNS.spad" 1697642 1697650 1698640 1698733) (-969 "RNS.spad" 1696632 1696642 1697632 1697637) (-968 "RNG.spad" 1696368 1696376 1696622 1696627) (-967 "RMODULE.spad" 1696007 1696017 1696358 1696363) (-966 "RMCAT2.spad" 1695416 1695472 1695997 1696002) (-965 "RMATRIX.spad" 1694152 1694170 1694639 1694678) (-964 "RMATCAT.spad" 1689674 1689704 1694096 1694147) (-963 "RMATCAT.spad" 1685098 1685130 1689522 1689527) (-962 "RINTERP.spad" 1684987 1685006 1685088 1685093) (-961 "RING.spad" 1684345 1684353 1684967 1684982) (-960 "RING.spad" 1683711 1683721 1684335 1684340) (-959 "RIDIST.spad" 1683096 1683104 1683701 1683706) (-958 "RGCHAIN.spad" 1681751 1681766 1682656 1682683) (-957 "RF.spad" 1679366 1679376 1681741 1681746) (-956 "RFFACTOR.spad" 1678829 1678839 1679356 1679361) (-955 "RFFACT.spad" 1678565 1678576 1678819 1678824) (-954 "RFDIST.spad" 1677554 1677562 1678555 1678560) (-953 "RETSOL.spad" 1676972 1676984 1677544 1677549) (-952 "RETRACT.spad" 1676322 1676332 1676962 1676967) (-951 "RETRACT.spad" 1675670 1675682 1676312 1676317) (-950 "RESULT.spad" 1674313 1674321 1674899 1674926) (-949 "RESRING.spad" 1673661 1673707 1674251 1674308) (-948 "RESLATC.spad" 1672986 1672996 1673651 1673656) (-947 "REPSQ.spad" 1672716 1672726 1672976 1672981) (-946 "REP.spad" 1670269 1670277 1672706 1672711) (-945 "REPDB.spad" 1669975 1669985 1670259 1670264) (-944 "REP2.spad" 1659548 1659558 1669817 1669822) (-943 "REP1.spad" 1653539 1653549 1659498 1659503) (-942 "REGSET.spad" 1651393 1651409 1653241 1653268) (-941 "REF.spad" 1650723 1650733 1651348 1651353) (-940 "REDORDER.spad" 1649900 1649916 1650713 1650718) (-939 "RECLOS.spad" 1648690 1648709 1649393 1649486) (-938 "REALSOLV.spad" 1647823 1647831 1648680 1648685) (-937 "REAL.spad" 1647696 1647704 1647813 1647818) (-936 "REAL0Q.spad" 1644979 1644993 1647686 1647691) (-935 "REAL0.spad" 1641808 1641822 1644969 1644974) (-934 "RDIV.spad" 1641460 1641484 1641798 1641803) (-933 "RDIST.spad" 1641024 1641034 1641450 1641455) (-932 "RDETRS.spad" 1639821 1639838 1641014 1641019) (-931 "RDETR.spad" 1637929 1637946 1639811 1639816) (-930 "RDEEFS.spad" 1637003 1637019 1637919 1637924) (-929 "RDEEF.spad" 1636000 1636016 1636993 1636998) (-928 "RCFIELD.spad" 1633184 1633192 1635902 1635995) (-927 "RCFIELD.spad" 1630454 1630464 1633174 1633179) (-926 "RCAGG.spad" 1628357 1628367 1630434 1630449) (-925 "RCAGG.spad" 1626197 1626209 1628276 1628281) (-924 "RATRET.spad" 1625558 1625568 1626187 1626192) (-923 "RATFACT.spad" 1625251 1625262 1625548 1625553) (-922 "RANDSRC.spad" 1624571 1624579 1625241 1625246) (-921 "RADUTIL.spad" 1624326 1624334 1624561 1624566) (-920 "RADIX.spad" 1621119 1621132 1622796 1622889) (-919 "RADFF.spad" 1619536 1619572 1619654 1619810) (-918 "RADCAT.spad" 1619130 1619138 1619526 1619531) (-917 "RADCAT.spad" 1618722 1618732 1619120 1619125) (-916 "QUEUE.spad" 1618288 1618298 1618552 1618579) (-915 "QUAT.spad" 1616874 1616884 1617216 1617281) (-914 "QUATCT2.spad" 1616493 1616511 1616864 1616869) (-913 "QUATCAT.spad" 1614658 1614668 1616423 1616488) (-912 "QUATCAT.spad" 1612575 1612587 1614342 1614347) (-911 "QUAGG.spad" 1611389 1611399 1612531 1612570) (-910 "QFORM.spad" 1610852 1610866 1611379 1611384) (-909 "QFCAT.spad" 1609543 1609553 1610742 1610847) (-908 "QFCAT.spad" 1607840 1607852 1609041 1609046) (-907 "QFCAT2.spad" 1607531 1607547 1607830 1607835) (-906 "QEQUAT.spad" 1607088 1607096 1607521 1607526) (-905 "QCMPACK.spad" 1601835 1601854 1607078 1607083) (-904 "QALGSET.spad" 1597910 1597942 1601749 1601754) (-903 "QALGSET2.spad" 1595906 1595924 1597900 1597905) (-902 "PWFFINTB.spad" 1593216 1593237 1595896 1595901) (-901 "PUSHVAR.spad" 1592545 1592564 1593206 1593211) (-900 "PTRANFN.spad" 1588671 1588681 1592535 1592540) (-899 "PTPACK.spad" 1585759 1585769 1588661 1588666) (-898 "PTFUNC2.spad" 1585580 1585594 1585749 1585754) (-897 "PTCAT.spad" 1584662 1584672 1585536 1585575) (-896 "PSQFR.spad" 1583969 1583993 1584652 1584657) (-895 "PSEUDLIN.spad" 1582827 1582837 1583959 1583964) (-894 "PSETPK.spad" 1568260 1568276 1582705 1582710) (-893 "PSETCAT.spad" 1562168 1562191 1568228 1568255) (-892 "PSETCAT.spad" 1556062 1556087 1562124 1562129) (-891 "PSCURVE.spad" 1555045 1555053 1556052 1556057) (-890 "PSCAT.spad" 1553812 1553841 1554943 1555040) (-889 "PSCAT.spad" 1552669 1552700 1553802 1553807) (-888 "PRTITION.spad" 1551512 1551520 1552659 1552664) (-887 "PRS.spad" 1541074 1541091 1551468 1551473) (-886 "PRQAGG.spad" 1540493 1540503 1541030 1541069) (-885 "PRODUCT.spad" 1538173 1538185 1538459 1538514) (-884 "PR.spad" 1536562 1536574 1537267 1537394) (-883 "PRINT.spad" 1536314 1536322 1536552 1536557) (-882 "PRIMES.spad" 1534565 1534575 1536304 1536309) (-881 "PRIMELT.spad" 1532546 1532560 1534555 1534560) (-880 "PRIMCAT.spad" 1532169 1532177 1532536 1532541) (-879 "PRIMARR.spad" 1531174 1531184 1531352 1531379) (-878 "PRIMARR2.spad" 1529897 1529909 1531164 1531169) (-877 "PREASSOC.spad" 1529269 1529281 1529887 1529892) (-876 "PPCURVE.spad" 1528406 1528414 1529259 1529264) (-875 "POLYROOT.spad" 1527178 1527200 1528362 1528367) (-874 "POLY.spad" 1524478 1524488 1524995 1525122) (-873 "POLYLIFT.spad" 1523739 1523762 1524468 1524473) (-872 "POLYCATQ.spad" 1521841 1521863 1523729 1523734) (-871 "POLYCAT.spad" 1515247 1515268 1521709 1521836) (-870 "POLYCAT.spad" 1507955 1507978 1514419 1514424) (-869 "POLY2UP.spad" 1507403 1507417 1507945 1507950) (-868 "POLY2.spad" 1506998 1507010 1507393 1507398) (-867 "POLUTIL.spad" 1505939 1505968 1506954 1506959) (-866 "POLTOPOL.spad" 1504687 1504702 1505929 1505934) (-865 "POINT.spad" 1503751 1503761 1503838 1503865) (-864 "PNTHEORY.spad" 1500417 1500425 1503741 1503746) (-863 "PMTOOLS.spad" 1499174 1499188 1500407 1500412) (-862 "PMSYM.spad" 1498719 1498729 1499164 1499169) (-861 "PMQFCAT.spad" 1498306 1498320 1498709 1498714) (-860 "PMPRED.spad" 1497775 1497789 1498296 1498301) (-859 "PMPREDFS.spad" 1497219 1497241 1497765 1497770) (-858 "PMPLCAT.spad" 1496289 1496307 1497151 1497156) (-857 "PMLSAGG.spad" 1495870 1495884 1496279 1496284) (-856 "PMKERNEL.spad" 1495437 1495449 1495860 1495865) (-855 "PMINS.spad" 1495013 1495023 1495427 1495432) (-854 "PMFS.spad" 1494586 1494604 1495003 1495008) (-853 "PMDOWN.spad" 1493872 1493886 1494576 1494581) (-852 "PMASS.spad" 1492884 1492892 1493862 1493867) (-851 "PMASSFS.spad" 1491853 1491869 1492874 1492879) (-850 "PLOTTOOL.spad" 1491633 1491641 1491843 1491848) (-849 "PLOT.spad" 1486464 1486472 1491623 1491628) (-848 "PLOT3D.spad" 1482884 1482892 1486454 1486459) (-847 "PLOT1.spad" 1482025 1482035 1482874 1482879) (-846 "PLEQN.spad" 1469241 1469268 1482015 1482020) (-845 "PINTERP.spad" 1468857 1468876 1469231 1469236) (-844 "PINTERPA.spad" 1468639 1468655 1468847 1468852) (-843 "PI.spad" 1468246 1468254 1468613 1468634) (-842 "PID.spad" 1467202 1467210 1468172 1468241) (-841 "PICOERCE.spad" 1466859 1466869 1467192 1467197) (-840 "PGROEB.spad" 1465456 1465470 1466849 1466854) (-839 "PGE.spad" 1456709 1456717 1465446 1465451) (-838 "PGCD.spad" 1455591 1455608 1456699 1456704) (-837 "PFRPAC.spad" 1454734 1454744 1455581 1455586) (-836 "PFR.spad" 1451391 1451401 1454636 1454729) (-835 "PFOTOOLS.spad" 1450649 1450665 1451381 1451386) (-834 "PFOQ.spad" 1450019 1450037 1450639 1450644) (-833 "PFO.spad" 1449438 1449465 1450009 1450014) (-832 "PF.spad" 1449012 1449024 1449243 1449336) (-831 "PFECAT.spad" 1446678 1446686 1448938 1449007) (-830 "PFECAT.spad" 1444372 1444382 1446634 1446639) (-829 "PFBRU.spad" 1442242 1442254 1444362 1444367) (-828 "PFBR.spad" 1439780 1439803 1442232 1442237) (-827 "PERM.spad" 1435461 1435471 1439610 1439625) (-826 "PERMGRP.spad" 1430197 1430207 1435451 1435456) (-825 "PERMCAT.spad" 1428749 1428759 1430177 1430192) (-824 "PERMAN.spad" 1427281 1427295 1428739 1428744) (-823 "PENDTREE.spad" 1426777 1426787 1427133 1427138) (-822 "PDRING.spad" 1425268 1425278 1426757 1426772) (-821 "PDRING.spad" 1423767 1423779 1425258 1425263) (-820 "PDEPROB.spad" 1422724 1422732 1423757 1423762) (-819 "PDEPACK.spad" 1416726 1416734 1422714 1422719) (-818 "PDECOMP.spad" 1416188 1416205 1416716 1416721) (-817 "PDECAT.spad" 1414542 1414550 1416178 1416183) (-816 "PCOMP.spad" 1414393 1414406 1414532 1414537) (-815 "PBWLB.spad" 1412975 1412992 1414383 1414388) (-814 "PATTERN.spad" 1407406 1407416 1412965 1412970) (-813 "PATTERN2.spad" 1407142 1407154 1407396 1407401) (-812 "PATTERN1.spad" 1405444 1405460 1407132 1407137) (-811 "PATRES.spad" 1402991 1403003 1405434 1405439) (-810 "PATRES2.spad" 1402653 1402667 1402981 1402986) (-809 "PATMATCH.spad" 1400815 1400846 1402366 1402371) (-808 "PATMAB.spad" 1400240 1400250 1400805 1400810) (-807 "PATLRES.spad" 1399324 1399338 1400230 1400235) (-806 "PATAB.spad" 1399088 1399098 1399314 1399319) (-805 "PARTPERM.spad" 1396450 1396458 1399078 1399083) (-804 "PARSURF.spad" 1395878 1395906 1396440 1396445) (-803 "PARSU2.spad" 1395673 1395689 1395868 1395873) (-802 "PARSCURV.spad" 1395101 1395129 1395663 1395668) (-801 "PARSC2.spad" 1394890 1394906 1395091 1395096) (-800 "PARPCURV.spad" 1394348 1394376 1394880 1394885) (-799 "PARPC2.spad" 1394137 1394153 1394338 1394343) (-798 "PAN2EXPR.spad" 1393549 1393557 1394127 1394132) (-797 "PALETTE.spad" 1392519 1392527 1393539 1393544) (-796 "PADICRC.spad" 1389852 1389870 1391027 1391120) (-795 "PADICRAT.spad" 1387870 1387882 1388091 1388184) (-794 "PADIC.spad" 1387565 1387577 1387796 1387865) (-793 "PADICCT.spad" 1386106 1386118 1387491 1387560) (-792 "PADEPAC.spad" 1384785 1384804 1386096 1386101) (-791 "PADE.spad" 1383525 1383541 1384775 1384780) (-790 "OWP.spad" 1382509 1382539 1383383 1383450) (-789 "OVAR.spad" 1382290 1382313 1382499 1382504) (-788 "OUT.spad" 1381374 1381382 1382280 1382285) (-787 "OUTFORM.spad" 1370788 1370796 1381364 1381369) (-786 "OSI.spad" 1370263 1370271 1370778 1370783) (-785 "ORTHPOL.spad" 1368724 1368734 1370180 1370185) (-784 "OREUP.spad" 1368084 1368112 1368406 1368445) (-783 "ORESUP.spad" 1367385 1367409 1367766 1367805) (-782 "OREPCTO.spad" 1365204 1365216 1367305 1367310) (-781 "OREPCAT.spad" 1359261 1359271 1365160 1365199) (-780 "OREPCAT.spad" 1353208 1353220 1359109 1359114) (-779 "ORDSET.spad" 1352374 1352382 1353198 1353203) (-778 "ORDSET.spad" 1351538 1351548 1352364 1352369) (-777 "ORDRING.spad" 1350928 1350936 1351518 1351533) (-776 "ORDRING.spad" 1350326 1350336 1350918 1350923) (-775 "ORDMON.spad" 1350181 1350189 1350316 1350321) (-774 "ORDFUNS.spad" 1349307 1349323 1350171 1350176) (-773 "ORDFIN.spad" 1349241 1349249 1349297 1349302) (-772 "ORDCOMP.spad" 1347709 1347719 1348791 1348820) (-771 "ORDCOMP2.spad" 1346994 1347006 1347699 1347704) (-770 "OPTPROB.spad" 1345574 1345582 1346984 1346989) (-769 "OPTPACK.spad" 1337959 1337967 1345564 1345569) (-768 "OPTCAT.spad" 1335634 1335642 1337949 1337954) (-767 "OPQUERY.spad" 1335183 1335191 1335624 1335629) (-766 "OP.spad" 1334925 1334935 1335005 1335072) (-765 "ONECOMP.spad" 1333673 1333683 1334475 1334504) (-764 "ONECOMP2.spad" 1333091 1333103 1333663 1333668) (-763 "OMSERVER.spad" 1332093 1332101 1333081 1333086) (-762 "OMSAGG.spad" 1331869 1331879 1332037 1332088) (-761 "OMPKG.spad" 1330481 1330489 1331859 1331864) (-760 "OM.spad" 1329446 1329454 1330471 1330476) (-759 "OMLO.spad" 1328871 1328883 1329332 1329371) (-758 "OMEXPR.spad" 1328705 1328715 1328861 1328866) (-757 "OMERR.spad" 1328248 1328256 1328695 1328700) (-756 "OMERRK.spad" 1327282 1327290 1328238 1328243) (-755 "OMENC.spad" 1326626 1326634 1327272 1327277) (-754 "OMDEV.spad" 1320915 1320923 1326616 1326621) (-753 "OMCONN.spad" 1320324 1320332 1320905 1320910) (-752 "OINTDOM.spad" 1320087 1320095 1320250 1320319) (-751 "OFMONOID.spad" 1316274 1316284 1320077 1320082) (-750 "ODVAR.spad" 1315535 1315545 1316264 1316269) (-749 "ODR.spad" 1314983 1315009 1315347 1315496) (-748 "ODPOL.spad" 1312332 1312342 1312672 1312799) (-747 "ODP.spad" 1304574 1304594 1304947 1305076) (-746 "ODETOOLS.spad" 1303157 1303176 1304564 1304569) (-745 "ODESYS.spad" 1300807 1300824 1303147 1303152) (-744 "ODERTRIC.spad" 1296748 1296765 1300764 1300769) (-743 "ODERED.spad" 1296135 1296159 1296738 1296743) (-742 "ODERAT.spad" 1293686 1293703 1296125 1296130) (-741 "ODEPRRIC.spad" 1290577 1290599 1293676 1293681) (-740 "ODEPROB.spad" 1289776 1289784 1290567 1290572) (-739 "ODEPRIM.spad" 1287050 1287072 1289766 1289771) (-738 "ODEPAL.spad" 1286426 1286450 1287040 1287045) (-737 "ODEPACK.spad" 1273028 1273036 1286416 1286421) (-736 "ODEINT.spad" 1272459 1272475 1273018 1273023) (-735 "ODEIFTBL.spad" 1269854 1269862 1272449 1272454) (-734 "ODEEF.spad" 1265221 1265237 1269844 1269849) (-733 "ODECONST.spad" 1264740 1264758 1265211 1265216) (-732 "ODECAT.spad" 1263336 1263344 1264730 1264735) (-731 "OCT.spad" 1261483 1261493 1262199 1262238) (-730 "OCTCT2.spad" 1261127 1261148 1261473 1261478) (-729 "OC.spad" 1258901 1258911 1261083 1261122) (-728 "OC.spad" 1256401 1256413 1258585 1258590) (-727 "OCAMON.spad" 1256249 1256257 1256391 1256396) (-726 "OASGP.spad" 1256064 1256072 1256239 1256244) (-725 "OAMONS.spad" 1255584 1255592 1256054 1256059) (-724 "OAMON.spad" 1255445 1255453 1255574 1255579) (-723 "OAGROUP.spad" 1255307 1255315 1255435 1255440) (-722 "NUMTUBE.spad" 1254894 1254910 1255297 1255302) (-721 "NUMQUAD.spad" 1242756 1242764 1254884 1254889) (-720 "NUMODE.spad" 1233892 1233900 1242746 1242751) (-719 "NUMINT.spad" 1231450 1231458 1233882 1233887) (-718 "NUMFMT.spad" 1230290 1230298 1231440 1231445) (-717 "NUMERIC.spad" 1222363 1222373 1230096 1230101) (-716 "NTSCAT.spad" 1220853 1220869 1222319 1222358) (-715 "NTPOLFN.spad" 1220398 1220408 1220770 1220775) (-714 "NSUP.spad" 1213416 1213426 1217956 1218109) (-713 "NSUP2.spad" 1212808 1212820 1213406 1213411) (-712 "NSMP.spad" 1209007 1209026 1209315 1209442) (-711 "NREP.spad" 1207379 1207393 1208997 1209002) (-710 "NPCOEF.spad" 1206625 1206645 1207369 1207374) (-709 "NORMRETR.spad" 1206223 1206262 1206615 1206620) (-708 "NORMPK.spad" 1204125 1204144 1206213 1206218) (-707 "NORMMA.spad" 1203813 1203839 1204115 1204120) (-706 "NONE.spad" 1203554 1203562 1203803 1203808) (-705 "NONE1.spad" 1203230 1203240 1203544 1203549) (-704 "NODE1.spad" 1202699 1202715 1203220 1203225) (-703 "NNI.spad" 1201586 1201594 1202673 1202694) (-702 "NLINSOL.spad" 1200208 1200218 1201576 1201581) (-701 "NIPROB.spad" 1198691 1198699 1200198 1200203) (-700 "NFINTBAS.spad" 1196151 1196168 1198681 1198686) (-699 "NCODIV.spad" 1194349 1194365 1196141 1196146) (-698 "NCNTFRAC.spad" 1193991 1194005 1194339 1194344) (-697 "NCEP.spad" 1192151 1192165 1193981 1193986) (-696 "NASRING.spad" 1191747 1191755 1192141 1192146) (-695 "NASRING.spad" 1191341 1191351 1191737 1191742) (-694 "NARNG.spad" 1190685 1190693 1191331 1191336) (-693 "NARNG.spad" 1190027 1190037 1190675 1190680) (-692 "NAGSP.spad" 1189100 1189108 1190017 1190022) (-691 "NAGS.spad" 1178625 1178633 1189090 1189095) (-690 "NAGF07.spad" 1177018 1177026 1178615 1178620) (-689 "NAGF04.spad" 1171250 1171258 1177008 1177013) (-688 "NAGF02.spad" 1165059 1165067 1171240 1171245) (-687 "NAGF01.spad" 1160662 1160670 1165049 1165054) (-686 "NAGE04.spad" 1154122 1154130 1160652 1160657) (-685 "NAGE02.spad" 1144464 1144472 1154112 1154117) (-684 "NAGE01.spad" 1140348 1140356 1144454 1144459) (-683 "NAGD03.spad" 1138268 1138276 1140338 1140343) (-682 "NAGD02.spad" 1130799 1130807 1138258 1138263) (-681 "NAGD01.spad" 1124912 1124920 1130789 1130794) (-680 "NAGC06.spad" 1120699 1120707 1124902 1124907) (-679 "NAGC05.spad" 1119168 1119176 1120689 1120694) (-678 "NAGC02.spad" 1118423 1118431 1119158 1119163) (-677 "NAALG.spad" 1117958 1117968 1118391 1118418) (-676 "NAALG.spad" 1117513 1117525 1117948 1117953) (-675 "MULTSQFR.spad" 1114471 1114488 1117503 1117508) (-674 "MULTFACT.spad" 1113854 1113871 1114461 1114466) (-673 "MTSCAT.spad" 1111888 1111909 1113752 1113849) (-672 "MTHING.spad" 1111545 1111555 1111878 1111883) (-671 "MSYSCMD.spad" 1110979 1110987 1111535 1111540) (-670 "MSET.spad" 1108977 1108987 1110741 1110780) (-669 "MSETAGG.spad" 1108810 1108820 1108933 1108972) (-668 "MRING.spad" 1105781 1105793 1108518 1108585) (-667 "MRF2.spad" 1105349 1105363 1105771 1105776) (-666 "MRATFAC.spad" 1104895 1104912 1105339 1105344) (-665 "MPRFF.spad" 1102925 1102944 1104885 1104890) (-664 "MPOLY.spad" 1100363 1100378 1100722 1100849) (-663 "MPCPF.spad" 1099627 1099646 1100353 1100358) (-662 "MPC3.spad" 1099442 1099482 1099617 1099622) (-661 "MPC2.spad" 1099084 1099117 1099432 1099437) (-660 "MONOTOOL.spad" 1097419 1097436 1099074 1099079) (-659 "MONOID.spad" 1096593 1096601 1097409 1097414) (-658 "MONOID.spad" 1095765 1095775 1096583 1096588) (-657 "MONOGEN.spad" 1094511 1094524 1095625 1095760) (-656 "MONOGEN.spad" 1093279 1093294 1094395 1094400) (-655 "MONADWU.spad" 1091293 1091301 1093269 1093274) (-654 "MONADWU.spad" 1089305 1089315 1091283 1091288) (-653 "MONAD.spad" 1088449 1088457 1089295 1089300) (-652 "MONAD.spad" 1087591 1087601 1088439 1088444) (-651 "MOEBIUS.spad" 1086277 1086291 1087571 1087586) (-650 "MODULE.spad" 1086147 1086157 1086245 1086272) (-649 "MODULE.spad" 1086037 1086049 1086137 1086142) (-648 "MODRING.spad" 1085368 1085407 1086017 1086032) (-647 "MODOP.spad" 1084027 1084039 1085190 1085257) (-646 "MODMONOM.spad" 1083559 1083577 1084017 1084022) (-645 "MODMON.spad" 1080269 1080285 1081045 1081198) (-644 "MODFIELD.spad" 1079627 1079666 1080171 1080264) (-643 "MMAP.spad" 1079367 1079401 1079617 1079622) (-642 "MLO.spad" 1077794 1077804 1079323 1079362) (-641 "MLIFT.spad" 1076366 1076383 1077784 1077789) (-640 "MKUCFUNC.spad" 1075899 1075917 1076356 1076361) (-639 "MKRECORD.spad" 1075501 1075514 1075889 1075894) (-638 "MKFUNC.spad" 1074882 1074892 1075491 1075496) (-637 "MKFLCFN.spad" 1073838 1073848 1074872 1074877) (-636 "MKCHSET.spad" 1073614 1073624 1073828 1073833) (-635 "MKBCFUNC.spad" 1073099 1073117 1073604 1073609) (-634 "MINT.spad" 1072538 1072546 1073001 1073094) (-633 "MHROWRED.spad" 1071039 1071049 1072528 1072533) (-632 "MFLOAT.spad" 1069484 1069492 1070929 1071034) (-631 "MFINFACT.spad" 1068884 1068906 1069474 1069479) (-630 "MESH.spad" 1066616 1066624 1068874 1068879) (-629 "MDDFACT.spad" 1064809 1064819 1066606 1066611) (-628 "MDAGG.spad" 1064084 1064094 1064777 1064804) (-627 "MCMPLX.spad" 1060064 1060072 1060678 1060879) (-626 "MCDEN.spad" 1059272 1059284 1060054 1060059) (-625 "MCALCFN.spad" 1056374 1056400 1059262 1059267) (-624 "MATSTOR.spad" 1053650 1053660 1056364 1056369) (-623 "MATRIX.spad" 1052577 1052587 1053061 1053088) (-622 "MATLIN.spad" 1049903 1049927 1052461 1052466) (-621 "MATCAT.spad" 1041476 1041498 1049859 1049898) (-620 "MATCAT.spad" 1032933 1032957 1041318 1041323) (-619 "MATCAT2.spad" 1032201 1032249 1032923 1032928) (-618 "MAPPKG3.spad" 1031100 1031114 1032191 1032196) (-617 "MAPPKG2.spad" 1030434 1030446 1031090 1031095) (-616 "MAPPKG1.spad" 1029252 1029262 1030424 1030429) (-615 "MAPHACK3.spad" 1029060 1029074 1029242 1029247) (-614 "MAPHACK2.spad" 1028825 1028837 1029050 1029055) (-613 "MAPHACK1.spad" 1028455 1028465 1028815 1028820) (-612 "MAGMA.spad" 1026245 1026262 1028445 1028450) (-611 "M3D.spad" 1024166 1024176 1025848 1025853) (-610 "LZSTAGG.spad" 1021384 1021394 1024146 1024161) (-609 "LZSTAGG.spad" 1018610 1018622 1021374 1021379) (-608 "LWORD.spad" 1015315 1015332 1018600 1018605) (-607 "LSQM.spad" 1013599 1013613 1013997 1014048) (-606 "LSPP.spad" 1013132 1013149 1013589 1013594) (-605 "LSMP.spad" 1011972 1012000 1013122 1013127) (-604 "LSMP1.spad" 1009776 1009790 1011962 1011967) (-603 "LSAGG.spad" 1009433 1009443 1009732 1009771) (-602 "LSAGG.spad" 1009122 1009134 1009423 1009428) (-601 "LPOLY.spad" 1008076 1008095 1008978 1009047) (-600 "LPEFRAC.spad" 1007333 1007343 1008066 1008071) (-599 "LO.spad" 1006734 1006748 1007267 1007294) (-598 "LOGIC.spad" 1006336 1006344 1006724 1006729) (-597 "LOGIC.spad" 1005936 1005946 1006326 1006331) (-596 "LODOOPS.spad" 1004854 1004866 1005926 1005931) (-595 "LODO.spad" 1004240 1004256 1004536 1004575) (-594 "LODOF.spad" 1003284 1003301 1004197 1004202) (-593 "LODOCAT.spad" 1001942 1001952 1003240 1003279) (-592 "LODOCAT.spad" 1000598 1000610 1001898 1001903) (-591 "LODO2.spad" 999873 999885 1000280 1000319) (-590 "LODO1.spad" 999275 999285 999555 999594) (-589 "LODEEF.spad" 998047 998065 999265 999270) (-588 "LNAGG.spad" 993839 993849 998027 998042) (-587 "LNAGG.spad" 989605 989617 993795 993800) (-586 "LMOPS.spad" 986341 986358 989595 989600) (-585 "LMODULE.spad" 985983 985993 986331 986336) (-584 "LMDICT.spad" 985489 985499 985757 985784) (-583 "LIST.spad" 983207 983217 984636 984663) (-582 "LIST3.spad" 982498 982512 983197 983202) (-581 "LIST2.spad" 981138 981150 982488 982493) (-580 "LIST2MAP.spad" 978015 978027 981128 981133) (-579 "LINEXP.spad" 977447 977457 977995 978010) (-578 "LINDEP.spad" 976224 976236 977359 977364) (-577 "LIMITRF.spad" 974138 974148 976214 976219) (-576 "LIMITPS.spad" 973021 973034 974128 974133) (-575 "LIE.spad" 971035 971047 972311 972456) (-574 "LIECAT.spad" 970511 970521 970961 971030) (-573 "LIECAT.spad" 970015 970027 970467 970472) (-572 "LIB.spad" 968645 968653 969256 969271) (-571 "LGROBP.spad" 965998 966017 968635 968640) (-570 "LF.spad" 964917 964933 965988 965993) (-569 "LFCAT.spad" 963936 963944 964907 964912) (-568 "LEXTRIPK.spad" 959439 959454 963926 963931) (-567 "LEXP.spad" 957442 957469 959419 959434) (-566 "LEADCDET.spad" 955826 955843 957432 957437) (-565 "LAZM3PK.spad" 954530 954552 955816 955821) (-564 "LAUPOL.spad" 953221 953234 954125 954194) (-563 "LAPLACE.spad" 952794 952810 953211 953216) (-562 "LA.spad" 952234 952248 952716 952755) (-561 "LALG.spad" 952010 952020 952214 952229) (-560 "LALG.spad" 951794 951806 952000 952005) (-559 "KOVACIC.spad" 950507 950524 951784 951789) (-558 "KONVERT.spad" 950229 950239 950497 950502) (-557 "KOERCE.spad" 949966 949976 950219 950224) (-556 "KERNEL.spad" 948501 948511 949750 949755) (-555 "KERNEL2.spad" 948204 948216 948491 948496) (-554 "KDAGG.spad" 947295 947317 948172 948199) (-553 "KDAGG.spad" 946406 946430 947285 947290) (-552 "KAFILE.spad" 945518 945534 945753 945780) (-551 "JORDAN.spad" 943345 943357 944808 944953) (-550 "IXAGG.spad" 941458 941482 943325 943340) (-549 "IXAGG.spad" 939436 939462 941305 941310) (-548 "IVECTOR.spad" 938432 938447 938587 938614) (-547 "ITUPLE.spad" 937577 937587 938422 938427) (-546 "ITRIGMNP.spad" 936388 936407 937567 937572) (-545 "ITFUN3.spad" 935882 935896 936378 936383) (-544 "ITFUN2.spad" 935612 935624 935872 935877) (-543 "ITAYLOR.spad" 933404 933419 935448 935573) (-542 "ISUPS.spad" 925815 925830 932378 932475) (-541 "ISUMP.spad" 925312 925328 925805 925810) (-540 "ISTRING.spad" 924315 924328 924481 924508) (-539 "IRURPK.spad" 923028 923047 924305 924310) (-538 "IRSN.spad" 920988 920996 923018 923023) (-537 "IRRF2F.spad" 919463 919473 920944 920949) (-536 "IRREDFFX.spad" 919064 919075 919453 919458) (-535 "IROOT.spad" 917395 917405 919054 919059) (-534 "IR.spad" 915185 915199 917251 917278) (-533 "IR2.spad" 914205 914221 915175 915180) (-532 "IR2F.spad" 913405 913421 914195 914200) (-531 "IPRNTPK.spad" 913165 913173 913395 913400) (-530 "IPF.spad" 912730 912742 912970 913063) (-529 "IPADIC.spad" 912491 912517 912656 912725) (-528 "INVLAPLA.spad" 912136 912152 912481 912486) (-527 "INTTR.spad" 905382 905399 912126 912131) (-526 "INTTOOLS.spad" 903094 903110 904957 904962) (-525 "INTSLPE.spad" 902400 902408 903084 903089) (-524 "INTRVL.spad" 901966 901976 902314 902395) (-523 "INTRF.spad" 900330 900344 901956 901961) (-522 "INTRET.spad" 899762 899772 900320 900325) (-521 "INTRAT.spad" 898437 898454 899752 899757) (-520 "INTPM.spad" 896800 896816 898080 898085) (-519 "INTPAF.spad" 894568 894586 896732 896737) (-518 "INTPACK.spad" 884878 884886 894558 894563) (-517 "INT.spad" 884239 884247 884732 884873) (-516 "INTHERTR.spad" 883505 883522 884229 884234) (-515 "INTHERAL.spad" 883171 883195 883495 883500) (-514 "INTHEORY.spad" 879584 879592 883161 883166) (-513 "INTG0.spad" 873047 873065 879516 879521) (-512 "INTFTBL.spad" 867076 867084 873037 873042) (-511 "INTFACT.spad" 866135 866145 867066 867071) (-510 "INTEF.spad" 864450 864466 866125 866130) (-509 "INTDOM.spad" 863065 863073 864376 864445) (-508 "INTDOM.spad" 861742 861752 863055 863060) (-507 "INTCAT.spad" 859995 860005 861656 861737) (-506 "INTBIT.spad" 859498 859506 859985 859990) (-505 "INTALG.spad" 858680 858707 859488 859493) (-504 "INTAF.spad" 858172 858188 858670 858675) (-503 "INTABL.spad" 857252 857283 857415 857442) (-502 "INS.spad" 854648 854656 857154 857247) (-501 "INS.spad" 852130 852140 854638 854643) (-500 "INPSIGN.spad" 851564 851577 852120 852125) (-499 "INPRODPF.spad" 850630 850649 851554 851559) (-498 "INPRODFF.spad" 849688 849712 850620 850625) (-497 "INNMFACT.spad" 848659 848676 849678 849683) (-496 "INMODGCD.spad" 848143 848173 848649 848654) (-495 "INFSP.spad" 846428 846450 848133 848138) (-494 "INFPROD0.spad" 845478 845497 846418 846423) (-493 "INFORM.spad" 842746 842754 845468 845473) (-492 "INFORM1.spad" 842371 842381 842736 842741) (-491 "INFINITY.spad" 841923 841931 842361 842366) (-490 "INEP.spad" 840455 840477 841913 841918) (-489 "INDE.spad" 840361 840378 840445 840450) (-488 "INCRMAPS.spad" 839782 839792 840351 840356) (-487 "INBFF.spad" 835552 835563 839772 839777) (-486 "IMATRIX.spad" 834720 834746 835232 835259) (-485 "IMATQF.spad" 833814 833858 834676 834681) (-484 "IMATLIN.spad" 832419 832443 833770 833775) (-483 "ILIST.spad" 831075 831090 831602 831629) (-482 "IIARRAY2.spad" 830686 830724 830905 830932) (-481 "IFF.spad" 830096 830112 830367 830460) (-480 "IFARRAY.spad" 827806 827821 829502 829529) (-479 "IFAMON.spad" 827668 827685 827762 827767) (-478 "IEVALAB.spad" 827057 827069 827658 827663) (-477 "IEVALAB.spad" 826444 826458 827047 827052) (-476 "IDPO.spad" 826242 826254 826434 826439) (-475 "IDPOAMS.spad" 825998 826010 826232 826237) (-474 "IDPOAM.spad" 825718 825730 825988 825993) (-473 "IDPC.spad" 824652 824664 825708 825713) (-472 "IDPAM.spad" 824397 824409 824642 824647) (-471 "IDPAG.spad" 824144 824156 824387 824392) (-470 "IDECOMP.spad" 821381 821399 824134 824139) (-469 "IDEAL.spad" 816304 816343 821316 821321) (-468 "ICDEN.spad" 815455 815471 816294 816299) (-467 "ICARD.spad" 814644 814652 815445 815450) (-466 "IBPTOOLS.spad" 813237 813254 814634 814639) (-465 "IBITS.spad" 812494 812507 812931 812958) (-464 "IBATOOL.spad" 809369 809388 812484 812489) (-463 "IBACHIN.spad" 807856 807871 809359 809364) (-462 "IARRAY2.spad" 807067 807093 807686 807713) (-461 "IARRAY1.spad" 806335 806350 806473 806500) (-460 "IAN.spad" 804550 804558 806153 806246) (-459 "IALGFACT.spad" 804151 804184 804540 804545) (-458 "HYPCAT.spad" 803575 803583 804141 804146) (-457 "HYPCAT.spad" 802997 803007 803565 803570) (-456 "HOAGG.spad" 800255 800265 802977 802992) (-455 "HOAGG.spad" 797298 797310 800022 800027) (-454 "HEXADEC.spad" 795170 795178 795768 795861) (-453 "HEUGCD.spad" 794185 794196 795160 795165) (-452 "HELLFDIV.spad" 793775 793799 794175 794180) (-451 "HEAP.spad" 793390 793400 793605 793632) (-450 "HDP.spad" 785628 785644 786005 786134) (-449 "HDMP.spad" 782807 782822 783425 783552) (-448 "HB.spad" 781044 781052 782797 782802) (-447 "HASHTBL.spad" 780076 780107 780287 780314) (-446 "HACKPI.spad" 779559 779567 779978 780071) (-445 "GTSET.spad" 778554 778570 779261 779288) (-444 "GSTBL.spad" 777635 777670 777809 777824) (-443 "GSERIES.spad" 774802 774829 775767 775916) (-442 "GROUP.spad" 773976 773984 774782 774797) (-441 "GROUP.spad" 773158 773168 773966 773971) (-440 "GROEBSOL.spad" 771646 771667 773148 773153) (-439 "GRMOD.spad" 770217 770229 771636 771641) (-438 "GRMOD.spad" 768786 768800 770207 770212) (-437 "GRIMAGE.spad" 761391 761399 768776 768781) (-436 "GRDEF.spad" 759770 759778 761381 761386) (-435 "GRAY.spad" 758229 758237 759760 759765) (-434 "GRALG.spad" 757276 757288 758219 758224) (-433 "GRALG.spad" 756321 756335 757266 757271) (-432 "GPOLSET.spad" 755831 755854 756059 756086) (-431 "GOSPER.spad" 755096 755114 755821 755826) (-430 "GMODPOL.spad" 754234 754261 755064 755091) (-429 "GHENSEL.spad" 753303 753317 754224 754229) (-428 "GENUPS.spad" 749404 749417 753293 753298) (-427 "GENUFACT.spad" 748981 748991 749394 749399) (-426 "GENPGCD.spad" 748565 748582 748971 748976) (-425 "GENMFACT.spad" 748017 748036 748555 748560) (-424 "GENEEZ.spad" 745956 745969 748007 748012) (-423 "GDMP.spad" 742977 742994 743753 743880) (-422 "GCNAALG.spad" 736872 736899 742771 742838) (-421 "GCDDOM.spad" 736044 736052 736798 736867) (-420 "GCDDOM.spad" 735278 735288 736034 736039) (-419 "GB.spad" 732796 732834 735234 735239) (-418 "GBINTERN.spad" 728816 728854 732786 732791) (-417 "GBF.spad" 724573 724611 728806 728811) (-416 "GBEUCLID.spad" 722447 722485 724563 724568) (-415 "GAUSSFAC.spad" 721744 721752 722437 722442) (-414 "GALUTIL.spad" 720066 720076 721700 721705) (-413 "GALPOLYU.spad" 718512 718525 720056 720061) (-412 "GALFACTU.spad" 716677 716696 718502 718507) (-411 "GALFACT.spad" 706810 706821 716667 716672) (-410 "FVFUN.spad" 703823 703831 706790 706805) (-409 "FVC.spad" 702865 702873 703803 703818) (-408 "FUNCTION.spad" 702714 702726 702855 702860) (-407 "FT.spad" 700926 700934 702704 702709) (-406 "FTEM.spad" 700089 700097 700916 700921) (-405 "FSUPFACT.spad" 698990 699009 700026 700031) (-404 "FST.spad" 697076 697084 698980 698985) (-403 "FSRED.spad" 696554 696570 697066 697071) (-402 "FSPRMELT.spad" 695378 695394 696511 696516) (-401 "FSPECF.spad" 693455 693471 695368 695373) (-400 "FS.spad" 687506 687516 693219 693450) (-399 "FS.spad" 681348 681360 687063 687068) (-398 "FSINT.spad" 681006 681022 681338 681343) (-397 "FSERIES.spad" 680193 680205 680826 680925) (-396 "FSCINT.spad" 679506 679522 680183 680188) (-395 "FSAGG.spad" 678611 678621 679450 679501) (-394 "FSAGG.spad" 677690 677702 678531 678536) (-393 "FSAGG2.spad" 676389 676405 677680 677685) (-392 "FS2UPS.spad" 670778 670812 676379 676384) (-391 "FS2.spad" 670423 670439 670768 670773) (-390 "FS2EXPXP.spad" 669546 669569 670413 670418) (-389 "FRUTIL.spad" 668488 668498 669536 669541) (-388 "FR.spad" 662185 662195 667515 667584) (-387 "FRNAALG.spad" 657272 657282 662127 662180) (-386 "FRNAALG.spad" 652371 652383 657228 657233) (-385 "FRNAAF2.spad" 651825 651843 652361 652366) (-384 "FRMOD.spad" 651220 651250 651757 651762) (-383 "FRIDEAL.spad" 650415 650436 651200 651215) (-382 "FRIDEAL2.spad" 650017 650049 650405 650410) (-381 "FRETRCT.spad" 649528 649538 650007 650012) (-380 "FRETRCT.spad" 648907 648919 649388 649393) (-379 "FRAMALG.spad" 647235 647248 648863 648902) (-378 "FRAMALG.spad" 645595 645610 647225 647230) (-377 "FRAC.spad" 642698 642708 643101 643274) (-376 "FRAC2.spad" 642301 642313 642688 642693) (-375 "FR2.spad" 641635 641647 642291 642296) (-374 "FPS.spad" 638444 638452 641525 641630) (-373 "FPS.spad" 635281 635291 638364 638369) (-372 "FPC.spad" 634323 634331 635183 635276) (-371 "FPC.spad" 633451 633461 634313 634318) (-370 "FPATMAB.spad" 633203 633213 633431 633446) (-369 "FPARFRAC.spad" 631676 631693 633193 633198) (-368 "FORTRAN.spad" 630176 630225 631666 631671) (-367 "FORT.spad" 629105 629113 630166 630171) (-366 "FORTFN.spad" 626265 626273 629085 629100) (-365 "FORTCAT.spad" 625939 625947 626245 626260) (-364 "FORMULA.spad" 623277 623285 625929 625934) (-363 "FORMULA1.spad" 622756 622766 623267 623272) (-362 "FORDER.spad" 622447 622471 622746 622751) (-361 "FOP.spad" 621648 621656 622437 622442) (-360 "FNLA.spad" 621072 621094 621616 621643) (-359 "FNCAT.spad" 619400 619408 621062 621067) (-358 "FNAME.spad" 619292 619300 619390 619395) (-357 "FMTC.spad" 619090 619098 619218 619287) (-356 "FMONOID.spad" 616145 616155 619046 619051) (-355 "FM.spad" 615840 615852 616079 616106) (-354 "FMFUN.spad" 612860 612868 615820 615835) (-353 "FMC.spad" 611902 611910 612840 612855) (-352 "FMCAT.spad" 609556 609574 611870 611897) (-351 "FM1.spad" 608913 608925 609490 609517) (-350 "FLOATRP.spad" 606634 606648 608903 608908) (-349 "FLOAT.spad" 599798 599806 606500 606629) (-348 "FLOATCP.spad" 597215 597229 599788 599793) (-347 "FLINEXP.spad" 596927 596937 597195 597210) (-346 "FLINEXP.spad" 596593 596605 596863 596868) (-345 "FLASORT.spad" 595913 595925 596583 596588) (-344 "FLALG.spad" 593559 593578 595839 595908) (-343 "FLAGG.spad" 590565 590575 593527 593554) (-342 "FLAGG.spad" 587484 587496 590448 590453) (-341 "FLAGG2.spad" 586165 586181 587474 587479) (-340 "FINRALG.spad" 584194 584207 586121 586160) (-339 "FINRALG.spad" 582149 582164 584078 584083) (-338 "FINITE.spad" 581301 581309 582139 582144) (-337 "FINAALG.spad" 570282 570292 581243 581296) (-336 "FINAALG.spad" 559275 559287 570238 570243) (-335 "FILE.spad" 558858 558868 559265 559270) (-334 "FILECAT.spad" 557376 557393 558848 558853) (-333 "FIELD.spad" 556782 556790 557278 557371) (-332 "FIELD.spad" 556274 556284 556772 556777) (-331 "FGROUP.spad" 554883 554893 556254 556269) (-330 "FGLMICPK.spad" 553670 553685 554873 554878) (-329 "FFX.spad" 553045 553060 553386 553479) (-328 "FFSLPE.spad" 552534 552555 553035 553040) (-327 "FFPOLY.spad" 543786 543797 552524 552529) (-326 "FFPOLY2.spad" 542846 542863 543776 543781) (-325 "FFP.spad" 542243 542263 542562 542655) (-324 "FF.spad" 541691 541707 541924 542017) (-323 "FFNBX.spad" 540203 540223 541407 541500) (-322 "FFNBP.spad" 538716 538733 539919 540012) (-321 "FFNB.spad" 537181 537202 538397 538490) (-320 "FFINTBAS.spad" 534595 534614 537171 537176) (-319 "FFIELDC.spad" 532170 532178 534497 534590) (-318 "FFIELDC.spad" 529831 529841 532160 532165) (-317 "FFHOM.spad" 528579 528596 529821 529826) (-316 "FFF.spad" 526014 526025 528569 528574) (-315 "FFCGX.spad" 524861 524881 525730 525823) (-314 "FFCGP.spad" 523750 523770 524577 524670) (-313 "FFCG.spad" 522542 522563 523431 523524) (-312 "FFCAT.spad" 515443 515465 522381 522537) (-311 "FFCAT.spad" 508423 508447 515363 515368) (-310 "FFCAT2.spad" 508168 508208 508413 508418) (-309 "FEXPR.spad" 499881 499927 507928 507967) (-308 "FEVALAB.spad" 499587 499597 499871 499876) (-307 "FEVALAB.spad" 499078 499090 499364 499369) (-306 "FDIV.spad" 498520 498544 499068 499073) (-305 "FDIVCAT.spad" 496562 496586 498510 498515) (-304 "FDIVCAT.spad" 494602 494628 496552 496557) (-303 "FDIV2.spad" 494256 494296 494592 494597) (-302 "FCPAK1.spad" 492809 492817 494246 494251) (-301 "FCOMP.spad" 492188 492198 492799 492804) (-300 "FC.spad" 482013 482021 492178 492183) (-299 "FAXF.spad" 474948 474962 481915 482008) (-298 "FAXF.spad" 467935 467951 474904 474909) (-297 "FARRAY.spad" 466304 466314 467341 467368) (-296 "FAMR.spad" 464424 464436 466202 466299) (-295 "FAMR.spad" 462528 462542 464308 464313) (-294 "FAMONOID.spad" 462178 462188 462482 462487) (-293 "FAMONC.spad" 460400 460412 462168 462173) (-292 "FAGROUP.spad" 460006 460016 460296 460323) (-291 "FACUTIL.spad" 458202 458219 459996 460001) (-290 "FACTFUNC.spad" 457378 457388 458192 458197) (-289 "EXPUPXS.spad" 454211 454234 455510 455659) (-288 "EXPRTUBE.spad" 451439 451447 454201 454206) (-287 "EXPRODE.spad" 448311 448327 451429 451434) (-286 "EXPR.spad" 443613 443623 444327 444730) (-285 "EXPR2UPS.spad" 439705 439718 443603 443608) (-284 "EXPR2.spad" 439408 439420 439695 439700) (-283 "EXPEXPAN.spad" 436349 436374 436983 437076) (-282 "EXIT.spad" 436020 436028 436339 436344) (-281 "EVALCYC.spad" 435478 435492 436010 436015) (-280 "EVALAB.spad" 435042 435052 435468 435473) (-279 "EVALAB.spad" 434604 434616 435032 435037) (-278 "EUCDOM.spad" 432146 432154 434530 434599) (-277 "EUCDOM.spad" 429750 429760 432136 432141) (-276 "ESTOOLS.spad" 421590 421598 429740 429745) (-275 "ESTOOLS2.spad" 421191 421205 421580 421585) (-274 "ESTOOLS1.spad" 420876 420887 421181 421186) (-273 "ES.spad" 413423 413431 420866 420871) (-272 "ES.spad" 405878 405888 413323 413328) (-271 "ESCONT.spad" 402651 402659 405868 405873) (-270 "ESCONT1.spad" 402400 402412 402641 402646) (-269 "ES2.spad" 401895 401911 402390 402395) (-268 "ES1.spad" 401461 401477 401885 401890) (-267 "ERROR.spad" 398782 398790 401451 401456) (-266 "EQTBL.spad" 397816 397838 398025 398052) (-265 "EQ.spad" 392700 392710 395499 395608) (-264 "EQ2.spad" 392416 392428 392690 392695) (-263 "EP.spad" 388730 388740 392406 392411) (-262 "ENTIRER.spad" 388398 388406 388674 388725) (-261 "EMR.spad" 387599 387640 388324 388393) (-260 "ELTAGG.spad" 385839 385858 387589 387594) (-259 "ELTAGG.spad" 384043 384064 385795 385800) (-258 "ELTAB.spad" 383490 383508 384033 384038) (-257 "ELFUTS.spad" 382869 382888 383480 383485) (-256 "ELEMFUN.spad" 382558 382566 382859 382864) (-255 "ELEMFUN.spad" 382245 382255 382548 382553) (-254 "ELAGG.spad" 380176 380186 382213 382240) (-253 "ELAGG.spad" 378056 378068 380095 380100) (-252 "EFUPXS.spad" 374832 374862 378012 378017) (-251 "EFULS.spad" 371668 371691 374788 374793) (-250 "EFSTRUC.spad" 369623 369639 371658 371663) (-249 "EF.spad" 364389 364405 369613 369618) (-248 "EAB.spad" 362665 362673 364379 364384) (-247 "E04UCFA.spad" 362201 362209 362655 362660) (-246 "E04NAFA.spad" 361778 361786 362191 362196) (-245 "E04MBFA.spad" 361358 361366 361768 361773) (-244 "E04JAFA.spad" 360894 360902 361348 361353) (-243 "E04GCFA.spad" 360430 360438 360884 360889) (-242 "E04FDFA.spad" 359966 359974 360420 360425) (-241 "E04DGFA.spad" 359502 359510 359956 359961) (-240 "E04AGNT.spad" 355344 355352 359492 359497) (-239 "DVARCAT.spad" 352029 352039 355334 355339) (-238 "DVARCAT.spad" 348712 348724 352019 352024) (-237 "DSMP.spad" 346146 346160 346451 346578) (-236 "DROPT.spad" 340091 340099 346136 346141) (-235 "DROPT1.spad" 339754 339764 340081 340086) (-234 "DROPT0.spad" 334581 334589 339744 339749) (-233 "DRAWPT.spad" 332736 332744 334571 334576) (-232 "DRAW.spad" 325336 325349 332726 332731) (-231 "DRAWHACK.spad" 324644 324654 325326 325331) (-230 "DRAWCX.spad" 322086 322094 324634 324639) (-229 "DRAWCURV.spad" 321623 321638 322076 322081) (-228 "DRAWCFUN.spad" 310795 310803 321613 321618) (-227 "DQAGG.spad" 308951 308961 310751 310790) (-226 "DPOLCAT.spad" 304292 304308 308819 308946) (-225 "DPOLCAT.spad" 299719 299737 304248 304253) (-224 "DPMO.spad" 293762 293778 293900 294196) (-223 "DPMM.spad" 287818 287836 287943 288239) (-222 "domain.spad" 287458 287466 287808 287813) (-221 "DMP.spad" 284683 284698 285255 285382) (-220 "DLP.spad" 284031 284041 284673 284678) (-219 "DLIST.spad" 282666 282676 283437 283464) (-218 "DLAGG.spad" 281067 281077 282646 282661) (-217 "DIVRING.spad" 280514 280522 281011 281062) (-216 "DIVRING.spad" 280005 280015 280504 280509) (-215 "DISPLAY.spad" 278185 278193 279995 280000) (-214 "DIRPROD.spad" 270160 270176 270800 270929) (-213 "DIRPROD2.spad" 268968 268986 270150 270155) (-212 "DIRPCAT.spad" 267900 267916 268822 268963) (-211 "DIRPCAT.spad" 266572 266590 267496 267501) (-210 "DIOSP.spad" 265397 265405 266562 266567) (-209 "DIOPS.spad" 264369 264379 265365 265392) (-208 "DIOPS.spad" 263327 263339 264325 264330) (-207 "DIFRING.spad" 262619 262627 263307 263322) (-206 "DIFRING.spad" 261919 261929 262609 262614) (-205 "DIFEXT.spad" 261078 261088 261899 261914) (-204 "DIFEXT.spad" 260154 260166 260977 260982) (-203 "DIAGG.spad" 259772 259782 260122 260149) (-202 "DIAGG.spad" 259410 259422 259762 259767) (-201 "DHMATRIX.spad" 257937 257947 259090 259117) (-200 "DFSFUN.spad" 251345 251353 257927 257932) (-199 "DFLOAT.spad" 247868 247876 251235 251340) (-198 "DFINTTLS.spad" 246077 246093 247858 247863) (-197 "DERHAM.spad" 243987 244019 246057 246072) (-196 "DEQUEUE.spad" 243528 243538 243817 243844) (-195 "DEGRED.spad" 243143 243157 243518 243523) (-194 "DEFINTRF.spad" 240668 240678 243133 243138) (-193 "DEFINTEF.spad" 239164 239180 240658 240663) (-192 "DECIMAL.spad" 237048 237056 237634 237727) (-191 "DDFACT.spad" 234847 234864 237038 237043) (-190 "DBLRESP.spad" 234445 234469 234837 234842) (-189 "DBASE.spad" 233017 233027 234435 234440) (-188 "D03FAFA.spad" 232845 232853 233007 233012) (-187 "D03EEFA.spad" 232665 232673 232835 232840) (-186 "D03AGNT.spad" 231745 231753 232655 232660) (-185 "D02EJFA.spad" 231207 231215 231735 231740) (-184 "D02CJFA.spad" 230685 230693 231197 231202) (-183 "D02BHFA.spad" 230175 230183 230675 230680) (-182 "D02BBFA.spad" 229665 229673 230165 230170) (-181 "D02AGNT.spad" 224469 224477 229655 229660) (-180 "D01WGTS.spad" 222788 222796 224459 224464) (-179 "D01TRNS.spad" 222765 222773 222778 222783) (-178 "D01GBFA.spad" 222287 222295 222755 222760) (-177 "D01FCFA.spad" 221809 221817 222277 222282) (-176 "D01ASFA.spad" 221277 221285 221799 221804) (-175 "D01AQFA.spad" 220723 220731 221267 221272) (-174 "D01APFA.spad" 220147 220155 220713 220718) (-173 "D01ANFA.spad" 219641 219649 220137 220142) (-172 "D01AMFA.spad" 219151 219159 219631 219636) (-171 "D01ALFA.spad" 218691 218699 219141 219146) (-170 "D01AKFA.spad" 218217 218225 218681 218686) (-169 "D01AJFA.spad" 217740 217748 218207 218212) (-168 "D01AGNT.spad" 213799 213807 217730 217735) (-167 "CYCLOTOM.spad" 213305 213313 213789 213794) (-166 "CYCLES.spad" 210137 210145 213295 213300) (-165 "CVMP.spad" 209554 209564 210127 210132) (-164 "CTRIGMNP.spad" 208044 208060 209544 209549) (-163 "CSTTOOLS.spad" 207287 207300 208034 208039) (-162 "CRFP.spad" 200991 201004 207277 207282) (-161 "CRAPACK.spad" 200034 200044 200981 200986) (-160 "CPMATCH.spad" 199534 199549 199959 199964) (-159 "CPIMA.spad" 199239 199258 199524 199529) (-158 "COORDSYS.spad" 194132 194142 199229 199234) (-157 "CONTFRAC.spad" 189744 189754 194034 194127) (-156 "COMRING.spad" 189418 189426 189682 189739) (-155 "COMPPROP.spad" 188932 188940 189408 189413) (-154 "COMPLPAT.spad" 188699 188714 188922 188927) (-153 "COMPLEX.spad" 182732 182742 182976 183237) (-152 "COMPLEX2.spad" 182445 182457 182722 182727) (-151 "COMPFACT.spad" 182047 182061 182435 182440) (-150 "COMPCAT.spad" 180103 180113 181769 182042) (-149 "COMPCAT.spad" 177866 177878 179534 179539) (-148 "COMMUPC.spad" 177612 177630 177856 177861) (-147 "COMMONOP.spad" 177145 177153 177602 177607) (-146 "COMM.spad" 176954 176962 177135 177140) (-145 "COMBOPC.spad" 175859 175867 176944 176949) (-144 "COMBINAT.spad" 174604 174614 175849 175854) (-143 "COMBF.spad" 171972 171988 174594 174599) (-142 "COLOR.spad" 170809 170817 171962 171967) (-141 "CMPLXRT.spad" 170518 170535 170799 170804) (-140 "CLIP.spad" 166610 166618 170508 170513) (-139 "CLIF.spad" 165249 165265 166566 166605) (-138 "CLAGG.spad" 161724 161734 165229 165244) (-137 "CLAGG.spad" 158080 158092 161587 161592) (-136 "CINTSLPE.spad" 157405 157418 158070 158075) (-135 "CHVAR.spad" 155483 155505 157395 157400) (-134 "CHARZ.spad" 155398 155406 155463 155478) (-133 "CHARPOL.spad" 154906 154916 155388 155393) (-132 "CHARNZ.spad" 154659 154667 154886 154901) (-131 "CHAR.spad" 152549 152557 154649 154654) (-130 "CFCAT.spad" 151865 151873 152539 152544) (-129 "CDEN.spad" 151023 151037 151855 151860) (-128 "CCLASS.spad" 149230 149238 150492 150531) (-127 "CARTEN.spad" 144333 144357 149220 149225) (-126 "CARTEN2.spad" 143719 143746 144323 144328) (-125 "CARD.spad" 141008 141016 143693 143714) (-124 "CACHSET.spad" 140630 140638 140998 141003) (-123 "CABMON.spad" 140183 140191 140620 140625) (-122 "BTREE.spad" 139475 139485 140013 140040) (-121 "BTOURN.spad" 138701 138711 139305 139332) (-120 "BTCAT.spad" 138077 138087 138657 138696) (-119 "BTCAT.spad" 137485 137497 138067 138072) (-118 "BTAGG.spad" 136501 136509 137441 137480) (-117 "BTAGG.spad" 135549 135559 136491 136496) (-116 "BSTREE.spad" 134507 134517 135379 135406) (-115 "BRILL.spad" 132702 132713 134497 134502) (-114 "BRAGG.spad" 131616 131626 132682 132697) (-113 "BRAGG.spad" 130504 130516 131572 131577) (-112 "BPADICRT.spad" 128488 128500 128743 128836) (-111 "BPADIC.spad" 128152 128164 128414 128483) (-110 "BOUNDZRO.spad" 127808 127825 128142 128147) (-109 "BOP.spad" 123272 123280 127798 127803) (-108 "BOP1.spad" 120658 120668 123228 123233) (-107 "BOOLEAN.spad" 119516 119524 120648 120653) (-106 "BMODULE.spad" 119228 119240 119484 119511) (-105 "BITS.spad" 118705 118713 118922 118949) (-104 "BINFILE.spad" 118048 118056 118695 118700) (-103 "BINARY.spad" 115941 115949 116518 116611) (-102 "BGAGG.spad" 115126 115136 115909 115936) (-101 "BGAGG.spad" 114331 114343 115116 115121) (-100 "BFUNCT.spad" 113895 113903 114311 114326) (-99 "BEZOUT.spad" 113030 113056 113845 113850) (-98 "BBTREE.spad" 110073 110082 112860 112887) (-97 "BASTYPE.spad" 109746 109753 110063 110068) (-96 "BASTYPE.spad" 109417 109426 109736 109741) (-95 "BALFACT.spad" 108857 108869 109407 109412) (-94 "AUTOMOR.spad" 108304 108313 108837 108852) (-93 "ATTREG.spad" 105023 105030 108056 108299) (-92 "ATTRBUT.spad" 101046 101053 105003 105018) (-91 "ATRIG.spad" 100516 100523 101036 101041) (-90 "ATRIG.spad" 99984 99993 100506 100511) (-89 "ASTACK.spad" 99540 99549 99814 99841) (-88 "ASSOCEQ.spad" 98340 98351 99496 99501) (-87 "ASP9.spad" 97421 97434 98330 98335) (-86 "ASP8.spad" 96464 96477 97411 97416) (-85 "ASP80.spad" 95786 95799 96454 96459) (-84 "ASP7.spad" 94946 94959 95776 95781) (-83 "ASP78.spad" 94397 94410 94936 94941) (-82 "ASP77.spad" 93766 93779 94387 94392) (-81 "ASP74.spad" 92858 92871 93756 93761) (-80 "ASP73.spad" 92129 92142 92848 92853) (-79 "ASP6.spad" 90761 90774 92119 92124) (-78 "ASP55.spad" 89270 89283 90751 90756) (-77 "ASP50.spad" 87087 87100 89260 89265) (-76 "ASP4.spad" 86382 86395 87077 87082) (-75 "ASP49.spad" 85381 85394 86372 86377) (-74 "ASP42.spad" 83788 83827 85371 85376) (-73 "ASP41.spad" 82367 82406 83778 83783) (-72 "ASP35.spad" 81355 81368 82357 82362) (-71 "ASP34.spad" 80656 80669 81345 81350) (-70 "ASP33.spad" 80216 80229 80646 80651) (-69 "ASP31.spad" 79356 79369 80206 80211) (-68 "ASP30.spad" 78248 78261 79346 79351) (-67 "ASP29.spad" 77714 77727 78238 78243) (-66 "ASP28.spad" 68987 69000 77704 77709) (-65 "ASP27.spad" 67884 67897 68977 68982) (-64 "ASP24.spad" 66971 66984 67874 67879) (-63 "ASP20.spad" 66187 66200 66961 66966) (-62 "ASP1.spad" 65568 65581 66177 66182) (-61 "ASP19.spad" 60254 60267 65558 65563) (-60 "ASP12.spad" 59668 59681 60244 60249) (-59 "ASP10.spad" 58939 58952 59658 59663) (-58 "ARRAY2.spad" 58522 58531 58769 58796) (-57 "ARRAY1.spad" 57580 57589 57928 57955) (-56 "ARRAY12.spad" 56249 56260 57570 57575) (-55 "ARR2CAT.spad" 51899 51920 56205 56244) (-54 "ARR2CAT.spad" 47581 47604 51889 51894) (-53 "APPRULE.spad" 46825 46847 47571 47576) (-52 "APPLYORE.spad" 46440 46453 46815 46820) (-51 "ANY.spad" 44782 44789 46430 46435) (-50 "ANY1.spad" 43853 43862 44772 44777) (-49 "ANTISYM.spad" 42292 42308 43833 43848) (-48 "ANON.spad" 42205 42212 42282 42287) (-47 "AN.spad" 40508 40515 42023 42116) (-46 "AMR.spad" 38687 38698 40406 40503) (-45 "AMR.spad" 36703 36716 38424 38429) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-1187 NIL 2224425 2224430 2224435 2224440) (-3 NIL 2224405 2224410 2224415 2224420) (-2 NIL 2224385 2224390 2224395 2224400) (-1 NIL 2224365 2224370 2224375 2224380) (0 NIL 2224345 2224350 2224355 2224360) (-1182 "ZMOD.spad" 2224154 2224167 2224283 2224340) (-1181 "ZLINDEP.spad" 2223198 2223209 2224144 2224149) (-1180 "ZDSOLVE.spad" 2213047 2213069 2223188 2223193) (-1179 "YSTREAM.spad" 2212540 2212551 2213037 2213042) (-1178 "XRPOLY.spad" 2211760 2211780 2212396 2212465) (-1177 "XPR.spad" 2209489 2209502 2211478 2211577) (-1176 "XPOLY.spad" 2209044 2209055 2209345 2209414) (-1175 "XPOLYC.spad" 2208361 2208377 2208970 2209039) (-1174 "XPBWPOLY.spad" 2206798 2206818 2208141 2208210) (-1173 "XF.spad" 2205259 2205274 2206700 2206793) (-1172 "XF.spad" 2203700 2203717 2205143 2205148) (-1171 "XFALG.spad" 2200724 2200740 2203626 2203695) (-1170 "XEXPPKG.spad" 2199975 2200001 2200714 2200719) (-1169 "XDPOLY.spad" 2199589 2199605 2199831 2199900) (-1168 "XALG.spad" 2199187 2199198 2199545 2199584) (-1167 "WUTSET.spad" 2195026 2195043 2198833 2198860) (-1166 "WP.spad" 2194040 2194084 2194884 2194951) (-1165 "WFFINTBS.spad" 2191603 2191625 2194030 2194035) (-1164 "WEIER.spad" 2189817 2189828 2191593 2191598) (-1163 "VSPACE.spad" 2189490 2189501 2189785 2189812) (-1162 "VSPACE.spad" 2189183 2189196 2189480 2189485) (-1161 "VOID.spad" 2188773 2188782 2189173 2189178) (-1160 "VIEW.spad" 2186395 2186404 2188763 2188768) (-1159 "VIEWDEF.spad" 2181592 2181601 2186385 2186390) (-1158 "VIEW3D.spad" 2165427 2165436 2181582 2181587) (-1157 "VIEW2D.spad" 2153164 2153173 2165417 2165422) (-1156 "VECTOR.spad" 2151841 2151852 2152092 2152119) (-1155 "VECTOR2.spad" 2150468 2150481 2151831 2151836) (-1154 "VECTCAT.spad" 2148356 2148367 2150424 2150463) (-1153 "VECTCAT.spad" 2146065 2146078 2148135 2148140) (-1152 "VARIABLE.spad" 2145845 2145860 2146055 2146060) (-1151 "UTYPE.spad" 2145479 2145488 2145825 2145840) (-1150 "UTSODETL.spad" 2144772 2144796 2145435 2145440) (-1149 "UTSODE.spad" 2142960 2142980 2144762 2144767) (-1148 "UTS.spad" 2137749 2137777 2141427 2141524) (-1147 "UTSCAT.spad" 2135200 2135216 2137647 2137744) (-1146 "UTSCAT.spad" 2132295 2132313 2134744 2134749) (-1145 "UTS2.spad" 2131888 2131923 2132285 2132290) (-1144 "URAGG.spad" 2126510 2126521 2131868 2131883) (-1143 "URAGG.spad" 2121106 2121119 2126466 2126471) (-1142 "UPXSSING.spad" 2118752 2118778 2120190 2120323) (-1141 "UPXS.spad" 2115779 2115807 2116884 2117033) (-1140 "UPXSCONS.spad" 2113536 2113556 2113911 2114060) (-1139 "UPXSCCA.spad" 2111994 2112014 2113382 2113531) (-1138 "UPXSCCA.spad" 2110594 2110616 2111984 2111989) (-1137 "UPXSCAT.spad" 2109175 2109191 2110440 2110589) (-1136 "UPXS2.spad" 2108716 2108769 2109165 2109170) (-1135 "UPSQFREE.spad" 2107128 2107142 2108706 2108711) (-1134 "UPSCAT.spad" 2104721 2104745 2107026 2107123) (-1133 "UPSCAT.spad" 2102020 2102046 2104327 2104332) (-1132 "UPOLYC.spad" 2096998 2097009 2101862 2102015) (-1131 "UPOLYC.spad" 2091868 2091881 2096734 2096739) (-1130 "UPOLYC2.spad" 2091337 2091356 2091858 2091863) (-1129 "UP.spad" 2088387 2088402 2088895 2089048) (-1128 "UPMP.spad" 2087277 2087290 2088377 2088382) (-1127 "UPDIVP.spad" 2086840 2086854 2087267 2087272) (-1126 "UPDECOMP.spad" 2085077 2085091 2086830 2086835) (-1125 "UPCDEN.spad" 2084284 2084300 2085067 2085072) (-1124 "UP2.spad" 2083646 2083667 2084274 2084279) (-1123 "UNISEG.spad" 2082999 2083010 2083565 2083570) (-1122 "UNISEG2.spad" 2082492 2082505 2082955 2082960) (-1121 "UNIFACT.spad" 2081593 2081605 2082482 2082487) (-1120 "ULS.spad" 2072152 2072180 2073245 2073674) (-1119 "ULSCONS.spad" 2066195 2066215 2066567 2066716) (-1118 "ULSCCAT.spad" 2063792 2063812 2066015 2066190) (-1117 "ULSCCAT.spad" 2061523 2061545 2063748 2063753) (-1116 "ULSCAT.spad" 2059739 2059755 2061369 2061518) (-1115 "ULS2.spad" 2059251 2059304 2059729 2059734) (-1114 "UFD.spad" 2058316 2058325 2059177 2059246) (-1113 "UFD.spad" 2057443 2057454 2058306 2058311) (-1112 "UDVO.spad" 2056290 2056299 2057433 2057438) (-1111 "UDPO.spad" 2053717 2053728 2056246 2056251) (-1110 "TYPE.spad" 2053639 2053648 2053697 2053712) (-1109 "TWOFACT.spad" 2052289 2052304 2053629 2053634) (-1108 "TUPLE.spad" 2051675 2051686 2052188 2052193) (-1107 "TUBETOOL.spad" 2048512 2048521 2051665 2051670) (-1106 "TUBE.spad" 2047153 2047170 2048502 2048507) (-1105 "TS.spad" 2045742 2045758 2046718 2046815) (-1104 "TSETCAT.spad" 2032857 2032874 2045698 2045737) (-1103 "TSETCAT.spad" 2019970 2019989 2032813 2032818) (-1102 "TRMANIP.spad" 2014336 2014353 2019676 2019681) (-1101 "TRIMAT.spad" 2013295 2013320 2014326 2014331) (-1100 "TRIGMNIP.spad" 2011812 2011829 2013285 2013290) (-1099 "TRIGCAT.spad" 2011324 2011333 2011802 2011807) (-1098 "TRIGCAT.spad" 2010834 2010845 2011314 2011319) (-1097 "TREE.spad" 2009405 2009416 2010441 2010468) (-1096 "TRANFUN.spad" 2009236 2009245 2009395 2009400) (-1095 "TRANFUN.spad" 2009065 2009076 2009226 2009231) (-1094 "TOPSP.spad" 2008739 2008748 2009055 2009060) (-1093 "TOOLSIGN.spad" 2008402 2008413 2008729 2008734) (-1092 "TEXTFILE.spad" 2006959 2006968 2008392 2008397) (-1091 "TEX.spad" 2003976 2003985 2006949 2006954) (-1090 "TEX1.spad" 2003532 2003543 2003966 2003971) (-1089 "TEMUTL.spad" 2003087 2003096 2003522 2003527) (-1088 "TBCMPPK.spad" 2001180 2001203 2003077 2003082) (-1087 "TBAGG.spad" 2000204 2000227 2001148 2001175) (-1086 "TBAGG.spad" 1999248 1999273 2000194 2000199) (-1085 "TANEXP.spad" 1998624 1998635 1999238 1999243) (-1084 "TABLE.spad" 1997035 1997058 1997305 1997332) (-1083 "TABLEAU.spad" 1996516 1996527 1997025 1997030) (-1082 "TABLBUMP.spad" 1993299 1993310 1996506 1996511) (-1081 "SYSSOLP.spad" 1990772 1990783 1993289 1993294) (-1080 "syntax.spad" 1987828 1987837 1990762 1990767) (-1079 "SYMTAB.spad" 1985884 1985893 1987818 1987823) (-1078 "SYMS.spad" 1981869 1981878 1985874 1985879) (-1077 "SYMPOLY.spad" 1980879 1980890 1980961 1981088) (-1076 "SYMFUNC.spad" 1980354 1980365 1980869 1980874) (-1075 "SYMBOL.spad" 1977690 1977699 1980344 1980349) (-1074 "SWITCH.spad" 1974447 1974456 1977680 1977685) (-1073 "SUTS.spad" 1971346 1971374 1972914 1973011) (-1072 "SUPXS.spad" 1968360 1968388 1969478 1969627) (-1071 "SUP.spad" 1965137 1965148 1965918 1966071) (-1070 "SUPFRACF.spad" 1964242 1964260 1965127 1965132) (-1069 "SUP2.spad" 1963632 1963645 1964232 1964237) (-1068 "SUMRF.spad" 1962598 1962609 1963622 1963627) (-1067 "SUMFS.spad" 1962231 1962248 1962588 1962593) (-1066 "SULS.spad" 1952777 1952805 1953883 1954312) (-1065 "SUCH.spad" 1952457 1952472 1952767 1952772) (-1064 "SUBSPACE.spad" 1944464 1944479 1952447 1952452) (-1063 "SUBRESP.spad" 1943624 1943638 1944420 1944425) (-1062 "STTF.spad" 1939723 1939739 1943614 1943619) (-1061 "STTFNC.spad" 1936191 1936207 1939713 1939718) (-1060 "STTAYLOR.spad" 1928589 1928600 1936072 1936077) (-1059 "STRTBL.spad" 1927094 1927111 1927243 1927270) (-1058 "STRING.spad" 1926503 1926512 1926517 1926544) (-1057 "STRICAT.spad" 1926279 1926288 1926459 1926498) (-1056 "STREAM.spad" 1923047 1923058 1925804 1925819) (-1055 "STREAM3.spad" 1922592 1922607 1923037 1923042) (-1054 "STREAM2.spad" 1921660 1921673 1922582 1922587) (-1053 "STREAM1.spad" 1921364 1921375 1921650 1921655) (-1052 "STINPROD.spad" 1920270 1920286 1921354 1921359) (-1051 "STEP.spad" 1919471 1919480 1920260 1920265) (-1050 "STBL.spad" 1917997 1918025 1918164 1918179) (-1049 "STAGG.spad" 1917062 1917073 1917977 1917992) (-1048 "STAGG.spad" 1916135 1916148 1917052 1917057) (-1047 "STACK.spad" 1915486 1915497 1915742 1915769) (-1046 "SREGSET.spad" 1913190 1913207 1915132 1915159) (-1045 "SRDCMPK.spad" 1911735 1911755 1913180 1913185) (-1044 "SRAGG.spad" 1906820 1906829 1911691 1911730) (-1043 "SRAGG.spad" 1901937 1901948 1906810 1906815) (-1042 "SQMATRIX.spad" 1899563 1899581 1900471 1900558) (-1041 "SPLTREE.spad" 1894115 1894128 1898999 1899026) (-1040 "SPLNODE.spad" 1890703 1890716 1894105 1894110) (-1039 "SPFCAT.spad" 1889480 1889489 1890693 1890698) (-1038 "SPECOUT.spad" 1888030 1888039 1889470 1889475) (-1037 "spad-parser.spad" 1887495 1887504 1888020 1888025) (-1036 "SPACEC.spad" 1871508 1871519 1887485 1887490) (-1035 "SPACE3.spad" 1871284 1871295 1871498 1871503) (-1034 "SORTPAK.spad" 1870829 1870842 1871240 1871245) (-1033 "SOLVETRA.spad" 1868586 1868597 1870819 1870824) (-1032 "SOLVESER.spad" 1867106 1867117 1868576 1868581) (-1031 "SOLVERAD.spad" 1863116 1863127 1867096 1867101) (-1030 "SOLVEFOR.spad" 1861536 1861554 1863106 1863111) (-1029 "SNTSCAT.spad" 1861124 1861141 1861492 1861531) (-1028 "SMTS.spad" 1859384 1859410 1860689 1860786) (-1027 "SMP.spad" 1856826 1856846 1857216 1857343) (-1026 "SMITH.spad" 1855669 1855694 1856816 1856821) (-1025 "SMATCAT.spad" 1853767 1853797 1855601 1855664) (-1024 "SMATCAT.spad" 1851809 1851841 1853645 1853650) (-1023 "SKAGG.spad" 1850758 1850769 1851765 1851804) (-1022 "SINT.spad" 1849066 1849075 1850624 1850753) (-1021 "SIMPAN.spad" 1848794 1848803 1849056 1849061) (-1020 "SIGNRF.spad" 1847902 1847913 1848784 1848789) (-1019 "SIGNEF.spad" 1847171 1847188 1847892 1847897) (-1018 "SHP.spad" 1845089 1845104 1847127 1847132) (-1017 "SHDP.spad" 1836479 1836506 1836988 1837117) (-1016 "SGROUP.spad" 1835945 1835954 1836469 1836474) (-1015 "SGROUP.spad" 1835409 1835420 1835935 1835940) (-1014 "SGCF.spad" 1828290 1828299 1835399 1835404) (-1013 "SFRTCAT.spad" 1827206 1827223 1828246 1828285) (-1012 "SFRGCD.spad" 1826269 1826289 1827196 1827201) (-1011 "SFQCMPK.spad" 1820906 1820926 1826259 1826264) (-1010 "SFORT.spad" 1820341 1820355 1820896 1820901) (-1009 "SEXOF.spad" 1820184 1820224 1820331 1820336) (-1008 "SEX.spad" 1820076 1820085 1820174 1820179) (-1007 "SEXCAT.spad" 1817180 1817220 1820066 1820071) (-1006 "SET.spad" 1815480 1815491 1816601 1816640) (-1005 "SETMN.spad" 1813914 1813931 1815470 1815475) (-1004 "SETCAT.spad" 1813399 1813408 1813904 1813909) (-1003 "SETCAT.spad" 1812882 1812893 1813389 1813394) (-1002 "SETAGG.spad" 1809405 1809416 1812850 1812877) (-1001 "SETAGG.spad" 1805948 1805961 1809395 1809400) (-1000 "SEGXCAT.spad" 1805060 1805073 1805928 1805943) (-999 "SEG.spad" 1804874 1804884 1804979 1804984) (-998 "SEGCAT.spad" 1803694 1803704 1804854 1804869) (-997 "SEGBIND.spad" 1802767 1802777 1803649 1803654) (-996 "SEGBIND2.spad" 1802464 1802476 1802757 1802762) (-995 "SEG2.spad" 1801890 1801902 1802420 1802425) (-994 "SDVAR.spad" 1801167 1801177 1801880 1801885) (-993 "SDPOL.spad" 1798566 1798576 1798856 1798983) (-992 "SCPKG.spad" 1796646 1796656 1798556 1798561) (-991 "SCACHE.spad" 1795329 1795339 1796636 1796641) (-990 "SAOS.spad" 1795202 1795210 1795319 1795324) (-989 "SAERFFC.spad" 1794916 1794935 1795192 1795197) (-988 "SAE.spad" 1793095 1793110 1793705 1793840) (-987 "SAEFACT.spad" 1792797 1792816 1793085 1793090) (-986 "RURPK.spad" 1790439 1790454 1792787 1792792) (-985 "RULESET.spad" 1789881 1789904 1790429 1790434) (-984 "RULE.spad" 1788086 1788109 1789871 1789876) (-983 "RULECOLD.spad" 1787939 1787951 1788076 1788081) (-982 "RSETGCD.spad" 1784318 1784337 1787929 1787934) (-981 "RSETCAT.spad" 1774091 1774107 1784274 1784313) (-980 "RSETCAT.spad" 1763896 1763914 1774081 1774086) (-979 "RSDCMPK.spad" 1762349 1762368 1763886 1763891) (-978 "RRCC.spad" 1760734 1760763 1762339 1762344) (-977 "RRCC.spad" 1759117 1759148 1760724 1760729) (-976 "RPOLCAT.spad" 1738478 1738492 1758985 1759112) (-975 "RPOLCAT.spad" 1717554 1717570 1738063 1738068) (-974 "ROUTINE.spad" 1713418 1713426 1716201 1716228) (-973 "ROMAN.spad" 1712651 1712659 1713284 1713413) (-972 "ROIRC.spad" 1711732 1711763 1712641 1712646) (-971 "RNS.spad" 1710636 1710644 1711634 1711727) (-970 "RNS.spad" 1709626 1709636 1710626 1710631) (-969 "RNG.spad" 1709362 1709370 1709616 1709621) (-968 "RMODULE.spad" 1709001 1709011 1709352 1709357) (-967 "RMCAT2.spad" 1708410 1708466 1708991 1708996) (-966 "RMATRIX.spad" 1707090 1707108 1707577 1707616) (-965 "RMATCAT.spad" 1702612 1702642 1707034 1707085) (-964 "RMATCAT.spad" 1698036 1698068 1702460 1702465) (-963 "RINTERP.spad" 1697925 1697944 1698026 1698031) (-962 "RING.spad" 1697283 1697291 1697905 1697920) (-961 "RING.spad" 1696649 1696659 1697273 1697278) (-960 "RIDIST.spad" 1696034 1696042 1696639 1696644) (-959 "RGCHAIN.spad" 1694614 1694629 1695519 1695546) (-958 "RF.spad" 1692229 1692239 1694604 1694609) (-957 "RFFACTOR.spad" 1691692 1691702 1692219 1692224) (-956 "RFFACT.spad" 1691428 1691439 1691682 1691687) (-955 "RFDIST.spad" 1690417 1690425 1691418 1691423) (-954 "RETSOL.spad" 1689835 1689847 1690407 1690412) (-953 "RETRACT.spad" 1689185 1689195 1689825 1689830) (-952 "RETRACT.spad" 1688533 1688545 1689175 1689180) (-951 "RESULT.spad" 1686594 1686602 1687180 1687207) (-950 "RESRING.spad" 1685942 1685988 1686532 1686589) (-949 "RESLATC.spad" 1685267 1685277 1685932 1685937) (-948 "REPSQ.spad" 1684997 1685007 1685257 1685262) (-947 "REP.spad" 1682550 1682558 1684987 1684992) (-946 "REPDB.spad" 1682256 1682266 1682540 1682545) (-945 "REP2.spad" 1671829 1671839 1682098 1682103) (-944 "REP1.spad" 1665820 1665830 1671779 1671784) (-943 "REGSET.spad" 1663618 1663634 1665466 1665493) (-942 "REF.spad" 1662948 1662958 1663573 1663578) (-941 "REDORDER.spad" 1662125 1662141 1662938 1662943) (-940 "RECLOS.spad" 1660915 1660934 1661618 1661711) (-939 "REALSOLV.spad" 1660048 1660056 1660905 1660910) (-938 "REAL.spad" 1659921 1659929 1660038 1660043) (-937 "REAL0Q.spad" 1657204 1657218 1659911 1659916) (-936 "REAL0.spad" 1654033 1654047 1657194 1657199) (-935 "RDIV.spad" 1653685 1653709 1654023 1654028) (-934 "RDIST.spad" 1653249 1653259 1653675 1653680) (-933 "RDETRS.spad" 1652046 1652063 1653239 1653244) (-932 "RDETR.spad" 1650154 1650171 1652036 1652041) (-931 "RDEEFS.spad" 1649228 1649244 1650144 1650149) (-930 "RDEEF.spad" 1648225 1648241 1649218 1649223) (-929 "RCFIELD.spad" 1645409 1645417 1648127 1648220) (-928 "RCFIELD.spad" 1642679 1642689 1645399 1645404) (-927 "RCAGG.spad" 1640582 1640592 1642659 1642674) (-926 "RCAGG.spad" 1638422 1638434 1640501 1640506) (-925 "RATRET.spad" 1637783 1637793 1638412 1638417) (-924 "RATFACT.spad" 1637476 1637487 1637773 1637778) (-923 "RANDSRC.spad" 1636796 1636804 1637466 1637471) (-922 "RADUTIL.spad" 1636551 1636559 1636786 1636791) (-921 "RADIX.spad" 1633344 1633357 1635021 1635114) (-920 "RADFF.spad" 1631761 1631797 1631879 1632035) (-919 "RADCAT.spad" 1631355 1631363 1631751 1631756) (-918 "RADCAT.spad" 1630947 1630957 1631345 1631350) (-917 "QUEUE.spad" 1630290 1630300 1630554 1630581) (-916 "QUAT.spad" 1628876 1628886 1629218 1629283) (-915 "QUATCT2.spad" 1628495 1628513 1628866 1628871) (-914 "QUATCAT.spad" 1626660 1626670 1628425 1628490) (-913 "QUATCAT.spad" 1624577 1624589 1626344 1626349) (-912 "QUAGG.spad" 1623391 1623401 1624533 1624572) (-911 "QFORM.spad" 1622854 1622868 1623381 1623386) (-910 "QFCAT.spad" 1621545 1621555 1622744 1622849) (-909 "QFCAT.spad" 1619842 1619854 1621043 1621048) (-908 "QFCAT2.spad" 1619533 1619549 1619832 1619837) (-907 "QEQUAT.spad" 1619090 1619098 1619523 1619528) (-906 "QCMPACK.spad" 1613837 1613856 1619080 1619085) (-905 "QALGSET.spad" 1609912 1609944 1613751 1613756) (-904 "QALGSET2.spad" 1607908 1607926 1609902 1609907) (-903 "PWFFINTB.spad" 1605218 1605239 1607898 1607903) (-902 "PUSHVAR.spad" 1604547 1604566 1605208 1605213) (-901 "PTRANFN.spad" 1600673 1600683 1604537 1604542) (-900 "PTPACK.spad" 1597761 1597771 1600663 1600668) (-899 "PTFUNC2.spad" 1597582 1597596 1597751 1597756) (-898 "PTCAT.spad" 1596664 1596674 1597538 1597577) (-897 "PSQFR.spad" 1595971 1595995 1596654 1596659) (-896 "PSEUDLIN.spad" 1594829 1594839 1595961 1595966) (-895 "PSETPK.spad" 1580262 1580278 1594707 1594712) (-894 "PSETCAT.spad" 1574170 1574193 1580230 1580257) (-893 "PSETCAT.spad" 1568064 1568089 1574126 1574131) (-892 "PSCURVE.spad" 1567047 1567055 1568054 1568059) (-891 "PSCAT.spad" 1565814 1565843 1566945 1567042) (-890 "PSCAT.spad" 1564671 1564702 1565804 1565809) (-889 "PRTITION.spad" 1563514 1563522 1564661 1564666) (-888 "PRS.spad" 1553076 1553093 1563470 1563475) (-887 "PRQAGG.spad" 1552495 1552505 1553032 1553071) (-886 "PRODUCT.spad" 1550175 1550187 1550461 1550516) (-885 "PR.spad" 1548564 1548576 1549269 1549396) (-884 "PRINT.spad" 1548316 1548324 1548554 1548559) (-883 "PRIMES.spad" 1546567 1546577 1548306 1548311) (-882 "PRIMELT.spad" 1544548 1544562 1546557 1546562) (-881 "PRIMCAT.spad" 1544171 1544179 1544538 1544543) (-880 "PRIMARR.spad" 1543176 1543186 1543354 1543381) (-879 "PRIMARR2.spad" 1541899 1541911 1543166 1543171) (-878 "PREASSOC.spad" 1541271 1541283 1541889 1541894) (-877 "PPCURVE.spad" 1540408 1540416 1541261 1541266) (-876 "POLYROOT.spad" 1539180 1539202 1540364 1540369) (-875 "POLY.spad" 1536480 1536490 1536997 1537124) (-874 "POLYLIFT.spad" 1535741 1535764 1536470 1536475) (-873 "POLYCATQ.spad" 1533843 1533865 1535731 1535736) (-872 "POLYCAT.spad" 1527249 1527270 1533711 1533838) (-871 "POLYCAT.spad" 1519957 1519980 1526421 1526426) (-870 "POLY2UP.spad" 1519405 1519419 1519947 1519952) (-869 "POLY2.spad" 1519000 1519012 1519395 1519400) (-868 "POLUTIL.spad" 1517941 1517970 1518956 1518961) (-867 "POLTOPOL.spad" 1516689 1516704 1517931 1517936) (-866 "POINT.spad" 1515530 1515540 1515617 1515644) (-865 "PNTHEORY.spad" 1512196 1512204 1515520 1515525) (-864 "PMTOOLS.spad" 1510953 1510967 1512186 1512191) (-863 "PMSYM.spad" 1510498 1510508 1510943 1510948) (-862 "PMQFCAT.spad" 1510085 1510099 1510488 1510493) (-861 "PMPRED.spad" 1509554 1509568 1510075 1510080) (-860 "PMPREDFS.spad" 1508998 1509020 1509544 1509549) (-859 "PMPLCAT.spad" 1508068 1508086 1508930 1508935) (-858 "PMLSAGG.spad" 1507649 1507663 1508058 1508063) (-857 "PMKERNEL.spad" 1507216 1507228 1507639 1507644) (-856 "PMINS.spad" 1506792 1506802 1507206 1507211) (-855 "PMFS.spad" 1506365 1506383 1506782 1506787) (-854 "PMDOWN.spad" 1505651 1505665 1506355 1506360) (-853 "PMASS.spad" 1504663 1504671 1505641 1505646) (-852 "PMASSFS.spad" 1503632 1503648 1504653 1504658) (-851 "PLOTTOOL.spad" 1503412 1503420 1503622 1503627) (-850 "PLOT.spad" 1498243 1498251 1503402 1503407) (-849 "PLOT3D.spad" 1494663 1494671 1498233 1498238) (-848 "PLOT1.spad" 1493804 1493814 1494653 1494658) (-847 "PLEQN.spad" 1481020 1481047 1493794 1493799) (-846 "PINTERP.spad" 1480636 1480655 1481010 1481015) (-845 "PINTERPA.spad" 1480418 1480434 1480626 1480631) (-844 "PI.spad" 1480025 1480033 1480392 1480413) (-843 "PID.spad" 1478981 1478989 1479951 1480020) (-842 "PICOERCE.spad" 1478638 1478648 1478971 1478976) (-841 "PGROEB.spad" 1477235 1477249 1478628 1478633) (-840 "PGE.spad" 1468488 1468496 1477225 1477230) (-839 "PGCD.spad" 1467370 1467387 1468478 1468483) (-838 "PFRPAC.spad" 1466513 1466523 1467360 1467365) (-837 "PFR.spad" 1463170 1463180 1466415 1466508) (-836 "PFOTOOLS.spad" 1462428 1462444 1463160 1463165) (-835 "PFOQ.spad" 1461798 1461816 1462418 1462423) (-834 "PFO.spad" 1461217 1461244 1461788 1461793) (-833 "PF.spad" 1460791 1460803 1461022 1461115) (-832 "PFECAT.spad" 1458457 1458465 1460717 1460786) (-831 "PFECAT.spad" 1456151 1456161 1458413 1458418) (-830 "PFBRU.spad" 1454021 1454033 1456141 1456146) (-829 "PFBR.spad" 1451559 1451582 1454011 1454016) (-828 "PERM.spad" 1447240 1447250 1451389 1451404) (-827 "PERMGRP.spad" 1441976 1441986 1447230 1447235) (-826 "PERMCAT.spad" 1440528 1440538 1441956 1441971) (-825 "PERMAN.spad" 1439060 1439074 1440518 1440523) (-824 "PENDTREE.spad" 1438333 1438343 1438689 1438694) (-823 "PDRING.spad" 1436824 1436834 1438313 1438328) (-822 "PDRING.spad" 1435323 1435335 1436814 1436819) (-821 "PDEPROB.spad" 1434280 1434288 1435313 1435318) (-820 "PDEPACK.spad" 1428282 1428290 1434270 1434275) (-819 "PDECOMP.spad" 1427744 1427761 1428272 1428277) (-818 "PDECAT.spad" 1426098 1426106 1427734 1427739) (-817 "PCOMP.spad" 1425949 1425962 1426088 1426093) (-816 "PBWLB.spad" 1424531 1424548 1425939 1425944) (-815 "PATTERN.spad" 1418962 1418972 1424521 1424526) (-814 "PATTERN2.spad" 1418698 1418710 1418952 1418957) (-813 "PATTERN1.spad" 1417000 1417016 1418688 1418693) (-812 "PATRES.spad" 1414547 1414559 1416990 1416995) (-811 "PATRES2.spad" 1414209 1414223 1414537 1414542) (-810 "PATMATCH.spad" 1412371 1412402 1413922 1413927) (-809 "PATMAB.spad" 1411796 1411806 1412361 1412366) (-808 "PATLRES.spad" 1410880 1410894 1411786 1411791) (-807 "PATAB.spad" 1410644 1410654 1410870 1410875) (-806 "PARTPERM.spad" 1408006 1408014 1410634 1410639) (-805 "PARSURF.spad" 1407434 1407462 1407996 1408001) (-804 "PARSU2.spad" 1407229 1407245 1407424 1407429) (-803 "script-parser.spad" 1406749 1406757 1407219 1407224) (-802 "PARSCURV.spad" 1406177 1406205 1406739 1406744) (-801 "PARSC2.spad" 1405966 1405982 1406167 1406172) (-800 "PARPCURV.spad" 1405424 1405452 1405956 1405961) (-799 "PARPC2.spad" 1405213 1405229 1405414 1405419) (-798 "PAN2EXPR.spad" 1404625 1404633 1405203 1405208) (-797 "PALETTE.spad" 1403595 1403603 1404615 1404620) (-796 "PADICRC.spad" 1400928 1400946 1402103 1402196) (-795 "PADICRAT.spad" 1398946 1398958 1399167 1399260) (-794 "PADIC.spad" 1398641 1398653 1398872 1398941) (-793 "PADICCT.spad" 1397182 1397194 1398567 1398636) (-792 "PADEPAC.spad" 1395861 1395880 1397172 1397177) (-791 "PADE.spad" 1394601 1394617 1395851 1395856) (-790 "OWP.spad" 1393585 1393615 1394459 1394526) (-789 "OVAR.spad" 1393366 1393389 1393575 1393580) (-788 "OUT.spad" 1392450 1392458 1393356 1393361) (-787 "OUTFORM.spad" 1381864 1381872 1392440 1392445) (-786 "OSI.spad" 1381339 1381347 1381854 1381859) (-785 "ORTHPOL.spad" 1379800 1379810 1381256 1381261) (-784 "OREUP.spad" 1379160 1379188 1379482 1379521) (-783 "ORESUP.spad" 1378461 1378485 1378842 1378881) (-782 "OREPCTO.spad" 1376280 1376292 1378381 1378386) (-781 "OREPCAT.spad" 1370337 1370347 1376236 1376275) (-780 "OREPCAT.spad" 1364284 1364296 1370185 1370190) (-779 "ORDSET.spad" 1363450 1363458 1364274 1364279) (-778 "ORDSET.spad" 1362614 1362624 1363440 1363445) (-777 "ORDRING.spad" 1362004 1362012 1362594 1362609) (-776 "ORDRING.spad" 1361402 1361412 1361994 1361999) (-775 "ORDMON.spad" 1361257 1361265 1361392 1361397) (-774 "ORDFUNS.spad" 1360383 1360399 1361247 1361252) (-773 "ORDFIN.spad" 1360317 1360325 1360373 1360378) (-772 "ORDCOMP.spad" 1358785 1358795 1359867 1359896) (-771 "ORDCOMP2.spad" 1358070 1358082 1358775 1358780) (-770 "OPTPROB.spad" 1356650 1356658 1358060 1358065) (-769 "OPTPACK.spad" 1349035 1349043 1356640 1356645) (-768 "OPTCAT.spad" 1346710 1346718 1349025 1349030) (-767 "OPQUERY.spad" 1346259 1346267 1346700 1346705) (-766 "OP.spad" 1346001 1346011 1346081 1346148) (-765 "ONECOMP.spad" 1344749 1344759 1345551 1345580) (-764 "ONECOMP2.spad" 1344167 1344179 1344739 1344744) (-763 "OMSERVER.spad" 1343169 1343177 1344157 1344162) (-762 "OMSAGG.spad" 1342945 1342955 1343113 1343164) (-761 "OMPKG.spad" 1341557 1341565 1342935 1342940) (-760 "OM.spad" 1340522 1340530 1341547 1341552) (-759 "OMLO.spad" 1339947 1339959 1340408 1340447) (-758 "OMEXPR.spad" 1339781 1339791 1339937 1339942) (-757 "OMERR.spad" 1339324 1339332 1339771 1339776) (-756 "OMERRK.spad" 1338358 1338366 1339314 1339319) (-755 "OMENC.spad" 1337702 1337710 1338348 1338353) (-754 "OMDEV.spad" 1331991 1331999 1337692 1337697) (-753 "OMCONN.spad" 1331400 1331408 1331981 1331986) (-752 "OINTDOM.spad" 1331163 1331171 1331326 1331395) (-751 "OFMONOID.spad" 1327350 1327360 1331153 1331158) (-750 "ODVAR.spad" 1326611 1326621 1327340 1327345) (-749 "ODR.spad" 1326059 1326085 1326423 1326572) (-748 "ODPOL.spad" 1323408 1323418 1323748 1323875) (-747 "ODP.spad" 1314934 1314954 1315307 1315436) (-746 "ODETOOLS.spad" 1313517 1313536 1314924 1314929) (-745 "ODESYS.spad" 1311167 1311184 1313507 1313512) (-744 "ODERTRIC.spad" 1307108 1307125 1311124 1311129) (-743 "ODERED.spad" 1306495 1306519 1307098 1307103) (-742 "ODERAT.spad" 1304046 1304063 1306485 1306490) (-741 "ODEPRRIC.spad" 1300937 1300959 1304036 1304041) (-740 "ODEPROB.spad" 1300136 1300144 1300927 1300932) (-739 "ODEPRIM.spad" 1297410 1297432 1300126 1300131) (-738 "ODEPAL.spad" 1296786 1296810 1297400 1297405) (-737 "ODEPACK.spad" 1283388 1283396 1296776 1296781) (-736 "ODEINT.spad" 1282819 1282835 1283378 1283383) (-735 "ODEIFTBL.spad" 1280214 1280222 1282809 1282814) (-734 "ODEEF.spad" 1275581 1275597 1280204 1280209) (-733 "ODECONST.spad" 1275100 1275118 1275571 1275576) (-732 "ODECAT.spad" 1273696 1273704 1275090 1275095) (-731 "OCT.spad" 1271843 1271853 1272559 1272598) (-730 "OCTCT2.spad" 1271487 1271508 1271833 1271838) (-729 "OC.spad" 1269261 1269271 1271443 1271482) (-728 "OC.spad" 1266761 1266773 1268945 1268950) (-727 "OCAMON.spad" 1266609 1266617 1266751 1266756) (-726 "OASGP.spad" 1266424 1266432 1266599 1266604) (-725 "OAMONS.spad" 1265944 1265952 1266414 1266419) (-724 "OAMON.spad" 1265805 1265813 1265934 1265939) (-723 "OAGROUP.spad" 1265667 1265675 1265795 1265800) (-722 "NUMTUBE.spad" 1265254 1265270 1265657 1265662) (-721 "NUMQUAD.spad" 1253116 1253124 1265244 1265249) (-720 "NUMODE.spad" 1244252 1244260 1253106 1253111) (-719 "NUMINT.spad" 1241810 1241818 1244242 1244247) (-718 "NUMFMT.spad" 1240650 1240658 1241800 1241805) (-717 "NUMERIC.spad" 1232723 1232733 1240456 1240461) (-716 "NTSCAT.spad" 1231213 1231229 1232679 1232718) (-715 "NTPOLFN.spad" 1230758 1230768 1231130 1231135) (-714 "NSUP.spad" 1223776 1223786 1228316 1228469) (-713 "NSUP2.spad" 1223168 1223180 1223766 1223771) (-712 "NSMP.spad" 1219367 1219386 1219675 1219802) (-711 "NREP.spad" 1217739 1217753 1219357 1219362) (-710 "NPCOEF.spad" 1216985 1217005 1217729 1217734) (-709 "NORMRETR.spad" 1216583 1216622 1216975 1216980) (-708 "NORMPK.spad" 1214485 1214504 1216573 1216578) (-707 "NORMMA.spad" 1214173 1214199 1214475 1214480) (-706 "NONE.spad" 1213914 1213922 1214163 1214168) (-705 "NONE1.spad" 1213590 1213600 1213904 1213909) (-704 "NODE1.spad" 1213059 1213075 1213580 1213585) (-703 "NNI.spad" 1211946 1211954 1213033 1213054) (-702 "NLINSOL.spad" 1210568 1210578 1211936 1211941) (-701 "NIPROB.spad" 1209051 1209059 1210558 1210563) (-700 "NFINTBAS.spad" 1206511 1206528 1209041 1209046) (-699 "NCODIV.spad" 1204709 1204725 1206501 1206506) (-698 "NCNTFRAC.spad" 1204351 1204365 1204699 1204704) (-697 "NCEP.spad" 1202511 1202525 1204341 1204346) (-696 "NASRING.spad" 1202107 1202115 1202501 1202506) (-695 "NASRING.spad" 1201701 1201711 1202097 1202102) (-694 "NARNG.spad" 1201045 1201053 1201691 1201696) (-693 "NARNG.spad" 1200387 1200397 1201035 1201040) (-692 "NAGSP.spad" 1199460 1199468 1200377 1200382) (-691 "NAGS.spad" 1188985 1188993 1199450 1199455) (-690 "NAGF07.spad" 1187378 1187386 1188975 1188980) (-689 "NAGF04.spad" 1181610 1181618 1187368 1187373) (-688 "NAGF02.spad" 1175419 1175427 1181600 1181605) (-687 "NAGF01.spad" 1171022 1171030 1175409 1175414) (-686 "NAGE04.spad" 1164482 1164490 1171012 1171017) (-685 "NAGE02.spad" 1154824 1154832 1164472 1164477) (-684 "NAGE01.spad" 1150708 1150716 1154814 1154819) (-683 "NAGD03.spad" 1148628 1148636 1150698 1150703) (-682 "NAGD02.spad" 1141159 1141167 1148618 1148623) (-681 "NAGD01.spad" 1135272 1135280 1141149 1141154) (-680 "NAGC06.spad" 1131059 1131067 1135262 1135267) (-679 "NAGC05.spad" 1129528 1129536 1131049 1131054) (-678 "NAGC02.spad" 1128783 1128791 1129518 1129523) (-677 "NAALG.spad" 1128318 1128328 1128751 1128778) (-676 "NAALG.spad" 1127873 1127885 1128308 1128313) (-675 "MULTSQFR.spad" 1124831 1124848 1127863 1127868) (-674 "MULTFACT.spad" 1124214 1124231 1124821 1124826) (-673 "MTSCAT.spad" 1122248 1122269 1124112 1124209) (-672 "MTHING.spad" 1121905 1121915 1122238 1122243) (-671 "MSYSCMD.spad" 1121339 1121347 1121895 1121900) (-670 "MSET.spad" 1119281 1119291 1121045 1121084) (-669 "MSETAGG.spad" 1119114 1119124 1119237 1119276) (-668 "MRING.spad" 1116085 1116097 1118822 1118889) (-667 "MRF2.spad" 1115653 1115667 1116075 1116080) (-666 "MRATFAC.spad" 1115199 1115216 1115643 1115648) (-665 "MPRFF.spad" 1113229 1113248 1115189 1115194) (-664 "MPOLY.spad" 1110667 1110682 1111026 1111153) (-663 "MPCPF.spad" 1109931 1109950 1110657 1110662) (-662 "MPC3.spad" 1109746 1109786 1109921 1109926) (-661 "MPC2.spad" 1109388 1109421 1109736 1109741) (-660 "MONOTOOL.spad" 1107723 1107740 1109378 1109383) (-659 "MONOID.spad" 1106897 1106905 1107713 1107718) (-658 "MONOID.spad" 1106069 1106079 1106887 1106892) (-657 "MONOGEN.spad" 1104815 1104828 1105929 1106064) (-656 "MONOGEN.spad" 1103583 1103598 1104699 1104704) (-655 "MONADWU.spad" 1101597 1101605 1103573 1103578) (-654 "MONADWU.spad" 1099609 1099619 1101587 1101592) (-653 "MONAD.spad" 1098753 1098761 1099599 1099604) (-652 "MONAD.spad" 1097895 1097905 1098743 1098748) (-651 "MOEBIUS.spad" 1096581 1096595 1097875 1097890) (-650 "MODULE.spad" 1096451 1096461 1096549 1096576) (-649 "MODULE.spad" 1096341 1096353 1096441 1096446) (-648 "MODRING.spad" 1095672 1095711 1096321 1096336) (-647 "MODOP.spad" 1094331 1094343 1095494 1095561) (-646 "MODMONOM.spad" 1093863 1093881 1094321 1094326) (-645 "MODMON.spad" 1090573 1090589 1091349 1091502) (-644 "MODFIELD.spad" 1089931 1089970 1090475 1090568) (-643 "MMAP.spad" 1089671 1089705 1089921 1089926) (-642 "MLO.spad" 1088098 1088108 1089627 1089666) (-641 "MLIFT.spad" 1086670 1086687 1088088 1088093) (-640 "MKUCFUNC.spad" 1086203 1086221 1086660 1086665) (-639 "MKRECORD.spad" 1085805 1085818 1086193 1086198) (-638 "MKFUNC.spad" 1085186 1085196 1085795 1085800) (-637 "MKFLCFN.spad" 1084142 1084152 1085176 1085181) (-636 "MKCHSET.spad" 1083918 1083928 1084132 1084137) (-635 "MKBCFUNC.spad" 1083403 1083421 1083908 1083913) (-634 "MINT.spad" 1082842 1082850 1083305 1083398) (-633 "MHROWRED.spad" 1081343 1081353 1082832 1082837) (-632 "MFLOAT.spad" 1079788 1079796 1081233 1081338) (-631 "MFINFACT.spad" 1079188 1079210 1079778 1079783) (-630 "MESH.spad" 1076920 1076928 1079178 1079183) (-629 "MDDFACT.spad" 1075113 1075123 1076910 1076915) (-628 "MDAGG.spad" 1074388 1074398 1075081 1075108) (-627 "MCMPLX.spad" 1070368 1070376 1070982 1071183) (-626 "MCDEN.spad" 1069576 1069588 1070358 1070363) (-625 "MCALCFN.spad" 1066678 1066704 1069566 1069571) (-624 "MATSTOR.spad" 1063954 1063964 1066668 1066673) (-623 "MATRIX.spad" 1062658 1062668 1063142 1063169) (-622 "MATLIN.spad" 1059984 1060008 1062542 1062547) (-621 "MATCAT.spad" 1051557 1051579 1059940 1059979) (-620 "MATCAT.spad" 1043014 1043038 1051399 1051404) (-619 "MATCAT2.spad" 1042282 1042330 1043004 1043009) (-618 "MAPPKG3.spad" 1041181 1041195 1042272 1042277) (-617 "MAPPKG2.spad" 1040515 1040527 1041171 1041176) (-616 "MAPPKG1.spad" 1039333 1039343 1040505 1040510) (-615 "MAPHACK3.spad" 1039141 1039155 1039323 1039328) (-614 "MAPHACK2.spad" 1038906 1038918 1039131 1039136) (-613 "MAPHACK1.spad" 1038536 1038546 1038896 1038901) (-612 "MAGMA.spad" 1036326 1036343 1038526 1038531) (-611 "M3D.spad" 1034024 1034034 1035706 1035711) (-610 "LZSTAGG.spad" 1031242 1031252 1034004 1034019) (-609 "LZSTAGG.spad" 1028468 1028480 1031232 1031237) (-608 "LWORD.spad" 1025173 1025190 1028458 1028463) (-607 "LSQM.spad" 1023401 1023415 1023799 1023850) (-606 "LSPP.spad" 1022934 1022951 1023391 1023396) (-605 "LSMP.spad" 1021774 1021802 1022924 1022929) (-604 "LSMP1.spad" 1019578 1019592 1021764 1021769) (-603 "LSAGG.spad" 1019235 1019245 1019534 1019573) (-602 "LSAGG.spad" 1018924 1018936 1019225 1019230) (-601 "LPOLY.spad" 1017878 1017897 1018780 1018849) (-600 "LPEFRAC.spad" 1017135 1017145 1017868 1017873) (-599 "LO.spad" 1016536 1016550 1017069 1017096) (-598 "LOGIC.spad" 1016138 1016146 1016526 1016531) (-597 "LOGIC.spad" 1015738 1015748 1016128 1016133) (-596 "LODOOPS.spad" 1014656 1014668 1015728 1015733) (-595 "LODO.spad" 1014042 1014058 1014338 1014377) (-594 "LODOF.spad" 1013086 1013103 1013999 1014004) (-593 "LODOCAT.spad" 1011744 1011754 1013042 1013081) (-592 "LODOCAT.spad" 1010400 1010412 1011700 1011705) (-591 "LODO2.spad" 1009675 1009687 1010082 1010121) (-590 "LODO1.spad" 1009077 1009087 1009357 1009396) (-589 "LODEEF.spad" 1007849 1007867 1009067 1009072) (-588 "LNAGG.spad" 1003641 1003651 1007829 1007844) (-587 "LNAGG.spad" 999407 999419 1003597 1003602) (-586 "LMOPS.spad" 996143 996160 999397 999402) (-585 "LMODULE.spad" 995785 995795 996133 996138) (-584 "LMDICT.spad" 995068 995078 995336 995363) (-583 "LIST.spad" 992786 992796 994215 994242) (-582 "LIST3.spad" 992077 992091 992776 992781) (-581 "LIST2.spad" 990717 990729 992067 992072) (-580 "LIST2MAP.spad" 987594 987606 990707 990712) (-579 "LINEXP.spad" 987026 987036 987574 987589) (-578 "LINDEP.spad" 985803 985815 986938 986943) (-577 "LIMITRF.spad" 983717 983727 985793 985798) (-576 "LIMITPS.spad" 982600 982613 983707 983712) (-575 "LIE.spad" 980614 980626 981890 982035) (-574 "LIECAT.spad" 980090 980100 980540 980609) (-573 "LIECAT.spad" 979594 979606 980046 980051) (-572 "LIB.spad" 977642 977650 978253 978268) (-571 "LGROBP.spad" 974995 975014 977632 977637) (-570 "LF.spad" 973914 973930 974985 974990) (-569 "LFCAT.spad" 972933 972941 973904 973909) (-568 "LEXTRIPK.spad" 968436 968451 972923 972928) (-567 "LEXP.spad" 966439 966466 968416 968431) (-566 "LEADCDET.spad" 964823 964840 966429 966434) (-565 "LAZM3PK.spad" 963527 963549 964813 964818) (-564 "LAUPOL.spad" 962218 962231 963122 963191) (-563 "LAPLACE.spad" 961791 961807 962208 962213) (-562 "LA.spad" 961231 961245 961713 961752) (-561 "LALG.spad" 961007 961017 961211 961226) (-560 "LALG.spad" 960791 960803 960997 961002) (-559 "KOVACIC.spad" 959504 959521 960781 960786) (-558 "KONVERT.spad" 959226 959236 959494 959499) (-557 "KOERCE.spad" 958963 958973 959216 959221) (-556 "KERNEL.spad" 957498 957508 958747 958752) (-555 "KERNEL2.spad" 957201 957213 957488 957493) (-554 "KDAGG.spad" 956292 956314 957169 957196) (-553 "KDAGG.spad" 955403 955427 956282 956287) (-552 "KAFILE.spad" 954366 954382 954601 954628) (-551 "JORDAN.spad" 952193 952205 953656 953801) (-550 "IXAGG.spad" 950306 950330 952173 952188) (-549 "IXAGG.spad" 948284 948310 950153 950158) (-548 "IVECTOR.spad" 947057 947072 947212 947239) (-547 "ITUPLE.spad" 946202 946212 947047 947052) (-546 "ITRIGMNP.spad" 945013 945032 946192 946197) (-545 "ITFUN3.spad" 944507 944521 945003 945008) (-544 "ITFUN2.spad" 944237 944249 944497 944502) (-543 "ITAYLOR.spad" 942029 942044 944073 944198) (-542 "ISUPS.spad" 934440 934455 941003 941100) (-541 "ISUMP.spad" 933937 933953 934430 934435) (-540 "ISTRING.spad" 932940 932953 933106 933133) (-539 "IRURPK.spad" 931653 931672 932930 932935) (-538 "IRSN.spad" 929613 929621 931643 931648) (-537 "IRRF2F.spad" 928088 928098 929569 929574) (-536 "IRREDFFX.spad" 927689 927700 928078 928083) (-535 "IROOT.spad" 926020 926030 927679 927684) (-534 "IR.spad" 923810 923824 925876 925903) (-533 "IR2.spad" 922830 922846 923800 923805) (-532 "IR2F.spad" 922030 922046 922820 922825) (-531 "IPRNTPK.spad" 921790 921798 922020 922025) (-530 "IPF.spad" 921355 921367 921595 921688) (-529 "IPADIC.spad" 921116 921142 921281 921350) (-528 "INVLAPLA.spad" 920761 920777 921106 921111) (-527 "INTTR.spad" 914007 914024 920751 920756) (-526 "INTTOOLS.spad" 911719 911735 913582 913587) (-525 "INTSLPE.spad" 911025 911033 911709 911714) (-524 "INTRVL.spad" 910591 910601 910939 911020) (-523 "INTRF.spad" 908955 908969 910581 910586) (-522 "INTRET.spad" 908387 908397 908945 908950) (-521 "INTRAT.spad" 907062 907079 908377 908382) (-520 "INTPM.spad" 905425 905441 906705 906710) (-519 "INTPAF.spad" 903193 903211 905357 905362) (-518 "INTPACK.spad" 893503 893511 903183 903188) (-517 "INT.spad" 892864 892872 893357 893498) (-516 "INTHERTR.spad" 892130 892147 892854 892859) (-515 "INTHERAL.spad" 891796 891820 892120 892125) (-514 "INTHEORY.spad" 888209 888217 891786 891791) (-513 "INTG0.spad" 881672 881690 888141 888146) (-512 "INTFTBL.spad" 875701 875709 881662 881667) (-511 "INTFACT.spad" 874760 874770 875691 875696) (-510 "INTEF.spad" 873075 873091 874750 874755) (-509 "INTDOM.spad" 871690 871698 873001 873070) (-508 "INTDOM.spad" 870367 870377 871680 871685) (-507 "INTCAT.spad" 868620 868630 870281 870362) (-506 "INTBIT.spad" 868123 868131 868610 868615) (-505 "INTALG.spad" 867305 867332 868113 868118) (-504 "INTAF.spad" 866797 866813 867295 867300) (-503 "INTABL.spad" 865315 865346 865478 865505) (-502 "INS.spad" 862711 862719 865217 865310) (-501 "INS.spad" 860193 860203 862701 862706) (-500 "INPSIGN.spad" 859627 859640 860183 860188) (-499 "INPRODPF.spad" 858693 858712 859617 859622) (-498 "INPRODFF.spad" 857751 857775 858683 858688) (-497 "INNMFACT.spad" 856722 856739 857741 857746) (-496 "INMODGCD.spad" 856206 856236 856712 856717) (-495 "INFSP.spad" 854491 854513 856196 856201) (-494 "INFPROD0.spad" 853541 853560 854481 854486) (-493 "INFORM.spad" 850809 850817 853531 853536) (-492 "INFORM1.spad" 850434 850444 850799 850804) (-491 "INFINITY.spad" 849986 849994 850424 850429) (-490 "INEP.spad" 848518 848540 849976 849981) (-489 "INDE.spad" 848424 848441 848508 848513) (-488 "INCRMAPS.spad" 847845 847855 848414 848419) (-487 "INBFF.spad" 843615 843626 847835 847840) (-486 "IMATRIX.spad" 842560 842586 843072 843099) (-485 "IMATQF.spad" 841654 841698 842516 842521) (-484 "IMATLIN.spad" 840259 840283 841610 841615) (-483 "ILIST.spad" 838915 838930 839442 839469) (-482 "IIARRAY2.spad" 838303 838341 838522 838549) (-481 "IFF.spad" 837713 837729 837984 838077) (-480 "IFARRAY.spad" 835200 835215 836896 836923) (-479 "IFAMON.spad" 835062 835079 835156 835161) (-478 "IEVALAB.spad" 834451 834463 835052 835057) (-477 "IEVALAB.spad" 833838 833852 834441 834446) (-476 "IDPO.spad" 833636 833648 833828 833833) (-475 "IDPOAMS.spad" 833392 833404 833626 833631) (-474 "IDPOAM.spad" 833112 833124 833382 833387) (-473 "IDPC.spad" 832046 832058 833102 833107) (-472 "IDPAM.spad" 831791 831803 832036 832041) (-471 "IDPAG.spad" 831538 831550 831781 831786) (-470 "IDECOMP.spad" 828775 828793 831528 831533) (-469 "IDEAL.spad" 823698 823737 828710 828715) (-468 "ICDEN.spad" 822849 822865 823688 823693) (-467 "ICARD.spad" 822038 822046 822839 822844) (-466 "IBPTOOLS.spad" 820631 820648 822028 822033) (-465 "IBITS.spad" 819830 819843 820267 820294) (-464 "IBATOOL.spad" 816705 816724 819820 819825) (-463 "IBACHIN.spad" 815192 815207 816695 816700) (-462 "IARRAY2.spad" 814180 814206 814799 814826) (-461 "IARRAY1.spad" 813225 813240 813363 813390) (-460 "IAN.spad" 811440 811448 813043 813136) (-459 "IALGFACT.spad" 811041 811074 811430 811435) (-458 "HYPCAT.spad" 810465 810473 811031 811036) (-457 "HYPCAT.spad" 809887 809897 810455 810460) (-456 "HOAGG.spad" 807145 807155 809867 809882) (-455 "HOAGG.spad" 804188 804200 806912 806917) (-454 "HEXADEC.spad" 802060 802068 802658 802751) (-453 "HEUGCD.spad" 801075 801086 802050 802055) (-452 "HELLFDIV.spad" 800665 800689 801065 801070) (-451 "HEAP.spad" 800057 800067 800272 800299) (-450 "HDP.spad" 791579 791595 791956 792085) (-449 "HDMP.spad" 788758 788773 789376 789503) (-448 "HB.spad" 786995 787003 788748 788753) (-447 "HASHTBL.spad" 785465 785496 785676 785703) (-446 "HACKPI.spad" 784948 784956 785367 785460) (-445 "GTSET.spad" 783887 783903 784594 784621) (-444 "GSTBL.spad" 782406 782441 782580 782595) (-443 "GSERIES.spad" 779573 779600 780538 780687) (-442 "GROUP.spad" 778747 778755 779553 779568) (-441 "GROUP.spad" 777929 777939 778737 778742) (-440 "GROEBSOL.spad" 776417 776438 777919 777924) (-439 "GRMOD.spad" 774988 775000 776407 776412) (-438 "GRMOD.spad" 773557 773571 774978 774983) (-437 "GRIMAGE.spad" 766162 766170 773547 773552) (-436 "GRDEF.spad" 764541 764549 766152 766157) (-435 "GRAY.spad" 763000 763008 764531 764536) (-434 "GRALG.spad" 762047 762059 762990 762995) (-433 "GRALG.spad" 761092 761106 762037 762042) (-432 "GPOLSET.spad" 760546 760569 760774 760801) (-431 "GOSPER.spad" 759811 759829 760536 760541) (-430 "GMODPOL.spad" 758949 758976 759779 759806) (-429 "GHENSEL.spad" 758018 758032 758939 758944) (-428 "GENUPS.spad" 754119 754132 758008 758013) (-427 "GENUFACT.spad" 753696 753706 754109 754114) (-426 "GENPGCD.spad" 753280 753297 753686 753691) (-425 "GENMFACT.spad" 752732 752751 753270 753275) (-424 "GENEEZ.spad" 750671 750684 752722 752727) (-423 "GDMP.spad" 747692 747709 748468 748595) (-422 "GCNAALG.spad" 741587 741614 747486 747553) (-421 "GCDDOM.spad" 740759 740767 741513 741582) (-420 "GCDDOM.spad" 739993 740003 740749 740754) (-419 "GB.spad" 737511 737549 739949 739954) (-418 "GBINTERN.spad" 733531 733569 737501 737506) (-417 "GBF.spad" 729288 729326 733521 733526) (-416 "GBEUCLID.spad" 727162 727200 729278 729283) (-415 "GAUSSFAC.spad" 726459 726467 727152 727157) (-414 "GALUTIL.spad" 724781 724791 726415 726420) (-413 "GALPOLYU.spad" 723227 723240 724771 724776) (-412 "GALFACTU.spad" 721392 721411 723217 723222) (-411 "GALFACT.spad" 711525 711536 721382 721387) (-410 "FVFUN.spad" 708538 708546 711505 711520) (-409 "FVC.spad" 707580 707588 708518 708533) (-408 "FUNCTION.spad" 707429 707441 707570 707575) (-407 "FT.spad" 705641 705649 707419 707424) (-406 "FTEM.spad" 704804 704812 705631 705636) (-405 "FSUPFACT.spad" 703705 703724 704741 704746) (-404 "FST.spad" 701791 701799 703695 703700) (-403 "FSRED.spad" 701269 701285 701781 701786) (-402 "FSPRMELT.spad" 700093 700109 701226 701231) (-401 "FSPECF.spad" 698170 698186 700083 700088) (-400 "FS.spad" 692221 692231 697934 698165) (-399 "FS.spad" 686063 686075 691778 691783) (-398 "FSINT.spad" 685721 685737 686053 686058) (-397 "FSERIES.spad" 684908 684920 685541 685640) (-396 "FSCINT.spad" 684221 684237 684898 684903) (-395 "FSAGG.spad" 683326 683336 684165 684216) (-394 "FSAGG.spad" 682405 682417 683246 683251) (-393 "FSAGG2.spad" 681104 681120 682395 682400) (-392 "FS2UPS.spad" 675493 675527 681094 681099) (-391 "FS2.spad" 675138 675154 675483 675488) (-390 "FS2EXPXP.spad" 674261 674284 675128 675133) (-389 "FRUTIL.spad" 673203 673213 674251 674256) (-388 "FR.spad" 666900 666910 672230 672299) (-387 "FRNAALG.spad" 661987 661997 666842 666895) (-386 "FRNAALG.spad" 657086 657098 661943 661948) (-385 "FRNAAF2.spad" 656540 656558 657076 657081) (-384 "FRMOD.spad" 655935 655965 656472 656477) (-383 "FRIDEAL.spad" 655130 655151 655915 655930) (-382 "FRIDEAL2.spad" 654732 654764 655120 655125) (-381 "FRETRCT.spad" 654243 654253 654722 654727) (-380 "FRETRCT.spad" 653622 653634 654103 654108) (-379 "FRAMALG.spad" 651950 651963 653578 653617) (-378 "FRAMALG.spad" 650310 650325 651940 651945) (-377 "FRAC.spad" 647413 647423 647816 647989) (-376 "FRAC2.spad" 647016 647028 647403 647408) (-375 "FR2.spad" 646350 646362 647006 647011) (-374 "FPS.spad" 643159 643167 646240 646345) (-373 "FPS.spad" 639996 640006 643079 643084) (-372 "FPC.spad" 639038 639046 639898 639991) (-371 "FPC.spad" 638166 638176 639028 639033) (-370 "FPATMAB.spad" 637918 637928 638146 638161) (-369 "FPARFRAC.spad" 636391 636408 637908 637913) (-368 "FORTRAN.spad" 634891 634940 636381 636386) (-367 "FORT.spad" 633820 633828 634881 634886) (-366 "FORTFN.spad" 630980 630988 633800 633815) (-365 "FORTCAT.spad" 630654 630662 630960 630975) (-364 "FORMULA.spad" 627992 628000 630644 630649) (-363 "FORMULA1.spad" 627471 627481 627982 627987) (-362 "FORDER.spad" 627162 627186 627461 627466) (-361 "FOP.spad" 626363 626371 627152 627157) (-360 "FNLA.spad" 625787 625809 626331 626358) (-359 "FNCAT.spad" 624115 624123 625777 625782) (-358 "FNAME.spad" 624007 624015 624105 624110) (-357 "FMTC.spad" 623805 623813 623933 624002) (-356 "FMONOID.spad" 620860 620870 623761 623766) (-355 "FM.spad" 620555 620567 620794 620821) (-354 "FMFUN.spad" 617575 617583 620535 620550) (-353 "FMC.spad" 616617 616625 617555 617570) (-352 "FMCAT.spad" 614271 614289 616585 616612) (-351 "FM1.spad" 613628 613640 614205 614232) (-350 "FLOATRP.spad" 611349 611363 613618 613623) (-349 "FLOAT.spad" 604513 604521 611215 611344) (-348 "FLOATCP.spad" 601930 601944 604503 604508) (-347 "FLINEXP.spad" 601642 601652 601910 601925) (-346 "FLINEXP.spad" 601308 601320 601578 601583) (-345 "FLASORT.spad" 600628 600640 601298 601303) (-344 "FLALG.spad" 598274 598293 600554 600623) (-343 "FLAGG.spad" 595280 595290 598242 598269) (-342 "FLAGG.spad" 592199 592211 595163 595168) (-341 "FLAGG2.spad" 590880 590896 592189 592194) (-340 "FINRALG.spad" 588909 588922 590836 590875) (-339 "FINRALG.spad" 586864 586879 588793 588798) (-338 "FINITE.spad" 586016 586024 586854 586859) (-337 "FINAALG.spad" 574997 575007 585958 586011) (-336 "FINAALG.spad" 563990 564002 574953 574958) (-335 "FILE.spad" 563573 563583 563980 563985) (-334 "FILECAT.spad" 562091 562108 563563 563568) (-333 "FIELD.spad" 561497 561505 561993 562086) (-332 "FIELD.spad" 560989 560999 561487 561492) (-331 "FGROUP.spad" 559598 559608 560969 560984) (-330 "FGLMICPK.spad" 558385 558400 559588 559593) (-329 "FFX.spad" 557760 557775 558101 558194) (-328 "FFSLPE.spad" 557249 557270 557750 557755) (-327 "FFPOLY.spad" 548501 548512 557239 557244) (-326 "FFPOLY2.spad" 547561 547578 548491 548496) (-325 "FFP.spad" 546958 546978 547277 547370) (-324 "FF.spad" 546406 546422 546639 546732) (-323 "FFNBX.spad" 544918 544938 546122 546215) (-322 "FFNBP.spad" 543431 543448 544634 544727) (-321 "FFNB.spad" 541896 541917 543112 543205) (-320 "FFINTBAS.spad" 539310 539329 541886 541891) (-319 "FFIELDC.spad" 536885 536893 539212 539305) (-318 "FFIELDC.spad" 534546 534556 536875 536880) (-317 "FFHOM.spad" 533294 533311 534536 534541) (-316 "FFF.spad" 530729 530740 533284 533289) (-315 "FFCGX.spad" 529576 529596 530445 530538) (-314 "FFCGP.spad" 528465 528485 529292 529385) (-313 "FFCG.spad" 527257 527278 528146 528239) (-312 "FFCAT.spad" 520158 520180 527096 527252) (-311 "FFCAT.spad" 513138 513162 520078 520083) (-310 "FFCAT2.spad" 512883 512923 513128 513133) (-309 "FEXPR.spad" 504596 504642 512643 512682) (-308 "FEVALAB.spad" 504302 504312 504586 504591) (-307 "FEVALAB.spad" 503793 503805 504079 504084) (-306 "FDIV.spad" 503235 503259 503783 503788) (-305 "FDIVCAT.spad" 501277 501301 503225 503230) (-304 "FDIVCAT.spad" 499317 499343 501267 501272) (-303 "FDIV2.spad" 498971 499011 499307 499312) (-302 "FCPAK1.spad" 497524 497532 498961 498966) (-301 "FCOMP.spad" 496903 496913 497514 497519) (-300 "FC.spad" 486728 486736 496893 496898) (-299 "FAXF.spad" 479663 479677 486630 486723) (-298 "FAXF.spad" 472650 472666 479619 479624) (-297 "FARRAY.spad" 470796 470806 471833 471860) (-296 "FAMR.spad" 468916 468928 470694 470791) (-295 "FAMR.spad" 467020 467034 468800 468805) (-294 "FAMONOID.spad" 466670 466680 466974 466979) (-293 "FAMONC.spad" 464892 464904 466660 466665) (-292 "FAGROUP.spad" 464498 464508 464788 464815) (-291 "FACUTIL.spad" 462694 462711 464488 464493) (-290 "FACTFUNC.spad" 461870 461880 462684 462689) (-289 "EXPUPXS.spad" 458703 458726 460002 460151) (-288 "EXPRTUBE.spad" 455931 455939 458693 458698) (-287 "EXPRODE.spad" 452803 452819 455921 455926) (-286 "EXPR.spad" 448105 448115 448819 449222) (-285 "EXPR2UPS.spad" 444197 444210 448095 448100) (-284 "EXPR2.spad" 443900 443912 444187 444192) (-283 "EXPEXPAN.spad" 440841 440866 441475 441568) (-282 "EXIT.spad" 440512 440520 440831 440836) (-281 "EVALCYC.spad" 439970 439984 440502 440507) (-280 "EVALAB.spad" 439534 439544 439960 439965) (-279 "EVALAB.spad" 439096 439108 439524 439529) (-278 "EUCDOM.spad" 436638 436646 439022 439091) (-277 "EUCDOM.spad" 434242 434252 436628 436633) (-276 "ESTOOLS.spad" 426082 426090 434232 434237) (-275 "ESTOOLS2.spad" 425683 425697 426072 426077) (-274 "ESTOOLS1.spad" 425368 425379 425673 425678) (-273 "ES.spad" 417915 417923 425358 425363) (-272 "ES.spad" 410370 410380 417815 417820) (-271 "ESCONT.spad" 407143 407151 410360 410365) (-270 "ESCONT1.spad" 406892 406904 407133 407138) (-269 "ES2.spad" 406387 406403 406882 406887) (-268 "ES1.spad" 405953 405969 406377 406382) (-267 "ERROR.spad" 403274 403282 405943 405948) (-266 "EQTBL.spad" 401746 401768 401955 401982) (-265 "EQ.spad" 396630 396640 399429 399538) (-264 "EQ2.spad" 396346 396358 396620 396625) (-263 "EP.spad" 392660 392670 396336 396341) (-262 "ENTIRER.spad" 392328 392336 392604 392655) (-261 "EMR.spad" 391529 391570 392254 392323) (-260 "ELTAGG.spad" 389769 389788 391519 391524) (-259 "ELTAGG.spad" 387973 387994 389725 389730) (-258 "ELTAB.spad" 387420 387438 387963 387968) (-257 "ELFUTS.spad" 386799 386818 387410 387415) (-256 "ELEMFUN.spad" 386488 386496 386789 386794) (-255 "ELEMFUN.spad" 386175 386185 386478 386483) (-254 "ELAGG.spad" 384106 384116 386143 386170) (-253 "ELAGG.spad" 381986 381998 384025 384030) (-252 "EFUPXS.spad" 378762 378792 381942 381947) (-251 "EFULS.spad" 375598 375621 378718 378723) (-250 "EFSTRUC.spad" 373553 373569 375588 375593) (-249 "EF.spad" 368319 368335 373543 373548) (-248 "EAB.spad" 366595 366603 368309 368314) (-247 "E04UCFA.spad" 366131 366139 366585 366590) (-246 "E04NAFA.spad" 365708 365716 366121 366126) (-245 "E04MBFA.spad" 365288 365296 365698 365703) (-244 "E04JAFA.spad" 364824 364832 365278 365283) (-243 "E04GCFA.spad" 364360 364368 364814 364819) (-242 "E04FDFA.spad" 363896 363904 364350 364355) (-241 "E04DGFA.spad" 363432 363440 363886 363891) (-240 "E04AGNT.spad" 359274 359282 363422 363427) (-239 "DVARCAT.spad" 355959 355969 359264 359269) (-238 "DVARCAT.spad" 352642 352654 355949 355954) (-237 "DSMP.spad" 350076 350090 350381 350508) (-236 "DROPT.spad" 344021 344029 350066 350071) (-235 "DROPT1.spad" 343684 343694 344011 344016) (-234 "DROPT0.spad" 338511 338519 343674 343679) (-233 "DRAWPT.spad" 336666 336674 338501 338506) (-232 "DRAW.spad" 329266 329279 336656 336661) (-231 "DRAWHACK.spad" 328574 328584 329256 329261) (-230 "DRAWCX.spad" 326016 326024 328564 328569) (-229 "DRAWCURV.spad" 325553 325568 326006 326011) (-228 "DRAWCFUN.spad" 314725 314733 325543 325548) (-227 "DQAGG.spad" 312881 312891 314681 314720) (-226 "DPOLCAT.spad" 308222 308238 312749 312876) (-225 "DPOLCAT.spad" 303649 303667 308178 308183) (-224 "DPMO.spad" 297636 297652 297774 298070) (-223 "DPMM.spad" 291636 291654 291761 292057) (-222 "domain.spad" 291152 291160 291626 291631) (-221 "DMP.spad" 288377 288392 288949 289076) (-220 "DLP.spad" 287725 287735 288367 288372) (-219 "DLIST.spad" 286137 286147 286908 286935) (-218 "DLAGG.spad" 284538 284548 286117 286132) (-217 "DIVRING.spad" 283985 283993 284482 284533) (-216 "DIVRING.spad" 283476 283486 283975 283980) (-215 "DISPLAY.spad" 281656 281664 283466 283471) (-214 "DIRPROD.spad" 272915 272931 273555 273684) (-213 "DIRPROD2.spad" 271723 271741 272905 272910) (-212 "DIRPCAT.spad" 270655 270671 271577 271718) (-211 "DIRPCAT.spad" 269327 269345 270251 270256) (-210 "DIOSP.spad" 268152 268160 269317 269322) (-209 "DIOPS.spad" 267124 267134 268120 268147) (-208 "DIOPS.spad" 266082 266094 267080 267085) (-207 "DIFRING.spad" 265374 265382 266062 266077) (-206 "DIFRING.spad" 264674 264684 265364 265369) (-205 "DIFEXT.spad" 263833 263843 264654 264669) (-204 "DIFEXT.spad" 262909 262921 263732 263737) (-203 "DIAGG.spad" 262527 262537 262877 262904) (-202 "DIAGG.spad" 262165 262177 262517 262522) (-201 "DHMATRIX.spad" 260469 260479 261622 261649) (-200 "DFSFUN.spad" 253877 253885 260459 260464) (-199 "DFLOAT.spad" 250400 250408 253767 253872) (-198 "DFINTTLS.spad" 248609 248625 250390 250395) (-197 "DERHAM.spad" 246519 246551 248589 248604) (-196 "DEQUEUE.spad" 245837 245847 246126 246153) (-195 "DEGRED.spad" 245452 245466 245827 245832) (-194 "DEFINTRF.spad" 242977 242987 245442 245447) (-193 "DEFINTEF.spad" 241473 241489 242967 242972) (-192 "DECIMAL.spad" 239357 239365 239943 240036) (-191 "DDFACT.spad" 237156 237173 239347 239352) (-190 "DBLRESP.spad" 236754 236778 237146 237151) (-189 "DBASE.spad" 235326 235336 236744 236749) (-188 "D03FAFA.spad" 235154 235162 235316 235321) (-187 "D03EEFA.spad" 234974 234982 235144 235149) (-186 "D03AGNT.spad" 234054 234062 234964 234969) (-185 "D02EJFA.spad" 233516 233524 234044 234049) (-184 "D02CJFA.spad" 232994 233002 233506 233511) (-183 "D02BHFA.spad" 232484 232492 232984 232989) (-182 "D02BBFA.spad" 231974 231982 232474 232479) (-181 "D02AGNT.spad" 226778 226786 231964 231969) (-180 "D01WGTS.spad" 225097 225105 226768 226773) (-179 "D01TRNS.spad" 225074 225082 225087 225092) (-178 "D01GBFA.spad" 224596 224604 225064 225069) (-177 "D01FCFA.spad" 224118 224126 224586 224591) (-176 "D01ASFA.spad" 223586 223594 224108 224113) (-175 "D01AQFA.spad" 223032 223040 223576 223581) (-174 "D01APFA.spad" 222456 222464 223022 223027) (-173 "D01ANFA.spad" 221950 221958 222446 222451) (-172 "D01AMFA.spad" 221460 221468 221940 221945) (-171 "D01ALFA.spad" 221000 221008 221450 221455) (-170 "D01AKFA.spad" 220526 220534 220990 220995) (-169 "D01AJFA.spad" 220049 220057 220516 220521) (-168 "D01AGNT.spad" 216108 216116 220039 220044) (-167 "CYCLOTOM.spad" 215614 215622 216098 216103) (-166 "CYCLES.spad" 212446 212454 215604 215609) (-165 "CVMP.spad" 211863 211873 212436 212441) (-164 "CTRIGMNP.spad" 210353 210369 211853 211858) (-163 "CSTTOOLS.spad" 209596 209609 210343 210348) (-162 "CRFP.spad" 203300 203313 209586 209591) (-161 "CRAPACK.spad" 202343 202353 203290 203295) (-160 "CPMATCH.spad" 201843 201858 202268 202273) (-159 "CPIMA.spad" 201548 201567 201833 201838) (-158 "COORDSYS.spad" 196441 196451 201538 201543) (-157 "CONTFRAC.spad" 192053 192063 196343 196436) (-156 "COMRING.spad" 191727 191735 191991 192048) (-155 "COMPPROP.spad" 191241 191249 191717 191722) (-154 "COMPLPAT.spad" 191008 191023 191231 191236) (-153 "COMPLEX.spad" 185041 185051 185285 185546) (-152 "COMPLEX2.spad" 184754 184766 185031 185036) (-151 "COMPFACT.spad" 184356 184370 184744 184749) (-150 "COMPCAT.spad" 182412 182422 184078 184351) (-149 "COMPCAT.spad" 180175 180187 181843 181848) (-148 "COMMUPC.spad" 179921 179939 180165 180170) (-147 "COMMONOP.spad" 179454 179462 179911 179916) (-146 "COMM.spad" 179263 179271 179444 179449) (-145 "COMBOPC.spad" 178168 178176 179253 179258) (-144 "COMBINAT.spad" 176913 176923 178158 178163) (-143 "COMBF.spad" 174281 174297 176903 176908) (-142 "COLOR.spad" 173118 173126 174271 174276) (-141 "CMPLXRT.spad" 172827 172844 173108 173113) (-140 "CLIP.spad" 168919 168927 172817 172822) (-139 "CLIF.spad" 167558 167574 168875 168914) (-138 "CLAGG.spad" 164033 164043 167538 167553) (-137 "CLAGG.spad" 160389 160401 163896 163901) (-136 "CINTSLPE.spad" 159714 159727 160379 160384) (-135 "CHVAR.spad" 157792 157814 159704 159709) (-134 "CHARZ.spad" 157707 157715 157772 157787) (-133 "CHARPOL.spad" 157215 157225 157697 157702) (-132 "CHARNZ.spad" 156968 156976 157195 157210) (-131 "CHAR.spad" 154858 154866 156958 156963) (-130 "CFCAT.spad" 154174 154182 154848 154853) (-129 "CDEN.spad" 153332 153346 154164 154169) (-128 "CCLASS.spad" 151481 151489 152743 152782) (-127 "CARTEN.spad" 146584 146608 151471 151476) (-126 "CARTEN2.spad" 145970 145997 146574 146579) (-125 "CARD.spad" 143259 143267 145944 145965) (-124 "CACHSET.spad" 142881 142889 143249 143254) (-123 "CABMON.spad" 142434 142442 142871 142876) (-122 "BTREE.spad" 141503 141513 142041 142068) (-121 "BTOURN.spad" 140506 140516 141110 141137) (-120 "BTCAT.spad" 139882 139892 140462 140501) (-119 "BTCAT.spad" 139290 139302 139872 139877) (-118 "BTAGG.spad" 138306 138314 139246 139285) (-117 "BTAGG.spad" 137354 137364 138296 138301) (-116 "BSTREE.spad" 136089 136099 136961 136988) (-115 "BRILL.spad" 134284 134295 136079 136084) (-114 "BRAGG.spad" 133198 133208 134264 134279) (-113 "BRAGG.spad" 132086 132098 133154 133159) (-112 "BPADICRT.spad" 130070 130082 130325 130418) (-111 "BPADIC.spad" 129734 129746 129996 130065) (-110 "BOUNDZRO.spad" 129390 129407 129724 129729) (-109 "BOP.spad" 124854 124862 129380 129385) (-108 "BOP1.spad" 122240 122250 124810 124815) (-107 "BOOLEAN.spad" 121098 121106 122230 122235) (-106 "BMODULE.spad" 120810 120822 121066 121093) (-105 "BITS.spad" 120229 120237 120446 120473) (-104 "BINFILE.spad" 119572 119580 120219 120224) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 638a28c8..cdc42401 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(143833 . 3404712031)
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(142085 . 3409262770)
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#2| |#2|) . T))
((((-517)) . T))
-((($ $) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($ $) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((($) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(|has| |#1| (-831))
+((($) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(|has| |#1| (-832))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -18,33 +18,33 @@
((($) . T))
(((|#2| |#2|) . T))
((((-131)) . T))
-((((-493)) . T) (((-1057)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+((((-493)) . T) (((-1058)) . T) (((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
(((|#1|) . T))
((((-199)) . T) (((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-(-3782 (|has| |#1| (-752)) (|has| |#1| (-779)))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+(-3745 (|has| |#1| (-752)) (|has| |#1| (-779)))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-777))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
-((((-787)) |has| |#1| (-1003)))
+((((-787)) |has| |#1| (-1004)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(((|#2| (-450 (-2290 |#1|) (-703))) . T))
-(((|#1| (-489 (-1074))) . T))
-((((-794 |#1|) (-794 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#2| (-450 (-3533 |#1|) (-703))) . T))
+(((|#1| (-489 (-1075))) . T))
+(((#0=(-794 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(|has| |#4| (-338))
(|has| |#3| (-338))
(((|#1|) . T))
@@ -54,110 +54,110 @@
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-509))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
((($) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1| |#2|) . T))
((((-787)) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
((($ $) . T))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
((($) . T))
(|has| |#1| (-338))
(((|#1|) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
(((|#1| |#1|) . T))
(|has| |#1| (-509))
-(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1074) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1074) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1075) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1075) |#2|))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(|has| |#1| (-1003))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(|has| |#1| (-1003))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(|has| |#1| (-1004))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(|has| |#1| (-1004))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(|has| |#1| (-777))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3782 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3782 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3745 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1003))
-(|has| |#1| (-1003))
-(((|#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) . T))
+(|has| |#1| (-1004))
+(|has| |#1| (-1004))
+(((|#1| (-1075) (-994 (-1075)) (-489 (-994 (-1075)))) . T))
((((-517) |#1|) . T))
((((-517)) . T))
((((-517)) . T))
-((((-832 |#1|)) . T))
+((((-833 |#1|)) . T))
(((|#1| (-489 |#2|)) . T))
((((-517)) . T))
((((-517)) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#1| (-703)) . T))
(|has| |#2| (-725))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#2| (-777))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1057) |#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-1058) |#1|) . T))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#3| (-703)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(|has| |#1| (-1003))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-1004))
((((-377 (-517))) . T) (((-517)) . T))
-((((-1074) |#2|) |has| |#2| (-478 (-1074) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
+((((-1075) |#2|) |has| |#2| (-478 (-1075) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
((((-377 (-517))) . T) (((-517)) . T))
(((|#1|) . T) (($) . T))
((((-517)) . T))
((((-517)) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
((((-517)) . T))
((((-517)) . T))
-((((-632) (-1070 (-632))) . T))
+(((#0=(-632) (-1071 #0#)) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
@@ -167,18 +167,18 @@
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1057) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((((-1058) |#1|) . T))
(((|#3| |#3|) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962))) ((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -186,65 +186,65 @@
((((-787)) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((((-153 (-199))) |has| |#1| (-937)) (((-153 (-349))) |has| |#1| (-937)) (((-493)) |has| |#1| (-558 (-493))) (((-1070 |#1|)) . T) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-153 (-199))) |has| |#1| (-938)) (((-153 (-349))) |has| |#1| (-938)) (((-493)) |has| |#1| (-558 (-493))) (((-1071 |#1|)) . T) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
(|has| |#1| (-333))
-(-12 (|has| |#4| (-207)) (|has| |#4| (-961)))
-(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
-(-3782 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-12 (|has| |#4| (-207)) (|has| |#4| (-962)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-962)))
+(-3745 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-962)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
((((-787)) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1|) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| |#1| (-509))
((((-632)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))
+(-12 (|has| |#1| (-919)) (|has| |#1| (-1096)))
(((|#2|) . T) (($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(((|#4| |#4|) -3782 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($ $) |has| |#4| (-156)))
-(((|#3| |#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
+(((|#4| |#4|) -3745 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-962))) (($ $) |has| |#4| (-156)))
+(((|#3| |#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))) (($ $) |has| |#3| (-156)))
(((|#1|) . T))
(((|#2|) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
((((-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
+((((-493)) |has| |#1| (-558 (-493))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
((((-787)) . T))
-(((|#4|) -3782 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($) |has| |#4| (-156)))
-(((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+(((|#4|) -3745 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-962))) (($) |has| |#4| (-156)))
+(((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))) (($) |has| |#3| (-156)))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) . T))
(((|#1|) . T))
-(|has| |#2| (-831))
-((((-1057) (-51)) . T))
-((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
-((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+(|has| |#2| (-832))
+((((-1058) (-51)) . T))
+((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T))
+((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
((((-787)) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
(((|#1|) |has| |#1| (-156)))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-787)) . T))
@@ -253,74 +253,74 @@
((((-377 (-517))) . T) (($) . T))
((((-787)) . T))
(|has| |#1| (-779))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-207))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| (-489 (-750 (-1074)))) . T))
-(((|#1| (-888)) . T))
-((((-794 |#1|) $) |has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| (-489 (-750 (-1075)))) . T))
+(((|#1| (-889)) . T))
+(((#0=(-794 |#1|) $) |has| #0# (-258 #0# #0#)))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1050))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
-(|has| (-1141 |#1| |#2| |#3| |#4|) (-132))
-(|has| (-1141 |#1| |#2| |#3| |#4|) (-134))
+(|has| |#1| (-1051))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
+(|has| (-1142 |#1| |#2| |#3| |#4|) (-132))
+(|has| (-1142 |#1| |#2| |#3| |#4|) (-134))
(|has| |#1| (-132))
(|has| |#1| (-134))
(((|#1|) |has| |#1| (-156)))
-((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
+((((-1075)) -12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962))))
(((|#2|) . T))
-(|has| |#1| (-1003))
-((((-1057) |#1|) . T))
+(|has| |#1| (-1004))
+((((-1058) |#1|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#2| (-338))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-961)))
+(((|#2|) |has| |#2| (-962)))
((((-787)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((#0=(-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) #0#) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))))
((((-517) |#1|) . T))
((((-787)) . T))
-((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))))
+((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349))))) (((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517))))))
((((-787)) . T))
((((-787)) . T))
((($) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-787)) . T))
-(|has| (-1140 |#2| |#3| |#4|) (-134))
-(|has| (-1140 |#2| |#3| |#4|) (-132))
-(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
+(|has| (-1141 |#2| |#3| |#4|) (-134))
+(|has| (-1141 |#2| |#3| |#4|) (-132))
+(((|#2|) |has| |#2| (-1004)) (((-517)) -12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (((-377 (-517))) -12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004))))
(((|#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1|) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-787)) |has| |#1| (-1003)))
-(-3782 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-832 |#1|)) . T))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-787)) |has| |#1| (-1004)))
+(-3745 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)) (|has| |#1| (-1016)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-833 |#1|)) . T))
((((-377 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-517) |#1|)))
((((-377 (-517))) . T) (($) . T))
@@ -330,112 +330,112 @@
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
-(-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
((((-517)) . T))
-((((-1041 |#2| (-377 (-874 |#1|)))) . T) (((-377 (-874 |#1|))) . T))
+((((-1042 |#2| (-377 (-875 |#1|)))) . T) (((-377 (-875 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
(((|#1|) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
-(-3782 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1|) . T))
-((((-1074)) -12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1075)) -12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(-3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(-3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($ $) |has| |#1| (-509)))
-((((-632) (-1070 (-632))) . T))
+(((#0=(-632) (-1071 #0#)) . T))
((((-787)) . T))
-((((-787)) . T) (((-1154 |#4|)) . T))
-((((-787)) . T) (((-1154 |#3|)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((((-787)) . T) (((-1156 |#4|)) . T))
+((((-787)) . T) (((-1156 |#3|)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)))
((((-787)) . T))
((($) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-(((|#3|) |has| |#3| (-961)))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#1| (-1003))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1148 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+(((|#3|) |has| |#3| (-962)))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#1| (-1004))
(((|#2| (-751 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-333))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
-((((-989) |#2|) . T) (((-989) $) . T) (($ $) . T))
-((((-832 |#1|)) . T))
+(((#0=(-990) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-833 |#1|)) . T))
((((-131)) . T))
((((-131)) . T))
-(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))
+(((|#3|) |has| |#3| (-1004)) (((-517)) -12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004))) (((-377 (-517))) -12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004))))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
-((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#2| (-752))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-777))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-493)) |has| |#1| (-558 (-493))))
(((|#1| |#2|) . T))
-((((-1074)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074)))))
-((((-1057) |#1|) . T))
+((((-1075)) -12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075)))))
+((((-1058) |#1|) . T))
(((|#1| |#2| |#3| (-489 |#3|)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
((((-787)) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(|has| |#1| (-338))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((((-517)) . T))
((((-517)) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
((((-787)) . T))
((((-787)) . T))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
-((((-1074) (-794 |#1|)) |has| (-794 |#1|) (-478 (-1074) (-794 |#1|))) (((-794 |#1|) (-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-962)))
+((((-1075) #0=(-794 |#1|)) |has| #0# (-478 (-1075) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
(((|#1|) . T))
((((-517) |#4|) . T))
((((-517) |#3|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
((((-377 (-517))) . T) (((-517)) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
((((-517)) . T))
((((-517)) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-509)))
((((-517) |#4|) . T))
@@ -445,41 +445,41 @@
((((-787)) . T))
((((-517) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) (((-1074) $) . T) (((-1074) |#1|) . T))
+((($ $) . T) ((#0=(-1075) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-156)))
-((($) -3782 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(((|#2| |#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+((($) -3745 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(((|#2| |#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($ $) |has| |#2| (-156)))
((((-131)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($) |has| |#2| (-156)))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(|has| $ (-134))
((((-517) |#1|) . T))
-((($) -3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
+((($) -3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))))
(|has| |#1| (-333))
-(-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(|has| |#1| (-15 * (|#1| (-703) |#1|)))
(((|#1|) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(((|#2| (-489 (-789 |#1|))) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
@@ -487,7 +487,7 @@
(((|#4|) . T))
(((|#3|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
+((((-1075)) -12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962))))
(((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
@@ -496,31 +496,31 @@
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#2|) |has| |#2| (-961)))
-(|has| |#1| (-1003))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
-(((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1073 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((|#2|) |has| |#2| (-962)))
+(|has| |#1| (-1004))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+(((#0=(-990) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
((($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#2|) |has| |#1| (-333)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
+(((|#2|) |has| |#2| (-1004)) (((-517)) -12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (((-377 (-517))) -12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004))))
((((-517) |#1|) . T))
(((|#1| (-377 (-517))) . T))
((((-377 |#2|) |#3|) . T))
@@ -531,30 +531,30 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-132))
(|has| |#1| (-134))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
(((|#2| |#3| (-789 |#1|)) . T))
-((((-1074)) |has| |#2| (-822 (-1074))))
+((((-1075)) |has| |#2| (-823 (-1075))))
(((|#1|) . T))
(((|#1| (-489 |#2|) |#2|) . T))
-(((|#1| (-703) (-989)) . T))
+(((|#1| (-703) (-990)) . T))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
-(((|#1| (-489 (-993 (-1074))) (-993 (-1074))) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1| (-489 (-994 (-1075))) (-994 (-1075))) . T))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(|has| |#2| (-725))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#2| (-777))
-((((-815 |#1|)) . T) (((-751 |#1|)) . T))
-((((-751 (-1074))) . T))
+((((-816 |#1|)) . T) (((-751 |#1|)) . T))
+((((-751 (-1075))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -563,108 +563,108 @@
((((-583 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
(|has| |#1| (-207))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1147 |#1| |#2| |#3|) $) -12 (|has| (-1147 |#1| |#2| |#3|) (-258 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((((-1148 |#1| |#2| |#3|) $) -12 (|has| (-1148 |#1| |#2| |#3|) (-258 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1039 |#1| |#2|)) |has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+((((-1040 |#1| |#2|)) |has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#2|) . T) (((-517)) |has| |#2| (-953 (-517))) (((-377 (-517))) |has| |#2| (-953 (-377 (-517)))))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#2|) . T))
-((((-787)) -3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
+((((-787)) -3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004))) (((-1156 |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
((((-517)) . T))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-517) (-131)) . T))
-((($) -3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+((($) -3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962))) ((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
(((|#2|) |has| |#1| (-333)))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| (-489 (-1074)) (-1074)) . T))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| (-489 #0=(-1075)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-156))
(|has| |#3| (-156))
-((((-377 (-874 |#1|)) (-377 (-874 |#1|))) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(|has| |#1| (-1003))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(|has| |#1| (-1003))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+(((#0=(-377 (-875 |#1|)) #0#) . T))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(|has| |#1| (-1004))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(|has| |#1| (-1004))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1| |#1|) |has| |#1| (-156)))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
-((((-377 (-874 |#1|))) . T))
+((((-377 (-875 |#1|))) . T))
(((|#1|) |has| |#1| (-156)))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((((-787)) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-961)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-962)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))
(((|#1| |#2|) . T))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
(|has| |#3| (-725))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
(((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1055 |#1|)) |has| |#1| (-777)))
+(((|#1| (-1056 |#1|)) |has| |#1| (-777)))
((((-517) |#2|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1|) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-1050)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(|has| |#1| (-1003))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-1051)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(|has| |#1| (-1004))
(((|#2|) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
-(((|#4|) -3782 (|has| |#4| (-156)) (|has| |#4| (-333))))
-(((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333))))
+((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
+(((|#4|) -3745 (|has| |#4| (-156)) (|has| |#4| (-333))))
+(((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333))))
((((-787)) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
-((($ $) . T) (((-1074) $) |has| |#1| (-207)) (((-1074) |#1|) |has| |#1| (-207)) (((-750 (-1074)) |#1|) . T) (((-750 (-1074)) $) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
+((($ $) . T) ((#0=(-1075) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-750 (-1075)) |#1|) . T) ((#1# $) . T))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
((((-517) |#2|) . T))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((($) -3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((($) -3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962))) ((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))))
((((-517) |#1|) . T))
(|has| (-377 |#2|) (-134))
(|has| (-377 |#2|) (-132))
@@ -677,26 +677,26 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-787)) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-358) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-358) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
(|has| |#1| (-37 (-377 (-517))))
-(|has| |#2| (-1050))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#2| (-1051))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
(((|#1|) . T))
-((((-358) (-1057)) . T))
+((((-358) (-1058)) . T))
(|has| |#1| (-509))
((((-111 |#1|)) . T))
((((-517) |#1|) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#2|) . T))
((((-787)) . T))
((((-751 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
-((((-1074) (-51)) . T))
+((((-1075) (-51)) . T))
(((|#1|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -704,17 +704,17 @@
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#2|) |has| |#2| (-280 |#2|)))
-((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1070 |#1|)) . T))
+(((|#1| (-1071 |#1|)) . T))
(|has| $ (-134))
(((|#2|) . T))
-((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
((($) . T) (((-517)) . T) (((-377 (-517))) . T))
(|has| |#2| (-338))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
@@ -722,67 +722,67 @@
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((((-1072 |#1| |#2| |#3|) $) -12 (|has| (-1072 |#1| |#2| |#3|) (-258 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+((((-1073 |#1| |#2| |#3|) $) -12 (|has| (-1073 |#1| |#2| |#3|) (-258 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((((-787)) . T))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
((($ $) . T))
((($ $) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1074) (-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((#0=(-1148 |#1| |#2| |#3|) #0#) -12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1075) #0#) -12 (|has| (-1148 |#1| |#2| |#3|) (-478 (-1075) (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-377 (-517))) . T) (((-517)) . T))
((((-517) (-131)) . T))
((((-131)) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
((((-107)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-107)) . T))
(((|#1|) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-199)) |has| |#1| (-937)) (((-349)) |has| |#1| (-937)))
+((((-493)) |has| |#1| (-558 (-493))) (((-199)) . #0=(|has| |#1| (-938))) (((-349)) . #0#))
((((-787)) . T))
(|has| |#1| (-752))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(|has| |#1| (-779))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-509))
-(|has| |#1| (-831))
+(|has| |#1| (-832))
(((|#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
((((-787)) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
+(((|#1| (-1156 |#1|) (-1156 |#1|)) . T))
((((-517) (-131)) . T))
((($) . T))
-(-3782 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-962)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
((((-787)) . T))
-(|has| |#1| (-1003))
-(((|#1| (-888)) . T))
+(|has| |#1| (-1004))
+(((|#1| (-889)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-442)) (|has| |#2| (-442)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(((|#1|) . T))
(|has| |#2| (-725))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(|has| |#2| (-777))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
@@ -795,19 +795,19 @@
(((|#1|) . T))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
(|has| |#1| (-760))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
-(|has| |#1| (-1003))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
+(|has| |#1| (-1004))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
((($) |has| |#1| (-509)))
-(((|#4|) |has| |#4| (-1003)))
-(((|#3|) |has| |#3| (-1003)))
+(((|#4|) |has| |#4| (-1004)))
+(((|#3|) |has| |#3| (-1004)))
(|has| |#3| (-338))
(((|#1|) . T) (((-787)) . T))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
((((-787)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
@@ -817,30 +817,30 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (((-517)) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
((((-131)) . T))
(((|#1|) . T))
((((-131)) . T))
-((($) -3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+((($) -3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962))) ((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))))
((((-131)) . T))
(((|#1| |#2| |#3|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
(|has| $ (-134))
(|has| $ (-134))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-962)) (|has| |#1| (-1016)))
((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|)))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-((((-1074)) . T))
+((((-1075)) . T))
(|has| |#1| (-509))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -851,12 +851,12 @@
(|has| |#1| (-134))
(|has| |#1| (-132))
(|has| |#4| (-777))
-(((|#2| (-214 (-2290 |#1|) (-703)) (-789 |#1|)) . T))
+(((|#2| (-214 (-3533 |#1|) (-703)) (-789 |#1|)) . T))
(|has| |#3| (-777))
(((|#1| (-489 |#3|) |#3|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-333)) (($ $) . T))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-333)) (($ $) . T))
((((-794 |#1|)) . T))
(|has| |#1| (-134))
(|has| |#1| (-338))
@@ -864,22 +864,22 @@
(|has| |#1| (-338))
(|has| |#1| (-132))
((((-377 (-517))) |has| |#2| (-333)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-319)) (|has| |#1| (-338)))
-((((-1041 |#2| |#1|)) . T) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-319)) (|has| |#1| (-338)))
+((((-1042 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-156))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-962)))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-632)) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
@@ -887,12 +887,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1074) (-51)) . T))
+((((-1075) (-51)) . T))
((((-787)) . T))
-((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1|) . T))
((((-787)) . T))
-((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| (-517)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -901,38 +901,38 @@
(((|#1| (-377 (-517))) . T))
(((|#3|) . T) (((-556 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1074) (-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(((#0=(-1073 |#1| |#2| |#3|) #0#) -12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1075) #0#) -12 (|has| (-1073 |#1| |#2| |#3|) (-478 (-1075) (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))))
((((-787)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1074) (-51)) . T))
+((((-1075) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-760))
-(|has| |#1| (-1003))
-(((|#2| |#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+(|has| |#1| (-1004))
+(((|#2| |#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($ $) |has| |#2| (-156)))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($) |has| |#2| (-156)))
((((-703)) . T))
((((-517)) . T))
(|has| |#1| (-509))
((((-787)) . T))
-(((|#1| (-377 (-517)) (-989)) . T))
+(((|#1| (-377 (-517)) (-990)) . T))
(|has| |#1| (-132))
(((|#1|) . T))
(|has| |#1| (-509))
@@ -940,111 +940,111 @@
((((-111 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-134))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
-((((-814 (-517))) . T) (((-814 (-349))) . T) (((-493)) . T) (((-1074)) . T))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-815 (-517))) . T) (((-815 (-349))) . T) (((-493)) . T) (((-1075)) . T))
((((-787)) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
((($) . T))
((((-787)) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(((|#2|) |has| |#2| (-156)))
-((($) -3782 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
((((-794 |#1|)) . T))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
-(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
-(|has| |#2| (-1050))
-((((-51)) . T) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-962)))
+(|has| |#2| (-1051))
+(((#0=(-51)) . T) (((-2 (|:| -2581 (-1075)) (|:| -1860 #0#))) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-(((|#1| (-517) (-989)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| (-377 (-517)) (-989)) . T))
-((($) -3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
+(((|#1| (-517) (-990)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| (-377 (-517)) (-990)) . T))
+((($) -3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-338))
(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
((((-787)) . T))
-((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(((|#1|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
(|has| |#1| (-319))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(|has| |#1| (-509))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
((((-377 (-517))) . T) (((-517)) . T))
((((-517)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
((($) . T))
((((-787)) . T))
(((|#1|) . T))
((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
-(((|#3| |#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
-(|has| |#1| (-937))
+(((|#3| |#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))) (($ $) |has| |#3| (-156)))
+(|has| |#1| (-938))
((((-787)) . T))
-(((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+(((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))) (($) |has| |#3| (-156)))
((((-517) (-107)) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
-((((-1074) $) |has| |#1| (-478 (-1074) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)))
-((((-1074)) |has| |#1| (-822 (-1074))))
-(-3782 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
-((((-358) (-1021)) . T))
+((((-1075) $) |has| |#1| (-478 (-1075) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)))
+((((-1075)) |has| |#1| (-823 (-1075))))
+(-3745 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
+((((-358) (-1022)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-358) |#1|) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(|has| |#1| (-1003))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1004))
((((-787)) . T))
((((-787)) . T))
-((((-832 |#1|)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-833 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-((((-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
+(((#0=(-794 |#1|)) |has| #0# (-280 #0#)))
(((|#1| |#2|) . T))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(((|#1|) . T))
(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(|has| |#1| (-1095))
-((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(|has| |#1| (-1096))
+(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#4|) |has| |#4| (-961)))
-(((|#3|) |has| |#3| (-961)))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#4|) |has| |#4| (-962)))
+(((|#3|) |has| |#3| (-962)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(|has| |#1| (-333))
((((-517)) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((($ $) . T) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1059,27 +1059,27 @@
(((|#1| |#2|) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(((#0=(-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) #0#) |has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))))
((($) . T))
(|has| |#2| (-779))
((($) . T))
-(((|#2|) |has| |#2| (-1003)))
-((((-787)) -3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
+(((|#2|) |has| |#2| (-1004)))
+((((-787)) -3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004))) (((-1156 |#2|)) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-1057) (-51)) . T))
+((((-1058) (-51)) . T))
(|has| |#1| (-779))
((((-787)) . T))
-((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
+((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T))
((((-517) (-131)) . T))
-((((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((|#1| |#2|) . T))
((((-377 (-517))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-787)) . T))
-((((-832 |#1|)) . T))
+((((-833 |#1|)) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
@@ -1089,44 +1089,44 @@
(|has| |#1| (-777))
(((|#1|) . T) (($) . T))
(|has| |#1| (-777))
-((((-1074)) |has| |#1| (-822 (-1074))))
-(((|#1| (-1074)) . T))
-(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
+((((-1075)) |has| |#1| (-823 (-1075))))
+(((|#1| (-1075)) . T))
+(((|#1| (-1156 |#1|) (-1156 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1003))
-(((|#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) . T))
-((((-377 (-874 |#1|))) . T))
+(|has| |#1| (-1004))
+(((|#1| (-1075) (-750 (-1075)) (-489 (-750 (-1075)))) . T))
+((((-377 (-875 |#1|))) . T))
((((-493)) . T))
((((-787)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-156)))
-((((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-156)))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
+((((-493)) |has| |#1| (-558 (-493))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
((((-787)) . T))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(|has| |#2| (-777))
-(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-962)))
(|has| |#1| (-509))
-(|has| |#1| (-1050))
-((((-1057) |#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
-((((-377 (-517))) |has| |#1| (-952 (-517))) (((-517)) |has| |#1| (-952 (-517))) (((-1074)) |has| |#1| (-952 (-1074))) ((|#1|) . T))
+(|has| |#1| (-1051))
+((((-1058) |#1|) . T))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-377 (-517))) |has| |#1| (-953 (-517))) (((-517)) |has| |#1| (-953 (-517))) (((-1075)) |has| |#1| (-953 (-1075))) ((|#1|) . T))
((((-517) |#2|) . T))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
-((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
+((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1|) . T))
((((-583 |#4|)) . T) (((-787)) . T))
((((-493)) |has| |#4| (-558 (-493))))
@@ -1138,21 +1138,21 @@
((((-493)) |has| |#4| (-558 (-493))))
(((|#1|) . T))
(((|#2|) . T))
-((((-1074)) |has| (-377 |#2|) (-822 (-1074))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+((((-1075)) |has| (-377 |#2|) (-823 (-1075))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-787)) -3782 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) (((-1154 |#3|)) . T))
+((((-787)) -3745 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)) (|has| |#3| (-1004))) (((-1156 |#3|)) . T))
((((-517) |#2|) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
-(((|#2| |#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
+(((|#2| |#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($ $) |has| |#2| (-156)))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((|#2|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1057) (-1074) (-517) (-199) (-787)) . T))
+((((-1058) (-1075) (-517) (-199) (-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
@@ -1184,11 +1184,11 @@
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-962))) (($) |has| |#2| (-156)))
(|has| $ (-134))
((((-377 |#2|)) . T))
-((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
+((((-377 (-517))) |has| #0=(-377 |#2|) (-953 (-377 (-517)))) (((-517)) |has| #0# (-953 (-517))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-156)))
(|has| |#2| (-132))
@@ -1196,19 +1196,19 @@
(((|#3|) |has| |#3| (-156)))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-207))
-((((-1074) (-51)) . T))
+((((-1075) (-51)) . T))
((((-787)) . T))
(((|#1| |#1|) . T))
-((((-1074)) |has| |#2| (-822 (-1074))))
+((((-1075)) |has| |#2| (-823 (-1075))))
((((-517) (-107)) . T))
(|has| |#1| (-509))
(((|#2|) . T))
@@ -1224,44 +1224,44 @@
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
((((-787)) . T))
-((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
-((((-915 |#1|)) . T) ((|#1|) . T))
+((((-916 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1070 |#1|)) . T))
+(((|#1| (-1071 |#1|)) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-779))
(((|#2|) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
((((-517) |#2|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#2|) . T))
((((-517) |#3|) . T))
(((|#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
-(|has| |#1| (-1003))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(|has| |#1| (-1004))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-333))
-(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
+(((|#2|) . T) (((-517)) |has| |#2| (-953 (-517))) (((-377 (-517))) |has| |#2| (-953 (-377 (-517)))))
(((|#2|) . T))
-((((-1057) (-51)) . T))
+((((-1058) (-51)) . T))
(((|#2|) |has| |#2| (-156)))
((((-517) |#3|) . T))
((((-517) (-131)) . T))
@@ -1273,7 +1273,7 @@
(|has| |#1| (-132))
((($) . T))
(|has| |#1| (-509))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((($) . T))
(((|#1|) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
@@ -1281,62 +1281,62 @@
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
-((((-1057) (-51)) . T))
+((((-1058) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| |#2|) . T))
((((-517) (-131)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(|has| |#1| (-779))
-(((|#2| (-703) (-989)) . T))
+(((|#2| (-703) (-990)) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
(|has| |#1| (-723))
(((|#1|) |has| |#1| (-156)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
-(-3782 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
+(-3745 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
+(-3745 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
(((|#4|) . T))
(|has| |#1| (-132))
-((((-1057) |#1|) . T))
+((((-1058) |#1|) . T))
(|has| |#1| (-134))
(((|#1|) . T))
((((-517)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#3|) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))) (((-879 |#1|)) . T))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))) (((-880 |#1|)) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(|has| |#2| (-333))
(((|#1|) |has| |#1| (-156)))
-(((|#2|) |has| |#2| (-961)))
-((((-1057) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
-(((|#2| (-815 |#1|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1058) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
+(((|#2| (-816 |#1|)) . T))
((($) . T))
-((((-358) (-1057)) . T))
+((((-358) (-1058)) . T))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1154 |#2|)) . T))
-((((-51)) . T) (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) . T))
+((((-787)) -3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004))) (((-1156 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2581 (-1058)) (|:| -1860 #0#))) . T))
(((|#1|) . T))
((((-787)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
((((-131)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(|has| |#1| (-442))
-(-3782 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
(|has| |#1| (-333))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
@@ -1345,18 +1345,18 @@
(|has| |#1| (-777))
(|has| |#1| (-777))
((((-787)) . T))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1074)) |has| |#1| (-822 (-1074))))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1075)) |has| |#1| (-823 (-1075))))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
-(|has| |#1| (-1003))
-(((|#2| (-450 (-2290 |#1|) (-703)) (-789 |#1|)) . T))
-((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
-(((|#1| (-489 (-1074)) (-1074)) . T))
+(|has| |#1| (-1004))
+(((|#2| (-450 (-3533 |#1|) (-703)) (-789 |#1|)) . T))
+((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#))
+(((|#1| (-489 (-1075)) (-1075)) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -1374,45 +1374,45 @@
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-1074) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-1075) (-51)) . T))
((($ $) . T))
(((|#1| (-517)) . T))
-((((-832 |#1|)) . T))
-(((|#1|) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))) (($) -3782 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961))))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-833 |#1|)) . T))
+(((|#1|) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-962))) (($) -3745 (|has| |#1| (-823 (-1075))) (|has| |#1| (-962))))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
(|has| |#1| (-779))
(|has| |#1| (-779))
((((-517) |#2|) . T))
((((-517)) . T))
-((((-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1148 |#1| |#2| |#3|)) -12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(|has| |#1| (-779))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1| |#2|) . T))
-((((-377 (-874 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+((((-377 (-875 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
(((|#1|) |has| |#1| (-156)))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#2| (-779))
(|has| |#1| (-779))
-(-3782 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-831)))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(-3745 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-832)))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
((((-517) |#2|) . T))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333))))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333))))
(|has| |#1| (-319))
-(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
((($) . T) (((-377 (-517))) . T))
((((-517) (-107)) . T))
(|has| |#1| (-752))
(|has| |#1| (-752))
(((|#1|) . T))
-(-3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-777))
(|has| |#1| (-777))
(|has| |#1| (-777))
@@ -1421,15 +1421,15 @@
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-1075)) |has| |#1| (-823 (-1075))) (((-990)) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(|has| |#1| (-1003))
+(((#0=(-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) #0#) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(|has| |#1| (-1004))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1440,12 +1440,12 @@
(((|#1|) . T))
(((|#1| (-489 |#2|) |#2|) . T))
((((-787)) . T))
-(((|#1| (-703) (-989)) . T))
+(((|#1| (-703) (-990)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-131)) . T))
(((|#2|) |has| |#2| (-156)))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
(((|#1|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1455,110 +1455,110 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) . T))
-(((|#1| (-1070 |#1|)) . T))
-((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+(((|#1| (-1071 |#1|)) . T))
+((((-990)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
((($) . T) ((|#1|) . T) (((-377 (-517))) . T))
(((|#2|) . T))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) |has| |#1| (-777)))
-(|has| |#1| (-831))
+(|has| |#1| (-832))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((#0=(-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) #0#) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333))))
(|has| |#1| (-779))
(|has| |#1| (-509))
((((-530 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((((-832 |#1|)) . T))
+(-3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-833 |#1|)) . T))
(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-703)) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-608 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-493)) . T))
((((-787)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#2|) . T))
-(-3782 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
-(|has| |#1| (-1095))
-(|has| |#1| (-1095))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
-(|has| |#1| (-1095))
-(|has| |#1| (-1095))
+(-3745 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)) (|has| |#3| (-1004)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
+(|has| |#1| (-1096))
+(|has| |#1| (-1096))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
+(|has| |#1| (-1096))
+(|has| |#1| (-1096))
(((|#3| |#3|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T) (((-377 |#1|) (-377 |#1|)) . T) ((|#1| |#1|) . T))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-377 |#1|) #1#) . T) ((|#1| |#1|) . T))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T))
((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((((-1057) (-51)) . T))
-(|has| |#1| (-1003))
-(-3782 (|has| |#2| (-752)) (|has| |#2| (-779)))
+((((-1058) (-51)) . T))
+(|has| |#1| (-1004))
+(-3745 (|has| |#2| (-752)) (|has| |#2| (-779)))
(((|#1|) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
((($) . T))
-((((-1072 |#1| |#2| |#3|)) -12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-1073 |#1| |#2| |#3|)) -12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))))
((((-787)) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
((($) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
-(|has| |#2| (-831))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
+(|has| |#2| (-832))
(|has| |#1| (-333))
-(((|#2|) |has| |#2| (-1003)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2|) |has| |#2| (-1004)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((($) . T) ((|#2|) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
-((((-493)) . T) (((-377 (-1070 (-517)))) . T) (((-199)) . T) (((-349)) . T))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+((((-493)) . T) (((-377 (-1071 (-517)))) . T) (((-199)) . T) (((-349)) . T))
((((-349)) . T) (((-199)) . T) (((-787)) . T))
-(|has| |#1| (-831))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-832))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
((($ $) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((($ $) . T))
((((-517) (-107)) . T))
((($) . T))
(((|#1|) . T))
((((-517)) . T))
((((-107)) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| (-517)) . T))
((($) . T))
@@ -1567,117 +1567,117 @@
(((|#1|) . T))
((((-517)) . T))
(((|#1| |#2|) . T))
-((((-1074)) |has| |#1| (-961)))
+((((-1075)) |has| |#1| (-962)))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
((((-787)) . T))
(((|#1| (-517)) . T))
-(((|#1| (-1147 |#1| |#2| |#3|)) . T))
+(((|#1| (-1148 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1119 |#1| |#2| |#3|)) . T))
+(((|#1| (-1120 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-787)) . T))
-(|has| |#1| (-1003))
-((((-1057) |#1|) . T))
+(|has| |#1| (-1004))
+((((-1058) |#1|) . T))
((($) . T))
(|has| |#2| (-134))
(|has| |#2| (-132))
-(((|#1| (-489 (-750 (-1074))) (-750 (-1074))) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-961)))
+(((|#1| (-489 (-750 (-1075))) (-750 (-1075))) . T))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-962)))
((((-517) (-107)) . T))
-((((-787)) |has| |#1| (-1003)))
+((((-787)) |has| |#1| (-1004)))
(|has| |#2| (-156))
((((-517)) . T))
(|has| |#2| (-777))
(((|#1|) . T))
((((-517)) . T))
((((-787)) . T))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-319)))
((((-787)) . T))
(|has| |#1| (-134))
(((|#3|) . T))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
((((-787)) . T))
-((((-1140 |#2| |#3| |#4|)) . T) (((-1141 |#1| |#2| |#3| |#4|)) . T))
+((((-1141 |#2| |#3| |#4|)) . T) (((-1142 |#1| |#2| |#3| |#4|)) . T))
((((-787)) . T))
-((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) -3782 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))) (((-377 (-874 |#1|))) |has| |#1| (-509)) (((-874 |#1|)) |has| |#1| (-961)) (((-1074)) . T))
+((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) -3745 (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517)))) (|has| |#1| (-953 (-377 (-517))))) (((-377 (-875 |#1|))) |has| |#1| (-509)) (((-875 |#1|)) |has| |#1| (-962)) (((-1075)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-703)) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-280 |#1|)))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
-((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
+((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
(((|#1|) . T))
(|has| |#1| (-509))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(((|#1|) |has| |#1| (-156)))
((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1003)))
-(((|#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-333))))
-((((-1140 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1004)))
+(((|#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-1141 |#2| |#3| |#4|)) . T))
((((-107)) . T))
(|has| |#1| (-752))
(|has| |#1| (-752))
-(((|#1| (-517) (-989)) . T))
+(((|#1| (-517) (-990)) . T))
((($) |has| |#1| (-280 $)) ((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-777))
(|has| |#1| (-777))
-(((|#1| (-517) (-989)) . T))
-(-3782 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-(((|#1| (-377 (-517)) (-989)) . T))
-(((|#1| (-703) (-989)) . T))
+(((|#1| (-517) (-990)) . T))
+(-3745 (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+(((|#1| (-377 (-517)) (-990)) . T))
+(((|#1| (-703) (-990)) . T))
(|has| |#1| (-779))
-((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(((|#2|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-1003))
-((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
+((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-1004))
(((|#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333)))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
((((-787)) . T))
(|has| |#3| (-777))
((((-787)) . T))
-((((-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
((((-787)) . T))
-(((|#1| |#1|) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#1| |#1|) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-962))))
(((|#1|) . T))
((((-517)) . T))
((((-517)) . T))
-(((|#1|) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#1|) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-962))))
(((|#2|) |has| |#2| (-333)))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
(|has| |#1| (-779))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-831)))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) |has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-832)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
(|has| |#1| (-37 (-377 (-517))))
((((-517)) . T) (($) . T) (((-377 (-517))) . T))
@@ -1686,13 +1686,13 @@
(((|#1|) . T))
(((|#1| (-517)) . T))
(|has| |#1| (-777))
-(((|#1| (-1072 |#1| |#2| |#3|)) . T))
+(((|#1| (-1073 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| (-377 (-517))) . T))
-(((|#1| (-1065 |#1| |#2| |#3|)) . T))
+(((|#1| (-1066 |#1| |#2| |#3|)) . T))
(((|#1| (-703)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
@@ -1707,25 +1707,25 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-787)) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| (-377 |#2|) (-207))
-(|has| |#1| (-831))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(|has| |#1| (-832))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
(|has| |#1| (-333))
(((|#1|) |has| |#1| (-156)))
(((|#1| |#1|) . T))
((((-794 |#1|)) . T))
((((-787)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1003)))
+(((|#2|) |has| |#2| (-1004)))
(|has| |#2| (-779))
(((|#1|) . T))
((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
@@ -1735,15 +1735,15 @@
(|has| |#1| (-779))
((((-787)) . T))
(((|#1| (-489 |#2|) |#2|) . T))
-(((|#1| (-517) (-989)) . T))
-((((-832 |#1|)) . T))
+(((|#1| (-517) (-990)) . T))
+((((-833 |#1|)) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-377 (-517)) (-989)) . T))
-(((|#1| (-703) (-989)) . T))
-((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-(((|#1|) . T) (((-517)) -3782 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) . T))
+(((|#1| (-377 (-517)) (-990)) . T))
+(((|#1| (-703) (-990)) . T))
+(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-517)) -3745 (|has| (-377 (-517)) (-953 (-517))) (|has| |#1| (-953 (-517)))) (((-377 (-517))) . T))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
@@ -1762,41 +1762,41 @@
((((-632)) . T))
(((|#2|) |has| |#2| (-156)))
(|has| |#2| (-777))
-((((-107)) |has| |#1| (-1003)) (((-787)) -3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))))
+((((-107)) |has| |#1| (-1004)) (((-787)) -3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)) (|has| |#1| (-1016)) (|has| |#1| (-1004))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) . T))
((((-787)) . T))
((((-517) |#1|) . T))
((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T))
(((|#1| |#1|) |has| |#1| (-156)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
((((-349)) . T))
((((-632)) . T))
-((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
+((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#))
(((|#1|) |has| |#1| (-156)))
-((((-377 (-874 |#1|))) . T))
+((((-377 (-875 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#2|) . T))
(|has| |#2| (-779))
-(((|#3|) |has| |#3| (-961)))
-(|has| |#2| (-831))
-(|has| |#1| (-831))
+(((|#3|) |has| |#3| (-962)))
+(|has| |#2| (-832))
+(|has| |#1| (-832))
(|has| |#1| (-333))
(|has| |#1| (-779))
-((((-1074)) |has| |#2| (-822 (-1074))))
+((((-1075)) |has| |#2| (-823 (-1075))))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-377 (-517))) . T) (($) . T))
(|has| |#1| (-442))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-338))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-962)) (|has| |#1| (-1016)))
(|has| |#1| (-37 (-377 (-517))))
((((-111 |#1|)) . T))
((((-111 |#1|)) . T))
@@ -1817,17 +1817,17 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-779))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
(((|#2|) . T))
(((|#3|) . T))
((((-111 |#1|)) . T))
(|has| |#1| (-338))
(|has| |#1| (-779))
-(((|#2|) . T) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+(((|#2|) . T) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
((((-111 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) . T))
@@ -1836,44 +1836,44 @@
(|has| |#1| (-333))
((((-787)) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-349)) |has| |#1| (-937)) (((-199)) |has| |#1| (-937)))
+((((-493)) |has| |#1| (-558 (-493))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))) (((-349)) . #0=(|has| |#1| (-938))) (((-199)) . #0#))
(((|#1|) |has| |#1| (-333)))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((($ $) . T) (((-556 $) $) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((($) . T) (((-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
-((($) -3782 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((($) . T) (((-1142 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
+((($) -3745 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
((((-349)) . T) (((-517)) . T) (((-377 (-517))) . T))
((((-583 (-712 |#1| (-789 |#2|)))) . T) (((-787)) . T))
((((-493)) |has| (-712 |#1| (-789 |#2|)) (-558 (-493))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-349)) . T))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
((((-787)) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-832)))
(((|#1|) . T))
(|has| |#1| (-779))
(|has| |#1| (-779))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-(|has| |#1| (-1003))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
+(|has| |#1| (-1004))
((((-787)) . T))
((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
((((-517)) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-((((-1140 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))) (($) . T))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(((#0=(-1141 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))) (($) . T))
((((-517)) . T))
(|has| |#1| (-333))
-(-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-333))
(|has| |#1| (-132))
(|has| |#1| (-134))
@@ -1886,39 +1886,39 @@
((((-787)) . T))
((((-517)) |has| |#2| (-579 (-517))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(((|#3|) |has| |#3| (-156)))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
((((-517)) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517)) (-377 (-517))) |has| |#1| (-333)))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-262)) (|has| |#1| (-333))) ((#0=(-377 (-517)) #0#) |has| |#1| (-333)))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
((($) . T))
((((-517) |#1|) . T))
-((((-1074)) |has| (-377 |#2|) (-822 (-1074))))
-(((|#1|) . T) (($) -3782 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
+((((-1075)) |has| (-377 |#2|) (-823 (-1075))))
+(((|#1|) . T) (($) -3745 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
((((-493)) |has| |#2| (-558 (-493))))
((((-623 |#2|)) . T) (((-787)) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
((((-794 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3782 (|has| |#4| (-725)) (|has| |#4| (-777)))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(-3745 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#2|) |has| |#2| (-961)))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#2|) |has| |#2| (-962)))
(((|#1|) . T))
((((-377 |#2|)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))
((((-517) |#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -1926,18 +1926,18 @@
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
((((-377 (-517))) . T) (($) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-1113)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-1114)))
((($) . T))
-((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
+((((-377 (-517))) |has| #0=(-377 |#2|) (-953 (-377 (-517)))) (((-517)) |has| #0# (-953 (-517))) ((#0#) . T))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| (-703)) . T))
(|has| |#1| (-779))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-517)) . T))
(|has| |#1| (-37 (-377 (-517))))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(|has| |#1| (-777))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
@@ -1961,53 +1961,53 @@
(((|#1| |#2|) . T))
((((-131)) . T))
((((-712 |#1| (-789 |#2|))) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(|has| |#1| (-1095))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+(|has| |#1| (-1096))
(((|#1|) . T))
-(-3782 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
-((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)))
+(-3745 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)) (|has| |#3| (-1004)))
+((((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)))
(((|#2|) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-832 |#1|)) . T))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-833 |#1|)) . T))
((($) . T))
-((((-377 (-874 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-377 (-875 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-493)) |has| |#4| (-558 (-493))))
((((-787)) . T) (((-583 |#4|)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-777))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) |has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))))
-(|has| |#1| (-1003))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) |has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))))
+(|has| |#1| (-1004))
(|has| |#1| (-333))
(|has| |#1| (-779))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-377 (-517))) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
-(-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-777))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1003))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1004))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T) (((-517)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1003))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1004))
(((|#2|) |has| |#2| (-156)))
(((|#2|) . T))
(((|#1| |#1|) . T))
@@ -2018,37 +2018,37 @@
((((-787)) . T))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
-(((|#1|) -3782 (|has| |#1| (-156)) (|has| |#1| (-333))))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(((|#1|) -3745 (|has| |#1| (-156)) (|has| |#1| (-333))))
((((-286 |#1|)) . T))
(((|#2|) |has| |#2| (-333)))
(((|#2|) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((#0=(-712 |#1| (-789 |#2|)) #0#) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
((((-789 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#2|) . T))
-((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
-((((-1074)) |has| |#1| (-822 (-1074))) (((-993 (-1074))) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1075)) |has| |#1| (-823 (-1075))) (((-990)) . T))
+((((-1075)) |has| |#1| (-823 (-1075))) (((-994 (-1075))) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(|has| |#1| (-37 (-377 (-517))))
-(((|#4|) |has| |#4| (-961)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))
-(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))
+(((|#4|) |has| |#4| (-962)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-962))))
+(((|#3|) |has| |#3| (-962)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962))))
(|has| |#1| (-132))
(|has| |#1| (-134))
((($ $) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)) (|has| |#1| (-1016)) (|has| |#1| (-1004)))
(|has| |#1| (-509))
(((|#2|) . T))
((((-517)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
((((-530 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
@@ -2056,34 +2056,34 @@
((($) . T))
(((|#1|) . T))
((((-787)) . T))
-(((|#2|) |has| |#2| (-6 (-4185 "*"))))
+(((|#2|) |has| |#2| (-6 (-4192 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-953 (-377 (-517)))) (((-517)) |has| |#2| (-953 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T))
-((((-1026 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-1070 |#1|)) . T) (((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-1026 |#1| (-1074))) . T) (((-993 (-1074))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1074)) . T))
-(|has| |#1| (-1003))
+((((-1027 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+((((-1071 |#1|)) . T) (((-990)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+((((-1027 |#1| (-1075))) . T) (((-994 (-1075))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-1075)) . T))
+(|has| |#1| (-1004))
((($) . T))
-(|has| |#1| (-1003))
-((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))))
+(|has| |#1| (-1004))
+((((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))) (((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349)))))
(((|#1| |#2|) . T))
-((((-1074) |#1|) . T))
+((((-1075) |#1|) . T))
(((|#4|) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-1074) (-51)) . T))
-((((-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
-((((-787)) . T))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
-((((-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-156)) (((-377 (-517)) (-377 (-517))) |has| |#1| (-509)) (($ $) |has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-1075) (-51)) . T))
+((((-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T))
+((((-787)) . T))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)) (|has| |#2| (-1004)))
+(((#0=(-1142 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-156)) ((#0=(-377 (-517)) #0#) |has| |#1| (-509)) (($ $) |has| |#1| (-509)))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
-((((-1141 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1142 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-132))
@@ -2092,34 +2092,34 @@
(|has| |#1| (-132))
((((-377 (-517))) . T) (($) . T))
(((|#3|) |has| |#3| (-333)))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-((((-1074)) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
+((((-1075)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
(((|#2| |#3|) . T))
-(-3782 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
-(((|#1| (-489 (-993 (-1074)))) . T))
+(((|#1| (-489 (-994 (-1075)))) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(|has| |#2| (-831))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(|has| |#2| (-832))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-787)) . T))
-((($ $) . T) (((-1140 |#2| |#3| |#4|) (-1140 |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
-((((-832 |#1|)) . T))
+((($ $) . T) ((#0=(-1141 |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) |has| #0# (-37 (-377 (-517)))))
+((((-833 |#1|)) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
(|has| |#1| (-333))
-((($) . T) (((-1140 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($) . T) ((#0=(-1141 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
-(-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3782 (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)))
((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
@@ -2136,10 +2136,10 @@
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#2| (-752))
(((|#4|) . T))
@@ -2147,37 +2147,37 @@
((($ $) . T))
((($) . T))
((((-787)) . T))
-(((|#1| (-489 (-1074))) . T))
+(((|#1| (-489 (-1075))) . T))
(((|#1|) |has| |#1| (-156)))
((((-787)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
-(((|#2|) -3782 (|has| |#2| (-6 (-4185 "*"))) (|has| |#2| (-156))))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
+(((|#2|) -3745 (|has| |#2| (-6 (-4192 "*"))) (|has| |#2| (-156))))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(|has| |#2| (-779))
-(|has| |#2| (-831))
-(|has| |#1| (-831))
+(|has| |#2| (-832))
+(|has| |#1| (-832))
(((|#2|) |has| |#2| (-156)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
((((-787)) . T))
-((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-262)) (|has| |#1| (-333)))
+(-3745 (|has| |#1| (-262)) (|has| |#1| (-333)))
((((-131)) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
(|has| |#1| (-777))
((((-787)) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2186,19 +2186,19 @@
((((-377 (-517))) . T) (($) . T))
((((-787)) . T))
((((-787)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
-((((-1074) (-51)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-815 (-517))) |has| |#1| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#1| (-558 (-815 (-349)))))
+((((-1075) (-51)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-583 (-131))) . T) (((-1057)) . T))
+((((-583 (-131))) . T) (((-1058)) . T))
((((-787)) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
-((((-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
+((((-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-779))
((((-787)) . T))
((((-493)) |has| |#1| (-558 (-493))))
@@ -2208,83 +2208,83 @@
((((-493)) |has| |#4| (-558 (-493))))
((((-787)) . T) (((-583 |#4|)) . T))
(((|#2|) . T))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3782 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-((((-1074) (-51)) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(-3745 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-962)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
+((((-1075) (-51)) . T))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
(((|#2|) . T))
(((|#1|) . T))
((((-787)) . T))
((((-517)) . T))
-((((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#1| (-377 (-517)) (-989)) . T))
-(|has| |#1| (-1003))
+(((|#1| (-377 (-517)) (-990)) . T))
+(|has| |#1| (-1004))
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(|has| |#1| (-752))
-((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
((((-377 |#2|)) . T))
(|has| |#1| (-777))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (((-517) (-517)) . T) (($ $) . T))
-((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-517) #1#) . T) (($ $) . T))
+((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(((|#2|) |has| |#2| (-962)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962))))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
(((|#2|) . T))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
-((((-51)) . T) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2581 (-1075)) (|:| -1860 #0#))) . T))
(|has| |#1| (-319))
((((-517)) . T))
((((-787)) . T))
-((((-1141 |#1| |#2| |#3| |#4|) $) |has| (-1141 |#1| |#2| |#3| |#4|) (-258 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))))
+(((#0=(-1142 |#1| |#2| |#3| |#4|) $) |has| #0# (-258 #0# #0#)))
(|has| |#1| (-333))
-((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-377 (-517)) (-377 (-517))) . T) (((-632) (-632)) . T) (($ $) . T))
+(((#0=(-990) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(((#0=(-377 (-517)) #0#) . T) ((#1=(-632) #1#) . T) (($ $) . T))
((((-286 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1|) . T))
-(((|#1|) -3782 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
-(((|#1|) -3782 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3745 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3745 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
(((|#2|) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-207))
((((-789 |#1|)) . T))
-((((-1074)) |has| |#1| (-822 (-1074))) ((|#3|) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-937)))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1075)) |has| |#1| (-823 (-1075))) ((|#3|) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-938)))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
((((-787)) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
((((-517)) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
((((-517)) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2292,13 +2292,13 @@
((($) . T) (((-377 (-517))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
+(((|#1| (-1156 |#1|) (-1156 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-787)) . T))
((((-787)) . T))
-((((-111 |#1|) (-111 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
-((((-1026 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((|#2|) . T))
+(((#0=(-111 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+((((-377 (-517))) |has| |#2| (-953 (-377 (-517)))) (((-517)) |has| |#2| (-953 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-1027 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2306,7 +2306,7 @@
((((-608 |#1|)) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((((-111 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))))
+((((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) (((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))))
(((|#2|) . T) ((|#6|) . T))
(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
((((-131)) . T))
@@ -2314,44 +2314,44 @@
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-(|has| |#2| (-831))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
+(|has| |#2| (-832))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
(((|#4|) . T))
-(|has| |#2| (-937))
+(|has| |#2| (-938))
((($) . T))
-(|has| |#1| (-831))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(|has| |#1| (-832))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-333))
-((((-832 |#1|)) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(-3782 (|has| |#1| (-338)) (|has| |#1| (-779)))
+((((-833 |#1|)) . T))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(-3745 (|has| |#1| (-338)) (|has| |#1| (-779)))
(((|#1|) . T))
((((-787)) . T))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))))
((((-377 |#2|) |#3|) . T))
((($) . T) (((-377 (-517))) . T))
((((-703) |#1|) . T))
-(((|#2| (-214 (-2290 |#1|) (-703))) . T))
+(((|#2| (-214 (-3533 |#1|) (-703))) . T))
(((|#1| (-489 |#3|)) . T))
((((-377 (-517))) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((((-787)) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))))
-(|has| |#1| (-831))
+(((#0=(-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) #0#) |has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))))
+(|has| |#1| (-832))
(|has| |#2| (-333))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
(((|#1|) . T))
((((-349)) . T) (((-517)) . T))
-((((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
@@ -2363,13 +2363,13 @@
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-37 (-377 (-517))))
(-12 (|has| |#1| (-502)) (|has| |#1| (-760)))
((((-787)) . T))
-((((-1074)) -3782 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1074))))))
+((((-1075)) -3745 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-823 (-1075))))))
(|has| |#1| (-333))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))))
(|has| |#1| (-333))
((((-377 (-517))) . T) (($) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
@@ -2377,54 +2377,54 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-333)))
(((|#2|) |has| |#1| (-333)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(((|#2|) . T) (((-1074)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1074)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))))
+(((|#2|) . T) (((-1075)) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-1075)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-517)))))
(((|#2|) . T))
-((((-1074) (-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|))) (((-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|))))
+((((-1075) #0=(-1142 |#1| |#2| |#3| |#4|)) |has| #0# (-478 (-1075) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
((((-556 $) $) . T) (($ $) . T))
-((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1070 (-632))) . T) (((-814 (-349))) . T))
+((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1071 (-632))) . T) (((-815 (-349))) . T))
((((-787)) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
(|has| (-377 |#2|) (-207))
(((|#1| (-377 (-517))) . T))
((($ $) . T))
-((((-1074)) |has| |#2| (-822 (-1074))))
+((((-1075)) |has| |#2| (-823 (-1075))))
((($) . T))
((((-787)) . T))
((((-377 (-517))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#2|) |has| |#1| (-333)))
-((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))))
+((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-517)))))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
(|has| |#1| (-333))
(|has| |#1| (-509))
-(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
(((|#3|) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#2|) . T))
(((|#2|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(|has| |#1| (-37 (-377 (-517))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-((((-1057) |#1|) . T))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-1058) |#1|) . T))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
((((-530 |#1|)) . T))
((($) . T))
@@ -2432,75 +2432,75 @@
(|has| |#1| (-509))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-319)))
(|has| |#1| (-134))
((((-787)) . T))
((($) . T))
-((((-377 (-517))) |has| |#2| (-952 (-517))) (((-517)) |has| |#2| (-952 (-517))) (((-1074)) |has| |#2| (-952 (-1074))) ((|#2|) . T))
-((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
-((((-1039 |#1| |#2|)) . T))
+((((-377 (-517))) |has| |#2| (-953 (-517))) (((-517)) |has| |#2| (-953 (-517))) (((-1075)) |has| |#2| (-953 (-1075))) ((|#2|) . T))
+(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T))
+((((-1040 |#1| |#2|)) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
-((((-517)) |has| |#2| (-808 (-517))) (((-349)) |has| |#2| (-808 (-349))))
+((((-517)) |has| |#2| (-809 (-517))) (((-349)) |has| |#2| (-809 (-349))))
(((|#2|) . T))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-107)) . T))
(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#2|) . T))
((((-787)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1074) (-51)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((((-1075) (-51)) . T))
((((-377 |#2|)) . T))
((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(|has| |#1| (-723))
(|has| |#1| (-723))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-109)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+((((-199)) . T) (((-349)) . T) (((-815 (-349))) . T))
((((-787)) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1142 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
((((-787)) . T))
(((|#2|) . T))
((((-787)) . T))
-((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((#0=(-833 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-833 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-333))
(((|#2|) . T))
((((-517)) . T))
((((-517)) . T))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
((((-787)) . T))
((((-787)) . T))
-((((-1057)) . T) (((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-1058)) . T) (((-493)) . T) (((-517)) . T) (((-815 (-517))) . T) (((-349)) . T) (((-199)) . T))
((((-787)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((($) . T) (((-1140 |#2| |#3| |#4|)) |has| (-1140 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((($) . T) ((#0=(-1141 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1074))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
-(|has| |#1| (-1050))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-823 (-1075))) (|has| |#1| (-962)) (|has| |#1| (-1016)) (|has| |#1| (-1004)))
+(|has| |#1| (-1051))
((((-517) |#1|) . T))
(((|#1|) . T))
-((((-111 |#1|) $) |has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))
+(((#0=(-111 |#1|) $) |has| #0# (-258 #0# #0#)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
((((-109)) . T) ((|#1|) . T))
((((-787)) . T))
(((|#1| |#2|) . T))
-((((-1074) |#1|) . T))
+((((-1075) |#1|) . T))
(((|#1|) |has| |#1| (-280 |#1|)))
((((-517) |#1|) . T))
(((|#1|) . T))
@@ -2508,32 +2508,32 @@
(((|#1|) . T))
(|has| |#1| (-509))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
((((-349)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-509))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-831))
+(|has| |#2| (-832))
(((|#1|) . T))
(((|#1| (-489 |#2|)) . T))
(((|#1| (-703)) . T))
(|has| |#1| (-207))
-(((|#1| (-489 (-993 (-1074)))) . T))
+(((|#1| (-489 (-994 (-1075)))) . T))
(|has| |#2| (-333))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
((((-787)) . T))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
@@ -2542,110 +2542,110 @@
((((-517)) . T))
(((|#3|) . T))
((((-787)) . T))
-(-3782 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3782 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
-((((-530 |#1|) (-530 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(-3745 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-962)))
+(((#0=(-530 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#1|) |has| |#1| (-156)))
-(((|#1| (-1154 |#1|) (-1154 |#1|)) . T))
+(((|#1| (-1156 |#1|) (-1156 |#1|)) . T))
((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
((($) . T) (((-377 (-517))) . T))
-(((|#2|) |has| |#2| (-6 (-4185 "*"))))
+(((|#2|) |has| |#2| (-6 (-4192 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((((-265 |#3|)) . T))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#2| (-831))
-(|has| |#1| (-831))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-832))
+(|has| |#1| (-832))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) . T))
+((((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
(((|#1|) . T))
-((((-1074)) . T) ((|#1|) . T))
+((((-1075)) . T) ((|#1|) . T))
((((-787)) . T))
((((-787)) . T))
-(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
-((((-377 (-517)) (-377 (-517))) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))
+(((#0=(-377 (-517)) #0#) . T))
((((-377 (-517))) . T))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#1|) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-962)))
((((-493)) . T))
((((-787)) . T))
-((((-1074)) |has| |#2| (-822 (-1074))) (((-989)) . T))
-((((-1140 |#2| |#3| |#4|)) . T))
-((((-832 |#1|)) . T))
+((((-1075)) |has| |#2| (-823 (-1075))) (((-990)) . T))
+((((-1141 |#2| |#3| |#4|)) . T))
+((((-833 |#1|)) . T))
((($) . T) (((-377 (-517))) . T))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-(|has| |#1| (-1113))
+(|has| |#1| (-1114))
(((|#2|) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-((((-1074)) |has| |#1| (-822 (-1074))))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+((((-1075)) |has| |#1| (-823 (-1075))))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
-(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
-((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(((|#2|) |has| |#2| (-962)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-509))))
(|has| |#1| (-509))
(((|#1|) |has| |#1| (-333)))
((((-517)) . T))
(|has| |#1| (-723))
(|has| |#1| (-723))
-((((-1074) (-111 |#1|)) |has| (-111 |#1|) (-478 (-1074) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
-(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
-((((-989)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
+((((-1075) #0=(-111 |#1|)) |has| #0# (-478 (-1075) #0#)) ((#0# #0#) |has| #0# (-280 #0#)))
+(((|#2|) . T) (((-517)) |has| |#2| (-953 (-517))) (((-377 (-517))) |has| |#2| (-953 (-377 (-517)))))
+((((-990)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-953 (-517))) (((-377 (-517))) |has| |#2| (-953 (-377 (-517)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-517) (-703)) . T) ((|#3| (-703)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-787)) . T))
(|has| |#2| (-752))
(|has| |#2| (-752))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+((((-517)) |has| |#1| (-809 (-517))) (((-349)) |has| |#1| (-809 (-349))))
(((|#1|) . T))
((((-794 |#1|)) . T))
((((-794 |#1|)) . T))
-(-12 (|has| |#1| (-333)) (|has| |#2| (-831)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-832)))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(|has| |#1| (-333))
(|has| |#1| (-333))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
(|has| |#1| (-333))
(((|#2|) . T))
(((|#1|) . T))
@@ -2656,14 +2656,14 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-703)) . T))
-((((-1074)) . T))
+((((-1075)) . T))
((((-794 |#1|)) . T))
-(-3782 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-962)))
((((-787)) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-725)) (|has| |#2| (-777)))
-(-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
+(-3745 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
((((-794 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-338))
@@ -2680,31 +2680,31 @@
(((|#1|) . T))
((((-787)) . T))
((($) . T) ((|#2|) . T) (((-377 (-517))) . T))
-(|has| |#1| (-1003))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#1| (-1004))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-787)) . T))
-(|has| |#2| (-831))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+(|has| |#2| (-832))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
((((-787)) . T))
((((-787)) . T))
-(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))
-((((-1026 |#1| |#2|)) . T) (((-874 |#1|)) |has| |#2| (-558 (-1074))) (((-787)) . T))
-((((-874 |#1|)) |has| |#2| (-558 (-1074))) (((-1057)) -12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1074)))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
-((((-1070 |#1|)) . T) (((-787)) . T))
+(((|#3|) |has| |#3| (-962)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962))))
+((((-1027 |#1| |#2|)) . T) (((-875 |#1|)) |has| |#2| (-558 (-1075))) (((-787)) . T))
+((((-875 |#1|)) |has| |#2| (-558 (-1075))) (((-1058)) -12 (|has| |#1| (-953 (-517))) (|has| |#2| (-558 (-1075)))) (((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517))))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
+((((-1071 |#1|)) . T) (((-787)) . T))
((((-787)) . T))
-((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-953 (-377 (-517)))) (((-517)) |has| |#2| (-953 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) (((-1074)) . T))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T) (((-1075)) . T))
((((-787)) . T))
((((-517)) . T))
((($) . T))
-((((-349)) |has| |#1| (-808 (-349))) (((-517)) |has| |#1| (-808 (-517))))
+((((-349)) |has| |#1| (-809 (-349))) (((-517)) |has| |#1| (-809 (-517))))
((((-517)) . T))
(((|#1|) . T))
((((-787)) . T))
@@ -2721,24 +2721,24 @@
((((-377 (-517))) . T) (($) . T))
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1003))
-(((|#2| (-450 (-2290 |#1|) (-703))) . T))
+(|has| |#1| (-1004))
+(((|#2| (-450 (-3533 |#1|) (-703))) . T))
((((-517) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-489 (-1074))) . T))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1| (-489 (-1075))) . T))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
((((-517)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1074)) |has| |#1| (-822 (-1074))) (((-989)) . T))
+((((-1075)) |has| |#1| (-823 (-1075))) (((-990)) . T))
(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(|has| |#1| (-509))
((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
(((|#1|) . T))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((((-787)) . T))
((((-131)) . T))
(((|#1|) . T) (((-377 (-517))) . T))
@@ -2746,15 +2746,15 @@
(((|#1|) . T))
((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1050))
+(|has| |#1| (-1051))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
(((|#1|) . T))
((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) ((|#2|) . T))
-((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
-((((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-517)) |has| |#1| (-953 (-517))) ((|#1|) . T) ((|#2|) . T))
+((((-990)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))))
+((((-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349)))) (((-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
((((-517) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
@@ -2764,67 +2764,67 @@
((((-712 |#1| (-789 |#2|))) . T))
((($) . T))
((((-377 (-517))) . T) (($) . T))
-(|has| |#1| (-1003))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
+(|has| |#1| (-1004))
(|has| |#2| (-333))
(|has| |#1| (-333))
(|has| |#1| (-333))
(|has| |#1| (-37 (-377 (-517))))
((((-517)) . T))
-((((-1074)) -12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961))))
-((((-1074)) -12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961))))
+((((-1075)) -12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962))))
+((((-1075)) -12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962))))
(((|#1|) . T))
(|has| |#1| (-207))
(((|#1| (-489 |#3|)) . T))
(|has| |#1| (-338))
-(((|#2| (-214 (-2290 |#1|) (-703))) . T))
+(((|#2| (-214 (-3533 |#1|) (-703))) . T))
(|has| |#1| (-338))
(|has| |#1| (-338))
(((|#1|) . T) (($) . T))
(((|#1| (-489 |#2|)) . T))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#1| (-703)) . T))
(|has| |#1| (-509))
-(-3782 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-787)) . T))
-(-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-(-3782 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3745 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
(((|#1|) |has| |#1| (-156)))
-(((|#4|) |has| |#4| (-961)))
-(((|#3|) |has| |#3| (-961)))
+(((|#4|) |has| |#4| (-962)))
+(((|#3|) |has| |#3| (-962)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(((|#4|) |has| |#4| (-1003)) (((-517)) -12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (((-377 (-517))) -12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))
-(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))
+(((|#4|) |has| |#4| (-1004)) (((-517)) -12 (|has| |#4| (-953 (-517))) (|has| |#4| (-1004))) (((-377 (-517))) -12 (|has| |#4| (-953 (-377 (-517)))) (|has| |#4| (-1004))))
+(((|#3|) |has| |#3| (-1004)) (((-517)) -12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004))) (((-377 (-517))) -12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004))))
(|has| |#2| (-333))
-(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-962)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962))))
(((|#1|) . T))
(|has| |#2| (-333))
-((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(((|#2| |#2|) . T))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
(((|#2|) . T))
((($) . T))
-((((-787)) |has| |#1| (-1003)))
-((((-1141 |#1| |#2| |#3| |#4|)) . T))
+((((-787)) |has| |#1| (-1004)))
+((((-1142 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-752))
@@ -2835,111 +2835,111 @@
(|has| |#1| (-333))
(((|#1|) |has| |#2| (-387 |#1|)))
(((|#1|) |has| |#2| (-387 |#1|)))
-((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-833 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
((((-787)) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) |has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) |has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((((-517) |#1|) . T))
(((|#1|) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-((((-1074)) |has| |#1| (-822 (-1074))) (((-750 (-1074))) . T))
-(-3782 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+((((-1075)) |has| |#1| (-823 (-1075))) (((-750 (-1075))) . T))
+(-3745 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-962)))
((((-751 |#1|)) . T))
(((|#1| |#2|) . T))
((((-787)) . T))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-377 (-517))))
((((-787)) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1142 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
+(-3745 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
(|has| |#1| (-333))
(((|#1|) . T))
-((((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+(((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
((((-517) |#1|) . T))
((((-286 |#1|)) . T))
-((((-632) (-1070 (-632))) . T))
-((((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+(((#0=(-632) (-1071 #0#)) . T))
+((((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-777))
-((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
-((((-1026 |#1| (-1074))) . T) (((-750 (-1074))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1074)) . T))
+((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1027 |#1| (-1075))) . T) (((-750 (-1075))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-953 (-517))) (((-377 (-517))) |has| |#1| (-953 (-377 (-517)))) (((-1075)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
-((($ $) . T) (((-1074) $) |has| |#1| (-207)) (((-1074) |#1|) |has| |#1| (-207)) (((-993 (-1074)) |#1|) . T) (((-993 (-1074)) $) . T))
+(((#0=(-990) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1075) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-994 (-1075)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
-(|has| |#2| (-831))
-((($) . T) (((-1140 |#2| |#3| |#4|)) |has| (-1140 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+(|has| |#2| (-832))
+((($) . T) ((#0=(-1141 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))))
((((-517) |#1|) . T))
-((((-1141 |#1| |#2| |#3| |#4|)) |has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|))))
+(((#0=(-1142 |#1| |#2| |#3| |#4|)) |has| #0# (-280 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
(|has| |#2| (-207))
(|has| $ (-134))
((((-787)) . T))
-((($) . T) (((-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
((((-787)) . T))
(|has| |#1| (-777))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))
((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
((((-787)) . T))
(((|#2| (-608 |#1|)) . T))
-(-12 (|has| |#1| (-278)) (|has| |#1| (-831)))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-12 (|has| |#1| (-278)) (|has| |#1| (-832)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#4|) . T))
(|has| |#1| (-509))
-((($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
-((((-1074)) -3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))
-(((|#1|) . T) (($) -3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))))
-(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+((($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
+((((-1075)) -3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))
+(((|#1|) . T) (($) -3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075)))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))
((((-517) |#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
(((|#1|) . T))
-(((|#1| (-489 (-750 (-1074)))) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1| (-489 (-750 (-1075)))) . T))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#1|) . T))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
(((|#1|) . T))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-377 |#2|)) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1|) . T))
-(((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T))
((((-517)) . T))
((((-787)) . T))
(((|#2|) . T) (((-377 (-517))) . T) (($) . T))
@@ -2948,50 +2948,50 @@
((((-377 (-517))) . T) (($) . T))
((((-517) |#1|) . T))
((((-787)) . T))
-((($ $) . T) (((-1074) $) . T))
-((((-1147 |#1| |#2| |#3|)) . T))
-((((-1147 |#1| |#2| |#3|)) . T) (((-1119 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((($ $) . T) (((-1075) $) . T))
+((((-1148 |#1| |#2| |#3|)) . T))
+((((-1148 |#1| |#2| |#3|)) . T) (((-1120 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+((((-493)) |has| |#2| (-558 (-493))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))))
((((-787)) . T))
((((-787)) . T))
-((((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))
+((((-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) (((-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
((((-787)) . T))
-((((-1147 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1074)) . T) (((-787)) . T))
+((((-1148 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1075)) . T) (((-787)) . T))
(|has| |#1| (-333))
-((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((($) -3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-((((-1007)) . T))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-1008)) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-((($) -3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(|has| |#2| (-831))
-(|has| |#1| (-831))
+((($) -3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-832))
+(|has| |#1| (-832))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
((((-632)) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-156)))
((((-377 (-517))) . T) (($) . T))
(((|#1| (-517)) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-333))
(|has| |#1| (-333))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(-3782 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-156)) (|has| |#1| (-509)))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
@@ -2999,23 +2999,23 @@
(((|#1| (-489 |#2|) |#2|) . T))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
-(|has| |#1| (-1003))
+(|has| |#1| (-1004))
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-814 (-349))) . T) (((-814 (-517))) . T) (((-1074)) . T) (((-493)) . T))
+((((-815 (-349))) . T) (((-815 (-517))) . T) (((-1075)) . T) (((-493)) . T))
(((|#1|) . T))
((((-787)) . T))
-(-3782 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-(-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3745 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+(-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
((((-517)) . T))
((((-517)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3782 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
-((((-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))))
-(-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
+(-3745 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-962)))
+((((-1075)) -12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962))))
+(-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-333))
@@ -3023,43 +3023,43 @@
(((|#1| |#2|) . T))
(|has| |#1| (-207))
((((-787)) . T))
-(((|#1| (-703) (-989)) . T))
+(((|#1| (-703) (-990)) . T))
((((-517) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
((((-517) |#1|) . T))
((((-517) |#1|) . T))
((((-111 |#1|)) . T))
((((-377 (-517))) . T) (((-517)) . T))
-(((|#2|) |has| |#2| (-961)))
+(((|#2|) |has| |#2| (-962)))
((((-377 (-517))) . T) (($) . T))
(((|#2|) . T))
((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
((((-517)) . T))
((((-517)) . T))
-((((-1057) (-1074) (-517) (-199) (-787)) . T))
+((((-1058) (-1075) (-517) (-199) (-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3782 (|has| |#1| (-319)) (|has| |#1| (-338)))
+(-3745 (|has| |#1| (-319)) (|has| |#1| (-338)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
((((-787)) . T))
((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
-(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
+(((|#2|) |has| |#2| (-1004)) (((-517)) -12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (((-377 (-517))) -12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004))))
((((-493)) |has| |#1| (-558 (-493))))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1004))))
((($) . T) (((-377 (-517))) . T))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
-((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-938))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-938))) (((-815 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-349))))) (((-815 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))))
((((-787)) . T))
((((-787)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-509)))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#2|) . T))
-(-3782 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3745 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(((|#1|) . T))
@@ -3068,27 +3068,27 @@
((((-377 (-517))) . T) (($) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-333))
-((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((($ $) . T) ((#0=(-377 (-517)) #0#) . T))
(|has| (-377 |#2|) (-132))
((((-632)) . T))
(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
-((((-517) (-517)) . T))
+(((#0=(-517) #0#) . T))
((($) . T) (((-377 (-517))) . T))
-(-3782 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
-(-3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3745 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-962)))
+(-3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962)))
(|has| |#4| (-725))
-(-3782 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3745 (|has| |#4| (-725)) (|has| |#4| (-777)))
(|has| |#4| (-777))
(|has| |#3| (-725))
-(-3782 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3745 (|has| |#3| (-725)) (|has| |#3| (-777)))
(|has| |#3| (-777))
((((-517)) . T))
(((|#2|) . T))
-((((-1074)) -3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))))
-((((-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))))
+((((-1075)) -3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))))
+((((-1075)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3096,76 +3096,76 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T))
((((-789 |#1|)) . T))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
-((((-1039 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1040 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
((($) . T))
-(|has| |#1| (-937))
-(((|#2|) . T) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+(|has| |#1| (-938))
+(((|#2|) . T) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
((((-787)) . T))
-((((-493)) |has| |#2| (-558 (-493))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-349)) |has| |#2| (-937)) (((-199)) |has| |#2| (-937)))
-((((-1074) (-51)) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-815 (-517))) |has| |#2| (-558 (-815 (-517)))) (((-815 (-349))) |has| |#2| (-558 (-815 (-349)))) (((-349)) . #0=(|has| |#2| (-938))) (((-199)) . #0#))
+((((-1075) (-51)) . T))
(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-37 (-377 (-517))))
(((|#2|) . T))
((($ $) . T))
((((-377 (-517))) . T) (((-632)) . T) (($) . T))
-((((-1072 |#1| |#2| |#3|)) . T))
-((((-1072 |#1| |#2| |#3|)) . T) (((-1065 |#1| |#2| |#3|)) . T))
+((((-1073 |#1| |#2| |#3|)) . T))
+((((-1073 |#1| |#2| |#3|)) . T) (((-1066 |#1| |#2| |#3|)) . T))
((((-787)) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
((((-517) |#1|) . T))
-((((-1072 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1073 |#1| |#2| |#3|)) |has| |#1| (-333)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-333))
-(((|#3|) . T) ((|#2|) . T) (($) -3782 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) ((|#4|) -3782 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))))
-(((|#2|) . T) (($) -3782 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3782 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
+(((|#3|) . T) ((|#2|) . T) (($) -3745 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-962))) ((|#4|) -3745 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-962))))
+(((|#2|) . T) (($) -3745 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-962))) ((|#3|) -3745 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-962))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-333))
((((-111 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-953 (-377 (-517)))) (((-517)) |has| |#2| (-953 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1|) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-832)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
((((-787)) . T))
((((-787)) . T))
((((-787)) . T))
(((|#1| (-489 |#2|)) . T))
-((((-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) . T))
+((((-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) . T))
(((|#1| (-517)) . T))
(((|#1| (-377 (-517))) . T))
(((|#1| (-703)) . T))
((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
-(-3782 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
-(-3782 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3745 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-832)))
+(-3745 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-832)))
((($) . T))
(((|#2| (-489 (-789 |#1|))) . T))
((((-517) |#1|) . T))
(((|#2|) . T))
(((|#2| (-703)) . T))
-((((-787)) -3782 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3745 (|has| |#1| (-557 (-787))) (|has| |#1| (-1004))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1057) |#1|) . T))
+((((-1058) |#1|) . T))
((((-377 |#2|)) . T))
-((((-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
+((((-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T))
(|has| |#1| (-509))
(|has| |#1| (-509))
((($) . T) ((|#2|) . T))
@@ -3173,26 +3173,26 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-258 |#2| |#2|)))
(((|#1| (-583 |#1|)) |has| |#1| (-777)))
-(-3782 (|has| |#1| (-207)) (|has| |#1| (-319)))
-(-3782 (|has| |#1| (-333)) (|has| |#1| (-319)))
-(|has| |#1| (-1003))
+(-3745 (|has| |#1| (-207)) (|has| |#1| (-319)))
+(-3745 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1004))
(((|#1|) . T))
((((-377 (-517))) . T) (($) . T))
-((((-915 |#1|)) . T) ((|#1|) . T) (((-517)) -3782 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) -3782 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-((((-1074)) |has| |#1| (-822 (-1074))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
-(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-916 |#1|)) . T) ((|#1|) . T) (((-517)) -3745 (|has| (-916 |#1|) (-953 (-517))) (|has| |#1| (-953 (-517)))) (((-377 (-517))) -3745 (|has| (-916 |#1|) (-953 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+((((-1075)) |has| |#1| (-823 (-1075))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))
(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-1039 |#1| |#2|) (-1039 |#1| |#2|)) |has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))))
-((((-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
-(-3782 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((#0=(-1040 |#1| |#2|) #0#) |has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((#0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) #0#) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))))
+(((#0=(-111 |#1|)) |has| #0# (-280 #0#)))
+(-3745 (|has| |#1| (-779)) (|has| |#1| (-1004)))
((($ $) . T))
-((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-599 . -1003) T) ((-237 . -478) 143724) ((-221 . -478) 143662) ((-524 . -106) 143647) ((-489 . -23) T) ((-219 . -1003) 143597) ((-112 . -280) 143541) ((-447 . -478) 143301) ((-627 . -97) T) ((-1040 . -478) 143209) ((-360 . -123) T) ((-1165 . -893) 143178) ((-548 . -456) 143162) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 143112) ((-57 . -478) 143045) ((-482 . -478) 142978) ((-388 . -822) 142937) ((-153 . -961) T) ((-480 . -478) 142870) ((-462 . -478) 142803) ((-461 . -478) 142736) ((-731 . -952) 142523) ((-632 . -37) 142488) ((-313 . -319) T) ((-998 . -997) 142472) ((-998 . -1003) 142450) ((-153 . -217) 142401) ((-153 . -207) 142352) ((-998 . -999) 142310) ((-796 . -258) 142268) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1049 . -1086) 142247) ((-377 . -909) 142231) ((-634 . -21) T) ((-634 . -25) T) ((-1167 . -585) 142205) ((-286 . -145) 142184) ((-286 . -130) 142163) ((-1049 . -102) 142113) ((-125 . -25) T) ((-39 . -205) 142090) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 142066) ((-444 . -260) 142045) ((-1128 . -961) T) ((-784 . -961) T) ((-731 . -308) 142029) ((-112 . -1050) NIL) ((-89 . -557) 141961) ((-446 . -123) T) ((-540 . -1109) T) ((-1128 . -296) 141938) ((-524 . -961) T) ((-1128 . -207) T) ((-599 . -650) 141922) ((-879 . -260) 141899) ((-58 . -33) T) ((-972 . -727) T) ((-972 . -724) T) ((-748 . -659) T) ((-664 . -46) 141864) ((-564 . -37) 141851) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 141782) ((-221 . -262) 141713) ((-939 . -97) T) ((-383 . -659) T) ((-112 . -37) 141658) ((-383 . -442) T) ((-324 . -97) T) ((-1104 . -968) T) ((-644 . -968) T) ((-1072 . -46) 141635) ((-1071 . -46) 141605) ((-1065 . -46) 141582) ((-950 . -138) 141528) ((-832 . -262) T) ((-1027 . -46) 141500) ((-627 . -280) NIL) ((-479 . -557) 141482) ((-474 . -557) 141464) ((-472 . -557) 141446) ((-297 . -1003) 141396) ((-645 . -421) 141327) ((-47 . -97) T) ((-1139 . -258) 141312) ((-1118 . -258) 141232) ((-583 . -603) 141216) ((-583 . -588) 141200) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 141184) ((-548 . -258) 141161) ((-358 . -97) T) ((-1021 . -130) T) ((-121 . -557) 141093) ((-797 . -1003) T) ((-595 . -381) 141077) ((-647 . -557) 141059) ((-146 . -557) 141041) ((-142 . -557) 141023) ((-1167 . -659) T) ((-1005 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -808) NIL) ((-1176 . -123) T) ((-351 . -123) T) ((-826 . -97) T) ((-664 . -952) 140901) ((-489 . -123) T) ((-992 . -381) 140885) ((-916 . -456) 140869) ((-112 . -370) 140846) ((-1065 . -1109) 140825) ((-714 . -381) 140809) ((-712 . -381) 140793) ((-865 . -33) T) ((-627 . -1050) NIL) ((-224 . -585) 140630) ((-223 . -585) 140454) ((-749 . -842) 140433) ((-423 . -381) 140417) ((-548 . -19) 140401) ((-1045 . -1103) 140370) ((-1065 . -808) NIL) ((-1065 . -806) 140322) ((-548 . -550) 140299) ((-1096 . -557) 140231) ((-1073 . -557) 140213) ((-60 . -365) T) ((-1071 . -952) 140148) ((-1065 . -952) 140114) ((-627 . -37) 140064) ((-443 . -258) 140049) ((-664 . -347) 140033) ((-595 . -968) T) ((-1139 . -918) 139999) ((-1118 . -918) 139965) ((-973 . -1086) 139940) ((-796 . -558) 139743) ((-796 . -557) 139725) ((-1083 . -456) 139662) ((-388 . -937) 139641) ((-47 . -280) 139628) ((-973 . -102) 139574) ((-447 . -456) 139511) ((-483 . -1109) T) ((-1040 . -456) 139482) ((-1065 . -308) 139434) ((-1065 . -347) 139386) ((-407 . -97) T) ((-992 . -968) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -968) T) ((-712 . -968) T) ((-664 . -822) 139363) ((-423 . -968) T) ((-57 . -456) 139347) ((-949 . -967) 139321) ((-482 . -456) 139305) ((-480 . -456) 139289) ((-462 . -456) 139273) ((-461 . -456) 139257) ((-219 . -478) 139190) ((-949 . -106) 139157) ((-1072 . -822) 139070) ((-607 . -1015) T) ((-1071 . -822) 138976) ((-1065 . -822) 138809) ((-1027 . -822) 138793) ((-324 . -1050) T) ((-292 . -967) 138775) ((-224 . -723) 138754) ((-224 . -726) 138705) ((-224 . -725) 138684) ((-223 . -723) 138663) ((-223 . -726) 138614) ((-223 . -725) 138593) ((-49 . -968) T) ((-224 . -659) 138524) ((-223 . -659) 138455) ((-1104 . -1003) T) ((-607 . -23) T) ((-530 . -968) T) ((-481 . -968) T) ((-349 . -967) 138420) ((-292 . -106) 138395) ((-71 . -353) T) ((-71 . -365) T) ((-939 . -37) 138332) ((-627 . -370) 138314) ((-94 . -97) T) ((-644 . -1003) T) ((-919 . -132) 138286) ((-349 . -106) 138235) ((-289 . -1113) 138214) ((-443 . -918) 138180) ((-324 . -37) 138145) ((-39 . -340) 138117) ((-919 . -134) 138089) ((-122 . -120) 138073) ((-116 . -120) 138057) ((-766 . -967) 138027) ((-765 . -21) 137979) ((-759 . -967) 137963) ((-765 . -25) 137915) ((-289 . -509) 137866) ((-517 . -760) T) ((-214 . -1109) T) ((-766 . -106) 137831) ((-759 . -106) 137810) ((-1139 . -557) 137792) ((-1118 . -557) 137774) ((-1118 . -558) 137447) ((-1070 . -831) 137426) ((-1026 . -831) 137405) ((-47 . -37) 137370) ((-1174 . -1015) T) ((-548 . -557) 137282) ((-548 . -558) 137243) ((-1172 . -1015) T) ((-214 . -952) 137072) ((-1070 . -585) 136997) ((-1026 . -585) 136922) ((-651 . -557) 136904) ((-783 . -585) 136878) ((-1174 . -23) T) ((-1172 . -23) T) ((-949 . -961) T) ((-1083 . -258) 136857) ((-153 . -338) 136808) ((-920 . -1109) T) ((-43 . -23) T) ((-447 . -258) 136787) ((-534 . -1003) T) ((-1045 . -1012) 136756) ((-1007 . -1006) 136708) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1015) T) ((-1180 . -97) T) ((-920 . -806) 136690) ((-920 . -808) 136672) ((-1104 . -650) 136569) ((-564 . -205) 136553) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1090 . -1003) T) ((-644 . -650) 136518) ((-214 . -347) 136488) ((-920 . -952) 136448) ((-349 . -961) T) ((-197 . -968) T) ((-112 . -205) 136425) ((-57 . -258) 136402) ((-139 . -23) T) ((-480 . -258) 136379) ((-297 . -478) 136312) ((-461 . -258) 136289) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -961) T) ((-759 . -961) T) ((-645 . -871) 136259) ((-634 . -779) T) ((-443 . -557) 136241) ((-759 . -207) 136220) ((-125 . -779) T) ((-595 . -1003) T) ((-1083 . -550) 136199) ((-503 . -1086) 136178) ((-306 . -1003) T) ((-289 . -333) 136157) ((-377 . -134) 136136) ((-377 . -132) 136115) ((-885 . -1015) 136014) ((-214 . -822) 135947) ((-747 . -1015) 135878) ((-591 . -781) 135862) ((-447 . -550) 135841) ((-503 . -102) 135791) ((-920 . -347) 135773) ((-920 . -308) 135755) ((-92 . -1003) T) ((-885 . -23) 135566) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 135437) ((-1074 . -557) 135419) ((-57 . -19) 135403) ((-1074 . -558) 135325) ((-1070 . -659) T) ((-1026 . -659) T) ((-480 . -19) 135309) ((-461 . -19) 135293) ((-57 . -550) 135270) ((-992 . -1003) T) ((-823 . -97) 135248) ((-783 . -659) T) ((-714 . -1003) T) ((-480 . -550) 135225) ((-461 . -550) 135202) ((-712 . -1003) T) ((-712 . -975) 135169) ((-430 . -1003) T) ((-423 . -1003) T) ((-534 . -650) 135144) ((-586 . -1003) T) ((-920 . -822) NIL) ((-1147 . -46) 135121) ((-567 . -1015) T) ((-607 . -123) T) ((-1141 . -97) T) ((-1140 . -46) 135091) ((-1119 . -46) 135068) ((-1104 . -156) 135019) ((-987 . -1113) 134970) ((-248 . -1003) T) ((-83 . -410) T) ((-83 . -365) T) ((-1071 . -278) 134949) ((-1065 . -278) 134928) ((-49 . -1003) T) ((-987 . -509) 134879) ((-644 . -156) T) ((-542 . -46) 134856) ((-199 . -585) 134821) ((-530 . -1003) T) ((-481 . -1003) T) ((-329 . -1113) T) ((-323 . -1113) T) ((-315 . -1113) T) ((-454 . -752) T) ((-454 . -842) T) ((-289 . -1015) T) ((-103 . -1113) T) ((-309 . -779) T) ((-192 . -842) T) ((-192 . -752) T) ((-647 . -967) 134791) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 134761) ((-1065 . -937) NIL) ((-289 . -23) T) ((-65 . -1109) T) ((-916 . -557) 134693) ((-627 . -205) 134675) ((-647 . -106) 134640) ((-583 . -33) T) ((-219 . -456) 134624) ((-1005 . -1001) 134608) ((-155 . -1003) T) ((-874 . -831) 134587) ((-449 . -831) 134566) ((-1176 . -21) T) ((-1176 . -25) T) ((-1174 . -123) T) ((-1172 . -123) T) ((-992 . -650) 134415) ((-972 . -585) 134402) ((-874 . -585) 134327) ((-493 . -557) 134309) ((-493 . -558) 134290) ((-714 . -650) 134119) ((-712 . -650) 133968) ((-1165 . -97) T) ((-984 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 133893) ((-430 . -650) 133864) ((-423 . -650) 133713) ((-904 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1119 . -1109) 133692) ((-1150 . -557) 133658) ((-1119 . -808) NIL) ((-1119 . -806) 133610) ((-128 . -97) T) ((-43 . -123) T) ((-1083 . -558) NIL) ((-1083 . -557) 133592) ((-1041 . -1024) 133537) ((-313 . -968) T) ((-601 . -557) 133519) ((-261 . -1015) T) ((-325 . -557) 133501) ((-322 . -557) 133483) ((-314 . -557) 133465) ((-237 . -558) 133213) ((-237 . -557) 133195) ((-221 . -557) 133177) ((-221 . -558) 133038) ((-958 . -1103) 132967) ((-823 . -280) 132905) ((-1180 . -1050) T) ((-1140 . -952) 132840) ((-1119 . -952) 132806) ((-1104 . -478) 132773) ((-1040 . -557) 132755) ((-751 . -659) T) ((-548 . -260) 132732) ((-530 . -650) 132697) ((-447 . -558) NIL) ((-447 . -557) 132679) ((-481 . -650) 132624) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -967) 132576) ((-832 . -557) 132558) ((-832 . -558) 132540) ((-796 . -106) 132471) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1131) 132455) ((-647 . -961) T) ((-627 . -319) NIL) ((-482 . -557) 132387) ((-349 . -727) T) ((-197 . -1003) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 132348) ((-57 . -557) 132260) ((-199 . -659) T) ((-480 . -558) 132221) ((-480 . -557) 132133) ((-462 . -557) 132065) ((-461 . -558) 132026) ((-461 . -557) 131938) ((-987 . -333) 131889) ((-39 . -381) 131866) ((-75 . -1109) T) ((-795 . -831) NIL) ((-329 . -299) 131850) ((-329 . -333) T) ((-323 . -299) 131834) ((-323 . -333) T) ((-315 . -299) 131818) ((-315 . -333) T) ((-286 . -256) 131797) ((-103 . -333) T) ((-68 . -1109) T) ((-1119 . -308) 131749) ((-795 . -585) 131694) ((-1119 . -347) 131646) ((-885 . -123) 131501) ((-747 . -123) 131372) ((-879 . -588) 131356) ((-992 . -156) 131267) ((-879 . -343) 131251) ((-972 . -726) T) ((-972 . -723) T) ((-714 . -156) 131142) ((-712 . -156) 131053) ((-748 . -46) 131015) ((-972 . -659) T) ((-297 . -456) 130999) ((-874 . -659) T) ((-423 . -156) 130910) ((-219 . -258) 130887) ((-449 . -659) T) ((-1165 . -280) 130825) ((-1147 . -822) 130738) ((-1140 . -822) 130644) ((-1139 . -967) 130479) ((-1119 . -822) 130312) ((-1118 . -967) 130120) ((-1104 . -262) 130099) ((-1045 . -138) 130083) ((-982 . -97) T) ((-849 . -876) T) ((-73 . -1109) T) ((-670 . -280) 130021) ((-153 . -831) 129974) ((-601 . -352) 129946) ((-30 . -876) T) ((-1 . -557) 129928) ((-1021 . -97) T) ((-987 . -23) T) ((-49 . -561) 129912) ((-987 . -1015) T) ((-919 . -379) 129884) ((-542 . -822) 129797) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -961) T) ((-765 . -779) 129776) ((-79 . -1109) T) ((-644 . -262) T) ((-39 . -968) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 129758) ((-153 . -585) 129668) ((-471 . -557) 129650) ((-321 . -134) 129632) ((-321 . -132) T) ((-329 . -1015) T) ((-323 . -1015) T) ((-315 . -1015) T) ((-920 . -278) T) ((-836 . -278) T) ((-796 . -217) T) ((-103 . -1015) T) ((-796 . -207) 129611) ((-1139 . -106) 129425) ((-1118 . -106) 129207) ((-219 . -1143) 129191) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 129178) ((-283 . -280) 129074) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-920 . -937) T) ((-103 . -23) T) ((-219 . -550) 129051) ((-1141 . -37) 128908) ((-1128 . -831) 128887) ((-107 . -1003) T) ((-950 . -97) T) ((-1128 . -585) 128812) ((-795 . -726) NIL) ((-784 . -585) 128786) ((-795 . -723) NIL) ((-748 . -808) NIL) ((-795 . -659) T) ((-992 . -478) 128651) ((-714 . -478) 128599) ((-712 . -478) 128551) ((-524 . -585) 128538) ((-748 . -952) 128368) ((-423 . -478) 128306) ((-358 . -359) T) ((-58 . -1109) T) ((-562 . -779) 128285) ((-465 . -598) T) ((-1045 . -893) 128254) ((-919 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -967) 128089) ((-313 . -1003) T) ((-283 . -1050) NIL) ((-261 . -123) T) ((-364 . -1003) T) ((-627 . -340) 128056) ((-794 . -968) T) ((-197 . -561) 128033) ((-297 . -258) 128010) ((-443 . -106) 127824) ((-1139 . -961) T) ((-1118 . -961) T) ((-748 . -347) 127808) ((-153 . -659) T) ((-591 . -97) T) ((-1139 . -217) 127787) ((-1139 . -207) 127739) ((-1118 . -207) 127644) ((-1118 . -217) 127623) ((-919 . -372) NIL) ((-607 . -579) 127571) ((-286 . -37) 127481) ((-283 . -37) 127410) ((-67 . -557) 127392) ((-289 . -458) 127358) ((-1083 . -260) 127337) ((-1016 . -1015) 127268) ((-81 . -1109) T) ((-59 . -557) 127250) ((-447 . -260) 127229) ((-1167 . -952) 127206) ((-1063 . -1003) T) ((-1016 . -23) 127077) ((-748 . -822) 127013) ((-1128 . -659) T) ((-1005 . -1109) T) ((-992 . -262) 126944) ((-815 . -97) T) ((-714 . -262) 126855) ((-297 . -19) 126839) ((-57 . -260) 126816) ((-712 . -262) 126747) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 126724) ((-297 . -550) 126701) ((-461 . -260) 126678) ((-423 . -262) 126609) ((-950 . -280) 126460) ((-524 . -659) T) ((-599 . -557) 126442) ((-219 . -558) 126403) ((-219 . -557) 126315) ((-1046 . -33) T) ((-865 . -1109) T) ((-313 . -650) 126260) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -961) T) ((-575 . -387) 126225) ((-551 . -387) 126190) ((-1021 . -1050) T) ((-530 . -262) T) ((-481 . -262) T) ((-1140 . -278) 126169) ((-443 . -207) 126121) ((-443 . -217) 126100) ((-1119 . -278) 126079) ((-987 . -123) T) ((-796 . -727) 126058) ((-131 . -97) T) ((-39 . -1003) T) ((-796 . -724) 126037) ((-583 . -926) 126021) ((-529 . -968) T) ((-517 . -968) T) ((-460 . -968) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 126005) ((-283 . -370) 125966) ((-323 . -123) T) ((-315 . -123) T) ((-1119 . -937) NIL) ((-998 . -557) 125933) ((-103 . -123) T) ((-1021 . -37) 125920) ((-843 . -1003) T) ((-703 . -1003) T) ((-608 . -1003) T) ((-634 . -134) T) ((-111 . -134) T) ((-1174 . -21) T) ((-1174 . -25) T) ((-1172 . -21) T) ((-1172 . -25) T) ((-601 . -967) 125904) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -967) 125856) ((-322 . -967) 125808) ((-314 . -967) 125760) ((-224 . -1109) T) ((-223 . -1109) T) ((-237 . -967) 125603) ((-221 . -967) 125446) ((-601 . -106) 125425) ((-325 . -106) 125356) ((-322 . -106) 125287) ((-314 . -106) 125218) ((-237 . -106) 125040) ((-221 . -106) 124862) ((-749 . -1113) 124841) ((-564 . -381) 124825) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 124733) ((-749 . -509) 124712) ((-224 . -952) 124541) ((-223 . -952) 124370) ((-121 . -114) 124354) ((-832 . -967) 124319) ((-632 . -968) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 124301) ((-832 . -106) 124250) ((-39 . -650) 124195) ((-794 . -1003) T) ((-297 . -558) 124156) ((-297 . -557) 124068) ((-1118 . -724) 124021) ((-1118 . -727) 123974) ((-224 . -347) 123944) ((-223 . -347) 123914) ((-591 . -37) 123884) ((-552 . -33) T) ((-450 . -1015) 123815) ((-444 . -33) T) ((-1016 . -123) 123686) ((-885 . -25) 123497) ((-797 . -557) 123479) ((-885 . -21) 123434) ((-747 . -21) 123345) ((-747 . -25) 123197) ((-564 . -968) T) ((-1076 . -509) 123176) ((-1070 . -46) 123153) ((-325 . -961) T) ((-322 . -961) T) ((-450 . -23) 123024) ((-314 . -961) T) ((-237 . -961) T) ((-221 . -961) T) ((-1026 . -46) 122996) ((-112 . -968) T) ((-949 . -585) 122970) ((-879 . -33) T) ((-325 . -207) 122949) ((-325 . -217) T) ((-322 . -207) 122928) ((-221 . -296) 122885) ((-322 . -217) T) ((-314 . -207) 122864) ((-314 . -217) T) ((-237 . -296) 122836) ((-237 . -207) 122815) ((-1055 . -138) 122799) ((-224 . -822) 122732) ((-223 . -822) 122665) ((-989 . -779) T) ((-1122 . -1109) T) ((-384 . -1015) T) ((-965 . -23) T) ((-832 . -961) T) ((-292 . -585) 122647) ((-939 . -777) T) ((-1104 . -918) 122613) ((-1071 . -842) 122592) ((-1065 . -842) 122571) ((-832 . -217) T) ((-749 . -333) 122550) ((-355 . -23) T) ((-122 . -1003) 122528) ((-116 . -1003) 122506) ((-832 . -207) T) ((-1065 . -752) NIL) ((-349 . -585) 122471) ((-794 . -650) 122458) ((-958 . -138) 122423) ((-39 . -156) T) ((-627 . -381) 122405) ((-645 . -280) 122392) ((-766 . -585) 122352) ((-759 . -585) 122326) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 122305) ((-529 . -1003) T) ((-517 . -1003) T) ((-460 . -1003) T) ((-219 . -260) 122282) ((-283 . -205) 122243) ((-1070 . -808) NIL) ((-1026 . -808) 122102) ((-1070 . -952) 121985) ((-1026 . -952) 121870) ((-783 . -952) 121768) ((-714 . -258) 121695) ((-749 . -1015) T) ((-949 . -659) T) ((-548 . -588) 121679) ((-958 . -893) 121608) ((-915 . -97) T) ((-749 . -23) T) ((-645 . -1050) 121586) ((-627 . -968) T) ((-548 . -343) 121570) ((-321 . -421) T) ((-313 . -262) T) ((-1155 . -1003) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1003) T) ((-331 . -442) T) ((-1104 . -557) 121552) ((-1070 . -347) 121536) ((-1026 . -347) 121520) ((-939 . -381) 121482) ((-128 . -203) 121464) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 121446) ((-645 . -37) 121275) ((-1154 . -1152) 121259) ((-321 . -372) T) ((-1154 . -1003) 121209) ((-529 . -650) 121196) ((-517 . -650) 121183) ((-460 . -650) 121148) ((-286 . -569) 121127) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1109) T) ((-987 . -579) 121075) ((-1070 . -822) 121019) ((-1026 . -822) 121003) ((-599 . -967) 120987) ((-103 . -579) 120969) ((-450 . -123) 120840) ((-1076 . -1015) T) ((-874 . -46) 120809) ((-564 . -1003) T) ((-599 . -106) 120788) ((-297 . -260) 120765) ((-449 . -46) 120722) ((-1076 . -23) T) ((-112 . -1003) T) ((-98 . -97) 120700) ((-1164 . -1015) T) ((-965 . -123) T) ((-939 . -968) T) ((-751 . -952) 120684) ((-919 . -657) 120656) ((-1164 . -23) T) ((-632 . -650) 120621) ((-534 . -557) 120603) ((-356 . -952) 120587) ((-324 . -968) T) ((-355 . -123) T) ((-294 . -952) 120571) ((-199 . -808) 120553) ((-920 . -842) T) ((-89 . -33) T) ((-920 . -752) T) ((-836 . -842) T) ((-454 . -1113) T) ((-1090 . -557) 120535) ((-1008 . -1003) T) ((-192 . -1113) T) ((-915 . -280) 120500) ((-199 . -952) 120460) ((-39 . -262) T) ((-987 . -21) T) ((-987 . -25) T) ((-1021 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 120420) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -968) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 120402) ((-670 . -669) 120386) ((-306 . -557) 120368) ((-66 . -353) T) ((-66 . -365) T) ((-1005 . -102) 120352) ((-972 . -808) 120334) ((-874 . -808) 120259) ((-590 . -1015) T) ((-564 . -650) 120246) ((-449 . -808) NIL) ((-1045 . -97) T) ((-972 . -952) 120228) ((-92 . -557) 120210) ((-446 . -134) T) ((-874 . -952) 120092) ((-112 . -650) 120037) ((-590 . -23) T) ((-449 . -952) 119915) ((-992 . -558) NIL) ((-992 . -557) 119897) ((-714 . -558) NIL) ((-714 . -557) 119858) ((-712 . -558) 119493) ((-712 . -557) 119407) ((-1016 . -579) 119315) ((-430 . -557) 119297) ((-423 . -557) 119279) ((-423 . -558) 119140) ((-950 . -203) 119086) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -831) 119065) ((-586 . -557) 119047) ((-325 . -1171) 119031) ((-322 . -1171) 119015) ((-314 . -1171) 118999) ((-122 . -478) 118932) ((-116 . -478) 118865) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 118803) ((-196 . -97) 118781) ((-627 . -1003) T) ((-632 . -156) T) ((-796 . -585) 118733) ((-63 . -354) T) ((-248 . -557) 118715) ((-63 . -365) T) ((-874 . -347) 118699) ((-794 . -262) T) ((-49 . -557) 118681) ((-915 . -37) 118629) ((-530 . -557) 118611) ((-449 . -347) 118595) ((-530 . -558) 118577) ((-481 . -557) 118559) ((-832 . -1171) 118546) ((-795 . -1109) T) ((-634 . -421) T) ((-460 . -478) 118512) ((-454 . -333) T) ((-325 . -338) 118491) ((-322 . -338) 118470) ((-314 . -338) 118449) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1175 . -1166) 118433) ((-795 . -806) 118410) ((-795 . -808) NIL) ((-885 . -779) 118309) ((-747 . -779) 118260) ((-591 . -593) 118244) ((-1096 . -33) T) ((-155 . -557) 118226) ((-1016 . -21) 118137) ((-1016 . -25) 117989) ((-795 . -952) 117966) ((-874 . -822) 117947) ((-1128 . -46) 117924) ((-832 . -338) T) ((-57 . -588) 117908) ((-480 . -588) 117892) ((-449 . -822) 117869) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 117853) ((-57 . -343) 117837) ((-564 . -156) T) ((-480 . -343) 117821) ((-461 . -343) 117805) ((-759 . -642) 117789) ((-1070 . -278) 117768) ((-1076 . -123) T) ((-112 . -156) T) ((-1045 . -280) 117706) ((-153 . -1109) T) ((-575 . -677) 117690) ((-551 . -677) 117674) ((-1164 . -123) T) ((-1140 . -842) 117653) ((-1119 . -842) 117632) ((-1119 . -752) NIL) ((-627 . -650) 117582) ((-1118 . -831) 117535) ((-939 . -1003) T) ((-795 . -347) 117512) ((-795 . -308) 117489) ((-827 . -1015) T) ((-153 . -806) 117473) ((-153 . -808) 117398) ((-454 . -1015) T) ((-324 . -1003) T) ((-192 . -1015) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -952) 117296) ((-289 . -779) T) ((-1154 . -478) 117229) ((-1139 . -585) 117126) ((-1118 . -585) 116996) ((-796 . -726) 116975) ((-796 . -723) 116954) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 116936) ((-157 . -421) T) ((-196 . -280) 116874) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1176 . -1169) 116853) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -952) 116837) ((-460 . -262) T) ((-127 . -439) 116792) ((-47 . -1003) T) ((-645 . -205) 116776) ((-795 . -822) NIL) ((-1128 . -808) NIL) ((-811 . -97) T) ((-807 . -97) T) ((-358 . -1003) T) ((-153 . -347) 116760) ((-153 . -308) 116744) ((-1128 . -952) 116627) ((-784 . -952) 116525) ((-1041 . -97) T) ((-590 . -123) T) ((-112 . -478) 116388) ((-599 . -724) 116367) ((-599 . -727) 116346) ((-524 . -952) 116328) ((-265 . -1161) 116298) ((-790 . -97) T) ((-884 . -509) 116277) ((-1104 . -967) 116160) ((-450 . -579) 116068) ((-826 . -1003) T) ((-939 . -650) 116005) ((-644 . -967) 115970) ((-548 . -33) T) ((-1046 . -1109) T) ((-1104 . -106) 115832) ((-443 . -585) 115729) ((-324 . -650) 115674) ((-153 . -822) 115633) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 115582) ((-1180 . -968) T) ((-1128 . -347) 115566) ((-388 . -1113) 115544) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1118 . -723) 115497) ((-1118 . -726) 115450) ((-1139 . -659) T) ((-1118 . -659) T) ((-47 . -650) 115415) ((-199 . -937) T) ((-321 . -1161) 115392) ((-1141 . -381) 115358) ((-651 . -659) T) ((-1128 . -822) 115302) ((-107 . -557) 115284) ((-107 . -558) 115266) ((-651 . -442) T) ((-450 . -21) 115177) ((-122 . -456) 115161) ((-116 . -456) 115145) ((-450 . -25) 114997) ((-564 . -262) T) ((-534 . -967) 114972) ((-407 . -1003) T) ((-972 . -278) T) ((-112 . -262) T) ((-1007 . -97) T) ((-919 . -97) T) ((-534 . -106) 114933) ((-1041 . -280) 114871) ((-1104 . -961) T) ((-972 . -937) T) ((-64 . -1109) T) ((-965 . -25) T) ((-965 . -21) T) ((-644 . -961) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-939 . -156) T) ((-644 . -217) T) ((-972 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 114853) ((-364 . -557) 114835) ((-443 . -659) T) ((-1021 . -777) T) ((-814 . -952) 114803) ((-103 . -779) T) ((-595 . -967) 114787) ((-454 . -123) T) ((-1141 . -968) T) ((-192 . -123) T) ((-1055 . -97) 114765) ((-94 . -1003) T) ((-219 . -603) 114749) ((-219 . -588) 114733) ((-595 . -106) 114712) ((-286 . -381) 114696) ((-219 . -343) 114680) ((-1058 . -209) 114627) ((-915 . -205) 114611) ((-72 . -1109) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1175 . -97) T) ((-992 . -967) 114454) ((-237 . -831) 114433) ((-221 . -831) 114412) ((-714 . -967) 114235) ((-712 . -967) 114078) ((-552 . -1109) T) ((-1063 . -557) 114060) ((-992 . -106) 113882) ((-958 . -97) T) ((-444 . -1109) T) ((-430 . -967) 113853) ((-423 . -967) 113696) ((-601 . -585) 113680) ((-795 . -278) T) ((-714 . -106) 113482) ((-712 . -106) 113304) ((-325 . -585) 113256) ((-322 . -585) 113208) ((-314 . -585) 113160) ((-237 . -585) 113085) ((-221 . -585) 113010) ((-1057 . -779) T) ((-430 . -106) 112971) ((-423 . -106) 112793) ((-993 . -952) 112777) ((-983 . -952) 112754) ((-916 . -33) T) ((-879 . -1109) T) ((-121 . -926) 112738) ((-884 . -1015) T) ((-795 . -937) NIL) ((-668 . -1015) T) ((-648 . -1015) T) ((-1154 . -456) 112722) ((-1041 . -37) 112682) ((-884 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-832 . -585) 112647) ((-530 . -967) 112612) ((-481 . -967) 112557) ((-201 . -55) 112515) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 112485) ((-530 . -106) 112434) ((-481 . -106) 112351) ((-388 . -1015) T) ((-286 . -968) 112242) ((-283 . -968) T) ((-595 . -961) T) ((-1180 . -1003) T) ((-153 . -278) 112173) ((-388 . -23) T) ((-39 . -557) 112155) ((-39 . -558) 112139) ((-103 . -909) 112121) ((-111 . -793) 112105) ((-47 . -478) 112071) ((-1096 . -926) 112055) ((-1079 . -557) 112037) ((-1083 . -33) T) ((-843 . -557) 112019) ((-1016 . -779) 111970) ((-703 . -557) 111952) ((-608 . -557) 111934) ((-1055 . -280) 111872) ((-447 . -33) T) ((-996 . -1109) T) ((-446 . -421) T) ((-992 . -961) T) ((-1040 . -33) T) ((-714 . -961) T) ((-712 . -961) T) ((-584 . -209) 111856) ((-572 . -209) 111802) ((-1128 . -278) 111781) ((-992 . -296) 111743) ((-423 . -961) T) ((-1076 . -21) T) ((-992 . -207) 111722) ((-714 . -296) 111699) ((-714 . -207) T) ((-712 . -296) 111671) ((-297 . -588) 111655) ((-664 . -1113) 111634) ((-1076 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 111613) ((-297 . -343) 111597) ((-462 . -33) T) ((-461 . -33) T) ((-919 . -1050) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 111528) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-958 . -280) 111436) ((-823 . -1003) 111414) ((-49 . -961) T) ((-1164 . -21) T) ((-1164 . -25) T) ((-1072 . -509) 111393) ((-1071 . -1113) 111372) ((-530 . -961) T) ((-481 . -961) T) ((-1065 . -1113) 111351) ((-331 . -952) 111335) ((-292 . -952) 111319) ((-939 . -262) T) ((-349 . -808) 111301) ((-1071 . -509) 111252) ((-1065 . -509) 111203) ((-919 . -37) 111148) ((-731 . -1015) T) ((-832 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1027 . -509) 111127) ((-324 . -262) T) ((-584 . -628) 111111) ((-349 . -952) 111071) ((-1021 . -968) T) ((-98 . -120) 111055) ((-731 . -23) T) ((-1154 . -258) 111032) ((-377 . -280) 110997) ((-1174 . -1169) 110973) ((-1172 . -1169) 110952) ((-1141 . -1003) T) ((-794 . -557) 110934) ((-766 . -952) 110903) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -918) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 110887) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1175 . -37) 110857) ((-112 . -258) 110787) ((-1154 . -19) 110771) ((-1154 . -550) 110748) ((-1165 . -1003) T) ((-984 . -1003) T) ((-904 . -1003) T) ((-884 . -123) T) ((-670 . -1003) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1050) 110726) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -961) T) ((-265 . -97) 110509) ((-128 . -1003) T) ((-632 . -918) T) ((-89 . -1109) T) ((-122 . -557) 110441) ((-116 . -557) 110373) ((-1180 . -156) T) ((-1071 . -333) 110352) ((-1065 . -333) 110331) ((-286 . -1003) T) ((-388 . -123) T) ((-283 . -1003) T) ((-377 . -37) 110283) ((-1034 . -97) T) ((-1141 . -650) 110140) ((-591 . -968) T) ((-289 . -132) 110119) ((-289 . -134) 110098) ((-127 . -1003) T) ((-109 . -1003) T) ((-786 . -97) T) ((-529 . -557) 110080) ((-517 . -558) 109979) ((-517 . -557) 109961) ((-460 . -557) 109943) ((-460 . -558) 109888) ((-452 . -23) T) ((-450 . -779) 109839) ((-454 . -579) 109821) ((-192 . -579) 109803) ((-199 . -374) T) ((-599 . -585) 109787) ((-1070 . -842) 109766) ((-664 . -1015) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -967) 109711) ((-1057 . -1056) T) ((-1046 . -102) 109695) ((-1072 . -1015) T) ((-1071 . -1015) T) ((-479 . -952) 109679) ((-1065 . -1015) T) ((-1027 . -1015) T) ((-313 . -106) 109596) ((-920 . -1113) T) ((-121 . -1109) T) ((-836 . -1113) T) ((-627 . -258) NIL) ((-1155 . -557) 109578) ((-1072 . -23) T) ((-1071 . -23) T) ((-920 . -509) T) ((-1065 . -23) T) ((-836 . -509) T) ((-1041 . -205) 109562) ((-222 . -557) 109544) ((-1027 . -23) T) ((-982 . -1003) T) ((-731 . -123) T) ((-286 . -650) 109454) ((-283 . -650) 109383) ((-632 . -557) 109365) ((-632 . -558) 109310) ((-377 . -370) 109294) ((-408 . -1003) T) ((-454 . -25) T) ((-454 . -21) T) ((-1021 . -1003) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 109278) ((-647 . -952) 109247) ((-1154 . -557) 109159) ((-1154 . -558) 109120) ((-1141 . -156) T) ((-219 . -33) T) ((-848 . -891) T) ((-1096 . -1109) T) ((-599 . -723) 109099) ((-599 . -726) 109078) ((-368 . -365) T) ((-486 . -97) 109056) ((-950 . -1003) T) ((-196 . -911) 109040) ((-469 . -97) T) ((-564 . -557) 109022) ((-44 . -779) NIL) ((-564 . -558) 108999) ((-950 . -554) 108974) ((-823 . -478) 108907) ((-313 . -961) T) ((-112 . -558) NIL) ((-112 . -557) 108889) ((-796 . -1109) T) ((-607 . -387) 108873) ((-607 . -1024) 108818) ((-465 . -138) 108800) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -967) 108745) ((-796 . -806) 108729) ((-796 . -808) 108654) ((-645 . -968) T) ((-627 . -918) NIL) ((-1139 . -46) 108624) ((-1118 . -46) 108601) ((-1040 . -926) 108572) ((-199 . -842) T) ((-39 . -106) 108489) ((-796 . -952) 108356) ((-1021 . -650) 108343) ((-1008 . -557) 108325) ((-987 . -134) 108304) ((-987 . -132) 108255) ((-920 . -333) T) ((-289 . -1098) 108221) ((-349 . -278) T) ((-289 . -1095) 108187) ((-286 . -156) 108166) ((-283 . -156) T) ((-919 . -205) 108143) ((-836 . -333) T) ((-530 . -1171) 108130) ((-481 . -1171) 108107) ((-329 . -134) 108086) ((-329 . -132) 108037) ((-323 . -134) 108016) ((-323 . -132) 107967) ((-552 . -1086) 107943) ((-315 . -134) 107922) ((-315 . -132) 107873) ((-289 . -34) 107839) ((-444 . -1086) 107818) ((0 . |EnumerationCategory|) T) ((-289 . -91) 107784) ((-349 . -937) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 107734) ((-591 . -1003) T) ((-552 . -102) 107681) ((-452 . -123) T) ((-444 . -102) 107631) ((-214 . -1015) 107562) ((-796 . -347) 107546) ((-796 . -308) 107530) ((-214 . -23) 107401) ((-972 . -842) T) ((-972 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1050) T) ((-297 . -33) T) ((-43 . -387) 107385) ((-360 . -677) 107369) ((-1165 . -478) 107302) ((-664 . -123) T) ((-1147 . -509) 107281) ((-1140 . -1113) 107260) ((-1140 . -509) 107211) ((-670 . -478) 107144) ((-1119 . -1113) 107123) ((-1119 . -509) 107074) ((-815 . -1003) T) ((-131 . -773) T) ((-1118 . -1109) 107053) ((-1118 . -808) 106926) ((-1118 . -806) 106896) ((-486 . -280) 106834) ((-1072 . -123) T) ((-128 . -478) NIL) ((-1071 . -123) T) ((-1065 . -123) T) ((-1027 . -123) T) ((-939 . -918) T) ((-321 . -37) 106799) ((-920 . -1015) T) ((-836 . -1015) T) ((-80 . -557) 106781) ((-39 . -961) T) ((-794 . -967) 106768) ((-920 . -23) T) ((-796 . -822) 106727) ((-634 . -97) T) ((-919 . -319) NIL) ((-548 . -1109) T) ((-888 . -23) T) ((-836 . -23) T) ((-794 . -106) 106712) ((-397 . -1015) T) ((-443 . -46) 106682) ((-125 . -97) T) ((-39 . -207) 106654) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 106633) ((-542 . -509) 106612) ((-627 . -557) 106594) ((-627 . -558) 106502) ((-286 . -478) 106468) ((-283 . -478) 106219) ((-1139 . -952) 106203) ((-1118 . -952) 105992) ((-915 . -381) 105976) ((-397 . -23) T) ((-1021 . -156) T) ((-1141 . -262) T) ((-591 . -650) 105946) ((-131 . -1003) T) ((-47 . -918) T) ((-377 . -205) 105930) ((-266 . -209) 105880) ((-795 . -842) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1118 . -308) 105850) ((-1118 . -347) 105820) ((-196 . -1022) 105804) ((-1154 . -260) 105781) ((-1104 . -585) 105706) ((-884 . -21) T) ((-884 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 105671) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-915 . -968) T) ((-794 . -961) T) ((-706 . -97) T) ((-1140 . -333) 105650) ((-1139 . -822) 105556) ((-1119 . -333) 105535) ((-1118 . -822) 105386) ((-939 . -557) 105368) ((-377 . -760) 105321) ((-1072 . -458) 105287) ((-153 . -842) 105218) ((-1071 . -458) 105184) ((-1065 . -458) 105150) ((-645 . -1003) T) ((-1027 . -458) 105116) ((-529 . -967) 105103) ((-517 . -967) 105090) ((-460 . -967) 105055) ((-286 . -262) 105034) ((-283 . -262) T) ((-324 . -557) 105016) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 104995) ((-529 . -106) 104980) ((-517 . -106) 104965) ((-460 . -106) 104914) ((-1074 . -808) 104881) ((-823 . -456) 104865) ((-47 . -557) 104847) ((-47 . -558) 104792) ((-214 . -123) 104663) ((-1128 . -842) 104642) ((-748 . -1113) 104621) ((-950 . -478) 104429) ((-358 . -557) 104411) ((-748 . -509) 104342) ((-534 . -585) 104317) ((-237 . -46) 104289) ((-221 . -46) 104246) ((-489 . -473) 104223) ((-916 . -1109) T) ((-632 . -967) 104188) ((-1147 . -1015) T) ((-1140 . -1015) T) ((-1119 . -1015) T) ((-919 . -340) 104160) ((-107 . -338) T) ((-443 . -822) 104066) ((-1147 . -23) T) ((-1140 . -23) T) ((-826 . -557) 104048) ((-89 . -102) 104032) ((-1104 . -659) T) ((-827 . -779) 103983) ((-634 . -1050) T) ((-632 . -106) 103932) ((-1119 . -23) T) ((-543 . -1015) T) ((-542 . -1015) T) ((-645 . -650) 103761) ((-644 . -659) T) ((-1021 . -262) T) ((-920 . -123) T) ((-454 . -779) T) ((-888 . -123) T) ((-836 . -123) T) ((-529 . -961) T) ((-192 . -779) T) ((-517 . -961) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -961) T) ((-543 . -23) T) ((-313 . -1171) 103738) ((-289 . -421) 103717) ((-309 . -280) 103704) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 103678) ((-219 . -926) 103662) ((-796 . -278) T) ((-1176 . -1166) 103646) ((-634 . -37) 103633) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1049 . -209) 103583) ((-992 . -831) 103562) ((-111 . -37) 103549) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -937) 103528) ((-1165 . -456) 103512) ((-714 . -831) 103491) ((-712 . -831) 103470) ((-1083 . -1109) T) ((-423 . -831) 103449) ((-670 . -456) 103433) ((-992 . -585) 103358) ((-714 . -585) 103283) ((-564 . -967) 103270) ((-447 . -1109) T) ((-313 . -338) T) ((-128 . -456) 103252) ((-712 . -585) 103177) ((-1040 . -1109) T) ((-430 . -585) 103148) ((-237 . -808) 103007) ((-221 . -808) NIL) ((-112 . -967) 102952) ((-423 . -585) 102877) ((-601 . -952) 102854) ((-564 . -106) 102839) ((-325 . -952) 102823) ((-322 . -952) 102807) ((-314 . -952) 102791) ((-237 . -952) 102637) ((-221 . -952) 102515) ((-112 . -106) 102432) ((-57 . -1109) T) ((-482 . -1109) T) ((-480 . -1109) T) ((-462 . -1109) T) ((-461 . -1109) T) ((-407 . -557) 102414) ((-404 . -557) 102396) ((-3 . -97) T) ((-942 . -1103) 102365) ((-765 . -97) T) ((-623 . -55) 102323) ((-632 . -961) T) ((-49 . -585) 102297) ((-261 . -421) T) ((-445 . -1103) 102266) ((0 . -97) T) ((-530 . -585) 102231) ((-481 . -585) 102176) ((-48 . -97) T) ((-832 . -952) 102163) ((-632 . -217) T) ((-987 . -379) 102142) ((-664 . -579) 102090) ((-915 . -1003) T) ((-645 . -156) 101981) ((-454 . -909) 101963) ((-237 . -347) 101947) ((-221 . -347) 101931) ((-369 . -1003) T) ((-309 . -37) 101915) ((-941 . -97) 101893) ((-192 . -909) 101875) ((-157 . -37) 101807) ((-1139 . -278) 101786) ((-1118 . -278) 101765) ((-595 . -659) T) ((-94 . -557) 101747) ((-1065 . -579) 101699) ((-452 . -25) T) ((-452 . -21) T) ((-1118 . -937) 101652) ((-564 . -961) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -822) 101598) ((-221 . -822) 101575) ((-112 . -961) T) ((-748 . -1015) T) ((-992 . -659) T) ((-564 . -207) 101554) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1015) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-984 . -258) 101533) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -967) 101483) ((-1147 . -123) T) ((-1140 . -123) T) ((-1119 . -123) T) ((-1041 . -381) 101467) ((-575 . -337) 101399) ((-551 . -337) 101331) ((-1055 . -1048) 101315) ((-98 . -1003) 101293) ((-1072 . -25) T) ((-1072 . -21) T) ((-1071 . -21) T) ((-915 . -650) 101241) ((-197 . -585) 101208) ((-627 . -106) 101135) ((-49 . -659) T) ((-1071 . -25) T) ((-321 . -319) T) ((-1065 . -21) T) ((-987 . -421) 101086) ((-1065 . -25) T) ((-645 . -478) 101034) ((-530 . -659) T) ((-481 . -659) T) ((-1027 . -21) T) ((-1027 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 101013) ((-283 . -258) 100879) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1180 . -557) 100861) ((-1180 . -558) 100843) ((-987 . -372) 100822) ((-950 . -456) 100754) ((-517 . -727) T) ((-517 . -724) T) ((-973 . -209) 100700) ((-329 . -372) 100651) ((-323 . -372) 100602) ((-315 . -372) 100553) ((-1167 . -1015) T) ((-1167 . -23) T) ((-1156 . -97) T) ((-1041 . -968) T) ((-607 . -677) 100537) ((-1076 . -132) 100516) ((-1076 . -134) 100495) ((-1045 . -1003) T) ((-1045 . -980) 100464) ((-67 . -1109) T) ((-939 . -967) 100401) ((-790 . -968) T) ((-214 . -579) 100309) ((-627 . -961) T) ((-324 . -967) 100254) ((-59 . -1109) T) ((-939 . -106) 100163) ((-823 . -557) 100095) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 100074) ((-632 . -727) T) ((-632 . -724) T) ((-919 . -381) 100051) ((-324 . -106) 99968) ((-349 . -842) T) ((-377 . -777) 99947) ((-645 . -262) 99858) ((-197 . -659) T) ((-1147 . -458) 99824) ((-1140 . -458) 99790) ((-1119 . -458) 99756) ((-286 . -918) 99735) ((-196 . -1003) 99713) ((-289 . -890) 99676) ((-100 . -97) T) ((-47 . -967) 99641) ((-1176 . -97) T) ((-351 . -97) T) ((-47 . -106) 99590) ((-920 . -579) 99572) ((-1141 . -557) 99554) ((-489 . -97) T) ((-465 . -97) T) ((-1034 . -1035) 99538) ((-139 . -1161) 99522) ((-219 . -1109) T) ((-1070 . -1113) 99501) ((-1026 . -1113) 99480) ((-214 . -21) 99391) ((-214 . -25) 99243) ((-122 . -114) 99227) ((-116 . -114) 99211) ((-43 . -677) 99195) ((-1070 . -509) 99106) ((-1026 . -509) 99037) ((-950 . -258) 99012) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-998 . -1109) T) ((-224 . -1015) 98943) ((-223 . -1015) 98874) ((-939 . -961) T) ((-919 . -968) T) ((-313 . -585) 98819) ((-562 . -37) 98803) ((-1165 . -557) 98765) ((-1165 . -558) 98726) ((-984 . -557) 98708) ((-939 . -217) T) ((-324 . -961) T) ((-747 . -1161) 98678) ((-224 . -23) T) ((-223 . -23) T) ((-904 . -557) 98660) ((-670 . -558) 98621) ((-670 . -557) 98603) ((-731 . -779) 98582) ((-915 . -478) 98494) ((-324 . -207) T) ((-324 . -217) T) ((-1058 . -138) 98441) ((-920 . -25) T) ((-128 . -557) 98423) ((-128 . -558) 98382) ((-832 . -278) T) ((-920 . -21) T) ((-888 . -25) T) ((-836 . -21) T) ((-836 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 98366) ((-47 . -961) T) ((-1174 . -1166) 98350) ((-1172 . -1166) 98334) ((-950 . -550) 98309) ((-286 . -558) 98170) ((-286 . -557) 98152) ((-283 . -558) NIL) ((-283 . -557) 98134) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 98095) ((-503 . -209) 98045) ((-127 . -557) 98027) ((-109 . -557) 98009) ((-446 . -37) 97974) ((-1176 . -1173) 97953) ((-1167 . -123) T) ((-1175 . -968) T) ((-989 . -97) T) ((-86 . -1109) T) ((-465 . -280) NIL) ((-916 . -102) 97937) ((-811 . -1003) T) ((-807 . -1003) T) ((-1154 . -588) 97921) ((-1154 . -343) 97905) ((-297 . -1109) T) ((-540 . -779) T) ((-1041 . -1003) T) ((-1041 . -964) 97845) ((-98 . -478) 97778) ((-849 . -557) 97760) ((-313 . -659) T) ((-30 . -557) 97742) ((-790 . -1003) T) ((-772 . -968) 97721) ((-39 . -585) 97666) ((-199 . -1113) T) ((-377 . -968) T) ((-1057 . -138) 97648) ((-915 . -262) 97599) ((-199 . -509) T) ((-289 . -1136) 97583) ((-289 . -1133) 97553) ((-1083 . -1086) 97532) ((-982 . -557) 97514) ((-584 . -138) 97498) ((-572 . -138) 97444) ((-1083 . -102) 97394) ((-447 . -1086) 97373) ((-454 . -134) T) ((-454 . -132) NIL) ((-1021 . -558) 97288) ((-408 . -557) 97270) ((-192 . -134) T) ((-192 . -132) NIL) ((-1021 . -557) 97252) ((-51 . -97) T) ((-1119 . -579) 97204) ((-447 . -102) 97154) ((-910 . -23) T) ((-1176 . -37) 97124) ((-1070 . -1015) T) ((-1026 . -1015) T) ((-972 . -1113) T) ((-783 . -1015) T) ((-874 . -1113) 97103) ((-449 . -1113) 97082) ((-664 . -779) 97061) ((-972 . -509) T) ((-874 . -509) 96992) ((-1070 . -23) T) ((-1026 . -23) T) ((-783 . -23) T) ((-449 . -509) 96923) ((-1041 . -650) 96855) ((-1045 . -478) 96788) ((-950 . -558) NIL) ((-950 . -557) 96770) ((-790 . -650) 96740) ((-1104 . -46) 96709) ((-224 . -123) T) ((-223 . -123) T) ((-1007 . -1003) T) ((-919 . -1003) T) ((-60 . -557) 96691) ((-1065 . -779) NIL) ((-939 . -724) T) ((-939 . -727) T) ((-1180 . -967) 96678) ((-1180 . -106) 96663) ((-794 . -585) 96650) ((-1147 . -25) T) ((-1147 . -21) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-942 . -138) 96634) ((-796 . -752) 96613) ((-796 . -842) T) ((-645 . -258) 96540) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 96473) ((-542 . -25) T) ((-445 . -138) 96457) ((-432 . -138) 96441) ((-843 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1003) T) ((-703 . -659) T) ((-199 . -333) T) ((-1055 . -1003) 96419) ((-795 . -1113) T) ((-591 . -557) 96401) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1161) 96385) ((-607 . -97) T) ((-323 . -1161) 96369) ((-315 . -1161) 96353) ((-1175 . -1003) T) ((-483 . -779) 96332) ((-749 . -421) 96311) ((-958 . -1003) T) ((-958 . -980) 96240) ((-942 . -893) 96209) ((-751 . -1015) T) ((-919 . -650) 96154) ((-356 . -1015) T) ((-445 . -893) 96123) ((-432 . -893) 96092) ((-105 . -138) 96074) ((-71 . -557) 96056) ((-815 . -557) 96038) ((-987 . -657) 96017) ((-1180 . -961) T) ((-748 . -579) 95965) ((-265 . -968) 95908) ((-153 . -1113) 95813) ((-199 . -1015) T) ((-294 . -23) T) ((-1065 . -909) 95765) ((-772 . -1003) T) ((-1027 . -673) 95744) ((-1141 . -967) 95633) ((-1139 . -842) 95612) ((-794 . -659) T) ((-153 . -509) 95523) ((-1118 . -842) 95502) ((-529 . -585) 95489) ((-377 . -1003) T) ((-517 . -585) 95476) ((-236 . -1003) T) ((-460 . -585) 95441) ((-199 . -23) T) ((-1118 . -752) 95394) ((-1174 . -97) T) ((-324 . -1171) 95371) ((-1172 . -97) T) ((-1141 . -106) 95221) ((-131 . -557) 95203) ((-910 . -123) T) ((-43 . -97) T) ((-214 . -779) 95154) ((-1128 . -1113) 95133) ((-98 . -456) 95117) ((-1175 . -650) 95087) ((-992 . -46) 95049) ((-972 . -1015) T) ((-874 . -1015) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 95026) ((-712 . -46) 94998) ((-1128 . -509) 94909) ((-324 . -338) T) ((-449 . -1015) T) ((-1070 . -123) T) ((-1026 . -123) T) ((-423 . -46) 94888) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-972 . -23) T) ((-874 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1041 . -478) 94821) ((-534 . -952) 94805) ((-449 . -23) T) ((-321 . -968) T) ((-1104 . -822) 94786) ((-607 . -280) 94724) ((-1016 . -1161) 94694) ((-632 . -585) 94659) ((-919 . -156) T) ((-884 . -132) 94638) ((-575 . -1003) T) ((-551 . -1003) T) ((-884 . -134) 94617) ((-920 . -779) T) ((-668 . -134) 94596) ((-668 . -132) 94575) ((-888 . -779) T) ((-443 . -842) 94554) ((-286 . -967) 94464) ((-283 . -967) 94393) ((-915 . -258) 94351) ((-377 . -650) 94303) ((-634 . -777) T) ((-1141 . -961) T) ((-286 . -106) 94192) ((-283 . -106) 94077) ((-885 . -97) T) ((-747 . -97) 93888) ((-645 . -558) NIL) ((-645 . -557) 93870) ((-595 . -952) 93768) ((-1141 . -296) 93712) ((-950 . -260) 93687) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 93638) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1045 . -456) 93622) ((-992 . -808) NIL) ((-795 . -1015) T) ((-112 . -831) NIL) ((-1174 . -1173) 93598) ((-1172 . -1173) 93577) ((-714 . -808) NIL) ((-712 . -808) 93436) ((-1167 . -25) T) ((-1167 . -21) T) ((-1107 . -97) 93414) ((-1009 . -365) T) ((-564 . -585) 93401) ((-423 . -808) NIL) ((-611 . -97) 93379) ((-992 . -952) 93209) ((-795 . -23) T) ((-714 . -952) 93071) ((-712 . -952) 92930) ((-112 . -585) 92875) ((-423 . -952) 92753) ((-586 . -952) 92737) ((-567 . -97) T) ((-196 . -456) 92721) ((-1154 . -33) T) ((-575 . -650) 92705) ((-551 . -650) 92689) ((-607 . -37) 92649) ((-289 . -97) T) ((-83 . -557) 92631) ((-49 . -952) 92615) ((-1021 . -967) 92602) ((-992 . -347) 92586) ((-58 . -55) 92548) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -952) 92535) ((-481 . -952) 92512) ((-632 . -659) T) ((-286 . -961) 92403) ((-294 . -123) T) ((-283 . -961) T) ((-153 . -1015) T) ((-714 . -347) 92387) ((-712 . -347) 92371) ((-44 . -138) 92321) ((-920 . -909) 92303) ((-423 . -347) 92287) ((-377 . -156) T) ((-286 . -217) 92266) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1003) 92049) ((-199 . -123) T) ((-1021 . -106) 92034) ((-153 . -23) T) ((-731 . -134) 92013) ((-731 . -132) 91992) ((-224 . -579) 91900) ((-223 . -579) 91808) ((-289 . -256) 91774) ((-1055 . -478) 91707) ((-1034 . -1003) T) ((-199 . -970) T) ((-747 . -280) 91645) ((-992 . -822) 91581) ((-714 . -822) 91525) ((-712 . -822) 91509) ((-1174 . -37) 91479) ((-1172 . -37) 91449) ((-1128 . -1015) T) ((-784 . -1015) T) ((-423 . -822) 91426) ((-786 . -1003) T) ((-1128 . -23) T) ((-524 . -1015) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -842) T) ((-322 . -842) T) ((-261 . -97) T) ((-314 . -842) T) ((-972 . -123) T) ((-874 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -831) NIL) ((-958 . -478) 91310) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 91248) ((-575 . -694) T) ((-551 . -694) T) ((-1119 . -779) NIL) ((-919 . -262) T) ((-224 . -21) T) ((-627 . -585) 91198) ((-321 . -1003) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 91182) ((-2 . -97) T) ((-832 . -842) T) ((-450 . -1161) 91152) ((-197 . -952) 91129) ((-1021 . -961) T) ((-644 . -278) T) ((-265 . -650) 91071) ((-634 . -968) T) ((-454 . -421) T) ((-377 . -478) 90983) ((-192 . -421) T) ((-1021 . -207) T) ((-266 . -138) 90933) ((-915 . -558) 90894) ((-915 . -557) 90876) ((-906 . -557) 90858) ((-111 . -968) T) ((-591 . -967) 90842) ((-199 . -458) T) ((-369 . -557) 90824) ((-369 . -558) 90801) ((-965 . -1161) 90771) ((-591 . -106) 90750) ((-1041 . -456) 90734) ((-747 . -37) 90704) ((-61 . -410) T) ((-61 . -365) T) ((-1058 . -97) T) ((-795 . -123) T) ((-451 . -97) 90682) ((-1180 . -338) T) ((-987 . -97) T) ((-971 . -97) T) ((-321 . -650) 90627) ((-664 . -134) 90606) ((-664 . -132) 90585) ((-939 . -585) 90522) ((-486 . -1003) 90500) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1003) T) ((-324 . -585) 90445) ((-1070 . -579) 90393) ((-1026 . -579) 90341) ((-355 . -473) 90320) ((-765 . -777) 90299) ((-349 . -1113) T) ((-627 . -659) T) ((-309 . -968) T) ((-1119 . -909) 90251) ((-157 . -968) T) ((-98 . -557) 90183) ((-1072 . -132) 90162) ((-1072 . -134) 90141) ((-349 . -509) T) ((-1071 . -134) 90120) ((-1071 . -132) 90099) ((-1065 . -132) 90006) ((-377 . -262) T) ((-1065 . -134) 89913) ((-1027 . -134) 89892) ((-1027 . -132) 89871) ((-289 . -37) 89712) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -961) T) ((-47 . -585) 89677) ((-910 . -21) T) ((-122 . -926) 89661) ((-116 . -926) 89645) ((-910 . -25) T) ((-823 . -114) 89629) ((-1057 . -97) T) ((-748 . -779) 89608) ((-1128 . -123) T) ((-1070 . -25) T) ((-1070 . -21) T) ((-784 . -123) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 89587) ((-584 . -97) 89565) ((-572 . -97) T) ((-1058 . -280) 89360) ((-524 . -123) T) ((-562 . -777) 89339) ((-1055 . -456) 89323) ((-1049 . -138) 89273) ((-1045 . -557) 89235) ((-1045 . -558) 89196) ((-939 . -723) T) ((-939 . -726) T) ((-939 . -659) T) ((-451 . -280) 89134) ((-422 . -387) 89104) ((-321 . -156) T) ((-261 . -37) 89091) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -952) 89068) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -967) 88891) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 88693) ((-607 . -205) 88677) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 88626) ((-103 . -280) NIL) ((-70 . -365) T) ((-1016 . -97) 88437) ((-765 . -381) 88421) ((-1021 . -727) T) ((-1021 . -724) T) ((-634 . -1003) T) ((-349 . -333) T) ((-153 . -458) 88399) ((-196 . -557) 88331) ((-125 . -1003) T) ((-111 . -1003) T) ((-47 . -659) T) ((-958 . -456) 88296) ((-128 . -395) 88278) ((-128 . -338) T) ((-942 . -97) T) ((-476 . -473) 88257) ((-445 . -97) T) ((-432 . -97) T) ((-949 . -1015) T) ((-1072 . -34) 88223) ((-1072 . -91) 88189) ((-1072 . -1098) 88155) ((-1072 . -1095) 88121) ((-1057 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-987 . -1050) 88100) ((-1071 . -1095) 88066) ((-1071 . -1098) 88032) ((-949 . -23) T) ((-1071 . -91) 87998) ((-524 . -458) T) ((-1071 . -34) 87964) ((-1065 . -1095) 87930) ((-1065 . -1098) 87896) ((-1065 . -91) 87862) ((-331 . -1015) T) ((-329 . -1050) 87841) ((-323 . -1050) 87820) ((-315 . -1050) 87799) ((-1065 . -34) 87765) ((-1027 . -34) 87731) ((-1027 . -91) 87697) ((-103 . -1050) T) ((-1027 . -1098) 87663) ((-765 . -968) 87642) ((-584 . -280) 87580) ((-572 . -280) 87431) ((-1027 . -1095) 87397) ((-645 . -961) T) ((-972 . -579) 87379) ((-987 . -37) 87247) ((-874 . -579) 87195) ((-920 . -134) T) ((-920 . -132) NIL) ((-349 . -1015) T) ((-294 . -25) T) ((-292 . -23) T) ((-865 . -779) 87174) ((-645 . -296) 87151) ((-449 . -579) 87099) ((-39 . -952) 86976) ((-634 . -650) 86963) ((-645 . -207) T) ((-309 . -1003) T) ((-157 . -1003) T) ((-301 . -779) T) ((-388 . -421) 86913) ((-349 . -23) T) ((-329 . -37) 86878) ((-323 . -37) 86843) ((-315 . -37) 86808) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1015) T) ((-103 . -37) 86758) ((-759 . -1015) T) ((-706 . -1003) T) ((-111 . -650) 86745) ((-608 . -952) 86729) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1055 . -258) 86706) ((-1016 . -280) 86644) ((-1005 . -209) 86628) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 86605) ((-590 . -781) 86589) ((-972 . -21) T) ((-972 . -25) T) ((-747 . -205) 86559) ((-874 . -25) T) ((-874 . -21) T) ((-562 . -968) T) ((-449 . -25) T) ((-449 . -21) T) ((-942 . -280) 86497) ((-811 . -557) 86479) ((-807 . -557) 86461) ((-224 . -779) 86412) ((-223 . -779) 86363) ((-486 . -478) 86296) ((-795 . -579) 86273) ((-445 . -280) 86211) ((-432 . -280) 86149) ((-321 . -262) T) ((-1055 . -1143) 86133) ((-1041 . -557) 86095) ((-1041 . -558) 86056) ((-1039 . -97) T) ((-915 . -967) 85952) ((-39 . -822) 85904) ((-1055 . -550) 85881) ((-1180 . -585) 85868) ((-973 . -138) 85814) ((-796 . -1113) T) ((-915 . -106) 85689) ((-309 . -650) 85673) ((-790 . -557) 85655) ((-157 . -650) 85587) ((-377 . -258) 85545) ((-796 . -509) T) ((-103 . -370) 85527) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 85338) ((-94 . -442) T) ((-111 . -156) T) ((-1016 . -37) 85308) ((-153 . -579) 85256) ((-965 . -97) T) ((-795 . -25) T) ((-747 . -212) 85235) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 85213) ((-122 . -1109) T) ((-116 . -1109) T) ((-949 . -123) T) ((-607 . -337) 85197) ((-915 . -961) T) ((-1128 . -579) 85145) ((-1007 . -557) 85127) ((-919 . -557) 85109) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1003) T) ((-919 . -558) 85093) ((-915 . -217) 85072) ((-915 . -207) 85051) ((-1180 . -659) T) ((-1147 . -132) 85030) ((-765 . -1003) T) ((-1147 . -134) 85009) ((-1140 . -134) 84988) ((-1140 . -132) 84967) ((-1139 . -1113) 84946) ((-1119 . -132) 84853) ((-1119 . -134) 84760) ((-1118 . -1113) 84739) ((-349 . -123) T) ((-517 . -808) 84721) ((0 . -1003) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1003) T) ((-1141 . -585) 84610) ((-1139 . -509) 84561) ((-647 . -1015) T) ((-1118 . -509) 84512) ((-517 . -952) 84494) ((-542 . -134) 84473) ((-542 . -132) 84452) ((-460 . -952) 84395) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 84377) ((-1176 . -968) T) ((-349 . -970) T) ((-941 . -1003) 84355) ((-823 . -33) T) ((-450 . -280) 84293) ((-1055 . -558) 84254) ((-1055 . -557) 84186) ((-1070 . -779) 84165) ((-44 . -97) T) ((-1026 . -779) 84144) ((-749 . -97) T) ((-1128 . -25) T) ((-1128 . -21) T) ((-784 . -25) T) ((-43 . -337) 84128) ((-784 . -21) T) ((-664 . -421) 84079) ((-1175 . -557) 84061) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1003) T) ((-965 . -280) 83999) ((-562 . -1003) T) ((-632 . -808) 83981) ((-1154 . -1109) T) ((-201 . -280) 83919) ((-131 . -338) T) ((-958 . -558) 83861) ((-958 . -557) 83804) ((-283 . -831) NIL) ((-632 . -952) 83749) ((-644 . -842) T) ((-443 . -1113) 83728) ((-1071 . -421) 83707) ((-1065 . -421) 83686) ((-300 . -97) T) ((-796 . -1015) T) ((-286 . -585) 83508) ((-283 . -585) 83437) ((-443 . -509) 83388) ((-309 . -478) 83354) ((-503 . -138) 83304) ((-39 . -278) T) ((-772 . -557) 83286) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-987 . -205) 83256) ((-476 . -97) T) ((-377 . -558) 83059) ((-377 . -557) 83041) ((-236 . -557) 83023) ((-111 . -262) T) ((-1141 . -659) T) ((-1139 . -333) 83002) ((-1118 . -333) 82981) ((-1165 . -33) T) ((-112 . -1109) T) ((-103 . -205) 82963) ((-1076 . -97) T) ((-446 . -1003) T) ((-486 . -456) 82947) ((-670 . -33) T) ((-450 . -37) 82917) ((-128 . -33) T) ((-112 . -806) 82894) ((-112 . -808) NIL) ((-564 . -952) 82779) ((-583 . -779) 82758) ((-1164 . -97) T) ((-266 . -97) T) ((-645 . -338) 82737) ((-112 . -952) 82714) ((-360 . -650) 82698) ((-562 . -650) 82682) ((-44 . -280) 82486) ((-748 . -132) 82465) ((-748 . -134) 82444) ((-1175 . -352) 82423) ((-751 . -779) T) ((-1156 . -1003) T) ((-1058 . -203) 82370) ((-356 . -779) 82349) ((-1147 . -1098) 82315) ((-1147 . -1095) 82281) ((-1140 . -1095) 82247) ((-479 . -123) T) ((-1140 . -1098) 82213) ((-1119 . -1095) 82179) ((-1119 . -1098) 82145) ((-1147 . -34) 82111) ((-1147 . -91) 82077) ((-575 . -557) 82046) ((-551 . -557) 82015) ((-199 . -779) T) ((-1140 . -91) 81981) ((-1140 . -34) 81947) ((-1139 . -1015) T) ((-1021 . -585) 81934) ((-1119 . -91) 81900) ((-1118 . -1015) T) ((-540 . -138) 81882) ((-987 . -319) 81861) ((-112 . -347) 81838) ((-112 . -308) 81815) ((-157 . -262) T) ((-1119 . -34) 81781) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 81631) ((-283 . -659) T) ((-443 . -333) 81610) ((-329 . -319) 81589) ((-323 . -319) 81568) ((-315 . -319) 81547) ((-286 . -442) 81526) ((-1139 . -23) T) ((-1118 . -23) T) ((-651 . -1015) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 81491) ((-44 . -254) 81441) ((-100 . -1003) T) ((-66 . -557) 81423) ((-789 . -97) T) ((-564 . -822) 81382) ((-1176 . -1003) T) ((-351 . -1003) T) ((-80 . -1109) T) ((-972 . -779) T) ((-874 . -779) 81361) ((-112 . -822) NIL) ((-714 . -842) 81340) ((-646 . -779) T) ((-489 . -1003) T) ((-465 . -1003) T) ((-325 . -1113) T) ((-322 . -1113) T) ((-314 . -1113) T) ((-237 . -1113) 81319) ((-221 . -1113) 81298) ((-1016 . -205) 81268) ((-449 . -779) 81247) ((-1041 . -967) 81231) ((-360 . -694) T) ((-1057 . -760) T) ((-627 . -1109) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 81162) ((-221 . -509) 81093) ((-1041 . -106) 81072) ((-422 . -677) 81042) ((-790 . -967) 81012) ((-749 . -37) 80949) ((-627 . -806) 80931) ((-627 . -808) 80913) ((-266 . -280) 80717) ((-832 . -1113) T) ((-607 . -381) 80701) ((-790 . -106) 80666) ((-627 . -952) 80611) ((-920 . -421) T) ((-832 . -509) T) ((-530 . -842) T) ((-443 . -1015) T) ((-481 . -842) T) ((-1055 . -260) 80588) ((-836 . -421) T) ((-63 . -557) 80570) ((-572 . -203) 80516) ((-443 . -23) T) ((-1021 . -726) T) ((-796 . -123) T) ((-1021 . -723) T) ((-1167 . -1169) 80495) ((-1021 . -659) T) ((-591 . -585) 80469) ((-265 . -557) 80211) ((-950 . -33) T) ((-747 . -777) 80190) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1176 . -650) 80160) ((-627 . -347) 80142) ((-627 . -308) 80124) ((-446 . -156) T) ((-351 . -650) 80094) ((-795 . -779) NIL) ((-517 . -937) T) ((-460 . -937) T) ((-1034 . -557) 80076) ((-1016 . -212) 80055) ((-189 . -97) T) ((-1049 . -97) T) ((-69 . -557) 80037) ((-1041 . -961) T) ((-1076 . -37) 79934) ((-786 . -557) 79916) ((-517 . -502) T) ((-607 . -968) T) ((-664 . -871) 79869) ((-1041 . -207) 79848) ((-989 . -1003) T) ((-949 . -25) T) ((-949 . -21) T) ((-919 . -967) 79793) ((-827 . -97) T) ((-790 . -961) T) ((-627 . -822) NIL) ((-325 . -299) 79777) ((-325 . -333) T) ((-322 . -299) 79761) ((-322 . -333) T) ((-314 . -299) 79745) ((-314 . -333) T) ((-454 . -97) T) ((-1164 . -37) 79715) ((-486 . -621) 79665) ((-192 . -97) T) ((-939 . -952) 79547) ((-919 . -106) 79464) ((-1072 . -890) 79434) ((-1071 . -890) 79397) ((-483 . -138) 79381) ((-987 . -340) 79360) ((-321 . -557) 79342) ((-292 . -21) T) ((-324 . -952) 79319) ((-292 . -25) T) ((-1065 . -890) 79289) ((-1027 . -890) 79256) ((-74 . -557) 79238) ((-632 . -278) T) ((-153 . -779) 79217) ((-832 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-832 . -299) 79204) ((-84 . -557) 79186) ((-632 . -937) T) ((-612 . -779) T) ((-1139 . -123) T) ((-1118 . -123) T) ((-823 . -926) 79170) ((-766 . -21) T) ((-47 . -952) 79113) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1174 . -968) T) ((-1172 . -968) T) ((-591 . -659) T) ((-1175 . -967) 79097) ((-1128 . -779) 79076) ((-747 . -381) 79045) ((-98 . -114) 79029) ((-51 . -1003) T) ((-848 . -557) 79011) ((-795 . -909) 78988) ((-755 . -97) T) ((-1175 . -106) 78967) ((-590 . -37) 78937) ((-524 . -779) T) ((-325 . -1015) T) ((-322 . -1015) T) ((-314 . -1015) T) ((-237 . -1015) T) ((-221 . -1015) T) ((-564 . -278) 78916) ((-1049 . -280) 78720) ((-601 . -23) T) ((-450 . -205) 78690) ((-139 . -968) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-919 . -961) T) ((-645 . -831) 78669) ((-919 . -207) 78641) ((-919 . -217) T) ((-112 . -937) NIL) ((-832 . -1015) T) ((-1140 . -421) 78620) ((-1119 . -421) 78599) ((-486 . -557) 78531) ((-645 . -585) 78456) ((-377 . -967) 78408) ((-469 . -557) 78390) ((-832 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 78321) ((-747 . -968) 78252) ((-670 . -1001) 78236) ((-1139 . -458) 78202) ((-1118 . -458) 78168) ((-128 . -1001) 78150) ((-446 . -262) T) ((-1175 . -961) T) ((-973 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 78129) ((-1070 . -132) 78108) ((-1070 . -134) 78087) ((-1026 . -134) 78066) ((-1026 . -132) 78045) ((-575 . -967) 78029) ((-551 . -967) 78013) ((-607 . -1003) T) ((-607 . -964) 77953) ((-1072 . -1146) 77937) ((-1072 . -1133) 77914) ((-454 . -1050) T) ((-1071 . -1138) 77875) ((-1071 . -1133) 77845) ((-1071 . -1136) 77829) ((-192 . -1050) T) ((-313 . -842) T) ((-750 . -239) 77813) ((-575 . -106) 77792) ((-551 . -106) 77771) ((-1065 . -1117) 77732) ((-772 . -961) 77711) ((-1065 . -1133) 77688) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1065 . -1115) 77672) ((-377 . -961) T) ((-289 . -968) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 77651) ((-645 . -659) T) ((-454 . -37) 77601) ((-192 . -37) 77551) ((-443 . -458) 77517) ((-1057 . -1043) T) ((-1004 . -97) T) ((-634 . -557) 77499) ((-634 . -558) 77414) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 77396) ((-111 . -557) 77378) ((-142 . -25) T) ((-1174 . -1003) T) ((-796 . -579) 77326) ((-1172 . -1003) T) ((-884 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 77277) ((-43 . -1003) T) ((-993 . -779) T) ((-601 . -123) T) ((-973 . -280) 77128) ((-607 . -650) 77112) ((-261 . -968) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1003) T) ((-44 . -203) 77062) ((-879 . -779) 77041) ((-915 . -585) 76979) ((-214 . -1161) 76949) ((-939 . -278) T) ((-265 . -967) 76871) ((-832 . -123) T) ((-39 . -842) T) ((-454 . -370) 76853) ((-324 . -278) T) ((-192 . -370) 76835) ((-987 . -381) 76819) ((-265 . -106) 76736) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 76718) ((-1141 . -46) 76662) ((-199 . -134) T) ((-157 . -557) 76644) ((-1016 . -777) 76623) ((-706 . -557) 76605) ((-552 . -209) 76552) ((-444 . -209) 76502) ((-1174 . -650) 76472) ((-47 . -278) T) ((-1172 . -650) 76442) ((-885 . -1003) T) ((-747 . -1003) 76253) ((-282 . -97) T) ((-823 . -1109) T) ((-47 . -937) T) ((-1118 . -579) 76161) ((-623 . -97) 76139) ((-43 . -650) 76123) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1107 . -1003) 76101) ((-321 . -967) 76046) ((-611 . -1003) 76024) ((-972 . -134) T) ((-874 . -134) 76003) ((-874 . -132) 75982) ((-731 . -97) T) ((-139 . -650) 75966) ((-449 . -134) 75945) ((-449 . -132) 75924) ((-321 . -106) 75841) ((-987 . -968) T) ((-292 . -779) 75820) ((-1147 . -890) 75790) ((-567 . -1003) T) ((-1140 . -890) 75753) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 75703) ((-329 . -968) T) ((-323 . -968) T) ((-315 . -968) T) ((-265 . -961) 75646) ((-1119 . -890) 75616) ((-349 . -779) T) ((-103 . -968) T) ((-915 . -659) T) ((-794 . -842) T) ((-772 . -727) 75595) ((-772 . -724) 75574) ((-388 . -280) 75513) ((-437 . -97) T) ((-542 . -890) 75483) ((-289 . -1003) T) ((-377 . -727) 75462) ((-377 . -724) 75441) ((-465 . -456) 75423) ((-1141 . -952) 75389) ((-1139 . -21) T) ((-1139 . -25) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-747 . -650) 75331) ((-632 . -374) T) ((-1165 . -1109) T) ((-1016 . -381) 75300) ((-919 . -338) NIL) ((-98 . -33) T) ((-670 . -1109) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 75284) ((-128 . -1109) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -961) T) ((-68 . -353) T) ((-68 . -365) T) ((-1064 . -97) T) ((-607 . -478) 75217) ((-623 . -280) 75155) ((-884 . -37) 75052) ((-668 . -37) 75022) ((-503 . -280) 74826) ((-286 . -1109) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1109) T) ((-261 . -1003) T) ((-1078 . -557) 74808) ((-644 . -1113) T) ((-1055 . -588) 74792) ((-1104 . -509) 74771) ((-644 . -509) T) ((-286 . -806) 74755) ((-286 . -808) 74680) ((-283 . -806) 74641) ((-283 . -808) NIL) ((-731 . -280) 74606) ((-289 . -650) 74447) ((-294 . -293) 74424) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 74398) ((-286 . -952) 74066) ((-199 . -1095) T) ((-199 . -1098) T) ((-3 . -557) 74048) ((-283 . -952) 73978) ((-2 . -1003) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73960) ((-1016 . -968) 73891) ((-529 . -842) T) ((-517 . -752) T) ((-517 . -842) T) ((-460 . -842) T) ((-127 . -952) 73875) ((-199 . -91) T) ((-153 . -134) 73854) ((-73 . -410) T) ((0 . -557) 73836) ((-73 . -365) T) ((-153 . -132) 73787) ((-199 . -34) T) ((-48 . -557) 73769) ((-446 . -968) T) ((-454 . -205) 73751) ((-451 . -886) 73735) ((-450 . -777) 73714) ((-192 . -205) 73696) ((-79 . -410) T) ((-79 . -365) T) ((-1045 . -33) T) ((-747 . -156) 73675) ((-664 . -97) T) ((-941 . -557) 73642) ((-465 . -258) 73617) ((-286 . -347) 73587) ((-283 . -347) 73548) ((-283 . -308) 73509) ((-748 . -871) 73456) ((-599 . -123) T) ((-1128 . -132) 73435) ((-1128 . -134) 73414) ((-1072 . -97) T) ((-1071 . -97) T) ((-1065 . -97) T) ((-1058 . -1003) T) ((-1027 . -97) T) ((-196 . -33) T) ((-261 . -650) 73401) ((-1058 . -554) 73377) ((-540 . -280) NIL) ((-451 . -1003) 73355) ((-360 . -557) 73337) ((-474 . -779) T) ((-1049 . -203) 73287) ((-1147 . -1146) 73271) ((-1147 . -1133) 73248) ((-1140 . -1138) 73209) ((-1140 . -1133) 73179) ((-1140 . -1136) 73163) ((-1119 . -1117) 73124) ((-1119 . -1133) 73101) ((-562 . -557) 73083) ((-1119 . -1115) 73067) ((-632 . -842) T) ((-1072 . -256) 73033) ((-1071 . -256) 72999) ((-1065 . -256) 72965) ((-987 . -1003) T) ((-971 . -1003) T) ((-47 . -273) T) ((-286 . -822) 72932) ((-283 . -822) NIL) ((-971 . -977) 72911) ((-1021 . -808) 72893) ((-731 . -37) 72877) ((-237 . -579) 72825) ((-221 . -579) 72773) ((-634 . -967) 72760) ((-542 . -1133) 72737) ((-1027 . -256) 72703) ((-289 . -156) 72634) ((-329 . -1003) T) ((-323 . -1003) T) ((-315 . -1003) T) ((-465 . -19) 72616) ((-1021 . -952) 72598) ((-1005 . -138) 72582) ((-103 . -1003) T) ((-111 . -967) 72569) ((-644 . -333) T) ((-465 . -550) 72544) ((-634 . -106) 72529) ((-406 . -97) T) ((-44 . -1048) 72479) ((-111 . -106) 72464) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 72397) ((-950 . -1109) T) ((-865 . -138) 72381) ((-483 . -97) 72331) ((-992 . -1113) 72310) ((-446 . -557) 72262) ((-446 . -558) 72184) ((-60 . -1109) T) ((-714 . -1113) 72163) ((-712 . -1113) 72142) ((-1070 . -421) 72073) ((-1057 . -1003) T) ((-1041 . -585) 72047) ((-992 . -509) 71978) ((-450 . -381) 71947) ((-564 . -842) 71926) ((-423 . -1113) 71905) ((-1026 . -421) 71856) ((-368 . -557) 71838) ((-611 . -478) 71771) ((-714 . -509) 71682) ((-712 . -509) 71613) ((-664 . -280) 71600) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 71531) ((-112 . -842) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1156 . -557) 71513) ((-1104 . -1015) T) ((-1104 . -23) T) ((-1065 . -280) 71398) ((-1027 . -280) 71385) ((-790 . -585) 71345) ((-987 . -650) 71213) ((-865 . -897) 71197) ((-261 . -156) T) ((-832 . -21) T) ((-832 . -25) T) ((-796 . -779) 71148) ((-644 . -1015) T) ((-644 . -23) T) ((-584 . -1003) 71126) ((-572 . -554) 71101) ((-572 . -1003) T) ((-530 . -1113) T) ((-481 . -1113) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 71053) ((-323 . -650) 71005) ((-157 . -967) 70937) ((-309 . -967) 70921) ((-103 . -650) 70871) ((-157 . -106) 70770) ((-315 . -650) 70722) ((-309 . -106) 70701) ((-247 . -1003) T) ((-246 . -1003) T) ((-245 . -1003) T) ((-244 . -1003) T) ((-634 . -961) T) ((-243 . -1003) T) ((-242 . -1003) T) ((-241 . -1003) T) ((-188 . -1003) T) ((-187 . -1003) T) ((-185 . -1003) T) ((-153 . -1098) 70679) ((-153 . -1095) 70657) ((-184 . -1003) T) ((-183 . -1003) T) ((-111 . -961) T) ((-182 . -1003) T) ((-179 . -1003) T) ((-634 . -207) T) ((-178 . -1003) T) ((-177 . -1003) T) ((-176 . -1003) T) ((-175 . -1003) T) ((-174 . -1003) T) ((-173 . -1003) T) ((-172 . -1003) T) ((-171 . -1003) T) ((-170 . -1003) T) ((-169 . -1003) T) ((-214 . -97) 70468) ((-153 . -34) 70446) ((-153 . -91) 70424) ((-591 . -952) 70322) ((-450 . -968) 70253) ((-1016 . -1003) 70064) ((-1041 . -33) T) ((-607 . -456) 70048) ((-71 . -1109) T) ((-100 . -557) 70030) ((-1176 . -557) 70012) ((-351 . -557) 69994) ((-524 . -1098) T) ((-524 . -1095) T) ((-664 . -37) 69843) ((-489 . -557) 69825) ((-483 . -280) 69763) ((-465 . -557) 69745) ((-465 . -558) 69727) ((-1065 . -1050) NIL) ((-942 . -980) 69696) ((-942 . -1003) T) ((-920 . -97) T) ((-888 . -97) T) ((-836 . -97) T) ((-815 . -952) 69673) ((-1041 . -659) T) ((-919 . -585) 69618) ((-445 . -1003) T) ((-432 . -1003) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-973 . -203) 69564) ((-1072 . -37) 69461) ((-790 . -659) T) ((-627 . -842) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1071 . -37) 69302) ((-309 . -961) T) ((-1065 . -37) 69098) ((-987 . -156) T) ((-157 . -961) T) ((-1027 . -37) 68995) ((-645 . -46) 68972) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68946) ((-462 . -55) 68896) ((-321 . -1171) 68873) ((-199 . -421) T) ((-289 . -262) 68824) ((-315 . -156) T) ((-157 . -217) T) ((-1118 . -779) 68723) ((-103 . -156) T) ((-796 . -909) 68707) ((-595 . -1015) T) ((-530 . -333) T) ((-530 . -299) 68694) ((-481 . -299) 68671) ((-481 . -333) T) ((-286 . -278) 68650) ((-283 . -278) T) ((-548 . -779) 68629) ((-1016 . -650) 68571) ((-483 . -254) 68555) ((-595 . -23) T) ((-388 . -205) 68539) ((-283 . -937) NIL) ((-306 . -23) T) ((-98 . -926) 68523) ((-44 . -35) 68502) ((-556 . -1003) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 68440) ((-992 . -1015) T) ((-1175 . -585) 68414) ((-714 . -1015) T) ((-712 . -1015) T) ((-423 . -1015) T) ((-972 . -421) T) ((-874 . -421) 68365) ((-105 . -1003) T) ((-992 . -23) T) ((-749 . -968) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 68316) ((-1058 . -478) 68064) ((-351 . -352) 68043) ((-1076 . -381) 68027) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67960) ((-261 . -262) T) ((-989 . -557) 67942) ((-377 . -831) 67921) ((-49 . -1015) T) ((-939 . -842) T) ((-919 . -659) T) ((-645 . -808) NIL) ((-530 . -1015) T) ((-481 . -1015) T) ((-772 . -585) 67894) ((-1104 . -123) T) ((-1065 . -370) 67846) ((-920 . -280) NIL) ((-747 . -456) 67830) ((-324 . -842) T) ((-1055 . -33) T) ((-377 . -585) 67782) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -952) 67665) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 67636) ((-1039 . -1003) T) ((-1167 . -1166) 67620) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1021 . -278) T) ((-1118 . -909) 67590) ((-47 . -842) T) ((-611 . -456) 67574) ((-224 . -1161) 67544) ((-223 . -1161) 67514) ((-1074 . -779) T) ((-1016 . -156) 67493) ((-1021 . -937) T) ((-958 . -33) T) ((-766 . -134) 67472) ((-766 . -132) 67451) ((-670 . -102) 67435) ((-556 . -124) T) ((-450 . -1003) 67246) ((-1076 . -968) T) ((-795 . -421) T) ((-83 . -1109) T) ((-214 . -37) 67216) ((-128 . -102) 67198) ((-645 . -347) 67182) ((-1021 . -502) T) ((-360 . -967) 67166) ((-1175 . -659) T) ((-1070 . -871) 67136) ((-51 . -557) 67118) ((-1026 . -871) 67085) ((-590 . -381) 67069) ((-1164 . -968) T) ((-562 . -967) 67053) ((-599 . -25) T) ((-599 . -21) T) ((-1057 . -478) NIL) ((-1147 . -97) T) ((-1140 . -97) T) ((-360 . -106) 67032) ((-196 . -227) 67016) ((-1119 . -97) T) ((-965 . -1003) T) ((-920 . -1050) T) ((-965 . -964) 66956) ((-750 . -1003) T) ((-313 . -1113) T) ((-575 . -585) 66940) ((-562 . -106) 66919) ((-551 . -585) 66903) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1003) T) ((-355 . -1003) T) ((-201 . -1003) 66881) ((-584 . -478) 66814) ((-572 . -478) 66622) ((-765 . -961) 66601) ((-583 . -138) 66585) ((-313 . -509) T) ((-645 . -822) 66529) ((-503 . -203) 66479) ((-1147 . -256) 66445) ((-987 . -262) 66396) ((-454 . -777) T) ((-197 . -1015) T) ((-1140 . -256) 66362) ((-1119 . -256) 66328) ((-920 . -37) 66278) ((-192 . -777) T) ((-1104 . -458) 66244) ((-836 . -37) 66196) ((-772 . -726) 66175) ((-772 . -723) 66154) ((-772 . -659) 66133) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 66064) ((-397 . -37) 66048) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 66027) ((-377 . -723) 66006) ((-377 . -659) T) ((-465 . -260) 65981) ((-446 . -967) 65946) ((-595 . -123) T) ((-1016 . -478) 65879) ((-306 . -123) T) ((-153 . -372) 65858) ((-450 . -650) 65800) ((-747 . -258) 65777) ((-446 . -106) 65726) ((-590 . -968) T) ((-1128 . -421) 65657) ((-992 . -123) T) ((-237 . -779) 65636) ((-221 . -779) 65615) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-965 . -650) 65557) ((-562 . -961) T) ((-942 . -478) 65490) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1003) T) ((-355 . -650) 65460) ((-749 . -1003) T) ((-445 . -478) 65393) ((-432 . -478) 65326) ((-422 . -337) 65296) ((-44 . -554) 65275) ((-286 . -273) T) ((-607 . -557) 65237) ((-57 . -779) 65216) ((-1119 . -280) 65101) ((-920 . -370) 65083) ((-747 . -550) 65060) ((-480 . -779) 65039) ((-461 . -779) 65018) ((-39 . -1113) T) ((-915 . -952) 64916) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64778) ((-313 . -299) 64755) ((-313 . -333) T) ((-292 . -293) 64732) ((-289 . -258) 64717) ((-39 . -509) T) ((-349 . -1095) T) ((-349 . -1098) T) ((-950 . -1086) 64692) ((-1083 . -209) 64642) ((-1065 . -205) 64594) ((-300 . -1003) T) ((-349 . -91) T) ((-349 . -34) T) ((-950 . -102) 64540) ((-446 . -961) T) ((-447 . -209) 64490) ((-1058 . -456) 64424) ((-1176 . -967) 64408) ((-351 . -967) 64392) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 64371) ((-647 . -132) 64350) ((-451 . -456) 64334) ((-452 . -305) 64303) ((-1176 . -106) 64282) ((-476 . -1003) T) ((-450 . -156) 64261) ((-915 . -347) 64245) ((-383 . -97) T) ((-351 . -106) 64224) ((-915 . -308) 64208) ((-252 . -900) 64192) ((-251 . -900) 64176) ((-1174 . -557) 64158) ((-1172 . -557) 64140) ((-105 . -478) NIL) ((-1070 . -1131) 64124) ((-783 . -781) 64108) ((-1076 . -1003) T) ((-98 . -1109) T) ((-874 . -871) 64069) ((-749 . -650) 64006) ((-1119 . -1050) NIL) ((-449 . -871) 63951) ((-972 . -130) T) ((-58 . -97) 63929) ((-43 . -557) 63911) ((-76 . -557) 63893) ((-321 . -585) 63838) ((-1164 . -1003) T) ((-475 . -779) T) ((-313 . -1015) T) ((-266 . -1003) T) ((-915 . -822) 63797) ((-266 . -554) 63776) ((-1147 . -37) 63673) ((-1140 . -37) 63514) ((-454 . -968) T) ((-1119 . -37) 63310) ((-192 . -968) T) ((-313 . -23) T) ((-139 . -557) 63292) ((-765 . -727) 63271) ((-765 . -724) 63250) ((-543 . -37) 63223) ((-542 . -37) 63120) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -918) 63086) ((-77 . -557) 63068) ((-645 . -278) 63047) ((-265 . -659) 62950) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62929) ((-1167 . -97) T) ((-39 . -333) T) ((-796 . -134) 62908) ((-796 . -132) 62887) ((-1057 . -456) 62869) ((-1176 . -961) T) ((-450 . -478) 62802) ((-1045 . -1109) T) ((-885 . -557) 62784) ((-584 . -456) 62768) ((-572 . -456) 62700) ((-747 . -557) 62452) ((-47 . -27) T) ((-1076 . -650) 62349) ((-590 . -1003) T) ((-406 . -334) 62323) ((-1005 . -97) T) ((-748 . -280) 62310) ((-789 . -1003) T) ((-1172 . -352) 62282) ((-965 . -478) 62215) ((-1058 . -258) 62191) ((-214 . -205) 62161) ((-1164 . -650) 62131) ((-749 . -156) 62110) ((-201 . -478) 62043) ((-562 . -727) 62022) ((-562 . -724) 62001) ((-1107 . -557) 61913) ((-196 . -1109) T) ((-611 . -557) 61845) ((-1055 . -926) 61829) ((-321 . -659) T) ((-865 . -97) 61779) ((-1119 . -370) 61731) ((-1016 . -456) 61715) ((-58 . -280) 61653) ((-301 . -97) T) ((-1104 . -21) T) ((-1104 . -25) T) ((-39 . -1015) T) ((-644 . -21) T) ((-567 . -557) 61635) ((-479 . -293) 61614) ((-644 . -25) T) ((-103 . -258) NIL) ((-843 . -1015) T) ((-39 . -23) T) ((-703 . -1015) T) ((-517 . -1113) T) ((-460 . -1113) T) ((-289 . -557) 61596) ((-920 . -205) 61578) ((-153 . -150) 61562) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1139 . -134) 61541) ((-1058 . -550) 61517) ((-1139 . -132) 61496) ((-942 . -456) 61480) ((-1118 . -132) 61405) ((-1118 . -134) 61330) ((-1167 . -1173) 61309) ((-445 . -456) 61293) ((-432 . -456) 61277) ((-486 . -33) T) ((-590 . -650) 61247) ((-599 . -779) 61226) ((-1076 . -156) 61177) ((-335 . -97) T) ((-214 . -212) 61156) ((-224 . -97) T) ((-223 . -97) T) ((-1128 . -871) 61126) ((-104 . -97) T) ((-219 . -779) 61105) ((-748 . -37) 60954) ((-44 . -478) 60714) ((-1057 . -258) 60689) ((-189 . -1003) T) ((-1049 . -1003) T) ((-1049 . -554) 60668) ((-534 . -25) T) ((-534 . -21) T) ((-1005 . -280) 60606) ((-884 . -381) 60590) ((-632 . -1113) T) ((-572 . -258) 60565) ((-992 . -579) 60513) ((-714 . -579) 60461) ((-712 . -579) 60409) ((-313 . -123) T) ((-261 . -557) 60391) ((-632 . -509) T) ((-827 . -1003) T) ((-794 . -1015) T) ((-423 . -579) 60339) ((-827 . -825) 60323) ((-349 . -421) T) ((-454 . -1003) T) ((-634 . -585) 60310) ((-865 . -280) 60248) ((-192 . -1003) T) ((-286 . -842) 60227) ((-283 . -842) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 60214) ((-443 . -132) 60193) ((-388 . -381) 60177) ((-443 . -134) 60156) ((-105 . -456) 60138) ((-2 . -557) 60120) ((-1057 . -19) 60102) ((-1057 . -550) 60077) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1043) T) ((-1016 . -258) 60054) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1167 . -37) 60024) ((-1041 . -1109) T) ((-572 . -550) 59999) ((-992 . -25) T) ((-992 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1113) T) ((-884 . -968) T) ((-564 . -509) T) ((-668 . -968) T) ((-648 . -968) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -967) 59983) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1041 . -952) 59881) ((-749 . -262) 59860) ((-755 . -1003) T) ((-607 . -106) 59839) ((-266 . -478) 59599) ((-1174 . -967) 59583) ((-1172 . -967) 59567) ((-224 . -280) 59505) ((-223 . -280) 59443) ((-1122 . -97) 59421) ((-1058 . -558) NIL) ((-1058 . -557) 59403) ((-1139 . -1095) 59369) ((-1139 . -1098) 59335) ((-1119 . -205) 59287) ((-1118 . -1095) 59253) ((-1118 . -1098) 59219) ((-1041 . -347) 59203) ((-1021 . -752) T) ((-1021 . -842) T) ((-1016 . -550) 59180) ((-987 . -558) 59164) ((-451 . -557) 59096) ((-747 . -260) 59073) ((-552 . -138) 59020) ((-388 . -968) T) ((-454 . -650) 58970) ((-450 . -456) 58954) ((-297 . -779) 58933) ((-309 . -585) 58907) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58857) ((-153 . -657) 58828) ((-157 . -585) 58760) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58710) ((-987 . -557) 58692) ((-971 . -557) 58674) ((-910 . -97) T) ((-787 . -97) T) ((-731 . -381) 58638) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -817) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1015) T) ((-517 . -1015) T) ((-460 . -1015) T) ((-634 . -659) T) ((-329 . -557) 58620) ((-323 . -557) 58602) ((-315 . -557) 58584) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 58514) ((-103 . -557) 58496) ((-187 . -817) T) ((-879 . -138) 58480) ((-1139 . -91) 58446) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1139 . -34) 58412) ((-965 . -456) 58396) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1118 . -91) 58362) ((-1118 . -34) 58328) ((-1070 . -97) T) ((-1026 . -97) T) ((-783 . -97) T) ((-201 . -456) 58312) ((-1174 . -106) 58291) ((-1172 . -106) 58270) ((-43 . -967) 58254) ((-1128 . -1131) 58238) ((-784 . -781) 58222) ((-1076 . -262) 58201) ((-105 . -258) 58176) ((-1041 . -822) 58135) ((-43 . -106) 58114) ((-607 . -961) T) ((-1057 . -558) NIL) ((-1057 . -557) 58096) ((-973 . -554) 58071) ((-973 . -1003) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 58050) ((-139 . -967) 58034) ((-524 . -507) 58018) ((-325 . -134) 57997) ((-325 . -132) 57948) ((-322 . -134) 57927) ((-636 . -1003) T) ((-322 . -132) 57878) ((-314 . -134) 57857) ((-314 . -132) 57808) ((-237 . -132) 57787) ((-237 . -134) 57766) ((-224 . -37) 57736) ((-221 . -134) 57715) ((-112 . -333) T) ((-221 . -132) 57694) ((-223 . -37) 57664) ((-139 . -106) 57643) ((-919 . -952) 57520) ((-1065 . -777) NIL) ((-627 . -1113) T) ((-731 . -968) T) ((-632 . -1015) T) ((-1174 . -961) T) ((-1172 . -961) T) ((-1055 . -1109) T) ((-919 . -347) 57497) ((-832 . -132) T) ((-832 . -134) 57479) ((-794 . -123) T) ((-747 . -967) 57377) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 57309) ((-584 . -558) 57270) ((-572 . -558) NIL) ((-572 . -557) 57252) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1098) 57218) ((-443 . -1095) 57184) ((-247 . -557) 57166) ((-246 . -557) 57148) ((-245 . -557) 57130) ((-244 . -557) 57112) ((-243 . -557) 57094) ((-465 . -588) 57076) ((-242 . -557) 57058) ((-309 . -659) T) ((-241 . -557) 57040) ((-105 . -19) 57022) ((-157 . -659) T) ((-465 . -343) 57004) ((-188 . -557) 56986) ((-483 . -1048) 56970) ((-465 . -118) T) ((-105 . -550) 56945) ((-187 . -557) 56927) ((-443 . -34) 56893) ((-443 . -91) 56859) ((-185 . -557) 56841) ((-184 . -557) 56823) ((-183 . -557) 56805) ((-182 . -557) 56787) ((-179 . -557) 56769) ((-178 . -557) 56751) ((-177 . -557) 56733) ((-176 . -557) 56715) ((-175 . -557) 56697) ((-174 . -557) 56679) ((-173 . -557) 56661) ((-493 . -1006) 56613) ((-172 . -557) 56595) ((-171 . -557) 56577) ((-44 . -456) 56514) ((-170 . -557) 56496) ((-169 . -557) 56478) ((-747 . -106) 56369) ((-583 . -97) 56319) ((-450 . -258) 56296) ((-1016 . -557) 56048) ((-1004 . -1003) T) ((-958 . -1109) T) ((-564 . -1015) T) ((-1175 . -952) 56032) ((-1070 . -280) 56019) ((-1026 . -280) 56006) ((-112 . -1015) T) ((-751 . -97) T) ((-564 . -23) T) ((-1049 . -478) 55766) ((-356 . -97) T) ((-294 . -97) T) ((-919 . -822) 55718) ((-884 . -1003) T) ((-139 . -961) T) ((-112 . -23) T) ((-664 . -381) 55702) ((-668 . -1003) T) ((-648 . -1003) T) ((-636 . -124) T) ((-422 . -1003) T) ((-286 . -400) 55686) ((-377 . -1109) T) ((-942 . -558) 55647) ((-939 . -1113) T) ((-199 . -97) T) ((-942 . -557) 55609) ((-748 . -205) 55593) ((-939 . -509) T) ((-765 . -585) 55566) ((-324 . -1113) T) ((-445 . -557) 55528) ((-445 . -558) 55489) ((-432 . -558) 55450) ((-432 . -557) 55412) ((-377 . -806) 55396) ((-289 . -967) 55231) ((-377 . -808) 55156) ((-772 . -952) 55054) ((-454 . -478) NIL) ((-450 . -550) 55031) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1003) T) ((-377 . -952) 54898) ((-289 . -106) 54712) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1113) T) ((-747 . -961) 54643) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1058 . -260) 54619) ((-1070 . -1050) 54597) ((-286 . -27) 54576) ((-972 . -97) T) ((-747 . -207) 54529) ((-214 . -777) 54508) ((-874 . -97) T) ((-646 . -97) T) ((-266 . -456) 54445) ((-449 . -97) T) ((-664 . -968) T) ((-556 . -557) 54427) ((-556 . -558) 54288) ((-377 . -347) 54272) ((-377 . -308) 54256) ((-1070 . -37) 54085) ((-1026 . -37) 53934) ((-783 . -37) 53904) ((-360 . -585) 53888) ((-583 . -280) 53826) ((-884 . -650) 53723) ((-196 . -102) 53707) ((-44 . -258) 53632) ((-668 . -650) 53602) ((-562 . -585) 53576) ((-282 . -1003) T) ((-261 . -967) 53563) ((-105 . -557) 53545) ((-105 . -558) 53527) ((-422 . -650) 53497) ((-748 . -226) 53436) ((-623 . -1003) 53414) ((-503 . -1003) T) ((-1072 . -968) T) ((-1071 . -968) T) ((-261 . -106) 53399) ((-1065 . -968) T) ((-1027 . -968) T) ((-503 . -554) 53378) ((-920 . -777) T) ((-201 . -621) 53336) ((-627 . -1015) T) ((-1104 . -673) 53312) ((-289 . -961) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -822) 53271) ((-66 . -1109) T) ((-765 . -726) 53250) ((-388 . -650) 53224) ((-731 . -1003) T) ((-765 . -723) 53203) ((-632 . -123) T) ((-645 . -842) 53182) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 53161) ((-289 . -207) 53113) ((-289 . -217) 53092) ((-192 . -262) T) ((-939 . -333) T) ((-1139 . -421) 53071) ((-1118 . -421) 53050) ((-324 . -299) 53027) ((-324 . -333) T) ((-1039 . -557) 53009) ((-44 . -1143) 52959) ((-795 . -97) T) ((-583 . -254) 52943) ((-632 . -970) T) ((-446 . -585) 52908) ((-437 . -1003) T) ((-44 . -550) 52833) ((-1057 . -260) 52808) ((-39 . -579) 52742) ((-47 . -333) T) ((-1009 . -557) 52724) ((-992 . -779) 52703) ((-572 . -260) 52678) ((-714 . -779) 52657) ((-712 . -779) 52636) ((-450 . -557) 52388) ((-214 . -381) 52357) ((-874 . -280) 52344) ((-423 . -779) 52323) ((-63 . -1109) T) ((-564 . -123) T) ((-449 . -280) 52310) ((-973 . -478) 52118) ((-261 . -961) T) ((-112 . -123) T) ((-422 . -694) T) ((-884 . -156) 52069) ((-987 . -967) 51979) ((-562 . -726) 51958) ((-540 . -1003) T) ((-562 . -723) 51937) ((-562 . -659) T) ((-266 . -258) 51916) ((-265 . -1109) T) ((-965 . -557) 51878) ((-965 . -558) 51839) ((-939 . -1015) T) ((-153 . -97) T) ((-248 . -779) T) ((-1064 . -1003) T) ((-750 . -557) 51821) ((-1016 . -260) 51798) ((-1005 . -203) 51782) ((-919 . -278) T) ((-731 . -650) 51766) ((-329 . -967) 51718) ((-324 . -1015) T) ((-323 . -967) 51670) ((-384 . -557) 51652) ((-355 . -557) 51634) ((-315 . -967) 51586) ((-201 . -557) 51518) ((-987 . -106) 51407) ((-939 . -23) T) ((-103 . -967) 51357) ((-820 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 51336) ((-388 . -156) T) ((-329 . -106) 51267) ((-323 . -106) 51198) ((-315 . -106) 51129) ((-224 . -205) 51099) ((-223 . -205) 51069) ((-324 . -23) T) ((-69 . -1109) T) ((-199 . -37) 51034) ((-103 . -106) 50961) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50939) ((-47 . -1015) T) ((-843 . -25) T) ((-703 . -25) T) ((-1049 . -456) 50876) ((-452 . -1003) T) ((-1176 . -585) 50850) ((-1128 . -97) T) ((-784 . -97) T) ((-214 . -968) 50781) ((-972 . -1050) T) ((-885 . -724) 50734) ((-351 . -585) 50718) ((-47 . -23) T) ((-885 . -727) 50671) ((-747 . -727) 50622) ((-747 . -724) 50573) ((-266 . -550) 50552) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50496) ((-590 . -258) 50475) ((-107 . -598) T) ((-74 . -1109) T) ((-972 . -37) 50462) ((-601 . -344) 50441) ((-874 . -37) 50290) ((-664 . -1003) T) ((-449 . -37) 50139) ((-84 . -1109) T) ((-524 . -256) T) ((-1119 . -777) NIL) ((-1072 . -1003) T) ((-1071 . -1003) T) ((-1065 . -1003) T) ((-321 . -952) 50116) ((-987 . -961) T) ((-920 . -968) T) ((-44 . -557) 50098) ((-44 . -558) NIL) ((-836 . -968) T) ((-749 . -557) 50080) ((-1046 . -97) 50058) ((-987 . -217) 50009) ((-397 . -968) T) ((-329 . -961) T) ((-323 . -961) T) ((-335 . -334) 49986) ((-315 . -961) T) ((-224 . -212) 49965) ((-223 . -212) 49944) ((-104 . -334) 49918) ((-987 . -207) 49843) ((-1027 . -1003) T) ((-265 . -822) 49802) ((-103 . -961) T) ((-627 . -123) T) ((-388 . -478) 49644) ((-329 . -207) 49623) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49602) ((-323 . -217) T) ((-315 . -207) 49581) ((-315 . -217) T) ((-153 . -280) 49546) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49521) ((-1016 . -967) 49419) ((-795 . -1050) NIL) ((-300 . -557) 49401) ((-377 . -937) 49380) ((-1016 . -106) 49271) ((-406 . -1003) T) ((-1176 . -659) T) ((-61 . -557) 49253) ((-795 . -37) 49198) ((-486 . -1109) T) ((-548 . -138) 49182) ((-476 . -557) 49164) ((-1128 . -280) 49151) ((-664 . -650) 49000) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48982) ((-460 . -579) 48942) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48893) ((-483 . -1003) 48843) ((-221 . -421) 48794) ((-1049 . -258) 48773) ((-1076 . -557) 48755) ((-623 . -478) 48688) ((-884 . -262) 48667) ((-503 . -478) 48427) ((-1070 . -205) 48411) ((-153 . -1050) 48390) ((-1164 . -557) 48372) ((-1072 . -650) 48269) ((-1071 . -650) 48110) ((-814 . -97) T) ((-1065 . -650) 47906) ((-1027 . -650) 47803) ((-1055 . -610) 47787) ((-325 . -372) 47738) ((-322 . -372) 47689) ((-314 . -372) 47640) ((-939 . -123) T) ((-731 . -478) 47552) ((-266 . -558) NIL) ((-266 . -557) 47534) ((-832 . -421) T) ((-885 . -338) 47487) ((-747 . -338) 47466) ((-474 . -473) 47445) ((-472 . -473) 47424) ((-454 . -258) NIL) ((-450 . -260) 47401) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1015) T) ((-153 . -37) 47229) ((-1139 . -890) 47192) ((-1046 . -280) 47130) ((-1118 . -890) 47100) ((-832 . -372) T) ((-1016 . -961) 47031) ((-1141 . -509) T) ((-1049 . -550) 47010) ((-107 . -779) T) ((-973 . -456) 46942) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1128 . -1050) 46920) ((-1016 . -207) 46873) ((-47 . -123) T) ((-1091 . -97) T) ((-214 . -1003) 46684) ((-795 . -370) 46661) ((-993 . -97) T) ((-983 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1128 . -37) 46490) ((-784 . -37) 46460) ((-664 . -156) 46371) ((-590 . -557) 46353) ((-524 . -37) 46340) ((-879 . -97) 46290) ((-789 . -557) 46272) ((-789 . -558) 46194) ((-540 . -478) NIL) ((-1147 . -968) T) ((-1140 . -968) T) ((-1119 . -968) T) ((-543 . -968) T) ((-542 . -968) T) ((-1180 . -1015) T) ((-1072 . -156) 46145) ((-1071 . -156) 46076) ((-1065 . -156) 46007) ((-1027 . -156) 45958) ((-920 . -1003) T) ((-888 . -1003) T) ((-836 . -1003) T) ((-1104 . -134) 45937) ((-731 . -729) 45921) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45898) ((-634 . -808) 45880) ((-397 . -1003) T) ((-286 . -1113) 45859) ((-283 . -1113) T) ((-153 . -370) 45843) ((-1104 . -132) 45822) ((-443 . -890) 45785) ((-70 . -557) 45767) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45746) ((-634 . -952) 45728) ((-283 . -509) T) ((-1180 . -23) T) ((-125 . -952) 45710) ((-450 . -967) 45608) ((-44 . -260) 45533) ((-214 . -650) 45475) ((-450 . -106) 45366) ((-996 . -97) 45344) ((-949 . -97) T) ((-583 . -760) 45323) ((-664 . -478) 45261) ((-965 . -967) 45245) ((-564 . -21) T) ((-564 . -25) T) ((-973 . -258) 45220) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 45194) ((-355 . -967) 45178) ((-965 . -106) 45157) ((-748 . -381) 45141) ((-112 . -25) T) ((-87 . -557) 45123) ((-112 . -21) T) ((-552 . -280) 44918) ((-444 . -280) 44722) ((-1049 . -558) NIL) ((-355 . -106) 44701) ((-349 . -97) T) ((-189 . -557) 44683) ((-1049 . -557) 44665) ((-920 . -650) 44615) ((-1065 . -478) 44349) ((-836 . -650) 44301) ((-1027 . -478) 44271) ((-321 . -278) T) ((-1083 . -138) 44221) ((-879 . -280) 44159) ((-766 . -97) T) ((-397 . -650) 44143) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 44093) ((-1139 . -1138) 44072) ((-1021 . -1113) T) ((-309 . -952) 44039) ((-1139 . -1133) 44009) ((-1139 . -1136) 43993) ((-1118 . -1117) 43972) ((-78 . -557) 43954) ((-827 . -557) 43936) ((-1118 . -1133) 43913) ((-1021 . -509) T) ((-843 . -779) T) ((-454 . -558) 43843) ((-454 . -557) 43825) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1118 . -1115) 43809) ((-1141 . -1015) T) ((-192 . -558) 43739) ((-192 . -557) 43721) ((-973 . -550) 43696) ((-57 . -138) 43680) ((-480 . -138) 43664) ((-461 . -138) 43648) ((-329 . -1171) 43632) ((-323 . -1171) 43616) ((-315 . -1171) 43600) ((-286 . -333) 43579) ((-283 . -333) T) ((-450 . -961) 43510) ((-627 . -579) 43492) ((-1174 . -585) 43466) ((-1172 . -585) 43440) ((-1141 . -23) T) ((-623 . -456) 43424) ((-62 . -557) 43406) ((-1016 . -727) 43357) ((-1016 . -724) 43308) ((-503 . -456) 43245) ((-607 . -33) T) ((-450 . -207) 43198) ((-266 . -260) 43177) ((-214 . -156) 43156) ((-748 . -968) T) ((-43 . -585) 43114) ((-987 . -338) 43065) ((-664 . -262) 42996) ((-483 . -478) 42929) ((-749 . -967) 42880) ((-992 . -132) 42859) ((-329 . -338) 42838) ((-323 . -338) 42817) ((-315 . -338) 42796) ((-992 . -134) 42775) ((-795 . -205) 42752) ((-749 . -106) 42687) ((-714 . -132) 42666) ((-714 . -134) 42645) ((-237 . -871) 42612) ((-224 . -777) 42591) ((-221 . -871) 42536) ((-223 . -777) 42515) ((-712 . -132) 42494) ((-712 . -134) 42473) ((-139 . -585) 42447) ((-423 . -134) 42426) ((-423 . -132) 42405) ((-607 . -659) T) ((-755 . -557) 42387) ((-1147 . -1003) T) ((-1140 . -1003) T) ((-1119 . -1003) T) ((-1104 . -1098) 42353) ((-1104 . -1095) 42319) ((-1072 . -262) 42298) ((-1071 . -262) 42249) ((-1065 . -262) 42200) ((-1027 . -262) 42179) ((-309 . -822) 42160) ((-920 . -156) T) ((-836 . -156) T) ((-543 . -1003) T) ((-542 . -1003) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1136) 42144) ((-443 . -1133) 42114) ((-388 . -258) 42042) ((-286 . -1015) 41892) ((-283 . -1015) T) ((-1104 . -34) 41858) ((-1104 . -91) 41824) ((-82 . -557) 41806) ((-89 . -97) 41784) ((-1180 . -123) T) ((-530 . -132) T) ((-530 . -134) 41766) ((-481 . -134) 41748) ((-481 . -132) T) ((-286 . -23) 41601) ((-39 . -312) 41575) ((-283 . -23) T) ((-1057 . -588) 41557) ((-747 . -585) 41407) ((-1167 . -968) T) ((-1057 . -343) 41389) ((-153 . -205) 41373) ((-540 . -456) 41355) ((-214 . -478) 41288) ((-1174 . -659) T) ((-1172 . -659) T) ((-1076 . -967) 41171) ((-1076 . -106) 41033) ((-749 . -961) T) ((-479 . -97) T) ((-47 . -579) 40993) ((-474 . -97) T) ((-472 . -97) T) ((-1164 . -967) 40963) ((-949 . -37) 40947) ((-749 . -207) T) ((-749 . -217) 40926) ((-503 . -258) 40905) ((-1164 . -106) 40870) ((-1128 . -205) 40854) ((-1147 . -650) 40751) ((-973 . -558) NIL) ((-973 . -557) 40733) ((-1140 . -650) 40574) ((-1119 . -650) 40370) ((-919 . -842) T) ((-636 . -557) 40339) ((-139 . -659) T) ((-1016 . -338) 40318) ((-920 . -478) NIL) ((-224 . -381) 40287) ((-223 . -381) 40256) ((-939 . -25) T) ((-939 . -21) T) ((-543 . -650) 40229) ((-542 . -650) 40126) ((-731 . -258) 40084) ((-121 . -97) 40062) ((-765 . -952) 39960) ((-153 . -760) 39939) ((-289 . -585) 39836) ((-747 . -33) T) ((-647 . -97) T) ((-1021 . -1015) T) ((-941 . -1109) T) ((-349 . -37) 39801) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1161) 39785) ((-322 . -1161) 39769) ((-314 . -1161) 39753) ((-153 . -319) 39732) ((-517 . -779) T) ((-460 . -779) T) ((-1021 . -23) T) ((-85 . -557) 39714) ((-634 . -278) T) ((-766 . -37) 39684) ((-759 . -37) 39654) ((-1141 . -123) T) ((-1049 . -260) 39633) ((-885 . -725) 39586) ((-885 . -726) 39539) ((-747 . -723) 39518) ((-111 . -278) T) ((-89 . -280) 39456) ((-611 . -33) T) ((-503 . -550) 39435) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39386) ((-747 . -725) 39365) ((-634 . -937) T) ((-590 . -967) 39349) ((-885 . -659) 39248) ((-747 . -659) 39179) ((-885 . -442) 39132) ((-450 . -727) 39083) ((-450 . -724) 39034) ((-832 . -1161) 39021) ((-1076 . -961) T) ((-590 . -106) 39000) ((-1076 . -296) 38977) ((-1096 . -97) 38955) ((-1004 . -557) 38937) ((-634 . -502) T) ((-748 . -1003) T) ((-1164 . -961) T) ((-383 . -1003) T) ((-224 . -968) 38868) ((-223 . -968) 38799) ((-261 . -585) 38786) ((-540 . -258) 38761) ((-623 . -621) 38719) ((-884 . -557) 38701) ((-796 . -97) T) ((-668 . -557) 38683) ((-648 . -557) 38665) ((-1147 . -156) 38616) ((-1140 . -156) 38547) ((-1119 . -156) 38478) ((-632 . -779) T) ((-920 . -262) T) ((-422 . -557) 38460) ((-567 . -659) T) ((-58 . -1003) 38438) ((-219 . -138) 38422) ((-836 . -262) T) ((-939 . -928) T) ((-567 . -442) T) ((-645 . -1113) 38401) ((-543 . -156) 38380) ((-542 . -156) 38331) ((-1154 . -779) 38310) ((-645 . -509) 38221) ((-377 . -842) T) ((-377 . -752) 38200) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 38182) ((-388 . -558) 38085) ((-583 . -1048) 38069) ((-105 . -588) 38051) ((-121 . -280) 37989) ((-105 . -343) 37971) ((-157 . -278) T) ((-368 . -1109) T) ((-286 . -123) 37843) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37827) ((-591 . -1015) T) ((-540 . -19) 37809) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1003) T) ((-540 . -550) 37784) ((-446 . -952) 37744) ((-590 . -961) T) ((-591 . -23) T) ((-1167 . -1003) T) ((-748 . -650) 37593) ((-112 . -779) NIL) ((-1070 . -381) 37577) ((-1026 . -381) 37561) ((-783 . -381) 37545) ((-1139 . -97) T) ((-1119 . -478) 37279) ((-1096 . -280) 37217) ((-282 . -557) 37199) ((-1118 . -97) T) ((-1005 . -1003) T) ((-1072 . -258) 37184) ((-1071 . -258) 37169) ((-261 . -659) T) ((-103 . -831) NIL) ((-623 . -557) 37101) ((-623 . -558) 37062) ((-987 . -585) 36972) ((-547 . -557) 36954) ((-503 . -558) NIL) ((-503 . -557) 36936) ((-1065 . -258) 36784) ((-454 . -967) 36734) ((-644 . -421) T) ((-475 . -473) 36713) ((-471 . -473) 36692) ((-192 . -967) 36642) ((-329 . -585) 36594) ((-323 . -585) 36546) ((-199 . -777) T) ((-315 . -585) 36498) ((-548 . -97) 36448) ((-450 . -338) 36427) ((-103 . -585) 36377) ((-454 . -106) 36304) ((-214 . -456) 36288) ((-313 . -134) 36270) ((-313 . -132) T) ((-153 . -340) 36241) ((-865 . -1152) 36225) ((-192 . -106) 36152) ((-796 . -280) 36117) ((-865 . -1003) 36067) ((-731 . -558) 36028) ((-731 . -557) 36010) ((-651 . -97) T) ((-301 . -1003) T) ((-1021 . -123) T) ((-647 . -37) 35980) ((-286 . -458) 35959) ((-465 . -1109) T) ((-1139 . -256) 35925) ((-1118 . -256) 35891) ((-297 . -138) 35875) ((-973 . -260) 35850) ((-1167 . -650) 35820) ((-1058 . -33) T) ((-1176 . -952) 35797) ((-437 . -557) 35779) ((-451 . -33) T) ((-351 . -952) 35763) ((-1070 . -968) T) ((-1026 . -968) T) ((-783 . -968) T) ((-972 . -777) T) ((-748 . -156) 35674) ((-483 . -258) 35651) ((-112 . -909) 35628) ((-1147 . -262) 35607) ((-1091 . -334) 35581) ((-993 . -239) 35565) ((-443 . -97) T) ((-335 . -1003) T) ((-224 . -1003) T) ((-223 . -1003) T) ((-1140 . -262) 35516) ((-104 . -1003) T) ((-1119 . -262) 35467) ((-796 . -1050) 35445) ((-1072 . -918) 35411) ((-552 . -334) 35351) ((-1071 . -918) 35317) ((-552 . -203) 35264) ((-540 . -557) 35246) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 35196) ((-454 . -961) T) ((-1065 . -918) 35162) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -961) T) ((-1027 . -918) 35128) ((-987 . -659) T) ((-645 . -1015) T) ((-543 . -262) 35107) ((-542 . -262) 35086) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1064 . -557) 35068) ((-796 . -37) 35020) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1143) 35004) ((-103 . -659) T) ((-645 . -23) T) ((-1180 . -25) T) ((-443 . -256) 34970) ((-1180 . -21) T) ((-1118 . -280) 34909) ((-1074 . -97) T) ((-39 . -132) 34881) ((-39 . -134) 34853) ((-483 . -550) 34830) ((-1016 . -585) 34680) ((-548 . -280) 34618) ((-44 . -588) 34568) ((-44 . -603) 34518) ((-44 . -343) 34468) ((-1057 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34450) ((-214 . -258) 34427) ((-584 . -33) T) ((-572 . -33) T) ((-992 . -421) 34378) ((-748 . -478) 34243) ((-714 . -421) 34174) ((-712 . -421) 34125) ((-423 . -421) 34076) ((-874 . -381) 34060) ((-664 . -557) 34042) ((-224 . -650) 33984) ((-223 . -650) 33926) ((-664 . -558) 33787) ((-449 . -381) 33771) ((-309 . -273) T) ((-321 . -842) T) ((-916 . -97) 33749) ((-939 . -779) T) ((-58 . -478) 33682) ((-1118 . -1050) 33634) ((-920 . -258) NIL) ((-199 . -968) T) ((-349 . -760) T) ((-1016 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1122 . -997) 33618) ((-1122 . -1003) 33596) ((-214 . -550) 33573) ((-1122 . -999) 33530) ((-1072 . -557) 33512) ((-1071 . -557) 33494) ((-1065 . -557) 33476) ((-1065 . -558) NIL) ((-1027 . -557) 33458) ((-796 . -370) 33442) ((-493 . -97) T) ((-1139 . -37) 33283) ((-1118 . -37) 33097) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-1016 . -723) 33076) ((-1016 . -726) 33027) ((-1016 . -725) 33006) ((-910 . -1003) T) ((-942 . -33) T) ((-787 . -1003) T) ((-1150 . -97) T) ((-1016 . -659) 32937) ((-601 . -97) T) ((-503 . -260) 32916) ((-1083 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-972 . -968) T) ((-874 . -968) T) ((-286 . -579) 32824) ((-283 . -579) 32785) ((-449 . -968) T) ((-447 . -97) T) ((-406 . -557) 32767) ((-1070 . -1003) T) ((-1026 . -1003) T) ((-783 . -1003) T) ((-1040 . -97) T) ((-748 . -262) 32698) ((-884 . -967) 32581) ((-446 . -937) T) ((-668 . -967) 32551) ((-422 . -967) 32521) ((-1046 . -1022) 32505) ((-1005 . -478) 32438) ((-884 . -106) 32300) ((-832 . -97) T) ((-668 . -106) 32265) ((-57 . -97) 32215) ((-483 . -558) 32176) ((-483 . -557) 32088) ((-482 . -97) 32066) ((-480 . -97) 32016) ((-462 . -97) 31994) ((-461 . -97) 31944) ((-422 . -106) 31895) ((-224 . -156) 31874) ((-223 . -156) 31853) ((-388 . -967) 31827) ((-1104 . -890) 31788) ((-915 . -1015) T) ((-865 . -478) 31721) ((-454 . -727) T) ((-443 . -37) 31562) ((-388 . -106) 31529) ((-454 . -724) T) ((-916 . -280) 31467) ((-192 . -727) T) ((-192 . -724) T) ((-915 . -23) T) ((-645 . -123) T) ((-1118 . -370) 31437) ((-286 . -25) 31290) ((-153 . -381) 31274) ((-286 . -21) 31146) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30996) ((-795 . -968) T) ((-540 . -260) 30971) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1070 . -650) 30800) ((-1026 . -650) 30649) ((-1021 . -579) 30631) ((-783 . -650) 30601) ((-607 . -1109) T) ((-1 . -97) T) ((-214 . -557) 30353) ((-1128 . -381) 30337) ((-1083 . -280) 30141) ((-884 . -961) T) ((-668 . -961) T) ((-648 . -961) T) ((-583 . -1003) 30091) ((-965 . -585) 30075) ((-784 . -381) 30059) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 30046) ((-237 . -280) 30033) ((-884 . -296) 30012) ((-355 . -585) 29996) ((-447 . -280) 29800) ((-224 . -478) 29733) ((-607 . -952) 29631) ((-223 . -478) 29564) ((-1040 . -280) 29490) ((-751 . -1003) T) ((-731 . -967) 29474) ((-1147 . -258) 29459) ((-1140 . -258) 29444) ((-1119 . -258) 29292) ((-356 . -1003) T) ((-294 . -1003) T) ((-388 . -961) T) ((-153 . -968) T) ((-57 . -280) 29230) ((-731 . -106) 29209) ((-542 . -258) 29194) ((-482 . -280) 29132) ((-480 . -280) 29070) ((-462 . -280) 29008) ((-461 . -280) 28946) ((-388 . -207) 28925) ((-450 . -33) T) ((-920 . -558) 28855) ((-199 . -1003) T) ((-920 . -557) 28837) ((-888 . -557) 28819) ((-888 . -558) 28794) ((-836 . -557) 28776) ((-632 . -134) T) ((-634 . -842) T) ((-634 . -752) T) ((-397 . -557) 28758) ((-1021 . -21) T) ((-1021 . -25) T) ((-607 . -347) 28742) ((-111 . -842) T) ((-796 . -205) 28726) ((-76 . -1109) T) ((-121 . -120) 28710) ((-965 . -33) T) ((-1174 . -952) 28684) ((-1172 . -952) 28641) ((-1128 . -968) T) ((-784 . -968) T) ((-450 . -723) 28620) ((-325 . -1050) 28599) ((-322 . -1050) 28578) ((-314 . -1050) 28557) ((-450 . -726) 28508) ((-450 . -725) 28487) ((-201 . -33) T) ((-450 . -659) 28418) ((-58 . -456) 28402) ((-524 . -968) T) ((-1070 . -156) 28293) ((-1026 . -156) 28204) ((-972 . -1003) T) ((-992 . -871) 28151) ((-874 . -1003) T) ((-749 . -585) 28102) ((-714 . -871) 28072) ((-646 . -1003) T) ((-712 . -871) 28039) ((-480 . -254) 28023) ((-607 . -822) 27982) ((-449 . -1003) T) ((-423 . -871) 27949) ((-77 . -1109) T) ((-325 . -37) 27914) ((-322 . -37) 27879) ((-314 . -37) 27844) ((-237 . -37) 27693) ((-221 . -37) 27542) ((-832 . -1050) T) ((-564 . -134) 27521) ((-564 . -132) 27500) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -961) T) ((-313 . -421) T) ((-1147 . -918) 27466) ((-1140 . -918) 27432) ((-1119 . -918) 27398) ((-832 . -37) 27363) ((-199 . -650) 27328) ((-39 . -379) 27300) ((-289 . -46) 27270) ((-915 . -123) T) ((-747 . -1109) T) ((-157 . -842) T) ((-313 . -372) T) ((-483 . -260) 27247) ((-44 . -33) T) ((-747 . -952) 27076) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1005 . -456) 27060) ((-1118 . -205) 27030) ((-611 . -1109) T) ((-219 . -97) 26980) ((-795 . -1003) T) ((-1076 . -585) 26905) ((-972 . -650) 26892) ((-664 . -967) 26735) ((-1070 . -478) 26683) ((-874 . -650) 26532) ((-1026 . -478) 26484) ((-449 . -650) 26333) ((-65 . -557) 26315) ((-664 . -106) 26137) ((-865 . -456) 26121) ((-1164 . -585) 26081) ((-749 . -659) T) ((-1072 . -967) 25964) ((-1071 . -967) 25799) ((-1065 . -967) 25589) ((-1027 . -967) 25472) ((-919 . -1113) T) ((-998 . -97) 25450) ((-747 . -347) 25420) ((-919 . -509) T) ((-1072 . -106) 25282) ((-1071 . -106) 25096) ((-1065 . -106) 24842) ((-1027 . -106) 24704) ((-1008 . -1006) 24668) ((-349 . -777) T) ((-1147 . -557) 24650) ((-1140 . -557) 24632) ((-1119 . -557) 24614) ((-1119 . -558) NIL) ((-214 . -260) 24591) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1003) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24573) ((-542 . -557) 24555) ((-820 . -1003) T) ((-770 . -1003) T) ((-740 . -1003) T) ((-701 . -1003) T) ((-595 . -781) 24539) ((-612 . -1003) T) ((-747 . -822) 24472) ((-39 . -372) NIL) ((-1021 . -598) T) ((-795 . -650) 24417) ((-224 . -456) 24401) ((-223 . -456) 24385) ((-645 . -579) 24333) ((-590 . -585) 24307) ((-266 . -33) T) ((-664 . -961) T) ((-530 . -1161) 24294) ((-481 . -1161) 24271) ((-1128 . -1003) T) ((-1070 . -262) 24182) ((-1026 . -262) 24113) ((-972 . -156) T) ((-784 . -1003) T) ((-874 . -156) 24024) ((-714 . -1131) 24008) ((-583 . -478) 23941) ((-75 . -557) 23923) ((-664 . -296) 23888) ((-1076 . -659) T) ((-524 . -1003) T) ((-449 . -156) 23799) ((-219 . -280) 23737) ((-1041 . -1015) T) ((-68 . -557) 23719) ((-1164 . -659) T) ((-1072 . -961) T) ((-1071 . -961) T) ((-297 . -97) 23669) ((-1065 . -961) T) ((-1041 . -23) T) ((-1027 . -961) T) ((-89 . -1022) 23653) ((-790 . -1015) T) ((-1072 . -207) 23612) ((-1071 . -217) 23591) ((-1071 . -207) 23543) ((-1065 . -207) 23430) ((-1065 . -217) 23409) ((-289 . -822) 23315) ((-790 . -23) T) ((-153 . -650) 23143) ((-377 . -1113) T) ((-1004 . -338) T) ((-939 . -134) T) ((-919 . -333) T) ((-794 . -421) T) ((-865 . -258) 23120) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 23102) ((-324 . -132) T) ((-1046 . -1003) 23080) ((-422 . -653) T) ((-73 . -557) 23062) ((-109 . -779) T) ((-219 . -254) 23046) ((-214 . -967) 22944) ((-79 . -557) 22926) ((-668 . -338) 22879) ((-1074 . -760) T) ((-670 . -209) 22863) ((-1058 . -1109) T) ((-128 . -209) 22845) ((-214 . -106) 22736) ((-1128 . -650) 22565) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22535) ((-451 . -1109) T) ((-874 . -478) 22481) ((-590 . -659) T) ((-524 . -650) 22468) ((-949 . -968) T) ((-449 . -478) 22406) ((-865 . -19) 22390) ((-865 . -550) 22367) ((-748 . -558) NIL) ((-748 . -557) 22349) ((-920 . -967) 22299) ((-383 . -557) 22281) ((-224 . -258) 22258) ((-223 . -258) 22235) ((-454 . -831) NIL) ((-286 . -29) 22205) ((-103 . -1109) T) ((-919 . -1015) T) ((-192 . -831) NIL) ((-836 . -967) 22157) ((-987 . -952) 22055) ((-920 . -106) 21982) ((-237 . -205) 21966) ((-670 . -628) 21950) ((-397 . -967) 21934) ((-349 . -968) T) ((-919 . -23) T) ((-836 . -106) 21865) ((-627 . -1098) NIL) ((-454 . -585) 21815) ((-103 . -806) 21797) ((-103 . -808) 21779) ((-627 . -1095) NIL) ((-192 . -585) 21729) ((-329 . -952) 21713) ((-323 . -952) 21697) ((-297 . -280) 21635) ((-315 . -952) 21619) ((-199 . -262) T) ((-397 . -106) 21598) ((-58 . -557) 21530) ((-153 . -156) T) ((-1021 . -779) T) ((-103 . -952) 21490) ((-814 . -1003) T) ((-766 . -968) T) ((-759 . -968) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -909) 21451) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -961) 21382) ((-1049 . -33) T) ((-446 . -842) T) ((-915 . -579) 21330) ((-224 . -550) 21307) ((-223 . -550) 21284) ((-987 . -347) 21268) ((-795 . -478) 21131) ((-214 . -207) 21084) ((-1057 . -1109) T) ((-756 . -557) 21066) ((-1175 . -1015) T) ((-1167 . -557) 21048) ((-1128 . -156) 20939) ((-103 . -347) 20921) ((-103 . -308) 20903) ((-972 . -262) T) ((-874 . -262) 20834) ((-731 . -338) 20813) ((-584 . -1109) T) ((-572 . -1109) T) ((-449 . -262) 20744) ((-524 . -156) T) ((-297 . -254) 20728) ((-1175 . -23) T) ((-1104 . -97) T) ((-1091 . -1003) T) ((-993 . -1003) T) ((-983 . -1003) T) ((-81 . -557) 20710) ((-644 . -97) T) ((-325 . -319) 20689) ((-552 . -1003) T) ((-322 . -319) 20668) ((-314 . -319) 20647) ((-444 . -1003) T) ((-1083 . -203) 20597) ((-237 . -226) 20559) ((-1041 . -123) T) ((-552 . -554) 20535) ((-987 . -822) 20468) ((-920 . -961) T) ((-836 . -961) T) ((-444 . -554) 20447) ((-1065 . -724) NIL) ((-1065 . -727) NIL) ((-1005 . -558) 20408) ((-447 . -203) 20358) ((-1005 . -557) 20340) ((-920 . -217) T) ((-920 . -207) T) ((-397 . -961) T) ((-879 . -1003) 20290) ((-836 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1015) 20269) ((-103 . -822) NIL) ((-1104 . -256) 20235) ((-796 . -777) 20214) ((-1016 . -1109) T) ((-827 . -659) T) ((-153 . -478) 20126) ((-915 . -25) T) ((-827 . -442) T) ((-377 . -1015) T) ((-454 . -726) T) ((-454 . -723) T) ((-832 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-915 . -21) T) ((-192 . -659) T) ((-772 . -23) 20078) ((-289 . -278) 20057) ((-950 . -209) 20003) ((-377 . -23) T) ((-865 . -558) 19964) ((-865 . -557) 19876) ((-583 . -456) 19860) ((-44 . -926) 19810) ((-301 . -557) 19792) ((-1016 . -952) 19621) ((-540 . -588) 19603) ((-540 . -343) 19585) ((-313 . -1161) 19562) ((-942 . -1109) T) ((-795 . -262) T) ((-1128 . -478) 19510) ((-445 . -1109) T) ((-432 . -1109) T) ((-534 . -97) T) ((-1070 . -258) 19437) ((-564 . -421) 19416) ((-916 . -911) 19400) ((-1167 . -352) 19372) ((-112 . -421) T) ((-1090 . -97) T) ((-996 . -1003) 19350) ((-949 . -1003) T) ((-815 . -779) T) ((-321 . -1113) T) ((-1147 . -967) 19233) ((-1016 . -347) 19203) ((-1140 . -967) 19038) ((-1119 . -967) 18828) ((-1147 . -106) 18690) ((-1140 . -106) 18504) ((-1119 . -106) 18250) ((-1104 . -280) 18237) ((-321 . -509) T) ((-335 . -557) 18219) ((-261 . -278) T) ((-543 . -967) 18192) ((-542 . -967) 18075) ((-331 . -1003) T) ((-292 . -1003) T) ((-224 . -557) 18036) ((-223 . -557) 17997) ((-919 . -123) T) ((-104 . -557) 17979) ((-575 . -23) T) ((-627 . -379) 17946) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17917) ((-542 . -106) 17779) ((-349 . -1003) T) ((-306 . -97) T) ((-153 . -262) 17690) ((-1118 . -777) 17643) ((-647 . -968) T) ((-1046 . -478) 17576) ((-1016 . -822) 17509) ((-766 . -1003) T) ((-759 . -1003) T) ((-757 . -1003) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -806) 17493) ((-105 . -1109) T) ((-992 . -97) T) ((-973 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17444) ((-214 . -724) 17395) ((-586 . -97) T) ((-1128 . -262) 17306) ((-601 . -574) 17290) ((-583 . -258) 17267) ((-949 . -650) 17251) ((-524 . -262) T) ((-884 . -585) 17176) ((-1175 . -123) T) ((-668 . -585) 17136) ((-648 . -585) 17123) ((-248 . -97) T) ((-422 . -585) 17053) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1147 . -961) T) ((-1140 . -961) T) ((-1119 . -961) T) ((-292 . -650) 17035) ((-1147 . -207) 16994) ((-1140 . -217) 16973) ((-1140 . -207) 16925) ((-1119 . -207) 16812) ((-1119 . -217) 16791) ((-1104 . -37) 16688) ((-543 . -961) T) ((-542 . -961) T) ((-920 . -727) T) ((-920 . -724) T) ((-888 . -727) T) ((-888 . -724) T) ((-796 . -968) T) ((-794 . -793) 16672) ((-627 . -421) T) ((-349 . -650) 16637) ((-388 . -585) 16611) ((-645 . -779) 16590) ((-644 . -37) 16555) ((-542 . -207) 16514) ((-39 . -657) 16486) ((-321 . -299) 16463) ((-321 . -333) T) ((-987 . -278) 16414) ((-265 . -1015) 16296) ((-1009 . -1109) T) ((-155 . -97) T) ((-1122 . -557) 16263) ((-772 . -123) 16215) ((-583 . -1143) 16199) ((-766 . -650) 16169) ((-759 . -650) 16139) ((-450 . -1109) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 16116) ((-377 . -123) T) ((-483 . -603) 16100) ((-103 . -278) T) ((-265 . -23) 15984) ((-483 . -588) 15968) ((-627 . -372) NIL) ((-483 . -343) 15952) ((-89 . -1003) 15930) ((-103 . -937) T) ((-517 . -130) T) ((-1154 . -138) 15914) ((-450 . -952) 15743) ((-1141 . -132) 15704) ((-1141 . -134) 15665) ((-965 . -1109) T) ((-910 . -557) 15647) ((-787 . -557) 15629) ((-748 . -967) 15472) ((-992 . -280) 15459) ((-201 . -1109) T) ((-714 . -280) 15446) ((-712 . -280) 15433) ((-748 . -106) 15255) ((-423 . -280) 15242) ((-1070 . -558) NIL) ((-1070 . -557) 15224) ((-1026 . -557) 15206) ((-1026 . -558) 14954) ((-949 . -156) T) ((-783 . -557) 14936) ((-865 . -260) 14913) ((-552 . -478) 14661) ((-750 . -952) 14645) ((-444 . -478) 14405) ((-884 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1015) T) ((-1077 . -557) 14387) ((-197 . -97) T) ((-450 . -347) 14357) ((-479 . -1003) T) ((-474 . -1003) T) ((-472 . -1003) T) ((-731 . -585) 14331) ((-939 . -421) T) ((-879 . -478) 14264) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14243) ((-349 . -156) T) ((-1139 . -968) T) ((-1118 . -968) T) ((-199 . -918) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1113) T) ((-1041 . -579) 14191) ((-529 . -793) 14175) ((-1058 . -1086) 14151) ((-634 . -509) T) ((-121 . -1003) 14129) ((-1167 . -967) 14113) ((-647 . -1003) T) ((-450 . -822) 14046) ((-595 . -37) 14016) ((-324 . -372) T) ((-286 . -134) 13995) ((-286 . -132) 13974) ((-111 . -509) T) ((-283 . -134) 13930) ((-283 . -132) 13886) ((-47 . -421) T) ((-146 . -1003) T) ((-142 . -1003) T) ((-1058 . -102) 13833) ((-714 . -1050) 13811) ((-623 . -33) T) ((-1167 . -106) 13790) ((-503 . -33) T) ((-451 . -102) 13774) ((-224 . -260) 13751) ((-223 . -260) 13728) ((-795 . -258) 13658) ((-44 . -1109) T) ((-748 . -961) T) ((-1076 . -46) 13635) ((-748 . -296) 13597) ((-992 . -37) 13446) ((-748 . -207) 13425) ((-714 . -37) 13254) ((-712 . -37) 13103) ((-423 . -37) 12952) ((-583 . -558) 12913) ((-583 . -557) 12825) ((-530 . -1050) T) ((-481 . -1050) T) ((-1046 . -456) 12809) ((-1096 . -1003) 12787) ((-1041 . -25) T) ((-1041 . -21) T) ((-443 . -968) T) ((-1119 . -724) NIL) ((-1119 . -727) NIL) ((-915 . -779) 12766) ((-751 . -557) 12748) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1113) T) ((-530 . -37) 12713) ((-481 . -37) 12678) ((-356 . -557) 12660) ((-294 . -557) 12642) ((-153 . -258) 12600) ((-61 . -1109) T) ((-107 . -97) T) ((-796 . -1003) T) ((-157 . -509) T) ((-647 . -650) 12570) ((-265 . -123) 12454) ((-199 . -557) 12436) ((-199 . -558) 12366) ((-919 . -579) 12300) ((-1167 . -961) T) ((-1021 . -134) T) ((-572 . -1086) 12275) ((-664 . -831) 12254) ((-540 . -33) T) ((-584 . -102) 12238) ((-572 . -102) 12184) ((-1128 . -258) 12111) ((-664 . -585) 12036) ((-266 . -1109) T) ((-1076 . -952) 11934) ((-1065 . -831) NIL) ((-972 . -558) 11849) ((-972 . -557) 11831) ((-313 . -97) T) ((-224 . -967) 11729) ((-223 . -967) 11627) ((-364 . -97) T) ((-874 . -557) 11609) ((-874 . -558) 11470) ((-646 . -557) 11452) ((-1165 . -1103) 11421) ((-449 . -557) 11403) ((-449 . -558) 11264) ((-221 . -381) 11248) ((-237 . -381) 11232) ((-224 . -106) 11123) ((-223 . -106) 11014) ((-1072 . -585) 10939) ((-1071 . -585) 10836) ((-1065 . -585) 10688) ((-1027 . -585) 10613) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-919 . -25) T) ((-919 . -21) T) ((-796 . -650) 10565) ((-349 . -262) T) ((-153 . -918) 10517) ((-627 . -357) T) ((-915 . -913) 10501) ((-634 . -1015) T) ((-627 . -150) 10483) ((-1139 . -1003) T) ((-1118 . -1003) T) ((-286 . -1095) 10462) ((-286 . -1098) 10441) ((-1063 . -97) T) ((-286 . -880) 10420) ((-125 . -1015) T) ((-111 . -1015) T) ((-548 . -1152) 10404) ((-634 . -23) T) ((-548 . -1003) 10354) ((-89 . -478) 10287) ((-157 . -333) T) ((-286 . -91) 10266) ((-286 . -34) 10245) ((-552 . -456) 10179) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1003) T) ((-444 . -456) 10116) ((-377 . -579) 10064) ((-590 . -952) 9962) ((-879 . -456) 9946) ((-325 . -968) T) ((-322 . -968) T) ((-314 . -968) T) ((-237 . -968) T) ((-221 . -968) T) ((-795 . -558) NIL) ((-795 . -557) 9928) ((-1175 . -21) T) ((-524 . -918) T) ((-664 . -659) T) ((-1175 . -25) T) ((-224 . -961) 9859) ((-223 . -961) 9790) ((-70 . -1109) T) ((-224 . -207) 9743) ((-223 . -207) 9696) ((-39 . -97) T) ((-832 . -968) T) ((-1072 . -659) T) ((-1071 . -659) T) ((-1065 . -659) T) ((-1065 . -723) NIL) ((-1065 . -726) NIL) ((-843 . -97) T) ((-1027 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1003) T) ((-309 . -1015) T) ((-157 . -1015) T) ((-289 . -842) 9675) ((-1139 . -650) 9516) ((-796 . -156) T) ((-1118 . -650) 9330) ((-772 . -21) 9282) ((-772 . -25) 9234) ((-219 . -1048) 9218) ((-121 . -478) 9151) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8919) ((-153 . -557) 8901) ((-157 . -23) T) ((-583 . -260) 8878) ((-483 . -33) T) ((-820 . -557) 8860) ((-87 . -1109) T) ((-770 . -557) 8842) ((-740 . -557) 8824) ((-701 . -557) 8806) ((-612 . -557) 8788) ((-214 . -585) 8638) ((-1074 . -1003) T) ((-1070 . -967) 8461) ((-1049 . -1109) T) ((-1026 . -967) 8304) ((-783 . -967) 8288) ((-1070 . -106) 8090) ((-1026 . -106) 7912) ((-783 . -106) 7891) ((-1128 . -558) NIL) ((-1128 . -557) 7873) ((-313 . -1050) T) ((-784 . -557) 7855) ((-983 . -258) 7834) ((-78 . -1109) T) ((-920 . -831) NIL) ((-552 . -258) 7810) ((-1096 . -478) 7743) ((-454 . -1109) T) ((-524 . -557) 7725) ((-444 . -258) 7704) ((-192 . -1109) T) ((-992 . -205) 7688) ((-261 . -842) T) ((-749 . -278) 7667) ((-794 . -97) T) ((-714 . -205) 7651) ((-920 . -585) 7601) ((-879 . -258) 7578) ((-836 . -585) 7530) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7495) ((-627 . -657) 7462) ((-454 . -806) 7444) ((-454 . -808) 7426) ((-443 . -650) 7267) ((-192 . -806) 7249) ((-62 . -1109) T) ((-192 . -808) 7231) ((-551 . -25) T) ((-397 . -585) 7205) ((-454 . -952) 7165) ((-796 . -478) 7077) ((-192 . -952) 7037) ((-214 . -33) T) ((-916 . -1003) 7015) ((-1139 . -156) 6946) ((-1118 . -156) 6877) ((-645 . -132) 6856) ((-645 . -134) 6835) ((-634 . -123) T) ((-127 . -434) 6812) ((-595 . -593) 6796) ((-1046 . -557) 6728) ((-111 . -123) T) ((-446 . -1113) T) ((-552 . -550) 6704) ((-444 . -550) 6683) ((-306 . -305) 6652) ((-493 . -1003) T) ((-446 . -509) T) ((-1070 . -961) T) ((-1026 . -961) T) ((-783 . -961) T) ((-214 . -723) 6631) ((-214 . -726) 6582) ((-214 . -725) 6561) ((-1070 . -296) 6538) ((-214 . -659) 6469) ((-879 . -19) 6453) ((-454 . -347) 6435) ((-454 . -308) 6417) ((-1026 . -296) 6389) ((-324 . -1161) 6366) ((-192 . -347) 6348) ((-192 . -308) 6330) ((-879 . -550) 6307) ((-1070 . -207) T) ((-601 . -1003) T) ((-1150 . -1003) T) ((-1083 . -1003) T) ((-992 . -226) 6246) ((-325 . -1003) T) ((-322 . -1003) T) ((-314 . -1003) T) ((-237 . -1003) T) ((-221 . -1003) T) ((-82 . -1109) T) ((-122 . -97) 6224) ((-116 . -97) 6202) ((-1083 . -554) 6181) ((-447 . -1003) T) ((-1040 . -1003) T) ((-447 . -554) 6160) ((-224 . -727) 6111) ((-224 . -724) 6062) ((-223 . -727) 6013) ((-39 . -1050) NIL) ((-223 . -724) 5964) ((-987 . -842) 5915) ((-920 . -726) T) ((-920 . -723) T) ((-920 . -659) T) ((-888 . -726) T) ((-836 . -659) T) ((-89 . -456) 5899) ((-454 . -822) NIL) ((-832 . -1003) T) ((-199 . -967) 5864) ((-796 . -262) T) ((-192 . -822) NIL) ((-765 . -1015) 5843) ((-57 . -1003) 5793) ((-482 . -1003) 5771) ((-480 . -1003) 5721) ((-462 . -1003) 5699) ((-461 . -1003) 5649) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5580) ((-329 . -842) T) ((-323 . -842) T) ((-315 . -842) T) ((-199 . -106) 5529) ((-765 . -23) 5481) ((-397 . -659) T) ((-103 . -842) T) ((-39 . -37) 5426) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1118 . -478) 5286) ((-286 . -421) 5265) ((-283 . -421) T) ((-766 . -258) 5244) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5109) ((-265 . -21) 4993) ((-44 . -1086) 4972) ((-64 . -557) 4954) ((-814 . -557) 4936) ((-548 . -478) 4869) ((-44 . -102) 4819) ((-1005 . -395) 4803) ((-1005 . -338) 4782) ((-973 . -1109) T) ((-972 . -967) 4769) ((-874 . -967) 4612) ((-449 . -967) 4455) ((-601 . -650) 4439) ((-972 . -106) 4424) ((-874 . -106) 4246) ((-446 . -333) T) ((-325 . -650) 4198) ((-322 . -650) 4150) ((-314 . -650) 4102) ((-237 . -650) 3951) ((-221 . -650) 3800) ((-865 . -588) 3784) ((-449 . -106) 3606) ((-1155 . -97) T) ((-865 . -343) 3590) ((-1119 . -831) NIL) ((-72 . -557) 3572) ((-884 . -46) 3551) ((-562 . -1015) T) ((-1 . -1003) T) ((-632 . -97) T) ((-1154 . -97) 3501) ((-1147 . -585) 3426) ((-1140 . -585) 3323) ((-121 . -456) 3307) ((-1091 . -557) 3289) ((-993 . -557) 3271) ((-360 . -23) T) ((-983 . -557) 3253) ((-85 . -1109) T) ((-1119 . -585) 3105) ((-832 . -650) 3070) ((-562 . -23) T) ((-552 . -557) 3052) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 3034) ((-475 . -1003) T) ((-471 . -1003) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2972) ((-116 . -280) 2910) ((-543 . -585) 2897) ((-199 . -961) T) ((-542 . -585) 2822) ((-349 . -918) T) ((-199 . -217) T) ((-199 . -207) T) ((-879 . -558) 2783) ((-879 . -557) 2695) ((-794 . -37) 2682) ((-1139 . -262) 2633) ((-1118 . -262) 2584) ((-1021 . -421) T) ((-467 . -779) T) ((-286 . -1038) 2563) ((-915 . -134) 2542) ((-915 . -132) 2521) ((-460 . -280) 2508) ((-266 . -1086) 2487) ((-446 . -1015) T) ((-795 . -967) 2432) ((-564 . -97) T) ((-1096 . -456) 2416) ((-224 . -338) 2395) ((-223 . -338) 2374) ((-266 . -102) 2324) ((-972 . -961) T) ((-112 . -97) T) ((-874 . -961) T) ((-795 . -106) 2241) ((-446 . -23) T) ((-449 . -961) T) ((-972 . -207) T) ((-874 . -296) 2210) ((-449 . -296) 2167) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2078) ((-221 . -156) 1989) ((-884 . -952) 1887) ((-668 . -952) 1858) ((-1008 . -97) T) ((-996 . -557) 1825) ((-949 . -557) 1807) ((-1147 . -659) T) ((-1140 . -659) T) ((-1119 . -723) NIL) ((-153 . -967) 1717) ((-1119 . -726) NIL) ((-832 . -156) T) ((-1119 . -659) T) ((-1165 . -138) 1701) ((-919 . -312) 1675) ((-916 . -478) 1608) ((-772 . -779) 1587) ((-517 . -1050) T) ((-443 . -262) 1538) ((-543 . -659) T) ((-331 . -557) 1520) ((-292 . -557) 1502) ((-388 . -952) 1400) ((-542 . -659) T) ((-377 . -779) 1351) ((-153 . -106) 1240) ((-765 . -123) 1192) ((-670 . -138) 1176) ((-1154 . -280) 1114) ((-454 . -278) T) ((-349 . -557) 1081) ((-483 . -926) 1065) ((-349 . -558) 979) ((-192 . -278) T) ((-128 . -138) 961) ((-647 . -258) 940) ((-454 . -937) T) ((-529 . -37) 927) ((-517 . -37) 914) ((-460 . -37) 879) ((-192 . -937) T) ((-795 . -961) T) ((-766 . -557) 861) ((-759 . -557) 843) ((-757 . -557) 825) ((-748 . -831) 804) ((-1176 . -1015) T) ((-1128 . -967) 627) ((-784 . -967) 611) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1109) T) ((-1176 . -23) T) ((-748 . -585) 536) ((-503 . -1109) T) ((-388 . -308) 520) ((-524 . -967) 507) ((-1128 . -106) 309) ((-634 . -579) 291) ((-784 . -106) 270) ((-351 . -23) T) ((-1083 . -478) 30)) \ No newline at end of file
+(((-599 . -1004) T) ((-237 . -478) 141976) ((-221 . -478) 141919) ((-524 . -106) 141904) ((-489 . -23) T) ((-219 . -1004) 141854) ((-112 . -280) 141811) ((-447 . -478) 141603) ((-627 . -97) T) ((-1041 . -478) 141522) ((-360 . -123) T) ((-1167 . -894) 141491) ((-548 . -456) 141475) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 141425) ((-57 . -478) 141358) ((-482 . -478) 141291) ((-388 . -823) 141250) ((-153 . -962) T) ((-480 . -478) 141183) ((-462 . -478) 141116) ((-461 . -478) 141049) ((-731 . -953) 140836) ((-632 . -37) 140801) ((-313 . -319) T) ((-999 . -998) 140785) ((-999 . -1004) 140763) ((-153 . -217) 140714) ((-153 . -207) 140665) ((-999 . -1000) 140623) ((-796 . -258) 140581) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1050 . -1087) 140560) ((-377 . -910) 140544) ((-634 . -21) T) ((-634 . -25) T) ((-1169 . -585) 140518) ((-286 . -145) 140497) ((-286 . -130) 140476) ((-1050 . -102) 140426) ((-125 . -25) T) ((-39 . -205) 140403) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 140379) ((-444 . -260) 140358) ((-1129 . -962) T) ((-784 . -962) T) ((-731 . -308) 140342) ((-112 . -1051) NIL) ((-89 . -557) 140274) ((-446 . -123) T) ((-540 . -1110) T) ((-1129 . -296) 140251) ((-524 . -962) T) ((-1129 . -207) T) ((-599 . -650) 140235) ((-880 . -260) 140212) ((-58 . -33) T) ((-973 . -727) T) ((-973 . -724) T) ((-748 . -659) T) ((-664 . -46) 140177) ((-564 . -37) 140164) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 140095) ((-221 . -262) 140026) ((-940 . -97) T) ((-383 . -659) T) ((-112 . -37) 139971) ((-383 . -442) T) ((-324 . -97) T) ((-1105 . -969) T) ((-644 . -969) T) ((-1073 . -46) 139948) ((-1072 . -46) 139918) ((-1066 . -46) 139895) ((-951 . -138) 139841) ((-833 . -262) T) ((-1028 . -46) 139813) ((-627 . -280) NIL) ((-479 . -557) 139795) ((-474 . -557) 139777) ((-472 . -557) 139759) ((-297 . -1004) 139709) ((-645 . -421) 139640) ((-47 . -97) T) ((-1140 . -258) 139625) ((-1119 . -258) 139545) ((-583 . -603) 139529) ((-583 . -588) 139513) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 139497) ((-548 . -258) 139474) ((-358 . -97) T) ((-1022 . -130) T) ((-121 . -557) 139406) ((-797 . -1004) T) ((-595 . -381) 139390) ((-647 . -557) 139372) ((-146 . -557) 139354) ((-142 . -557) 139336) ((-1169 . -659) T) ((-1006 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -809) NIL) ((-1178 . -123) T) ((-351 . -123) T) ((-827 . -97) T) ((-664 . -953) 139214) ((-489 . -123) T) ((-993 . -381) 139198) ((-917 . -456) 139182) ((-112 . -370) 139159) ((-1066 . -1110) 139138) ((-714 . -381) 139122) ((-712 . -381) 139106) ((-866 . -33) T) ((-627 . -1051) NIL) ((-224 . -585) 138943) ((-223 . -585) 138767) ((-749 . -843) 138746) ((-423 . -381) 138730) ((-548 . -19) 138714) ((-1046 . -1104) 138683) ((-1066 . -809) NIL) ((-1066 . -807) 138635) ((-548 . -550) 138612) ((-1097 . -557) 138544) ((-1074 . -557) 138526) ((-60 . -365) T) ((-1072 . -953) 138461) ((-1066 . -953) 138427) ((-627 . -37) 138377) ((-443 . -258) 138362) ((-664 . -347) 138346) ((-595 . -969) T) ((-1140 . -919) 138312) ((-1119 . -919) 138278) ((-974 . -1087) 138253) ((-796 . -558) 138061) ((-796 . -557) 138043) ((-1084 . -456) 137980) ((-388 . -938) 137959) ((-47 . -280) 137946) ((-974 . -102) 137892) ((-447 . -456) 137829) ((-483 . -1110) T) ((-1041 . -456) 137800) ((-1066 . -308) 137752) ((-1066 . -347) 137704) ((-407 . -97) T) ((-993 . -969) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -969) T) ((-712 . -969) T) ((-664 . -823) 137681) ((-423 . -969) T) ((-57 . -456) 137665) ((-950 . -968) 137639) ((-482 . -456) 137623) ((-480 . -456) 137607) ((-462 . -456) 137591) ((-461 . -456) 137575) ((-219 . -478) 137508) ((-950 . -106) 137475) ((-1073 . -823) 137388) ((-607 . -1016) T) ((-1072 . -823) 137294) ((-1066 . -823) 137127) ((-1028 . -823) 137111) ((-324 . -1051) T) ((-292 . -968) 137093) ((-224 . -723) 137072) ((-224 . -726) 137023) ((-224 . -725) 137002) ((-223 . -723) 136981) ((-223 . -726) 136932) ((-223 . -725) 136911) ((-49 . -969) T) ((-224 . -659) 136842) ((-223 . -659) 136773) ((-1105 . -1004) T) ((-607 . -23) T) ((-530 . -969) T) ((-481 . -969) T) ((-349 . -968) 136738) ((-292 . -106) 136713) ((-71 . -353) T) ((-71 . -365) T) ((-940 . -37) 136650) ((-627 . -370) 136632) ((-94 . -97) T) ((-644 . -1004) T) ((-920 . -132) 136604) ((-349 . -106) 136560) ((-289 . -1114) 136539) ((-443 . -919) 136505) ((-324 . -37) 136470) ((-39 . -340) 136442) ((-920 . -134) 136414) ((-122 . -120) 136398) ((-116 . -120) 136382) ((-766 . -968) 136352) ((-765 . -21) 136304) ((-759 . -968) 136288) ((-765 . -25) 136240) ((-289 . -509) 136191) ((-517 . -760) T) ((-214 . -1110) T) ((-766 . -106) 136156) ((-759 . -106) 136135) ((-1140 . -557) 136117) ((-1119 . -557) 136099) ((-1119 . -558) 135772) ((-1071 . -832) 135751) ((-1027 . -832) 135730) ((-47 . -37) 135695) ((-1176 . -1016) T) ((-548 . -557) 135607) ((-548 . -558) 135568) ((-1174 . -1016) T) ((-214 . -953) 135397) ((-1071 . -585) 135322) ((-1027 . -585) 135247) ((-651 . -557) 135229) ((-783 . -585) 135203) ((-1176 . -23) T) ((-1174 . -23) T) ((-950 . -962) T) ((-1084 . -258) 135182) ((-153 . -338) 135133) ((-921 . -1110) T) ((-43 . -23) T) ((-447 . -258) 135112) ((-534 . -1004) T) ((-1046 . -1013) 135081) ((-1008 . -1007) 135033) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1016) T) ((-1182 . -97) T) ((-921 . -807) 135015) ((-921 . -809) 134997) ((-1105 . -650) 134894) ((-564 . -205) 134878) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1091 . -1004) T) ((-644 . -650) 134843) ((-214 . -347) 134813) ((-921 . -953) 134773) ((-349 . -962) T) ((-197 . -969) T) ((-112 . -205) 134750) ((-57 . -258) 134727) ((-139 . -23) T) ((-480 . -258) 134704) ((-297 . -478) 134637) ((-461 . -258) 134614) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -962) T) ((-759 . -962) T) ((-645 . -872) 134584) ((-634 . -779) T) ((-443 . -557) 134566) ((-759 . -207) 134545) ((-125 . -779) T) ((-595 . -1004) T) ((-1084 . -550) 134524) ((-503 . -1087) 134503) ((-306 . -1004) T) ((-289 . -333) 134482) ((-377 . -134) 134461) ((-377 . -132) 134440) ((-886 . -1016) 134339) ((-214 . -823) 134272) ((-747 . -1016) 134203) ((-591 . -781) 134187) ((-447 . -550) 134166) ((-503 . -102) 134116) ((-921 . -347) 134098) ((-921 . -308) 134080) ((-92 . -1004) T) ((-886 . -23) 133891) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 133762) ((-1075 . -557) 133744) ((-57 . -19) 133728) ((-1075 . -558) 133650) ((-1071 . -659) T) ((-1027 . -659) T) ((-480 . -19) 133634) ((-461 . -19) 133618) ((-57 . -550) 133595) ((-993 . -1004) T) ((-824 . -97) 133573) ((-783 . -659) T) ((-714 . -1004) T) ((-480 . -550) 133550) ((-461 . -550) 133527) ((-712 . -1004) T) ((-712 . -976) 133494) ((-430 . -1004) T) ((-423 . -1004) T) ((-534 . -650) 133469) ((-586 . -1004) T) ((-921 . -823) NIL) ((-1148 . -46) 133446) ((-567 . -1016) T) ((-607 . -123) T) ((-1142 . -97) T) ((-1141 . -46) 133416) ((-1120 . -46) 133393) ((-1105 . -156) 133344) ((-988 . -1114) 133295) ((-248 . -1004) T) ((-83 . -410) T) ((-83 . -365) T) ((-1072 . -278) 133274) ((-1066 . -278) 133253) ((-49 . -1004) T) ((-988 . -509) 133204) ((-644 . -156) T) ((-542 . -46) 133181) ((-199 . -585) 133146) ((-530 . -1004) T) ((-481 . -1004) T) ((-329 . -1114) T) ((-323 . -1114) T) ((-315 . -1114) T) ((-454 . -752) T) ((-454 . -843) T) ((-289 . -1016) T) ((-103 . -1114) T) ((-309 . -779) T) ((-192 . -843) T) ((-192 . -752) T) ((-647 . -968) 133116) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 133086) ((-1066 . -938) NIL) ((-289 . -23) T) ((-65 . -1110) T) ((-917 . -557) 133018) ((-627 . -205) 133000) ((-647 . -106) 132965) ((-583 . -33) T) ((-219 . -456) 132949) ((-1006 . -1002) 132933) ((-155 . -1004) T) ((-875 . -832) 132912) ((-449 . -832) 132891) ((-1178 . -21) T) ((-1178 . -25) T) ((-1176 . -123) T) ((-1174 . -123) T) ((-993 . -650) 132740) ((-973 . -585) 132727) ((-875 . -585) 132652) ((-493 . -557) 132634) ((-493 . -558) 132615) ((-714 . -650) 132444) ((-712 . -650) 132293) ((-1167 . -97) T) ((-985 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 132218) ((-430 . -650) 132189) ((-423 . -650) 132038) ((-905 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1120 . -1110) 132017) ((-1152 . -557) 131983) ((-1120 . -809) NIL) ((-1120 . -807) 131935) ((-128 . -97) T) ((-43 . -123) T) ((-1084 . -558) NIL) ((-1084 . -557) 131917) ((-1042 . -1025) 131862) ((-313 . -969) T) ((-601 . -557) 131844) ((-261 . -1016) T) ((-325 . -557) 131826) ((-322 . -557) 131808) ((-314 . -557) 131790) ((-237 . -558) 131538) ((-237 . -557) 131520) ((-221 . -557) 131502) ((-221 . -558) 131363) ((-959 . -1104) 131292) ((-824 . -280) 131230) ((-1182 . -1051) T) ((-1141 . -953) 131165) ((-1120 . -953) 131131) ((-1105 . -478) 131098) ((-1041 . -557) 131080) ((-751 . -659) T) ((-548 . -260) 131057) ((-530 . -650) 131022) ((-447 . -558) NIL) ((-447 . -557) 131004) ((-481 . -650) 130949) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -968) 130901) ((-833 . -557) 130883) ((-833 . -558) 130865) ((-796 . -106) 130803) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1132) 130787) ((-647 . -962) T) ((-627 . -319) NIL) ((-482 . -557) 130719) ((-349 . -727) T) ((-197 . -1004) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 130680) ((-57 . -557) 130592) ((-199 . -659) T) ((-480 . -558) 130553) ((-480 . -557) 130465) ((-462 . -557) 130397) ((-461 . -558) 130358) ((-461 . -557) 130270) ((-988 . -333) 130221) ((-39 . -381) 130198) ((-75 . -1110) T) ((-795 . -832) NIL) ((-329 . -299) 130182) ((-329 . -333) T) ((-323 . -299) 130166) ((-323 . -333) T) ((-315 . -299) 130150) ((-315 . -333) T) ((-286 . -256) 130129) ((-103 . -333) T) ((-68 . -1110) T) ((-1120 . -308) 130081) ((-795 . -585) 130026) ((-1120 . -347) 129978) ((-886 . -123) 129833) ((-747 . -123) 129704) ((-880 . -588) 129688) ((-993 . -156) 129599) ((-880 . -343) 129583) ((-973 . -726) T) ((-973 . -723) T) ((-714 . -156) 129474) ((-712 . -156) 129385) ((-748 . -46) 129347) ((-973 . -659) T) ((-297 . -456) 129331) ((-875 . -659) T) ((-423 . -156) 129242) ((-219 . -258) 129219) ((-449 . -659) T) ((-1167 . -280) 129157) ((-1148 . -823) 129070) ((-1141 . -823) 128976) ((-1140 . -968) 128811) ((-1120 . -823) 128644) ((-1119 . -968) 128452) ((-1105 . -262) 128431) ((-1046 . -138) 128415) ((-983 . -97) T) ((-850 . -877) T) ((-73 . -1110) T) ((-670 . -280) 128353) ((-153 . -832) 128306) ((-601 . -352) 128278) ((-30 . -877) T) ((-1 . -557) 128260) ((-1022 . -97) T) ((-988 . -23) T) ((-49 . -561) 128244) ((-988 . -1016) T) ((-920 . -379) 128216) ((-542 . -823) 128129) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -962) T) ((-765 . -779) 128108) ((-79 . -1110) T) ((-644 . -262) T) ((-39 . -969) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 128090) ((-153 . -585) 128000) ((-471 . -557) 127982) ((-321 . -134) 127964) ((-321 . -132) T) ((-329 . -1016) T) ((-323 . -1016) T) ((-315 . -1016) T) ((-921 . -278) T) ((-837 . -278) T) ((-796 . -217) T) ((-103 . -1016) T) ((-796 . -207) 127943) ((-1140 . -106) 127764) ((-1119 . -106) 127553) ((-219 . -1144) 127537) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 127524) ((-283 . -280) 127465) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-921 . -938) T) ((-103 . -23) T) ((-219 . -550) 127442) ((-1142 . -37) 127334) ((-1129 . -832) 127313) ((-107 . -1004) T) ((-951 . -97) T) ((-1129 . -585) 127238) ((-795 . -726) NIL) ((-784 . -585) 127212) ((-795 . -723) NIL) ((-748 . -809) NIL) ((-795 . -659) T) ((-993 . -478) 127086) ((-714 . -478) 127034) ((-712 . -478) 126986) ((-524 . -585) 126973) ((-748 . -953) 126803) ((-423 . -478) 126746) ((-358 . -359) T) ((-58 . -1110) T) ((-562 . -779) 126725) ((-465 . -598) T) ((-1046 . -894) 126694) ((-920 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -968) 126529) ((-313 . -1004) T) ((-283 . -1051) NIL) ((-261 . -123) T) ((-364 . -1004) T) ((-627 . -340) 126496) ((-794 . -969) T) ((-197 . -561) 126473) ((-297 . -258) 126450) ((-443 . -106) 126271) ((-1140 . -962) T) ((-1119 . -962) T) ((-748 . -347) 126255) ((-153 . -659) T) ((-591 . -97) T) ((-1140 . -217) 126234) ((-1140 . -207) 126186) ((-1119 . -207) 126091) ((-1119 . -217) 126070) ((-920 . -372) NIL) ((-607 . -579) 126018) ((-286 . -37) 125928) ((-283 . -37) 125857) ((-67 . -557) 125839) ((-289 . -458) 125805) ((-1084 . -260) 125784) ((-1017 . -1016) 125715) ((-81 . -1110) T) ((-59 . -557) 125697) ((-447 . -260) 125676) ((-1169 . -953) 125653) ((-1064 . -1004) T) ((-1017 . -23) 125524) ((-748 . -823) 125460) ((-1129 . -659) T) ((-1006 . -1110) T) ((-993 . -262) 125391) ((-816 . -97) T) ((-714 . -262) 125302) ((-297 . -19) 125286) ((-57 . -260) 125263) ((-712 . -262) 125194) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 125171) ((-297 . -550) 125148) ((-461 . -260) 125125) ((-423 . -262) 125056) ((-951 . -280) 124907) ((-524 . -659) T) ((-599 . -557) 124889) ((-219 . -558) 124850) ((-219 . -557) 124762) ((-1047 . -33) T) ((-866 . -1110) T) ((-313 . -650) 124707) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -962) T) ((-575 . -387) 124672) ((-551 . -387) 124637) ((-1022 . -1051) T) ((-530 . -262) T) ((-481 . -262) T) ((-1141 . -278) 124616) ((-443 . -207) 124568) ((-443 . -217) 124547) ((-1120 . -278) 124526) ((-988 . -123) T) ((-796 . -727) 124505) ((-131 . -97) T) ((-39 . -1004) T) ((-796 . -724) 124484) ((-583 . -927) 124468) ((-529 . -969) T) ((-517 . -969) T) ((-460 . -969) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 124452) ((-283 . -370) 124413) ((-323 . -123) T) ((-315 . -123) T) ((-1120 . -938) NIL) ((-999 . -557) 124380) ((-103 . -123) T) ((-1022 . -37) 124367) ((-844 . -1004) T) ((-703 . -1004) T) ((-608 . -1004) T) ((-634 . -134) T) ((-111 . -134) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-1174 . -21) T) ((-1174 . -25) T) ((-601 . -968) 124351) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -968) 124303) ((-322 . -968) 124255) ((-314 . -968) 124207) ((-224 . -1110) T) ((-223 . -1110) T) ((-237 . -968) 124050) ((-221 . -968) 123893) ((-601 . -106) 123872) ((-325 . -106) 123810) ((-322 . -106) 123748) ((-314 . -106) 123686) ((-237 . -106) 123515) ((-221 . -106) 123344) ((-749 . -1114) 123323) ((-564 . -381) 123307) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 123215) ((-749 . -509) 123194) ((-224 . -953) 123023) ((-223 . -953) 122852) ((-121 . -114) 122836) ((-833 . -968) 122801) ((-632 . -969) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 122783) ((-833 . -106) 122739) ((-39 . -650) 122684) ((-794 . -1004) T) ((-297 . -558) 122645) ((-297 . -557) 122557) ((-1119 . -724) 122510) ((-1119 . -727) 122463) ((-224 . -347) 122433) ((-223 . -347) 122403) ((-591 . -37) 122373) ((-552 . -33) T) ((-450 . -1016) 122304) ((-444 . -33) T) ((-1017 . -123) 122175) ((-886 . -25) 121986) ((-797 . -557) 121968) ((-886 . -21) 121923) ((-747 . -21) 121834) ((-747 . -25) 121686) ((-564 . -969) T) ((-1077 . -509) 121665) ((-1071 . -46) 121642) ((-325 . -962) T) ((-322 . -962) T) ((-450 . -23) 121513) ((-314 . -962) T) ((-237 . -962) T) ((-221 . -962) T) ((-1027 . -46) 121485) ((-112 . -969) T) ((-950 . -585) 121459) ((-880 . -33) T) ((-325 . -207) 121438) ((-325 . -217) T) ((-322 . -207) 121417) ((-221 . -296) 121374) ((-322 . -217) T) ((-314 . -207) 121353) ((-314 . -217) T) ((-237 . -296) 121325) ((-237 . -207) 121304) ((-1056 . -138) 121288) ((-224 . -823) 121221) ((-223 . -823) 121154) ((-990 . -779) T) ((-1123 . -1110) T) ((-384 . -1016) T) ((-966 . -23) T) ((-833 . -962) T) ((-292 . -585) 121136) ((-940 . -777) T) ((-1105 . -919) 121102) ((-1072 . -843) 121081) ((-1066 . -843) 121060) ((-833 . -217) T) ((-749 . -333) 121039) ((-355 . -23) T) ((-122 . -1004) 121017) ((-116 . -1004) 120995) ((-833 . -207) T) ((-1066 . -752) NIL) ((-349 . -585) 120960) ((-794 . -650) 120947) ((-959 . -138) 120912) ((-39 . -156) T) ((-627 . -381) 120894) ((-645 . -280) 120881) ((-766 . -585) 120841) ((-759 . -585) 120815) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 120794) ((-529 . -1004) T) ((-517 . -1004) T) ((-460 . -1004) T) ((-219 . -260) 120771) ((-283 . -205) 120732) ((-1071 . -809) NIL) ((-1027 . -809) 120591) ((-1071 . -953) 120474) ((-1027 . -953) 120359) ((-783 . -953) 120257) ((-714 . -258) 120184) ((-749 . -1016) T) ((-950 . -659) T) ((-548 . -588) 120168) ((-959 . -894) 120097) ((-916 . -97) T) ((-749 . -23) T) ((-645 . -1051) 120075) ((-627 . -969) T) ((-548 . -343) 120059) ((-321 . -421) T) ((-313 . -262) T) ((-1157 . -1004) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1004) T) ((-331 . -442) T) ((-1105 . -557) 120041) ((-1071 . -347) 120025) ((-1027 . -347) 120009) ((-940 . -381) 119971) ((-128 . -203) 119953) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 119935) ((-645 . -37) 119764) ((-1156 . -1154) 119748) ((-321 . -372) T) ((-1156 . -1004) 119698) ((-529 . -650) 119685) ((-517 . -650) 119672) ((-460 . -650) 119637) ((-286 . -569) 119616) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1110) T) ((-988 . -579) 119564) ((-1071 . -823) 119508) ((-1027 . -823) 119492) ((-599 . -968) 119476) ((-103 . -579) 119458) ((-450 . -123) 119329) ((-1077 . -1016) T) ((-875 . -46) 119298) ((-564 . -1004) T) ((-599 . -106) 119277) ((-297 . -260) 119254) ((-449 . -46) 119211) ((-1077 . -23) T) ((-112 . -1004) T) ((-98 . -97) 119189) ((-1166 . -1016) T) ((-966 . -123) T) ((-940 . -969) T) ((-751 . -953) 119173) ((-920 . -657) 119145) ((-1166 . -23) T) ((-632 . -650) 119110) ((-534 . -557) 119092) ((-356 . -953) 119076) ((-324 . -969) T) ((-355 . -123) T) ((-294 . -953) 119060) ((-199 . -809) 119042) ((-921 . -843) T) ((-89 . -33) T) ((-921 . -752) T) ((-837 . -843) T) ((-454 . -1114) T) ((-1091 . -557) 119024) ((-1009 . -1004) T) ((-192 . -1114) T) ((-916 . -280) 118989) ((-199 . -953) 118949) ((-39 . -262) T) ((-988 . -21) T) ((-988 . -25) T) ((-1022 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 118909) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -969) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 118891) ((-670 . -669) 118875) ((-306 . -557) 118857) ((-66 . -353) T) ((-66 . -365) T) ((-1006 . -102) 118841) ((-973 . -809) 118823) ((-875 . -809) 118748) ((-590 . -1016) T) ((-564 . -650) 118735) ((-449 . -809) NIL) ((-1046 . -97) T) ((-973 . -953) 118717) ((-92 . -557) 118699) ((-446 . -134) T) ((-875 . -953) 118581) ((-112 . -650) 118526) ((-590 . -23) T) ((-449 . -953) 118404) ((-993 . -558) NIL) ((-993 . -557) 118386) ((-714 . -558) NIL) ((-714 . -557) 118347) ((-712 . -558) 117982) ((-712 . -557) 117896) ((-1017 . -579) 117804) ((-430 . -557) 117786) ((-423 . -557) 117768) ((-423 . -558) 117629) ((-951 . -203) 117575) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -832) 117554) ((-586 . -557) 117536) ((-325 . -1173) 117520) ((-322 . -1173) 117504) ((-314 . -1173) 117488) ((-122 . -478) 117421) ((-116 . -478) 117354) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 117292) ((-196 . -97) 117270) ((-627 . -1004) T) ((-632 . -156) T) ((-796 . -585) 117222) ((-63 . -354) T) ((-248 . -557) 117204) ((-63 . -365) T) ((-875 . -347) 117188) ((-794 . -262) T) ((-49 . -557) 117170) ((-916 . -37) 117118) ((-530 . -557) 117100) ((-449 . -347) 117084) ((-530 . -558) 117066) ((-481 . -557) 117048) ((-833 . -1173) 117035) ((-795 . -1110) T) ((-634 . -421) T) ((-460 . -478) 117001) ((-454 . -333) T) ((-325 . -338) 116980) ((-322 . -338) 116959) ((-314 . -338) 116938) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1177 . -1168) 116922) ((-795 . -807) 116899) ((-795 . -809) NIL) ((-886 . -779) 116798) ((-747 . -779) 116749) ((-591 . -593) 116733) ((-1097 . -33) T) ((-155 . -557) 116715) ((-1017 . -21) 116626) ((-1017 . -25) 116478) ((-795 . -953) 116455) ((-875 . -823) 116436) ((-1129 . -46) 116413) ((-833 . -338) T) ((-57 . -588) 116397) ((-480 . -588) 116381) ((-449 . -823) 116358) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 116342) ((-57 . -343) 116326) ((-564 . -156) T) ((-480 . -343) 116310) ((-461 . -343) 116294) ((-759 . -642) 116278) ((-1071 . -278) 116257) ((-1077 . -123) T) ((-112 . -156) T) ((-1046 . -280) 116195) ((-153 . -1110) T) ((-575 . -677) 116179) ((-551 . -677) 116163) ((-1166 . -123) T) ((-1141 . -843) 116142) ((-1120 . -843) 116121) ((-1120 . -752) NIL) ((-627 . -650) 116071) ((-1119 . -832) 116024) ((-940 . -1004) T) ((-795 . -347) 116001) ((-795 . -308) 115978) ((-828 . -1016) T) ((-153 . -807) 115962) ((-153 . -809) 115887) ((-454 . -1016) T) ((-324 . -1004) T) ((-192 . -1016) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -953) 115785) ((-289 . -779) T) ((-1156 . -478) 115718) ((-1140 . -585) 115615) ((-1119 . -585) 115485) ((-796 . -726) 115464) ((-796 . -723) 115443) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 115425) ((-157 . -421) T) ((-196 . -280) 115363) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1178 . -1171) 115342) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -953) 115326) ((-460 . -262) T) ((-127 . -439) 115281) ((-47 . -1004) T) ((-645 . -205) 115265) ((-795 . -823) NIL) ((-1129 . -809) NIL) ((-812 . -97) T) ((-808 . -97) T) ((-358 . -1004) T) ((-153 . -347) 115249) ((-153 . -308) 115233) ((-1129 . -953) 115116) ((-784 . -953) 115014) ((-1042 . -97) T) ((-590 . -123) T) ((-112 . -478) 114922) ((-599 . -724) 114901) ((-599 . -727) 114880) ((-524 . -953) 114862) ((-265 . -1163) 114832) ((-790 . -97) T) ((-885 . -509) 114811) ((-1105 . -968) 114694) ((-450 . -579) 114602) ((-827 . -1004) T) ((-940 . -650) 114539) ((-644 . -968) 114504) ((-548 . -33) T) ((-1047 . -1110) T) ((-1105 . -106) 114373) ((-443 . -585) 114270) ((-324 . -650) 114215) ((-153 . -823) 114174) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 114130) ((-1182 . -969) T) ((-1129 . -347) 114114) ((-388 . -1114) 114092) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1119 . -723) 114045) ((-1119 . -726) 113998) ((-1140 . -659) T) ((-1119 . -659) T) ((-47 . -650) 113963) ((-199 . -938) T) ((-321 . -1163) 113940) ((-1142 . -381) 113906) ((-651 . -659) T) ((-1129 . -823) 113850) ((-107 . -557) 113832) ((-107 . -558) 113814) ((-651 . -442) T) ((-450 . -21) 113725) ((-122 . -456) 113709) ((-116 . -456) 113693) ((-450 . -25) 113545) ((-564 . -262) T) ((-534 . -968) 113520) ((-407 . -1004) T) ((-973 . -278) T) ((-112 . -262) T) ((-1008 . -97) T) ((-920 . -97) T) ((-534 . -106) 113488) ((-1042 . -280) 113426) ((-1105 . -962) T) ((-973 . -938) T) ((-64 . -1110) T) ((-966 . -25) T) ((-966 . -21) T) ((-644 . -962) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-940 . -156) T) ((-644 . -217) T) ((-973 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 113408) ((-364 . -557) 113390) ((-443 . -659) T) ((-1022 . -777) T) ((-815 . -953) 113358) ((-103 . -779) T) ((-595 . -968) 113342) ((-454 . -123) T) ((-1142 . -969) T) ((-192 . -123) T) ((-1056 . -97) 113320) ((-94 . -1004) T) ((-219 . -603) 113304) ((-219 . -588) 113288) ((-595 . -106) 113267) ((-286 . -381) 113251) ((-219 . -343) 113235) ((-1059 . -209) 113182) ((-916 . -205) 113166) ((-72 . -1110) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1177 . -97) T) ((-993 . -968) 113009) ((-237 . -832) 112988) ((-221 . -832) 112967) ((-714 . -968) 112790) ((-712 . -968) 112633) ((-552 . -1110) T) ((-1064 . -557) 112615) ((-993 . -106) 112444) ((-959 . -97) T) ((-444 . -1110) T) ((-430 . -968) 112415) ((-423 . -968) 112258) ((-601 . -585) 112242) ((-795 . -278) T) ((-714 . -106) 112051) ((-712 . -106) 111880) ((-325 . -585) 111832) ((-322 . -585) 111784) ((-314 . -585) 111736) ((-237 . -585) 111661) ((-221 . -585) 111586) ((-1058 . -779) T) ((-430 . -106) 111547) ((-423 . -106) 111376) ((-994 . -953) 111360) ((-984 . -953) 111337) ((-917 . -33) T) ((-880 . -1110) T) ((-121 . -927) 111321) ((-885 . -1016) T) ((-795 . -938) NIL) ((-668 . -1016) T) ((-648 . -1016) T) ((-1156 . -456) 111305) ((-1042 . -37) 111265) ((-885 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-833 . -585) 111230) ((-530 . -968) 111195) ((-481 . -968) 111140) ((-201 . -55) 111098) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 111068) ((-530 . -106) 111024) ((-481 . -106) 110953) ((-388 . -1016) T) ((-286 . -969) 110844) ((-283 . -969) T) ((-595 . -962) T) ((-1182 . -1004) T) ((-153 . -278) 110775) ((-388 . -23) T) ((-39 . -557) 110757) ((-39 . -558) 110741) ((-103 . -910) 110723) ((-111 . -793) 110707) ((-47 . -478) 110673) ((-1097 . -927) 110657) ((-1080 . -557) 110639) ((-1084 . -33) T) ((-844 . -557) 110621) ((-1017 . -779) 110572) ((-703 . -557) 110554) ((-608 . -557) 110536) ((-1056 . -280) 110474) ((-447 . -33) T) ((-997 . -1110) T) ((-446 . -421) T) ((-993 . -962) T) ((-1041 . -33) T) ((-714 . -962) T) ((-712 . -962) T) ((-584 . -209) 110458) ((-572 . -209) 110404) ((-1129 . -278) 110383) ((-993 . -296) 110345) ((-423 . -962) T) ((-1077 . -21) T) ((-993 . -207) 110324) ((-714 . -296) 110301) ((-714 . -207) T) ((-712 . -296) 110273) ((-297 . -588) 110257) ((-664 . -1114) 110236) ((-1077 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 110215) ((-297 . -343) 110199) ((-462 . -33) T) ((-461 . -33) T) ((-920 . -1051) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 110130) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-959 . -280) 110038) ((-824 . -1004) 110016) ((-49 . -962) T) ((-1166 . -21) T) ((-1166 . -25) T) ((-1073 . -509) 109995) ((-1072 . -1114) 109974) ((-530 . -962) T) ((-481 . -962) T) ((-1066 . -1114) 109953) ((-331 . -953) 109937) ((-292 . -953) 109921) ((-940 . -262) T) ((-349 . -809) 109903) ((-1072 . -509) 109854) ((-1066 . -509) 109805) ((-920 . -37) 109750) ((-731 . -1016) T) ((-833 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1028 . -509) 109729) ((-324 . -262) T) ((-584 . -628) 109713) ((-349 . -953) 109673) ((-1022 . -969) T) ((-98 . -120) 109657) ((-731 . -23) T) ((-1156 . -258) 109634) ((-377 . -280) 109599) ((-1176 . -1171) 109575) ((-1174 . -1171) 109554) ((-1142 . -1004) T) ((-794 . -557) 109536) ((-766 . -953) 109505) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -919) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 109489) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1177 . -37) 109459) ((-112 . -258) 109410) ((-1156 . -19) 109394) ((-1156 . -550) 109371) ((-1167 . -1004) T) ((-985 . -1004) T) ((-905 . -1004) T) ((-885 . -123) T) ((-670 . -1004) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1051) 109349) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -962) T) ((-265 . -97) 109132) ((-128 . -1004) T) ((-632 . -919) T) ((-89 . -1110) T) ((-122 . -557) 109064) ((-116 . -557) 108996) ((-1182 . -156) T) ((-1072 . -333) 108975) ((-1066 . -333) 108954) ((-286 . -1004) T) ((-388 . -123) T) ((-283 . -1004) T) ((-377 . -37) 108906) ((-1035 . -97) T) ((-1142 . -650) 108798) ((-591 . -969) T) ((-289 . -132) 108777) ((-289 . -134) 108756) ((-127 . -1004) T) ((-109 . -1004) T) ((-786 . -97) T) ((-529 . -557) 108738) ((-517 . -558) 108637) ((-517 . -557) 108619) ((-460 . -557) 108601) ((-460 . -558) 108546) ((-452 . -23) T) ((-450 . -779) 108497) ((-454 . -579) 108479) ((-192 . -579) 108461) ((-199 . -374) T) ((-599 . -585) 108445) ((-1071 . -843) 108424) ((-664 . -1016) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -968) 108369) ((-1058 . -1057) T) ((-1047 . -102) 108353) ((-1073 . -1016) T) ((-1072 . -1016) T) ((-479 . -953) 108337) ((-1066 . -1016) T) ((-1028 . -1016) T) ((-313 . -106) 108266) ((-921 . -1114) T) ((-121 . -1110) T) ((-837 . -1114) T) ((-627 . -258) NIL) ((-1157 . -557) 108248) ((-1073 . -23) T) ((-1072 . -23) T) ((-921 . -509) T) ((-1066 . -23) T) ((-837 . -509) T) ((-1042 . -205) 108232) ((-222 . -557) 108214) ((-1028 . -23) T) ((-983 . -1004) T) ((-731 . -123) T) ((-286 . -650) 108124) ((-283 . -650) 108053) ((-632 . -557) 108035) ((-632 . -558) 107980) ((-377 . -370) 107964) ((-408 . -1004) T) ((-454 . -25) T) ((-454 . -21) T) ((-1022 . -1004) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 107948) ((-647 . -953) 107917) ((-1156 . -557) 107829) ((-1156 . -558) 107790) ((-1142 . -156) T) ((-219 . -33) T) ((-849 . -892) T) ((-1097 . -1110) T) ((-599 . -723) 107769) ((-599 . -726) 107748) ((-368 . -365) T) ((-486 . -97) 107726) ((-951 . -1004) T) ((-196 . -912) 107710) ((-469 . -97) T) ((-564 . -557) 107692) ((-44 . -779) NIL) ((-564 . -558) 107669) ((-951 . -554) 107644) ((-824 . -478) 107577) ((-313 . -962) T) ((-112 . -558) NIL) ((-112 . -557) 107559) ((-796 . -1110) T) ((-607 . -387) 107543) ((-607 . -1025) 107488) ((-465 . -138) 107470) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -968) 107415) ((-796 . -807) 107399) ((-796 . -809) 107324) ((-645 . -969) T) ((-627 . -919) NIL) ((-1140 . -46) 107294) ((-1119 . -46) 107271) ((-1041 . -927) 107242) ((-199 . -843) T) ((-39 . -106) 107171) ((-796 . -953) 107038) ((-1022 . -650) 107025) ((-1009 . -557) 107007) ((-988 . -134) 106986) ((-988 . -132) 106937) ((-921 . -333) T) ((-289 . -1099) 106903) ((-349 . -278) T) ((-289 . -1096) 106869) ((-286 . -156) 106848) ((-283 . -156) T) ((-920 . -205) 106825) ((-837 . -333) T) ((-530 . -1173) 106812) ((-481 . -1173) 106789) ((-329 . -134) 106768) ((-329 . -132) 106719) ((-323 . -134) 106698) ((-323 . -132) 106649) ((-552 . -1087) 106625) ((-315 . -134) 106604) ((-315 . -132) 106555) ((-289 . -34) 106521) ((-444 . -1087) 106500) ((0 . |EnumerationCategory|) T) ((-289 . -91) 106466) ((-349 . -938) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 106416) ((-591 . -1004) T) ((-552 . -102) 106363) ((-452 . -123) T) ((-444 . -102) 106313) ((-214 . -1016) 106244) ((-796 . -347) 106228) ((-796 . -308) 106212) ((-214 . -23) 106083) ((-973 . -843) T) ((-973 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1051) T) ((-297 . -33) T) ((-43 . -387) 106067) ((-360 . -677) 106051) ((-1167 . -478) 105984) ((-664 . -123) T) ((-1148 . -509) 105963) ((-1141 . -1114) 105942) ((-1141 . -509) 105893) ((-670 . -478) 105826) ((-1120 . -1114) 105805) ((-1120 . -509) 105756) ((-816 . -1004) T) ((-131 . -773) T) ((-1119 . -1110) 105735) ((-1119 . -809) 105608) ((-1119 . -807) 105578) ((-486 . -280) 105516) ((-1073 . -123) T) ((-128 . -478) NIL) ((-1072 . -123) T) ((-1066 . -123) T) ((-1028 . -123) T) ((-940 . -919) T) ((-321 . -37) 105481) ((-921 . -1016) T) ((-837 . -1016) T) ((-80 . -557) 105463) ((-39 . -962) T) ((-794 . -968) 105450) ((-921 . -23) T) ((-796 . -823) 105409) ((-634 . -97) T) ((-920 . -319) NIL) ((-548 . -1110) T) ((-889 . -23) T) ((-837 . -23) T) ((-794 . -106) 105394) ((-397 . -1016) T) ((-443 . -46) 105364) ((-125 . -97) T) ((-39 . -207) 105336) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 105315) ((-542 . -509) 105294) ((-627 . -557) 105276) ((-627 . -558) 105184) ((-286 . -478) 105150) ((-283 . -478) 105042) ((-1140 . -953) 105026) ((-1119 . -953) 104815) ((-916 . -381) 104799) ((-397 . -23) T) ((-1022 . -156) T) ((-1142 . -262) T) ((-591 . -650) 104769) ((-131 . -1004) T) ((-47 . -919) T) ((-377 . -205) 104753) ((-266 . -209) 104703) ((-795 . -843) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1119 . -308) 104673) ((-1119 . -347) 104643) ((-196 . -1023) 104627) ((-1156 . -260) 104604) ((-1105 . -585) 104529) ((-885 . -21) T) ((-885 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 104494) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-916 . -969) T) ((-794 . -962) T) ((-706 . -97) T) ((-1141 . -333) 104473) ((-1140 . -823) 104379) ((-1120 . -333) 104358) ((-1119 . -823) 104209) ((-940 . -557) 104191) ((-377 . -760) 104144) ((-1073 . -458) 104110) ((-153 . -843) 104041) ((-1072 . -458) 104007) ((-1066 . -458) 103973) ((-645 . -1004) T) ((-1028 . -458) 103939) ((-529 . -968) 103926) ((-517 . -968) 103913) ((-460 . -968) 103878) ((-286 . -262) 103857) ((-283 . -262) T) ((-324 . -557) 103839) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 103818) ((-529 . -106) 103803) ((-517 . -106) 103788) ((-460 . -106) 103744) ((-1075 . -809) 103711) ((-824 . -456) 103695) ((-47 . -557) 103677) ((-47 . -558) 103622) ((-214 . -123) 103493) ((-1129 . -843) 103472) ((-748 . -1114) 103451) ((-951 . -478) 103295) ((-358 . -557) 103277) ((-748 . -509) 103208) ((-534 . -585) 103183) ((-237 . -46) 103155) ((-221 . -46) 103112) ((-489 . -473) 103089) ((-917 . -1110) T) ((-632 . -968) 103054) ((-1148 . -1016) T) ((-1141 . -1016) T) ((-1120 . -1016) T) ((-920 . -340) 103026) ((-107 . -338) T) ((-443 . -823) 102932) ((-1148 . -23) T) ((-1141 . -23) T) ((-827 . -557) 102914) ((-89 . -102) 102898) ((-1105 . -659) T) ((-828 . -779) 102849) ((-634 . -1051) T) ((-632 . -106) 102805) ((-1120 . -23) T) ((-543 . -1016) T) ((-542 . -1016) T) ((-645 . -650) 102634) ((-644 . -659) T) ((-1022 . -262) T) ((-921 . -123) T) ((-454 . -779) T) ((-889 . -123) T) ((-837 . -123) T) ((-529 . -962) T) ((-192 . -779) T) ((-517 . -962) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -962) T) ((-543 . -23) T) ((-313 . -1173) 102611) ((-289 . -421) 102590) ((-309 . -280) 102577) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 102551) ((-219 . -927) 102535) ((-796 . -278) T) ((-1178 . -1168) 102519) ((-634 . -37) 102506) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1050 . -209) 102456) ((-993 . -832) 102435) ((-111 . -37) 102422) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -938) 102401) ((-1167 . -456) 102385) ((-714 . -832) 102364) ((-712 . -832) 102343) ((-1084 . -1110) T) ((-423 . -832) 102322) ((-670 . -456) 102306) ((-993 . -585) 102231) ((-714 . -585) 102156) ((-564 . -968) 102143) ((-447 . -1110) T) ((-313 . -338) T) ((-128 . -456) 102125) ((-712 . -585) 102050) ((-1041 . -1110) T) ((-430 . -585) 102021) ((-237 . -809) 101880) ((-221 . -809) NIL) ((-112 . -968) 101825) ((-423 . -585) 101750) ((-601 . -953) 101727) ((-564 . -106) 101712) ((-325 . -953) 101696) ((-322 . -953) 101680) ((-314 . -953) 101664) ((-237 . -953) 101510) ((-221 . -953) 101388) ((-112 . -106) 101317) ((-57 . -1110) T) ((-482 . -1110) T) ((-480 . -1110) T) ((-462 . -1110) T) ((-461 . -1110) T) ((-407 . -557) 101299) ((-404 . -557) 101281) ((-3 . -97) T) ((-943 . -1104) 101250) ((-765 . -97) T) ((-623 . -55) 101208) ((-632 . -962) T) ((-49 . -585) 101182) ((-261 . -421) T) ((-445 . -1104) 101151) ((0 . -97) T) ((-530 . -585) 101116) ((-481 . -585) 101061) ((-48 . -97) T) ((-833 . -953) 101048) ((-632 . -217) T) ((-988 . -379) 101027) ((-664 . -579) 100975) ((-916 . -1004) T) ((-645 . -156) 100866) ((-454 . -910) 100848) ((-237 . -347) 100832) ((-221 . -347) 100816) ((-369 . -1004) T) ((-309 . -37) 100800) ((-942 . -97) 100778) ((-192 . -910) 100760) ((-157 . -37) 100692) ((-1140 . -278) 100671) ((-1119 . -278) 100650) ((-595 . -659) T) ((-94 . -557) 100632) ((-1066 . -579) 100584) ((-452 . -25) T) ((-452 . -21) T) ((-1119 . -938) 100537) ((-564 . -962) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -823) 100483) ((-221 . -823) 100460) ((-112 . -962) T) ((-748 . -1016) T) ((-993 . -659) T) ((-564 . -207) 100439) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1016) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-985 . -258) 100418) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -968) 100368) ((-1148 . -123) T) ((-1141 . -123) T) ((-1120 . -123) T) ((-1042 . -381) 100352) ((-575 . -337) 100284) ((-551 . -337) 100216) ((-1056 . -1049) 100200) ((-98 . -1004) 100178) ((-1073 . -25) T) ((-1073 . -21) T) ((-1072 . -21) T) ((-916 . -650) 100126) ((-197 . -585) 100093) ((-627 . -106) 100027) ((-49 . -659) T) ((-1072 . -25) T) ((-321 . -319) T) ((-1066 . -21) T) ((-988 . -421) 99978) ((-1066 . -25) T) ((-645 . -478) 99926) ((-530 . -659) T) ((-481 . -659) T) ((-1028 . -21) T) ((-1028 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 99905) ((-283 . -258) 99840) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1182 . -557) 99822) ((-1182 . -558) 99804) ((-988 . -372) 99783) ((-951 . -456) 99714) ((-517 . -727) T) ((-517 . -724) T) ((-974 . -209) 99660) ((-329 . -372) 99611) ((-323 . -372) 99562) ((-315 . -372) 99513) ((-1169 . -1016) T) ((-1169 . -23) T) ((-1158 . -97) T) ((-1042 . -969) T) ((-607 . -677) 99497) ((-1077 . -132) 99476) ((-1077 . -134) 99455) ((-1046 . -1004) T) ((-1046 . -981) 99424) ((-67 . -1110) T) ((-940 . -968) 99361) ((-790 . -969) T) ((-214 . -579) 99269) ((-627 . -962) T) ((-324 . -968) 99214) ((-59 . -1110) T) ((-940 . -106) 99130) ((-824 . -557) 99062) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 99041) ((-632 . -727) T) ((-632 . -724) T) ((-920 . -381) 99018) ((-324 . -106) 98947) ((-349 . -843) T) ((-377 . -777) 98926) ((-645 . -262) 98837) ((-197 . -659) T) ((-1148 . -458) 98803) ((-1141 . -458) 98769) ((-1120 . -458) 98735) ((-286 . -919) 98714) ((-196 . -1004) 98692) ((-289 . -891) 98655) ((-100 . -97) T) ((-47 . -968) 98620) ((-1178 . -97) T) ((-351 . -97) T) ((-47 . -106) 98576) ((-921 . -579) 98558) ((-1142 . -557) 98540) ((-489 . -97) T) ((-465 . -97) T) ((-1035 . -1036) 98524) ((-139 . -1163) 98508) ((-219 . -1110) T) ((-1071 . -1114) 98487) ((-1027 . -1114) 98466) ((-214 . -21) 98377) ((-214 . -25) 98229) ((-122 . -114) 98213) ((-116 . -114) 98197) ((-43 . -677) 98181) ((-1071 . -509) 98092) ((-1027 . -509) 98023) ((-951 . -258) 97998) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-999 . -1110) T) ((-224 . -1016) 97929) ((-223 . -1016) 97860) ((-940 . -962) T) ((-920 . -969) T) ((-313 . -585) 97805) ((-562 . -37) 97789) ((-1167 . -557) 97751) ((-1167 . -558) 97712) ((-985 . -557) 97694) ((-940 . -217) T) ((-324 . -962) T) ((-747 . -1163) 97664) ((-224 . -23) T) ((-223 . -23) T) ((-905 . -557) 97646) ((-670 . -558) 97607) ((-670 . -557) 97589) ((-731 . -779) 97568) ((-916 . -478) 97480) ((-324 . -207) T) ((-324 . -217) T) ((-1059 . -138) 97427) ((-921 . -25) T) ((-128 . -557) 97409) ((-128 . -558) 97368) ((-833 . -278) T) ((-921 . -21) T) ((-889 . -25) T) ((-837 . -21) T) ((-837 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 97352) ((-47 . -962) T) ((-1176 . -1168) 97336) ((-1174 . -1168) 97320) ((-951 . -550) 97295) ((-286 . -558) 97156) ((-286 . -557) 97138) ((-283 . -558) NIL) ((-283 . -557) 97120) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 97081) ((-503 . -209) 97031) ((-127 . -557) 97013) ((-109 . -557) 96995) ((-446 . -37) 96960) ((-1178 . -1175) 96939) ((-1169 . -123) T) ((-1177 . -969) T) ((-990 . -97) T) ((-86 . -1110) T) ((-465 . -280) NIL) ((-917 . -102) 96923) ((-812 . -1004) T) ((-808 . -1004) T) ((-1156 . -588) 96907) ((-1156 . -343) 96891) ((-297 . -1110) T) ((-540 . -779) T) ((-1042 . -1004) T) ((-1042 . -965) 96831) ((-98 . -478) 96764) ((-850 . -557) 96746) ((-313 . -659) T) ((-30 . -557) 96728) ((-790 . -1004) T) ((-772 . -969) 96707) ((-39 . -585) 96652) ((-199 . -1114) T) ((-377 . -969) T) ((-1058 . -138) 96634) ((-916 . -262) 96585) ((-199 . -509) T) ((-289 . -1137) 96569) ((-289 . -1134) 96539) ((-1084 . -1087) 96518) ((-983 . -557) 96500) ((-584 . -138) 96484) ((-572 . -138) 96430) ((-1084 . -102) 96380) ((-447 . -1087) 96359) ((-454 . -134) T) ((-454 . -132) NIL) ((-1022 . -558) 96274) ((-408 . -557) 96256) ((-192 . -134) T) ((-192 . -132) NIL) ((-1022 . -557) 96238) ((-51 . -97) T) ((-1120 . -579) 96190) ((-447 . -102) 96140) ((-911 . -23) T) ((-1178 . -37) 96110) ((-1071 . -1016) T) ((-1027 . -1016) T) ((-973 . -1114) T) ((-783 . -1016) T) ((-875 . -1114) 96089) ((-449 . -1114) 96068) ((-664 . -779) 96047) ((-973 . -509) T) ((-875 . -509) 95978) ((-1071 . -23) T) ((-1027 . -23) T) ((-783 . -23) T) ((-449 . -509) 95909) ((-1042 . -650) 95841) ((-1046 . -478) 95774) ((-951 . -558) NIL) ((-951 . -557) 95756) ((-790 . -650) 95726) ((-1105 . -46) 95695) ((-224 . -123) T) ((-223 . -123) T) ((-1008 . -1004) T) ((-920 . -1004) T) ((-60 . -557) 95677) ((-1066 . -779) NIL) ((-940 . -724) T) ((-940 . -727) T) ((-1182 . -968) 95664) ((-1182 . -106) 95649) ((-794 . -585) 95636) ((-1148 . -25) T) ((-1148 . -21) T) ((-1141 . -21) T) ((-1141 . -25) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-943 . -138) 95620) ((-796 . -752) 95599) ((-796 . -843) T) ((-645 . -258) 95526) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 95459) ((-542 . -25) T) ((-445 . -138) 95443) ((-432 . -138) 95427) ((-844 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1004) T) ((-703 . -659) T) ((-199 . -333) T) ((-1056 . -1004) 95405) ((-795 . -1114) T) ((-591 . -557) 95387) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1163) 95371) ((-607 . -97) T) ((-323 . -1163) 95355) ((-315 . -1163) 95339) ((-1177 . -1004) T) ((-483 . -779) 95318) ((-749 . -421) 95297) ((-959 . -1004) T) ((-959 . -981) 95226) ((-943 . -894) 95195) ((-751 . -1016) T) ((-920 . -650) 95140) ((-356 . -1016) T) ((-445 . -894) 95109) ((-432 . -894) 95078) ((-105 . -138) 95060) ((-71 . -557) 95042) ((-816 . -557) 95024) ((-988 . -657) 95003) ((-1182 . -962) T) ((-748 . -579) 94951) ((-265 . -969) 94894) ((-153 . -1114) 94799) ((-199 . -1016) T) ((-294 . -23) T) ((-1066 . -910) 94751) ((-772 . -1004) T) ((-1028 . -673) 94730) ((-1142 . -968) 94635) ((-1140 . -843) 94614) ((-794 . -659) T) ((-153 . -509) 94525) ((-1119 . -843) 94504) ((-529 . -585) 94491) ((-377 . -1004) T) ((-517 . -585) 94478) ((-236 . -1004) T) ((-460 . -585) 94443) ((-199 . -23) T) ((-1119 . -752) 94396) ((-1176 . -97) T) ((-324 . -1173) 94373) ((-1174 . -97) T) ((-1142 . -106) 94265) ((-131 . -557) 94247) ((-911 . -123) T) ((-43 . -97) T) ((-214 . -779) 94198) ((-1129 . -1114) 94177) ((-98 . -456) 94161) ((-1177 . -650) 94131) ((-993 . -46) 94093) ((-973 . -1016) T) ((-875 . -1016) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 94070) ((-712 . -46) 94042) ((-1129 . -509) 93953) ((-324 . -338) T) ((-449 . -1016) T) ((-1071 . -123) T) ((-1027 . -123) T) ((-423 . -46) 93932) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-973 . -23) T) ((-875 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1042 . -478) 93865) ((-534 . -953) 93849) ((-449 . -23) T) ((-321 . -969) T) ((-1105 . -823) 93830) ((-607 . -280) 93768) ((-1017 . -1163) 93738) ((-632 . -585) 93703) ((-920 . -156) T) ((-885 . -132) 93682) ((-575 . -1004) T) ((-551 . -1004) T) ((-885 . -134) 93661) ((-921 . -779) T) ((-668 . -134) 93640) ((-668 . -132) 93619) ((-889 . -779) T) ((-443 . -843) 93598) ((-286 . -968) 93508) ((-283 . -968) 93437) ((-916 . -258) 93395) ((-377 . -650) 93347) ((-634 . -777) T) ((-1142 . -962) T) ((-286 . -106) 93243) ((-283 . -106) 93156) ((-886 . -97) T) ((-747 . -97) 92967) ((-645 . -558) NIL) ((-645 . -557) 92949) ((-595 . -953) 92847) ((-1142 . -296) 92791) ((-951 . -260) 92766) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 92717) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1046 . -456) 92701) ((-993 . -809) NIL) ((-795 . -1016) T) ((-112 . -832) NIL) ((-1176 . -1175) 92677) ((-1174 . -1175) 92656) ((-714 . -809) NIL) ((-712 . -809) 92515) ((-1169 . -25) T) ((-1169 . -21) T) ((-1108 . -97) 92493) ((-1010 . -365) T) ((-564 . -585) 92480) ((-423 . -809) NIL) ((-611 . -97) 92458) ((-993 . -953) 92288) ((-795 . -23) T) ((-714 . -953) 92150) ((-712 . -953) 92009) ((-112 . -585) 91954) ((-423 . -953) 91832) ((-586 . -953) 91816) ((-567 . -97) T) ((-196 . -456) 91800) ((-1156 . -33) T) ((-575 . -650) 91784) ((-551 . -650) 91768) ((-607 . -37) 91728) ((-289 . -97) T) ((-83 . -557) 91710) ((-49 . -953) 91694) ((-1022 . -968) 91681) ((-993 . -347) 91665) ((-58 . -55) 91627) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -953) 91614) ((-481 . -953) 91591) ((-632 . -659) T) ((-286 . -962) 91482) ((-294 . -123) T) ((-283 . -962) T) ((-153 . -1016) T) ((-714 . -347) 91466) ((-712 . -347) 91450) ((-44 . -138) 91400) ((-921 . -910) 91382) ((-423 . -347) 91366) ((-377 . -156) T) ((-286 . -217) 91345) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1004) 91128) ((-199 . -123) T) ((-1022 . -106) 91113) ((-153 . -23) T) ((-731 . -134) 91092) ((-731 . -132) 91071) ((-224 . -579) 90979) ((-223 . -579) 90887) ((-289 . -256) 90853) ((-1056 . -478) 90786) ((-1035 . -1004) T) ((-199 . -971) T) ((-747 . -280) 90724) ((-993 . -823) 90660) ((-714 . -823) 90604) ((-712 . -823) 90588) ((-1176 . -37) 90558) ((-1174 . -37) 90528) ((-1129 . -1016) T) ((-784 . -1016) T) ((-423 . -823) 90505) ((-786 . -1004) T) ((-1129 . -23) T) ((-524 . -1016) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -843) T) ((-322 . -843) T) ((-261 . -97) T) ((-314 . -843) T) ((-973 . -123) T) ((-875 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -832) NIL) ((-959 . -478) 90406) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 90344) ((-575 . -694) T) ((-551 . -694) T) ((-1120 . -779) NIL) ((-920 . -262) T) ((-224 . -21) T) ((-627 . -585) 90294) ((-321 . -1004) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 90278) ((-2 . -97) T) ((-833 . -843) T) ((-450 . -1163) 90248) ((-197 . -953) 90225) ((-1022 . -962) T) ((-644 . -278) T) ((-265 . -650) 90167) ((-634 . -969) T) ((-454 . -421) T) ((-377 . -478) 90079) ((-192 . -421) T) ((-1022 . -207) T) ((-266 . -138) 90029) ((-916 . -558) 89990) ((-916 . -557) 89972) ((-907 . -557) 89954) ((-111 . -969) T) ((-591 . -968) 89938) ((-199 . -458) T) ((-369 . -557) 89920) ((-369 . -558) 89897) ((-966 . -1163) 89867) ((-591 . -106) 89846) ((-1042 . -456) 89830) ((-747 . -37) 89800) ((-61 . -410) T) ((-61 . -365) T) ((-1059 . -97) T) ((-795 . -123) T) ((-451 . -97) 89778) ((-1182 . -338) T) ((-988 . -97) T) ((-972 . -97) T) ((-321 . -650) 89723) ((-664 . -134) 89702) ((-664 . -132) 89681) ((-940 . -585) 89618) ((-486 . -1004) 89596) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1004) T) ((-324 . -585) 89541) ((-1071 . -579) 89489) ((-1027 . -579) 89437) ((-355 . -473) 89416) ((-765 . -777) 89395) ((-349 . -1114) T) ((-627 . -659) T) ((-309 . -969) T) ((-1120 . -910) 89347) ((-157 . -969) T) ((-98 . -557) 89279) ((-1073 . -132) 89258) ((-1073 . -134) 89237) ((-349 . -509) T) ((-1072 . -134) 89216) ((-1072 . -132) 89195) ((-1066 . -132) 89102) ((-377 . -262) T) ((-1066 . -134) 89009) ((-1028 . -134) 88988) ((-1028 . -132) 88967) ((-289 . -37) 88808) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -962) T) ((-47 . -585) 88773) ((-911 . -21) T) ((-122 . -927) 88757) ((-116 . -927) 88741) ((-911 . -25) T) ((-824 . -114) 88725) ((-1058 . -97) T) ((-748 . -779) 88704) ((-1129 . -123) T) ((-1071 . -25) T) ((-1071 . -21) T) ((-784 . -123) T) ((-1027 . -25) T) ((-1027 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 88683) ((-584 . -97) 88661) ((-572 . -97) T) ((-1059 . -280) 88456) ((-524 . -123) T) ((-562 . -777) 88435) ((-1056 . -456) 88419) ((-1050 . -138) 88369) ((-1046 . -557) 88331) ((-1046 . -558) 88292) ((-940 . -723) T) ((-940 . -726) T) ((-940 . -659) T) ((-451 . -280) 88230) ((-422 . -387) 88200) ((-321 . -156) T) ((-261 . -37) 88187) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -953) 88164) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -968) 87987) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 87796) ((-607 . -205) 87780) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 87729) ((-103 . -280) NIL) ((-70 . -365) T) ((-1017 . -97) 87540) ((-765 . -381) 87524) ((-1022 . -727) T) ((-1022 . -724) T) ((-634 . -1004) T) ((-349 . -333) T) ((-153 . -458) 87502) ((-196 . -557) 87434) ((-125 . -1004) T) ((-111 . -1004) T) ((-47 . -659) T) ((-959 . -456) 87399) ((-128 . -395) 87381) ((-128 . -338) T) ((-943 . -97) T) ((-476 . -473) 87360) ((-445 . -97) T) ((-432 . -97) T) ((-950 . -1016) T) ((-1073 . -34) 87326) ((-1073 . -91) 87292) ((-1073 . -1099) 87258) ((-1073 . -1096) 87224) ((-1058 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-988 . -1051) 87203) ((-1072 . -1096) 87169) ((-1072 . -1099) 87135) ((-950 . -23) T) ((-1072 . -91) 87101) ((-524 . -458) T) ((-1072 . -34) 87067) ((-1066 . -1096) 87033) ((-1066 . -1099) 86999) ((-1066 . -91) 86965) ((-331 . -1016) T) ((-329 . -1051) 86944) ((-323 . -1051) 86923) ((-315 . -1051) 86902) ((-1066 . -34) 86868) ((-1028 . -34) 86834) ((-1028 . -91) 86800) ((-103 . -1051) T) ((-1028 . -1099) 86766) ((-765 . -969) 86745) ((-584 . -280) 86683) ((-572 . -280) 86534) ((-1028 . -1096) 86500) ((-645 . -962) T) ((-973 . -579) 86482) ((-988 . -37) 86350) ((-875 . -579) 86298) ((-921 . -134) T) ((-921 . -132) NIL) ((-349 . -1016) T) ((-294 . -25) T) ((-292 . -23) T) ((-866 . -779) 86277) ((-645 . -296) 86254) ((-449 . -579) 86202) ((-39 . -953) 86092) ((-634 . -650) 86079) ((-645 . -207) T) ((-309 . -1004) T) ((-157 . -1004) T) ((-301 . -779) T) ((-388 . -421) 86029) ((-349 . -23) T) ((-329 . -37) 85994) ((-323 . -37) 85959) ((-315 . -37) 85924) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1016) T) ((-103 . -37) 85874) ((-759 . -1016) T) ((-706 . -1004) T) ((-111 . -650) 85861) ((-608 . -953) 85845) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1056 . -258) 85822) ((-1017 . -280) 85760) ((-1006 . -209) 85744) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 85721) ((-590 . -781) 85705) ((-973 . -21) T) ((-973 . -25) T) ((-747 . -205) 85675) ((-875 . -25) T) ((-875 . -21) T) ((-562 . -969) T) ((-449 . -25) T) ((-449 . -21) T) ((-943 . -280) 85613) ((-812 . -557) 85595) ((-808 . -557) 85577) ((-224 . -779) 85528) ((-223 . -779) 85479) ((-486 . -478) 85412) ((-795 . -579) 85389) ((-445 . -280) 85327) ((-432 . -280) 85265) ((-321 . -262) T) ((-1056 . -1144) 85249) ((-1042 . -557) 85211) ((-1042 . -558) 85172) ((-1040 . -97) T) ((-916 . -968) 85068) ((-39 . -823) 85020) ((-1056 . -550) 84997) ((-1182 . -585) 84984) ((-974 . -138) 84930) ((-796 . -1114) T) ((-916 . -106) 84812) ((-309 . -650) 84796) ((-790 . -557) 84778) ((-157 . -650) 84710) ((-377 . -258) 84668) ((-796 . -509) T) ((-103 . -370) 84650) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 84461) ((-94 . -442) T) ((-111 . -156) T) ((-1017 . -37) 84431) ((-153 . -579) 84379) ((-966 . -97) T) ((-795 . -25) T) ((-747 . -212) 84358) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 84336) ((-122 . -1110) T) ((-116 . -1110) T) ((-950 . -123) T) ((-607 . -337) 84320) ((-916 . -962) T) ((-1129 . -579) 84268) ((-1008 . -557) 84250) ((-920 . -557) 84232) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1004) T) ((-920 . -558) 84216) ((-916 . -217) 84195) ((-916 . -207) 84174) ((-1182 . -659) T) ((-1148 . -132) 84153) ((-765 . -1004) T) ((-1148 . -134) 84132) ((-1141 . -134) 84111) ((-1141 . -132) 84090) ((-1140 . -1114) 84069) ((-1120 . -132) 83976) ((-1120 . -134) 83883) ((-1119 . -1114) 83862) ((-349 . -123) T) ((-517 . -809) 83844) ((0 . -1004) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1004) T) ((-1142 . -585) 83749) ((-1140 . -509) 83700) ((-647 . -1016) T) ((-1119 . -509) 83651) ((-517 . -953) 83633) ((-542 . -134) 83612) ((-542 . -132) 83591) ((-460 . -953) 83534) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 83516) ((-1178 . -969) T) ((-349 . -971) T) ((-942 . -1004) 83494) ((-824 . -33) T) ((-450 . -280) 83432) ((-1056 . -558) 83393) ((-1056 . -557) 83325) ((-1071 . -779) 83304) ((-44 . -97) T) ((-1027 . -779) 83283) ((-749 . -97) T) ((-1129 . -25) T) ((-1129 . -21) T) ((-784 . -25) T) ((-43 . -337) 83267) ((-784 . -21) T) ((-664 . -421) 83218) ((-1177 . -557) 83200) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1004) T) ((-966 . -280) 83138) ((-562 . -1004) T) ((-632 . -809) 83120) ((-1156 . -1110) T) ((-201 . -280) 83058) ((-131 . -338) T) ((-959 . -558) 83000) ((-959 . -557) 82943) ((-283 . -832) NIL) ((-632 . -953) 82888) ((-644 . -843) T) ((-443 . -1114) 82867) ((-1072 . -421) 82846) ((-1066 . -421) 82825) ((-300 . -97) T) ((-796 . -1016) T) ((-286 . -585) 82647) ((-283 . -585) 82576) ((-443 . -509) 82527) ((-309 . -478) 82493) ((-503 . -138) 82443) ((-39 . -278) T) ((-772 . -557) 82425) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-988 . -205) 82395) ((-476 . -97) T) ((-377 . -558) 82203) ((-377 . -557) 82185) ((-236 . -557) 82167) ((-111 . -262) T) ((-1142 . -659) T) ((-1140 . -333) 82146) ((-1119 . -333) 82125) ((-1167 . -33) T) ((-112 . -1110) T) ((-103 . -205) 82107) ((-1077 . -97) T) ((-446 . -1004) T) ((-486 . -456) 82091) ((-670 . -33) T) ((-450 . -37) 82061) ((-128 . -33) T) ((-112 . -807) 82038) ((-112 . -809) NIL) ((-564 . -953) 81923) ((-583 . -779) 81902) ((-1166 . -97) T) ((-266 . -97) T) ((-645 . -338) 81881) ((-112 . -953) 81858) ((-360 . -650) 81842) ((-562 . -650) 81826) ((-44 . -280) 81630) ((-748 . -132) 81609) ((-748 . -134) 81588) ((-1177 . -352) 81567) ((-751 . -779) T) ((-1158 . -1004) T) ((-1059 . -203) 81514) ((-356 . -779) 81493) ((-1148 . -1099) 81459) ((-1148 . -1096) 81425) ((-1141 . -1096) 81391) ((-479 . -123) T) ((-1141 . -1099) 81357) ((-1120 . -1096) 81323) ((-1120 . -1099) 81289) ((-1148 . -34) 81255) ((-1148 . -91) 81221) ((-575 . -557) 81190) ((-551 . -557) 81159) ((-199 . -779) T) ((-1141 . -91) 81125) ((-1141 . -34) 81091) ((-1140 . -1016) T) ((-1022 . -585) 81078) ((-1120 . -91) 81044) ((-1119 . -1016) T) ((-540 . -138) 81026) ((-988 . -319) 81005) ((-112 . -347) 80982) ((-112 . -308) 80959) ((-157 . -262) T) ((-1120 . -34) 80925) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 80775) ((-283 . -659) T) ((-443 . -333) 80754) ((-329 . -319) 80733) ((-323 . -319) 80712) ((-315 . -319) 80691) ((-286 . -442) 80670) ((-1140 . -23) T) ((-1119 . -23) T) ((-651 . -1016) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 80635) ((-44 . -254) 80585) ((-100 . -1004) T) ((-66 . -557) 80567) ((-789 . -97) T) ((-564 . -823) 80526) ((-1178 . -1004) T) ((-351 . -1004) T) ((-80 . -1110) T) ((-973 . -779) T) ((-875 . -779) 80505) ((-112 . -823) NIL) ((-714 . -843) 80484) ((-646 . -779) T) ((-489 . -1004) T) ((-465 . -1004) T) ((-325 . -1114) T) ((-322 . -1114) T) ((-314 . -1114) T) ((-237 . -1114) 80463) ((-221 . -1114) 80442) ((-1017 . -205) 80412) ((-449 . -779) 80391) ((-1042 . -968) 80375) ((-360 . -694) T) ((-1058 . -760) T) ((-627 . -1110) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 80306) ((-221 . -509) 80237) ((-1042 . -106) 80216) ((-422 . -677) 80186) ((-790 . -968) 80156) ((-749 . -37) 80098) ((-627 . -807) 80080) ((-627 . -809) 80062) ((-266 . -280) 79866) ((-833 . -1114) T) ((-607 . -381) 79850) ((-790 . -106) 79815) ((-627 . -953) 79760) ((-921 . -421) T) ((-833 . -509) T) ((-530 . -843) T) ((-443 . -1016) T) ((-481 . -843) T) ((-1056 . -260) 79737) ((-837 . -421) T) ((-63 . -557) 79719) ((-572 . -203) 79665) ((-443 . -23) T) ((-1022 . -726) T) ((-796 . -123) T) ((-1022 . -723) T) ((-1169 . -1171) 79644) ((-1022 . -659) T) ((-591 . -585) 79618) ((-265 . -557) 79360) ((-951 . -33) T) ((-747 . -777) 79339) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1178 . -650) 79309) ((-627 . -347) 79291) ((-627 . -308) 79273) ((-446 . -156) T) ((-351 . -650) 79243) ((-795 . -779) NIL) ((-517 . -938) T) ((-460 . -938) T) ((-1035 . -557) 79225) ((-1017 . -212) 79204) ((-189 . -97) T) ((-1050 . -97) T) ((-69 . -557) 79186) ((-1042 . -962) T) ((-1077 . -37) 79083) ((-786 . -557) 79065) ((-517 . -502) T) ((-607 . -969) T) ((-664 . -872) 79018) ((-1042 . -207) 78997) ((-990 . -1004) T) ((-950 . -25) T) ((-950 . -21) T) ((-920 . -968) 78942) ((-828 . -97) T) ((-790 . -962) T) ((-627 . -823) NIL) ((-325 . -299) 78926) ((-325 . -333) T) ((-322 . -299) 78910) ((-322 . -333) T) ((-314 . -299) 78894) ((-314 . -333) T) ((-454 . -97) T) ((-1166 . -37) 78864) ((-486 . -621) 78814) ((-192 . -97) T) ((-940 . -953) 78696) ((-920 . -106) 78625) ((-1073 . -891) 78595) ((-1072 . -891) 78558) ((-483 . -138) 78542) ((-988 . -340) 78521) ((-321 . -557) 78503) ((-292 . -21) T) ((-324 . -953) 78480) ((-292 . -25) T) ((-1066 . -891) 78450) ((-1028 . -891) 78417) ((-74 . -557) 78399) ((-632 . -278) T) ((-153 . -779) 78378) ((-833 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-833 . -299) 78365) ((-84 . -557) 78347) ((-632 . -938) T) ((-612 . -779) T) ((-1140 . -123) T) ((-1119 . -123) T) ((-824 . -927) 78331) ((-766 . -21) T) ((-47 . -953) 78274) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1176 . -969) T) ((-1174 . -969) T) ((-591 . -659) T) ((-1177 . -968) 78258) ((-1129 . -779) 78237) ((-747 . -381) 78206) ((-98 . -114) 78190) ((-51 . -1004) T) ((-849 . -557) 78172) ((-795 . -910) 78149) ((-755 . -97) T) ((-1177 . -106) 78128) ((-590 . -37) 78098) ((-524 . -779) T) ((-325 . -1016) T) ((-322 . -1016) T) ((-314 . -1016) T) ((-237 . -1016) T) ((-221 . -1016) T) ((-564 . -278) 78077) ((-1050 . -280) 77881) ((-601 . -23) T) ((-450 . -205) 77851) ((-139 . -969) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-920 . -962) T) ((-645 . -832) 77830) ((-920 . -207) 77802) ((-920 . -217) T) ((-112 . -938) NIL) ((-833 . -1016) T) ((-1141 . -421) 77781) ((-1120 . -421) 77760) ((-486 . -557) 77692) ((-645 . -585) 77617) ((-377 . -968) 77569) ((-469 . -557) 77551) ((-833 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 77489) ((-747 . -969) 77420) ((-670 . -1002) 77404) ((-1140 . -458) 77370) ((-1119 . -458) 77336) ((-128 . -1002) 77318) ((-446 . -262) T) ((-1177 . -962) T) ((-974 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 77297) ((-1071 . -132) 77276) ((-1071 . -134) 77255) ((-1027 . -134) 77234) ((-1027 . -132) 77213) ((-575 . -968) 77197) ((-551 . -968) 77181) ((-607 . -1004) T) ((-607 . -965) 77121) ((-1073 . -1147) 77105) ((-1073 . -1134) 77082) ((-454 . -1051) T) ((-1072 . -1139) 77043) ((-1072 . -1134) 77013) ((-1072 . -1137) 76997) ((-192 . -1051) T) ((-313 . -843) T) ((-750 . -239) 76981) ((-575 . -106) 76960) ((-551 . -106) 76939) ((-1066 . -1118) 76900) ((-772 . -962) 76879) ((-1066 . -1134) 76856) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1066 . -1116) 76840) ((-377 . -962) T) ((-289 . -969) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 76819) ((-645 . -659) T) ((-454 . -37) 76769) ((-192 . -37) 76719) ((-443 . -458) 76685) ((-1058 . -1044) T) ((-1005 . -97) T) ((-634 . -557) 76667) ((-634 . -558) 76582) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 76564) ((-111 . -557) 76546) ((-142 . -25) T) ((-1176 . -1004) T) ((-796 . -579) 76494) ((-1174 . -1004) T) ((-885 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 76445) ((-43 . -1004) T) ((-994 . -779) T) ((-601 . -123) T) ((-974 . -280) 76296) ((-607 . -650) 76280) ((-261 . -969) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1004) T) ((-44 . -203) 76230) ((-880 . -779) 76209) ((-916 . -585) 76147) ((-214 . -1163) 76117) ((-940 . -278) T) ((-265 . -968) 76039) ((-833 . -123) T) ((-39 . -843) T) ((-454 . -370) 76021) ((-324 . -278) T) ((-192 . -370) 76003) ((-988 . -381) 75987) ((-265 . -106) 75904) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 75886) ((-1142 . -46) 75830) ((-199 . -134) T) ((-157 . -557) 75812) ((-1017 . -777) 75791) ((-706 . -557) 75773) ((-552 . -209) 75720) ((-444 . -209) 75670) ((-1176 . -650) 75640) ((-47 . -278) T) ((-1174 . -650) 75610) ((-886 . -1004) T) ((-747 . -1004) 75421) ((-282 . -97) T) ((-824 . -1110) T) ((-47 . -938) T) ((-1119 . -579) 75329) ((-623 . -97) 75307) ((-43 . -650) 75291) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1108 . -1004) 75269) ((-321 . -968) 75214) ((-611 . -1004) 75192) ((-973 . -134) T) ((-875 . -134) 75171) ((-875 . -132) 75150) ((-731 . -97) T) ((-139 . -650) 75134) ((-449 . -134) 75113) ((-449 . -132) 75092) ((-321 . -106) 75021) ((-988 . -969) T) ((-292 . -779) 75000) ((-1148 . -891) 74970) ((-567 . -1004) T) ((-1141 . -891) 74933) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 74883) ((-329 . -969) T) ((-323 . -969) T) ((-315 . -969) T) ((-265 . -962) 74826) ((-1120 . -891) 74796) ((-349 . -779) T) ((-103 . -969) T) ((-916 . -659) T) ((-794 . -843) T) ((-772 . -727) 74775) ((-772 . -724) 74754) ((-388 . -280) 74693) ((-437 . -97) T) ((-542 . -891) 74663) ((-289 . -1004) T) ((-377 . -727) 74642) ((-377 . -724) 74621) ((-465 . -456) 74603) ((-1142 . -953) 74569) ((-1140 . -21) T) ((-1140 . -25) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-747 . -650) 74511) ((-632 . -374) T) ((-1167 . -1110) T) ((-1017 . -381) 74480) ((-920 . -338) NIL) ((-98 . -33) T) ((-670 . -1110) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 74464) ((-128 . -1110) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -962) T) ((-68 . -353) T) ((-68 . -365) T) ((-1065 . -97) T) ((-607 . -478) 74397) ((-623 . -280) 74335) ((-885 . -37) 74232) ((-668 . -37) 74202) ((-503 . -280) 74006) ((-286 . -1110) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1110) T) ((-261 . -1004) T) ((-1079 . -557) 73988) ((-644 . -1114) T) ((-1056 . -588) 73972) ((-1105 . -509) 73951) ((-644 . -509) T) ((-286 . -807) 73935) ((-286 . -809) 73860) ((-283 . -807) 73821) ((-283 . -809) NIL) ((-731 . -280) 73786) ((-289 . -650) 73627) ((-294 . -293) 73604) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 73578) ((-286 . -953) 73246) ((-199 . -1096) T) ((-199 . -1099) T) ((-3 . -557) 73228) ((-283 . -953) 73158) ((-2 . -1004) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73140) ((-1017 . -969) 73071) ((-529 . -843) T) ((-517 . -752) T) ((-517 . -843) T) ((-460 . -843) T) ((-127 . -953) 73055) ((-199 . -91) T) ((-153 . -134) 73034) ((-73 . -410) T) ((0 . -557) 73016) ((-73 . -365) T) ((-153 . -132) 72967) ((-199 . -34) T) ((-48 . -557) 72949) ((-446 . -969) T) ((-454 . -205) 72931) ((-451 . -887) 72915) ((-450 . -777) 72894) ((-192 . -205) 72876) ((-79 . -410) T) ((-79 . -365) T) ((-1046 . -33) T) ((-747 . -156) 72855) ((-664 . -97) T) ((-942 . -557) 72822) ((-465 . -258) 72797) ((-286 . -347) 72767) ((-283 . -347) 72728) ((-283 . -308) 72689) ((-748 . -872) 72636) ((-599 . -123) T) ((-1129 . -132) 72615) ((-1129 . -134) 72594) ((-1073 . -97) T) ((-1072 . -97) T) ((-1066 . -97) T) ((-1059 . -1004) T) ((-1028 . -97) T) ((-196 . -33) T) ((-261 . -650) 72581) ((-1059 . -554) 72557) ((-540 . -280) NIL) ((-451 . -1004) 72535) ((-360 . -557) 72517) ((-474 . -779) T) ((-1050 . -203) 72467) ((-1148 . -1147) 72451) ((-1148 . -1134) 72428) ((-1141 . -1139) 72389) ((-1141 . -1134) 72359) ((-1141 . -1137) 72343) ((-1120 . -1118) 72304) ((-1120 . -1134) 72281) ((-562 . -557) 72263) ((-1120 . -1116) 72247) ((-632 . -843) T) ((-1073 . -256) 72213) ((-1072 . -256) 72179) ((-1066 . -256) 72145) ((-988 . -1004) T) ((-972 . -1004) T) ((-47 . -273) T) ((-286 . -823) 72112) ((-283 . -823) NIL) ((-972 . -978) 72091) ((-1022 . -809) 72073) ((-731 . -37) 72057) ((-237 . -579) 72005) ((-221 . -579) 71953) ((-634 . -968) 71940) ((-542 . -1134) 71917) ((-1028 . -256) 71883) ((-289 . -156) 71814) ((-329 . -1004) T) ((-323 . -1004) T) ((-315 . -1004) T) ((-465 . -19) 71796) ((-1022 . -953) 71778) ((-1006 . -138) 71762) ((-103 . -1004) T) ((-111 . -968) 71749) ((-644 . -333) T) ((-465 . -550) 71724) ((-634 . -106) 71709) ((-406 . -97) T) ((-44 . -1049) 71659) ((-111 . -106) 71644) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 71577) ((-951 . -1110) T) ((-866 . -138) 71561) ((-483 . -97) 71511) ((-993 . -1114) 71490) ((-446 . -557) 71442) ((-446 . -558) 71364) ((-60 . -1110) T) ((-714 . -1114) 71343) ((-712 . -1114) 71322) ((-1071 . -421) 71253) ((-1058 . -1004) T) ((-1042 . -585) 71227) ((-993 . -509) 71158) ((-450 . -381) 71127) ((-564 . -843) 71106) ((-423 . -1114) 71085) ((-1027 . -421) 71036) ((-368 . -557) 71018) ((-611 . -478) 70951) ((-714 . -509) 70862) ((-712 . -509) 70793) ((-664 . -280) 70780) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 70711) ((-112 . -843) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1158 . -557) 70693) ((-1105 . -1016) T) ((-1105 . -23) T) ((-1066 . -280) 70578) ((-1028 . -280) 70565) ((-790 . -585) 70525) ((-988 . -650) 70393) ((-866 . -898) 70377) ((-261 . -156) T) ((-833 . -21) T) ((-833 . -25) T) ((-796 . -779) 70328) ((-644 . -1016) T) ((-644 . -23) T) ((-584 . -1004) 70306) ((-572 . -554) 70281) ((-572 . -1004) T) ((-530 . -1114) T) ((-481 . -1114) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 70233) ((-323 . -650) 70185) ((-157 . -968) 70117) ((-309 . -968) 70101) ((-103 . -650) 70051) ((-157 . -106) 69962) ((-315 . -650) 69914) ((-309 . -106) 69893) ((-247 . -1004) T) ((-246 . -1004) T) ((-245 . -1004) T) ((-244 . -1004) T) ((-634 . -962) T) ((-243 . -1004) T) ((-242 . -1004) T) ((-241 . -1004) T) ((-188 . -1004) T) ((-187 . -1004) T) ((-185 . -1004) T) ((-153 . -1099) 69871) ((-153 . -1096) 69849) ((-184 . -1004) T) ((-183 . -1004) T) ((-111 . -962) T) ((-182 . -1004) T) ((-179 . -1004) T) ((-634 . -207) T) ((-178 . -1004) T) ((-177 . -1004) T) ((-176 . -1004) T) ((-175 . -1004) T) ((-174 . -1004) T) ((-173 . -1004) T) ((-172 . -1004) T) ((-171 . -1004) T) ((-170 . -1004) T) ((-169 . -1004) T) ((-214 . -97) 69660) ((-153 . -34) 69638) ((-153 . -91) 69616) ((-591 . -953) 69514) ((-450 . -969) 69445) ((-1017 . -1004) 69256) ((-1042 . -33) T) ((-607 . -456) 69240) ((-71 . -1110) T) ((-100 . -557) 69222) ((-1178 . -557) 69204) ((-351 . -557) 69186) ((-524 . -1099) T) ((-524 . -1096) T) ((-664 . -37) 69035) ((-489 . -557) 69017) ((-483 . -280) 68955) ((-465 . -557) 68937) ((-465 . -558) 68919) ((-1066 . -1051) NIL) ((-943 . -981) 68888) ((-943 . -1004) T) ((-921 . -97) T) ((-889 . -97) T) ((-837 . -97) T) ((-816 . -953) 68865) ((-1042 . -659) T) ((-920 . -585) 68810) ((-445 . -1004) T) ((-432 . -1004) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-974 . -203) 68756) ((-1073 . -37) 68653) ((-790 . -659) T) ((-627 . -843) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1072 . -37) 68494) ((-309 . -962) T) ((-1066 . -37) 68290) ((-988 . -156) T) ((-157 . -962) T) ((-1028 . -37) 68187) ((-645 . -46) 68164) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68138) ((-462 . -55) 68088) ((-321 . -1173) 68065) ((-199 . -421) T) ((-289 . -262) 68016) ((-315 . -156) T) ((-157 . -217) T) ((-1119 . -779) 67915) ((-103 . -156) T) ((-796 . -910) 67899) ((-595 . -1016) T) ((-530 . -333) T) ((-530 . -299) 67886) ((-481 . -299) 67863) ((-481 . -333) T) ((-286 . -278) 67842) ((-283 . -278) T) ((-548 . -779) 67821) ((-1017 . -650) 67763) ((-483 . -254) 67747) ((-595 . -23) T) ((-388 . -205) 67731) ((-283 . -938) NIL) ((-306 . -23) T) ((-98 . -927) 67715) ((-44 . -35) 67694) ((-556 . -1004) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 67632) ((-993 . -1016) T) ((-1177 . -585) 67606) ((-714 . -1016) T) ((-712 . -1016) T) ((-423 . -1016) T) ((-973 . -421) T) ((-875 . -421) 67557) ((-105 . -1004) T) ((-993 . -23) T) ((-749 . -969) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 67508) ((-1059 . -478) 67291) ((-351 . -352) 67270) ((-1077 . -381) 67254) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67187) ((-261 . -262) T) ((-990 . -557) 67169) ((-377 . -832) 67148) ((-49 . -1016) T) ((-940 . -843) T) ((-920 . -659) T) ((-645 . -809) NIL) ((-530 . -1016) T) ((-481 . -1016) T) ((-772 . -585) 67121) ((-1105 . -123) T) ((-1066 . -370) 67073) ((-921 . -280) NIL) ((-747 . -456) 67057) ((-324 . -843) T) ((-1056 . -33) T) ((-377 . -585) 67009) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -953) 66892) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 66863) ((-1040 . -1004) T) ((-1169 . -1168) 66847) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1022 . -278) T) ((-1119 . -910) 66817) ((-47 . -843) T) ((-611 . -456) 66801) ((-224 . -1163) 66771) ((-223 . -1163) 66741) ((-1075 . -779) T) ((-1017 . -156) 66720) ((-1022 . -938) T) ((-959 . -33) T) ((-766 . -134) 66699) ((-766 . -132) 66678) ((-670 . -102) 66662) ((-556 . -124) T) ((-450 . -1004) 66473) ((-1077 . -969) T) ((-795 . -421) T) ((-83 . -1110) T) ((-214 . -37) 66443) ((-128 . -102) 66425) ((-645 . -347) 66409) ((-1022 . -502) T) ((-360 . -968) 66393) ((-1177 . -659) T) ((-1071 . -872) 66363) ((-51 . -557) 66345) ((-1027 . -872) 66312) ((-590 . -381) 66296) ((-1166 . -969) T) ((-562 . -968) 66280) ((-599 . -25) T) ((-599 . -21) T) ((-1058 . -478) NIL) ((-1148 . -97) T) ((-1141 . -97) T) ((-360 . -106) 66259) ((-196 . -227) 66243) ((-1120 . -97) T) ((-966 . -1004) T) ((-921 . -1051) T) ((-966 . -965) 66183) ((-750 . -1004) T) ((-313 . -1114) T) ((-575 . -585) 66167) ((-562 . -106) 66146) ((-551 . -585) 66130) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1004) T) ((-355 . -1004) T) ((-201 . -1004) 66108) ((-584 . -478) 66041) ((-572 . -478) 65885) ((-765 . -962) 65864) ((-583 . -138) 65848) ((-313 . -509) T) ((-645 . -823) 65792) ((-503 . -203) 65742) ((-1148 . -256) 65708) ((-988 . -262) 65659) ((-454 . -777) T) ((-197 . -1016) T) ((-1141 . -256) 65625) ((-1120 . -256) 65591) ((-921 . -37) 65541) ((-192 . -777) T) ((-1105 . -458) 65507) ((-837 . -37) 65459) ((-772 . -726) 65438) ((-772 . -723) 65417) ((-772 . -659) 65396) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 65327) ((-397 . -37) 65311) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 65290) ((-377 . -723) 65269) ((-377 . -659) T) ((-465 . -260) 65244) ((-446 . -968) 65209) ((-595 . -123) T) ((-1017 . -478) 65142) ((-306 . -123) T) ((-153 . -372) 65121) ((-450 . -650) 65063) ((-747 . -258) 65040) ((-446 . -106) 64996) ((-590 . -969) T) ((-1129 . -421) 64927) ((-993 . -123) T) ((-237 . -779) 64906) ((-221 . -779) 64885) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-966 . -650) 64827) ((-562 . -962) T) ((-943 . -478) 64760) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1004) T) ((-355 . -650) 64730) ((-749 . -1004) T) ((-445 . -478) 64663) ((-432 . -478) 64596) ((-422 . -337) 64566) ((-44 . -554) 64545) ((-286 . -273) T) ((-607 . -557) 64507) ((-57 . -779) 64486) ((-1120 . -280) 64371) ((-921 . -370) 64353) ((-747 . -550) 64330) ((-480 . -779) 64309) ((-461 . -779) 64288) ((-39 . -1114) T) ((-916 . -953) 64186) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64048) ((-313 . -299) 64025) ((-313 . -333) T) ((-292 . -293) 64002) ((-289 . -258) 63987) ((-39 . -509) T) ((-349 . -1096) T) ((-349 . -1099) T) ((-951 . -1087) 63962) ((-1084 . -209) 63912) ((-1066 . -205) 63864) ((-300 . -1004) T) ((-349 . -91) T) ((-349 . -34) T) ((-951 . -102) 63810) ((-446 . -962) T) ((-447 . -209) 63760) ((-1059 . -456) 63694) ((-1178 . -968) 63678) ((-351 . -968) 63662) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 63641) ((-647 . -132) 63620) ((-451 . -456) 63604) ((-452 . -305) 63573) ((-1178 . -106) 63552) ((-476 . -1004) T) ((-450 . -156) 63531) ((-916 . -347) 63515) ((-383 . -97) T) ((-351 . -106) 63494) ((-916 . -308) 63478) ((-252 . -901) 63462) ((-251 . -901) 63446) ((-1176 . -557) 63428) ((-1174 . -557) 63410) ((-105 . -478) NIL) ((-1071 . -1132) 63394) ((-783 . -781) 63378) ((-1077 . -1004) T) ((-98 . -1110) T) ((-875 . -872) 63339) ((-749 . -650) 63281) ((-1120 . -1051) NIL) ((-449 . -872) 63226) ((-973 . -130) T) ((-58 . -97) 63204) ((-43 . -557) 63186) ((-76 . -557) 63168) ((-321 . -585) 63113) ((-1166 . -1004) T) ((-475 . -779) T) ((-313 . -1016) T) ((-266 . -1004) T) ((-916 . -823) 63072) ((-266 . -554) 63051) ((-1148 . -37) 62948) ((-1141 . -37) 62789) ((-454 . -969) T) ((-1120 . -37) 62585) ((-192 . -969) T) ((-313 . -23) T) ((-139 . -557) 62567) ((-765 . -727) 62546) ((-765 . -724) 62525) ((-543 . -37) 62498) ((-542 . -37) 62395) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -919) 62361) ((-77 . -557) 62343) ((-645 . -278) 62322) ((-265 . -659) 62225) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62204) ((-1169 . -97) T) ((-39 . -333) T) ((-796 . -134) 62183) ((-796 . -132) 62162) ((-1058 . -456) 62144) ((-1178 . -962) T) ((-450 . -478) 62077) ((-1046 . -1110) T) ((-886 . -557) 62059) ((-584 . -456) 62043) ((-572 . -456) 61974) ((-747 . -557) 61726) ((-47 . -27) T) ((-1077 . -650) 61623) ((-590 . -1004) T) ((-406 . -334) 61597) ((-1006 . -97) T) ((-748 . -280) 61584) ((-789 . -1004) T) ((-1174 . -352) 61556) ((-966 . -478) 61489) ((-1059 . -258) 61465) ((-214 . -205) 61435) ((-1166 . -650) 61405) ((-749 . -156) 61384) ((-201 . -478) 61317) ((-562 . -727) 61296) ((-562 . -724) 61275) ((-1108 . -557) 61187) ((-196 . -1110) T) ((-611 . -557) 61119) ((-1056 . -927) 61103) ((-321 . -659) T) ((-866 . -97) 61053) ((-1120 . -370) 61005) ((-1017 . -456) 60989) ((-58 . -280) 60927) ((-301 . -97) T) ((-1105 . -21) T) ((-1105 . -25) T) ((-39 . -1016) T) ((-644 . -21) T) ((-567 . -557) 60909) ((-479 . -293) 60888) ((-644 . -25) T) ((-103 . -258) NIL) ((-844 . -1016) T) ((-39 . -23) T) ((-703 . -1016) T) ((-517 . -1114) T) ((-460 . -1114) T) ((-289 . -557) 60870) ((-921 . -205) 60852) ((-153 . -150) 60836) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1140 . -134) 60815) ((-1059 . -550) 60791) ((-1140 . -132) 60770) ((-943 . -456) 60754) ((-1119 . -132) 60679) ((-1119 . -134) 60604) ((-1169 . -1175) 60583) ((-445 . -456) 60567) ((-432 . -456) 60551) ((-486 . -33) T) ((-590 . -650) 60521) ((-599 . -779) 60500) ((-1077 . -156) 60451) ((-335 . -97) T) ((-214 . -212) 60430) ((-224 . -97) T) ((-223 . -97) T) ((-1129 . -872) 60400) ((-104 . -97) T) ((-219 . -779) 60379) ((-748 . -37) 60228) ((-44 . -478) 60020) ((-1058 . -258) 59995) ((-189 . -1004) T) ((-1050 . -1004) T) ((-1050 . -554) 59974) ((-534 . -25) T) ((-534 . -21) T) ((-1006 . -280) 59912) ((-885 . -381) 59896) ((-632 . -1114) T) ((-572 . -258) 59871) ((-993 . -579) 59819) ((-714 . -579) 59767) ((-712 . -579) 59715) ((-313 . -123) T) ((-261 . -557) 59697) ((-632 . -509) T) ((-828 . -1004) T) ((-794 . -1016) T) ((-423 . -579) 59645) ((-828 . -826) 59629) ((-349 . -421) T) ((-454 . -1004) T) ((-634 . -585) 59616) ((-866 . -280) 59554) ((-192 . -1004) T) ((-286 . -843) 59533) ((-283 . -843) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 59520) ((-443 . -132) 59499) ((-388 . -381) 59483) ((-443 . -134) 59462) ((-105 . -456) 59444) ((-2 . -557) 59426) ((-1058 . -19) 59408) ((-1058 . -550) 59383) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1044) T) ((-1017 . -258) 59360) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1169 . -37) 59330) ((-1042 . -1110) T) ((-572 . -550) 59305) ((-993 . -25) T) ((-993 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1114) T) ((-885 . -969) T) ((-564 . -509) T) ((-668 . -969) T) ((-648 . -969) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -968) 59289) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1042 . -953) 59187) ((-749 . -262) 59166) ((-755 . -1004) T) ((-607 . -106) 59145) ((-266 . -478) 58937) ((-1176 . -968) 58921) ((-1174 . -968) 58905) ((-224 . -280) 58843) ((-223 . -280) 58781) ((-1123 . -97) 58759) ((-1059 . -558) NIL) ((-1059 . -557) 58741) ((-1140 . -1096) 58707) ((-1140 . -1099) 58673) ((-1120 . -205) 58625) ((-1119 . -1096) 58591) ((-1119 . -1099) 58557) ((-1042 . -347) 58541) ((-1022 . -752) T) ((-1022 . -843) T) ((-1017 . -550) 58518) ((-988 . -558) 58502) ((-451 . -557) 58434) ((-747 . -260) 58411) ((-552 . -138) 58358) ((-388 . -969) T) ((-454 . -650) 58308) ((-450 . -456) 58292) ((-297 . -779) 58271) ((-309 . -585) 58245) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58195) ((-153 . -657) 58166) ((-157 . -585) 58098) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58048) ((-988 . -557) 58030) ((-972 . -557) 58012) ((-911 . -97) T) ((-787 . -97) T) ((-731 . -381) 57976) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -818) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1016) T) ((-517 . -1016) T) ((-460 . -1016) T) ((-634 . -659) T) ((-329 . -557) 57958) ((-323 . -557) 57940) ((-315 . -557) 57922) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 57852) ((-103 . -557) 57834) ((-187 . -818) T) ((-880 . -138) 57818) ((-1140 . -91) 57784) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1140 . -34) 57750) ((-966 . -456) 57734) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1119 . -91) 57700) ((-1119 . -34) 57666) ((-1071 . -97) T) ((-1027 . -97) T) ((-783 . -97) T) ((-201 . -456) 57650) ((-1176 . -106) 57629) ((-1174 . -106) 57608) ((-43 . -968) 57592) ((-1129 . -1132) 57576) ((-784 . -781) 57560) ((-1077 . -262) 57539) ((-105 . -258) 57514) ((-1042 . -823) 57473) ((-43 . -106) 57452) ((-607 . -962) T) ((-1080 . -1151) T) ((-1058 . -558) NIL) ((-1058 . -557) 57434) ((-974 . -554) 57409) ((-974 . -1004) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 57388) ((-139 . -968) 57372) ((-524 . -507) 57356) ((-325 . -134) 57335) ((-325 . -132) 57286) ((-322 . -134) 57265) ((-636 . -1004) T) ((-322 . -132) 57216) ((-314 . -134) 57195) ((-314 . -132) 57146) ((-237 . -132) 57125) ((-237 . -134) 57104) ((-224 . -37) 57074) ((-221 . -134) 57053) ((-112 . -333) T) ((-221 . -132) 57032) ((-223 . -37) 57002) ((-139 . -106) 56981) ((-920 . -953) 56871) ((-1066 . -777) NIL) ((-627 . -1114) T) ((-731 . -969) T) ((-632 . -1016) T) ((-1176 . -962) T) ((-1174 . -962) T) ((-1056 . -1110) T) ((-920 . -347) 56848) ((-833 . -132) T) ((-833 . -134) 56830) ((-794 . -123) T) ((-747 . -968) 56728) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 56660) ((-584 . -558) 56621) ((-572 . -558) NIL) ((-572 . -557) 56603) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1099) 56569) ((-443 . -1096) 56535) ((-247 . -557) 56517) ((-246 . -557) 56499) ((-245 . -557) 56481) ((-244 . -557) 56463) ((-243 . -557) 56445) ((-465 . -588) 56427) ((-242 . -557) 56409) ((-309 . -659) T) ((-241 . -557) 56391) ((-105 . -19) 56373) ((-157 . -659) T) ((-465 . -343) 56355) ((-188 . -557) 56337) ((-483 . -1049) 56321) ((-465 . -118) T) ((-105 . -550) 56296) ((-187 . -557) 56278) ((-443 . -34) 56244) ((-443 . -91) 56210) ((-185 . -557) 56192) ((-184 . -557) 56174) ((-183 . -557) 56156) ((-182 . -557) 56138) ((-179 . -557) 56120) ((-178 . -557) 56102) ((-177 . -557) 56084) ((-176 . -557) 56066) ((-175 . -557) 56048) ((-174 . -557) 56030) ((-173 . -557) 56012) ((-493 . -1007) 55964) ((-172 . -557) 55946) ((-171 . -557) 55928) ((-44 . -456) 55865) ((-170 . -557) 55847) ((-169 . -557) 55829) ((-747 . -106) 55720) ((-583 . -97) 55670) ((-450 . -258) 55647) ((-1017 . -557) 55399) ((-1005 . -1004) T) ((-959 . -1110) T) ((-564 . -1016) T) ((-1177 . -953) 55383) ((-1071 . -280) 55370) ((-1027 . -280) 55357) ((-112 . -1016) T) ((-751 . -97) T) ((-564 . -23) T) ((-1050 . -478) 55149) ((-356 . -97) T) ((-294 . -97) T) ((-920 . -823) 55101) ((-885 . -1004) T) ((-139 . -962) T) ((-112 . -23) T) ((-664 . -381) 55085) ((-668 . -1004) T) ((-648 . -1004) T) ((-636 . -124) T) ((-422 . -1004) T) ((-286 . -400) 55069) ((-377 . -1110) T) ((-943 . -558) 55030) ((-940 . -1114) T) ((-199 . -97) T) ((-943 . -557) 54992) ((-748 . -205) 54976) ((-940 . -509) T) ((-765 . -585) 54949) ((-324 . -1114) T) ((-445 . -557) 54911) ((-445 . -558) 54872) ((-432 . -558) 54833) ((-432 . -557) 54795) ((-377 . -807) 54779) ((-289 . -968) 54614) ((-377 . -809) 54539) ((-772 . -953) 54437) ((-454 . -478) NIL) ((-450 . -550) 54414) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1004) T) ((-377 . -953) 54281) ((-289 . -106) 54102) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1114) T) ((-747 . -962) 54033) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1059 . -260) 54009) ((-1071 . -1051) 53987) ((-286 . -27) 53966) ((-973 . -97) T) ((-747 . -207) 53919) ((-214 . -777) 53898) ((-875 . -97) T) ((-646 . -97) T) ((-266 . -456) 53835) ((-449 . -97) T) ((-664 . -969) T) ((-556 . -557) 53817) ((-556 . -558) 53678) ((-377 . -347) 53662) ((-377 . -308) 53646) ((-1071 . -37) 53475) ((-1027 . -37) 53324) ((-783 . -37) 53294) ((-360 . -585) 53278) ((-583 . -280) 53216) ((-885 . -650) 53113) ((-196 . -102) 53097) ((-44 . -258) 53022) ((-668 . -650) 52992) ((-562 . -585) 52966) ((-282 . -1004) T) ((-261 . -968) 52953) ((-105 . -557) 52935) ((-105 . -558) 52917) ((-422 . -650) 52887) ((-748 . -226) 52826) ((-623 . -1004) 52804) ((-503 . -1004) T) ((-1073 . -969) T) ((-1072 . -969) T) ((-261 . -106) 52789) ((-1066 . -969) T) ((-1028 . -969) T) ((-503 . -554) 52768) ((-921 . -777) T) ((-201 . -621) 52726) ((-627 . -1016) T) ((-1105 . -673) 52702) ((-289 . -962) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -823) 52661) ((-66 . -1110) T) ((-765 . -726) 52640) ((-388 . -650) 52614) ((-731 . -1004) T) ((-765 . -723) 52593) ((-632 . -123) T) ((-645 . -843) 52572) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 52551) ((-289 . -207) 52503) ((-289 . -217) 52482) ((-192 . -262) T) ((-940 . -333) T) ((-1140 . -421) 52461) ((-1119 . -421) 52440) ((-324 . -299) 52417) ((-324 . -333) T) ((-1040 . -557) 52399) ((-44 . -1144) 52349) ((-795 . -97) T) ((-583 . -254) 52333) ((-632 . -971) T) ((-446 . -585) 52298) ((-437 . -1004) T) ((-44 . -550) 52223) ((-1058 . -260) 52198) ((-39 . -579) 52137) ((-47 . -333) T) ((-1010 . -557) 52119) ((-993 . -779) 52098) ((-572 . -260) 52073) ((-714 . -779) 52052) ((-712 . -779) 52031) ((-450 . -557) 51783) ((-214 . -381) 51752) ((-875 . -280) 51739) ((-423 . -779) 51718) ((-63 . -1110) T) ((-564 . -123) T) ((-449 . -280) 51705) ((-974 . -478) 51549) ((-261 . -962) T) ((-112 . -123) T) ((-422 . -694) T) ((-885 . -156) 51500) ((-988 . -968) 51410) ((-562 . -726) 51389) ((-540 . -1004) T) ((-562 . -723) 51368) ((-562 . -659) T) ((-266 . -258) 51347) ((-265 . -1110) T) ((-966 . -557) 51309) ((-966 . -558) 51270) ((-940 . -1016) T) ((-153 . -97) T) ((-248 . -779) T) ((-1065 . -1004) T) ((-750 . -557) 51252) ((-1017 . -260) 51229) ((-1006 . -203) 51213) ((-920 . -278) T) ((-731 . -650) 51197) ((-329 . -968) 51149) ((-324 . -1016) T) ((-323 . -968) 51101) ((-384 . -557) 51083) ((-355 . -557) 51065) ((-315 . -968) 51017) ((-201 . -557) 50949) ((-988 . -106) 50845) ((-940 . -23) T) ((-103 . -968) 50795) ((-821 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 50774) ((-388 . -156) T) ((-329 . -106) 50712) ((-323 . -106) 50650) ((-315 . -106) 50588) ((-224 . -205) 50558) ((-223 . -205) 50528) ((-324 . -23) T) ((-69 . -1110) T) ((-199 . -37) 50493) ((-103 . -106) 50427) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50405) ((-47 . -1016) T) ((-844 . -25) T) ((-703 . -25) T) ((-1050 . -456) 50342) ((-452 . -1004) T) ((-1178 . -585) 50316) ((-1129 . -97) T) ((-784 . -97) T) ((-214 . -969) 50247) ((-973 . -1051) T) ((-886 . -724) 50200) ((-351 . -585) 50184) ((-47 . -23) T) ((-886 . -727) 50137) ((-747 . -727) 50088) ((-747 . -724) 50039) ((-266 . -550) 50018) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 49975) ((-590 . -258) 49954) ((-107 . -598) T) ((-74 . -1110) T) ((-973 . -37) 49941) ((-601 . -344) 49920) ((-875 . -37) 49769) ((-664 . -1004) T) ((-449 . -37) 49618) ((-84 . -1110) T) ((-524 . -256) T) ((-1120 . -777) NIL) ((-1073 . -1004) T) ((-1072 . -1004) T) ((-1066 . -1004) T) ((-321 . -953) 49595) ((-988 . -962) T) ((-921 . -969) T) ((-44 . -557) 49577) ((-44 . -558) NIL) ((-837 . -969) T) ((-749 . -557) 49559) ((-1047 . -97) 49537) ((-988 . -217) 49488) ((-397 . -969) T) ((-329 . -962) T) ((-323 . -962) T) ((-335 . -334) 49465) ((-315 . -962) T) ((-224 . -212) 49444) ((-223 . -212) 49423) ((-104 . -334) 49397) ((-988 . -207) 49322) ((-1028 . -1004) T) ((-265 . -823) 49281) ((-103 . -962) T) ((-627 . -123) T) ((-388 . -478) 49123) ((-329 . -207) 49102) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49081) ((-323 . -217) T) ((-315 . -207) 49060) ((-315 . -217) T) ((-153 . -280) 49025) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49000) ((-1017 . -968) 48898) ((-795 . -1051) NIL) ((-300 . -557) 48880) ((-377 . -938) 48859) ((-1017 . -106) 48750) ((-406 . -1004) T) ((-1178 . -659) T) ((-61 . -557) 48732) ((-795 . -37) 48677) ((-486 . -1110) T) ((-548 . -138) 48661) ((-476 . -557) 48643) ((-1129 . -280) 48630) ((-664 . -650) 48479) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48461) ((-460 . -579) 48421) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48372) ((-483 . -1004) 48322) ((-221 . -421) 48273) ((-1050 . -258) 48252) ((-1077 . -557) 48234) ((-623 . -478) 48167) ((-885 . -262) 48146) ((-503 . -478) 47938) ((-1071 . -205) 47922) ((-153 . -1051) 47901) ((-1166 . -557) 47883) ((-1073 . -650) 47780) ((-1072 . -650) 47621) ((-815 . -97) T) ((-1066 . -650) 47417) ((-1028 . -650) 47314) ((-1056 . -610) 47298) ((-325 . -372) 47249) ((-322 . -372) 47200) ((-314 . -372) 47151) ((-940 . -123) T) ((-731 . -478) 47063) ((-266 . -558) NIL) ((-266 . -557) 47045) ((-833 . -421) T) ((-886 . -338) 46998) ((-747 . -338) 46977) ((-474 . -473) 46956) ((-472 . -473) 46935) ((-454 . -258) NIL) ((-450 . -260) 46912) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1016) T) ((-153 . -37) 46740) ((-1140 . -891) 46703) ((-1047 . -280) 46641) ((-1119 . -891) 46611) ((-833 . -372) T) ((-1017 . -962) 46542) ((-1142 . -509) T) ((-1050 . -550) 46521) ((-107 . -779) T) ((-974 . -456) 46452) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1129 . -1051) 46430) ((-1017 . -207) 46383) ((-47 . -123) T) ((-1092 . -97) T) ((-214 . -1004) 46194) ((-795 . -370) 46171) ((-994 . -97) T) ((-984 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1129 . -37) 46000) ((-784 . -37) 45970) ((-664 . -156) 45881) ((-590 . -557) 45863) ((-524 . -37) 45850) ((-880 . -97) 45800) ((-789 . -557) 45782) ((-789 . -558) 45704) ((-540 . -478) NIL) ((-1148 . -969) T) ((-1141 . -969) T) ((-1120 . -969) T) ((-543 . -969) T) ((-542 . -969) T) ((-1182 . -1016) T) ((-1073 . -156) 45655) ((-1072 . -156) 45586) ((-1066 . -156) 45517) ((-1028 . -156) 45468) ((-921 . -1004) T) ((-889 . -1004) T) ((-837 . -1004) T) ((-1105 . -134) 45447) ((-731 . -729) 45431) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45408) ((-634 . -809) 45390) ((-397 . -1004) T) ((-286 . -1114) 45369) ((-283 . -1114) T) ((-153 . -370) 45353) ((-1105 . -132) 45332) ((-443 . -891) 45295) ((-70 . -557) 45277) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45256) ((-634 . -953) 45238) ((-283 . -509) T) ((-1182 . -23) T) ((-125 . -953) 45220) ((-450 . -968) 45118) ((-44 . -260) 45043) ((-214 . -650) 44985) ((-450 . -106) 44876) ((-997 . -97) 44854) ((-950 . -97) T) ((-583 . -760) 44833) ((-664 . -478) 44776) ((-966 . -968) 44760) ((-564 . -21) T) ((-564 . -25) T) ((-974 . -258) 44735) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 44709) ((-355 . -968) 44693) ((-966 . -106) 44672) ((-748 . -381) 44656) ((-112 . -25) T) ((-87 . -557) 44638) ((-112 . -21) T) ((-552 . -280) 44433) ((-444 . -280) 44237) ((-1050 . -558) NIL) ((-355 . -106) 44216) ((-349 . -97) T) ((-189 . -557) 44198) ((-1050 . -557) 44180) ((-921 . -650) 44130) ((-1066 . -478) 43899) ((-837 . -650) 43851) ((-1028 . -478) 43821) ((-321 . -278) T) ((-1084 . -138) 43771) ((-880 . -280) 43709) ((-766 . -97) T) ((-397 . -650) 43693) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 43643) ((-1140 . -1139) 43622) ((-1022 . -1114) T) ((-309 . -953) 43589) ((-1140 . -1134) 43559) ((-1140 . -1137) 43543) ((-1119 . -1118) 43522) ((-78 . -557) 43504) ((-828 . -557) 43486) ((-1119 . -1134) 43463) ((-1022 . -509) T) ((-844 . -779) T) ((-454 . -558) 43393) ((-454 . -557) 43375) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1119 . -1116) 43359) ((-1142 . -1016) T) ((-192 . -558) 43289) ((-192 . -557) 43271) ((-974 . -550) 43246) ((-57 . -138) 43230) ((-480 . -138) 43214) ((-461 . -138) 43198) ((-329 . -1173) 43182) ((-323 . -1173) 43166) ((-315 . -1173) 43150) ((-286 . -333) 43129) ((-283 . -333) T) ((-450 . -962) 43060) ((-627 . -579) 43042) ((-1176 . -585) 43016) ((-1174 . -585) 42990) ((-1142 . -23) T) ((-623 . -456) 42974) ((-62 . -557) 42956) ((-1017 . -727) 42907) ((-1017 . -724) 42858) ((-503 . -456) 42795) ((-607 . -33) T) ((-450 . -207) 42748) ((-266 . -260) 42727) ((-214 . -156) 42706) ((-748 . -969) T) ((-43 . -585) 42664) ((-988 . -338) 42615) ((-664 . -262) 42546) ((-483 . -478) 42479) ((-749 . -968) 42430) ((-993 . -132) 42409) ((-329 . -338) 42388) ((-323 . -338) 42367) ((-315 . -338) 42346) ((-993 . -134) 42325) ((-795 . -205) 42302) ((-749 . -106) 42244) ((-714 . -132) 42223) ((-714 . -134) 42202) ((-237 . -872) 42169) ((-224 . -777) 42148) ((-221 . -872) 42093) ((-223 . -777) 42072) ((-712 . -132) 42051) ((-712 . -134) 42030) ((-139 . -585) 42004) ((-423 . -134) 41983) ((-423 . -132) 41962) ((-607 . -659) T) ((-755 . -557) 41944) ((-1148 . -1004) T) ((-1141 . -1004) T) ((-1120 . -1004) T) ((-1105 . -1099) 41910) ((-1105 . -1096) 41876) ((-1073 . -262) 41855) ((-1072 . -262) 41806) ((-1066 . -262) 41757) ((-1028 . -262) 41736) ((-309 . -823) 41717) ((-921 . -156) T) ((-837 . -156) T) ((-543 . -1004) T) ((-542 . -1004) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1137) 41701) ((-443 . -1134) 41671) ((-388 . -258) 41599) ((-286 . -1016) 41449) ((-283 . -1016) T) ((-1105 . -34) 41415) ((-1105 . -91) 41381) ((-82 . -557) 41363) ((-89 . -97) 41341) ((-1182 . -123) T) ((-530 . -132) T) ((-530 . -134) 41323) ((-481 . -134) 41305) ((-481 . -132) T) ((-286 . -23) 41158) ((-39 . -312) 41132) ((-283 . -23) T) ((-1058 . -588) 41114) ((-747 . -585) 40964) ((-1169 . -969) T) ((-1058 . -343) 40946) ((-153 . -205) 40930) ((-540 . -456) 40912) ((-214 . -478) 40845) ((-1176 . -659) T) ((-1174 . -659) T) ((-1077 . -968) 40728) ((-1077 . -106) 40597) ((-749 . -962) T) ((-479 . -97) T) ((-47 . -579) 40557) ((-474 . -97) T) ((-472 . -97) T) ((-1166 . -968) 40527) ((-950 . -37) 40511) ((-749 . -207) T) ((-749 . -217) 40490) ((-503 . -258) 40469) ((-1166 . -106) 40434) ((-1129 . -205) 40418) ((-1148 . -650) 40315) ((-974 . -558) NIL) ((-974 . -557) 40297) ((-1141 . -650) 40138) ((-1120 . -650) 39934) ((-920 . -843) T) ((-636 . -557) 39903) ((-139 . -659) T) ((-1017 . -338) 39882) ((-921 . -478) NIL) ((-224 . -381) 39851) ((-223 . -381) 39820) ((-940 . -25) T) ((-940 . -21) T) ((-543 . -650) 39793) ((-542 . -650) 39690) ((-731 . -258) 39648) ((-121 . -97) 39626) ((-765 . -953) 39524) ((-153 . -760) 39503) ((-289 . -585) 39400) ((-747 . -33) T) ((-647 . -97) T) ((-1022 . -1016) T) ((-942 . -1110) T) ((-349 . -37) 39365) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1163) 39349) ((-322 . -1163) 39333) ((-314 . -1163) 39317) ((-153 . -319) 39296) ((-517 . -779) T) ((-460 . -779) T) ((-1022 . -23) T) ((-85 . -557) 39278) ((-634 . -278) T) ((-766 . -37) 39248) ((-759 . -37) 39218) ((-1142 . -123) T) ((-1050 . -260) 39197) ((-886 . -725) 39150) ((-886 . -726) 39103) ((-747 . -723) 39082) ((-111 . -278) T) ((-89 . -280) 39020) ((-611 . -33) T) ((-503 . -550) 38999) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 38950) ((-747 . -725) 38929) ((-634 . -938) T) ((-590 . -968) 38913) ((-886 . -659) 38812) ((-747 . -659) 38743) ((-886 . -442) 38696) ((-450 . -727) 38647) ((-450 . -724) 38598) ((-833 . -1163) 38585) ((-1077 . -962) T) ((-590 . -106) 38564) ((-1077 . -296) 38541) ((-1097 . -97) 38519) ((-1005 . -557) 38501) ((-634 . -502) T) ((-748 . -1004) T) ((-1166 . -962) T) ((-383 . -1004) T) ((-224 . -969) 38432) ((-223 . -969) 38363) ((-261 . -585) 38350) ((-540 . -258) 38325) ((-623 . -621) 38283) ((-885 . -557) 38265) ((-796 . -97) T) ((-668 . -557) 38247) ((-648 . -557) 38229) ((-1148 . -156) 38180) ((-1141 . -156) 38111) ((-1120 . -156) 38042) ((-632 . -779) T) ((-921 . -262) T) ((-422 . -557) 38024) ((-567 . -659) T) ((-58 . -1004) 38002) ((-219 . -138) 37986) ((-837 . -262) T) ((-940 . -929) T) ((-567 . -442) T) ((-645 . -1114) 37965) ((-543 . -156) 37944) ((-542 . -156) 37895) ((-1156 . -779) 37874) ((-645 . -509) 37785) ((-377 . -843) T) ((-377 . -752) 37764) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 37746) ((-388 . -558) 37654) ((-583 . -1049) 37638) ((-105 . -588) 37620) ((-121 . -280) 37558) ((-105 . -343) 37540) ((-157 . -278) T) ((-368 . -1110) T) ((-286 . -123) 37412) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37396) ((-591 . -1016) T) ((-540 . -19) 37378) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1004) T) ((-540 . -550) 37353) ((-446 . -953) 37313) ((-590 . -962) T) ((-591 . -23) T) ((-1169 . -1004) T) ((-748 . -650) 37162) ((-112 . -779) NIL) ((-1071 . -381) 37146) ((-1027 . -381) 37130) ((-783 . -381) 37114) ((-1140 . -97) T) ((-1120 . -478) 36883) ((-1097 . -280) 36821) ((-282 . -557) 36803) ((-1119 . -97) T) ((-1006 . -1004) T) ((-1073 . -258) 36788) ((-1072 . -258) 36773) ((-261 . -659) T) ((-103 . -832) NIL) ((-623 . -557) 36705) ((-623 . -558) 36666) ((-988 . -585) 36576) ((-547 . -557) 36558) ((-503 . -558) NIL) ((-503 . -557) 36540) ((-1066 . -258) 36388) ((-454 . -968) 36338) ((-644 . -421) T) ((-475 . -473) 36317) ((-471 . -473) 36296) ((-192 . -968) 36246) ((-329 . -585) 36198) ((-323 . -585) 36150) ((-199 . -777) T) ((-315 . -585) 36102) ((-548 . -97) 36052) ((-450 . -338) 36031) ((-103 . -585) 35981) ((-454 . -106) 35915) ((-214 . -456) 35899) ((-313 . -134) 35881) ((-313 . -132) T) ((-153 . -340) 35852) ((-866 . -1154) 35836) ((-192 . -106) 35770) ((-796 . -280) 35735) ((-866 . -1004) 35685) ((-731 . -558) 35646) ((-731 . -557) 35628) ((-651 . -97) T) ((-301 . -1004) T) ((-1022 . -123) T) ((-647 . -37) 35598) ((-286 . -458) 35577) ((-465 . -1110) T) ((-1140 . -256) 35543) ((-1119 . -256) 35509) ((-297 . -138) 35493) ((-974 . -260) 35468) ((-1169 . -650) 35438) ((-1059 . -33) T) ((-1178 . -953) 35415) ((-437 . -557) 35397) ((-451 . -33) T) ((-351 . -953) 35381) ((-1071 . -969) T) ((-1027 . -969) T) ((-783 . -969) T) ((-973 . -777) T) ((-748 . -156) 35292) ((-483 . -258) 35269) ((-112 . -910) 35246) ((-1148 . -262) 35225) ((-1092 . -334) 35199) ((-994 . -239) 35183) ((-443 . -97) T) ((-335 . -1004) T) ((-224 . -1004) T) ((-223 . -1004) T) ((-1141 . -262) 35134) ((-104 . -1004) T) ((-1120 . -262) 35085) ((-796 . -1051) 35063) ((-1073 . -919) 35029) ((-552 . -334) 34969) ((-1072 . -919) 34935) ((-552 . -203) 34882) ((-540 . -557) 34864) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 34814) ((-454 . -962) T) ((-1066 . -919) 34780) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -962) T) ((-1028 . -919) 34746) ((-988 . -659) T) ((-645 . -1016) T) ((-543 . -262) 34725) ((-542 . -262) 34704) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1065 . -557) 34686) ((-796 . -37) 34638) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1144) 34622) ((-103 . -659) T) ((-645 . -23) T) ((-1182 . -25) T) ((-443 . -256) 34588) ((-1182 . -21) T) ((-1119 . -280) 34527) ((-1075 . -97) T) ((-39 . -132) 34499) ((-39 . -134) 34471) ((-483 . -550) 34448) ((-1017 . -585) 34298) ((-548 . -280) 34236) ((-44 . -588) 34186) ((-44 . -603) 34136) ((-44 . -343) 34086) ((-1058 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34068) ((-214 . -258) 34045) ((-584 . -33) T) ((-572 . -33) T) ((-993 . -421) 33996) ((-748 . -478) 33870) ((-714 . -421) 33801) ((-712 . -421) 33752) ((-423 . -421) 33703) ((-875 . -381) 33687) ((-664 . -557) 33669) ((-224 . -650) 33611) ((-223 . -650) 33553) ((-664 . -558) 33414) ((-449 . -381) 33398) ((-309 . -273) T) ((-321 . -843) T) ((-917 . -97) 33376) ((-940 . -779) T) ((-58 . -478) 33309) ((-1119 . -1051) 33261) ((-921 . -258) NIL) ((-199 . -969) T) ((-349 . -760) T) ((-1017 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1123 . -998) 33245) ((-1123 . -1004) 33223) ((-214 . -550) 33200) ((-1123 . -1000) 33157) ((-1073 . -557) 33139) ((-1072 . -557) 33121) ((-1066 . -557) 33103) ((-1066 . -558) NIL) ((-1028 . -557) 33085) ((-796 . -370) 33069) ((-493 . -97) T) ((-1140 . -37) 32910) ((-1119 . -37) 32724) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1142 . -21) T) ((-1142 . -25) T) ((-1017 . -723) 32703) ((-1017 . -726) 32654) ((-1017 . -725) 32633) ((-911 . -1004) T) ((-943 . -33) T) ((-787 . -1004) T) ((-1152 . -97) T) ((-1017 . -659) 32564) ((-601 . -97) T) ((-503 . -260) 32543) ((-1084 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-973 . -969) T) ((-875 . -969) T) ((-286 . -579) 32451) ((-283 . -579) 32412) ((-449 . -969) T) ((-447 . -97) T) ((-406 . -557) 32394) ((-1071 . -1004) T) ((-1027 . -1004) T) ((-783 . -1004) T) ((-1041 . -97) T) ((-748 . -262) 32325) ((-885 . -968) 32208) ((-446 . -938) T) ((-668 . -968) 32178) ((-422 . -968) 32148) ((-1047 . -1023) 32132) ((-1006 . -478) 32065) ((-885 . -106) 31934) ((-833 . -97) T) ((-668 . -106) 31899) ((-57 . -97) 31849) ((-483 . -558) 31810) ((-483 . -557) 31722) ((-482 . -97) 31700) ((-480 . -97) 31650) ((-462 . -97) 31628) ((-461 . -97) 31578) ((-422 . -106) 31541) ((-224 . -156) 31520) ((-223 . -156) 31499) ((-388 . -968) 31473) ((-1105 . -891) 31435) ((-916 . -1016) T) ((-866 . -478) 31368) ((-454 . -727) T) ((-443 . -37) 31209) ((-388 . -106) 31176) ((-454 . -724) T) ((-917 . -280) 31114) ((-192 . -727) T) ((-192 . -724) T) ((-916 . -23) T) ((-645 . -123) T) ((-1119 . -370) 31084) ((-286 . -25) 30937) ((-153 . -381) 30921) ((-286 . -21) 30793) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30643) ((-795 . -969) T) ((-540 . -260) 30618) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1071 . -650) 30447) ((-1027 . -650) 30296) ((-1022 . -579) 30278) ((-783 . -650) 30248) ((-607 . -1110) T) ((-1 . -97) T) ((-214 . -557) 30000) ((-1129 . -381) 29984) ((-1084 . -280) 29788) ((-885 . -962) T) ((-668 . -962) T) ((-648 . -962) T) ((-583 . -1004) 29738) ((-966 . -585) 29722) ((-784 . -381) 29706) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 29693) ((-237 . -280) 29680) ((-885 . -296) 29659) ((-355 . -585) 29643) ((-447 . -280) 29447) ((-224 . -478) 29380) ((-607 . -953) 29278) ((-223 . -478) 29211) ((-1041 . -280) 29137) ((-751 . -1004) T) ((-731 . -968) 29121) ((-1148 . -258) 29106) ((-1141 . -258) 29091) ((-1120 . -258) 28939) ((-356 . -1004) T) ((-294 . -1004) T) ((-388 . -962) T) ((-153 . -969) T) ((-57 . -280) 28877) ((-731 . -106) 28856) ((-542 . -258) 28841) ((-482 . -280) 28779) ((-480 . -280) 28717) ((-462 . -280) 28655) ((-461 . -280) 28593) ((-388 . -207) 28572) ((-450 . -33) T) ((-921 . -558) 28502) ((-199 . -1004) T) ((-921 . -557) 28484) ((-889 . -557) 28466) ((-889 . -558) 28441) ((-837 . -557) 28423) ((-632 . -134) T) ((-634 . -843) T) ((-634 . -752) T) ((-397 . -557) 28405) ((-1022 . -21) T) ((-1022 . -25) T) ((-607 . -347) 28389) ((-111 . -843) T) ((-796 . -205) 28373) ((-76 . -1110) T) ((-121 . -120) 28357) ((-966 . -33) T) ((-1176 . -953) 28331) ((-1174 . -953) 28288) ((-1129 . -969) T) ((-784 . -969) T) ((-450 . -723) 28267) ((-325 . -1051) 28246) ((-322 . -1051) 28225) ((-314 . -1051) 28204) ((-450 . -726) 28155) ((-450 . -725) 28134) ((-201 . -33) T) ((-450 . -659) 28065) ((-58 . -456) 28049) ((-524 . -969) T) ((-1071 . -156) 27940) ((-1027 . -156) 27851) ((-973 . -1004) T) ((-993 . -872) 27798) ((-875 . -1004) T) ((-749 . -585) 27749) ((-714 . -872) 27719) ((-646 . -1004) T) ((-712 . -872) 27686) ((-480 . -254) 27670) ((-607 . -823) 27629) ((-449 . -1004) T) ((-423 . -872) 27596) ((-77 . -1110) T) ((-325 . -37) 27561) ((-322 . -37) 27526) ((-314 . -37) 27491) ((-237 . -37) 27340) ((-221 . -37) 27189) ((-833 . -1051) T) ((-564 . -134) 27168) ((-564 . -132) 27147) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -962) T) ((-313 . -421) T) ((-1148 . -919) 27113) ((-1141 . -919) 27079) ((-1120 . -919) 27045) ((-833 . -37) 27010) ((-199 . -650) 26975) ((-39 . -379) 26947) ((-289 . -46) 26917) ((-916 . -123) T) ((-747 . -1110) T) ((-157 . -843) T) ((-313 . -372) T) ((-483 . -260) 26894) ((-44 . -33) T) ((-747 . -953) 26723) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1006 . -456) 26707) ((-1119 . -205) 26677) ((-611 . -1110) T) ((-219 . -97) 26627) ((-795 . -1004) T) ((-1077 . -585) 26552) ((-973 . -650) 26539) ((-664 . -968) 26382) ((-1071 . -478) 26330) ((-875 . -650) 26179) ((-1027 . -478) 26131) ((-449 . -650) 25980) ((-65 . -557) 25962) ((-664 . -106) 25791) ((-866 . -456) 25775) ((-1166 . -585) 25735) ((-749 . -659) T) ((-1073 . -968) 25618) ((-1072 . -968) 25453) ((-1066 . -968) 25243) ((-1028 . -968) 25126) ((-920 . -1114) T) ((-999 . -97) 25104) ((-747 . -347) 25074) ((-920 . -509) T) ((-1073 . -106) 24943) ((-1072 . -106) 24764) ((-1066 . -106) 24533) ((-1028 . -106) 24402) ((-1009 . -1007) 24366) ((-349 . -777) T) ((-1148 . -557) 24348) ((-1141 . -557) 24330) ((-1120 . -557) 24312) ((-1120 . -558) NIL) ((-214 . -260) 24289) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1004) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24271) ((-542 . -557) 24253) ((-821 . -1004) T) ((-770 . -1004) T) ((-740 . -1004) T) ((-701 . -1004) T) ((-595 . -781) 24237) ((-612 . -1004) T) ((-747 . -823) 24170) ((-39 . -372) NIL) ((-1022 . -598) T) ((-795 . -650) 24115) ((-224 . -456) 24099) ((-223 . -456) 24083) ((-645 . -579) 24031) ((-590 . -585) 24005) ((-266 . -33) T) ((-664 . -962) T) ((-530 . -1163) 23992) ((-481 . -1163) 23969) ((-1129 . -1004) T) ((-1071 . -262) 23880) ((-1027 . -262) 23811) ((-973 . -156) T) ((-784 . -1004) T) ((-875 . -156) 23722) ((-714 . -1132) 23706) ((-583 . -478) 23639) ((-75 . -557) 23621) ((-664 . -296) 23586) ((-1077 . -659) T) ((-524 . -1004) T) ((-449 . -156) 23497) ((-219 . -280) 23435) ((-1042 . -1016) T) ((-68 . -557) 23417) ((-1166 . -659) T) ((-1073 . -962) T) ((-1072 . -962) T) ((-297 . -97) 23367) ((-1066 . -962) T) ((-1042 . -23) T) ((-1028 . -962) T) ((-89 . -1023) 23351) ((-790 . -1016) T) ((-1073 . -207) 23310) ((-1072 . -217) 23289) ((-1072 . -207) 23241) ((-1066 . -207) 23128) ((-1066 . -217) 23107) ((-289 . -823) 23013) ((-790 . -23) T) ((-153 . -650) 22841) ((-377 . -1114) T) ((-1005 . -338) T) ((-940 . -134) T) ((-920 . -333) T) ((-794 . -421) T) ((-866 . -258) 22818) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 22800) ((-324 . -132) T) ((-1047 . -1004) 22778) ((-422 . -653) T) ((-73 . -557) 22760) ((-109 . -779) T) ((-219 . -254) 22744) ((-214 . -968) 22642) ((-79 . -557) 22624) ((-668 . -338) 22577) ((-1075 . -760) T) ((-670 . -209) 22561) ((-1059 . -1110) T) ((-128 . -209) 22543) ((-214 . -106) 22434) ((-1129 . -650) 22263) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22233) ((-451 . -1110) T) ((-875 . -478) 22180) ((-590 . -659) T) ((-524 . -650) 22167) ((-950 . -969) T) ((-449 . -478) 22110) ((-866 . -19) 22094) ((-866 . -550) 22071) ((-748 . -558) NIL) ((-748 . -557) 22053) ((-921 . -968) 22003) ((-383 . -557) 21985) ((-224 . -258) 21962) ((-223 . -258) 21939) ((-454 . -832) NIL) ((-286 . -29) 21909) ((-103 . -1110) T) ((-920 . -1016) T) ((-192 . -832) NIL) ((-837 . -968) 21861) ((-988 . -953) 21759) ((-921 . -106) 21693) ((-237 . -205) 21677) ((-670 . -628) 21661) ((-397 . -968) 21645) ((-349 . -969) T) ((-920 . -23) T) ((-837 . -106) 21583) ((-627 . -1099) NIL) ((-454 . -585) 21533) ((-103 . -807) 21515) ((-103 . -809) 21497) ((-627 . -1096) NIL) ((-192 . -585) 21447) ((-329 . -953) 21431) ((-323 . -953) 21415) ((-297 . -280) 21353) ((-315 . -953) 21337) ((-199 . -262) T) ((-397 . -106) 21316) ((-58 . -557) 21248) ((-153 . -156) T) ((-1022 . -779) T) ((-103 . -953) 21208) ((-815 . -1004) T) ((-766 . -969) T) ((-759 . -969) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -910) 21169) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -962) 21100) ((-1050 . -33) T) ((-446 . -843) T) ((-916 . -579) 21048) ((-224 . -550) 21025) ((-223 . -550) 21002) ((-988 . -347) 20986) ((-795 . -478) 20894) ((-214 . -207) 20847) ((-1058 . -1110) T) ((-756 . -557) 20829) ((-1177 . -1016) T) ((-1169 . -557) 20811) ((-1129 . -156) 20702) ((-103 . -347) 20684) ((-103 . -308) 20666) ((-973 . -262) T) ((-875 . -262) 20597) ((-731 . -338) 20576) ((-584 . -1110) T) ((-572 . -1110) T) ((-449 . -262) 20507) ((-524 . -156) T) ((-297 . -254) 20491) ((-1177 . -23) T) ((-1105 . -97) T) ((-1092 . -1004) T) ((-994 . -1004) T) ((-984 . -1004) T) ((-81 . -557) 20473) ((-644 . -97) T) ((-325 . -319) 20452) ((-552 . -1004) T) ((-322 . -319) 20431) ((-314 . -319) 20410) ((-444 . -1004) T) ((-1084 . -203) 20360) ((-237 . -226) 20322) ((-1042 . -123) T) ((-552 . -554) 20298) ((-988 . -823) 20231) ((-921 . -962) T) ((-837 . -962) T) ((-444 . -554) 20210) ((-1066 . -724) NIL) ((-1066 . -727) NIL) ((-1006 . -558) 20171) ((-447 . -203) 20121) ((-1006 . -557) 20103) ((-921 . -217) T) ((-921 . -207) T) ((-397 . -962) T) ((-880 . -1004) 20053) ((-837 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1016) 20032) ((-103 . -823) NIL) ((-1105 . -256) 19998) ((-796 . -777) 19977) ((-1017 . -1110) T) ((-828 . -659) T) ((-153 . -478) 19889) ((-916 . -25) T) ((-828 . -442) T) ((-377 . -1016) T) ((-454 . -726) T) ((-454 . -723) T) ((-833 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-916 . -21) T) ((-192 . -659) T) ((-772 . -23) 19841) ((-289 . -278) 19820) ((-951 . -209) 19766) ((-377 . -23) T) ((-866 . -558) 19727) ((-866 . -557) 19639) ((-583 . -456) 19623) ((-44 . -927) 19573) ((-301 . -557) 19555) ((-1017 . -953) 19384) ((-540 . -588) 19366) ((-540 . -343) 19348) ((-313 . -1163) 19325) ((-943 . -1110) T) ((-795 . -262) T) ((-1129 . -478) 19273) ((-445 . -1110) T) ((-432 . -1110) T) ((-534 . -97) T) ((-1071 . -258) 19200) ((-564 . -421) 19179) ((-917 . -912) 19163) ((-1169 . -352) 19135) ((-112 . -421) T) ((-1091 . -97) T) ((-997 . -1004) 19113) ((-950 . -1004) T) ((-816 . -779) T) ((-321 . -1114) T) ((-1148 . -968) 18996) ((-1017 . -347) 18966) ((-1141 . -968) 18801) ((-1120 . -968) 18591) ((-1148 . -106) 18460) ((-1141 . -106) 18281) ((-1120 . -106) 18050) ((-1105 . -280) 18037) ((-321 . -509) T) ((-335 . -557) 18019) ((-261 . -278) T) ((-543 . -968) 17992) ((-542 . -968) 17875) ((-331 . -1004) T) ((-292 . -1004) T) ((-224 . -557) 17836) ((-223 . -557) 17797) ((-920 . -123) T) ((-104 . -557) 17779) ((-575 . -23) T) ((-627 . -379) 17746) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17717) ((-542 . -106) 17586) ((-349 . -1004) T) ((-306 . -97) T) ((-153 . -262) 17497) ((-1119 . -777) 17450) ((-647 . -969) T) ((-1047 . -478) 17383) ((-1017 . -823) 17316) ((-766 . -1004) T) ((-759 . -1004) T) ((-757 . -1004) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -807) 17300) ((-105 . -1110) T) ((-993 . -97) T) ((-974 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17251) ((-214 . -724) 17202) ((-586 . -97) T) ((-1129 . -262) 17113) ((-601 . -574) 17097) ((-583 . -258) 17074) ((-950 . -650) 17058) ((-524 . -262) T) ((-885 . -585) 16983) ((-1177 . -123) T) ((-668 . -585) 16943) ((-648 . -585) 16930) ((-248 . -97) T) ((-422 . -585) 16860) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1148 . -962) T) ((-1141 . -962) T) ((-1120 . -962) T) ((-292 . -650) 16842) ((-1148 . -207) 16801) ((-1141 . -217) 16780) ((-1141 . -207) 16732) ((-1120 . -207) 16619) ((-1120 . -217) 16598) ((-1105 . -37) 16495) ((-543 . -962) T) ((-542 . -962) T) ((-921 . -727) T) ((-921 . -724) T) ((-889 . -727) T) ((-889 . -724) T) ((-796 . -969) T) ((-794 . -793) 16479) ((-627 . -421) T) ((-349 . -650) 16444) ((-388 . -585) 16418) ((-645 . -779) 16397) ((-644 . -37) 16362) ((-542 . -207) 16321) ((-39 . -657) 16293) ((-321 . -299) 16270) ((-321 . -333) T) ((-988 . -278) 16221) ((-265 . -1016) 16103) ((-1010 . -1110) T) ((-155 . -97) T) ((-1123 . -557) 16070) ((-772 . -123) 16022) ((-583 . -1144) 16006) ((-766 . -650) 15976) ((-759 . -650) 15946) ((-450 . -1110) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 15923) ((-377 . -123) T) ((-483 . -603) 15907) ((-103 . -278) T) ((-265 . -23) 15791) ((-483 . -588) 15775) ((-627 . -372) NIL) ((-483 . -343) 15759) ((-89 . -1004) 15737) ((-103 . -938) T) ((-517 . -130) T) ((-1156 . -138) 15721) ((-450 . -953) 15550) ((-1142 . -132) 15511) ((-1142 . -134) 15472) ((-966 . -1110) T) ((-911 . -557) 15454) ((-787 . -557) 15436) ((-748 . -968) 15279) ((-993 . -280) 15266) ((-201 . -1110) T) ((-714 . -280) 15253) ((-712 . -280) 15240) ((-748 . -106) 15069) ((-423 . -280) 15056) ((-1071 . -558) NIL) ((-1071 . -557) 15038) ((-1027 . -557) 15020) ((-1027 . -558) 14768) ((-950 . -156) T) ((-783 . -557) 14750) ((-866 . -260) 14727) ((-552 . -478) 14510) ((-750 . -953) 14494) ((-444 . -478) 14286) ((-885 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1016) T) ((-1078 . -557) 14268) ((-197 . -97) T) ((-450 . -347) 14238) ((-479 . -1004) T) ((-474 . -1004) T) ((-472 . -1004) T) ((-731 . -585) 14212) ((-940 . -421) T) ((-880 . -478) 14145) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14124) ((-349 . -156) T) ((-1140 . -969) T) ((-1119 . -969) T) ((-199 . -919) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1114) T) ((-1042 . -579) 14072) ((-529 . -793) 14056) ((-1059 . -1087) 14032) ((-634 . -509) T) ((-121 . -1004) 14010) ((-1169 . -968) 13994) ((-647 . -1004) T) ((-450 . -823) 13927) ((-595 . -37) 13897) ((-324 . -372) T) ((-286 . -134) 13876) ((-286 . -132) 13855) ((-111 . -509) T) ((-283 . -134) 13811) ((-283 . -132) 13767) ((-47 . -421) T) ((-146 . -1004) T) ((-142 . -1004) T) ((-1059 . -102) 13714) ((-714 . -1051) 13692) ((-623 . -33) T) ((-1169 . -106) 13671) ((-503 . -33) T) ((-451 . -102) 13655) ((-224 . -260) 13632) ((-223 . -260) 13609) ((-795 . -258) 13560) ((-44 . -1110) T) ((-748 . -962) T) ((-1077 . -46) 13537) ((-748 . -296) 13499) ((-993 . -37) 13348) ((-748 . -207) 13327) ((-714 . -37) 13156) ((-712 . -37) 13005) ((-423 . -37) 12854) ((-583 . -558) 12815) ((-583 . -557) 12727) ((-530 . -1051) T) ((-481 . -1051) T) ((-1047 . -456) 12711) ((-1097 . -1004) 12689) ((-1042 . -25) T) ((-1042 . -21) T) ((-443 . -969) T) ((-1120 . -724) NIL) ((-1120 . -727) NIL) ((-916 . -779) 12668) ((-751 . -557) 12650) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1114) T) ((-530 . -37) 12615) ((-481 . -37) 12580) ((-356 . -557) 12562) ((-294 . -557) 12544) ((-153 . -258) 12502) ((-61 . -1110) T) ((-107 . -97) T) ((-796 . -1004) T) ((-157 . -509) T) ((-647 . -650) 12472) ((-265 . -123) 12356) ((-199 . -557) 12338) ((-199 . -558) 12268) ((-920 . -579) 12207) ((-1169 . -962) T) ((-1022 . -134) T) ((-572 . -1087) 12182) ((-664 . -832) 12161) ((-540 . -33) T) ((-584 . -102) 12145) ((-572 . -102) 12091) ((-1129 . -258) 12018) ((-664 . -585) 11943) ((-266 . -1110) T) ((-1077 . -953) 11841) ((-1066 . -832) NIL) ((-973 . -558) 11756) ((-973 . -557) 11738) ((-313 . -97) T) ((-224 . -968) 11636) ((-223 . -968) 11534) ((-364 . -97) T) ((-875 . -557) 11516) ((-875 . -558) 11377) ((-646 . -557) 11359) ((-1167 . -1104) 11328) ((-449 . -557) 11310) ((-449 . -558) 11171) ((-221 . -381) 11155) ((-237 . -381) 11139) ((-224 . -106) 11030) ((-223 . -106) 10921) ((-1073 . -585) 10846) ((-1072 . -585) 10743) ((-1066 . -585) 10595) ((-1028 . -585) 10520) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-920 . -25) T) ((-920 . -21) T) ((-796 . -650) 10472) ((-349 . -262) T) ((-153 . -919) 10424) ((-627 . -357) T) ((-916 . -914) 10408) ((-634 . -1016) T) ((-627 . -150) 10390) ((-1140 . -1004) T) ((-1119 . -1004) T) ((-286 . -1096) 10369) ((-286 . -1099) 10348) ((-1064 . -97) T) ((-286 . -881) 10327) ((-125 . -1016) T) ((-111 . -1016) T) ((-548 . -1154) 10311) ((-634 . -23) T) ((-548 . -1004) 10261) ((-89 . -478) 10194) ((-157 . -333) T) ((-286 . -91) 10173) ((-286 . -34) 10152) ((-552 . -456) 10086) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1004) T) ((-444 . -456) 10023) ((-377 . -579) 9971) ((-590 . -953) 9869) ((-880 . -456) 9853) ((-325 . -969) T) ((-322 . -969) T) ((-314 . -969) T) ((-237 . -969) T) ((-221 . -969) T) ((-795 . -558) NIL) ((-795 . -557) 9835) ((-1177 . -21) T) ((-524 . -919) T) ((-664 . -659) T) ((-1177 . -25) T) ((-224 . -962) 9766) ((-223 . -962) 9697) ((-70 . -1110) T) ((-224 . -207) 9650) ((-223 . -207) 9603) ((-39 . -97) T) ((-833 . -969) T) ((-1073 . -659) T) ((-1072 . -659) T) ((-1066 . -659) T) ((-1066 . -723) NIL) ((-1066 . -726) NIL) ((-844 . -97) T) ((-1028 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1004) T) ((-309 . -1016) T) ((-157 . -1016) T) ((-289 . -843) 9582) ((-1140 . -650) 9423) ((-796 . -156) T) ((-1119 . -650) 9237) ((-772 . -21) 9189) ((-772 . -25) 9141) ((-219 . -1049) 9125) ((-121 . -478) 9058) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8826) ((-153 . -557) 8808) ((-157 . -23) T) ((-583 . -260) 8785) ((-483 . -33) T) ((-821 . -557) 8767) ((-87 . -1110) T) ((-770 . -557) 8749) ((-740 . -557) 8731) ((-701 . -557) 8713) ((-612 . -557) 8695) ((-214 . -585) 8545) ((-1075 . -1004) T) ((-1071 . -968) 8368) ((-1050 . -1110) T) ((-1027 . -968) 8211) ((-783 . -968) 8195) ((-1071 . -106) 8004) ((-1027 . -106) 7833) ((-783 . -106) 7812) ((-1129 . -558) NIL) ((-1129 . -557) 7794) ((-313 . -1051) T) ((-784 . -557) 7776) ((-984 . -258) 7755) ((-78 . -1110) T) ((-921 . -832) NIL) ((-552 . -258) 7731) ((-1097 . -478) 7664) ((-454 . -1110) T) ((-524 . -557) 7646) ((-444 . -258) 7625) ((-192 . -1110) T) ((-993 . -205) 7609) ((-261 . -843) T) ((-749 . -278) 7588) ((-794 . -97) T) ((-714 . -205) 7572) ((-921 . -585) 7522) ((-880 . -258) 7499) ((-837 . -585) 7451) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7416) ((-627 . -657) 7383) ((-454 . -807) 7365) ((-454 . -809) 7347) ((-443 . -650) 7188) ((-192 . -807) 7170) ((-62 . -1110) T) ((-192 . -809) 7152) ((-551 . -25) T) ((-397 . -585) 7126) ((-454 . -953) 7086) ((-796 . -478) 6998) ((-192 . -953) 6958) ((-214 . -33) T) ((-917 . -1004) 6936) ((-1140 . -156) 6867) ((-1119 . -156) 6798) ((-645 . -132) 6777) ((-645 . -134) 6756) ((-634 . -123) T) ((-127 . -434) 6733) ((-595 . -593) 6717) ((-1047 . -557) 6649) ((-111 . -123) T) ((-446 . -1114) T) ((-552 . -550) 6625) ((-444 . -550) 6604) ((-306 . -305) 6573) ((-493 . -1004) T) ((-446 . -509) T) ((-1071 . -962) T) ((-1027 . -962) T) ((-783 . -962) T) ((-214 . -723) 6552) ((-214 . -726) 6503) ((-214 . -725) 6482) ((-1071 . -296) 6459) ((-214 . -659) 6390) ((-880 . -19) 6374) ((-454 . -347) 6356) ((-454 . -308) 6338) ((-1027 . -296) 6310) ((-324 . -1163) 6287) ((-192 . -347) 6269) ((-192 . -308) 6251) ((-880 . -550) 6228) ((-1071 . -207) T) ((-601 . -1004) T) ((-1152 . -1004) T) ((-1084 . -1004) T) ((-993 . -226) 6167) ((-325 . -1004) T) ((-322 . -1004) T) ((-314 . -1004) T) ((-237 . -1004) T) ((-221 . -1004) T) ((-82 . -1110) T) ((-122 . -97) 6145) ((-116 . -97) 6123) ((-1084 . -554) 6102) ((-447 . -1004) T) ((-1041 . -1004) T) ((-447 . -554) 6081) ((-224 . -727) 6032) ((-224 . -724) 5983) ((-223 . -727) 5934) ((-39 . -1051) NIL) ((-223 . -724) 5885) ((-988 . -843) 5836) ((-921 . -726) T) ((-921 . -723) T) ((-921 . -659) T) ((-889 . -726) T) ((-837 . -659) T) ((-89 . -456) 5820) ((-454 . -823) NIL) ((-833 . -1004) T) ((-199 . -968) 5785) ((-796 . -262) T) ((-192 . -823) NIL) ((-765 . -1016) 5764) ((-57 . -1004) 5714) ((-482 . -1004) 5692) ((-480 . -1004) 5642) ((-462 . -1004) 5620) ((-461 . -1004) 5570) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5501) ((-329 . -843) T) ((-323 . -843) T) ((-315 . -843) T) ((-199 . -106) 5457) ((-765 . -23) 5409) ((-397 . -659) T) ((-103 . -843) T) ((-39 . -37) 5354) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1119 . -478) 5214) ((-286 . -421) 5193) ((-283 . -421) T) ((-766 . -258) 5172) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5037) ((-265 . -21) 4921) ((-44 . -1087) 4900) ((-64 . -557) 4882) ((-815 . -557) 4864) ((-548 . -478) 4797) ((-44 . -102) 4747) ((-1006 . -395) 4731) ((-1006 . -338) 4710) ((-974 . -1110) T) ((-973 . -968) 4697) ((-875 . -968) 4540) ((-449 . -968) 4383) ((-601 . -650) 4367) ((-973 . -106) 4352) ((-875 . -106) 4181) ((-446 . -333) T) ((-325 . -650) 4133) ((-322 . -650) 4085) ((-314 . -650) 4037) ((-237 . -650) 3886) ((-221 . -650) 3735) ((-866 . -588) 3719) ((-449 . -106) 3548) ((-1157 . -97) T) ((-866 . -343) 3532) ((-1120 . -832) NIL) ((-72 . -557) 3514) ((-885 . -46) 3493) ((-562 . -1016) T) ((-1 . -1004) T) ((-632 . -97) T) ((-1156 . -97) 3443) ((-1148 . -585) 3368) ((-1141 . -585) 3265) ((-121 . -456) 3249) ((-1092 . -557) 3231) ((-994 . -557) 3213) ((-360 . -23) T) ((-984 . -557) 3195) ((-85 . -1110) T) ((-1120 . -585) 3047) ((-833 . -650) 3012) ((-562 . -23) T) ((-552 . -557) 2994) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 2976) ((-475 . -1004) T) ((-471 . -1004) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2914) ((-116 . -280) 2852) ((-543 . -585) 2839) ((-199 . -962) T) ((-542 . -585) 2764) ((-349 . -919) T) ((-199 . -217) T) ((-199 . -207) T) ((-880 . -558) 2725) ((-880 . -557) 2637) ((-794 . -37) 2624) ((-1140 . -262) 2575) ((-1119 . -262) 2526) ((-1022 . -421) T) ((-467 . -779) T) ((-286 . -1039) 2505) ((-916 . -134) 2484) ((-916 . -132) 2463) ((-460 . -280) 2450) ((-266 . -1087) 2429) ((-446 . -1016) T) ((-795 . -968) 2374) ((-564 . -97) T) ((-1097 . -456) 2358) ((-224 . -338) 2337) ((-223 . -338) 2316) ((-266 . -102) 2266) ((-973 . -962) T) ((-112 . -97) T) ((-875 . -962) T) ((-795 . -106) 2195) ((-446 . -23) T) ((-449 . -962) T) ((-973 . -207) T) ((-875 . -296) 2164) ((-449 . -296) 2121) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2032) ((-221 . -156) 1943) ((-885 . -953) 1841) ((-668 . -953) 1812) ((-1009 . -97) T) ((-997 . -557) 1779) ((-950 . -557) 1761) ((-1148 . -659) T) ((-1141 . -659) T) ((-1120 . -723) NIL) ((-153 . -968) 1671) ((-1120 . -726) NIL) ((-833 . -156) T) ((-1120 . -659) T) ((-1167 . -138) 1655) ((-920 . -312) 1629) ((-917 . -478) 1562) ((-772 . -779) 1541) ((-517 . -1051) T) ((-443 . -262) 1492) ((-543 . -659) T) ((-331 . -557) 1474) ((-292 . -557) 1456) ((-388 . -953) 1354) ((-542 . -659) T) ((-377 . -779) 1305) ((-153 . -106) 1201) ((-765 . -123) 1153) ((-670 . -138) 1137) ((-1156 . -280) 1075) ((-454 . -278) T) ((-349 . -557) 1042) ((-483 . -927) 1026) ((-349 . -558) 940) ((-192 . -278) T) ((-128 . -138) 922) ((-647 . -258) 901) ((-454 . -938) T) ((-529 . -37) 888) ((-517 . -37) 875) ((-460 . -37) 840) ((-192 . -938) T) ((-795 . -962) T) ((-766 . -557) 822) ((-759 . -557) 804) ((-757 . -557) 786) ((-748 . -832) 765) ((-1178 . -1016) T) ((-1129 . -968) 588) ((-784 . -968) 572) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1110) T) ((-1178 . -23) T) ((-748 . -585) 497) ((-503 . -1110) T) ((-388 . -308) 481) ((-524 . -968) 468) ((-1129 . -106) 277) ((-634 . -579) 259) ((-784 . -106) 238) ((-351 . -23) T) ((-1084 . -478) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 110eba09..db08e4dc 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,3 +1,1099 @@
-(30 . 3404712021)
-(4186 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |formula| |fixPredicate| |limitedIntegrate| |char| |roughUnitIdeal?| |fortranComplex| |baseRDE| |leadingCoefficient| |decomposeFunc| |weights| |s19abf| |iicos| |beauzamyBound| |negative?| |addiag| |infieldint| |leftUnit| |elliptic?| |quoByVar| |traceMatrix| |primitiveMonomials| |s19acf| |trapezoidal| |gcdcofactprim| |e01sff| |constantOperator| |moebius| |imagI| |name| |getOperator| |primlimitedint| |characteristic| |quasiComponent| |close| |splitNodeOf!| |reductum| |s19adf| |lexico| |eigenvectors| |laurentIfCan| |kroneckerDelta| |showTheFTable| |derivative| |mkIntegral| |fglmIfCan| |palgintegrate| |decrease| |s20acf| |minRowIndex| |points| |constantToUnaryFunction| |vector| |pureLex| |mapBivariate| |matrixConcat3D| |list?| |exprHasWeightCosWXorSinWX| |s20adf| |exactQuotient| |function| |realSolve| |normalizedAssociate| |differentiate| |d01fcf| |solveLinearPolynomialEquationByRecursion| |geometric| |polygon| |display| |s21baf| |unmakeSUP| |read!| |basicSet| |iFTable| |nrows| |d01gaf| |top| |purelyTranscendental?| |numberOfChildren| |lineColorDefault| |s21bbf| |isMult| |crushedSet| |makeUnit| |ncols| |continue| |iExquo| |d01gbf| |totalGroebner| |partition| |s21bcf| |errorKind| |latex| |light| |d02bbf| |root?| |hspace| |mapdiv| |lift| |s21bdf| |pToHdmp| |rewriteSetByReducingWithParticularGenerators| |getMatch| |d02bhf| |rischDEsys| |fixedPoints| |phiCoord| |reduce| |bat| |slex| |mainCharacterization| |input| |solid?| |getBadValues| |d02cjf| |bumprow| |pushdown| |coth2trigh| |binarySearchTree| |generalizedContinuumHypothesisAssumed| |library| |BumInSepFFE| |d02ejf| |revert| |modularGcd| |integers| |stopTableGcd!| |cylindrical| |yCoord| |d02gaf| |expandLog| |rename| |hexDigit?| |pToDmp| |separateDegrees| |match?| BY |internalIntegrate| |rewriteSetWithReduction| |perfectSqrt| |d02gbf| |setrest!| |cCoth| |label| |topPredicate| |complexForm| |generalizedContinuumHypothesisAssumed?| |rst| |d02kef| |cscIfCan| |indicialEquations| |monomial| |mainKernel| |entry| |numberOfComputedEntries| |inverseIntegralMatrixAtInfinity| |tower| |algSplitSimple| |factors| |d02raf| |null?| |unit| |multivariate| |principal?| |double?| |notelem| |d03edf| |coshIfCan| |set| |getOperands| |createThreeSpace| |shift| |variables| |determinant| |fullPartialFraction| |lcm| |intPatternMatch| |pile| |copies| |vectorise| |singularitiesOf| |d03eef| |composites| |zeroDimensional?| |dot| |mkcomm| |innerint| |useEisensteinCriterion| |d03faf| |nonQsign| |exponentialOrder| |factor| |totalfract| |terms| |iisec| |totalDifferential| |deriv| |headReduce| |e01baf| |calcRanges| |leftTrace| |sqrt| |gcd| |besselY| |stFunc2| |setStatus!| |any| |imaginary| |makeVariable| |distribute| |functionIsOscillatory| |e01bef| |increasePrecision| |real| |solve1| |union| |curve| |stoseIntegralLastSubResultant| |innerEigenvectors| |dequeue| |musserTrials| |makeGraphImage| |e01bff| |padicallyExpand| |primeFactor| |imag| |debug| |false| |summation| |pseudoRemainder| |delete!| |substring?| |tanNa| |e01bgf| |lazyResidueClass| |upperCase| |directProduct| |split!| |rotatey| |zCoord| |unvectorise| |interpretString| |elementary| |raisePolynomial| |e01bhf| |OMputEndObject| |quote| |showArrayValues| |extractSplittingLeaf| |suffix?| |screenResolution| |pow| |elt| |monicCompleteDecompose| |basisOfMiddleNucleus| |e01daf| |unitVector| |show| |destruct| |coHeight| |separant| |generalizedEigenvectors| |subNodeOf?| |setnext!| |setAdaptive| |e01saf| |OMconnInDevice| |OMgetError| |fractRadix| |sylvesterMatrix| |prefix?| |psolve| |ODESolve| |outputList| |e01sbf| |lazyVariations| |atanIfCan| |trace| |charClass| |useSingleFactorBound?| |pol| |infieldIntegrate| |selectODEIVPRoutines| |graphCurves| |e01sef| |OMputEndAtp| |shufflein| |clearCache| |dimensions| |integralMatrix| |cSinh| |elliptic| |OMgetType| |orthonormalBasis| |prindINFO| |e02adf| |OMsend| |point| |supersub| |minPoints3D| |viewport3D| |complete| |interReduce| |rootsOf| |e02aef| |degreeSubResultant| |collectUpper| |uniform01| |heapSort| |removeRedundantFactorsInPols| |setsubMatrix!| |defineProperty| |e02agf| |cyclicCopy| |OMputObject| |mainForm| |opeval| |linear| |ListOfTerms| |setelt!| |pastel| |e02ahf| |sumOfSquares| |times!| |product| |iiasin| |infix?| |options| |filename| |ParCondList| |palgLODE0| |lastSubResultant| |e02ajf| |sumSquares| |leftFactor| |makeViewport2D| |mask| ~ |polynomial| |genericPosition| |ef2edf| |numberOfIrreduciblePoly| |e02akf| |zeroDimPrimary?| |identity| |primaryDecomp| |atanhIfCan| |mainMonomial| |sech| = |ocf2ocdf| |cAcos| |bubbleSort!| |e02baf| |mainPrimitivePart| |stoseInvertible?sqfreg| |rational?| |create| |csch| |real?| |symmetric?| |vspace| |cCosh| |semiResultantEuclidean1| |true| |e02bbf| |accuracyIF| |monomialIntegrate| |normalizeIfCan| |parse| |meshFun2Var| |explicitlyFinite?| |asinh| < |rightRankPolynomial| |cSec| |fractRagits| |repeating?| |e02bcf| |reducedQPowers| |taylor| |partialNumerators| |tubeRadius| |quadratic?| |linGenPos| |acosh| > |csc2sin| |curryLeft| |monomialIntPoly| |maxPoints| |e02bdf| |outputAsTex| |logical?| |laurent| |iiatanh| |contract| |OMgetEndApp| |numerator| |atanh| <= |elem?| ~= |divergence| |setMinPoints| |fortranTypeOf| |e02bef| |listexp| |maxPoints3D| |puiseux| |shuffle| |empty?| |augment| |tanAn| |acoth| >= |fTable| |open| |internalInfRittWu?| |createLowComplexityTable| |modifyPointData| |e02daf| |secIfCan| |expintfldpoly| |var2Steps| |overbar| |appendPoint| |radicalEigenvalues| |rdregime| |asech| |squareFreeFactors| |setRow!| |splitDenominator| |rightDiscriminant| |list| |e02dcf| |deepCopy| |minPol| |listConjugateBases| |linearlyDependent?| |complexNumericIfCan| |setProperties| |endSubProgram| |setPosition| |maxrank| |permutation| |length| |firstNumer| |eulerE| |mesh| |cons| |extractBottom!| |e02ddf| |leftRankPolynomial| |inv| |insertTop!| |numberOfPrimitivePoly| |cAsec| |conditionP| |multiple| + |green| |univcase| |lowerPolynomial| |scripts| |setDifference| |prefix| |coordinate| |member?| |createLowComplexityNormalBasis| |e02def| |ground?| |logpart| |bsolve| |expr| |singularAtInfinity?| |applyQuote| |getStream| - |asimpson| |leastAffineMultiple| |setIntersection| |squareFreePrim| |externalList| |antiCommutative?| |e02dff| |ground| |limitPlus| |factorPolynomial| |isPlus| |withPredicates| |merge| |aCubic| / |asinIfCan| |divisor| |expressIdealMember| |setUnion| |clearTheIFTable| |UnVectorise| |e02gaf| |UP2ifCan| |leadingMonomial| |parabolic| |stiffnessAndStabilityOfODEIF| |presub| |gderiv| |euclideanGroebner| |extension| |mainVariable?| |apply| |tab1| |e02zaf| |zeroSetSplitIntoTriangularSystems| |prolateSpheroidal| |recur| |dominantTerm| |leftExactQuotient| |ruleset| |invertIfCan| |binaryTournament| |startTableGcd!| |e04dgf| |asecIfCan| F |SturmHabicht| |dflist| |lazyEvaluate| |indicialEquationAtInfinity| |rubiksGroup| |firstUncouplingMatrix| |swap| |lepol| |laplace| |size| |e04fdf| |integral| |mainCoefficients| |closedCurve| |abs| |iidsum| |lazyPquo| |discriminantEuclidean| |denominator| |pushuconst| |divideExponents| |e04gcf| |changeWeightLevel| |functionIsFracPolynomial?| |nonSingularModel| |nullSpace| |OMconnectTCP| |suchThat| |SturmHabichtSequence| |minIndex| |setEmpty!| |sin?| |e04jaf| |createNormalPrimitivePoly| |simplifyLog| |denominators| |scalarTypeOf| |sortConstraints| |palgextint0| |leftMult| |first| |e04mbf| |internalSubQuasiComponent?| |removeSquaresIfCan| |weighted| |stFuncN| |sizePascalTriangle| |conjugate| |useSingleFactorBound| |curry| |acscIfCan| |rest| |polynomialZeros| |e04naf| |submod| |goodPoint| |univariate?| |selectFiniteRoutines| |extractPoint| |commaSeparate| |substitute| |fintegrate| |expint| |nthExpon| |e04ucf| |optional?| |fmecg| |arity| |solveInField| |inverse| |setOfMinN| |separate| |digit| |removeDuplicates| |pointColor| |unparse| |subst| |nextSubsetGray| |e04ycf| |tan2trig| |xor| |schwerpunkt| |mergeDifference| |hue| |setClipValue| |normalDeriv| |clearTheSymbolTable| |float?| |factorList| |harmonic| |inverseLaplace| |f01brf| |leadingTerm| |factorial| |OMreadStr| |laplacian| |generators| |cyclotomicDecomposition| |numberOfVariables| |matrixGcd| |invmod| |gcdprim| |f01bsf| |OMconnOutDevice| |OMReadError?| |characteristicSet| |leftAlternative?| |subspace| |replace| |concat!| |implies| |taylorRep| |polyred| |routines| |genericLeftTrace| |f01maf| |partialFraction| |ReduceOrder| |HenselLift| |roman| |adaptive| |hconcat| |subTriSet?| |airyBi| |f01mcf| |remove!| |isobaric?| |retractIfCan| |basisOfLeftAnnihilator| |deleteProperty!| |flagFactor| |mapUnivariate| |numer| |cross| |subResultantGcd| |balancedFactorisation| |setRealSteps| |iitan| |f01qcf| |differentialVariables| F2FG |squareFreePolynomial| |denom| |difference| |linears| |f01qdf| |putGraph| |makeprod| |weierstrass| |objects| |extractIfCan| |iiperm| |fractionFreeGauss!| |iiacsc| |rowEch| |goto| |integralBasis| |palgextint| |univariateSolve| |f01qef| |base| |reverseLex| |unrankImproperPartitions1| |leftGcd| |autoReduced?| |log| |eigenMatrix| |arrayStack| |airyAi| |randomLC| |rootSplit| |cotIfCan| |userOrdered?| |graphStates| |matrix| |exponential| |squareTop| |dmpToHdmp| |localUnquote| |gbasis| |makeop| |LyndonWordsList1| |algebraic?| |kernel| |conjugates| |binaryFunction| |cAcot| |sinIfCan| |swapColumns!| |rangeIsFinite| |genus| |lyndon| |unprotectedRemoveRedundantFactors| |draw| |outputMeasure| |setMinPoints3D| |assign| |bat1| |computePowers| |integralRepresents| |iteratedInitials| |lighting| |nilFactor| |rootBound| |finiteBasis| |meshPar1Var| |height| |leftRemainder| |lazyPseudoQuotient| |specialTrigs| |supDimElseRittWu?| |normalElement| |compose| |cycle| |characteristicPolynomial| |supRittWu?| |indiceSubResultant| |oddlambert| |fortranCharacter| |iicot| |rightRecip| |listRepresentation| |overset?| |OMgetVariable| |back| |truncate| |rombergo| |mapSolve| |subSet| |map| |insertRoot!| |makeObject| |multMonom| |factorSquareFree| |exQuo| |finite?| |iiasec| |even?| |outputFloating| |lambda| |integerIfCan| |validExponential| |modularFactor| |bracket| |multiple?| |solve| |invertibleElseSplit?| |testModulus| |aQuadratic| |repeating| |maximumExponent| |midpoints| |OMgetAtp| |subresultantSequence| |components| |coef| |initiallyReduced?| |getMultiplicationTable| |leftTraceMatrix| |idealiser| Y |safeFloor| |readLine!| |drawCurves| |OMgetString| |quasiMonicPolynomials| |finiteBound| |localAbs| |leadingCoefficientRicDE| |iicsc| |increase| |eigenvalues| |mdeg| |trueEqual| |quasiRegular?| |cyclic?| |changeName| |addMatch| |declare| |LagrangeInterpolation| |partialQuotients| |imagk| |modifyPoint| |numberOfCycles| |semiResultantEuclideannaif| |karatsuba| |putColorInfo| |rightFactorCandidate| |selectSumOfSquaresRoutines| |iisqrt3| |primlimintfrac| |cCsc| |cPower| |nthRoot| |bright| |toroidal| |SFunction| |complexSolve| |singRicDE| |elRow1!| |LyndonBasis| |OMgetEndBind| |OMsetEncoding| |seed| |symmetricRemainder| |stoseInvertibleSetreg| |parent| |ricDsolve| |setCondition!| |legendre| |hdmpToP| |pascalTriangle| |makeResult| |perfectNthRoot| |factorSquareFreeByRecursion| |diagonal| |less?| |cycleRagits| |plotPolar| |monomial?| |exponential1| |purelyAlgebraic?| |leviCivitaSymbol| |iilog| |comp| |argumentListOf| |semiSubResultantGcdEuclidean2| |iiGamma| |primitivePart| |useNagFunctions| |generalTwoFactor| |checkForZero| |errorInfo| |genericLeftMinimalPolynomial| |drawStyle| |iflist2Result| |sinhIfCan| |multiEuclidean| |ridHack1| |eval| |remove| |modularGcdPrimitive| |PollardSmallFactor| |clipPointsDefault| |viewDeltaXDefault| |shiftRoots| |physicalLength!| |showTheIFTable| |removeRoughlyRedundantFactorsInPol| |simpsono| |nextPrime| |cache| |integralMatrixAtInfinity| |generalizedInverse| |constantRight| |wholePart| |palgRDE| |last| |bfKeys| |complexEigenvectors| |rotatez| |stopTableInvSet!| |derivationCoordinates| |coth2tanh| |assoc| |rewriteIdealWithQuasiMonicGenerators| |Lazard| |cycleLength| |quoted?| |roughBasicSet| |basis| |countable?| |queue| |pomopo!| |diagonalProduct| |clearFortranOutputStack| |nthRootIfCan| |option| |fortranCompilerName| |listOfMonoms| |invmultisect| |stoseInvertibleSet| |nodeOf?| |width| |rightQuotient| |middle| |virtualDegree| |rk4f| |radicalSolve| |error| |binary| |generalSqFr| |in?| |car| |SturmHabichtMultiple| |intcompBasis| |pointPlot| |assert| |stirling1| |conjug| |setButtonValue| |cdr| |over| |output| |surface| |lowerCase| |karatsubaDivide| |maxdeg| |module| |odd?| |fprindINFO| |bit?| |df2fi| |Lazard2| |setPredicates| |children| |e| |graeffe| |changeBase| |leftRank| |splitSquarefree| |nextNormalPoly| |companionBlocks| |iiasech| |twoFactor| |iiacot| |HermiteIntegrate| |reduction| |cAtanh| |subHeight| |magnitude| |leader| |dec| |directory| |coefChoose| |antiCommutator| |pade| |axesColorDefault| |t| |coercePreimagesImages| |curve?| |factorsOfCyclicGroupSize| |normFactors| |eq| |monicLeftDivide| |resetNew| |getButtonValue| |cothIfCan| |colorFunction| |splitLinear| |operation| |OMputEndBVar| |printInfo!| |iter| |red| |limit| |asinhIfCan| |noKaratsuba| |optional| |reduced?| |primitiveElement| |reducedForm| |fractionPart| |nextColeman| |trim| |const| |decompose| |conical| |OMputString| |fortranInteger| |selectPolynomials| |chiSquare| |printStatement| |semiSubResultantGcdEuclidean1| |leftPower| |replaceKthElement| |pattern| |mpsode| |spherical| |maxRowIndex| |wholeRagits| |bitLength| |complexIntegrate| |lexTriangular| |partitions| |rootPower| ^ |btwFact| |dihedralGroup| |RemainderList| |decimal| |reducedDiscriminant| |collectQuasiMonic| |cos2sec| |extend| |imagi| |tubePlot| |constant?| |flatten| |direction| |topFortranOutputStack| |setPoly| |roughSubIdeal?| |doubleResultant| |bernoulliB| |quadraticForm| |integralCoordinates| |OMputSymbol| |intermediateResultsIF| |nary?| |jordanAdmissible?| |scale| |palgint| |ParCond| |arg1| |semiResultantReduitEuclidean| |exponents| |measure2Result| |leadingBasisTerm| |fortran| |ScanArabic| |rightDivide| |dimension| |insertBottom!| |linSolve| |arg2| |internalIntegrate0| |leadingIdeal| |headRemainder| |unitCanonical| |remainder| |pushup| |critT| |mix| |polygon?| |processTemplate| |zeroDimPrime?| |lflimitedint| |test| |absolutelyIrreducible?| |rowEchLocal| |reorder| |check| |conditions| |coerce| |makingStats?| |rootOfIrreduciblePoly| |shallowExpand| |any?| |lex| |removeSinSq| |ord| |groebner?| |match| |elColumn2!| |packageCall| |hasTopPredicate?| |linearDependence| |jacobiIdentity?| |getGraph| |increment| |duplicates| |construct| |meatAxe| |graphImage| |quatern| |reseed| |basisOfRightNucleus| |modTree| |edf2ef| |explogs2trigs| |leaves| |degreeSubResultantEuclidean| |operator| |leaf?| |incrementKthElement| |useEisensteinCriterion?| |lfextendedint| |tRange| |normal01| |#| |newTypeLists| |messagePrint| |linear?| |lfunc| |PDESolve| |irreducibleFactors| |cyclotomicFactorization| |squareMatrix| |principalIdeal| |stronglyReduced?| |combineFeatureCompatibility| |contains?| |OMgetEndError| |iifact| |polarCoordinates| |realElementary| |tanIfCan| |associatedSystem| |sPol| |changeVar| |largest| |polar| |bombieriNorm| |hMonic| |minrank| |critBonD| |quotient| |rightTraceMatrix| |updatD| |addmod| |viewDefaults| |fortranCarriageReturn| |divisors| |save| |OMreceive| |primes| |setTopPredicate| |characteristicSerie| |semiLastSubResultantEuclidean| |showFortranOutputStack| |gethi| |members| |Ei| |cycleEntry| |complexLimit| |returnType!| |isPower| |generalInfiniteProduct| |gcdPrimitive| |complexNumeric| |OMencodingSGML| |rightUnits| |Hausdorff| |constantLeft| |OMgetObject| |monomRDEsys| |cubic| |makeSketch| |eq?| |fortranDouble| |nor| |tanh2coth| |tubePoints| |OMParseError?| |qinterval| |stack| |leadingIndex| |OMgetInteger| |rightZero| |associatorDependence| |tValues| |kernels| |cycleElt| |makeFloatFunction| |viewpoint| |dn| |sdf2lst| |inGroundField?| |showTypeInOutput| |numberOfFactors| |dark| |numFunEvals| |sn| |univariate| |intersect| |freeOf?| |squareFreePart| |branchPoint?| |complexEigenvalues| |generateIrredPoly| |declare!| |backOldPos| |normalise| |selectPDERoutines| |countRealRootsMultiple| |shellSort| |alternating| |weight| |character?| |bitCoef| |bivariatePolynomials| |/\\| |Beta| |maxrow| UP2UTS |comparison| |integralDerivationMatrix| |Zero| |bits| |quotedOperators| |pack!| |mainVariables| |\\/| |cosIfCan| |digits| |upperCase?| |iiacosh| |OMputApp| |socf2socdf| |depth| |One| |setelt| |integer?| |pointData| |Frobenius| |acschIfCan| |basisOfNucleus| |semicolonSeparate| |iiacos| |edf2fi| |realZeros| |call| |algebraicSort| |properties| |stripCommentsAndBlanks| |sylvesterSequence| |quasiMonic?| |taylorIfCan| |rootKerSimp| |numberOfComponents| |fortranLiteralLine| |child?| |probablyZeroDim?| |ceiling| |copy| |powerSum| |nextIrreduciblePoly| |logIfCan| |critMonD1| |prinb| |showTheSymbolTable| |flexibleArray| |expIfCan| |outlineRender| |viewSizeDefault| |bandedHessian| |mkAnswer| |sizeLess?| |chebyshevU| |bumptab1| |compdegd| |overlabel| |showIntensityFunctions| |subQuasiComponent?| |concat| |nand| |yellow| |possiblyNewVariety?| ^= |OMgetSymbol| |imagE| |upperCase!| |extendIfCan| |integral?| |factorFraction| |ravel| |makeMulti| |rewriteIdealWithHeadRemainder| |f2st| |iiabs| |translate| |composite| |setScreenResolution| |qqq| |numberOfImproperPartitions| |universe| |singleFactorBound| |leftDiscriminant| |hex| |reshape| |radix| |mathieu24| |exquo| |cn| |frobenius| |charthRoot| |rspace| |OMputEndBind| |external?| |primextintfrac| |lllp| |orbit| |minColIndex| |div| |toseInvertibleSet| |closed?| |constant| |setImagSteps| |ScanRoman| |hasoln| |addPointLast| |setOrder| |cSech| |cyclicEntries| |numerators| |is?| |structuralConstants| |constantCoefficientRicDE| |quo| |complementaryBasis| |duplicates?| |normalizedDivide| |readIfCan!| |tensorProduct| |mapCoef| |setProperty| |eigenvector| |whileLoop| |groebnerIdeal| |has?| |extractTop!| |leftZero| |limitedint| |firstDenom| |quadratic| |showAttributes| |varselect| |write!| |numberOfDivisors| |erf| |adaptive?| |rem| |prod| |associative?| |realEigenvalues| |OMputAtp| |rightRemainder| |triangSolve| |trace2PowMod| |eulerPhi| |cAcosh| |systemCommand| |segment| |stoseLastSubResultant| |update| |fortranLogical| FG2F |yCoordinates| |credPol| |key?| |addPoint2| |continuedFraction| |coord| |range| |drawToScale| |cAsech| |sturmVariationsOf| |createMultiplicationMatrix| |OMlistSymbols| |isList| |removeZeroes| |wholeRadix| |OMgetBind| |computeCycleLength| |normal| |corrPoly| |birth| |cCot| |dilog| |divisorCascade| |rightTrace| |rk4a| |LyndonWordsList| |debug3D| |powern| |operators| |tableForDiscreteLogarithm| |exists?| |epilogue| |sin| |reify| |LiePoly| |collectUnder| |palgint0| |removeRedundantFactorsInContents| |pushdterm| |uncouplingMatrices| |rightUnit| |log2| |cos| |localIntegralBasis| |zerosOf| |mr| |positiveSolve| |normalDenom| |removeRoughlyRedundantFactorsInContents| |quartic| |clip| |eisensteinIrreducible?| |makeYoungTableau| |ratDsolve| |tan| |intChoose| |refine| |move| |fortranLinkerArgs| |completeEval| |ratDenom| |Gamma| |initTable!| |optimize| |patternMatchTimes| |uniform| |cot| |nthCoef| |primeFrobenius| |leastPower| |OMencodingUnknown| |setlast!| |resetAttributeButtons| |blue| |rightAlternative?| |lintgcd| |position| |selectIntegrationRoutines| |sec| |exp1| |prime| |more?| |stFunc1| |realEigenvectors| |radicalOfLeftTraceForm| |outputSpacing| |cLog| |taylorQuoByVar| |insert| |bipolar| |csc| |iomode| |makeSeries| |OMputError| |chvar| |exp| |associatedEquations| |initial| |subtractIfCan| |solid| |nthFlag| |resetBadValues| |not| |asin| |unitNormalize| |moebiusMu| |mapGen| |janko2| |bringDown| |cTan| |leftExtendedGcd| |sechIfCan| |acos| |basisOfLeftNucleus| |branchPointAtInfinity?| |subCase?| |mergeFactors| |pi| |close!| |null| |halfExtendedResultant1| |zoom| |atan| |getVariableOrder| |brillhartTrials| |associates?| |squareFree| |selectNonFiniteRoutines| |qfactor| |cSin| |acot| |rule| |genericRightDiscriminant| |screenResolution3D| |high| |rightFactorIfCan| |OMputEndAttr| |poisson| GF2FG |bivariate?| |asec| |indicialEquation| |cosSinInfo| |setValue!| |extendedIntegrate| |infinity| |acothIfCan| |findCycle| |nsqfree| |countRealRoots| |acsc| |numberOfOperations| |lSpaceBasis| |bivariateSLPEBR| |mapUp!| |leastMonomial| |OMputInteger| |sinh| |sample| |pleskenSplit| |plusInfinity| |cond| |algebraicCoefficients?| |tube| |safetyMargin| |interpret| |cosh| |crest| |cyclic| |cap| |setFormula!| |outerProduct| |void| |objectOf| |low| |makeCos| |shrinkable| |tanh| |unitNormal| |fortranReal| |moduleSum| |setLegalFortranSourceExtensions| |minusInfinity| |ran| |interval| |explicitlyEmpty?| |redpps| |coth| |factorSquareFreePolynomial| |drawComplex| D |regularRepresentation| |exprToXXP| |moduloP| |lfinfieldint| |infLex?| |prevPrime| |dimensionOfIrreducibleRepresentation| |ode1| |reduceBasisAtInfinity| |ellipticCylindrical| |reducedSystem| |consnewpol| |randnum| |plus| |OMgetEndAttr| |returns| |satisfy?| |empty| |critpOrder| |po| |systemSizeIF| |rquo| |pole?| |setErrorBound| |blankSeparate| |relativeApprox| |lieAlgebra?| |argscript| |OMputBind| |startStats!| |equation| |complexExpand| |plus!| |triangularSystems| |generic| |doubleDisc| |rightMinimalPolynomial| |string?| |mainValue| |zero?| |outputAsScript| |definingPolynomial| |central?| |mapmult| |symFunc| |printStats!| |kovacic| |times| |swap!| |resultantEuclideannaif| |linearPolynomials| |leftRegularRepresentation| |sub| |doubleRank| |outputGeneral| |belong?| |ranges| |dimensionsOf| |internal?| |permanent| |trivialIdeal?| |Ci| |contractSolve| |stronglyReduce| |inf| |OMopenFile| |rightLcm| |reset| |lifting1| |nextPartition| |rischNormalize| |child| |tail| |midpoint| |print| |unary?| |prinpolINFO| |divide| |write| |startPolynomial| |leftLcm| |getRef| |cosh2sech| |OMwrite| |updatF| |extendedint| |initials| |c02aff| |iisin| |polygamma| |binomThmExpt| |rationalFunction| |rightNorm| |cCos| |trailingCoefficient| |LazardQuotient2| |c02agf| |flexible?| |innerSolve1| |algDsolve| |dim| |viewThetaDefault| |expandPower| |getMultiplicationMatrix| |commutativeEquality| |headReduced?| |c05adf| |lowerCase?| |imagj| |jacobi| |cycleTail| |degreePartition| |exptMod| |eyeDistance| |getlo| |c05nbf| |addMatchRestricted| |semiIndiceSubResultantEuclidean| |unexpand| |createPrimitiveElement| |symmetricSquare| |csubst| |removeIrreducibleRedundantFactors| |algebraicOf| |generalLambert| |bezoutMatrix| |c05pbf| |polyPart| |front| |critB| |OMgetApp| |paren| |abelianGroup| |setleft!| |c06eaf| |retractable?| |regime| |iiacsch| |mvar| |copyInto!| |nullity| |fill!| |hdmpToDmp| |bag| |factorAndSplit| |c06ebf| |evaluateInverse| |overlap| |getPickedPoints| |rarrow| |rowEchelon| |inRadical?| |pmComplexintegrate| |linearAssociatedExp| |firstSubsetGray| |c06ecf| |graphs| |getGoodPrime| |typeLists| |groebSolve| |solveLinearPolynomialEquation| |biRank| |commutator| |SturmHabichtCoefficients| |c06ekf| |applyRules| |recoverAfterFail| |block| |cyclePartition| |floor| |removeCosSq| |ptFunc| |c06fpf| |level| |makeFR| |connect| |infix| |lexGroebner| |f2df| |divideIfCan| |normalized?| |c06fqf| |iicsch| |initializeGroupForWordProblem| |functionIsContinuousAtEndPoints| |alternatingGroup| |OMopenString| |inconsistent?| |lazy?| |c06frf| |ptree| |forLoop| |merge!| |patternVariable| |resultantReduitEuclidean| |padicFraction| |radicalSimplify| |mapDown!| |c06fuf| |bernoulli| |column| |unravel| |localReal?| |atrapezoidal| |setref| |radicalEigenvectors| |ksec| |c06gbf| |gramschmidt| |coleman| |style| |indices| |ignore?| |nextPrimitiveNormalPoly| |shade| |cAcsc| |c06gcf| |minimalPolynomial| SEGMENT |shiftLeft| |numberOfNormalPoly| |imagJ| |rightCharacteristicPolynomial| |norm| |tubeRadiusDefault| |cyclotomic| |c06gqf| |edf2efi| |complexNormalize| |exprHasLogarithmicWeights| |LazardQuotient| |rightExtendedGcd| |twist| |removeSuperfluousQuasiComponents| |setchildren!| |c06gsf| |select!| |f01rcf| |mathieu11| |sqfrFactor| |symbolTableOf| |property| |shanksDiscLogAlgorithm| |curveColor| |trapezoidalo| |center| |morphism| |isQuotient| |precision| |d01ajf| |complexZeros| |compBound| |f01rdf| |qroot| |power| |diff| |ldf2vmf| |changeMeasure| |var2StepsDefault| |d01akf| |primintegrate| |f01ref| |tab| |alphanumeric| |polyRDE| |lastSubResultantEuclidean| |makeEq| |approxSqrt| |getCode| |d01alf| |identitySquareMatrix| |exponent| |f02aaf| |xCoord| |second| |scan| |chiSquare1| |units| |droot| |leftMinimalPolynomial| |lazyPremWithDefault| |cAsinh| |d01amf| |power!| |f02abf| |OMgetEndBVar| |viewZoomDefault| |third| |mindeg| |showAllElements| |every?| |squareFreeLexTriangular| |makeSin| |d01anf| |iisech| |mapExpon| |f02adf| |UpTriBddDenomInv| |OMlistCDs| |parametric?| |se2rfi| |cup| |dequeue!| |evenlambert| |d01apf| |printCode| |f02aef| |mainDefiningPolynomial| |prepareSubResAlgo| |selectOrPolynomials| |traverse| |lprop| |alphabetic?| |skewSFunction| |antisymmetric?| |d01aqf| |fortranLiteral| |factorGroebnerBasis| |f02aff| |htrigs| |anfactor| |wronskianMatrix| |code| |lagrange| |endOfFile?| |pseudoDivide| |transcendent?| |d01asf| |f02agf| |integralLastSubResultant| |symmetricTensors| |monicRightFactorIfCan| |genericRightTraceForm| |completeSmith| |pair?| |inspect| |computeCycleEntry| |expenseOfEvaluationIF| |d01bbf| |redPol| |mkPrim| |Vectorise| |f02ajf| |extendedEuclidean| |prime?| |basisOfCenter| |brillhartIrreducible?| |build| |generalizedEigenvector| |pointColorPalette| |f02akf| |setEpilogue!| |primPartElseUnitCanonical| |numericIfCan| |viewPhiDefault| |irreducibleRepresentation| |frst| |upDateBranches| |lazyGintegrate| |zeroOf| |f02awf| ** |lazyIrreducibleFactors| |OMgetBVar| |genericLeftNorm| |sinhcosh| |max| |isExpt| |prefixRagits| |unitsColorDefault| |expenseOfEvaluation| |f02axf| |csch2sinh| |numFunEvals3D| |deepestTail| |wrregime| |setVariableOrder| |KrullNumber| |ldf2lst| |someBasis| |evenInfiniteProduct| |setright!| |recolor| |f02bbf| |commonDenominator| |rationalApproximation| |fibonacci| EQ |argumentList!| |swapRows!| |rightScalarTimes!| |variationOfParameters| |genericLeftDiscriminant| |rightPower| |f02bjf| |OMbindTCP| |genericRightTrace| |showRegion| |box| |rdHack1| |complex?| |invertible?| |getExplanations| |zeroVector| |prinshINFO| |f02fjf| |makeSUP| |cycles| |listYoungTableaus| |setTex!| |nullary?| |rename!| |constantOpIfCan| |inc| |pdf2ef| |f02wef| |froot| LODO2FUN |minordet| |outputForm| |li| |elements| |numberOfComposites| |positive?| |f02xef| |factorByRecursion| |coefficients| |stoseInvertible?reg| |resultant| |Si| |padecf| |sncndn| |brace| |perfectSquare?| |reverse| |leftRecip| |f04adf| |constantIfCan| |buildSyntax| |next| |getZechTable| |controlPanel| |cschIfCan| |reverse!| |f04arf| |monicRightDivide| |deepExpand| |algintegrate| |rischDE| |permutationRepresentation| |iicosh| |status| |f04asf| |thetaCoord| |row| |quasiAlgebraicSet| |RittWuCompare| |euclideanSize| |genericRightMinimalPolynomial| |writeLine!| |inHallBasis?| |generalPosition| |f04atf| |primextendedint| |setClosed| |imagK| |clikeUniv| |simplifyPower| |value| |maxint| |f04axf| |aspFilename| |powers| |printingInfo?| |distdfact| |hash| |pointSizeDefault| |factorsOfDegree| |bezoutDiscriminant| |f04faf| |minset| |oblateSpheroidal| |listBranches| |find| |count| |expandTrigProducts| |factorials| |measure| |f04jgf| |normal?| |acosIfCan| |dictionary| |top!| |retract| |clipWithRanges| |usingTable?| |var1Steps| |f04maf| |partialDenominators| |particularSolution| |sizeMultiplication| |parts| |powerAssociative?| |OMread| |LyndonCoordinates| |generator| |moreAlgebraic?| |f04mbf| |mightHaveRoots| |definingInequation| |rootOf| |linearMatrix| |leftFactorIfCan| |OMputEndApp| |OMreadFile| |cot2trig| |f04mcf| |primitivePart!| |palglimint| |zeroSetSplit| |minPoints| |doubleComplex?| |euler| |setleaves!| |search| |f04qaf| |inverseColeman| |lyndonIfCan| |standardBasisOfCyclicSubmodule| |semiDegreeSubResultantEuclidean| |createZechTable| |algebraicDecompose| |OMUnknownCD?| |semiResultantEuclidean2| |totalLex| |iCompose| |f07adf| |realRoots| |seriesToOutputForm| |cAcoth| |clipParametric| |superscript| |balancedBinaryTree| |torsion?| |untab| |monomials| |f07aef| |tableau| |mapMatrixIfCan| |startTableInvSet!| |iitanh| |iiasinh| |prem| |rightRank| |normalForm| |maxColIndex| |possiblyInfinite?| |f07fdf| |extractIndex| |diagonals| |rationalPoints| |iicoth| |univariatePolynomialsGcds| |clipBoolean| |cAsin| |normInvertible?| |infinityNorm| |f07fef| |simpson| |sqfree| |sin2csc| |sinh2csch| |nlde| |aromberg| |palginfieldint| |karatsubaOnce| |explimitedint| |setAdaptive3D| |dioSolve| |sumOfKthPowerDivisors| |s01eaf| |rational| |transcendentalDecompose| |baseRDEsys| |square?| |jacobian| |toScale| |nextItem| |clearDenominator| |rightOne| |gcdcofact| |OMencodingXML| |s13aaf| |viewDeltaYDefault| |pmintegrate| |rank| |ode| |addBadValue| |integerBound| |constantKernel| |explicitEntries?| |s13acf| |rk4| |showTheRoutinesTable| |inrootof| |separateFactors| |sign| |conditionsForIdempotents| |redmat| |hessian| |lo| |alphabetic| |OMputEndError| |s13adf| |sincos| |chineseRemainder| |dAndcExp| |OMserve| |coerceListOfPairs| |dmp2rfi| |zeroDim?| |incr| |nextNormalPrimitivePoly| |testDim| |plenaryPower| |s14aaf| |rightTrim| |xn| |directSum| |leftNorm| |readable?| |trigs2explogs| |nil| |mirror| |hi| |binaryTree| |linearlyDependentOverZ?| |s14abf| |OMsupportsSymbol?| |cyclicParents| |leftTrim| |nthFactor| |rewriteIdealWithRemainder| |mainVariable| |discriminant| |OMputAttr| |currentSubProgram| |exprHasAlgebraicWeight| |ramified?| |symbolIfCan| |s14baf| |mathieu23| |halfExtendedSubResultantGcd2| |stopMusserTrials| |copy!| |tan2cot| |ideal| |s15adf| |selectAndPolynomials| |sup| |lazyIntegrate| |stoseInvertible?| |createIrreduciblePoly| |diagonal?| RF2UTS |critM| |approximate| |integralAtInfinity?| |pquo| |fracPart| |groebgen| |s15aef| |sum| |permutations| |lists| |figureUnits| |noLinearFactor?| |ScanFloatIgnoreSpacesIfCan| |complex| |listOfLists| |cTanh| |completeEchelonBasis| |s17acf| |compactFraction| |parametersOf| |heap| |vark| |isOp| |digit?| |euclideanNormalForm| |id| |bezoutResultant| |monicDivide| |s17adf| |viewWriteDefault| |round| |viewPosDefault| |reducedContinuedFraction| |irreducibleFactor| |ddFact| |removeDuplicates!| |normDeriv2| |s17aef| |interpolate| |relationsIdeal| |multinomial| |groebnerFactorize| |showScalarValues| |split| |table| |primitive?| |startTable!| |s17aff| |hermite| |sec2cos| |inverseIntegralMatrix| |iroot| |perfectNthPower?| |getOrder| |key| |discreteLog| |hasPredicate?| |s17agf| |listLoops| |homogeneous?| |ipow| |wordsForStrongGenerators| |pseudoQuotient| |symmetricProduct| |nthFractionalTerm| |one?| |s17ahf| |hclf| |subPolSet?| |solveLinearlyOverQ| |internalLastSubResultant| |new| |s17ajf| |numberOfFractionalTerms| |inR?| |ref| |primPartElseUnitCanonical!| |redPo| |OMunhandledSymbol| |stosePrepareSubResAlgo| |commutative?| |diag| |s17akf| |leftDivide| |OMgetFloat| |cartesian| |exactQuotient!| |groebner| |tree| |generate| |fillPascalTriangle| |leadingSupport| |s17dcf| |toseLastSubResultant| |rules| |jordanAlgebra?| |sort!| |rightExactQuotient| |create3Space| |datalist| |condition| |s17def| |enterPointData| |internalSubPolSet?| |aLinear| |positiveRemainder| |minGbasis| |scalarMatrix| |leftQuotient| |incrementBy| |neglist| |oddintegers| |expextendedint| |s17dgf| |variable| |OMputVariable| |simpleBounds?| |rotate| |root| |expand| |newLine| |iisinh| |symmetricPower| |s17dhf| |semiDiscriminantEuclidean| |approximants| |problemPoints| |unit?| |predicate| |filterWhile| |mat| |splitConstant| |s17dlf| |qelt| |enterInCache| |highCommonTerms| |normalizeAtInfinity| |vedf2vef| |predicates| |iiexp| |index| |filterUntil| |choosemon| |perspective| |s18acf| |trigs| |rotatex| |createNormalElement| |size?| |complement| |stopTable!| |select| |varList| |lowerCase!| |alternative?| |showAll?| |exprToGenUPS| |createNormalPoly| |triangulate| |integrate| |OMencodingBinary| |rootPoly| |irreducible?| |algint| |quadraticNorm| |prologue| |slash| |quotientByP| |subscriptedVariables| |pdf2df| |checkPrecision| |branchIfCan| |denomRicDE| |generic?| |infiniteProduct| |numeric| |kmax| |anticoord| |symmetricGroup| |result| |doubleFloatFormat| |GospersMethod| |internalDecompose| |rootProduct| |radical| |coordinates| |minimize| |pop!| |getCurve| |idealiserMatrix| |int| |bumptab| |component| |zero| |matrixDimensions| |logGamma| |fullDisplay| |OMgetEndAtp| |mapExponents| |representationType| |numberOfMonomials| |makeRecord| |printInfo| |palglimint0| |typeList| |loopPoints| |antiAssociative?| |clipSurface| |changeNameToObjf| |adjoint| |complexRoots| |And| |curryRight| |tablePow| |palgLODE| |compiledFunction| |torsionIfCan| |rectangularMatrix| |solveLinear| |left| |Or| |degree| |solveid| |setPrologue!| |numericalOptimization| |removeCoshSq| |distFact| |completeHermite| |convergents| |right| |Not| |compile| |fi2df| |repeatUntilLoop| |constDsolve| |stop| |factorset| |subResultantsChain| |youngGroup| |setprevious!| |saturate| |exteriorDifferential| |pdct| |iisqrt2| |acotIfCan| |polCase| |oddInfiniteProduct| |resultantnaif| |mainContent| |nthExponent| |makeTerm| |lazyPseudoRemainder| |multisect| |graphState| |leftUnits| |rationalPoint?| |push!| |xRange| |LowTriBddDenomInv| |createPrimitivePoly| |atoms| |FormatArabic| |keys| |convert| |modulus| |resetVariableOrder| |leftScalarTimes!| |head| |lhs| |quasiRegular| |yRange| |returnTypeOf| |insert!| |cExp| |pr2dmp| |mathieu22| |init| |reindex| |element?| |wordInGenerators| |rhs| |zRange| |nthr| |iiacoth| |expt| |failed| |selectMultiDimensionalRoutines| |closedCurve?| |genericRightNorm| |polyRicDE| |createMultiplicationTable| |cyclicSubmodule| |map!| |rroot| |hasSolution?| |multiplyExponents| |safeCeiling| |schema| |nextsousResultant2| |region| |makeViewport3D| |qsetelt!| |infRittWu?| |curveColorPalette| |bipolarCylindrical| |gradient| |antisymmetricTensors| |BasicMethod| |append| |dmpToP| |An| |printHeader| |stoseSquareFreePart| |pointColorDefault| |pushucoef| |hyperelliptic| |infinite?| |chebyshevT| |primintfldpoly| |rCoord| |cAtan| |OMUnknownSymbol?| |delete| |setMaxPoints3D| |OMclose| |previous| |order| |seriesSolve| |sequences| |minPoly| |movedPoints| |ramifiedAtInfinity?| |vconcat| |sparsityIF| |OMsupportsCD?| |removeRedundantFactors| |clearTheFTable| |triangular?| |setColumn!| |univariatePolynomials| |digamma| |equality| |df2st| |definingEquations| |tubePointsDefault| |zag| |tanhIfCan| |oneDimensionalArray| |tanintegrate| |sorted?| |log10| |lfextlimint| |acsch| |ratPoly| |wordInStrongGenerators| |ffactor| |scripted?| |mathieu12| |noncommutativeJordanAlgebra?| |identification| |changeThreshhold| |lp| |multiplyCoefficients| |setAttributeButtonStep| |boundOfCauchy| |outputArgs| |besselI| |stoseInternalLastSubResultant| NOT |extract!| |nullary| |recip| |sh| |leftOne| |rur| |stoseInvertibleSetsqfreg| |scanOneDimSubspaces| |simplify| OR |basisOfCentroid| |lyndon?| |enqueue!| |unrankImproperPartitions0| |df2mf| |collect| |isTimes| |solveRetract| |coerceImages| |distance| AND |rowEchelonLocal| |restorePrecision| |deepestInitial| |reduceByQuasiMonic| |minus!| |setScreenResolution3D| |extractProperty| |complexElementary| |hypergeometric0F1| |relerror| |chainSubResultants| |invertibleSet| |acoshIfCan| |numericalIntegration| |diophantineSystem| |zeroSquareMatrix| |symbol?| |tryFunctionalDecomposition?| |idealSimplify| |atom?| |enumerate| |parabolicCylindrical| |integralBasisAtInfinity| |getDatabase| |laurentRep| |op| |evaluate| |weakBiRank| |delay| |stirling2| |tanh2trigh| |cycleSplit!| |goodnessOfFit| |quickSort| |univariatePolynomial| |iidprod| |npcoef| |basisOfLeftNucloid| |leadingExponent| |iprint| |plot| |lazyPseudoDivide| UTS2UP |singular?| |monom| |linearPart| |extendedSubResultantGcd| |nextPrimitivePoly| |rk4qc| |radicalEigenvector| |extractClosed| |nextSublist| |allRootsOf| |Is| |sturmSequence| |lllip| |bandedJacobian| |sts2stst| |domainOf| |radicalRoots| |coerceP| |number?| |factorOfDegree| |fixedDivisor| |open?| |rotate!| |transpose| |writable?| |unaryFunction| |pointLists| |minimumExponent| |entry?| |strongGenerators| |symmetricDifference| |newSubProgram| |position!| |viewWriteAvailable| |symbol| |deref| |superHeight| |newReduc| |gcdPolynomial| |minimumDegree| |transcendenceDegree| |dfRange| |scaleRoots| |deleteRoutine!| |string| |selectOptimizationRoutines| |nodes| |basisOfCommutingElements| |horizConcat| |areEquivalent?| |selectfirst| |removeSuperfluousCases| |palgRDE0| |checkRur| * |setFieldInfo| |henselFact| |mindegTerm| |setMaxPoints| |removeZero| |presuper| |halfExtendedSubResultantGcd1| |iiatan| |randomR| |obj| |meshPar2Var| |simplifyExp| |tracePowMod| |integer| |expintegrate| |myDegree| |optAttributes| |reopen!| |totolex| |message| |internalAugment| |hexDigit| |cAcsch| |halfExtendedResultant2| |totalDegree| |solveLinearPolynomialEquationByFractions| |hermiteH| |edf2df| |maxIndex| |exprToUPS| |internalZeroSetSplit| |approxNthRoot| |postfix| |subNode?| |insertMatch| |createRandomElement| |rightMult| |extendedResultant| |drawComplexVectorField| |qPot| |sayLength| |resultantReduit| |subResultantGcdEuclidean| |laguerre| |toseInvertible?| |rationalIfCan| |showClipRegion| |paraboloidal| |multiEuclideanTree| |failed?| |LiePolyIfCan| |wreath| |factorSFBRlcUnit| |removeRoughlyRedundantFactorsInPols| |insertionSort!| |var1StepsDefault| |fixedPoint| |entries| |associator| |comment| |toseSquareFreePart| |decreasePrecision| |knownInfBasis| |rootRadius| |besselJ| |setLabelValue| |besselK| |zeroMatrix| |OMgetAttr| |omError| |FormatRoman| |tanQ| |createPrimitiveNormalPoly| |repSq| |charpol| |setvalue!| |makeCrit| |mesh?| |diagonalMatrix| |subresultantVector| |bitTruth| |monic?| |super| |patternMatch| |preprocess| |orbits| |permutationGroup| |rootNormalize| |getMeasure| |rightRegularRepresentation| |critMTonD1| |shiftRight| |B1solve| |trunc| |asechIfCan| |monicModulo| |printTypes| |lifting| |att2Result| |legendreP| |hasHi| |cfirst| |subset?| |nextLatticePermutation| |ode2| |addPoint| |nonLinearPart| |divideIfCan!| |romberg| |llprop| |float| |aQuartic| |subscript| |computeInt| |factor1| |reduceLODE| |rightGcd| |subResultantChain| |cyclicEqual?| |double| |indiceSubResultantEuclidean| |setfirst!| |adaptive3D?| |mapUnivariateIfCan| |series| |tanSum| |cRationalPower| |smith| |leftCharacteristicPolynomial| |roughBase?| |iibinom| |Nul| |or| |dihedral| |innerSolve| |alphanumeric?| |OMputBVar| |cyclicGroup| |purelyAlgebraicLeadingMonomial?| |Aleph| |and| |binomial| |lookup| |whatInfinity| |point?| |clearTable!| |mantissa| |lfintegrate| |hitherPlane| |radPoly| |rootSimp| |physicalLength| |sort| |sumOfDivisors| |cCsch| |represents| |monomRDE| |medialSet| |say| |OMmakeConn| |intensity| |expPot| |badValues| |min| |symbolTable| |OMgetEndObject| |roughEqualIdeals?| |prepareDecompose| |algebraicVariables| |transform| |reciprocalPolynomial| |lazyPrem| |linkToFortran| |bfEntry| |rangePascalTriangle| |bottom!| |lastSubResultantElseSplit| |isAbsolutelyIrreducible?| |cot2tan| |df2ef| |script| |common| |identityMatrix| |multiset| |computeBasis| |pushFortranOutputStack| |dom| |lieAdmissible?| |removeConstantTerm| |elRow2!| |node?| |initiallyReduce| |viewport2D| |stiffnessAndStabilityFactor| GE |sech2cosh| |doublyTransitive?| |popFortranOutputStack| |ScanFloatIgnoreSpaces| |lquo| |iipow| |index?| |vertConcat| |setStatus| GT |colorDef| |signAround| |outputAsFortran| |random| |powmod| |mulmod| |resultantEuclidean| |coefficient| |createGenericMatrix| |tex| |cardinality| |s18adf| LE |extensionDegree| |linearAssociatedLog| |octon| |laguerreL| |selectsecond| |basisOfRightAnnihilator| |completeHensel| |monicDecomposeIfCan| |s18aef| |hcrf| |shallowCopy| LT |option?| |genericLeftTraceForm| |ratpart| |delta| |OMputFloat| |linearDependenceOverZ| |content| |s18aff| |space| |nextsubResultant2| |escape| |fortranDoubleComplex| |optpair| |outputFixed| |mainSquareFreePart| |color| |s18dcf| |badNum| |rationalPower| |axes| |argument| |subMatrix| |mainMonomials| |tryFunctionalDecomposition| |numberOfHues| |closeComponent| |s18def| |readLineIfCan!| |linearAssociatedOrder| |resize| |denomLODE| |certainlySubVariety?| |title| |lambert| |updateStatus!| |fixedPointExquo| |node| |s19aaf| |removeSinhSq| |basisOfRightNucloid| |OMcloseConn| |normalize| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+(30 . 3409262763)
+(4193 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+ ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
+ |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
+ |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
+ |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&|
+ |AbelianSemiGroup| |AlgebraicallyClosedField&|
+ |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&|
+ |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot|
+ |AlgebraicFunction| |Aggregate&| |Aggregate|
+ |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&|
+ |Algebra| |AlgFactor| |AlgebraicFunctionField|
+ |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage|
+ |AlgebraGivenByStructuralConstants| |AssociationList|
+ |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber|
+ |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any|
+ |ApplyUnivariateSkewPolynomial| |ApplyRules|
+ |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory|
+ |OneDimensionalArrayFunctions2| |OneDimensionalArray|
+ |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24|
+ |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35|
+ |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74|
+ |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations|
+ |ArrayStack| |ArcTrigonometricFunctionCategory&|
+ |ArcTrigonometricFunctionCategory| |AttributeButtons|
+ |AttributeRegistry| |Automorphism| |BalancedFactorisation|
+ |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix|
+ |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion|
+ |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1|
+ |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger|
+ |BalancedPAdicRational| |BinaryRecursiveAggregate&|
+ |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree|
+ |BitAggregate&| |BitAggregate| |BinaryTreeCategory&|
+ |BinaryTreeCategory| |BinaryTournament| |BinaryTree|
+ |CancellationAbelianMonoid| |CachableSet| |CardinalNumber|
+ |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass|
+ |CommonDenominator| |CombinatorialFunctionCategory| |Character|
+ |CharacteristicNonZero| |CharacteristicPolynomialPackage|
+ |CharacteristicZero| |ChangeOfVariable|
+ |ComplexIntegerSolveLinearPolynomialEquation| |Collection&|
+ |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping|
+ |ComplexRootPackage| |Color| |CombinatorialFunction|
+ |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator|
+ |CommonOperators| |CommuteUnivariatePolynomialCategory|
+ |ComplexCategory&| |ComplexCategory| |ComplexFactorization|
+ |ComplexFunctions2| |Complex| |ComplexPattern|
+ |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction|
+ |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra|
+ |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage|
+ |CyclicStreamTools| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators|
+ |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType|
+ |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType|
+ |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType|
+ |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage|
+ |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType|
+ |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType|
+ |Database| |DoubleResultantPackage| |DistinctDegreeFactorize|
+ |DecimalExpansion| |ElementaryFunctionDefiniteIntegration|
+ |RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
+ |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
+ |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
+ |Dictionary| |DifferentialExtension&| |DifferentialExtension|
+ |DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
+ |DictionaryOperations| |DiophantineSolutionPackage|
+ |DirectProductCategory&| |DirectProductCategory|
+ |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
+ |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
+ |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
+ |Domain| |DirectProductMatrixModule| |DirectProductModule|
+ |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
+ |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
+ |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
+ |DrawNumericHack| |TopLevelDrawFunctions|
+ |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
+ |DrawOptionFunctions1| |DrawOption|
+ |DifferentialSparseMultivariatePolynomial|
+ |DifferentialVariableCategory&| |DifferentialVariableCategory|
+ |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
+ |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|
+ |ExtAlgBasis| |ElementaryFunction|
+ |ElementaryFunctionStructurePackage|
+ |ElementaryFunctionsUnivariateLaurentSeries|
+ |ElementaryFunctionsUnivariatePuiseuxSeries|
+ |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
+ |ElementaryFunctionCategory&| |ElementaryFunctionCategory|
+ |EllipticFunctionsUnivariateTaylorSeries| |Eltable|
+ |EltableAggregate&| |EltableAggregate| |EuclideanModularRing|
+ |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable|
+ |ErrorFunctions| |ExpressionSpaceFunctions1|
+ |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1|
+ |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace|
+ |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2|
+ |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain|
+ |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit|
+ |ExponentialExpansion| |ExpressionFunctions2|
+ |ExpressionToUnivariatePowerSeries| |Expression|
+ |ExpressionSpaceODESolver| |ExpressionTubePlot|
+ |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions|
+ |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory|
+ |FreeAbelianMonoid| |FiniteAbelianMonoidRing&|
+ |FiniteAbelianMonoidRing| |FlexibleArray|
+ |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField|
+ |FortranCode| |FourierComponent| |FortranCodePackage1|
+ |FiniteDivisorFunctions2| |FiniteDivisorCategory&|
+ |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&|
+ |FullyEvalableOver| |FortranExpression|
+ |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&|
+ |FunctionFieldCategory| |FiniteFieldCyclicGroup|
+ |FiniteFieldCyclicGroupExtensionByPolynomial|
+ |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions|
+ |FiniteFieldHomomorphisms| |FiniteFieldCategory&|
+ |FiniteFieldCategory| |FunctionFieldIntegralBasis|
+ |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial|
+ |FiniteFieldNormalBasisExtension| |FiniteField|
+ |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2|
+ |FiniteFieldPolynomialPackage|
+ |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension|
+ |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File|
+ |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra|
+ |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra|
+ |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&|
+ |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort|
+ |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
+ |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
+ |FreeModuleCat| |FortranMatrixCategory|
+ |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
+ |FortranMachineTypeCategory| |FileName| |FileNameCategory|
+ |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
+ |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
+ |FortranFunctionCategory| |FortranPackage| |FortranProgram|
+ |FullPartialFractionExpansion| |FullyPatternMatchable|
+ |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
+ |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
+ |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
+ |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
+ |FractionalIdeal| |FramedModule|
+ |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
+ |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
+ |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
+ |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
+ |FiniteSetAggregate&| |FiniteSetAggregate|
+ |FunctionSpaceComplexIntegration| |FourierSeries|
+ |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace|
+ |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement|
+ |FunctionSpaceReduce| |FortranScalarType|
+ |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate|
+ |FortranType| |FunctionCalled| |FortranVectorCategory|
+ |FortranVectorFunctionCategory| |GaloisGroupFactorizer|
+ |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities|
+ |GaloisGroupUtilities| |GaussianFactorizationPackage|
+ |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage|
+ |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain|
+ |GenericNonAssociativeAlgebra|
+ |GeneralDistributedMultivariatePolynomial| |GenExEuclid|
+ |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage|
+ |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage|
+ |GeneralModulePolynomial| |GosperSummationMethod|
+ |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode|
+ |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule|
+ |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries|
+ |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable|
+ |HallBasis| |HomogeneousDistributedMultivariatePolynomial|
+ |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor|
+ |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&|
+ |HomogeneousAggregate| |HyperbolicFunctionCategory&|
+ |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber|
+ |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray|
+ |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools|
+ |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard|
+ |InnerCommonDenominator| |PolynomialIdeals|
+ |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup|
+ |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IndexedDirectProductOrderedAbelianMonoid|
+ |IndexedDirectProductOrderedAbelianMonoidSup|
+ |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
+ |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField|
+ |InnerIndexedTwoDimensionalArray| |IndexedList|
+ |InnerMatrixLinearAlgebraFunctions|
+ |InnerMatrixQuotientFieldFunctions| |IndexedMatrix|
+ |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents|
+ |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1|
+ |InputForm| |InfiniteProductCharacteristicZero|
+ |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact|
+ |InfiniteProductFiniteField| |InfiniteProductPrimeField|
+ |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem|
+ |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits|
+ |IntervalCategory| |IntegralDomain&| |IntegralDomain|
+ |ElementaryIntegration| |IntegerFactorizationPackage|
+ |IntegrationFunctionsTable| |GenusZeroIntegration|
+ |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration|
+ |TranscendentalHermiteIntegration| |Integer|
+ |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration|
+ |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions|
+ |RationalFunctionIntegration| |Interval|
+ |IntegerSolveLinearPolynomialEquation| |IntegrationTools|
+ |TranscendentalIntegration| |InverseLaplaceTransform|
+ |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage|
+ |IntegrationResultToFunction| |IntegrationResultFunctions2|
+ |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField|
+ |IntegrationResultRFToFunction| |IrrRepSymNatPackage|
+ |InternalRationalUnivariateRepresentationPackage| |IndexedString|
+ |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries|
+ |InfiniteTupleFunctions2| |InfiniteTupleFunctions3|
+ |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector|
+ |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra|
+ |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary|
+ |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic|
+ |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform|
+ |LaurentPolynomial| |LazardSetSolvingPackage|
+ |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage|
+ |LiouvillianFunctionCategory| |LiouvillianFunction|
+ |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra|
+ |AssociatedLieAlgebra| |PowerSeriesLimitPackage|
+ |RationalFunctionLimitPackage| |LinearDependence|
+ |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
+ |ListFunctions3| |List| |ListMultiDictionary| |LeftModule|
+ |ListMonoidOps| |LinearAggregate&| |LinearAggregate|
+ |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
+ |LinearOrdinaryDifferentialOperator2|
+ |LinearOrdinaryDifferentialOperatorCategory&|
+ |LinearOrdinaryDifferentialOperatorCategory|
+ |LinearOrdinaryDifferentialOperatorFactorizer|
+ |LinearOrdinaryDifferentialOperator|
+ |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize|
+ |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&|
+ |ListAggregate| |LinearSystemMatrixPackage1|
+ |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage|
+ |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&|
+ |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma|
+ |MappingPackageInternalHacks1| |MappingPackageInternalHacks2|
+ |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2|
+ |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&|
+ |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix|
+ |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions|
+ |MatrixCommonDenominator| |MachineComplex| |MultiDictionary|
+ |ModularDistinctDegreeFactorizer|
+ |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize|
+ |MachineFloat| |ModularHermitianRowReduction| |MachineInteger|
+ |MakeBinaryCompiledFunction| |MakeCachableSet|
+ |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord|
+ |MakeUnaryCompiledFunction| |MultivariateLifting|
+ |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic|
+ |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module|
+ |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit|
+ |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid|
+ |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3|
+ |MPolyCatPolyFactorizer| |MultivariatePolynomial|
+ |MPolyCatRationalFunctionFactorizer| |MRationalFactorize|
+ |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset|
+ |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory|
+ |MultivariateFactorize| |MultivariateSquareFree|
+ |NonAssociativeAlgebra&| |NonAssociativeAlgebra|
+ |NagPolynomialRootsPackage| |NagRootFindingPackage|
+ |NagSeriesSummationPackage| |NagIntegrationPackage|
+ |NagOrdinaryDifferentialEquationsPackage|
+ |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage|
+ |NagFittingPackage| |NagOptimisationPackage|
+ |NagMatrixOperationsPackage| |NagEigenPackage|
+ |NagLinearEquationSolvingPackage| |NagLapack|
+ |NagSpecialFunctionsPackage| |NAGLinkSupportPackage|
+ |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&|
+ |NonAssociativeRing| |NumericComplexEigenPackage|
+ |NumericContinuedFraction| |NonCommutativeOperatorDivision|
+ |NumberFieldIntegralBasis| |NumericalIntegrationProblem|
+ |NonLinearSolvePackage| |NonNegativeInteger|
+ |NonLinearFirstOrderODESolver| |NoneFunctions1| |None|
+ |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage|
+ |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial|
+ |NewSparseUnivariatePolynomialFunctions2|
+ |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions|
+ |NormalizedTriangularSetCategory| |Numeric| |NumberFormats|
+ |NumericalIntegrationCategory|
+ |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature|
+ |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid|
+ |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup|
+ |OrderedCancellationAbelianMonoid| |OctonionCategory&|
+ |OctonionCategory| |OctonionCategoryFunctions2| |Octonion|
+ |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE|
+ |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable|
+ |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage|
+ |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem|
+ |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE|
+ |SystemODESolver| |ODETools| |OrderedDirectProduct|
+ |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing|
+ |OrderlyDifferentialVariable| |OrderedFreeMonoid|
+ |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice|
+ |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError|
+ |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath|
+ |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage|
+ |OnePointCompletionFunctions2| |OnePointCompletion| |Operator|
+ |OperationsQuery| |NumericalOptimizationCategory|
+ |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem|
+ |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite|
+ |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing|
+ |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&|
+ |UnivariateSkewPolynomialCategory|
+ |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
+ |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
+ |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList|
+ |OrdinaryWeightedPolynomials| |PadeApproximants|
+ |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
+ |PAdicRational| |PAdicRationalConstructor| |Palette|
+ |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
+ |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2|
+ |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2|
+ |ParametricSurface| |PartitionsAndPermutations| |Patternable|
+ |PatternMatchListResult| |PatternMatchable| |PatternMatch|
+ |PatternMatchResultFunctions2| |PatternMatchResult|
+ |PatternFunctions1| |PatternFunctions2| |Pattern|
+ |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition|
+ |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
+ |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
+ |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree|
+ |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
+ |PolynomialFactorizationByRecursion|
+ |PolynomialFactorizationByRecursionUnivariate|
+ |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
+ |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational|
+ |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage|
+ |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner|
+ |PiCoercions| |PrincipalIdealDomain| |PositiveInteger|
+ |PolynomialInterpolationAlgorithms| |PolynomialInterpolation|
+ |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot|
+ |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions|
+ |PatternMatchPushDown| |PatternMatchFunctionSpace|
+ |PatternMatchIntegerNumberSystem| |PatternMatchKernel|
+ |PatternMatchListAggregate| |PatternMatchPolynomialCategory|
+ |FunctionSpaceAttachPredicates| |AttachPredicates|
+ |PatternMatchQuotientFieldCategory| |PatternMatchSymbol|
+ |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point|
+ |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2|
+ |PolynomialToUnivariatePolynomial| |PolynomialCategory&|
+ |PolynomialCategory| |PolynomialCategoryQuotientFunctions|
+ |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots|
+ |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations|
+ |PrimitiveArrayFunctions2| |PrimitiveArray|
+ |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage|
+ |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate|
+ |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&|
+ |PowerSeriesCategory| |PlottableSpaceCurveCategory|
+ |PolynomialSetCategory&| |PolynomialSetCategory|
+ |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm|
+ |PolynomialSquareFree| |PointCategory| |PointFunctions2|
+ |PointPackage| |PartialTranscendentalFunctions| |PushVariables|
+ |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2|
+ |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation|
+ |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&|
+ |QuotientFieldCategory| |QuadraticForm| |QueueAggregate|
+ |QuaternionCategory&| |QuaternionCategory|
+ |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&|
+ |RadicalCategory| |RadicalFunctionField| |RadixExpansion|
+ |RadixUtilities| |RandomNumberSource| |RationalFactorize|
+ |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate|
+ |RealClosedField&| |RealClosedField| |ElementaryRischDE|
+ |ElementaryRischDESystem| |TranscendentalRischDE|
+ |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor|
+ |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage|
+ |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet|
+ |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling|
+ |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion|
+ |ResidueRing| |Result| |RetractableTo&| |RetractableTo|
+ |RetractSolvePackage| |RandomFloatDistributions|
+ |RationalFunctionFactor| |RationalFunctionFactorizer|
+ |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&|
+ |Ring| |RationalInterpolation| |RectangularMatrixCategory&|
+ |RectangularMatrixCategory| |RectangularMatrix|
+ |RectangularMatrixCategoryFunctions2| |RightModule| |Rng|
+ |RealNumberSystem&| |RealNumberSystem|
+ |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable|
+ |RecursivePolynomialCategory&| |RecursivePolynomialCategory|
+ |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory|
+ |RegularSetDecompositionPackage| |RegularTriangularSetCategory&|
+ |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage|
+ |RuleCalled| |RewriteRule| |Ruleset|
+ |RationalUnivariateRepresentationPackage|
+ |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
+ |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache|
+ |StructuralConstantsPackage| |SequentialDifferentialPolynomial|
+ |SequentialDifferentialVariable| |SegmentFunctions2|
+ |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
+ |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate|
+ |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set|
+ |SExpressionCategory| |SExpression| |SExpressionOf|
+ |SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
+ |SquareFreeRegularTriangularSetGcdPackage|
+ |SquareFreeRegularTriangularSetCategory|
+ |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup|
+ |SplitHomogeneousDirectProduct| |SturmHabichtPackage|
+ |ElementaryFunctionSign| |RationalFunctionSign|
+ |SimplifyAlgebraicNumberConvertPackage| |SingleInteger|
+ |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory|
+ |SmithNormalForm| |SparseMultivariatePolynomial|
+ |SparseMultivariateTaylorSeries|
+ |SquareFreeNormalizedTriangularSetCategory|
+ |PolynomialSolveByFormulas| |RadicalSolvePackage|
+ |TransSolvePackageService| |TransSolvePackage| |SortPackage|
+ |ThreeSpace| |ThreeSpaceCategory| |SpadParser| |SpecialOutputPackage|
+ |SpecialFunctionCategory| |SplittingNode| |SplittingTree|
+ |SquareMatrix| |StringAggregate&| |StringAggregate|
+ |SquareFreeRegularSetDecompositionPackage|
+ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&|
+ |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct|
+ |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream|
+ |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations|
+ |StreamTranscendentalFunctionsNonCommutative|
+ |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace|
+ |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum|
+ |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2|
+ |SupFractionFactorizer| |SparseUnivariatePolynomial|
+ |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries|
+ |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial|
+ |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage|
+ |TableauxBumpers| |Tableau| |Table| |TangentExpansions|
+ |TableAggregate&| |TableAggregate| |TabulatedComputationPackage|
+ |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign|
+ |TopLevelThreeSpace| |TranscendentalFunctionCategory&|
+ |TranscendentalFunctionCategory| |Tree|
+ |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory|
+ |TrigonometricManipulations| |TriangularMatrixOperations|
+ |TranscendentalManipulations| |TriangularSetCategory&|
+ |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools|
+ |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering|
+ |UserDefinedVariableOrdering| |UniqueFactorizationDomain&|
+ |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2|
+ |UnivariateLaurentSeriesCategory|
+ |UnivariateLaurentSeriesConstructorCategory&|
+ |UnivariateLaurentSeriesConstructorCategory|
+ |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries|
+ |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment|
+ |UnivariatePolynomialFunctions2|
+ |UnivariatePolynomialCommonDenominator|
+ |UnivariatePolynomialDecompositionPackage|
+ |UnivariatePolynomialDivisionPackage|
+ |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial|
+ |UnivariatePolynomialCategoryFunctions2|
+ |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory|
+ |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory|
+ |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2|
+ |UnivariatePuiseuxSeriesCategory|
+ |UnivariatePuiseuxSeriesConstructorCategory&|
+ |UnivariatePuiseuxSeriesConstructorCategory|
+ |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries|
+ |UnivariatePuiseuxSeriesWithExponentialSingularity|
+ |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate|
+ |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&|
+ |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries|
+ |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable|
+ |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector|
+ |TwoDimensionalViewport| |ThreeDimensionalViewport|
+ |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&|
+ |VectorSpace| |WeierstrassPreparation|
+ |WildFunctionFieldIntegralBasis| |WeightedPolynomials|
+ |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial|
+ |XExponentialPackage| |XFreeAlgebra| |ExtensionField&|
+ |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial|
+ |XPolynomialRing| |XRecursivePolynomial|
+ |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
+ |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
+ |Record| |Union| |Category| |rectangularMatrix|
+ |removeSuperfluousCases| |realEigenvectors| |changeNameToObjf|
+ |subSet| |rootSplit| |combineFeatureCompatibility| |groebner|
+ |areEquivalent?| |f01qef| |sortConstraints| |linearAssociatedLog|
+ |birth| |csch2sinh| |closeComponent| |quadraticNorm| |cAsec| |imagE|
+ |seed| |OMopenString| |aQuartic| |rename| |e01bhf| |position|
+ |axesColorDefault| |mirror| |inGroundField?| |setAttributeButtonStep|
+ |logGamma| |integral| |saturate| |roughBase?|
+ |degreeSubResultantEuclidean| |realElementary| |cPower|
+ |OMlistSymbols| |separateDegrees| |log| |subHeight| |rightNorm|
+ |create3Space| |testModulus| |polygon?| |numberOfChildren|
+ |setLabelValue| |subPolSet?| |mainVariable?| |commaSeparate| |tree|
+ |ignore?| |cyclicGroup| |complexExpand| |OMencodingUnknown|
+ |printHeader| |objectOf| |outputFixed| |taylorIfCan| |shuffle|
+ |doubleFloatFormat| |iiacoth| |specialTrigs| |e04fdf| |subtractIfCan|
+ |finiteBasis| |tab| |quote| |makingStats?| |differentialVariables|
+ |LowTriBddDenomInv| |e02ahf| |numberOfFractionalTerms| |hexDigit?|
+ |complexEigenvectors| |palgLODE0| |twist| |antiCommutator|
+ |showSummary| |generalizedEigenvectors| |OMputEndBVar|
+ |selectPolynomials| |null?| |startTable!| |setright!| |d01anf|
+ |rightZero| |groebnerIdeal| |basisOfMiddleNucleus| |unitNormalize|
+ |acschIfCan| |clearTheSymbolTable| |tubePlot| |d01aqf|
+ |resultantEuclidean| |getGraph| |algintegrate| |factorsOfDegree|
+ |showAttributes| |sylvesterMatrix| |alternative?| |leftMult|
+ |fractionPart| |setleft!| |is?| |swapRows!| |getExplanations|
+ |rightGcd| |sumOfKthPowerDivisors| |Nul| |leadingTerm| |drawStyle|
+ |permutation| |expandPower| |prindINFO| |univariatePolynomial|
+ |countable?| |infLex?| |listBranches| |ran| |ratpart| |mapUp!|
+ |wordsForStrongGenerators| |univariatePolynomialsGcds| |mainVariables|
+ |qfactor| |setfirst!| |irreducibleRepresentation| |ord| |addPoint2|
+ |changeWeightLevel| |generator| |permutationGroup| |changeMeasure|
+ |insertBottom!| |zag| |pdf2df| |sign| |directory| |rischDE| BY |gethi|
+ |randomLC| |cyclePartition| |clipWithRanges| |singRicDE|
+ |antiCommutative?| |cosIfCan| |extendedEuclidean| |resultantnaif|
+ |rowEchelonLocal| |yCoordinates| |constantLeft| |fractRagits|
+ |pattern| |rootKerSimp| |semiSubResultantGcdEuclidean2| |d01bbf|
+ |rombergo| |nodes| |mindeg| |mr| |duplicates?| |mindegTerm| |Gamma|
+ |bat| |pseudoRemainder| |numberOfImproperPartitions| |OMputEndError|
+ |lfintegrate| |normalise| |maxPoints3D| |removeZero| |zeroVector|
+ |matrixDimensions| |systemCommand| |debug| |lazyPrem| |formula|
+ |bracket| |wholeRadix| |minus!| |inverse| |s15aef| |loopPoints|
+ |iFTable| |connect| |ideal| |setchildren!| |internalInfRittWu?|
+ |createMultiplicationTable| |mkAnswer| |arity| |subQuasiComponent?|
+ |number?| |extendedResultant| |dioSolve| |splitDenominator| |constant|
+ |nthExponent| |normal| |euclideanGroebner| |rationalFunction|
+ |inverseIntegralMatrix| |setTopPredicate| |sPol| |lfextlimint|
+ |bezoutDiscriminant| |ksec| |noLinearFactor?| |kernel| |d02gbf|
+ |lastSubResultantElseSplit| |SturmHabichtSequence| |complexNumeric|
+ |createGenericMatrix| |structuralConstants| |subNode?| |getCurve|
+ |karatsubaDivide| |op| |reverse!| |OMputError|
+ |stiffnessAndStabilityFactor| |mapCoef| |solveLinear| |roughBasicSet|
+ |atanhIfCan| |integralLastSubResultant| |innerint|
+ |regularRepresentation| |unvectorise| |int| |e02bcf| |nrows| |erf|
+ |remove| |kernels| |fortranComplex| |prepareDecompose| |push!|
+ |setelt!| |multiple?| |exprToUPS| |primextintfrac| |mulmod| |nonQsign|
+ |nextPrime| |ncols| |partialQuotients| |packageCall| |notelem|
+ |selectODEIVPRoutines| |lazyPseudoQuotient| |univariate| |s19acf|
+ |resetBadValues| |inf| |matrixConcat3D| |last| |true| |safeCeiling|
+ |submod| |match?| |listLoops| |remainder| |transcendentalDecompose|
+ |algSplitSimple| |integers| |csubst| |expressIdealMember|
+ |cycleSplit!| |assoc| |dilog| |e01baf| |getOperands| |controlPanel|
+ |weight| |zerosOf| |createLowComplexityTable| |approxSqrt|
+ |rubiksGroup| |times!| |negative?| |sin| |iroot| |iicsc|
+ |fortranInteger| |powers| |edf2efi| |stop| |rotatex| |swap!| |f02axf|
+ |testDim| |univariate?| |cos| |s17aff| |nthRoot| |viewpoint| |genus|
+ |closed?| |socf2socdf| |credPol| |setVariableOrder| |sn| |check| |tan|
+ |dictionary| |lieAlgebra?| |discreteLog| |children| |draw|
+ |rightMinimalPolynomial| |makeSketch| |numberOfHues| |makeSeries|
+ |limit| |rightUnit| |weighted| |cot| |morphism| |lift| |e01saf|
+ |factorSquareFreePolynomial| |parametric?| |mainVariable| |close!|
+ |f01qcf| |f02fjf| |viewSizeDefault| |string| |integrate| |sec|
+ |HenselLift| |reduce| |monicCompleteDecompose| |leftQuotient|
+ |setnext!| |palgextint0| |linearAssociatedExp| |separant| |node?|
+ |empty| |OMsupportsSymbol?| |numberOfCycles| |csc| |setButtonValue|
+ |approximants| |parts| |plus!| |rightPower| |sturmVariationsOf|
+ |signAround| |tail| |quoted?| |insertRoot!| |innerSolve1|
+ |unprotectedRemoveRedundantFactors| |jacobian| |patternMatchTimes|
+ |asin| |listOfLists| |makeObject| |outputGeneral| |totalGroebner|
+ |middle| |elRow2!| |polyRicDE| |splitConstant| |indiceSubResultant|
+ |slash| UP2UTS |exponential| |nthRootIfCan| |acos| |domainOf|
+ |doublyTransitive?| |createIrreduciblePoly| |setsubMatrix!| |c05pbf|
+ |mapdiv| |f02bbf| |status| |sizeMultiplication| |coefChoose|
+ |symmetric?| |contains?| |pureLex| |atan| |integralAtInfinity?|
+ |e02bef| |sin2csc| |thetaCoord| |coef| |squareFree| |Aleph| =
+ |unravel| |univariatePolynomials| |numberOfPrimitivePoly|
+ |flexibleArray| |acot| |nextIrreduciblePoly| |bombieriNorm|
+ |mainValue| |parabolicCylindrical| |style| |critB| |OMconnInDevice|
+ |divideExponents| |genericLeftMinimalPolynomial| |difference| |asec|
+ |genericPosition| |trueEqual| |slex| |leastMonomial| |insertionSort!|
+ SEGMENT |exteriorDifferential| < |divisors| |viewWriteDefault|
+ |pushdown| |upperCase| |acsc| |acoshIfCan| |tanSum| |rotatez|
+ |fixPredicate| > |pdf2ef| |incrementKthElement| |var1Steps|
+ |drawCurves| |sinh| |odd?| |lowerCase?| |factorSquareFree|
+ |factorGroebnerBasis| |sub| |ipow| <= |lfextendedint|
+ |primPartElseUnitCanonical| |cosh| |evenlambert| |imagi|
+ |numFunEvals3D| |multiEuclideanTree| |lowerCase!|
+ |lazyPseudoRemainder| |normalForm| |polarCoordinates| >=
+ |OMencodingXML| |optional?| |critMonD1| |OMputSymbol| |tanh| |primes|
+ |reset| |realEigenvalues| |viewport2D| |outputSpacing| |c06fqf|
+ |updatF| |rational?| |possiblyInfinite?| |coth| |cyclic?| |bat1|
+ |coHeight| |meshPar1Var| |extractSplittingLeaf| |flagFactor| |llprop|
+ |normalizeAtInfinity| |flexible?| |torsionIfCan| |degreeSubResultant|
+ |currentSubProgram| |sech| |transpose| |write| |primitiveElement|
+ |asinIfCan| |presub| |removeZeroes| |cSec| + |lyndonIfCan| |curve?|
+ |rowEchelon| |sample| |csch| |adjoint| |save| |copies| |SturmHabicht|
+ |hdmpToDmp| |lambert| |predicate| |leftRankPolynomial| -
+ |trigs2explogs| |badValues| |exptMod| |asinh| |leftDivide|
+ |ParCondList| |validExponential| |OMcloseConn| |constantOpIfCan|
+ |complexSolve| |tryFunctionalDecomposition?| / |subCase?|
+ |buildSyntax| |f01rcf| |OMgetVariable| |acosh| |deepCopy| |safeFloor|
+ |critBonD| |t| |pol| |quoByVar| |log2| |d03faf| |overset?| |concat!|
+ |rightExactQuotient| |showAll?| |atanh| |showTheSymbolTable| |close| F
+ |probablyZeroDim?| |besselI| |mightHaveRoots| |monic?| |setFormula!|
+ |polCase| |SturmHabichtCoefficients| |symmetricRemainder| |palgint0|
+ |groebSolve| |acoth| |secIfCan| |tubeRadiusDefault| |changeBase|
+ |Frobenius| |setleaves!| |s13adf| |OMputEndObject| |linSolve|
+ |resultantReduitEuclidean| |insert| |quadraticForm|
+ |viewDeltaYDefault| |deriv| |viewZoomDefault| |logical?| |cTanh|
+ |belong?| |linear?| |d01akf| |isQuotient| |display| |df2ef|
+ |explimitedint| |stronglyReduced?| |transform| |sturmSequence|
+ |cyclic| |selectfirst| |nodeOf?| |genericRightDiscriminant|
+ |diophantineSystem| |cap| |hconcat| UTS2UP |localAbs| |generators|
+ |raisePolynomial| |addiag| |hasHi| |solveRetract| |addPoint|
+ |fullPartialFraction| |fortranLogical| |s19adf| |relationsIdeal|
+ |over| |hyperelliptic| GF2FG |subResultantGcd| |extract!|
+ |userOrdered?| |minGbasis| |adaptive?| |scripted?| |hermiteH| |prem|
+ |changeName| |square?| |besselJ| |GospersMethod| |LiePolyIfCan|
+ |checkForZero| |normal?| |unitNormal| |subResultantGcdEuclidean|
+ |revert| |basisOfCommutingElements| |computeInt|
+ |setLegalFortranSourceExtensions| |compBound| |e04ucf| |height|
+ |reduceByQuasiMonic| |input| |summation| |movedPoints| |isExpt|
+ |iicosh| |cothIfCan| |solid| |varselect| |diag|
+ |getSyntaxFormsFromFile| |d02bbf| |nextsubResultant2| |library|
+ |zeroDim?| |blankSeparate| |symmetricGroup|
+ |rewriteIdealWithHeadRemainder| |symmetricDifference|
+ |HermiteIntegrate| |OMgetAtp| |wholeRagits| |hitherPlane| |entries|
+ |postfix| |rangePascalTriangle| |s13acf| |ScanRoman| |sup|
+ |infRittWu?| |alphabetic| |rk4qc| |firstDenom| |polygamma| |expandLog|
+ |trunc| |symbolTable| |leftRank| |applyRules| |infiniteProduct|
+ |numberOfFactors| |unexpand| |uncouplingMatrices| |setProperties|
+ |doubleResultant| |rename!| |iiacos| |seriesToOutputForm| |delta|
+ |basisOfNucleus| |swap| |singularAtInfinity?| |entry| |traverse|
+ |separate| |startPolynomial| |sumOfSquares| |one?| |d01amf|
+ |purelyAlgebraic?| |pushFortranOutputStack| |pleskenSplit|
+ |factorByRecursion| |linearlyDependentOverZ?| |vark|
+ |scanOneDimSubspaces| |separateFactors| |unit| |arg1| |OMputApp|
+ |factors| |mainCoefficients| |dimension| |keys|
+ |popFortranOutputStack| |set| |ldf2vmf| |cond| |irreducibleFactor|
+ |e02zaf| |leftRecip| |subresultantVector| |withPredicates| |bfKeys|
+ |rootBound| |arg2| |curve| |latex| |lquo| |outputAsFortran| |say|
+ |measure2Result| |characteristicPolynomial| |simpson| |enterInCache|
+ |tanAn| |symbolTableOf| |reverse| |fixedPoint| |toseSquareFreePart|
+ |KrullNumber| |pointSizeDefault| |RemainderList| |declare| |coerceP|
+ |drawToScale| |froot| |f02ajf| |OMbindTCP| |integerBound|
+ |balancedBinaryTree| |imaginary| |fixedDivisor| |untab| |point?|
+ |conditions| |interpretString| |iicot| |numberOfComposites|
+ |outputForm| |PollardSmallFactor| |lowerCase| |lazy?| |modTree|
+ |integralMatrix| |cCsc| |simplify| |match| |cot2trig| |normFactors|
+ |leaves| |iicos| |leftCharacteristicPolynomial| |matrixGcd|
+ |numberOfMonomials| |startStats!| |factorList|
+ |nextPrimitiveNormalPoly| |leftDiscriminant| |startTableGcd!| |s20adf|
+ |indicialEquationAtInfinity| |lambda| |cyclicEqual?| |jordanAlgebra?|
+ |represents| |mapGen| |perfectSqrt| |positiveSolve| |mainMonomial|
+ |UP2ifCan| |atoms| |monomial?| |rightOne| |fortranCompilerName|
+ |repSq| |OMwrite| |resetVariableOrder| |putGraph| |identity| |e02def|
+ |singularitiesOf| |abelianGroup| |chiSquare| |rightScalarTimes!|
+ |ridHack1| |merge!| |move| |operators| |maxRowIndex| |s17ahf|
+ |cyclicEntries| |makeGraphImage| |pack!| |leftExactQuotient| |dfRange|
+ |poisson| |show| |linearPolynomials| |besselK| |laplace| |lex|
+ |primintegrate| |s17aef| |getGoodPrime| |setValue!| |basicSet|
+ |charClass| |clipBoolean| |newTypeLists| |makeSUP| |iprint|
+ |goodnessOfFit| |critMTonD1| |putColorInfo| |zeroDimPrimary?|
+ |extendedSubResultantGcd| |build| |normalize| |subResultantChain|
+ |trace| |symmetricPower| Y |topFortranOutputStack| |numberOfVariables|
+ |bits| |aromberg| |e01daf| |s18aef| |simplifyLog|
+ |associatedEquations| |leftZero| |shallowExpand| |numberOfDivisors|
+ |setScreenResolution| |iomode| |directSum| |s17agf| |coerceImages|
+ |pomopo!| |goto| |makeSin| |oblateSpheroidal| |lookup| |s17acf|
+ |zero?| |newReduc| |content| |node| |f02aaf| |rule| |bivariateSLPEBR|
+ |leadingSupport| |internalDecompose| |nand| |void| |pade| |mainForm|
+ |shiftLeft| |vector| |outputArgs| |parent| |s18dcf|
+ |constantCoefficientRicDE| |d01gaf| |order| |collectUnder|
+ |integralRepresents| |triangulate| |addMatch| |mapSolve|
+ |differentiate| |ptFunc| |f01ref| |basis| |partialFraction| |solve|
+ |shade| |musserTrials| |Si| |s01eaf| |indicialEquations| |hessian|
+ |f04atf| |toScale| |pastel| |semiResultantReduitEuclidean|
+ |divideIfCan| |divergence| |monomial| |rightRankPolynomial| |cAsinh|
+ |constantOperator| |representationType| |prefixRagits| |choosemon|
+ |generic?| |even?| |multivariate| |f01bsf| |csc2sin| |quickSort|
+ |f04jgf| |getOperator| |octon| |distance| |augment| |f04mcf|
+ |variables| |denom| |pole?| |vectorise| |divideIfCan!|
+ |particularSolution| |rootSimp| |OMgetInteger| |subset?|
+ |extractProperty| |linkToFortran| |minset| |cycleRagits|
+ |pmComplexintegrate| |clipParametric| |reduceLODE| |OMgetBVar|
+ |e02adf| |hermite| |pi| |cotIfCan| |typeLists| ~= |rotatey|
+ |expextendedint| |squareFreePolynomial| |resultantReduit|
+ |perfectNthRoot| |infinity| |iifact| |associative?| |leviCivitaSymbol|
+ |pToHdmp| |e02bdf| |iisqrt2| |isList| |f04mbf| |rroot| |complexZeros|
+ |triangSolve| |minPol| |toseInvertible?| |biRank|
+ |absolutelyIrreducible?| |shift| |resize| |selectAndPolynomials|
+ |commutativeEquality| |taylor| |rowEch| |e01sff| |hasPredicate?|
+ |midpoints| |irreducible?| |reopen!| |enumerate| |c06ebf| |laurent|
+ |iiacot| |sumOfDivisors| |e02gaf| |lo| |clearDenominator|
+ |possiblyNewVariety?| |LyndonWordsList1| |cExp| |sort| |sechIfCan|
+ |puiseux| |pseudoDivide| |getButtonValue| |incr| |Ei| |OMputEndAtp|
+ |recoverAfterFail| |powmod| |expenseOfEvaluationIF| |exactQuotient|
+ |hi| |iteratedInitials| |OMputString| |finiteBound| |baseRDE| |li|
+ |nil| |linearPart| |alphanumeric| |acothIfCan| |besselY| |direction|
+ |primitivePart| |anticoord| |headRemainder| |printCode| |returns|
+ |setRealSteps| |range| |normalizedDivide| |stosePrepareSubResAlgo|
+ |s18acf| |rotate!| |someBasis| |child?| |npcoef| |random|
+ |FormatRoman| |approximate| |fortranReal| |expint|
+ |halfExtendedSubResultantGcd1| |divisorCascade| |digits| |c06gqf|
+ |segment| |minimumDegree| |partialDenominators| |upperCase!| |s14baf|
+ |ramified?| |bubbleSort!| |repeating| |strongGenerators| |bipolar|
+ |vertConcat| |pow| |OMgetFloat| |commonDenominator| |sin?| |s21bbf|
+ |function| |computeBasis| |stirling2| |realRoots| |decreasePrecision|
+ |linearDependence| |showTheIFTable| |OMgetEndApp| |argscript|
+ |lazyEvaluate| |dmpToP| |retractable?| |setImagSteps| |mix| |ref|
+ |createPrimitivePoly| |exponential1| |PDESolve| |Ci| |xn| |critT|
+ |squareFreeLexTriangular| |expt| |datalist| |meshPar2Var| |symbol|
+ |fractionFreeGauss!| |normalizedAssociate| |rationalIfCan|
+ |repeatUntilLoop| |dmpToHdmp| |leftAlternative?| |e04ycf|
+ |nonSingularModel| |rewriteIdealWithRemainder| |extractTop!|
+ |createNormalPoly| |jacobi| |output| |generate| |integer| |overlabel|
+ |f07aef| |imagK| |coerce| |OMputFloat| |minrank| |resultant| |case|
+ |outputAsScript| |getBadValues| |rewriteSetWithReduction|
+ |OMgetEndBind| |implies| |po| |assign| |incrementBy|
+ |initializeGroupForWordProblem| |zeroSetSplit| |innerEigenvectors|
+ |smith| |construct| |clearCache| |permanent| |OMreadFile| |prevPrime|
+ |sinhIfCan| |xor| |curryRight| |expand| |oneDimensionalArray|
+ |semiResultantEuclidean1| |limitPlus| |inv| |OMserve|
+ |zeroDimensional?| |hclf| |elements| |univcase| |filterWhile|
+ |fracPart| |reducedSystem| |phiCoord| |ground?| |floor|
+ |clearFortranOutputStack| |adaptive| |high| |filterUntil|
+ |tubePointsDefault| |createRandomElement| |c02aff|
+ |subresultantSequence| |increase| |ground| |cCos| |OMgetType| |list|
+ |root?| |select| |trace2PowMod| |sumSquares| |exquo|
+ |leftMinimalPolynomial| |coordinate| |lcm| |plus| |d02kef|
+ |leadingMonomial| |setDifference| |binaryFunction| |quotedOperators|
+ |lastSubResultant| |derivative| |abs| |div| |aLinear| |subMatrix|
+ |printTypes| |numberOfOperations| |leadingCoefficient| |interpret|
+ |setIntersection| |e02agf| |reducedDiscriminant| |prepareSubResAlgo|
+ |unaryFunction| |univariateSolve| |f02akf| |quo| |reify| |exponent|
+ |safetyMargin| |primitiveMonomials| |rootProduct| |setUnion| |more?|
+ |shellSort| |OMputEndBind| |iisech| |linears| |s19abf|
+ |unrankImproperPartitions1| |gcd| |matrix| |extensionDegree|
+ |reductum| |prolateSpheroidal| |deepExpand| |apply|
+ |rightFactorCandidate| |freeOf?| |scaleRoots| |rem| |OMgetEndAttr|
+ |minRowIndex| |complement| |union| |createMultiplicationMatrix|
+ |times| |btwFact| |cAcsc| |solveLinearPolynomialEquation|
+ |jordanAdmissible?| |condition| |splitLinear| |cCot| |RittWuCompare|
+ |f01maf| |false| |rewriteSetByReducingWithParticularGenerators|
+ |moebiusMu| |size| |makeRecord| |patternMatch| |lazyResidueClass|
+ |lastSubResultantEuclidean| |randnum| |refine| |exactQuotient!|
+ |extendedIntegrate| |ptree| |selectsecond| |cosSinInfo| |parabolic|
+ |localUnquote| |mpsode| |unitsColorDefault| |lagrange|
+ |polynomialZeros| |useEisensteinCriterion| |e02dcf|
+ |nextsousResultant2| |heap| |recolor| |LyndonCoordinates|
+ |createZechTable| |sincos| |monom| |bivariatePolynomials|
+ |monomRDEsys| |selectPDERoutines| |first| |lazyPquo|
+ |rightTraceMatrix| |imagI| |inspect| |digit?| |functionIsOscillatory|
+ |diagonal?| |getlo| |f02xef| |rest| |powerAssociative?|
+ |mainSquareFreePart| |pointColorDefault| |fractRadix| |s17ajf|
+ |setelt| |zeroDimPrime?| |property| |substitute| |corrPoly| |Is|
+ |deepestInitial| |redmat| |intcompBasis| |setlast!| |removeDuplicates|
+ |realZeros| |startTableInvSet!| |minimalPolynomial| |universe|
+ |interReduce| |solveid| |copy| |readable?| |exprHasWeightCosWXorSinWX|
+ |viewDefaults| |primeFrobenius| |hcrf| |mainKernel| |bitLength|
+ |viewThetaDefault| |multiset| |result| |units| |eigenvector|
+ |enterPointData| |unary?| |rspace| |euclideanNormalForm| |not|
+ |weakBiRank| |explicitlyEmpty?| ^= |constantIfCan| |setvalue!|
+ |diagonals| |iisec| |cTan| |ravel| |iiasech| |upDateBranches|
+ |autoCoerce| |countRealRoots| |var2Steps| |brillhartIrreducible?|
+ |cCsch| |generalizedContinuumHypothesisAssumed?| |transcendenceDegree|
+ |reshape| |mesh| |argumentListOf| |scan| |quatern| |s17akf|
+ |lieAdmissible?| |groebnerFactorize| |orbits| |lhs|
+ |viewDeltaXDefault| |simpleBounds?| |linearAssociatedOrder|
+ |arrayStack| |OMputBVar| |powern| |intPatternMatch| |rhs| |code|
+ |psolve| |associator| |compile| |palginfieldint| |nthr| |inrootof|
+ |LyndonBasis| |regime| |sdf2lst| |complexForm| |quotient| |checkRur|
+ |normalDeriv| |weierstrass| |elementary| |collect| |unitVector|
+ |pointColorPalette| |update| |f01brf| |hdmpToP| |pointColor| |nil?|
+ |hexDigit| |approxNthRoot| |critpOrder| |rk4f| |splitSquarefree|
+ |rootRadius| |semiIndiceSubResultantEuclidean| |light| |alphabetic?|
+ |leftTraceMatrix| |wordInStrongGenerators| |suffix?|
+ |semiLastSubResultantEuclidean| |top| |showRegion| |mainPrimitivePart|
+ |s21bcf| |iiasin| |leftUnits| |cCosh| |quadratic| |option?| |continue|
+ |listYoungTableaus| |makeEq| |qelt| |tanh2coth| |symmetricProduct|
+ |unit?| |bandedJacobian| |prefix?| |tan2cot| |cAtan| |call|
+ |legendreP| |cycleEntry| |second| |cscIfCan| |c06ekf| |invertibleSet|
+ |squareMatrix| |cross| |readLine!| |key| |decompose|
+ |var2StepsDefault| |third| |init| |nullary?| |elColumn2!|
+ |multiplyExponents| |alternatingGroup| |OMencodingSGML| |accuracyIF|
+ |limitedint| |iiabs| |options| |f04axf| |paraboloidal| |f07fef|
+ |mathieu24| |rationalPower| |setEpilogue!| |logIfCan| |printInfo!|
+ |compose| |removeRedundantFactors| |airyAi| |makeCos| |elt| |read!|
+ |commutator| |filename| |ODESolve| |flatten| |eulerE|
+ |completeEchelonBasis| |printInfo| |noKaratsuba| |mkcomm|
+ |exprToGenUPS| |iisin| |doubleComplex?| |repeating?| |subscript|
+ |initial| |d01gbf| |moduloP| |infix?| |sech2cosh| |setClipValue|
+ |totalDegree| |LazardQuotient| |jacobiIdentity?| |OMputVariable|
+ |stoseInternalLastSubResultant| |mask| |characteristicSet| |torsion?|
+ |removeSuperfluousQuasiComponents| |generalPosition| |legendre|
+ |extend| |degreePartition| |pushuconst| |radicalEigenvectors| |parse|
+ |heapSort| |idealiser| |mapUnivariateIfCan| |virtualDegree| |OMgetApp|
+ |charthRoot| |ratDsolve| |semicolonSeparate| |rarrow| |collectUpper|
+ |hex| |setMinPoints| |c06eaf| |removeRedundantFactorsInPols|
+ |composites| |characteristicSerie| |htrigs| |superscript|
+ |tryFunctionalDecomposition| |OMputAtp| |setPoly| |rootPoly| |e02daf|
+ |reverseLex| |redpps| |size?| |screenResolution3D| |relerror|
+ |subspace| |escape| |stronglyReduce| |bernoulli| |critM|
+ |derivationCoordinates| |semiDegreeSubResultantEuclidean| |lllp|
+ |alternating| |eigenvectors| |tube| |rightTrace| |antiAssociative?|
+ |semiDiscriminantEuclidean| |relativeApprox| |outerProduct| |s21baf|
+ |crest| |OMreadStr| |isPower| |nary?| |cRationalPower|
+ |changeThreshhold| |selectOptimizationRoutines| |basisOfRightNucleus|
+ |mapMatrixIfCan| |numericalOptimization| |fortran| |radPoly|
+ |removeRoughlyRedundantFactorsInContents| |splitNodeOf!| |insert!|
+ |rightDiscriminant| |acscIfCan| |xRange| |column| |groebgen| |delete!|
+ |errorInfo| |supersub| |minimize| |fmecg| |stFuncN| |viewPosDefault|
+ |module| |preprocess| |yRange| |minPoints3D| |compiledFunction|
+ |zeroSquareMatrix| |charpol| |showIntensityFunctions| |skewSFunction|
+ |stoseSquareFreePart| |c05adf| |pile| |unitCanonical|
+ |radicalEigenvector| |zRange| |removeCoshSq| |simplifyExp|
+ |patternVariable| |hasoln| |qroot| |roughUnitIdeal?| |outputFloating|
+ |leftRegularRepresentation| |expintegrate| |cycle| |f02agf|
+ |OMgetEndError| |map!| LODO2FUN |pushucoef| |getStream| |e04mbf|
+ |crushedSet| |getVariableOrder| |component| |coerceListOfPairs|
+ |insertMatch| |norm| |palgextint| |internalLastSubResultant|
+ |qsetelt!| |resetAttributeButtons| |singleFactorBound| |monicDivide|
+ |dominantTerm| |iiasec| |gramschmidt| |s17dhf| |fixedPointExquo|
+ |trapezoidalo| |rischDEsys| |list?| |degree| |binaryTournament|
+ |inverseIntegralMatrixAtInfinity| |e02akf| |fintegrate| |elem?|
+ |factorSFBRlcUnit| |principalIdeal| |quasiMonic?| |deepestTail|
+ |aCubic| |mainDefiningPolynomial| |internalZeroSetSplit| |lp|
+ |getDatabase| |expenseOfEvaluation| |OMUnknownCD?| |subTriSet?|
+ |increasePrecision| |firstUncouplingMatrix| |optimize| |copyInto!|
+ |tablePow| |integerIfCan| |gcdPolynomial| |internalIntegrate|
+ |selectFiniteRoutines| |reindex| |stoseInvertibleSet| |cSinh| |ode2|
+ |f2df| |genericRightTrace| |green| |ldf2lst| |duplicates|
+ |fortranTypeOf| |cyclotomic| |open?| |red| |graphState| |index|
+ |queue| |initTable!| ^ |f02bjf|
+ |solveLinearPolynomialEquationByRecursion| |binaryTree| |expIfCan|
+ |iidsum| |roughEqualIdeals?| |edf2ef| |shallowCopy| |acsch| |central?|
+ |mkIntegral| |invmod| |failed?| |simplifyPower| |integer?|
+ |basisOfRightNucloid| |listConjugateBases| |mat| |multiEuclidean|
+ |graeffe| |semiResultantEuclideannaif| |solve1| |stopMusserTrials|
+ |stirling1| |janko2| |scalarTypeOf| |gcdPrimitive| |script|
+ |external?| |lprop| |shrinkable| |palgRDE0| |rangeIsFinite|
+ |totalDifferential| |leftPower| |mapExpon| |space| |f04arf|
+ |evenInfiniteProduct| |iiatan| |constantKernel| |palgintegrate|
+ |bsolve| |deleteProperty!| |ListOfTerms| |trim| |prologue|
+ |constantToUnaryFunction| |fortranLinkerArgs| |elRow1!| |stack|
+ |symbolIfCan| |readIfCan!| |polyred| |head| |genericRightNorm|
+ |tanhIfCan| |roughSubIdeal?| |sparsityIF| |generalizedInverse|
+ |certainlySubVariety?| |isPlus| |tex| |lazyIrreducibleFactors|
+ |LyndonWordsList| |lazyPseudoDivide| |lexico| |coleman| |maxint|
+ |nilFactor| |OMgetBind| |conjugates| |tableForDiscreteLogarithm|
+ |stopTable!| |mapmult| |linear| |karatsubaOnce| |makeMulti| |hspace|
+ |generalSqFr| |log10| |linearMatrix| |reorder| |dAndcExp| |members|
+ |genericLeftDiscriminant| |explicitEntries?| |elliptic?|
+ |useSingleFactorBound?| |lexTriangular| |cycleElt| |rightTrim|
+ |B1solve| |coefficients| |createLowComplexityNormalBasis| |qPot|
+ |discriminantEuclidean| |chebyshevU| |polynomial| |genericLeftTrace|
+ |associates?| |moduleSum| |dec| |complexNumericIfCan| |leftTrim|
+ |iiacosh| |outputMeasure| |nsqfree| |basisOfLeftNucleus| |asecIfCan|
+ |minordet| |interval| |isOp| |makeUnit| |divide| |inHallBasis?|
+ |intensity| |float?| |leftScalarTimes!| |toseLastSubResultant|
+ |sinhcosh| |fortranLiteral| |pointData| |curryLeft| |meshFun2Var|
+ |printStats!| |restorePrecision| |message| |dom| |supDimElseRittWu?|
+ |compdegd| |dmp2rfi| |viewPhiDefault| |makeTerm| |OMgetEndBVar|
+ |getMultiplicationTable| |characteristic| |nextPartition| |henselFact|
+ |autoReduced?| |mathieu23| |double?| |curry| |radicalOfLeftTraceForm|
+ |leadingIndex| |monicDecomposeIfCan| |uniform01| |magnitude|
+ |pushdterm| |prime?| |definingEquations| |tanQ| |equation| |ef2edf|
+ |redPo| |acosIfCan| |subNodeOf?| |removeSquaresIfCan|
+ |stripCommentsAndBlanks| |s17adf| |homogeneous?| |split| |iiGamma|
+ |rightRegularRepresentation| |ffactor| |mdeg| |modularGcdPrimitive|
+ |monomRDE| |extractClosed| |eisensteinIrreducible?| |updatD| |e02aef|
+ |root| |name| |stoseInvertible?| |OMParseError?| |cAcos| |d01alf|
+ |selectIntegrationRoutines| |cons| |cyclotomicDecomposition|
+ |leftRemainder| |primaryDecomp| |sh| |primlimintfrac| |find|
+ |showAllElements| |processTemplate| |binarySearchTree|
+ |hasTopPredicate?| |addMatchRestricted| |partitions| |coth2tanh|
+ |cyclotomicFactorization| |surface| |d02gaf| |genericRightTraceForm|
+ |monomialIntPoly| |factorial| |f07fdf| |bezoutMatrix|
+ |initiallyReduced?| |frst| |makeViewport3D| |polyRDE| |midpoint|
+ |d02bhf| |algebraicOf| |label| |removeRoughlyRedundantFactorsInPols|
+ |conditionP| |geometric| |conjugate| |e02ddf| |viewWriteAvailable| |e|
+ |identification| |rightRank| |factorset| |isobaric?| |operator|
+ |monomialIntegrate| |overlap| |bitTruth| |f01qdf| |paren|
+ |normalElement| |stoseInvertible?sqfreg| |select!|
+ |halfExtendedResultant2| |makeResult| |equality|
+ |removeIrreducibleRedundantFactors| |colorFunction| |iicoth| |minPoly|
+ |chebyshevT| |primeFactor| |pmintegrate| |optpair| |eigenMatrix|
+ |complexLimit| |dimensions| |integralBasis| |monicRightFactorIfCan|
+ |createPrimitiveNormalPoly| |sinIfCan| |selectSumOfSquaresRoutines|
+ |orthonormalBasis| |doubleDisc| |leftLcm| |youngGroup| |tRange|
+ |extractPoint| |enqueue!| |normInvertible?| |vedf2vef| |setStatus!|
+ |getMultiplicationMatrix| |brace| |cAtanh| |palglimint| |OMputEndAttr|
+ |definingInequation| |showArrayValues| |mapDown!|
+ |solveLinearPolynomialEquationByFractions| |expPot| |ranges| |bumprow|
+ |nlde| |appendPoint| |perfectSquare?| |listOfMonoms| |squareFreePart|
+ |continuedFraction| |generalTwoFactor| |normalized?| |title|
+ |generateIrredPoly| |distdfact| |leastAffineMultiple| |resetNew|
+ |generalizedEigenvector| |pquo| |tensorProduct| |reduced?|
+ |positiveRemainder| |Vectorise| |imagJ| |iCompose| |argumentList!|
+ |exprHasLogarithmicWeights| |polar| |error| |lintgcd| |idealSimplify|
+ |numeric| |unrankImproperPartitions0| |dark| |sqfree|
+ |invertibleElseSplit?| |antisymmetricTensors| |cos2sec|
+ |fillPascalTriangle| |value| |fprindINFO| |radical| |assert| |s19aaf|
+ |radicalRoots| |lepol| |toseInvertibleSet| |Lazard2| |coshIfCan|
+ |cot2tan| |rootNormalize| |dim| |allRootsOf| |atrapezoidal|
+ |semiResultantEuclidean2| |d02ejf| |rCoord|
+ |createNormalPrimitivePoly| |euler| |substring?| |s18def|
+ |plusInfinity| |addBadValue| |depth| |eulerPhi| |setPosition|
+ |diagonal| |curveColorPalette| |permutationRepresentation| |iiacsch|
+ |cosh2sech| |maxdeg| |minusInfinity| |inR?| |properties|
+ |setprevious!| |primextendedint| |outputAsTex| |UpTriBddDenomInv|
+ |option| |any?| |cCoth| |ScanFloatIgnoreSpaces| |recip| |convergents|
+ |newSubProgram| |quadratic?| |exQuo| |lists| |schwerpunkt| |rightLcm|
+ |cyclicSubmodule| |df2st| |tab1| |has?| |diff| |rootOfIrreduciblePoly|
+ |fullDisplay| |trapezoidal| |nextColeman| |eq?|
+ |reducedContinuedFraction| |s17dlf| |stoseLastSubResultant| |id|
+ |clearTable!| |makeop| |LazardQuotient2| |factorAndSplit| |translate|
+ |leadingBasisTerm| |fill!| |sts2stst| |genericRightMinimalPolynomial|
+ |lfunc| |leadingExponent| |Beta| |firstSubsetGray| |color| **
+ |mapExponents| |table| |d03eef| |purelyAlgebraicLeadingMonomial?|
+ |parametersOf| |c06frf| |SFunction| |leastPower| |failed| |float|
+ |orbit| |new| |powerSum| |generic| |bitCoef| |removeCosSq|
+ |palglimint0| |makeViewport2D| |redPol| EQ |OMclose| |outputList|
+ |principal?| |ParCond| |normal01| |denominators| |retractIfCan|
+ |OMgetObject| |omError| |balancedFactorisation| |replace| |zeroMatrix|
+ |rdregime| |setColumn!| |printingInfo?| |inconsistent?| |localReal?|
+ |rightRecip| |setOfMinN| |quartic| |consnewpol| |cSech|
+ |physicalLength!| |Lazard| |screenResolution| |taylorQuoByVar|
+ |setEmpty!| |UnVectorise| |plenaryPower| |e01bff| |dflist|
+ |normDeriv2| |write!| |partialNumerators| |coth2trigh| |laurentIfCan|
+ |integral?| |intersect| |delay| |s18adf| |f02wef| |cylindrical|
+ |sncndn| |lazyVariations| GE |squareFreePrim| |wrregime| |prime|
+ |curveColor| |completeEval| |empty?| GT |karatsuba| |e01bgf|
+ |removeSinhSq| |twoFactor| |identityMatrix| |cycleLength| |level|
+ |e01sef| |bringDown| |oddlambert| |iiasinh| |palgRDE| LE |back| |left|
+ |bezoutResultant| |cardinality| |diagonalMatrix| |solid?|
+ |completeHensel| |graphStates| |car| |lexGroebner| |child| LT
+ |wholePart| |right| |reducedForm| |hMonic| |leader|
+ |removeDuplicates!| |leftTrace| |createNormalElement| |tanNa|
+ |laplacian| |cdr| |map| |superHeight| |iitan| |reduceBasisAtInfinity|
+ |binary| |fortranLiteralLine| |computeCycleLength| |palgint|
+ |sqfrFactor| |power!| |f01mcf| |schema| |f02abf| |pushup|
+ |showTypeInOutput| |OMgetError| |newLine| |routines| |modulus|
+ |internalIntegrate0| |coercePreimagesImages| |singular?| |digit|
+ |leftUnit| |showFortranOutputStack| |cfirst| |reduction|
+ |leftFactorIfCan| |nthFactor| |genericLeftNorm| |diagonalProduct|
+ |pointPlot| D |generalizedContinuumHypothesisAssumed|
+ |genericLeftTraceForm| |SturmHabichtMultiple| |rightRemainder|
+ |collectQuasiMonic| |fortranCharacter| |common| |infieldint| |terms|
+ |frobenius| |padicallyExpand| |computePowers| |oddintegers|
+ |iflist2Result| |OMgetString| |clip| |convert| |mesh?| |addmod|
+ |lazyIntegrate| |basisOfCentroid| |writable?| |cAcosh| |clipSurface|
+ |varList| |ode1| |prod| |showTheRoutinesTable| |coordinates|
+ |monomials| |nthCoef| |s14aaf| |d01ajf| |operation| |cycles| |iiperm|
+ |OMReadError?| |wreath| |integralDerivationMatrix| |setProperty|
+ |mapUnivariate| |e04dgf| |scale| |basisOfCenter| |nextPrimitivePoly|
+ |defineProperty| |cLog| |retract| |nextSubsetGray| |acotIfCan|
+ |primintfldpoly| |explicitlyFinite?| |OMmakeConn| |cAsech|
+ |lflimitedint| |irreducibleFactors| |rquo| |kmax| |s21bdf|
+ |denomRicDE| |atom?| |addPointLast| |totalfract| |print|
+ |infieldIntegrate| |getZechTable| |rischNormalize| |linGenPos|
+ |expintfldpoly| |complexNormalize| |stoseIntegralLastSubResultant|
+ |constantRight| |FormatArabic| |point| |cschIfCan| |e04naf| |width|
+ |argument| |padicFraction| |deref| |dn| |headReduce| |completeHermite|
+ |setScreenResolution3D| |stoseInvertible?reg| |imagj|
+ |algebraicCoefficients?| |optAttributes| |gcdcofactprim|
+ |quasiMonicPolynomials| |series| |solveInField| |att2Result|
+ |precision| |sequences| |toroidal| |s17def| |box| |roman|
+ |setAdaptive| |quasiAlgebraicSet| |minColIndex| |pseudoQuotient|
+ |ramifiedAtInfinity?| |gderiv| |optional| |wronskianMatrix|
+ |predicates| |lineColorDefault| |partition| |sinh2csch| |sum|
+ |epilogue| |primitive?| |OMputObject| |min| |modularFactor| |zeroOf|
+ |largest| |f07adf| |asechIfCan| |next| |listexp| |f04asf|
+ |leadingIdeal| |inverseLaplace| |gcdprim| |radicalSimplify|
+ |fibonacci| |se2rfi| |rightFactorIfCan| |key?| |e01sbf| |constant?|
+ |ceiling| |string?| |leftExtendedGcd| |complete| |iidprod| |every?|
+ |integralCoordinates| |semiSubResultantGcdEuclidean1| |An| |coord|
+ |checkPrecision| |Hausdorff| |asech| |readLineIfCan!| |c02agf|
+ |bright| |s14abf| |leftNorm| |externalList| |trivialIdeal?| |exp1|
+ |topPredicate| |decimal| |comp| |setAdaptive3D| FG2F |nextSublist|
+ |weights| |e02dff| |multiple| |rur| |yCoord|
+ |zeroSetSplitIntoTriangularSystems| |clipPointsDefault| |truncate|
+ |binomThmExpt| |applyQuote| |leftFactor| |airyBi| |prinb|
+ |antisymmetric?| |laguerre| |meatAxe| |rationalPoint?| |factorials|
+ |fortranDoubleComplex| |extendedint| |eval| |positive?|
+ |monicLeftDivide| |algebraicSort| |any| |wordInGenerators|
+ |makeVariable| |setMinPoints3D| |factor1| |nor| |makeprod| |#|
+ |functionIsFracPolynomial?| |symmetricSquare| |index?| |ruleset|
+ |chvar| |divisor| |ReduceOrder| |explogs2trigs|
+ |resultantEuclideannaif| |lowerPolynomial| |product|
+ |nextNormalPrimitivePoly| |f02aff| |bernoulliB| |OMconnOutDevice|
+ |BasicMethod| |monicModulo| |invertIfCan| |rk4| |multisect|
+ |purelyTranscendental?| |pair?| |suchThat| |algDsolve|
+ |indicialEquation| |char| |sorted?| |fTable| |search|
+ |makeFloatFunction| |c05nbf| F2FG |dimensionsOf| |center| |df2mf|
+ |f04adf| |getMeasure| |aspFilename| |nextItem| |cartesian| |squareTop|
+ |graphImage| |OMconnectTCP| |stopTableInvSet!| |alphanumeric?|
+ |generalInfiniteProduct| |moreAlgebraic?| |internalSubQuasiComponent?|
+ |numericalIntegration| |scalarMatrix| |OMencodingBinary| |s20acf|
+ |definingPolynomial| |exprToXXP| |maxrank| |quasiRegular?|
+ |compactFraction| |setTex!| |evaluate| |remove!| |lifting1| |d01asf|
+ |denominator| |simpsono| |exponents| |rdHack1| |forLoop|
+ |rationalPoints| |elliptic| |zoom| |lfinfieldint| |supRittWu?|
+ |setMaxPoints3D| |extension| |Zero| |companionBlocks|
+ |stiffnessAndStabilityOfODEIF| |extractIndex| |linearlyDependent?|
+ |sort!| |cup| |measure| |rightUnits| |One| |distribute| |d01apf|
+ |aQuadratic| ~ |internalAugment| |mathieu12| |removeSinSq| |cAcoth|
+ |quotientByP| |laurentRep| |cn| |f04maf| |realSolve|
+ |sizePascalTriangle| |reciprocalPolynomial| |beauzamyBound|
+ |radicalEigenvalues| |factorFraction| |dihedral| |infinityNorm|
+ |harmonic| |identitySquareMatrix| |presuper| |algint|
+ |hypergeometric0F1| |makeFR| |qinterval| |findCycle| |graphCurves|
+ |cSin| |bumptab1| |exprHasAlgebraicWeight| |colorDef| |medialSet|
+ |rational| |leadingCoefficientRicDE| |opeval| |nthExpon| |tracePowMod|
+ |changeVar| |iilog| |monicRightDivide| |palgLODE|
+ |numberOfIrreduciblePoly| |setref| |mkPrim| |power| |badNum|
+ |anfactor| |copy!| |chainSubResultants| |entry?| |f04faf|
+ |makeYoungTableau| |cAcsch| |unmakeSUP| |open| |ddFact| |xCoord|
+ |rk4a| |mainCharacterization| |graphs| |length| |s15adf| |composite|
+ |complexEigenvalues| |sayLength| |s17dgf| |physicalLength|
+ |subResultantsChain| |complementaryBasis| |updateStatus!| |kovacic|
+ |scripts| |iisqrt3| |algebraicVariables| |getPickedPoints| |iibinom|
+ |swapColumns!| |mantissa| |tanIfCan| |factorsOfCyclicGroupSize|
+ |myDegree| |OMgetEndAtp| |prinpolINFO| |rootPower| |low|
+ |brillhartTrials| |integralBasisAtInfinity| |leftOne| |seriesSolve|
+ |quasiComponent| |mergeDifference| |expr| |symFunc| |totolex|
+ |generalLambert| |mathieu22| |neglist| |iExquo| |fglmIfCan| |append|
+ |cyclicCopy| |rationalApproximation| |commutative?| |fortranDouble|
+ |rightCharacteristicPolynomial| |const| |delete| |usingTable?|
+ |dimensionOfIrreducibleRepresentation| |interpolate| |s18aff| |reseed|
+ |bipolarCylindrical| |finite?| NOT |minIndex| |rank|
+ |useSingleFactorBound| |branchIfCan| |dihedralGroup| |invmultisect|
+ |gradient| |c06fpf| |pr2dmp| |numFunEvals| OR |randomR| |create|
+ |completeSmith| |asimpson| |variable| |pop!| |showScalarValues|
+ |shiftRight| |problemPoints| |printStatement| AND |rightExtendedGcd|
+ |drawComplexVectorField| |polygon| |extendIfCan|
+ |halfExtendedSubResultantGcd2| |getRef| |e02bbf| |rightAlternative?|
+ |lifting| |row| |doubleRank| |mergeFactors| |cycleTail| |df2fi|
+ |removeRedundantFactorsInContents| |rootOf| |perfectNthPower?|
+ |complexElementary| |selectOrPolynomials| |decrease| |adaptive3D?|
+ |initials| |eq| |e02baf| |OMopenFile| |nextLatticePermutation|
+ |OMsend| |invertible?| |iisinh| |exists?| |f02adf| |decomposeFunc|
+ |rewriteIdealWithQuasiMonicGenerators| |iter| |OMgetSymbol|
+ |setErrorBound| |fi2df| |nullSpace| |typeList| |f04qaf| |calcRanges|
+ |merge| |OMputEndApp| |writeLine!| |obj| |bfEntry| |/\\|
+ |removeRoughlyRedundantFactorsInPol| |nullity| |top!| |isTimes|
+ |ratPoly| |f02awf| |factorOfDegree| |stoseInvertibleSetreg|
+ |halfExtendedResultant1| |setRow!| |primlimitedint| |\\/|
+ |complexIntegrate| |cache| |isMult| |squareFreeFactors|
+ |OMsupportsCD?| |numberOfComponents| |sylvesterSequence| |OMreceive|
+ |numer| |transcendent?| |tValues| |normalizeIfCan| |contractSolve|
+ |f2st| |lazyGintegrate| |tower| |logpart| |replaceKthElement| |mvar|
+ |closedCurve| |recur| |returnTypeOf| |shufflein| |plotPolar|
+ |chineseRemainder| |internal?| |tubeRadius| |multiplyCoefficients|
+ |idealiserMatrix| |hasSolution?| |constDsolve| |numberOfNormalPoly|
+ |isAbsolutelyIrreducible?| |tableau| |conical| |ode| * |iiexp|
+ |shiftRoots| |numericIfCan| |evaluateInverse| |tubePoints|
+ |oddInfiniteProduct| |rowEchLocal| |fixedPoints| |traceMatrix|
+ |nullary| |setPredicates| |chiSquare1| |plot| |factor|
+ |trailingCoefficient| |exp| |position!| |minPoints| |c06fuf| |stFunc2|
+ |selectNonFiniteRoutines| |declare!| |zero| |showTheFTable|
+ |horizConcat| |firstNumer| |sqrt| |setStatus| |blue| |tanintegrate|
+ |mapBivariate| |algebraicDecompose| |d01fcf| |ScanArabic| |complex|
+ |getCode| |null| |mathieu11| |real| |getOrder|
+ |selectMultiDimensionalRoutines| |cAsin| |basisOfRightAnnihilator|
+ |upperCase?| |leftGcd| |listRepresentation| |shanksDiscLogAlgorithm|
+ |And| |useNagFunctions| |OMread| |asinhIfCan| |imag|
+ |expandTrigProducts| |rules| |directProduct| |OMputBind|
+ |OMunhandledSymbol| |totalLex| |maxPoints| |radicalSolve| |subst| |Or|
+ |cyclicParents| |extractIfCan| |OMsetEncoding| |returnType!| |hue|
+ |figureUnits| |e04jaf| |rightDivide| |reducedQPowers| |boundOfCauchy|
+ |Not| |knownInfBasis| |goodPoint| |iiatanh| |stopTableGcd!|
+ |setCondition!| |outlineRender| |mainMonomials| |triangularSystems|
+ |character?| |lyndon| |functionIsContinuousAtEndPoints| |groebner?|
+ |backOldPos| |vspace| |destruct| |integralMatrixAtInfinity|
+ |indiceSubResultantEuclidean| |lyndon?| |radix| |modularGcd|
+ |OMUnknownSymbol?| |ocf2ocdf| |maximumExponent|
+ |factorSquareFreeByRecursion| |taylorRep| |conjug| |coefficient|
+ |setrest!| |points| |block| |imagk| |spherical|
+ |createPrimitiveElement| |mainContent| |setClosed| |modifyPointData|
+ |iitanh| |numerators| |nthFlag| |insertTop!| |iiacsc| |numerator|
+ |baseRDEsys| |d02raf| |objects| |countRealRootsMultiple| |binomial|
+ |trigs| |headReduced?| |bivariate?| |ratDenom| |or| |deleteRoutine!|
+ |maxIndex| |algebraic?| |pointLists| |intChoose| |in?| |base|
+ |increment| |denomLODE| |region| |showClipRegion| |dot| |double|
+ |lSpaceBasis| |and| |d02cjf| |errorKind| |e01bef| |maxColIndex|
+ |nonLinearPart| |sizeLess?| |contract| |axes| |e04gcf| |qqq|
+ |tanh2trigh| |inc| |lighting| |systemSizeIF| |endOfFile?| |member?|
+ |maxrow| |iicsch| |branchPoint?| |bit?| |round| |initiallyReduce|
+ |makeCrit| |whatInfinity| |setFieldInfo| |setMaxPoints| |setPrologue!|
+ |real?| |unparse| |bandedHessian| |prefix| |stoseInvertibleSetsqfreg|
+ |s17dcf| |quasiRegular| |stFunc1| |computeCycleEntry|
+ |branchPointAtInfinity?| |prinshINFO| |romberg| |discriminant|
+ |clikeUniv| |removeConstantTerm| |f01rdf| |dequeue!| |infinite?|
+ RF2UTS |closedCurve?| |comment| |ellipticCylindrical| |OMputAttr|
+ |less?| |c06ecf| |uniform| |comparison| |yellow| |pToDmp| |lllip|
+ |multMonom| |e02ajf| |solveLinearlyOverQ| |test| |rootsOf| |satisfy?|
+ |associatedSystem| |debug3D| |multinomial| |limitedIntegrate| |c06gbf|
+ |BumInSepFFE| |triangular?| |primitivePart!| |overbar|
+ |standardBasisOfCyclicSubmodule| |cubic| |gcdcofact| |drawComplex|
+ |lazyPremWithDefault| |conditionsForIdempotents| |factorPolynomial|
+ |eigenvalues| |noncommutativeJordanAlgebra?| |inRadical?| |sec2cos|
+ |rst| |OMgetEndObject| |rotate| |extractBottom!|
+ |numberOfComputedEntries| |nthFractionalTerm| |max| |edf2df|
+ |OMgetAttr| |distFact| |LagrangeInterpolation| |ricDsolve|
+ |ScanFloatIgnoreSpacesIfCan| |rightQuotient|
+ |primPartElseUnitCanonical!| |fortranCarriageReturn| |complex?|
+ |symbol?| |euclideanSize| |clearTheIFTable| |highCommonTerms|
+ |components| |droot| |super| |viewport3D| |complexRoots|
+ |permutations| |minimumExponent| |rightMult| |c06gsf| |pdct| |front|
+ |concat| |inverseColeman| |setOrder| |associatorDependence|
+ |useEisensteinCriterion?| |internalSubPolSet?| |getMatch| |cAcot|
+ |eyeDistance| |vconcat| |intermediateResultsIF| |LiePoly|
+ |pascalTriangle| |indices| |previous| |hash| |perspective| |digamma|
+ |determinant| |endSubProgram| |f02aef| |edf2fi| |clearTheFTable|
+ |createThreeSpace| |tan2trig| |symmetricTensors| |var1StepsDefault|
+ |count| |kroneckerDelta| |split!| |s13aaf| |bumptab| |whileLoop|
+ |leaf?| |dequeue| |modifyPoint| |basisOfLeftNucloid| |bottom!|
+ |localIntegralBasis| |subscriptedVariables| |nextNormalPoly|
+ |innerSolve| |c06gcf| |infix| |exponentialOrder| |d03edf|
+ |OMputInteger| |bag| |polyPart| |padecf| |element?| |atanIfCan|
+ |variationOfParameters| |linearDependenceOverZ|
+ |basisOfLeftAnnihilator| |zCoord| |OMlistCDs| |laguerreL| |iipow|
+ |messagePrint| |moebius| |gbasis| |normalDenom| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 19dc412a..8e4f9ff5 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4855 +1,4863 @@
-(3125919 . 3404712053)
-((-3753 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-3500 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2412 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1122 (-517)) |#2|) 34)) (-3182 (($ $) 58)) (-1292 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2624 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 70)) (-3240 (((-583 |#2|) $) 13)) (-1676 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-3696 (($ (-1 |#2| |#2|) $) 29)) (-1939 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2636 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 49)) (-3222 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-3029 (((-107) (-1 (-107) |#2|) $) 21)) (-1437 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1122 (-517))) 48)) (-3726 (($ $ (-517)) 55) (($ $ (-1122 (-517))) 54)) (-3223 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-2878 (($ $ $ (-517)) 51)) (-2435 (($ $) 50)) (-2272 (($ (-583 |#2|)) 52)) (-2455 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-583 $)) 61)) (-2254 (((-787) $) 68)) (-2258 (((-107) (-1 (-107) |#2|) $) 20)) (-1534 (((-107) $ $) 69)) (-1558 (((-107) $ $) 72)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -2878 (|#1| |#1| |#1| (-517))) (-15 -3753 ((-107) |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2412 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -2412 (|#2| |#1| (-517) |#2|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3240 ((-583 |#2|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) (-19 |#2|) (-1109)) (T -18))
-NIL
-(-10 -8 (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -2878 (|#1| |#1| |#1| (-517))) (-15 -3753 ((-107) |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2412 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -2412 (|#2| |#1| (-517) |#2|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3240 ((-583 |#2|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-2624 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 70)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-19 |#1|) (-1185) (-1109)) (T -19))
-NIL
-(-13 (-343 |t#1|) (-10 -7 (-6 -4184)))
-(((-33) . T) ((-97) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
-((-2646 (((-3 $ "failed") $ $) 12)) (-1663 (($ $) NIL) (($ $ $) 9)) (* (($ (-843) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2646 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2646 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-21) (-1185)) (T -21))
-((-1663 (*1 *1 *1) (-4 *1 (-21))) (-1663 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
-(-13 (-123) (-10 -8 (-15 -1663 ($ $)) (-15 -1663 ($ $ $)) (-15 * ($ (-517) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2778 (((-107) $) 10)) (-2706 (($) 15)) (* (($ (-843) $) 14) (($ (-703) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 -2706 (|#1|)) (-15 * (|#1| (-843) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 -2706 (|#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
-(((-23) (-1185)) (T -23))
-((-2398 (*1 *1) (-4 *1 (-23))) (-2706 (*1 *1) (-4 *1 (-23))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
-(-13 (-25) (-10 -8 (-15 (-2398) ($) -2497) (-15 -2706 ($) -2497) (-15 -2778 ((-107) $)) (-15 * ($ (-703) $))))
-(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((* (($ (-843) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-843) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13)))
-(((-25) (-1185)) (T -25))
-((-1645 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 -1645 ($ $ $)) (-15 * ($ (-843) $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2592 (((-583 $) (-874 $)) 29) (((-583 $) (-1070 $)) 16) (((-583 $) (-1070 $) (-1074)) 20)) (-3098 (($ (-874 $)) 27) (($ (-1070 $)) 11) (($ (-1070 $) (-1074)) 54)) (-1488 (((-583 $) (-874 $)) 30) (((-583 $) (-1070 $)) 18) (((-583 $) (-1070 $) (-1074)) 19)) (-3249 (($ (-874 $)) 28) (($ (-1070 $)) 13) (($ (-1070 $) (-1074)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2592 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2592 ((-583 |#1|) (-1070 |#1|))) (-15 -2592 ((-583 |#1|) (-874 |#1|))) (-15 -3098 (|#1| (-1070 |#1|) (-1074))) (-15 -3098 (|#1| (-1070 |#1|))) (-15 -3098 (|#1| (-874 |#1|))) (-15 -1488 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1488 ((-583 |#1|) (-1070 |#1|))) (-15 -1488 ((-583 |#1|) (-874 |#1|))) (-15 -3249 (|#1| (-1070 |#1|) (-1074))) (-15 -3249 (|#1| (-1070 |#1|))) (-15 -3249 (|#1| (-874 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2592 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2592 ((-583 |#1|) (-1070 |#1|))) (-15 -2592 ((-583 |#1|) (-874 |#1|))) (-15 -3098 (|#1| (-1070 |#1|) (-1074))) (-15 -3098 (|#1| (-1070 |#1|))) (-15 -3098 (|#1| (-874 |#1|))) (-15 -1488 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1488 ((-583 |#1|) (-1070 |#1|))) (-15 -1488 ((-583 |#1|) (-874 |#1|))) (-15 -3249 (|#1| (-1070 |#1|) (-1074))) (-15 -3249 (|#1| (-1070 |#1|))) (-15 -3249 (|#1| (-874 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2592 (((-583 $) (-874 $)) 80) (((-583 $) (-1070 $)) 79) (((-583 $) (-1070 $) (-1074)) 78)) (-3098 (($ (-874 $)) 83) (($ (-1070 $)) 82) (($ (-1070 $) (-1074)) 81)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-1386 (($ $) 92)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-1488 (((-583 $) (-874 $)) 86) (((-583 $) (-1070 $)) 85) (((-583 $) (-1070 $) (-1074)) 84)) (-3249 (($ (-874 $)) 89) (($ (-1070 $)) 88) (($ (-1070 $) (-1074)) 87)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 91)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-27) (-1185)) (T -27))
-((-3249 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-3249 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3098 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3098 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-3098 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
-(-13 (-333) (-918) (-10 -8 (-15 -3249 ($ (-874 $))) (-15 -3249 ($ (-1070 $))) (-15 -3249 ($ (-1070 $) (-1074))) (-15 -1488 ((-583 $) (-874 $))) (-15 -1488 ((-583 $) (-1070 $))) (-15 -1488 ((-583 $) (-1070 $) (-1074))) (-15 -3098 ($ (-874 $))) (-15 -3098 ($ (-1070 $))) (-15 -3098 ($ (-1070 $) (-1074))) (-15 -2592 ((-583 $) (-874 $))) (-15 -2592 ((-583 $) (-1070 $))) (-15 -2592 ((-583 $) (-1070 $) (-1074)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-918) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-2592 (((-583 $) (-874 $)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 $) (-1074)) 50) (((-583 $) $) 19) (((-583 $) $ (-1074)) 41)) (-3098 (($ (-874 $)) NIL) (($ (-1070 $)) NIL) (($ (-1070 $) (-1074)) 52) (($ $) 17) (($ $ (-1074)) 37)) (-1488 (((-583 $) (-874 $)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 $) (-1074)) 48) (((-583 $) $) 15) (((-583 $) $ (-1074)) 43)) (-3249 (($ (-874 $)) NIL) (($ (-1070 $)) NIL) (($ (-1070 $) (-1074)) NIL) (($ $) 12) (($ $ (-1074)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2592 ((-583 |#1|) |#1| (-1074))) (-15 -3098 (|#1| |#1| (-1074))) (-15 -2592 ((-583 |#1|) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -1488 ((-583 |#1|) |#1| (-1074))) (-15 -3249 (|#1| |#1| (-1074))) (-15 -1488 ((-583 |#1|) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2592 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2592 ((-583 |#1|) (-1070 |#1|))) (-15 -2592 ((-583 |#1|) (-874 |#1|))) (-15 -3098 (|#1| (-1070 |#1|) (-1074))) (-15 -3098 (|#1| (-1070 |#1|))) (-15 -3098 (|#1| (-874 |#1|))) (-15 -1488 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1488 ((-583 |#1|) (-1070 |#1|))) (-15 -1488 ((-583 |#1|) (-874 |#1|))) (-15 -3249 (|#1| (-1070 |#1|) (-1074))) (-15 -3249 (|#1| (-1070 |#1|))) (-15 -3249 (|#1| (-874 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
-NIL
-(-10 -8 (-15 -2592 ((-583 |#1|) |#1| (-1074))) (-15 -3098 (|#1| |#1| (-1074))) (-15 -2592 ((-583 |#1|) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -1488 ((-583 |#1|) |#1| (-1074))) (-15 -3249 (|#1| |#1| (-1074))) (-15 -1488 ((-583 |#1|) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2592 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -2592 ((-583 |#1|) (-1070 |#1|))) (-15 -2592 ((-583 |#1|) (-874 |#1|))) (-15 -3098 (|#1| (-1070 |#1|) (-1074))) (-15 -3098 (|#1| (-1070 |#1|))) (-15 -3098 (|#1| (-874 |#1|))) (-15 -1488 ((-583 |#1|) (-1070 |#1|) (-1074))) (-15 -1488 ((-583 |#1|) (-1070 |#1|))) (-15 -1488 ((-583 |#1|) (-874 |#1|))) (-15 -3249 (|#1| (-1070 |#1|) (-1074))) (-15 -3249 (|#1| (-1070 |#1|))) (-15 -3249 (|#1| (-874 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2592 (((-583 $) (-874 $)) 80) (((-583 $) (-1070 $)) 79) (((-583 $) (-1070 $) (-1074)) 78) (((-583 $) $) 126) (((-583 $) $ (-1074)) 124)) (-3098 (($ (-874 $)) 83) (($ (-1070 $)) 82) (($ (-1070 $) (-1074)) 81) (($ $) 127) (($ $ (-1074)) 125)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-1074)) $) 201)) (-2374 (((-377 (-1070 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-1341 (((-583 (-556 $)) $) 164)) (-2646 (((-3 $ "failed") $ $) 19)) (-1786 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-1386 (($ $) 92)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-1488 (((-583 $) (-874 $)) 86) (((-583 $) (-1070 $)) 85) (((-583 $) (-1070 $) (-1074)) 84) (((-583 $) $) 130) (((-583 $) $ (-1074)) 128)) (-3249 (($ (-874 $)) 89) (($ (-1070 $)) 88) (($ (-1070 $) (-1074)) 87) (($ $) 131) (($ $ (-1074)) 129)) (-1837 (((-3 (-874 |#1|) "failed") $) 251 (|has| |#1| (-961))) (((-3 (-377 (-874 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-952 (-517)))) (((-3 (-1074) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3782 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3232 (((-874 |#1|) $) 252 (|has| |#1| (-961))) (((-377 (-874 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-952 (-517)))) (((-1074) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3782 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2532 (($ $ $) 55)) (-2749 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-961))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 240 (|has| |#1| (-961))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 121 (-3782 (-4032 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4032 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (((-623 (-517)) (-623 $)) 120 (-3782 (-4032 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4032 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 193 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 192 (|has| |#1| (-808 (-517))))) (-2870 (($ (-583 $)) 158) (($ $) 157)) (-2576 (((-583 (-109)) $) 165)) (-2283 (((-109) (-109)) 166)) (-3469 (((-107) $) 31)) (-2119 (((-107) $) 186 (|has| $ (-952 (-517))))) (-1583 (($ $) 218 (|has| |#1| (-961)))) (-1842 (((-1026 |#1| (-556 $)) $) 217 (|has| |#1| (-961)))) (-2003 (($ $ (-517)) 91)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3733 (((-1070 $) (-556 $)) 183 (|has| $ (-961)))) (-4055 (($ $ $) 137)) (-3105 (($ $ $) 136)) (-1939 (($ (-1 $ $) (-556 $)) 172)) (-1337 (((-3 (-556 $) "failed") $) 162)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-2362 (((-583 (-556 $)) $) 163)) (-1893 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-3789 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1015)))) (-2337 (((-3 (-2 (|:| |val| $) (|:| -3010 (-517))) "failed") $) 221 (|has| |#1| (-961)))) (-1674 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-1266 (((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3106 (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-1074)) 220 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $) 213 (|has| |#1| (-1015)))) (-2506 (((-107) $ (-1074)) 169) (((-107) $ (-109)) 168)) (-1639 (($ $) 70)) (-1916 (((-703) $) 161)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 199)) (-1671 ((|#1| $) 200)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2376 (((-107) $ (-1074)) 174) (((-107) $ $) 173)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-1947 (((-107) $) 185 (|has| $ (-952 (-517))))) (-2049 (($ $ (-1074) (-703) (-1 $ $)) 225 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-961))) (($ $ (-583 (-109)) (-583 $) (-1074)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1074)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1074) (-1 $ $)) 178) (($ $ (-1074) (-1 $ (-583 $))) 177) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3196 (((-703) $) 58)) (-1437 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-1394 (($ $ $) 160) (($ $) 159)) (-1248 (($ $ (-1074)) 249 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 248 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 247 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) 246 (|has| |#1| (-961)))) (-1728 (($ $) 228 (|has| |#1| (-509)))) (-1852 (((-1026 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2780 (($ $) 184 (|has| $ (-961)))) (-3667 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-814 (-349)) $) 191 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 190 (|has| |#1| (-558 (-814 (-517)))))) (-1757 (($ $ $) 254 (|has| |#1| (-442)))) (-2901 (($ $ $) 253 (|has| |#1| (-442)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-874 |#1|)) 250 (|has| |#1| (-961))) (($ (-377 (-874 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1026 |#1| (-556 $))) 216 (|has| |#1| (-961))) (($ |#1|) 196) (($ (-1074)) 187) (($ (-556 $)) 138)) (-2486 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-3137 (($ (-583 $)) 156) (($ $) 155)) (-2794 (((-107) (-109)) 167)) (-2673 (((-107) $ $) 39)) (-1661 (($ (-1074) (-583 $)) 206) (($ (-1074) $ $ $ $) 205) (($ (-1074) $ $ $) 204) (($ (-1074) $ $) 203) (($ (-1074) $) 202)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1074)) 245 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 244 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 243 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) 242 (|has| |#1| (-961)))) (-1600 (((-107) $ $) 134)) (-1571 (((-107) $ $) 133)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 135)) (-1558 (((-107) $ $) 132)) (-1678 (($ $ $) 64) (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
-(((-29 |#1|) (-1185) (-13 (-779) (-509))) (T -29))
-((-3249 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1488 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3249 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1488 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3098 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2592 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3098 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2592 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3249 ($ $)) (-15 -1488 ((-583 $) $)) (-15 -3249 ($ $ (-1074))) (-15 -1488 ((-583 $) $ (-1074))) (-15 -3098 ($ $)) (-15 -2592 ((-583 $) $)) (-15 -3098 ($ $ (-1074))) (-15 -2592 ((-583 $) $ (-1074)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-822 (-1074)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) -3782 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1074)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1109) . T) ((-1113) . T))
-((-3674 (((-998 (-199)) $) NIL)) (-3661 (((-998 (-199)) $) NIL)) (-2604 (($ $ (-199)) 122)) (-2348 (($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517)))) 84)) (-3221 (((-583 (-583 (-865 (-199)))) $) 134)) (-2254 (((-787) $) 146)))
-(((-30) (-13 (-876) (-10 -8 (-15 -2348 ($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -2604 ($ $ (-199)))))) (T -30))
-((-2348 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1074)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
-(-13 (-876) (-10 -8 (-15 -2348 ($ (-874 (-517)) (-1074) (-1074) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -2604 ($ $ (-199)))))
-((-3249 ((|#2| (-1070 |#2|) (-1074)) 42)) (-2283 (((-109) (-109)) 55)) (-3733 (((-1070 |#2|) (-556 |#2|)) 132 (|has| |#1| (-952 (-517))))) (-3455 ((|#2| |#1| (-517)) 121 (|has| |#1| (-952 (-517))))) (-3343 ((|#2| (-1070 |#2|) |#2|) 30)) (-3017 (((-787) (-583 |#2|)) 85)) (-2780 ((|#2| |#2|) 128 (|has| |#1| (-952 (-517))))) (-2794 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 96 (|has| |#1| (-952 (-517))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -3249 (|#2| (-1070 |#2|) (-1074))) (-15 -2283 ((-109) (-109))) (-15 -2794 ((-107) (-109))) (-15 -3343 (|#2| (-1070 |#2|) |#2|)) (-15 -3017 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3733 ((-1070 |#2|) (-556 |#2|))) (-15 -2780 (|#2| |#2|)) (-15 -3455 (|#2| |#1| (-517)))) |%noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
-((-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1070 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-3343 (*1 *2 *3 *2) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1074)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
-(-10 -7 (-15 -3249 (|#2| (-1070 |#2|) (-1074))) (-15 -2283 ((-109) (-109))) (-15 -2794 ((-107) (-109))) (-15 -3343 (|#2| (-1070 |#2|) |#2|)) (-15 -3017 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3733 ((-1070 |#2|) (-556 |#2|))) (-15 -2780 (|#2| |#2|)) (-15 -3455 (|#2| |#1| (-517)))) |%noBranch|))
-((-3552 (((-107) $ (-703)) 16)) (-2706 (($) 10)) (-2629 (((-107) $ (-703)) 15)) (-2026 (((-107) $ (-703)) 14)) (-2349 (((-107) $ $) 8)) (-1596 (((-107) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2706 (|#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))) (-15 -1596 ((-107) |#1|)) (-15 -2349 ((-107) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2706 (|#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))) (-15 -1596 ((-107) |#1|)) (-15 -2349 ((-107) |#1| |#1|)))
-((-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-2629 (((-107) $ (-703)) 9)) (-2026 (((-107) $ (-703)) 10)) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-2435 (($ $) 13)) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-33) (-1185)) (T -33))
-((-2349 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2435 (*1 *1 *1) (-4 *1 (-33))) (-2756 (*1 *1) (-4 *1 (-33))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2026 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3552 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2706 (*1 *1) (-4 *1 (-33))) (-2290 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-33)) (-5 *2 (-703)))))
-(-13 (-1109) (-10 -8 (-15 -2349 ((-107) $ $)) (-15 -2435 ($ $)) (-15 -2756 ($)) (-15 -1596 ((-107) $)) (-15 -2026 ((-107) $ (-703))) (-15 -2629 ((-107) $ (-703))) (-15 -3552 ((-107) $ (-703))) (-15 -2706 ($) -2497) (IF (|has| $ (-6 -4183)) (-15 -2290 ((-703) $)) |%noBranch|)))
-(((-1109) . T))
-((-1584 (($ $) 11)) (-1557 (($ $) 10)) (-1614 (($ $) 9)) (-3756 (($ $) 8)) (-1599 (($ $) 7)) (-1570 (($ $) 6)))
-(((-34) (-1185)) (T -34))
-((-1584 (*1 *1 *1) (-4 *1 (-34))) (-1557 (*1 *1 *1) (-4 *1 (-34))) (-1614 (*1 *1 *1) (-4 *1 (-34))) (-3756 (*1 *1 *1) (-4 *1 (-34))) (-1599 (*1 *1 *1) (-4 *1 (-34))) (-1570 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -1570 ($ $)) (-15 -1599 ($ $)) (-15 -3756 ($ $)) (-15 -1614 ($ $)) (-15 -1557 ($ $)) (-15 -1584 ($ $))))
-((-1587 (((-107) $ $) 18 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3207 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 125)) (-3026 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 148)) (-2811 (($ $) 146)) (-3448 (($) 72) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 71)) (-2787 (((-1159) $ |#1| |#1|) 99 (|has| $ (-6 -4184))) (((-1159) $ (-517) (-517)) 178 (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 159 (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3500 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 200 (|has| $ (-6 -4184))) (($ $) 199 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3552 (((-107) $ (-703)) 8)) (-3967 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 134 (|has| $ (-6 -4184)))) (-1326 (($ $ $) 155 (|has| $ (-6 -4184)))) (-2619 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 157 (|has| $ (-6 -4184)))) (-4013 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 153 (|has| $ (-6 -4184)))) (-2412 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 189 (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-1122 (-517)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 160 (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "last" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 158 (|has| $ (-6 -4184))) (($ $ "rest" $) 156 (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "first" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 154 (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "value" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 133 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 132 (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 45 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 216)) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 55 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 175 (|has| $ (-6 -4183)))) (-3013 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 147)) (-3263 (((-3 |#2| "failed") |#1| $) 61)) (-2706 (($) 7 T CONST)) (-3182 (($ $) 201 (|has| $ (-6 -4184)))) (-3173 (($ $) 211)) (-1761 (($ $ (-703)) 142) (($ $) 140)) (-3439 (($ $) 214 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-1783 (($ $) 58 (-3782 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))) (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 220) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 215 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 54 (|has| $ (-6 -4183))) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 174 (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 56 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 52 (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 176 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 173 (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 172 (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 190 (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) 88) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) 188)) (-3295 (((-107) $) 192)) (-2624 (((-517) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 208) (((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 207 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) (((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 30 (|has| $ (-6 -4183))) (((-583 |#2|) $) 79 (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 114 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 123)) (-4082 (((-107) $ $) 131 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3475 (($ (-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 169)) (-2629 (((-107) $ (-703)) 9)) (-1739 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-4055 (($ $ $) 198 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2931 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1676 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 29 (|has| $ (-6 -4183))) (((-583 |#2|) $) 80 (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 115 (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-3920 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-3105 (($ $ $) 197 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 34 (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 110 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 109)) (-1619 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 225)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 128)) (-2284 (((-107) $) 124)) (-1277 (((-1057) $) 22 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2067 (($ $ (-703)) 145) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 143)) (-3666 (((-583 |#1|) $) 63)) (-2550 (((-107) |#1| $) 64)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 39)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 40) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-2636 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-2950 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-4093 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-3214 (((-1021) $) 21 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1750 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 137)) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 51) (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 171)) (-2880 (($ $ |#2|) 98 (|has| $ (-6 -4184))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 179 (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 41)) (-1556 (((-107) $) 191)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 32 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 112 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) 26 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 25 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 24 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 23 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 121 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 120 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 119 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) 118 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 182 (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3949 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 185)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 187) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) 186) (($ $ (-1122 (-517))) 165) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "first") 138) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "value") 126)) (-3792 (((-517) $ $) 129)) (-3230 (($) 49) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 48)) (-1415 (($ $ (-517)) 222) (($ $ (-1122 (-517))) 221)) (-3726 (($ $ (-517)) 164) (($ $ (-1122 (-517))) 163)) (-1985 (((-107) $) 127)) (-2849 (($ $) 151)) (-3825 (($ $) 152 (|has| $ (-6 -4184)))) (-2077 (((-703) $) 150)) (-2334 (($ $) 149)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 113 (|has| $ (-6 -4183)))) (-2878 (($ $ $ (-517)) 202 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493)))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 50) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 170)) (-1819 (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 224) (($ $ $) 223)) (-2455 (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 136) (($ $ $) 135)) (-2254 (((-787) $) 20 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2125 (((-583 $) $) 122)) (-2432 (((-107) $ $) 130 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 42)) (-2074 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") |#1| $) 108)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 33 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 111 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 195 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1571 (((-107) $ $) 194 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1534 (((-107) $ $) 19 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1585 (((-107) $ $) 196 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1558 (((-107) $ $) 193 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-35 |#1| |#2|) (-1185) (-1003) (-1003)) (T -35))
-((-2074 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3458 *3) (|:| -1338 *4))))))
-(-13 (-1086 |t#1| |t#2|) (-603 (-2 (|:| -3458 |t#1|) (|:| -1338 |t#2|))) (-10 -8 (-15 -2074 ((-3 (-2 (|:| -3458 |t#1|) (|:| -1338 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-97) -3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779))) ((-557 (-787)) -3782 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-209 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-258 (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-254 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-343 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-456 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-456 |#2|) . T) ((-550 (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-588 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-603 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-779) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)) ((-926 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-1003) -3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779))) ((-1048 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-1086 |#1| |#2|) . T) ((-1109) . T) ((-1143 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T))
-((-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1185) (-156)) (T -37))
-((-2254 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
-(-13 (-961) (-650 |t#1|) (-10 -8 (-15 -2254 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3447 (((-388 |#1|) |#1|) 38)) (-1376 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-4088 (((-107) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -1376 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -3447 ((-388 |#1|) |#1|)) (-15 -4088 ((-107) |#1|))) (-1131 (-47))) (T -38))
-((-4088 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-3447 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))))
-(-10 -7 (-15 -1376 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -3447 ((-388 |#1|) |#1|)) (-15 -4088 ((-107) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2548 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2239 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3531 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1205 (((-623 (-377 |#2|)) (-1154 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1462 (((-377 |#2|) $) NIL)) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2674 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2448 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1719 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1660 (((-107)) NIL)) (-3837 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-4047 (($ (-1154 (-377 |#2|)) (-1154 $)) NIL) (($ (-1154 (-377 |#2|))) 57) (($ (-1154 |#2|) |#2|) 124)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2532 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2739 (((-623 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-2747 (((-1154 $) (-1154 $)) NIL)) (-1292 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3775 (((-3 $ "failed") $) NIL)) (-3299 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3659 (((-107) |#1| |#1|) NIL)) (-3334 (((-843)) NIL)) (-4100 (($) NIL (|has| (-377 |#2|) (-338)))) (-3735 (((-107)) NIL)) (-3387 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2509 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2038 (($ $) NIL)) (-2170 (($) NIL (|has| (-377 |#2|) (-319)))) (-3449 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2616 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3083 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3730 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3469 (((-107) $) NIL)) (-2430 (((-703)) NIL)) (-3540 (((-1154 $) (-1154 $)) 100)) (-2962 (((-377 |#2|) $) NIL)) (-1734 (((-583 (-874 |#1|)) (-1074)) NIL (|has| |#1| (-333)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2956 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4034 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-1283 ((|#3| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1277 (((-1057) $) NIL)) (-3954 (((-1159) (-703)) 78)) (-1340 (((-623 (-377 |#2|))) 51)) (-3454 (((-623 (-377 |#2|))) 44)) (-1639 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1909 (($ (-1154 |#2|) |#2|) 125)) (-2062 (((-623 (-377 |#2|))) 45)) (-1474 (((-623 (-377 |#2|))) 43)) (-2397 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-2216 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 63)) (-3816 (((-1154 $)) 42)) (-1866 (((-1154 $)) 41)) (-3406 (((-107) $) NIL)) (-2464 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3680 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3544 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3719 (((-3 |#2| "failed")) NIL)) (-3214 (((-1021) $) NIL)) (-1900 (((-703)) NIL)) (-3244 (($) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-377 |#2|) (-333)))) (-1387 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-1376 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2483 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3196 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1437 ((|#1| $ |#1| |#1|) NIL)) (-1476 (((-3 |#2| "failed")) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3383 (((-377 |#2|) (-1154 $)) NIL) (((-377 |#2|)) 39)) (-3459 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-1248 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2072 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2780 ((|#3|) 50)) (-2858 (($) NIL (|has| (-377 |#2|) (-319)))) (-3589 (((-1154 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1154 $)) 101)) (-3667 (((-1154 (-377 |#2|)) $) NIL) (($ (-1154 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-2510 (((-1154 $) (-1154 $)) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3782 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2486 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1924 ((|#3| $) NIL)) (-1217 (((-703)) NIL)) (-2662 (((-107)) 37)) (-2378 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-2080 (((-1154 $)) 91)) (-2673 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1342 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2249 (((-107)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2398 (($) 16 T CONST)) (-2411 (($) 26 T CONST)) (-2738 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-1159) (-703))))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) |#3|) (T -39))
-((-3954 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *2 (-1159)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1131 (-377 *5))) (-14 *7 *6))))
-(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-1159) (-703)))))
-((-1880 ((|#2| |#2|) 47)) (-4042 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-3587 ((|#2| |#2|) 85 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2195 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2429 ((|#2| (-109) |#2| (-703)) 113 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-3757 (((-1070 |#2|) |#2|) 44)) (-2608 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -1880 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2608 (|#2| |#2| |#2|)) (-15 -2608 (|#2| |#2| (-583 |#2|))) (-15 -2608 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3757 ((-1070 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2195 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -2429 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 |#1| (-556 $)) $)) (-15 -1852 ((-1026 |#1| (-556 $)) $)) (-15 -2254 ($ (-1026 |#1| (-556 $))))))) (T -40))
-((-2429 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *5 (-556 $)) $)) (-15 -1852 ((-1026 *5 (-556 $)) $)) (-15 -2254 ($ (-1026 *5 (-556 $))))))))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1070 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-2608 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))))
-(-10 -7 (-15 -1880 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2608 (|#2| |#2| |#2|)) (-15 -2608 (|#2| |#2| (-583 |#2|))) (-15 -2608 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3757 ((-1070 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2195 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -2429 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1376 (((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1376 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -1376 ((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47))))) (-779) (-725) (-871 (-47) |#2| |#1|)) (T -41))
-((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -1376 ((-388 (-1070 |#3|)) (-1070 |#3|) (-583 (-47)))))
-((-3821 (((-703) |#2|) 65)) (-3292 (((-703) |#2|) 68)) (-2632 (((-583 |#2|)) 33)) (-2129 (((-703) |#2|) 67)) (-2792 (((-703) |#2|) 64)) (-2900 (((-703) |#2|) 66)) (-4161 (((-583 (-623 |#1|))) 60)) (-2277 (((-583 |#2|)) 55)) (-4115 (((-583 |#2|) |#2|) 43)) (-2417 (((-583 |#2|)) 57)) (-1439 (((-583 |#2|)) 56)) (-3831 (((-583 (-623 |#1|))) 48)) (-2661 (((-583 |#2|)) 54)) (-1838 (((-583 |#2|) |#2|) 42)) (-3884 (((-583 |#2|)) 50)) (-3783 (((-583 (-623 |#1|))) 61)) (-3084 (((-583 |#2|)) 59)) (-2080 (((-1154 |#2|) (-1154 |#2|)) 83 (|has| |#1| (-278)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2129 ((-703) |#2|)) (-15 -3292 ((-703) |#2|)) (-15 -2792 ((-703) |#2|)) (-15 -3821 ((-703) |#2|)) (-15 -2900 ((-703) |#2|)) (-15 -3884 ((-583 |#2|))) (-15 -1838 ((-583 |#2|) |#2|)) (-15 -4115 ((-583 |#2|) |#2|)) (-15 -2661 ((-583 |#2|))) (-15 -2277 ((-583 |#2|))) (-15 -1439 ((-583 |#2|))) (-15 -2417 ((-583 |#2|))) (-15 -3084 ((-583 |#2|))) (-15 -3831 ((-583 (-623 |#1|)))) (-15 -4161 ((-583 (-623 |#1|)))) (-15 -3783 ((-583 (-623 |#1|)))) (-15 -2632 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -2080 ((-1154 |#2|) (-1154 |#2|))) |%noBranch|)) (-509) (-387 |#1|)) (T -42))
-((-2080 (*1 *2 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-2632 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3783 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4161 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3831 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3084 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2417 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1439 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2277 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2661 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4115 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3884 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3292 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2129 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(-10 -7 (-15 -2129 ((-703) |#2|)) (-15 -3292 ((-703) |#2|)) (-15 -2792 ((-703) |#2|)) (-15 -3821 ((-703) |#2|)) (-15 -2900 ((-703) |#2|)) (-15 -3884 ((-583 |#2|))) (-15 -1838 ((-583 |#2|) |#2|)) (-15 -4115 ((-583 |#2|) |#2|)) (-15 -2661 ((-583 |#2|))) (-15 -2277 ((-583 |#2|))) (-15 -1439 ((-583 |#2|))) (-15 -2417 ((-583 |#2|))) (-15 -3084 ((-583 |#2|))) (-15 -3831 ((-583 (-623 |#1|)))) (-15 -4161 ((-583 (-623 |#1|)))) (-15 -3783 ((-583 (-623 |#1|)))) (-15 -2632 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -2080 ((-1154 |#2|) (-1154 |#2|))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1346 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2507 (((-1154 (-623 |#1|)) (-1154 $)) NIL) (((-1154 (-623 |#1|))) 24)) (-3118 (((-1154 $)) 50)) (-2706 (($) NIL T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-2588 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2318 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-2571 ((|#1| $) NIL)) (-3981 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-1930 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-1559 (((-1070 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-3132 (($ $ (-843)) NIL)) (-2831 ((|#1| $) NIL)) (-2775 (((-1070 |#1|) $) NIL (|has| |#1| (-509)))) (-1618 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-2961 (((-1070 |#1|) $) NIL)) (-2622 (((-107)) 86)) (-4047 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) NIL)) (-3775 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3334 (((-843)) 51)) (-3241 (((-107)) NIL)) (-3363 (($ $ (-843)) NIL)) (-3762 (((-107)) NIL)) (-2765 (((-107)) NIL)) (-4079 (((-107)) 88)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1202 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1968 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-1385 ((|#1| $) NIL)) (-2790 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-3174 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-1638 (((-1070 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-2184 (($ $ (-843)) NIL)) (-3368 ((|#1| $) NIL)) (-3018 (((-1070 |#1|) $) NIL (|has| |#1| (-509)))) (-2478 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-4020 (((-1070 |#1|) $) NIL)) (-1816 (((-107)) 85)) (-1277 (((-1057) $) NIL)) (-3499 (((-107)) 92)) (-2220 (((-107)) 91)) (-2268 (((-107)) 93)) (-3214 (((-1021) $) NIL)) (-2836 (((-107)) 87)) (-1437 ((|#1| $ (-517)) 53)) (-3589 (((-1154 |#1|) $ (-1154 $)) 47) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) 28) (((-623 |#1|) (-1154 $)) NIL)) (-3667 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL)) (-3346 (((-583 (-874 |#1|)) (-1154 $)) NIL) (((-583 (-874 |#1|))) NIL)) (-2901 (($ $ $) NIL)) (-3484 (((-107)) 83)) (-2254 (((-787) $) 68) (($ (-1154 |#1|)) 22)) (-2080 (((-1154 $)) 44)) (-2360 (((-583 (-1154 |#1|))) NIL (|has| |#1| (-509)))) (-3950 (($ $ $ $) NIL)) (-2534 (((-107)) 81)) (-1695 (($ (-623 |#1|) $) 18)) (-2145 (($ $ $) NIL)) (-1669 (((-107)) 84)) (-3610 (((-107)) 82)) (-3558 (((-107)) 80)) (-2398 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1041 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1041 |#2| |#1|)) (-10 -8 (-15 -2254 ($ (-1154 |#1|))))) (-333) (-843) (-583 (-1074)) (-1154 (-623 |#1|))) (T -43))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))))
-(-13 (-387 |#1|) (-585 (-1041 |#2| |#1|)) (-10 -8 (-15 -2254 ($ (-1154 |#1|)))))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3207 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3026 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2811 (($ $) NIL)) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184))) (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3500 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779))))) (-4044 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-3967 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184)))) (-1326 (($ $ $) 27 (|has| $ (-6 -4184)))) (-2619 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184)))) (-4013 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 29 (|has| $ (-6 -4184)))) (-2412 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-1122 (-517)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "last" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "first" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "value" (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3013 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3263 (((-3 |#2| "failed") |#1| $) 37)) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1761 (($ $ (-703)) NIL) (($ $) 24)) (-3439 (($ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) NIL)) (-3295 (((-107) $) NIL)) (-2624 (((-517) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) (((-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 18 (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 18 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3475 (($ (-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2931 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1676 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-1619 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) 41 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2067 (($ $ (-703)) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3666 (((-583 |#1|) $) 20)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2636 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-4093 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 23)) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-1556 (((-107) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3949 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 17)) (-1596 (((-107) $) 16)) (-2756 (($) 13)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "first") NIL) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $ "value") NIL)) (-3792 (((-517) $ $) NIL)) (-3230 (($) 12) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-1415 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1985 (((-107) $) NIL)) (-2849 (($ $) NIL)) (-3825 (($ $) NIL (|has| $ (-6 -4184)))) (-2077 (((-703) $) NIL)) (-2334 (($ $) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-1819 (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL) (($ $ $) NIL)) (-2455 (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 25) (($ $ $) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2074 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") |#1| $) 43)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1585 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-779)))) (-2290 (((-703) $) 22 (|has| $ (-6 -4183)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1003) (-1003)) (T -44))
+(3125642 . 3409262783)
+((-3560 (((-107) (-1 (-107) |#2| |#2|) $) 63) (((-107) $) NIL)) (-3613 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2443 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1123 (-517)) |#2|) 34)) (-1407 (($ $) 59)) (-1521 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1211 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 71)) (-1535 (((-583 |#2|) $) 13)) (-3798 (($ (-1 (-107) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2744 (($ (-1 |#2| |#2|) $) 29)) (-3308 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1745 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 50)) (-2999 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-3480 (((-107) (-1 (-107) |#2|) $) 21)) (-2607 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1123 (-517))) 49)) (-3726 (($ $ (-517)) 56) (($ $ (-1123 (-517))) 55)) (-4135 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-2790 (($ $ $ (-517)) 52)) (-2460 (($ $) 51)) (-2286 (($ (-583 |#2|)) 53)) (-4108 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-583 $)) 62)) (-2269 (((-787) $) 69)) (-3160 (((-107) (-1 (-107) |#2|) $) 20)) (-1583 (((-107) $ $) 70)) (-1607 (((-107) $ $) 73)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1583 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1407 (|#1| |#1|)) (-15 -2790 (|#1| |#1| |#1| (-517))) (-15 -3560 ((-107) |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#2| |#1| (-1123 (-517)) |#2|)) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2443 (|#2| |#1| (-517) |#2|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -1535 ((-583 |#2|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|))) (-19 |#2|) (-1110)) (T -18))
+NIL
+(-10 -8 (-15 -1583 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1407 (|#1| |#1|)) (-15 -2790 (|#1| |#1| |#1| (-517))) (-15 -3560 ((-107) |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#2| |#1| (-1123 (-517)) |#2|)) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2443 (|#2| |#1| (-517) |#2|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -1535 ((-583 |#2|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1211 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 70)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-19 |#1|) (-1187) (-1110)) (T -19))
+NIL
+(-13 (-343 |t#1|) (-10 -7 (-6 -4191)))
+(((-33) . T) ((-97) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1004) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-1110) . T))
+((-1250 (((-3 $ "failed") $ $) 12)) (-1691 (($ $) NIL) (($ $ $) 9)) (* (($ (-844) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1250 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1250 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-21) (-1187)) (T -21))
+((-1691 (*1 *1 *1) (-4 *1 (-21))) (-1691 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
+(-13 (-123) (-10 -8 (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 * ($ (-517) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2033 (((-107) $) 10)) (-1681 (($) 15)) (* (($ (-844) $) 14) (($ (-703) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 -1681 (|#1|)) (-15 * (|#1| (-844) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 -1681 (|#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15)))
+(((-23) (-1187)) (T -23))
+((-3608 (*1 *1) (-4 *1 (-23))) (-1681 (*1 *1) (-4 *1 (-23))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
+(-13 (-25) (-10 -8 (-15 (-3608) ($) -1384) (-15 -1681 ($) -1384) (-15 -2033 ((-107) $)) (-15 * ($ (-703) $))))
+(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((* (($ (-844) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-844) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13)))
+(((-25) (-1187)) (T -25))
+((-1677 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-844)))))
+(-13 (-1004) (-10 -8 (-15 -1677 ($ $ $)) (-15 * ($ (-844) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-1464 (((-583 $) (-875 $)) 29) (((-583 $) (-1071 $)) 16) (((-583 $) (-1071 $) (-1075)) 20)) (-3458 (($ (-875 $)) 27) (($ (-1071 $)) 11) (($ (-1071 $) (-1075)) 54)) (-4054 (((-583 $) (-875 $)) 30) (((-583 $) (-1071 $)) 18) (((-583 $) (-1071 $) (-1075)) 19)) (-3772 (($ (-875 $)) 28) (($ (-1071 $)) 13) (($ (-1071 $) (-1075)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1464 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -1464 ((-583 |#1|) (-1071 |#1|))) (-15 -1464 ((-583 |#1|) (-875 |#1|))) (-15 -3458 (|#1| (-1071 |#1|) (-1075))) (-15 -3458 (|#1| (-1071 |#1|))) (-15 -3458 (|#1| (-875 |#1|))) (-15 -4054 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -4054 ((-583 |#1|) (-1071 |#1|))) (-15 -4054 ((-583 |#1|) (-875 |#1|))) (-15 -3772 (|#1| (-1071 |#1|) (-1075))) (-15 -3772 (|#1| (-1071 |#1|))) (-15 -3772 (|#1| (-875 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1464 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -1464 ((-583 |#1|) (-1071 |#1|))) (-15 -1464 ((-583 |#1|) (-875 |#1|))) (-15 -3458 (|#1| (-1071 |#1|) (-1075))) (-15 -3458 (|#1| (-1071 |#1|))) (-15 -3458 (|#1| (-875 |#1|))) (-15 -4054 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -4054 ((-583 |#1|) (-1071 |#1|))) (-15 -4054 ((-583 |#1|) (-875 |#1|))) (-15 -3772 (|#1| (-1071 |#1|) (-1075))) (-15 -3772 (|#1| (-1071 |#1|))) (-15 -3772 (|#1| (-875 |#1|))))
+((-2118 (((-107) $ $) 7)) (-1464 (((-583 $) (-875 $)) 80) (((-583 $) (-1071 $)) 79) (((-583 $) (-1071 $) (-1075)) 78)) (-3458 (($ (-875 $)) 83) (($ (-1071 $)) 82) (($ (-1071 $) (-1075)) 81)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3879 (($ $) 92)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-4054 (((-583 $) (-875 $)) 86) (((-583 $) (-1071 $)) 85) (((-583 $) (-1071 $) (-1075)) 84)) (-3772 (($ (-875 $)) 89) (($ (-1071 $)) 88) (($ (-1071 $) (-1075)) 87)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 91)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-27) (-1187)) (T -27))
+((-3772 (*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-27)))) (-3772 (*1 *1 *2 *3) (-12 (-5 *2 (-1071 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-4054 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-27)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1071 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
+(-13 (-333) (-919) (-10 -8 (-15 -3772 ($ (-875 $))) (-15 -3772 ($ (-1071 $))) (-15 -3772 ($ (-1071 $) (-1075))) (-15 -4054 ((-583 $) (-875 $))) (-15 -4054 ((-583 $) (-1071 $))) (-15 -4054 ((-583 $) (-1071 $) (-1075))) (-15 -3458 ($ (-875 $))) (-15 -3458 ($ (-1071 $))) (-15 -3458 ($ (-1071 $) (-1075))) (-15 -1464 ((-583 $) (-875 $))) (-15 -1464 ((-583 $) (-1071 $))) (-15 -1464 ((-583 $) (-1071 $) (-1075)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-919) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-1464 (((-583 $) (-875 $)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-1071 $) (-1075)) 50) (((-583 $) $) 19) (((-583 $) $ (-1075)) 41)) (-3458 (($ (-875 $)) NIL) (($ (-1071 $)) NIL) (($ (-1071 $) (-1075)) 52) (($ $) 17) (($ $ (-1075)) 37)) (-4054 (((-583 $) (-875 $)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-1071 $) (-1075)) 48) (((-583 $) $) 15) (((-583 $) $ (-1075)) 43)) (-3772 (($ (-875 $)) NIL) (($ (-1071 $)) NIL) (($ (-1071 $) (-1075)) NIL) (($ $) 12) (($ $ (-1075)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1464 ((-583 |#1|) |#1| (-1075))) (-15 -3458 (|#1| |#1| (-1075))) (-15 -1464 ((-583 |#1|) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -4054 ((-583 |#1|) |#1| (-1075))) (-15 -3772 (|#1| |#1| (-1075))) (-15 -4054 ((-583 |#1|) |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -1464 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -1464 ((-583 |#1|) (-1071 |#1|))) (-15 -1464 ((-583 |#1|) (-875 |#1|))) (-15 -3458 (|#1| (-1071 |#1|) (-1075))) (-15 -3458 (|#1| (-1071 |#1|))) (-15 -3458 (|#1| (-875 |#1|))) (-15 -4054 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -4054 ((-583 |#1|) (-1071 |#1|))) (-15 -4054 ((-583 |#1|) (-875 |#1|))) (-15 -3772 (|#1| (-1071 |#1|) (-1075))) (-15 -3772 (|#1| (-1071 |#1|))) (-15 -3772 (|#1| (-875 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
+NIL
+(-10 -8 (-15 -1464 ((-583 |#1|) |#1| (-1075))) (-15 -3458 (|#1| |#1| (-1075))) (-15 -1464 ((-583 |#1|) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -4054 ((-583 |#1|) |#1| (-1075))) (-15 -3772 (|#1| |#1| (-1075))) (-15 -4054 ((-583 |#1|) |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -1464 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -1464 ((-583 |#1|) (-1071 |#1|))) (-15 -1464 ((-583 |#1|) (-875 |#1|))) (-15 -3458 (|#1| (-1071 |#1|) (-1075))) (-15 -3458 (|#1| (-1071 |#1|))) (-15 -3458 (|#1| (-875 |#1|))) (-15 -4054 ((-583 |#1|) (-1071 |#1|) (-1075))) (-15 -4054 ((-583 |#1|) (-1071 |#1|))) (-15 -4054 ((-583 |#1|) (-875 |#1|))) (-15 -3772 (|#1| (-1071 |#1|) (-1075))) (-15 -3772 (|#1| (-1071 |#1|))) (-15 -3772 (|#1| (-875 |#1|))))
+((-2118 (((-107) $ $) 7)) (-1464 (((-583 $) (-875 $)) 80) (((-583 $) (-1071 $)) 79) (((-583 $) (-1071 $) (-1075)) 78) (((-583 $) $) 126) (((-583 $) $ (-1075)) 124)) (-3458 (($ (-875 $)) 83) (($ (-1071 $)) 82) (($ (-1071 $) (-1075)) 81) (($ $) 127) (($ $ (-1075)) 125)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-1075)) $) 201)) (-1440 (((-377 (-1071 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-3831 (((-583 (-556 $)) $) 164)) (-1250 (((-3 $ "failed") $ $) 19)) (-3913 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3879 (($ $) 92)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-4054 (((-583 $) (-875 $)) 86) (((-583 $) (-1071 $)) 85) (((-583 $) (-1071 $) (-1075)) 84) (((-583 $) $) 130) (((-583 $) $ (-1075)) 128)) (-3772 (($ (-875 $)) 89) (($ (-1071 $)) 88) (($ (-1071 $) (-1075)) 87) (($ $) 131) (($ $ (-1075)) 129)) (-3226 (((-3 (-875 |#1|) "failed") $) 251 (|has| |#1| (-962))) (((-3 (-377 (-875 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-953 (-517)))) (((-3 (-1075) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3745 (-12 (|has| |#1| (-953 (-517))) (|has| |#1| (-509))) (|has| |#1| (-953 (-377 (-517))))))) (-3388 (((-875 |#1|) $) 252 (|has| |#1| (-962))) (((-377 (-875 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-953 (-517)))) (((-1075) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3745 (-12 (|has| |#1| (-953 (-517))) (|has| |#1| (-509))) (|has| |#1| (-953 (-377 (-517))))))) (-2378 (($ $ $) 55)) (-2306 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-962))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 240 (|has| |#1| (-962))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 121 (-3745 (-3992 (|has| |#1| (-962)) (|has| |#1| (-579 (-517)))) (-3992 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))) (((-623 (-517)) (-623 $)) 120 (-3745 (-3992 (|has| |#1| (-962)) (|has| |#1| (-579 (-517)))) (-3992 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 193 (|has| |#1| (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 192 (|has| |#1| (-809 (-517))))) (-3039 (($ (-583 $)) 158) (($ $) 157)) (-1976 (((-583 (-109)) $) 165)) (-3034 (((-109) (-109)) 166)) (-1865 (((-107) $) 31)) (-1623 (((-107) $) 186 (|has| $ (-953 (-517))))) (-3967 (($ $) 218 (|has| |#1| (-962)))) (-3824 (((-1027 |#1| (-556 $)) $) 217 (|has| |#1| (-962)))) (-1484 (($ $ (-517)) 91)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3049 (((-1071 $) (-556 $)) 183 (|has| $ (-962)))) (-3456 (($ $ $) 137)) (-4082 (($ $ $) 136)) (-3308 (($ (-1 $ $) (-556 $)) 172)) (-2466 (((-3 (-556 $) "failed") $) 162)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-1423 (((-583 (-556 $)) $) 163)) (-1396 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-3807 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1016)))) (-2692 (((-3 (-2 (|:| |val| $) (|:| -2356 (-517))) "failed") $) 221 (|has| |#1| (-962)))) (-2875 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-3818 (((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-1812 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-1075)) 220 (|has| |#1| (-962))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-962))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $) 213 (|has| |#1| (-1016)))) (-1290 (((-107) $ (-1075)) 169) (((-107) $ (-109)) 168)) (-2298 (($ $) 70)) (-1807 (((-703) $) 161)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 199)) (-2319 ((|#1| $) 200)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-2376 (((-107) $ (-1075)) 174) (((-107) $ $) 173)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2085 (((-107) $) 185 (|has| $ (-953 (-517))))) (-3522 (($ $ (-1075) (-703) (-1 $ $)) 225 (|has| |#1| (-962))) (($ $ (-1075) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-962))) (($ $ (-583 (-109)) (-583 $) (-1075)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1075)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1075))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1075)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1075) (-1 $ $)) 178) (($ $ (-1075) (-1 $ (-583 $))) 177) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1075)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-4094 (((-703) $) 58)) (-2607 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-3618 (($ $ $) 160) (($ $) 159)) (-2059 (($ $ (-1075)) 249 (|has| |#1| (-962))) (($ $ (-583 (-1075))) 248 (|has| |#1| (-962))) (($ $ (-1075) (-703)) 247 (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) 246 (|has| |#1| (-962)))) (-3596 (($ $) 228 (|has| |#1| (-509)))) (-2097 (((-1027 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-3586 (($ $) 184 (|has| $ (-962)))) (-3357 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-815 (-349)) $) 191 (|has| |#1| (-558 (-815 (-349))))) (((-815 (-517)) $) 190 (|has| |#1| (-558 (-815 (-517)))))) (-3026 (($ $ $) 254 (|has| |#1| (-442)))) (-2609 (($ $ $) 253 (|has| |#1| (-442)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-875 |#1|)) 250 (|has| |#1| (-962))) (($ (-377 (-875 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1027 |#1| (-556 $))) 216 (|has| |#1| (-962))) (($ |#1|) 196) (($ (-1075)) 187) (($ (-556 $)) 138)) (-2650 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3438 (($ (-583 $)) 156) (($ $) 155)) (-1752 (((-107) (-109)) 167)) (-2914 (((-107) $ $) 39)) (-3511 (($ (-1075) (-583 $)) 206) (($ (-1075) $ $ $ $) 205) (($ (-1075) $ $ $) 204) (($ (-1075) $ $) 203) (($ (-1075) $) 202)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1075)) 245 (|has| |#1| (-962))) (($ $ (-583 (-1075))) 244 (|has| |#1| (-962))) (($ $ (-1075) (-703)) 243 (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) 242 (|has| |#1| (-962)))) (-1641 (((-107) $ $) 134)) (-1617 (((-107) $ $) 133)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 135)) (-1607 (((-107) $ $) 132)) (-1703 (($ $ $) 64) (($ (-1027 |#1| (-556 $)) (-1027 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
+(((-29 |#1|) (-1187) (-13 (-779) (-509))) (T -29))
+((-3772 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-4054 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-4054 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1464 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3772 ($ $)) (-15 -4054 ((-583 $) $)) (-15 -3772 ($ $ (-1075))) (-15 -4054 ((-583 $) $ (-1075))) (-15 -3458 ($ $)) (-15 -1464 ((-583 $) $)) (-15 -3458 ($ $ (-1075))) (-15 -1464 ((-583 $) $ (-1075)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-962)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) ((-579 |#1|) |has| |#1| (-962)) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-823 (-1075)) |has| |#1| (-962)) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-843) . T) ((-919) . T) ((-953 (-377 (-517))) -3745 (|has| |#1| (-953 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517))))) ((-953 (-377 (-875 |#1|))) |has| |#1| (-509)) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 (-556 $)) . T) ((-953 (-875 |#1|)) |has| |#1| (-962)) ((-953 (-1075)) . T) ((-953 |#1|) . T) ((-968 #0#) . T) ((-968 |#1|) |has| |#1| (-156)) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1110) . T) ((-1114) . T))
+((-2719 (((-999 (-199)) $) NIL)) (-2707 (((-999 (-199)) $) NIL)) (-2403 (($ $ (-199)) 123)) (-1500 (($ (-875 (-517)) (-1075) (-1075) (-999 (-377 (-517))) (-999 (-377 (-517)))) 85)) (-1304 (((-583 (-583 (-866 (-199)))) $) 135)) (-2269 (((-787) $) 147)))
+(((-30) (-13 (-877) (-10 -8 (-15 -1500 ($ (-875 (-517)) (-1075) (-1075) (-999 (-377 (-517))) (-999 (-377 (-517))))) (-15 -2403 ($ $ (-199)))))) (T -30))
+((-1500 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-875 (-517))) (-5 *3 (-1075)) (-5 *4 (-999 (-377 (-517)))) (-5 *1 (-30)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
+(-13 (-877) (-10 -8 (-15 -1500 ($ (-875 (-517)) (-1075) (-1075) (-999 (-377 (-517))) (-999 (-377 (-517))))) (-15 -2403 ($ $ (-199)))))
+((-3772 ((|#2| (-1071 |#2|) (-1075)) 42)) (-3034 (((-109) (-109)) 55)) (-3049 (((-1071 |#2|) (-556 |#2|)) 131 (|has| |#1| (-953 (-517))))) (-1471 ((|#2| |#1| (-517)) 110 (|has| |#1| (-953 (-517))))) (-2520 ((|#2| (-1071 |#2|) |#2|) 30)) (-4098 (((-787) (-583 |#2|)) 86)) (-3586 ((|#2| |#2|) 127 (|has| |#1| (-953 (-517))))) (-1752 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 91 (|has| |#1| (-953 (-517))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3772 (|#2| (-1071 |#2|) (-1075))) (-15 -3034 ((-109) (-109))) (-15 -1752 ((-107) (-109))) (-15 -2520 (|#2| (-1071 |#2|) |#2|)) (-15 -4098 ((-787) (-583 |#2|))) (IF (|has| |#1| (-953 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3049 ((-1071 |#2|) (-556 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1471 (|#2| |#1| (-517)))) |%noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
+((-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-953 *4)) (-4 *3 (-13 (-779) (-509))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-953 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-953 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1071 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-953 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *2)) (-5 *4 (-1075)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
+(-10 -7 (-15 -3772 (|#2| (-1071 |#2|) (-1075))) (-15 -3034 ((-109) (-109))) (-15 -1752 ((-107) (-109))) (-15 -2520 (|#2| (-1071 |#2|) |#2|)) (-15 -4098 ((-787) (-583 |#2|))) (IF (|has| |#1| (-953 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3049 ((-1071 |#2|) (-556 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1471 (|#2| |#1| (-517)))) |%noBranch|))
+((-2670 (((-107) $ (-703)) 16)) (-1681 (($) 10)) (-2361 (((-107) $ (-703)) 15)) (-4043 (((-107) $ (-703)) 14)) (-3180 (((-107) $ $) 8)) (-3270 (((-107) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -1681 (|#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))) (-15 -3270 ((-107) |#1|)) (-15 -3180 ((-107) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -1681 (|#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))) (-15 -3270 ((-107) |#1|)) (-15 -3180 ((-107) |#1| |#1|)))
+((-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-2361 (((-107) $ (-703)) 9)) (-4043 (((-107) $ (-703)) 10)) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2460 (($ $) 13)) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-33) (-1187)) (T -33))
+((-3180 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2460 (*1 *1 *1) (-4 *1 (-33))) (-1529 (*1 *1) (-4 *1 (-33))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-4043 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2361 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-1681 (*1 *1) (-4 *1 (-33))) (-3533 (*1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-33)) (-5 *2 (-703)))))
+(-13 (-1110) (-10 -8 (-15 -3180 ((-107) $ $)) (-15 -2460 ($ $)) (-15 -1529 ($)) (-15 -3270 ((-107) $)) (-15 -4043 ((-107) $ (-703))) (-15 -2361 ((-107) $ (-703))) (-15 -2670 ((-107) $ (-703))) (-15 -1681 ($) -1384) (IF (|has| $ (-6 -4190)) (-15 -3533 ((-703) $)) |%noBranch|)))
+(((-1110) . T))
+((-1721 (($ $) 11)) (-1695 (($ $) 10)) (-3487 (($ $) 9)) (-2822 (($ $) 8)) (-1735 (($ $) 7)) (-1708 (($ $) 6)))
+(((-34) (-1187)) (T -34))
+((-1721 (*1 *1 *1) (-4 *1 (-34))) (-1695 (*1 *1 *1) (-4 *1 (-34))) (-3487 (*1 *1 *1) (-4 *1 (-34))) (-2822 (*1 *1 *1) (-4 *1 (-34))) (-1735 (*1 *1 *1) (-4 *1 (-34))) (-1708 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -1708 ($ $)) (-15 -1735 ($ $)) (-15 -2822 ($ $)) (-15 -3487 ($ $)) (-15 -1695 ($ $)) (-15 -1721 ($ $))))
+((-2118 (((-107) $ $) 19 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3119 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 125)) (-2584 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 148)) (-1540 (($ $) 146)) (-3201 (($) 72) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 71)) (-1478 (((-1161) $ |#1| |#1|) 99 (|has| $ (-6 -4191))) (((-1161) $ (-517) (-517)) 178 (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 159 (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3613 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 200 (|has| $ (-6 -4191))) (($ $) 199 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2482 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 134 (|has| $ (-6 -4191)))) (-3953 (($ $ $) 155 (|has| $ (-6 -4191)))) (-2452 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 157 (|has| $ (-6 -4191)))) (-1312 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 153 (|has| $ (-6 -4191)))) (-2443 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 189 (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-1123 (-517)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 160 (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "last" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 158 (|has| $ (-6 -4191))) (($ $ "rest" $) 156 (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "first" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 154 (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "value" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 133 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 132 (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 45 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 216)) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 55 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 175 (|has| $ (-6 -4190)))) (-2574 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 147)) (-3562 (((-3 |#2| "failed") |#1| $) 61)) (-1681 (($) 7 T CONST)) (-1407 (($ $) 201 (|has| $ (-6 -4191)))) (-1905 (($ $) 211)) (-2437 (($ $ (-703)) 142) (($ $) 140)) (-3302 (($ $) 214 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-2453 (($ $) 58 (-3745 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))) (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 46 (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 220) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 215 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 54 (|has| $ (-6 -4190))) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 174 (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 56 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 53 (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 52 (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 176 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 173 (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 172 (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 190 (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) 88) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) 188)) (-1655 (((-107) $) 192)) (-1211 (((-517) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 208) (((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 207 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) (((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 30 (|has| $ (-6 -4190))) (((-583 |#2|) $) 79 (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 114 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 123)) (-1528 (((-107) $ $) 131 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-3211 (($ (-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 169)) (-2361 (((-107) $ (-703)) 9)) (-3735 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-3456 (($ $ $) 198 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1974 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3798 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 29 (|has| $ (-6 -4190))) (((-583 |#2|) $) 80 (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 115 (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190)))) (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))))) (-3979 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-4082 (($ $ $) 197 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 34 (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4191))) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 110 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 109)) (-2322 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 225)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 128)) (-4141 (((-107) $) 124)) (-1895 (((-1058) $) 22 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-1445 (($ $ (-703)) 145) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 143)) (-1881 (((-583 |#1|) $) 63)) (-3472 (((-107) |#1| $) 64)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 39)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 40) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-1745 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-4121 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-3536 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-4123 (((-1022) $) 21 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-2427 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 137)) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 51) (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 171)) (-3191 (($ $ |#2|) 98 (|has| $ (-6 -4191))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 179 (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 41)) (-3392 (((-107) $) 191)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 32 (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 112 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) 26 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 25 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 24 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 23 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 121 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 120 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 119 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) 118 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 182 (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-1831 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 185)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 187) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) 186) (($ $ (-1123 (-517))) 165) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "first") 138) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "value") 126)) (-2093 (((-517) $ $) 129)) (-1494 (($) 49) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 48)) (-2710 (($ $ (-517)) 222) (($ $ (-1123 (-517))) 221)) (-3726 (($ $ (-517)) 164) (($ $ (-1123 (-517))) 163)) (-1657 (((-107) $) 127)) (-3769 (($ $) 151)) (-1457 (($ $) 152 (|has| $ (-6 -4191)))) (-3277 (((-703) $) 150)) (-2573 (($ $) 149)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 31 (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 113 (|has| $ (-6 -4190)))) (-2790 (($ $ $ (-517)) 202 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493)))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 50) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 170)) (-1718 (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 224) (($ $ $) 223)) (-4108 (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 136) (($ $ $) 135)) (-2269 (((-787) $) 18 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787)))))) (-1497 (((-583 $) $) 122)) (-2198 (((-107) $ $) 130 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 42)) (-1458 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") |#1| $) 108)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 33 (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 111 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 195 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1617 (((-107) $ $) 194 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1583 (((-107) $ $) 20 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-1629 (((-107) $ $) 196 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1607 (((-107) $ $) 193 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-35 |#1| |#2|) (-1187) (-1004) (-1004)) (T -35))
+((-1458 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| -2581 *3) (|:| -1860 *4))))))
+(-13 (-1087 |t#1| |t#2|) (-603 (-2 (|:| -2581 |t#1|) (|:| -1860 |t#2|))) (-10 -8 (-15 -1458 ((-3 (-2 (|:| -2581 |t#1|) (|:| -1860 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((-97) -3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779))) ((-557 (-787)) -3745 (|has| |#2| (-1004)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787)))) ((-138 #1=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 #2=(-517) #1#) . T) ((-258 |#1| |#2|) . T) ((-260 #2# #1#) . T) ((-260 |#1| |#2|) . T) ((-280 #1#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-254 #1#) . T) ((-343 #1#) . T) ((-456 #1#) . T) ((-456 |#2|) . T) ((-550 #2# #1#) . T) ((-550 |#1| |#2|) . T) ((-478 #1# #1#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-554 |#1| |#2|) . T) ((-588 #1#) . T) ((-603 #1#) . T) ((-779) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)) ((-927 #1#) . T) ((-1004) -3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779))) ((-1049 #1#) . T) ((-1087 |#1| |#2|) . T) ((-1110) . T) ((-1144 #1#) . T))
+((-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1187) (-156)) (T -37))
+((-2269 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
+(-13 (-962) (-650 |t#1|) (-10 -8 (-15 -2269 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2975 (((-388 |#1|) |#1|) 38)) (-3866 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-1563 (((-107) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -3866 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2975 ((-388 |#1|) |#1|)) (-15 -1563 ((-107) |#1|))) (-1132 (-47))) (T -38))
+((-1563 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47))))) (-2975 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47))))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47))))))
+(-10 -7 (-15 -3866 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2975 ((-388 |#1|) |#1|)) (-15 -1563 ((-107) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1337 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2729 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2566 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3861 (((-623 (-377 |#2|)) (-1156 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-2008 (((-377 |#2|) $) NIL)) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1581 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3998 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2397 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1859 (((-107)) NIL)) (-3329 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| (-377 |#2|) (-953 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1953 (($ (-1156 (-377 |#2|)) (-1156 $)) NIL) (($ (-1156 (-377 |#2|))) 57) (($ (-1156 |#2|) |#2|) 124)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1416 (((-623 (-377 |#2|)) $ (-1156 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-377 |#2|))) (|:| |vec| (-1156 (-377 |#2|)))) (-623 $) (-1156 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3311 (((-1156 $) (-1156 $)) NIL)) (-1521 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3163 (((-3 $ "failed") $) NIL)) (-3601 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3518 (((-107) |#1| |#1|) NIL)) (-3736 (((-844)) NIL)) (-2200 (($) NIL (|has| (-377 |#2|) (-338)))) (-3444 (((-107)) NIL)) (-2214 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2354 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2186 (($ $) NIL)) (-1672 (($) NIL (|has| (-377 |#2|) (-319)))) (-3454 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2464 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2963 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-2053 (((-844) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) NIL (|has| (-377 |#2|) (-319)))) (-1865 (((-107) $) NIL)) (-3821 (((-703)) NIL)) (-1664 (((-1156 $) (-1156 $)) 100)) (-2754 (((-377 |#2|) $) NIL)) (-2258 (((-583 (-875 |#1|)) (-1075)) NIL (|has| |#1| (-333)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2456 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-2031 (((-844) $) NIL (|has| (-377 |#2|) (-338)))) (-1508 ((|#3| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1895 (((-1058) $) NIL)) (-3926 (((-1161) (-703)) 78)) (-2771 (((-623 (-377 |#2|))) 51)) (-1389 (((-623 (-377 |#2|))) 44)) (-2298 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2055 (($ (-1156 |#2|) |#2|) 125)) (-3941 (((-623 (-377 |#2|))) 45)) (-1932 (((-623 (-377 |#2|))) 43)) (-3379 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-3481 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) 63)) (-3706 (((-1156 $)) 42)) (-3057 (((-1156 $)) 41)) (-1576 (((-107) $) NIL)) (-3256 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2585 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2810 (($ (-844)) NIL (|has| (-377 |#2|) (-338)))) (-1782 (((-3 |#2| "failed")) NIL)) (-4123 (((-1022) $) NIL)) (-1486 (((-703)) NIL)) (-1317 (($) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| (-377 |#2|) (-333)))) (-2368 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3866 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2327 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-4094 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2607 ((|#1| $ |#1| |#1|) NIL)) (-3602 (((-3 |#2| "failed")) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-4032 (((-377 |#2|) (-1156 $)) NIL) (((-377 |#2|)) 39)) (-1496 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2059 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2678 (((-623 (-377 |#2|)) (-1156 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-3586 ((|#3|) 50)) (-3958 (($) NIL (|has| (-377 |#2|) (-319)))) (-3369 (((-1156 (-377 |#2|)) $ (-1156 $)) NIL) (((-623 (-377 |#2|)) (-1156 $) (-1156 $)) NIL) (((-1156 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1156 $)) 101)) (-3357 (((-1156 (-377 |#2|)) $) NIL) (($ (-1156 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3688 (((-1156 $) (-1156 $)) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3745 (|has| (-377 |#2|) (-953 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2650 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1900 ((|#3| $) NIL)) (-2950 (((-703)) NIL)) (-4029 (((-107)) 37)) (-4011 (((-107) |#1|) 49) (((-107) |#2|) 131)) (-2062 (((-1156 $)) 91)) (-2914 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1453 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2139 (((-107)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3608 (($) 16 T CONST)) (-3617 (($) 26 T CONST)) (-3340 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -3926 ((-1161) (-703))))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) |#3|) (T -39))
+((-3926 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1132 *4)) (-5 *2 (-1161)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1132 (-377 *5))) (-14 *7 *6))))
+(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -3926 ((-1161) (-703)))))
+((-1193 ((|#2| |#2|) 47)) (-2102 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-953 (-517)))))) (-2359 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-953 (-517)))))) (-3703 ((|#2| |#2|) 87 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-953 (-517)))))) (-1341 ((|#2| (-109) |#2| (-703)) 74 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-953 (-517)))))) (-3808 (((-1071 |#2|) |#2|) 44)) (-3976 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -1193 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| (-583 |#2|))) (-15 -3976 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3808 ((-1071 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-953 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -3703 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -1341 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 |#1| (-556 $)) $)) (-15 -2097 ((-1027 |#1| (-556 $)) $)) (-15 -2269 ($ (-1027 |#1| (-556 $))))))) (T -40))
+((-1341 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-953 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *5 (-556 $)) $)) (-15 -2097 ((-1027 *5 (-556 $)) $)) (-15 -2269 ($ (-1027 *5 (-556 $))))))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))) (-3703 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))) (-3808 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1071 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $)) (-15 -2097 ((-1027 *4 (-556 $)) $)) (-15 -2269 ($ (-1027 *4 (-556 $))))))))) (-3976 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $)) (-15 -2097 ((-1027 *4 (-556 $)) $)) (-15 -2269 ($ (-1027 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3976 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $)) (-15 -2097 ((-1027 *4 (-556 $)) $)) (-15 -2269 ($ (-1027 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))) (-1193 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $)) (-15 -2097 ((-1027 *3 (-556 $)) $)) (-15 -2269 ($ (-1027 *3 (-556 $))))))))))
+(-10 -7 (-15 -1193 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| (-583 |#2|))) (-15 -3976 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3808 ((-1071 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-953 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -3703 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -1341 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3866 (((-388 (-1071 |#3|)) (-1071 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3866 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3866 ((-388 (-1071 |#3|)) (-1071 |#3|) (-583 (-47))))) (-779) (-725) (-872 (-47) |#2| |#1|)) (T -41))
+((-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-872 (-47) *6 *5)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-872 (-47) *6 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3866 ((-388 (-1071 |#3|)) (-1071 |#3|) (-583 (-47)))))
+((-2478 (((-703) |#2|) 65)) (-3031 (((-703) |#2|) 68)) (-2957 (((-583 |#2|)) 33)) (-1845 (((-703) |#2|) 67)) (-3767 (((-703) |#2|) 64)) (-2138 (((-703) |#2|) 66)) (-2829 (((-583 (-623 |#1|))) 60)) (-2697 (((-583 |#2|)) 55)) (-3895 (((-583 |#2|) |#2|) 43)) (-1857 (((-583 |#2|)) 57)) (-1274 (((-583 |#2|)) 56)) (-4144 (((-583 (-623 |#1|))) 48)) (-2922 (((-583 |#2|)) 54)) (-4162 (((-583 |#2|) |#2|) 42)) (-1802 (((-583 |#2|)) 50)) (-3361 (((-583 (-623 |#1|))) 61)) (-3384 (((-583 |#2|)) 59)) (-2062 (((-1156 |#2|) (-1156 |#2|)) 84 (|has| |#1| (-278)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -1845 ((-703) |#2|)) (-15 -3031 ((-703) |#2|)) (-15 -3767 ((-703) |#2|)) (-15 -2478 ((-703) |#2|)) (-15 -2138 ((-703) |#2|)) (-15 -1802 ((-583 |#2|))) (-15 -4162 ((-583 |#2|) |#2|)) (-15 -3895 ((-583 |#2|) |#2|)) (-15 -2922 ((-583 |#2|))) (-15 -2697 ((-583 |#2|))) (-15 -1274 ((-583 |#2|))) (-15 -1857 ((-583 |#2|))) (-15 -3384 ((-583 |#2|))) (-15 -4144 ((-583 (-623 |#1|)))) (-15 -2829 ((-583 (-623 |#1|)))) (-15 -3361 ((-583 (-623 |#1|)))) (-15 -2957 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -2062 ((-1156 |#2|) (-1156 |#2|))) |%noBranch|)) (-509) (-387 |#1|)) (T -42))
+((-2062 (*1 *2 *2) (-12 (-5 *2 (-1156 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-2957 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3361 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2829 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4144 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3384 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1857 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1274 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2697 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2922 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1802 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2138 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3767 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(-10 -7 (-15 -1845 ((-703) |#2|)) (-15 -3031 ((-703) |#2|)) (-15 -3767 ((-703) |#2|)) (-15 -2478 ((-703) |#2|)) (-15 -2138 ((-703) |#2|)) (-15 -1802 ((-583 |#2|))) (-15 -4162 ((-583 |#2|) |#2|)) (-15 -3895 ((-583 |#2|) |#2|)) (-15 -2922 ((-583 |#2|))) (-15 -2697 ((-583 |#2|))) (-15 -1274 ((-583 |#2|))) (-15 -1857 ((-583 |#2|))) (-15 -3384 ((-583 |#2|))) (-15 -4144 ((-583 (-623 |#1|)))) (-15 -2829 ((-583 (-623 |#1|)))) (-15 -3361 ((-583 (-623 |#1|)))) (-15 -2957 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -2062 ((-1156 |#2|) (-1156 |#2|))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1875 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1402 (((-1156 (-623 |#1|)) (-1156 $)) NIL) (((-1156 (-623 |#1|))) 24)) (-2197 (((-1156 $)) 50)) (-1681 (($) NIL T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1504 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2429 (((-623 |#1|) (-1156 $)) NIL) (((-623 |#1|)) NIL)) (-2684 ((|#1| $) NIL)) (-2977 (((-623 |#1|) $ (-1156 $)) NIL) (((-623 |#1|) $) NIL)) (-3237 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2078 (((-1071 (-875 |#1|))) NIL (|has| |#1| (-333)))) (-1537 (($ $ (-844)) NIL)) (-1227 ((|#1| $) NIL)) (-1499 (((-1071 |#1|) $) NIL (|has| |#1| (-509)))) (-2705 ((|#1| (-1156 $)) NIL) ((|#1|) NIL)) (-3724 (((-1071 |#1|) $) NIL)) (-3764 (((-107)) 86)) (-1953 (($ (-1156 |#1|) (-1156 $)) NIL) (($ (-1156 |#1|)) NIL)) (-3163 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3736 (((-844)) 51)) (-2438 (((-107)) NIL)) (-3248 (($ $ (-844)) NIL)) (-4073 (((-107)) NIL)) (-1495 (((-107)) NIL)) (-2502 (((-107)) 88)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-3331 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2547 (((-623 |#1|) (-1156 $)) NIL) (((-623 |#1|)) NIL)) (-3303 ((|#1| $) NIL)) (-2739 (((-623 |#1|) $ (-1156 $)) NIL) (((-623 |#1|) $) NIL)) (-1888 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-1690 (((-1071 (-875 |#1|))) NIL (|has| |#1| (-333)))) (-2848 (($ $ (-844)) NIL)) (-3492 ((|#1| $) NIL)) (-2328 (((-1071 |#1|) $) NIL (|has| |#1| (-509)))) (-1946 ((|#1| (-1156 $)) NIL) ((|#1|) NIL)) (-1940 (((-1071 |#1|) $) NIL)) (-2256 (((-107)) 85)) (-1895 (((-1058) $) NIL)) (-1952 (((-107)) 92)) (-2388 (((-107)) 91)) (-2631 (((-107)) 93)) (-4123 (((-1022) $) NIL)) (-1665 (((-107)) 87)) (-2607 ((|#1| $ (-517)) 53)) (-3369 (((-1156 |#1|) $ (-1156 $)) 47) (((-623 |#1|) (-1156 $) (-1156 $)) NIL) (((-1156 |#1|) $) 28) (((-623 |#1|) (-1156 $)) NIL)) (-3357 (((-1156 |#1|) $) NIL) (($ (-1156 |#1|)) NIL)) (-4070 (((-583 (-875 |#1|)) (-1156 $)) NIL) (((-583 (-875 |#1|))) NIL)) (-2609 (($ $ $) NIL)) (-3722 (((-107)) 83)) (-2269 (((-787) $) 68) (($ (-1156 |#1|)) 22)) (-2062 (((-1156 $)) 44)) (-4111 (((-583 (-1156 |#1|))) NIL (|has| |#1| (-509)))) (-2516 (($ $ $ $) NIL)) (-2126 (((-107)) 81)) (-2374 (($ (-623 |#1|) $) 18)) (-1263 (($ $ $) NIL)) (-1332 (((-107)) 84)) (-2685 (((-107)) 82)) (-1286 (((-107)) 80)) (-3608 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1042 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1042 |#2| |#1|)) (-10 -8 (-15 -2269 ($ (-1156 |#1|))))) (-333) (-844) (-583 (-1075)) (-1156 (-623 |#1|))) (T -43))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-333)) (-14 *6 (-1156 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))))))
+(-13 (-387 |#1|) (-585 (-1042 |#2| |#1|)) (-10 -8 (-15 -2269 ($ (-1156 |#1|)))))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3119 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2584 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-1540 (($ $) NIL)) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191))) (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3613 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779))))) (-2162 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2482 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191)))) (-3953 (($ $ $) 27 (|has| $ (-6 -4191)))) (-2452 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191)))) (-1312 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 29 (|has| $ (-6 -4191)))) (-2443 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-1123 (-517)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "last" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191))) (($ $ "rest" $) NIL (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "first" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "value" (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2574 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3562 (((-3 |#2| "failed") |#1| $) 37)) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2437 (($ $ (-703)) NIL) (($ $) 24)) (-3302 (($ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1211 (((-517) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) (((-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 18 (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 18 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-3211 (($ (-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1974 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3798 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191))) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-2322 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) 42 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1445 (($ $ (-703)) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-1881 (((-583 |#1|) $) 20)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1745 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-3536 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 23)) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3392 (((-107) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-1831 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 17)) (-3270 (((-107) $) 16)) (-1529 (($) 13)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ (-517)) NIL) (($ $ (-1123 (-517))) NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "first") NIL) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $ "value") NIL)) (-2093 (((-517) $ $) NIL)) (-1494 (($) 12) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2710 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-1657 (((-107) $) NIL)) (-3769 (($ $) NIL)) (-1457 (($ $) NIL (|has| $ (-6 -4191)))) (-3277 (((-703) $) NIL)) (-2573 (($ $) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1718 (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL) (($ $ $) NIL)) (-4108 (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 25) (($ $ $) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1458 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") |#1| $) 44)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1629 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-779)))) (-3533 (((-703) $) 22 (|has| $ (-6 -4190)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1004) (-1004)) (T -44))
NIL
(-35 |#1| |#2|)
-((-2029 (((-107) $) 12)) (-1939 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2029 ((-107) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-46 |#2| |#3|) (-961) (-724)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2029 ((-107) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-2029 (((-107) $) 62)) (-1336 (($ |#1| |#2|) 61)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3625 ((|#2| $) 64)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-4104 ((|#1| $ |#2|) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-46 |#1| |#2|) (-1185) (-961) (-724)) (T -46))
-((-1193 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1336 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-4104 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -1193 (|t#1| $)) (-15 -1687 ($ $)) (-15 -3625 (|t#2| $)) (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (-15 -2029 ((-107) $)) (-15 -1336 ($ |t#1| |t#2|)) (-15 -1221 ($ $)) (-15 -4104 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1678 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2592 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3098 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-2778 (((-107) $) 11)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1341 (((-583 (-556 $)) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1786 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-1488 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3249 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-1837 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3232 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2532 (($ $ $) NIL)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-377 (-517)))) (|:| |vec| (-1154 (-377 (-517))))) (-623 $) (-1154 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1292 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2870 (($ $) NIL) (($ (-583 $)) NIL)) (-2576 (((-583 (-109)) $) NIL)) (-2283 (((-109) (-109)) NIL)) (-3469 (((-107) $) 14)) (-2119 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1842 (((-1026 (-517) (-556 $)) $) NIL)) (-2003 (($ $ (-517)) NIL)) (-2962 (((-1070 $) (-1070 $) (-556 $)) NIL) (((-1070 $) (-1070 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3733 (((-1070 $) (-556 $)) NIL (|has| $ (-961)))) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 $ $) (-556 $)) NIL)) (-1337 (((-3 (-556 $) "failed") $) NIL)) (-1360 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-2362 (((-583 (-556 $)) $) NIL)) (-1893 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-2506 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-1639 (($ $) NIL)) (-1916 (((-703) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3196 (((-703) $) NIL)) (-1437 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1394 (($ $) NIL) (($ $ $) NIL)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-1852 (((-1026 (-517) (-556 $)) $) NIL)) (-2780 (($ $) NIL (|has| $ (-961)))) (-3667 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2254 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) NIL)) (-1217 (((-703)) NIL)) (-3137 (($ $) NIL) (($ (-583 $)) NIL)) (-2794 (((-107) (-109)) NIL)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) 7 T CONST)) (-2411 (($) 12 T CONST)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 16)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (-1663 (($ $ $) 15) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-47) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2254 ($ (-1026 (-517) (-556 $)))) (-15 -1842 ((-1026 (-517) (-556 $)) $)) (-15 -1852 ((-1026 (-517) (-556 $)) $)) (-15 -1292 ($ $)) (-15 -2962 ((-1070 $) (-1070 $) (-556 $))) (-15 -2962 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2962 ($ $ (-556 $))) (-15 -2962 ($ $ (-583 (-556 $))))))) (T -47))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1292 (*1 *1 *1) (-5 *1 (-47))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
-(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2254 ($ (-1026 (-517) (-556 $)))) (-15 -1842 ((-1026 (-517) (-556 $)) $)) (-15 -1852 ((-1026 (-517) (-556 $)) $)) (-15 -1292 ($ $)) (-15 -2962 ((-1070 $) (-1070 $) (-556 $))) (-15 -2962 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2962 ($ $ (-556 $))) (-15 -2962 ($ $ (-583 (-556 $))))))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 7)) (-1534 (((-107) $ $) NIL)))
-(((-48) (-1003)) (T -48))
-NIL
-(-1003)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 60)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2874 (((-107) $) 20)) (-1837 (((-3 |#1| "failed") $) 23)) (-3232 ((|#1| $) 24)) (-1221 (($ $) 27)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1193 ((|#1| $) 21)) (-2228 (($ $) 49)) (-1277 (((-1057) $) NIL)) (-3463 (((-107) $) 28)) (-3214 (((-1021) $) NIL)) (-3244 (($ (-703)) 47)) (-2643 (($ (-583 (-517))) 48)) (-3625 (((-703) $) 29)) (-2254 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-4104 ((|#1| $ $) 19)) (-1217 (((-703)) 46)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 30 T CONST)) (-2411 (($) 14 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1193 (|#1| $)) (-15 -2228 ($ $)) (-15 -1221 ($ $)) (-15 -4104 (|#1| $ $)) (-15 -3244 ($ (-703))) (-15 -2643 ($ (-583 (-517)))) (-15 -3463 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -3625 ((-703) $)) (-15 -1939 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1074))) (T -49))
-((-1193 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) (-2228 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) (-1221 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) (-4104 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1074))))))
-(-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1193 (|#1| $)) (-15 -2228 ($ $)) (-15 -1221 ($ $)) (-15 -4104 (|#1| $ $)) (-15 -3244 ($ (-703))) (-15 -2643 ($ (-583 (-517)))) (-15 -3463 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -3625 ((-703) $)) (-15 -1939 ($ (-1 |#1| |#1|) $))))
-((-2874 (((-107) (-51)) 13)) (-1837 (((-3 |#1| "failed") (-51)) 21)) (-3232 ((|#1| (-51)) 22)) (-2254 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2254 ((-51) |#1|)) (-15 -1837 ((-3 |#1| "failed") (-51))) (-15 -2874 ((-107) (-51))) (-15 -3232 (|#1| (-51)))) (-1109)) (T -50))
-((-3232 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) (-2874 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1109)))) (-1837 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2254 ((-51) |#1|)) (-15 -1837 ((-3 |#1| "failed") (-51))) (-15 -2874 ((-107) (-51))) (-15 -3232 (|#1| (-51))))
-((-1587 (((-107) $ $) NIL)) (-2369 (((-1057) (-107)) 25)) (-2721 (((-787) $) 24)) (-3901 (((-706) $) 12)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3852 (((-787) $) 16)) (-4078 (((-1007) $) 14)) (-2254 (((-787) $) 32)) (-1391 (($ (-1007) (-706)) 33)) (-1534 (((-107) $ $) 18)))
-(((-51) (-13 (-1003) (-10 -8 (-15 -1391 ($ (-1007) (-706))) (-15 -3852 ((-787) $)) (-15 -2721 ((-787) $)) (-15 -4078 ((-1007) $)) (-15 -3901 ((-706) $)) (-15 -2369 ((-1057) (-107)))))) (T -51))
-((-1391 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1057)) (-5 *1 (-51)))))
-(-13 (-1003) (-10 -8 (-15 -1391 ($ (-1007) (-706))) (-15 -3852 ((-787) $)) (-15 -2721 ((-787) $)) (-15 -4078 ((-1007) $)) (-15 -3901 ((-706) $)) (-15 -2369 ((-1057) (-107)))))
-((-1695 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1695 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-585 |#1|) (-781 |#1|)) (T -52))
-((-1695 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
-(-10 -7 (-15 -1695 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1888 ((|#3| |#3| (-583 (-1074))) 35)) (-2904 ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843)) 22) ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2904 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -2904 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1888 (|#3| |#3| (-583 (-1074))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -53))
-((-1888 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2904 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2904 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -2904 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -2904 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1888 (|#3| |#3| (-583 (-1074)))))
-((-3552 (((-107) $ (-703)) 23)) (-1616 (($ $ (-517) |#3|) 45)) (-3742 (($ $ (-517) |#4|) 49)) (-3193 ((|#3| $ (-517)) 58)) (-3240 (((-583 |#2|) $) 30)) (-2629 (((-107) $ (-703)) 25)) (-1653 (((-107) |#2| $) 53)) (-3696 (($ (-1 |#2| |#2|) $) 37)) (-1939 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2026 (((-107) $ (-703)) 24)) (-2880 (($ $ |#2|) 34)) (-3029 (((-107) (-1 (-107) |#2|) $) 19)) (-1437 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-3223 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2435 (($ $) 33)) (-2939 ((|#4| $ (-517)) 61)) (-2254 (((-787) $) 66)) (-2258 (((-107) (-1 (-107) |#2|) $) 18)) (-1534 (((-107) $ $) 52)) (-2290 (((-703) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-517) |#4|)) (-15 -1616 (|#1| |#1| (-517) |#3|)) (-15 -3240 ((-583 |#2|) |#1|)) (-15 -2939 (|#4| |#1| (-517))) (-15 -3193 (|#3| |#1| (-517))) (-15 -1437 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1653 ((-107) |#2| |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))) (-15 -2435 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1109) (-343 |#2|) (-343 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-517) |#4|)) (-15 -1616 (|#1| |#1| (-517) |#3|)) (-15 -3240 ((-583 |#2|) |#1|)) (-15 -2939 (|#4| |#1| (-517))) (-15 -3193 (|#3| |#1| (-517))) (-15 -1437 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1653 ((-107) |#2| |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))) (-15 -2435 (|#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) (-517) |#1|) 44)) (-1616 (($ $ (-517) |#2|) 42)) (-3742 (($ $ (-517) |#3|) 41)) (-2706 (($) 7 T CONST)) (-3193 ((|#2| $ (-517)) 46)) (-3705 ((|#1| $ (-517) (-517) |#1|) 43)) (-3537 ((|#1| $ (-517) (-517)) 48)) (-3240 (((-583 |#1|) $) 30)) (-1259 (((-703) $) 51)) (-3475 (($ (-703) (-703) |#1|) 57)) (-1269 (((-703) $) 50)) (-2629 (((-107) $ (-703)) 9)) (-1234 (((-517) $) 55)) (-2493 (((-517) $) 53)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2189 (((-517) $) 54)) (-3294 (((-517) $) 52)) (-3696 (($ (-1 |#1| |#1|) $) 34)) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) 56)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2939 ((|#3| $ (-517)) 45)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-55 |#1| |#2| |#3|) (-1185) (-1109) (-343 |t#1|) (-343 |t#1|)) (T -55))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3475 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1109)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1234 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1437 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) (-3537 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) (-1437 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2412 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3705 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1616 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1109)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3742 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-3696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1939 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1939 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -3475 ($ (-703) (-703) |t#1|)) (-15 -2880 ($ $ |t#1|)) (-15 -1234 ((-517) $)) (-15 -2189 ((-517) $)) (-15 -2493 ((-517) $)) (-15 -3294 ((-517) $)) (-15 -1259 ((-703) $)) (-15 -1269 ((-703) $)) (-15 -1437 (|t#1| $ (-517) (-517))) (-15 -3537 (|t#1| $ (-517) (-517))) (-15 -1437 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3193 (|t#2| $ (-517))) (-15 -2939 (|t#3| $ (-517))) (-15 -3240 ((-583 |t#1|) $)) (-15 -2412 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3705 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1616 ($ $ (-517) |t#2|)) (-15 -3742 ($ $ (-517) |t#3|)) (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (-15 -3696 ($ (-1 |t#1| |t#1|) $)) (-15 -1939 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1939 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-3014 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1292 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1939 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -3014 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1939 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1109) (-1109)) (T -56))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-56 *5 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -3014 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1939 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3751 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3475 (($ (-703) |#1|) 9)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 7)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3751 ($ (-583 |#1|))) (-15 -3751 ($ (-703) |#1|)))) (-1109)) (T -57))
-((-3751 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-57 *3)))) (-3751 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1109)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3751 ($ (-583 |#1|))) (-15 -3751 ($ (-703) |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1616 (($ $ (-517) (-57 |#1|)) NIL)) (-3742 (($ $ (-517) (-57 |#1|)) NIL)) (-2706 (($) NIL T CONST)) (-3193 (((-57 |#1|) $ (-517)) NIL)) (-3705 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3537 ((|#1| $ (-517) (-517)) NIL)) (-3240 (((-583 |#1|) $) NIL)) (-1259 (((-703) $) NIL)) (-3475 (($ (-703) (-703) |#1|) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2939 (((-57 |#1|) $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4184))) (-1109)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4184)))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 69) (((-3 $ "failed") (-1154 (-286 (-517)))) 58) (((-3 $ "failed") (-1154 (-874 (-349)))) 91) (((-3 $ "failed") (-1154 (-874 (-517)))) 80) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 47) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 36)) (-3232 (($ (-1154 (-286 (-349)))) 65) (($ (-1154 (-286 (-517)))) 54) (($ (-1154 (-874 (-349)))) 87) (($ (-1154 (-874 (-517)))) 76) (($ (-1154 (-377 (-874 (-349))))) 43) (($ (-1154 (-377 (-874 (-517))))) 29)) (-4099 (((-1159) $) 118)) (-2254 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 97) (($ (-1154 (-309 (-2272 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2272) (-632)))) 28)))
-(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2272) (-632))))))) (-1074)) (T -59))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2272) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2272) (-632)))))))
-((-4099 (((-1159) $) 48) (((-1159)) 49)) (-2254 (((-787) $) 45)))
-(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -4099 ((-1159))))) (-1074)) (T -60))
-((-4099 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-60 *3)) (-14 *3 (-1074)))))
-(-13 (-365) (-10 -7 (-15 -4099 ((-1159)))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 142) (((-3 $ "failed") (-1154 (-286 (-517)))) 132) (((-3 $ "failed") (-1154 (-874 (-349)))) 163) (((-3 $ "failed") (-1154 (-874 (-517)))) 152) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 121) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 110)) (-3232 (($ (-1154 (-286 (-349)))) 138) (($ (-1154 (-286 (-517)))) 128) (($ (-1154 (-874 (-349)))) 159) (($ (-1154 (-874 (-517)))) 148) (($ (-1154 (-377 (-874 (-349))))) 117) (($ (-1154 (-377 (-874 (-517))))) 103)) (-4099 (((-1159) $) 96)) (-2254 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 31) (($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) 88)))
-(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632))))))) (-1074)) (T -61))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))))))
-((-1837 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-874 (-349))) 46) (((-3 $ "failed") (-874 (-517))) 51) (((-3 $ "failed") (-377 (-874 (-349)))) 31) (((-3 $ "failed") (-377 (-874 (-517)))) 26)) (-3232 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-874 (-349))) 44) (($ (-874 (-517))) 49) (($ (-377 (-874 (-349)))) 29) (($ (-377 (-874 (-517)))) 23)) (-4099 (((-1159) $) 73)) (-2254 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 60) (($ (-309 (-2272 (QUOTE X)) (-2272) (-632))) 22)))
-(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272 (QUOTE X)) (-2272) (-632)))))) (-1074)) (T -62))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-309 (-2272 (QUOTE X)) (-2272) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1074)))))
-(-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272 (QUOTE X)) (-2272) (-632))))))
-((-1837 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-874 (-349)))) 122) (((-3 $ "failed") (-623 (-874 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 67)) (-3232 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-874 (-349)))) 118) (($ (-623 (-874 (-517)))) 107) (($ (-623 (-377 (-874 (-349))))) 74) (($ (-623 (-377 (-874 (-517))))) 60)) (-4099 (((-1159) $) 130)) (-2254 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 30) (($ (-623 (-309 (-2272) (-2272 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
-(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272) (-2272 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1074)) (T -63))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272) (-2272 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1074)))))
-(-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272) (-2272 (QUOTE X) (QUOTE HESS)) (-632)))))))
-((-1837 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-874 (-349))) 64) (((-3 $ "failed") (-874 (-517))) 69) (((-3 $ "failed") (-377 (-874 (-349)))) 49) (((-3 $ "failed") (-377 (-874 (-517)))) 44)) (-3232 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-874 (-349))) 62) (($ (-874 (-517))) 67) (($ (-377 (-874 (-349)))) 47) (($ (-377 (-874 (-517)))) 41)) (-4099 (((-1159) $) 78)) (-2254 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 30) (($ (-309 (-2272) (-2272 (QUOTE XC)) (-632))) 38)))
-(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE XC)) (-632)))))) (-1074)) (T -64))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1074)))))
-(-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE XC)) (-632))))))
-((-4099 (((-1159) $) 63)) (-2254 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 53)))
-(((-65 |#1|) (-353) (-1074)) (T -65))
+((-1960 (((-107) $) 12)) (-3308 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1960 ((-107) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-46 |#2| |#3|) (-962) (-724)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1960 ((-107) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1960 (((-107) $) 62)) (-2077 (($ |#1| |#2|) 61)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2769 ((|#2| $) 64)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3952 ((|#1| $ |#2|) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-46 |#1| |#2|) (-1187) (-962) (-724)) (T -46))
+((-2345 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))) (-2333 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2077 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))) (-1703 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)) (-4 *2 (-333)))))
+(-13 (-962) (-106 |t#1| |t#1|) (-10 -8 (-15 -2345 (|t#1| $)) (-15 -2333 ($ $)) (-15 -2769 (|t#2| $)) (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (-15 -1960 ((-107) $)) (-15 -2077 ($ |t#1| |t#2|)) (-15 -2371 ($ $)) (-15 -3952 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1703 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-1464 (((-583 $) (-1071 $) (-1075)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3458 (($ (-1071 $) (-1075)) NIL) (($ (-1071 $)) NIL) (($ (-875 $)) NIL)) (-2033 (((-107) $) 11)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3831 (((-583 (-556 $)) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3913 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-4054 (((-583 $) (-1071 $) (-1075)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3772 (($ (-1071 $) (-1075)) NIL) (($ (-1071 $)) NIL) (($ (-875 $)) NIL)) (-3226 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3388 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2378 (($ $ $) NIL)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-377 (-517)))) (|:| |vec| (-1156 (-377 (-517))))) (-623 $) (-1156 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1521 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3039 (($ $) NIL) (($ (-583 $)) NIL)) (-1976 (((-583 (-109)) $) NIL)) (-3034 (((-109) (-109)) NIL)) (-1865 (((-107) $) 14)) (-1623 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3824 (((-1027 (-517) (-556 $)) $) NIL)) (-1484 (($ $ (-517)) NIL)) (-2754 (((-1071 $) (-1071 $) (-556 $)) NIL) (((-1071 $) (-1071 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3049 (((-1071 $) (-556 $)) NIL (|has| $ (-962)))) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 $ $) (-556 $)) NIL)) (-2466 (((-3 (-556 $) "failed") $) NIL)) (-2330 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-1423 (((-583 (-556 $)) $) NIL)) (-1396 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1290 (((-107) $ (-109)) NIL) (((-107) $ (-1075)) NIL)) (-2298 (($ $) NIL)) (-1807 (((-703) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1075)) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1075) (-1 $ (-583 $))) NIL) (($ $ (-1075) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-4094 (((-703) $) NIL)) (-2607 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3618 (($ $) NIL) (($ $ $) NIL)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2097 (((-1027 (-517) (-556 $)) $) NIL)) (-3586 (($ $) NIL (|has| $ (-962)))) (-3357 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2269 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1027 (-517) (-556 $))) NIL)) (-2950 (((-703)) NIL)) (-3438 (($ $) NIL) (($ (-583 $)) NIL)) (-1752 (((-107) (-109)) NIL)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) 7 T CONST)) (-3617 (($) 12 T CONST)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 16)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (-1691 (($ $ $) 15) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
+(((-47) (-13 (-273) (-27) (-953 (-517)) (-953 (-377 (-517))) (-579 (-517)) (-938) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2269 ($ (-1027 (-517) (-556 $)))) (-15 -3824 ((-1027 (-517) (-556 $)) $)) (-15 -2097 ((-1027 (-517) (-556 $)) $)) (-15 -1521 ($ $)) (-15 -2754 ((-1071 $) (-1071 $) (-556 $))) (-15 -2754 ((-1071 $) (-1071 $) (-583 (-556 $)))) (-15 -2754 ($ $ (-556 $))) (-15 -2754 ($ $ (-583 (-556 $))))))) (T -47))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1521 (*1 *1 *1) (-5 *1 (-47))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
+(-13 (-273) (-27) (-953 (-517)) (-953 (-377 (-517))) (-579 (-517)) (-938) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2269 ($ (-1027 (-517) (-556 $)))) (-15 -3824 ((-1027 (-517) (-556 $)) $)) (-15 -2097 ((-1027 (-517) (-556 $)) $)) (-15 -1521 ($ $)) (-15 -2754 ((-1071 $) (-1071 $) (-556 $))) (-15 -2754 ((-1071 $) (-1071 $) (-583 (-556 $)))) (-15 -2754 ($ $ (-556 $))) (-15 -2754 ($ $ (-583 (-556 $))))))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 7)) (-1583 (((-107) $ $) NIL)))
+(((-48) (-1004)) (T -48))
+NIL
+(-1004)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 60)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2236 (((-107) $) 20)) (-3226 (((-3 |#1| "failed") $) 23)) (-3388 ((|#1| $) 24)) (-2371 (($ $) 27)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2345 ((|#1| $) 21)) (-3190 (($ $) 49)) (-1895 (((-1058) $) NIL)) (-2974 (((-107) $) 28)) (-4123 (((-1022) $) NIL)) (-1317 (($ (-703)) 47)) (-3868 (($ (-583 (-517))) 48)) (-2769 (((-703) $) 29)) (-2269 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-3952 ((|#1| $ $) 19)) (-2950 (((-703)) 46)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 30 T CONST)) (-3617 (($) 14 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 40)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-561 |#1|) (-953 |#1|) (-10 -8 (-15 -2345 (|#1| $)) (-15 -3190 ($ $)) (-15 -2371 ($ $)) (-15 -3952 (|#1| $ $)) (-15 -1317 ($ (-703))) (-15 -3868 ($ (-583 (-517)))) (-15 -2974 ((-107) $)) (-15 -2236 ((-107) $)) (-15 -2769 ((-703) $)) (-15 -3308 ($ (-1 |#1| |#1|) $)))) (-962) (-583 (-1075))) (T -49))
+((-2345 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1075))))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-962)) (-14 *3 (-583 (-1075))))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-962)) (-14 *3 (-583 (-1075))))) (-3952 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1075))))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1075))))))
+(-13 (-561 |#1|) (-953 |#1|) (-10 -8 (-15 -2345 (|#1| $)) (-15 -3190 ($ $)) (-15 -2371 ($ $)) (-15 -3952 (|#1| $ $)) (-15 -1317 ($ (-703))) (-15 -3868 ($ (-583 (-517)))) (-15 -2974 ((-107) $)) (-15 -2236 ((-107) $)) (-15 -2769 ((-703) $)) (-15 -3308 ($ (-1 |#1| |#1|) $))))
+((-2236 (((-107) (-51)) 13)) (-3226 (((-3 |#1| "failed") (-51)) 21)) (-3388 ((|#1| (-51)) 22)) (-2269 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2269 ((-51) |#1|)) (-15 -3226 ((-3 |#1| "failed") (-51))) (-15 -2236 ((-107) (-51))) (-15 -3388 (|#1| (-51)))) (-1110)) (T -50))
+((-3388 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1110)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1110)))) (-3226 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1110)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1110)))))
+(-10 -7 (-15 -2269 ((-51) |#1|)) (-15 -3226 ((-3 |#1| "failed") (-51))) (-15 -2236 ((-107) (-51))) (-15 -3388 (|#1| (-51))))
+((-2118 (((-107) $ $) NIL)) (-3322 (((-1058) (-107)) 25)) (-1242 (((-787) $) 24)) (-3801 (((-706) $) 12)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-1562 (((-787) $) 16)) (-2942 (((-1008) $) 14)) (-2269 (((-787) $) 32)) (-3526 (($ (-1008) (-706)) 33)) (-1583 (((-107) $ $) 18)))
+(((-51) (-13 (-1004) (-10 -8 (-15 -3526 ($ (-1008) (-706))) (-15 -1562 ((-787) $)) (-15 -1242 ((-787) $)) (-15 -2942 ((-1008) $)) (-15 -3801 ((-706) $)) (-15 -3322 ((-1058) (-107)))))) (T -51))
+((-3526 (*1 *1 *2 *3) (-12 (-5 *2 (-1008)) (-5 *3 (-706)) (-5 *1 (-51)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-51)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1058)) (-5 *1 (-51)))))
+(-13 (-1004) (-10 -8 (-15 -3526 ($ (-1008) (-706))) (-15 -1562 ((-787) $)) (-15 -1242 ((-787) $)) (-15 -2942 ((-1008) $)) (-15 -3801 ((-706) $)) (-15 -3322 ((-1058) (-107)))))
+((-2374 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2374 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-585 |#1|) (-781 |#1|)) (T -52))
+((-2374 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-962)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
+(-10 -7 (-15 -2374 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2410 ((|#3| |#3| (-583 (-1075))) 35)) (-1846 ((|#3| (-583 (-984 |#1| |#2| |#3|)) |#3| (-844)) 22) ((|#3| (-583 (-984 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1846 (|#3| (-583 (-984 |#1| |#2| |#3|)) |#3|)) (-15 -1846 (|#3| (-583 (-984 |#1| |#2| |#3|)) |#3| (-844))) (-15 -2410 (|#3| |#3| (-583 (-1075))))) (-1004) (-13 (-962) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -53))
+((-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-1846 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-984 *5 *6 *2))) (-5 *4 (-844)) (-4 *5 (-1004)) (-4 *6 (-13 (-962) (-809 *5) (-779) (-558 (-815 *5)))) (-4 *2 (-13 (-400 *6) (-809 *5) (-558 (-815 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-984 *4 *5 *2))) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -1846 (|#3| (-583 (-984 |#1| |#2| |#3|)) |#3|)) (-15 -1846 (|#3| (-583 (-984 |#1| |#2| |#3|)) |#3| (-844))) (-15 -2410 (|#3| |#3| (-583 (-1075)))))
+((-2670 (((-107) $ (-703)) 23)) (-3813 (($ $ (-517) |#3|) 45)) (-3233 (($ $ (-517) |#4|) 49)) (-3766 ((|#3| $ (-517)) 58)) (-1535 (((-583 |#2|) $) 30)) (-2361 (((-107) $ (-703)) 25)) (-4008 (((-107) |#2| $) 53)) (-2744 (($ (-1 |#2| |#2|) $) 37)) (-3308 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-4043 (((-107) $ (-703)) 24)) (-3191 (($ $ |#2|) 34)) (-3480 (((-107) (-1 (-107) |#2|) $) 19)) (-2607 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-4135 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2460 (($ $) 33)) (-2708 ((|#4| $ (-517)) 61)) (-2269 (((-787) $) 66)) (-3160 (((-107) (-1 (-107) |#2|) $) 18)) (-1583 (((-107) $ $) 52)) (-3533 (((-703) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3233 (|#1| |#1| (-517) |#4|)) (-15 -3813 (|#1| |#1| (-517) |#3|)) (-15 -1535 ((-583 |#2|) |#1|)) (-15 -2708 (|#4| |#1| (-517))) (-15 -3766 (|#3| |#1| (-517))) (-15 -2607 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517))) (-15 -3191 (|#1| |#1| |#2|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -4008 ((-107) |#2| |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))) (-15 -2460 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1110) (-343 |#2|) (-343 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3233 (|#1| |#1| (-517) |#4|)) (-15 -3813 (|#1| |#1| (-517) |#3|)) (-15 -1535 ((-583 |#2|) |#1|)) (-15 -2708 (|#4| |#1| (-517))) (-15 -3766 (|#3| |#1| (-517))) (-15 -2607 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517))) (-15 -3191 (|#1| |#1| |#2|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -4008 ((-107) |#2| |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))) (-15 -2460 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) (-517) |#1|) 44)) (-3813 (($ $ (-517) |#2|) 42)) (-3233 (($ $ (-517) |#3|) 41)) (-1681 (($) 7 T CONST)) (-3766 ((|#2| $ (-517)) 46)) (-2757 ((|#1| $ (-517) (-517) |#1|) 43)) (-2563 ((|#1| $ (-517) (-517)) 48)) (-1535 (((-583 |#1|) $) 30)) (-1420 (((-703) $) 51)) (-3211 (($ (-703) (-703) |#1|) 57)) (-1434 (((-703) $) 50)) (-2361 (((-107) $ (-703)) 9)) (-2380 (((-517) $) 55)) (-3442 (((-517) $) 53)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1977 (((-517) $) 54)) (-3996 (((-517) $) 52)) (-2744 (($ (-1 |#1| |#1|) $) 34)) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) 56)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2708 ((|#3| $ (-517)) 45)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-55 |#1| |#2| |#3|) (-1187) (-1110) (-343 |t#1|) (-343 |t#1|)) (T -55))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1110)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3191 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1110)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-2607 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1110)))) (-2563 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1110)))) (-2607 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1110)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1110)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1535 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2443 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-2757 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1110)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3233 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1110)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-2744 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3308 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3308 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4191) (-6 -4190) (-15 -3211 ($ (-703) (-703) |t#1|)) (-15 -3191 ($ $ |t#1|)) (-15 -2380 ((-517) $)) (-15 -1977 ((-517) $)) (-15 -3442 ((-517) $)) (-15 -3996 ((-517) $)) (-15 -1420 ((-703) $)) (-15 -1434 ((-703) $)) (-15 -2607 (|t#1| $ (-517) (-517))) (-15 -2563 (|t#1| $ (-517) (-517))) (-15 -2607 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3766 (|t#2| $ (-517))) (-15 -2708 (|t#3| $ (-517))) (-15 -1535 ((-583 |t#1|) $)) (-15 -2443 (|t#1| $ (-517) (-517) |t#1|)) (-15 -2757 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3813 ($ $ (-517) |t#2|)) (-15 -3233 ($ $ (-517) |t#3|)) (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (-15 -2744 ($ (-1 |t#1| |t#1|) $)) (-15 -3308 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3308 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2499 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1521 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3308 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -2499 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3308 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1110) (-1110)) (T -56))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-56 *5 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1110)) (-4 *5 (-1110)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -2499 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3308 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2295 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3211 (($ (-703) |#1|) 9)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 7)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2295 ($ (-583 |#1|))) (-15 -2295 ($ (-703) |#1|)))) (-1110)) (T -57))
+((-2295 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-57 *3)))) (-2295 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1110)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2295 ($ (-583 |#1|))) (-15 -2295 ($ (-703) |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3813 (($ $ (-517) (-57 |#1|)) NIL)) (-3233 (($ $ (-517) (-57 |#1|)) NIL)) (-1681 (($) NIL T CONST)) (-3766 (((-57 |#1|) $ (-517)) NIL)) (-2757 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2563 ((|#1| $ (-517) (-517)) NIL)) (-1535 (((-583 |#1|) $) NIL)) (-1420 (((-703) $) NIL)) (-3211 (($ (-703) (-703) |#1|) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2708 (((-57 |#1|) $ (-517)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4191))) (-1110)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4191)))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 69) (((-3 $ "failed") (-1156 (-286 (-517)))) 58) (((-3 $ "failed") (-1156 (-875 (-349)))) 91) (((-3 $ "failed") (-1156 (-875 (-517)))) 80) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 47) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 36)) (-3388 (($ (-1156 (-286 (-349)))) 65) (($ (-1156 (-286 (-517)))) 54) (($ (-1156 (-875 (-349)))) 87) (($ (-1156 (-875 (-517)))) 76) (($ (-1156 (-377 (-875 (-349))))) 43) (($ (-1156 (-377 (-875 (-517))))) 29)) (-1897 (((-1161) $) 118)) (-2269 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 97) (($ (-1156 (-309 (-2286 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2286) (-632)))) 28)))
+(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2286) (-632))))))) (-1075)) (T -59))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2286) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2286) (-632)))))))
+((-1897 (((-1161) $) 48) (((-1161)) 49)) (-2269 (((-787) $) 45)))
+(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -1897 ((-1161))))) (-1075)) (T -60))
+((-1897 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-60 *3)) (-14 *3 (-1075)))))
+(-13 (-365) (-10 -7 (-15 -1897 ((-1161)))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 142) (((-3 $ "failed") (-1156 (-286 (-517)))) 132) (((-3 $ "failed") (-1156 (-875 (-349)))) 163) (((-3 $ "failed") (-1156 (-875 (-517)))) 152) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 121) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 110)) (-3388 (($ (-1156 (-286 (-349)))) 138) (($ (-1156 (-286 (-517)))) 128) (($ (-1156 (-875 (-349)))) 159) (($ (-1156 (-875 (-517)))) 148) (($ (-1156 (-377 (-875 (-349))))) 117) (($ (-1156 (-377 (-875 (-517))))) 103)) (-1897 (((-1161) $) 96)) (-2269 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 31) (($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))) 88)))
+(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632))))))) (-1075)) (T -61))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))))))
+((-3226 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-875 (-349))) 46) (((-3 $ "failed") (-875 (-517))) 51) (((-3 $ "failed") (-377 (-875 (-349)))) 31) (((-3 $ "failed") (-377 (-875 (-517)))) 26)) (-3388 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-875 (-349))) 44) (($ (-875 (-517))) 49) (($ (-377 (-875 (-349)))) 29) (($ (-377 (-875 (-517)))) 23)) (-1897 (((-1161) $) 73)) (-2269 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 60) (($ (-309 (-2286 (QUOTE X)) (-2286) (-632))) 22)))
+(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286 (QUOTE X)) (-2286) (-632)))))) (-1075)) (T -62))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-309 (-2286 (QUOTE X)) (-2286) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1075)))))
+(-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286 (QUOTE X)) (-2286) (-632))))))
+((-3226 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-875 (-349)))) 122) (((-3 $ "failed") (-623 (-875 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 67)) (-3388 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-875 (-349)))) 118) (($ (-623 (-875 (-517)))) 107) (($ (-623 (-377 (-875 (-349))))) 74) (($ (-623 (-377 (-875 (-517))))) 60)) (-1897 (((-1161) $) 130)) (-2269 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 30) (($ (-623 (-309 (-2286) (-2286 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
+(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286) (-2286 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1075)) (T -63))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2286) (-2286 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1075)))))
+(-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286) (-2286 (QUOTE X) (QUOTE HESS)) (-632)))))))
+((-3226 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-875 (-349))) 64) (((-3 $ "failed") (-875 (-517))) 69) (((-3 $ "failed") (-377 (-875 (-349)))) 49) (((-3 $ "failed") (-377 (-875 (-517)))) 44)) (-3388 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-875 (-349))) 62) (($ (-875 (-517))) 67) (($ (-377 (-875 (-349)))) 47) (($ (-377 (-875 (-517)))) 41)) (-1897 (((-1161) $) 78)) (-2269 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 30) (($ (-309 (-2286) (-2286 (QUOTE XC)) (-632))) 38)))
+(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE XC)) (-632)))))) (-1075)) (T -64))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-309 (-2286) (-2286 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1075)))))
+(-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE XC)) (-632))))))
+((-1897 (((-1161) $) 63)) (-2269 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 53)))
+(((-65 |#1|) (-353) (-1075)) (T -65))
NIL
(-353)
-((-4099 (((-1159) $) 64)) (-2254 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 55)))
-(((-66 |#1|) (-353) (-1074)) (T -66))
+((-1897 (((-1161) $) 64)) (-2269 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 55)))
+(((-66 |#1|) (-353) (-1075)) (T -66))
NIL
(-353)
-((-4099 (((-1159) $) NIL) (((-1159)) 32)) (-2254 (((-787) $) NIL)))
-(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -4099 ((-1159))))) (-1074)) (T -67))
-((-4099 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-67 *3)) (-14 *3 (-1074)))))
-(-13 (-365) (-10 -7 (-15 -4099 ((-1159)))))
-((-4099 (((-1159) $) 68)) (-2254 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 52)))
-(((-68 |#1|) (-353) (-1074)) (T -68))
+((-1897 (((-1161) $) NIL) (((-1161)) 32)) (-2269 (((-787) $) NIL)))
+(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -1897 ((-1161))))) (-1075)) (T -67))
+((-1897 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-67 *3)) (-14 *3 (-1075)))))
+(-13 (-365) (-10 -7 (-15 -1897 ((-1161)))))
+((-1897 (((-1161) $) 68)) (-2269 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 52)))
+(((-68 |#1|) (-353) (-1075)) (T -68))
NIL
(-353)
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 98) (((-3 $ "failed") (-1154 (-286 (-517)))) 87) (((-3 $ "failed") (-1154 (-874 (-349)))) 119) (((-3 $ "failed") (-1154 (-874 (-517)))) 108) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 76) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 65)) (-3232 (($ (-1154 (-286 (-349)))) 94) (($ (-1154 (-286 (-517)))) 83) (($ (-1154 (-874 (-349)))) 115) (($ (-1154 (-874 (-517)))) 104) (($ (-1154 (-377 (-874 (-349))))) 72) (($ (-1154 (-377 (-874 (-517))))) 58)) (-4099 (((-1159) $) 133)) (-2254 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 50) (($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) 51)))
-(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))))))) (-1074)) (T -69))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))))))
-((-4099 (((-1159) $) 32) (((-1159)) 31)) (-2254 (((-787) $) 35)))
-(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -4099 ((-1159))))) (-1074)) (T -70))
-((-4099 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-70 *3)) (-14 *3 (-1074)))))
-(-13 (-365) (-10 -7 (-15 -4099 ((-1159)))))
-((-4099 (((-1159) $) 62)) (-2254 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 46)))
-(((-71 |#1|) (-353) (-1074)) (T -71))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 98) (((-3 $ "failed") (-1156 (-286 (-517)))) 87) (((-3 $ "failed") (-1156 (-875 (-349)))) 119) (((-3 $ "failed") (-1156 (-875 (-517)))) 108) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 76) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 65)) (-3388 (($ (-1156 (-286 (-349)))) 94) (($ (-1156 (-286 (-517)))) 83) (($ (-1156 (-875 (-349)))) 115) (($ (-1156 (-875 (-517)))) 104) (($ (-1156 (-377 (-875 (-349))))) 72) (($ (-1156 (-377 (-875 (-517))))) 58)) (-1897 (((-1161) $) 133)) (-2269 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 50) (($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))) 51)))
+(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632))))))) (-1075)) (T -69))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))))))
+((-1897 (((-1161) $) 32) (((-1161)) 31)) (-2269 (((-787) $) 35)))
+(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -1897 ((-1161))))) (-1075)) (T -70))
+((-1897 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-70 *3)) (-14 *3 (-1075)))))
+(-13 (-365) (-10 -7 (-15 -1897 ((-1161)))))
+((-1897 (((-1161) $) 62)) (-2269 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 46)))
+(((-71 |#1|) (-353) (-1075)) (T -71))
NIL
(-353)
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 119) (((-3 $ "failed") (-1154 (-286 (-517)))) 108) (((-3 $ "failed") (-1154 (-874 (-349)))) 141) (((-3 $ "failed") (-1154 (-874 (-517)))) 130) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 98) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 87)) (-3232 (($ (-1154 (-286 (-349)))) 115) (($ (-1154 (-286 (-517)))) 104) (($ (-1154 (-874 (-349)))) 137) (($ (-1154 (-874 (-517)))) 126) (($ (-1154 (-377 (-874 (-349))))) 94) (($ (-1154 (-377 (-874 (-517))))) 80)) (-4099 (((-1159) $) 73)) (-2254 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 66) (($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) 60)))
-(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632))))))) (-1074)) (T -72))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 125) (((-3 $ "failed") (-1154 (-286 (-517)))) 114) (((-3 $ "failed") (-1154 (-874 (-349)))) 147) (((-3 $ "failed") (-1154 (-874 (-517)))) 136) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 103) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 92)) (-3232 (($ (-1154 (-286 (-349)))) 121) (($ (-1154 (-286 (-517)))) 110) (($ (-1154 (-874 (-349)))) 143) (($ (-1154 (-874 (-517)))) 132) (($ (-1154 (-377 (-874 (-349))))) 99) (($ (-1154 (-377 (-874 (-517))))) 85)) (-4099 (((-1159) $) 78)) (-2254 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) NIL) (($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE EPS)) (-2272 (QUOTE -1970)) (-632)))) 65)))
-(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE EPS)) (-2272 (QUOTE -1970)) (-632))))))) (-1074) (-1074) (-1074)) (T -73))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X) (QUOTE EPS)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE EPS)) (-2272 (QUOTE -1970)) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 129) (((-3 $ "failed") (-1154 (-286 (-517)))) 118) (((-3 $ "failed") (-1154 (-874 (-349)))) 151) (((-3 $ "failed") (-1154 (-874 (-517)))) 140) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 107) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 96)) (-3232 (($ (-1154 (-286 (-349)))) 125) (($ (-1154 (-286 (-517)))) 114) (($ (-1154 (-874 (-349)))) 147) (($ (-1154 (-874 (-517)))) 136) (($ (-1154 (-377 (-874 (-349))))) 103) (($ (-1154 (-377 (-874 (-517))))) 89)) (-4099 (((-1159) $) 82)) (-2254 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) NIL) (($ (-1154 (-309 (-2272 (QUOTE EPS)) (-2272 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
-(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE EPS)) (-2272 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1074) (-1074) (-1074)) (T -74))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE EPS)) (-2272 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE EPS)) (-2272 (QUOTE YA) (QUOTE YB)) (-632)))))))
-((-1837 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-874 (-349))) 87) (((-3 $ "failed") (-874 (-517))) 92) (((-3 $ "failed") (-377 (-874 (-349)))) 72) (((-3 $ "failed") (-377 (-874 (-517)))) 67)) (-3232 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-874 (-349))) 85) (($ (-874 (-517))) 90) (($ (-377 (-874 (-349)))) 70) (($ (-377 (-874 (-517)))) 64)) (-4099 (((-1159) $) 61)) (-2254 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 53) (($ (-309 (-2272) (-2272 (QUOTE X)) (-632))) 46)))
-(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE X)) (-632)))))) (-1074)) (T -75))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1074)))))
-(-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE X)) (-632))))))
-((-1837 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-874 (-349))) 51) (((-3 $ "failed") (-874 (-517))) 56) (((-3 $ "failed") (-377 (-874 (-349)))) 36) (((-3 $ "failed") (-377 (-874 (-517)))) 31)) (-3232 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-874 (-349))) 49) (($ (-874 (-517))) 54) (($ (-377 (-874 (-349)))) 34) (($ (-377 (-874 (-517)))) 28)) (-4099 (((-1159) $) 77)) (-2254 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 65) (($ (-309 (-2272) (-2272 (QUOTE X)) (-632))) 27)))
-(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE X)) (-632)))))) (-1074)) (T -76))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1074)))))
-(-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272) (-2272 (QUOTE X)) (-632))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 84) (((-3 $ "failed") (-1154 (-286 (-517)))) 73) (((-3 $ "failed") (-1154 (-874 (-349)))) 106) (((-3 $ "failed") (-1154 (-874 (-517)))) 95) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 62) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 51)) (-3232 (($ (-1154 (-286 (-349)))) 80) (($ (-1154 (-286 (-517)))) 69) (($ (-1154 (-874 (-349)))) 102) (($ (-1154 (-874 (-517)))) 91) (($ (-1154 (-377 (-874 (-349))))) 58) (($ (-1154 (-377 (-874 (-517))))) 44)) (-4099 (((-1159) $) 122)) (-2254 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 112) (($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) 37)))
-(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632))))))) (-1074)) (T -77))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 137) (((-3 $ "failed") (-1154 (-286 (-517)))) 126) (((-3 $ "failed") (-1154 (-874 (-349)))) 158) (((-3 $ "failed") (-1154 (-874 (-517)))) 147) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 116) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 105)) (-3232 (($ (-1154 (-286 (-349)))) 133) (($ (-1154 (-286 (-517)))) 122) (($ (-1154 (-874 (-349)))) 154) (($ (-1154 (-874 (-517)))) 143) (($ (-1154 (-377 (-874 (-349))))) 112) (($ (-1154 (-377 (-874 (-517))))) 98)) (-4099 (((-1159) $) 91)) (-2254 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 81) (($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) 77)))
-(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632))))))) (-1074)) (T -78))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 73) (((-3 $ "failed") (-1154 (-286 (-517)))) 62) (((-3 $ "failed") (-1154 (-874 (-349)))) 95) (((-3 $ "failed") (-1154 (-874 (-517)))) 84) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 51) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 40)) (-3232 (($ (-1154 (-286 (-349)))) 69) (($ (-1154 (-286 (-517)))) 58) (($ (-1154 (-874 (-349)))) 91) (($ (-1154 (-874 (-517)))) 80) (($ (-1154 (-377 (-874 (-349))))) 47) (($ (-1154 (-377 (-874 (-517))))) 33)) (-4099 (((-1159) $) 121)) (-2254 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 110) (($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) 32)))
-(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632))))))) (-1074)) (T -79))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 90) (((-3 $ "failed") (-1154 (-286 (-517)))) 79) (((-3 $ "failed") (-1154 (-874 (-349)))) 112) (((-3 $ "failed") (-1154 (-874 (-517)))) 101) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 68) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 57)) (-3232 (($ (-1154 (-286 (-349)))) 86) (($ (-1154 (-286 (-517)))) 75) (($ (-1154 (-874 (-349)))) 108) (($ (-1154 (-874 (-517)))) 97) (($ (-1154 (-377 (-874 (-349))))) 64) (($ (-1154 (-377 (-874 (-517))))) 50)) (-4099 (((-1159) $) 43)) (-2254 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 32) (($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) 27)))
-(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632))))))) (-1074)) (T -80))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))))))
-((-1837 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 125) (((-3 $ "failed") (-623 (-874 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 71)) (-3232 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 121) (($ (-623 (-874 (-517)))) 110) (($ (-623 (-377 (-874 (-349))))) 78) (($ (-623 (-377 (-874 (-517))))) 64)) (-4099 (((-1159) $) 57)) (-2254 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 47) (($ (-623 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) 40)))
-(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632))))))) (-1074)) (T -81))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1074)))))
-(-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))))))
-((-1837 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 124) (((-3 $ "failed") (-623 (-874 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 70)) (-3232 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 120) (($ (-623 (-874 (-517)))) 109) (($ (-623 (-377 (-874 (-349))))) 77) (($ (-623 (-377 (-874 (-517))))) 63)) (-4099 (((-1159) $) 56)) (-2254 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 40) (($ (-623 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) 41)))
-(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE X)) (-2272) (-632))))))) (-1074)) (T -82))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1074)))))
-(-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE X)) (-2272) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 99) (((-3 $ "failed") (-1154 (-286 (-517)))) 88) (((-3 $ "failed") (-1154 (-874 (-349)))) 121) (((-3 $ "failed") (-1154 (-874 (-517)))) 110) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 77) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 66)) (-3232 (($ (-1154 (-286 (-349)))) 95) (($ (-1154 (-286 (-517)))) 84) (($ (-1154 (-874 (-349)))) 117) (($ (-1154 (-874 (-517)))) 106) (($ (-1154 (-377 (-874 (-349))))) 73) (($ (-1154 (-377 (-874 (-517))))) 59)) (-4099 (((-1159) $) 45)) (-2254 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 51) (($ (-1154 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) 36)))
-(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272) (-632))))))) (-1074)) (T -83))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272) (-632)))))))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 74) (((-3 $ "failed") (-1154 (-286 (-517)))) 63) (((-3 $ "failed") (-1154 (-874 (-349)))) 96) (((-3 $ "failed") (-1154 (-874 (-517)))) 85) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 52) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 41)) (-3232 (($ (-1154 (-286 (-349)))) 70) (($ (-1154 (-286 (-517)))) 59) (($ (-1154 (-874 (-349)))) 92) (($ (-1154 (-874 (-517)))) 81) (($ (-1154 (-377 (-874 (-349))))) 48) (($ (-1154 (-377 (-874 (-517))))) 34)) (-4099 (((-1159) $) 122)) (-2254 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 111) (($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) 33)))
-(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))))))) (-1074)) (T -84))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1074)))))
-(-13 (-410) (-10 -8 (-15 -2254 ($ (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))))))
-((-1837 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-874 (-349)))) 127) (((-3 $ "failed") (-623 (-874 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 72)) (-3232 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-874 (-349)))) 123) (($ (-623 (-874 (-517)))) 112) (($ (-623 (-377 (-874 (-349))))) 79) (($ (-623 (-377 (-874 (-517))))) 65)) (-4099 (((-1159) $) 58)) (-2254 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 47) (($ (-623 (-309 (-2272 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2272) (-632)))) 43)))
-(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2272) (-632))))))) (-1074)) (T -85))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2272) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1074)))))
-(-13 (-354) (-10 -8 (-15 -2254 ($ (-623 (-309 (-2272 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2272) (-632)))))))
-((-4099 (((-1159) $) 44)) (-2254 (((-787) $) 38) (($ (-1154 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 32)))
-(((-86 |#1|) (-409) (-1074)) (T -86))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 119) (((-3 $ "failed") (-1156 (-286 (-517)))) 108) (((-3 $ "failed") (-1156 (-875 (-349)))) 141) (((-3 $ "failed") (-1156 (-875 (-517)))) 130) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 98) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 87)) (-3388 (($ (-1156 (-286 (-349)))) 115) (($ (-1156 (-286 (-517)))) 104) (($ (-1156 (-875 (-349)))) 137) (($ (-1156 (-875 (-517)))) 126) (($ (-1156 (-377 (-875 (-349))))) 94) (($ (-1156 (-377 (-875 (-517))))) 80)) (-1897 (((-1161) $) 73)) (-2269 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 66) (($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) 60)))
+(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632))))))) (-1075)) (T -72))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 125) (((-3 $ "failed") (-1156 (-286 (-517)))) 114) (((-3 $ "failed") (-1156 (-875 (-349)))) 147) (((-3 $ "failed") (-1156 (-875 (-517)))) 136) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 103) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 92)) (-3388 (($ (-1156 (-286 (-349)))) 121) (($ (-1156 (-286 (-517)))) 110) (($ (-1156 (-875 (-349)))) 143) (($ (-1156 (-875 (-517)))) 132) (($ (-1156 (-377 (-875 (-349))))) 99) (($ (-1156 (-377 (-875 (-517))))) 85)) (-1897 (((-1161) $) 78)) (-2269 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) NIL) (($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE EPS)) (-2286 (QUOTE -2010)) (-632)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE EPS)) (-2286 (QUOTE -2010)) (-632))))))) (-1075) (-1075) (-1075)) (T -73))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE X) (QUOTE EPS)) (-2286 (QUOTE -2010)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1075)) (-14 *4 (-1075)) (-14 *5 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE EPS)) (-2286 (QUOTE -2010)) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 129) (((-3 $ "failed") (-1156 (-286 (-517)))) 118) (((-3 $ "failed") (-1156 (-875 (-349)))) 151) (((-3 $ "failed") (-1156 (-875 (-517)))) 140) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 107) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 96)) (-3388 (($ (-1156 (-286 (-349)))) 125) (($ (-1156 (-286 (-517)))) 114) (($ (-1156 (-875 (-349)))) 147) (($ (-1156 (-875 (-517)))) 136) (($ (-1156 (-377 (-875 (-349))))) 103) (($ (-1156 (-377 (-875 (-517))))) 89)) (-1897 (((-1161) $) 82)) (-2269 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) NIL) (($ (-1156 (-309 (-2286 (QUOTE EPS)) (-2286 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE EPS)) (-2286 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1075) (-1075) (-1075)) (T -74))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE EPS)) (-2286 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1075)) (-14 *4 (-1075)) (-14 *5 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE EPS)) (-2286 (QUOTE YA) (QUOTE YB)) (-632)))))))
+((-3226 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-875 (-349))) 87) (((-3 $ "failed") (-875 (-517))) 92) (((-3 $ "failed") (-377 (-875 (-349)))) 72) (((-3 $ "failed") (-377 (-875 (-517)))) 67)) (-3388 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-875 (-349))) 85) (($ (-875 (-517))) 90) (($ (-377 (-875 (-349)))) 70) (($ (-377 (-875 (-517)))) 64)) (-1897 (((-1161) $) 61)) (-2269 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 53) (($ (-309 (-2286) (-2286 (QUOTE X)) (-632))) 46)))
+(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE X)) (-632)))))) (-1075)) (T -75))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-309 (-2286) (-2286 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1075)))))
+(-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE X)) (-632))))))
+((-3226 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-875 (-349))) 51) (((-3 $ "failed") (-875 (-517))) 56) (((-3 $ "failed") (-377 (-875 (-349)))) 36) (((-3 $ "failed") (-377 (-875 (-517)))) 31)) (-3388 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-875 (-349))) 49) (($ (-875 (-517))) 54) (($ (-377 (-875 (-349)))) 34) (($ (-377 (-875 (-517)))) 28)) (-1897 (((-1161) $) 77)) (-2269 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 65) (($ (-309 (-2286) (-2286 (QUOTE X)) (-632))) 27)))
+(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE X)) (-632)))))) (-1075)) (T -76))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-309 (-2286) (-2286 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1075)))))
+(-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286) (-2286 (QUOTE X)) (-632))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 84) (((-3 $ "failed") (-1156 (-286 (-517)))) 73) (((-3 $ "failed") (-1156 (-875 (-349)))) 106) (((-3 $ "failed") (-1156 (-875 (-517)))) 95) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 62) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 51)) (-3388 (($ (-1156 (-286 (-349)))) 80) (($ (-1156 (-286 (-517)))) 69) (($ (-1156 (-875 (-349)))) 102) (($ (-1156 (-875 (-517)))) 91) (($ (-1156 (-377 (-875 (-349))))) 58) (($ (-1156 (-377 (-875 (-517))))) 44)) (-1897 (((-1161) $) 122)) (-2269 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 112) (($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))) 37)))
+(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632))))))) (-1075)) (T -77))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE XC)) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 137) (((-3 $ "failed") (-1156 (-286 (-517)))) 126) (((-3 $ "failed") (-1156 (-875 (-349)))) 158) (((-3 $ "failed") (-1156 (-875 (-517)))) 147) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 116) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 105)) (-3388 (($ (-1156 (-286 (-349)))) 133) (($ (-1156 (-286 (-517)))) 122) (($ (-1156 (-875 (-349)))) 154) (($ (-1156 (-875 (-517)))) 143) (($ (-1156 (-377 (-875 (-349))))) 112) (($ (-1156 (-377 (-875 (-517))))) 98)) (-1897 (((-1161) $) 91)) (-2269 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 81) (($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) 77)))
+(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632))))))) (-1075)) (T -78))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 73) (((-3 $ "failed") (-1156 (-286 (-517)))) 62) (((-3 $ "failed") (-1156 (-875 (-349)))) 95) (((-3 $ "failed") (-1156 (-875 (-517)))) 84) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 51) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 40)) (-3388 (($ (-1156 (-286 (-349)))) 69) (($ (-1156 (-286 (-517)))) 58) (($ (-1156 (-875 (-349)))) 91) (($ (-1156 (-875 (-517)))) 80) (($ (-1156 (-377 (-875 (-349))))) 47) (($ (-1156 (-377 (-875 (-517))))) 33)) (-1897 (((-1161) $) 121)) (-2269 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 110) (($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) 32)))
+(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632))))))) (-1075)) (T -79))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286) (-2286 (QUOTE X)) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 90) (((-3 $ "failed") (-1156 (-286 (-517)))) 79) (((-3 $ "failed") (-1156 (-875 (-349)))) 112) (((-3 $ "failed") (-1156 (-875 (-517)))) 101) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 68) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 57)) (-3388 (($ (-1156 (-286 (-349)))) 86) (($ (-1156 (-286 (-517)))) 75) (($ (-1156 (-875 (-349)))) 108) (($ (-1156 (-875 (-517)))) 97) (($ (-1156 (-377 (-875 (-349))))) 64) (($ (-1156 (-377 (-875 (-517))))) 50)) (-1897 (((-1161) $) 43)) (-2269 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 32) (($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))) 27)))
+(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632))))))) (-1075)) (T -80))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))))))
+((-3226 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-875 (-349)))) 125) (((-3 $ "failed") (-623 (-875 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 71)) (-3388 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-875 (-349)))) 121) (($ (-623 (-875 (-517)))) 110) (($ (-623 (-377 (-875 (-349))))) 78) (($ (-623 (-377 (-875 (-517))))) 64)) (-1897 (((-1161) $) 57)) (-2269 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 47) (($ (-623 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))) 40)))
+(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632))))))) (-1075)) (T -81))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1075)))))
+(-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE X) (QUOTE -2010)) (-2286) (-632)))))))
+((-3226 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-875 (-349)))) 124) (((-3 $ "failed") (-623 (-875 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 70)) (-3388 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-875 (-349)))) 120) (($ (-623 (-875 (-517)))) 109) (($ (-623 (-377 (-875 (-349))))) 77) (($ (-623 (-377 (-875 (-517))))) 63)) (-1897 (((-1161) $) 56)) (-2269 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 40) (($ (-623 (-309 (-2286 (QUOTE X)) (-2286) (-632)))) 41)))
+(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE X)) (-2286) (-632))))))) (-1075)) (T -82))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2286 (QUOTE X)) (-2286) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1075)))))
+(-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE X)) (-2286) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 99) (((-3 $ "failed") (-1156 (-286 (-517)))) 88) (((-3 $ "failed") (-1156 (-875 (-349)))) 121) (((-3 $ "failed") (-1156 (-875 (-517)))) 110) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 77) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 66)) (-3388 (($ (-1156 (-286 (-349)))) 95) (($ (-1156 (-286 (-517)))) 84) (($ (-1156 (-875 (-349)))) 117) (($ (-1156 (-875 (-517)))) 106) (($ (-1156 (-377 (-875 (-349))))) 73) (($ (-1156 (-377 (-875 (-517))))) 59)) (-1897 (((-1161) $) 45)) (-2269 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 51) (($ (-1156 (-309 (-2286 (QUOTE X)) (-2286) (-632)))) 36)))
+(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286) (-632))))))) (-1075)) (T -83))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE X)) (-2286) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286) (-632)))))))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 74) (((-3 $ "failed") (-1156 (-286 (-517)))) 63) (((-3 $ "failed") (-1156 (-875 (-349)))) 96) (((-3 $ "failed") (-1156 (-875 (-517)))) 85) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 52) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 41)) (-3388 (($ (-1156 (-286 (-349)))) 70) (($ (-1156 (-286 (-517)))) 59) (($ (-1156 (-875 (-349)))) 92) (($ (-1156 (-875 (-517)))) 81) (($ (-1156 (-377 (-875 (-349))))) 48) (($ (-1156 (-377 (-875 (-517))))) 34)) (-1897 (((-1161) $) 122)) (-2269 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 111) (($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))) 33)))
+(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632))))))) (-1075)) (T -84))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1075)))))
+(-13 (-410) (-10 -8 (-15 -2269 ($ (-1156 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))))))
+((-3226 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-875 (-349)))) 127) (((-3 $ "failed") (-623 (-875 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 72)) (-3388 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-875 (-349)))) 123) (($ (-623 (-875 (-517)))) 112) (($ (-623 (-377 (-875 (-349))))) 79) (($ (-623 (-377 (-875 (-517))))) 65)) (-1897 (((-1161) $) 58)) (-2269 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 47) (($ (-623 (-309 (-2286 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2286) (-632)))) 43)))
+(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2286) (-632))))))) (-1075)) (T -85))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2286 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2286) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1075)))))
+(-13 (-354) (-10 -8 (-15 -2269 ($ (-623 (-309 (-2286 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2286) (-632)))))))
+((-1897 (((-1161) $) 44)) (-2269 (((-787) $) 38) (($ (-1156 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 32)))
+(((-86 |#1|) (-409) (-1075)) (T -86))
NIL
(-409)
-((-1837 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-874 (-349))) 52) (((-3 $ "failed") (-874 (-517))) 57) (((-3 $ "failed") (-377 (-874 (-349)))) 37) (((-3 $ "failed") (-377 (-874 (-517)))) 32)) (-3232 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-874 (-349))) 50) (($ (-874 (-517))) 55) (($ (-377 (-874 (-349)))) 35) (($ (-377 (-874 (-517)))) 29)) (-4099 (((-1159) $) 88)) (-2254 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 73) (($ (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))) 28)))
-(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))))) (-1074)) (T -87))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1074)))))
-(-13 (-366) (-10 -8 (-15 -2254 ($ (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))))))
-((-2587 (((-1154 (-623 |#1|)) (-623 |#1|)) 54)) (-2308 (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843)) 44)) (-2644 (((-2 (|:| |minor| (-583 (-843))) (|:| -2153 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843)) 62 (|has| |#1| (-333)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -2308 ((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843))) (-15 -2587 ((-1154 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2644 ((-2 (|:| |minor| (-583 (-843))) (|:| -2153 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |%noBranch|)) (-509) (-593 |#1|)) (T -88))
-((-2644 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2153 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -3534 (-623 *5)) (|:| |vec| (-1154 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -2308 ((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 (-583 (-843))))) |#2| (-843))) (-15 -2587 ((-1154 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2644 ((-2 (|:| |minor| (-583 (-843))) (|:| -2153 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |%noBranch|))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1261 ((|#1| $) 35)) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-3660 ((|#1| |#1| $) 30)) (-3591 ((|#1| $) 28)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) NIL)) (-3676 (($ |#1| $) 31)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3773 ((|#1| $) 29)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 16)) (-2756 (($) 39)) (-2410 (((-703) $) 26)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 15)) (-2254 (((-787) $) 25 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) NIL)) (-1877 (($ (-583 |#1|)) 37)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 13 (|has| |#1| (-1003)))) (-2290 (((-703) $) 10 (|has| $ (-6 -4183)))))
-(((-89 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -1877 ($ (-583 |#1|))))) (-1003)) (T -89))
-((-1877 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
-(-13 (-1022 |#1|) (-10 -8 (-15 -1877 ($ (-583 |#1|)))))
-((-2688 (($ $) 10)) (-2698 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -2698 (|#1| |#1|)) (-15 -2688 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2698 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)))
-((-2670 (($ $) 11)) (-2651 (($ $) 10)) (-2688 (($ $) 9)) (-2698 (($ $) 8)) (-2678 (($ $) 7)) (-2660 (($ $) 6)))
-(((-91) (-1185)) (T -91))
-((-2670 (*1 *1 *1) (-4 *1 (-91))) (-2651 (*1 *1 *1) (-4 *1 (-91))) (-2688 (*1 *1 *1) (-4 *1 (-91))) (-2698 (*1 *1 *1) (-4 *1 (-91))) (-2678 (*1 *1 *1) (-4 *1 (-91))) (-2660 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -2660 ($ $)) (-15 -2678 ($ $)) (-15 -2698 ($ $)) (-15 -2688 ($ $)) (-15 -2651 ($ $)) (-15 -2670 ($ $))))
-((-1587 (((-107) $ $) NIL)) (-2110 (((-349) (-1057) (-349)) 42) (((-349) (-1057) (-1057) (-349)) 41)) (-3767 (((-349) (-349)) 33)) (-2620 (((-1159)) 36)) (-1277 (((-1057) $) NIL)) (-1980 (((-349) (-1057) (-1057)) 46) (((-349) (-1057)) 48)) (-3214 (((-1021) $) NIL)) (-2156 (((-349) (-1057) (-1057)) 47)) (-1232 (((-349) (-1057) (-1057)) 49) (((-349) (-1057)) 50)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
-(((-92) (-13 (-1003) (-10 -7 (-15 -1980 ((-349) (-1057) (-1057))) (-15 -1980 ((-349) (-1057))) (-15 -1232 ((-349) (-1057) (-1057))) (-15 -1232 ((-349) (-1057))) (-15 -2156 ((-349) (-1057) (-1057))) (-15 -2620 ((-1159))) (-15 -3767 ((-349) (-349))) (-15 -2110 ((-349) (-1057) (-349))) (-15 -2110 ((-349) (-1057) (-1057) (-349))) (-6 -4183)))) (T -92))
-((-1980 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1232 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2156 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2620 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-92)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-2110 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))) (-2110 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))))
-(-13 (-1003) (-10 -7 (-15 -1980 ((-349) (-1057) (-1057))) (-15 -1980 ((-349) (-1057))) (-15 -1232 ((-349) (-1057) (-1057))) (-15 -1232 ((-349) (-1057))) (-15 -2156 ((-349) (-1057) (-1057))) (-15 -2620 ((-1159))) (-15 -3767 ((-349) (-349))) (-15 -2110 ((-349) (-1057) (-349))) (-15 -2110 ((-349) (-1057) (-1057) (-349))) (-6 -4183)))
-NIL
-(((-93) (-1185)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4183) (-6 (-4185 "*")) (-6 -4184) (-6 -4180) (-6 -4178) (-6 -4177) (-6 -4176) (-6 -4181) (-6 -4175) (-6 -4174) (-6 -4173) (-6 -4172) (-6 -4171) (-6 -4179) (-6 -4182) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4170)))
-((-1587 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-2985 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 14)) (-3214 (((-1021) $) NIL)) (-1437 ((|#1| $ |#1|) 11)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) 20)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 8 T CONST)) (-1534 (((-107) $ $) 10)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2985 ($ (-1 |#1| |#1|))) (-15 -2985 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2985 ($ (-1 |#1| |#1| (-517)))))) (-961)) (T -94))
-((-2985 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2985 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
-(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2985 ($ (-1 |#1| |#1|))) (-15 -2985 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2985 ($ (-1 |#1| |#1| (-517))))))
-((-1845 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -1845 ((-388 |#2|) |#2| |#2|)) (-15 -1845 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1131 |#1|)) (T -95))
-((-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-1845 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -1845 ((-388 |#2|) |#2| |#2|)) (-15 -1845 ((-388 |#2|) |#2| (-583 |#2|))))
-((-1587 (((-107) $ $) 9)))
-(((-96 |#1|) (-10 -8 (-15 -1587 ((-107) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -1587 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1534 (((-107) $ $) 6)))
-(((-97) (-1185)) (T -97))
-((-1587 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1534 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(-13 (-10 -8 (-15 -1534 ((-107) $ $)) (-15 -1587 ((-107) $ $))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) 13 (|has| $ (-6 -4184)))) (-3120 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2872 (($ $ $) NIL (|has| $ (-6 -4184)))) (-3262 (($ $ (-583 |#1|)) 15)) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3633 (($ $) 11)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4158 (($ $ |#1| $) 17)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2702 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2936 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3623 (($ $) 10)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) 12)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 9)) (-2756 (($) 16)) (-1437 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3281 (($ (-703) |#1|) 19)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3281 ($ (-703) |#1|)) (-15 -3262 ($ $ (-583 |#1|))) (-15 -2702 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2702 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2936 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2936 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -98))
-((-3281 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-2702 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-2936 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) (-2936 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3281 ($ (-703) |#1|)) (-15 -3262 ($ $ (-583 |#1|))) (-15 -2702 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2702 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2936 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2936 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
-((-1454 ((|#3| |#2| |#2|) 28)) (-3430 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4185 "*"))))) (-2864 ((|#3| |#2| |#2|) 29)) (-3217 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4185 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1454 (|#3| |#2| |#2|)) (-15 -2864 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4185 "*"))) (PROGN (-15 -3430 (|#1| |#2| |#2|)) (-15 -3217 (|#1| |#2|))) |%noBranch|)) (-961) (-1131 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
-((-3217 (*1 *2 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3430 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-1454 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(-10 -7 (-15 -1454 (|#3| |#2| |#2|)) (-15 -2864 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4185 "*"))) (PROGN (-15 -3430 (|#1| |#2| |#2|)) (-15 -3217 (|#1| |#2|))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2068 (((-583 (-1074))) 32)) (-4065 (((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074)) 35)) (-1534 (((-107) $ $) NIL)))
-(((-100) (-13 (-1003) (-10 -7 (-15 -2068 ((-583 (-1074)))) (-15 -4065 ((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074))) (-6 -4183)))) (T -100))
-((-2068 (*1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-100)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199))))) (-5 *1 (-100)))))
-(-13 (-1003) (-10 -7 (-15 -2068 ((-583 (-1074)))) (-15 -4065 ((-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199)))) (-1074))) (-6 -4183)))
-((-2882 (($ (-583 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| (-583 |#2|)))) (-102 |#2|) (-1109)) (T -101))
-NIL
-(-10 -8 (-15 -2882 (|#1| (-583 |#2|))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-102 |#1|) (-1185) (-1109)) (T -102))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-102 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) (-3676 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
-(-13 (-456 |t#1|) (-10 -8 (-6 -4184) (-15 -2882 ($ (-583 |t#1|))) (-15 -3773 (|t#1| $)) (-15 -3676 ($ |t#1| $)) (-15 -3074 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-517) $) NIL (|has| (-517) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-517) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3232 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-517) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-517) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-517) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1199 (((-107) $) NIL (|has| (-517) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-517) (-779)))) (-1939 (($ (-1 (-517) (-517)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-517) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2908 (((-517) $) NIL (|has| (-517) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-517) $) NIL)) (-3667 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 2) $) 9)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-517) $) NIL (|has| (-517) (-502)))) (-2100 (($ (-377 (-517))) 8)) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| (-517) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1678 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-103) (-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 2) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2100 ($ (-377 (-517))))))) (T -103))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2100 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 2) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2100 ($ (-377 (-517))))))
-((-1587 (((-107) $ $) NIL)) (-2528 (((-1021) $ (-1021)) 23)) (-3909 (($ $ (-1057)) 17)) (-2513 (((-3 (-1021) "failed") $) 22)) (-1256 (((-1021) $) 20)) (-3869 (((-1021) $ (-1021)) 25)) (-2624 (((-1021) $) 24)) (-1602 (($ (-358)) NIL) (($ (-358) (-1057)) 16)) (-1214 (((-358) $) NIL)) (-1277 (((-1057) $) NIL)) (-2639 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2666 (($ $) 18)) (-1534 (((-107) $ $) NIL)))
-(((-104) (-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2513 ((-3 (-1021) "failed") $)) (-15 -2624 ((-1021) $)) (-15 -3869 ((-1021) $ (-1021)))))) (T -104))
-((-2513 (*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-3869 (*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
-(-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2513 ((-3 (-1021) "failed") $)) (-15 -2624 ((-1021) $)) (-15 -3869 ((-1021) $ (-1021)))))
-((-1587 (((-107) $ $) NIL)) (-1522 (($ $) NIL)) (-1790 (($ $ $) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3500 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-4044 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-2412 (((-107) $ (-1122 (-517)) (-107)) NIL (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2050 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1292 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3705 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-3537 (((-107) $ (-517)) NIL)) (-2624 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-3240 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-4024 (($ $ $) NIL)) (-2650 (($ $) NIL)) (-2351 (($ $ $) NIL)) (-3475 (($ (-703) (-107)) 8)) (-2456 (($ $ $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL)) (-1676 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2332 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL)) (-3696 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-107) $) NIL (|has| (-517) (-779)))) (-3222 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2880 (($ $ (-107)) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3949 (((-583 (-107)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 (($ $ (-1122 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3223 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2272 (($ (-583 (-107))) NIL)) (-2455 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2254 (((-787) $) NIL)) (-2399 (($ (-703) (-107)) 9)) (-2258 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-4032 (($ $ $) NIL)) (-2196 (($ $) NIL)) (-2403 (($ $ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-2392 (($ $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-105) (-13 (-118) (-10 -8 (-15 -2399 ($ (-703) (-107)))))) (T -105))
-((-2399 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
-(-13 (-118) (-10 -8 (-15 -2399 ($ (-703) (-107)))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-106 |#1| |#2|) (-1185) (-961) (-961)) (T -106))
-NIL
-(-13 (-585 |t#1|) (-967 |t#2|) (-10 -7 (-6 -4178) (-6 -4177)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#2|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-1522 (($ $) 12)) (-1790 (($ $ $) 17)) (-1549 (($) 8 T CONST)) (-2248 (((-107) $) 7)) (-1719 (((-703)) 24)) (-4100 (($) 30)) (-4024 (($ $ $) 15)) (-2650 (($ $) 10)) (-2351 (($ $ $) 18)) (-2456 (($ $ $) 19)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-4034 (((-843) $) 29)) (-1277 (((-1057) $) NIL)) (-3544 (($ (-843)) 28)) (-1820 (($ $ $) 21)) (-3214 (((-1021) $) NIL)) (-1412 (($) 9 T CONST)) (-3667 (((-493) $) 36)) (-2254 (((-787) $) 39)) (-4032 (($ $ $) 13)) (-2196 (($ $) 11)) (-2403 (($ $ $) 16)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 20)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 22)) (-2392 (($ $ $) 14)))
-(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1549 ($) -2497) (-15 -1412 ($) -2497) (-15 -2196 ($ $)) (-15 -2650 ($ $)) (-15 -4032 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -2248 ((-107) $))))) (T -107))
-((-1549 (*1 *1) (-5 *1 (-107))) (-1412 (*1 *1) (-5 *1 (-107))) (-2196 (*1 *1 *1) (-5 *1 (-107))) (-2650 (*1 *1 *1) (-5 *1 (-107))) (-4032 (*1 *1 *1 *1) (-5 *1 (-107))) (-4024 (*1 *1 *1 *1) (-5 *1 (-107))) (-1790 (*1 *1 *1 *1) (-5 *1 (-107))) (-2456 (*1 *1 *1 *1) (-5 *1 (-107))) (-2351 (*1 *1 *1 *1) (-5 *1 (-107))) (-1820 (*1 *1 *1 *1) (-5 *1 (-107))) (-2248 (*1 *1 *1) (-5 *1 (-107))))
-(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1549 ($) -2497) (-15 -1412 ($) -2497) (-15 -2196 ($ $)) (-15 -2650 ($ $)) (-15 -4032 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -2248 ((-107) $))))
-((-3820 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1228 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-1211 (((-109) |#1|) 53 (|has| |#1| (-779)))) (-3151 (((-3 |#1| "failed") (-109)) 48 (|has| |#1| (-779)))))
-(((-108 |#1|) (-10 -7 (-15 -3820 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3820 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3820 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3820 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1228 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1228 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1228 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1211 ((-109) |#1|)) (-15 -3151 ((-3 |#1| "failed") (-109)))) |%noBranch|)) (-1003)) (T -108))
-((-3151 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-1211 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1228 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3820 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3820 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))))
-(-10 -7 (-15 -3820 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3820 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3820 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3820 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1228 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1228 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1228 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1211 ((-109) |#1|)) (-15 -3151 ((-3 |#1| "failed") (-109)))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-2388 (((-703) $) 68) (($ $ (-703)) 30)) (-2814 (((-107) $) 32)) (-2516 (($ $ (-1057) (-706)) 26)) (-1626 (($ $ (-44 (-1057) (-706))) 13)) (-2980 (((-3 (-706) "failed") $ (-1057)) 24)) (-2424 (((-44 (-1057) (-706)) $) 12)) (-2283 (($ (-1074)) 15) (($ (-1074) (-703)) 20)) (-3149 (((-107) $) 31)) (-2219 (((-107) $) 33)) (-1214 (((-1074) $) 8)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-2506 (((-107) $ (-1074)) 10)) (-1296 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-3214 (((-1021) $) NIL)) (-2520 (((-107) $ (-1057)) 29)) (-3745 (($ $ (-1 (-107) $ $)) 35)) (-1253 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-1839 (($ $ (-1057)) 45)) (-2435 (($ $) 61)) (-2396 (($ $ (-1 (-107) $ $)) 36)) (-2254 (((-787) $) 48)) (-2107 (($ $ (-1057)) 27)) (-1777 (((-3 (-703) "failed") $) 56)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 67)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 72)))
-(((-109) (-13 (-779) (-10 -8 (-15 -1214 ((-1074) $)) (-15 -2424 ((-44 (-1057) (-706)) $)) (-15 -2435 ($ $)) (-15 -2283 ($ (-1074))) (-15 -2283 ($ (-1074) (-703))) (-15 -1777 ((-3 (-703) "failed") $)) (-15 -3149 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -2388 ((-703) $)) (-15 -2388 ($ $ (-703))) (-15 -3745 ($ $ (-1 (-107) $ $))) (-15 -2396 ($ $ (-1 (-107) $ $))) (-15 -1253 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1253 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1253 ($ $ (-1 (-787) (-787)))) (-15 -1296 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1296 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -2506 ((-107) $ (-1074))) (-15 -2520 ((-107) $ (-1057))) (-15 -2107 ($ $ (-1057))) (-15 -1839 ($ $ (-1057))) (-15 -2980 ((-3 (-706) "failed") $ (-1057))) (-15 -2516 ($ $ (-1057) (-706))) (-15 -1626 ($ $ (-44 (-1057) (-706))))))) (T -109))
-((-1214 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))) (-2435 (*1 *1 *1) (-5 *1 (-109))) (-2283 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) (-2283 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *1 (-109)))) (-1777 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1253 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1296 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-2506 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2520 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) (-1839 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) (-2980 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-706)) (-5 *1 (-109)))) (-2516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
-(-13 (-779) (-10 -8 (-15 -1214 ((-1074) $)) (-15 -2424 ((-44 (-1057) (-706)) $)) (-15 -2435 ($ $)) (-15 -2283 ($ (-1074))) (-15 -2283 ($ (-1074) (-703))) (-15 -1777 ((-3 (-703) "failed") $)) (-15 -3149 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -2388 ((-703) $)) (-15 -2388 ($ $ (-703))) (-15 -3745 ($ $ (-1 (-107) $ $))) (-15 -2396 ($ $ (-1 (-107) $ $))) (-15 -1253 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1253 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1253 ($ $ (-1 (-787) (-787)))) (-15 -1296 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1296 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -2506 ((-107) $ (-1074))) (-15 -2520 ((-107) $ (-1057))) (-15 -2107 ($ $ (-1057))) (-15 -1839 ($ $ (-1057))) (-15 -2980 ((-3 (-706) "failed") $ (-1057))) (-15 -2516 ($ $ (-1057) (-706))) (-15 -1626 ($ $ (-44 (-1057) (-706))))))
-((-3337 (((-517) |#2|) 36)))
-(((-110 |#1| |#2|) (-10 -7 (-15 -3337 ((-517) |#2|))) (-13 (-333) (-952 (-377 (-517)))) (-1131 |#1|)) (T -110))
-((-3337 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -3337 ((-517) |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $ (-517)) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3522 (($ (-1070 (-517)) (-517)) NIL)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3571 (($ $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3730 (((-703) $) NIL)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3668 (((-517)) NIL)) (-2741 (((-517) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2204 (($ $ (-517)) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2405 (((-1055 (-517)) $) NIL)) (-1486 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-3405 (((-517) $ (-517)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+((-3226 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-875 (-349))) 52) (((-3 $ "failed") (-875 (-517))) 57) (((-3 $ "failed") (-377 (-875 (-349)))) 37) (((-3 $ "failed") (-377 (-875 (-517)))) 32)) (-3388 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-875 (-349))) 50) (($ (-875 (-517))) 55) (($ (-377 (-875 (-349)))) 35) (($ (-377 (-875 (-517)))) 29)) (-1897 (((-1161) $) 88)) (-2269 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 73) (($ (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632))) 28)))
+(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632)))))) (-1075)) (T -87))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1075)))))
+(-13 (-366) (-10 -8 (-15 -2269 ($ (-309 (-2286 (QUOTE X)) (-2286 (QUOTE -2010)) (-632))))))
+((-1850 (((-1156 (-623 |#1|)) (-623 |#1|)) 55)) (-4056 (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 (-583 (-844))))) |#2| (-844)) 45)) (-2018 (((-2 (|:| |minor| (-583 (-844))) (|:| -3779 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844)) 63 (|has| |#1| (-333)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -4056 ((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 (-583 (-844))))) |#2| (-844))) (-15 -1850 ((-1156 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2018 ((-2 (|:| |minor| (-583 (-844))) (|:| -3779 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844))) |%noBranch|)) (-509) (-593 |#1|)) (T -88))
+((-2018 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-844))) (|:| -3779 *3) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1156 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-4056 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2831 (-623 *5)) (|:| |vec| (-1156 (-583 (-844)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -4056 ((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 (-583 (-844))))) |#2| (-844))) (-15 -1850 ((-1156 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2018 ((-2 (|:| |minor| (-583 (-844))) (|:| -3779 |#2|) (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 |#2|))) |#2| (-844))) |%noBranch|))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2551 ((|#1| $) 35)) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-1426 ((|#1| |#1| $) 30)) (-3751 ((|#1| $) 28)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) NIL)) (-2704 (($ |#1| $) 31)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1785 ((|#1| $) 29)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 16)) (-1529 (($) 39)) (-3143 (((-703) $) 26)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 15)) (-2269 (((-787) $) 25 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) NIL)) (-2509 (($ (-583 |#1|)) 37)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 13 (|has| |#1| (-1004)))) (-3533 (((-703) $) 10 (|has| $ (-6 -4190)))))
+(((-89 |#1|) (-13 (-1023 |#1|) (-10 -8 (-15 -2509 ($ (-583 |#1|))))) (-1004)) (T -89))
+((-2509 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-89 *3)))))
+(-13 (-1023 |#1|) (-10 -8 (-15 -2509 ($ (-583 |#1|)))))
+((-1599 (($ $) 10)) (-1612 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -1612 (|#1| |#1|)) (-15 -1599 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -1612 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)))
+((-1575 (($ $) 11)) (-1547 (($ $) 10)) (-1599 (($ $) 9)) (-1612 (($ $) 8)) (-1588 (($ $) 7)) (-1561 (($ $) 6)))
+(((-91) (-1187)) (T -91))
+((-1575 (*1 *1 *1) (-4 *1 (-91))) (-1547 (*1 *1 *1) (-4 *1 (-91))) (-1599 (*1 *1 *1) (-4 *1 (-91))) (-1612 (*1 *1 *1) (-4 *1 (-91))) (-1588 (*1 *1 *1) (-4 *1 (-91))) (-1561 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -1561 ($ $)) (-15 -1588 ($ $)) (-15 -1612 ($ $)) (-15 -1599 ($ $)) (-15 -1547 ($ $)) (-15 -1575 ($ $))))
+((-2118 (((-107) $ $) NIL)) (-1533 (((-349) (-1058) (-349)) 42) (((-349) (-1058) (-1058) (-349)) 41)) (-1215 (((-349) (-349)) 33)) (-2758 (((-1161)) 36)) (-1895 (((-1058) $) NIL)) (-2318 (((-349) (-1058) (-1058)) 46) (((-349) (-1058)) 48)) (-4123 (((-1022) $) NIL)) (-2166 (((-349) (-1058) (-1058)) 47)) (-3776 (((-349) (-1058) (-1058)) 49) (((-349) (-1058)) 50)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
+(((-92) (-13 (-1004) (-10 -7 (-15 -2318 ((-349) (-1058) (-1058))) (-15 -2318 ((-349) (-1058))) (-15 -3776 ((-349) (-1058) (-1058))) (-15 -3776 ((-349) (-1058))) (-15 -2166 ((-349) (-1058) (-1058))) (-15 -2758 ((-1161))) (-15 -1215 ((-349) (-349))) (-15 -1533 ((-349) (-1058) (-349))) (-15 -1533 ((-349) (-1058) (-1058) (-349))) (-6 -4190)))) (T -92))
+((-2318 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2166 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2758 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-92)))) (-1215 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-1533 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1058)) (-5 *1 (-92)))) (-1533 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1058)) (-5 *1 (-92)))))
+(-13 (-1004) (-10 -7 (-15 -2318 ((-349) (-1058) (-1058))) (-15 -2318 ((-349) (-1058))) (-15 -3776 ((-349) (-1058) (-1058))) (-15 -3776 ((-349) (-1058))) (-15 -2166 ((-349) (-1058) (-1058))) (-15 -2758 ((-1161))) (-15 -1215 ((-349) (-349))) (-15 -1533 ((-349) (-1058) (-349))) (-15 -1533 ((-349) (-1058) (-1058) (-349))) (-6 -4190)))
+NIL
+(((-93) (-1187)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4190) (-6 (-4192 "*")) (-6 -4191) (-6 -4187) (-6 -4185) (-6 -4184) (-6 -4183) (-6 -4188) (-6 -4182) (-6 -4181) (-6 -4180) (-6 -4179) (-6 -4178) (-6 -4186) (-6 -4189) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4177)))
+((-2118 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-1507 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 14)) (-4123 (((-1022) $) NIL)) (-2607 ((|#1| $ |#1|) 11)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) 20)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 8 T CONST)) (-1583 (((-107) $ $) 10)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -1507 ($ (-1 |#1| |#1|))) (-15 -1507 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1507 ($ (-1 |#1| |#1| (-517)))))) (-962)) (T -94))
+((-1507 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-94 *3)))) (-1507 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-94 *3)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-962)) (-5 *1 (-94 *3)))))
+(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -1507 ($ (-1 |#1| |#1|))) (-15 -1507 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1507 ($ (-1 |#1| |#1| (-517))))))
+((-3229 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -3229 ((-388 |#2|) |#2| |#2|)) (-15 -3229 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1132 |#1|)) (T -95))
+((-3229 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-3229 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -3229 ((-388 |#2|) |#2| |#2|)) (-15 -3229 ((-388 |#2|) |#2| (-583 |#2|))))
+((-2118 (((-107) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -2118 ((-107) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -2118 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-1583 (((-107) $ $) 6)))
+(((-97) (-1187)) (T -97))
+((-2118 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1583 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(-13 (-10 -8 (-15 -1583 ((-107) $ $)) (-15 -2118 ((-107) $ $))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) 13 (|has| $ (-6 -4191)))) (-1270 (($ $ $) NIL (|has| $ (-6 -4191)))) (-1289 (($ $ $) NIL (|has| $ (-6 -4191)))) (-1740 (($ $ (-583 |#1|)) 15)) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "left" $) NIL (|has| $ (-6 -4191))) (($ $ "right" $) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3298 (($ $) 11)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2036 (($ $ |#1| $) 17)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1307 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3079 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3286 (($ $) 10)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) 12)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 9)) (-1529 (($) 16)) (-2607 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1918 (($ (-703) |#1|) 19)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -1918 ($ (-703) |#1|)) (-15 -1740 ($ $ (-583 |#1|))) (-15 -1307 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1307 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3079 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1004)) (T -98))
+((-1918 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1004)))) (-1740 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-98 *3)))) (-1307 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1004)))) (-1307 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-98 *3)))) (-3079 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-98 *2)))) (-3079 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-98 *2)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -1918 ($ (-703) |#1|)) (-15 -1740 ($ $ (-583 |#1|))) (-15 -1307 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1307 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3079 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
+((-1285 ((|#3| |#2| |#2|) 29)) (-3287 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4192 "*"))))) (-3014 ((|#3| |#2| |#2|) 30)) (-1393 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4192 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1285 (|#3| |#2| |#2|)) (-15 -3014 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4192 "*"))) (PROGN (-15 -3287 (|#1| |#2| |#2|)) (-15 -1393 (|#1| |#2|))) |%noBranch|)) (-962) (-1132 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
+((-1393 (*1 *2 *3) (-12 (|has| *2 (-6 (-4192 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-962)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1132 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3287 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4192 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-962)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1132 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3014 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1132 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-1285 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1132 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(-10 -7 (-15 -1285 (|#3| |#2| |#2|)) (-15 -3014 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4192 "*"))) (PROGN (-15 -3287 (|#1| |#2| |#2|)) (-15 -1393 (|#1| |#2|))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1891 (((-583 (-1075))) 32)) (-3802 (((-2 (|:| |zeros| (-1056 (-199))) (|:| |ones| (-1056 (-199))) (|:| |singularities| (-1056 (-199)))) (-1075)) 35)) (-1583 (((-107) $ $) NIL)))
+(((-100) (-13 (-1004) (-10 -7 (-15 -1891 ((-583 (-1075)))) (-15 -3802 ((-2 (|:| |zeros| (-1056 (-199))) (|:| |ones| (-1056 (-199))) (|:| |singularities| (-1056 (-199)))) (-1075))) (-6 -4190)))) (T -100))
+((-1891 (*1 *2) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-100)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-2 (|:| |zeros| (-1056 (-199))) (|:| |ones| (-1056 (-199))) (|:| |singularities| (-1056 (-199))))) (-5 *1 (-100)))))
+(-13 (-1004) (-10 -7 (-15 -1891 ((-583 (-1075)))) (-15 -3802 ((-2 (|:| |zeros| (-1056 (-199))) (|:| |ones| (-1056 (-199))) (|:| |singularities| (-1056 (-199)))) (-1075))) (-6 -4190)))
+((-4155 (($ (-583 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -4155 (|#1| (-583 |#2|)))) (-102 |#2|) (-1110)) (T -101))
+NIL
+(-10 -8 (-15 -4155 (|#1| (-583 |#2|))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-102 |#1|) (-1187) (-1110)) (T -102))
+((-4155 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-102 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110)))) (-2704 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4191) (-15 -4155 ($ (-583 |t#1|))) (-15 -1785 (|t#1| $)) (-15 -2704 ($ |t#1| $)) (-15 -2431 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-517) $) NIL (|has| (-517) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-517) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-517) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-953 (-517))))) (-3388 (((-517) $) NIL) (((-1075) $) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-517) (-953 (-517)))) (((-517) $) NIL (|has| (-517) (-953 (-517))))) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-517) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-517) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-517) (-1051)))) (-1469 (((-107) $) NIL (|has| (-517) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-517) (-779)))) (-3308 (($ (-1 (-517) (-517)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-517) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2309 (((-517) $) NIL (|has| (-517) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1075)) (-583 (-517))) NIL (|has| (-517) (-478 (-1075) (-517)))) (($ $ (-1075) (-517)) NIL (|has| (-517) (-478 (-1075) (-517))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-517) $) NIL)) (-3357 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-938))) (((-199) $) NIL (|has| (-517) (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1075)) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL) (((-921 2) $) 9)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-517) $) NIL (|has| (-517) (-502)))) (-3312 (($ (-377 (-517))) 8)) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| (-517) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1703 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-103) (-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 2) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -3312 ($ (-377 (-517))))))) (T -103))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-921 2)) (-5 *1 (-103)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-3312 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
+(-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 2) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -3312 ($ (-377 (-517))))))
+((-2118 (((-107) $ $) NIL)) (-3252 (((-1022) $ (-1022)) 23)) (-2150 (($ $ (-1058)) 17)) (-2866 (((-3 (-1022) "failed") $) 22)) (-2608 (((-1022) $) 20)) (-3869 (((-1022) $ (-1022)) 25)) (-1211 (((-1022) $) 24)) (-3674 (($ (-358)) NIL) (($ (-358) (-1058)) 16)) (-2987 (((-358) $) NIL)) (-1895 (((-1058) $) NIL)) (-2023 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1513 (($ $) 18)) (-1583 (((-107) $ $) NIL)))
+(((-104) (-13 (-334 (-358) (-1022)) (-10 -8 (-15 -2866 ((-3 (-1022) "failed") $)) (-15 -1211 ((-1022) $)) (-15 -3869 ((-1022) $ (-1022)))))) (T -104))
+((-2866 (*1 *2 *1) (|partial| -12 (-5 *2 (-1022)) (-5 *1 (-104)))) (-1211 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-104)))) (-3869 (*1 *2 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-104)))))
+(-13 (-334 (-358) (-1022)) (-10 -8 (-15 -2866 ((-3 (-1022) "failed") $)) (-15 -1211 ((-1022) $)) (-15 -3869 ((-1022) $ (-1022)))))
+((-2118 (((-107) $ $) NIL)) (-3621 (($ $) NIL)) (-2292 (($ $ $) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3613 (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4191)))) (-2162 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2443 (((-107) $ (-1123 (-517)) (-107)) NIL (|has| $ (-6 -4191))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1422 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1521 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-2757 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4191)))) (-2563 (((-107) $ (-517)) NIL)) (-1211 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1004))) (((-517) (-107) $) NIL (|has| (-107) (-1004))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1535 (((-583 (-107)) $) NIL (|has| $ (-6 -4190)))) (-3977 (($ $ $) NIL)) (-2477 (($ $) NIL)) (-3531 (($ $ $) NIL)) (-3211 (($ (-703) (-107)) 8)) (-2042 (($ $ $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL)) (-3798 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2898 (((-583 (-107)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL)) (-2744 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-107) $) NIL (|has| (-517) (-779)))) (-2999 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3191 (($ $ (-107)) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1831 (((-583 (-107)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 (($ $ (-1123 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-4135 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2286 (($ (-583 (-107))) NIL)) (-4108 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2269 (((-787) $) NIL)) (-2013 (($ (-703) (-107)) 9)) (-3160 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-3992 (($ $ $) NIL)) (-2813 (($ $) NIL)) (-3815 (($ $ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-105) (-13 (-118) (-10 -8 (-15 -2013 ($ (-703) (-107)))))) (T -105))
+((-2013 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
+(-13 (-118) (-10 -8 (-15 -2013 ($ (-703) (-107)))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-106 |#1| |#2|) (-1187) (-962) (-962)) (T -106))
+NIL
+(-13 (-585 |t#1|) (-968 |t#2|) (-10 -7 (-6 -4185) (-6 -4184)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-968 |#2|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-3621 (($ $) 12)) (-2292 (($ $ $) 17)) (-1446 (($) 8 T CONST)) (-4053 (((-107) $) 7)) (-2397 (((-703)) 25)) (-2200 (($) 31)) (-3977 (($ $ $) 15)) (-2477 (($ $) 10)) (-3531 (($ $ $) 18)) (-2042 (($ $ $) 19)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-2031 (((-844) $) 30)) (-1895 (((-1058) $) NIL)) (-2810 (($ (-844)) 29)) (-2278 (($ $ $) 21)) (-4123 (((-1022) $) NIL)) (-2394 (($) 9 T CONST)) (-3357 (((-493) $) 37)) (-2269 (((-787) $) 40)) (-3992 (($ $ $) 13)) (-2813 (($ $) 11)) (-3815 (($ $ $) 16)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 20)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 23)) (-3803 (($ $ $) 14)))
+(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1446 ($) -1384) (-15 -2394 ($) -1384) (-15 -2813 ($ $)) (-15 -2477 ($ $)) (-15 -3992 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -2042 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -4053 ((-107) $))))) (T -107))
+((-1446 (*1 *1) (-5 *1 (-107))) (-2394 (*1 *1) (-5 *1 (-107))) (-2813 (*1 *1 *1) (-5 *1 (-107))) (-2477 (*1 *1 *1) (-5 *1 (-107))) (-3992 (*1 *1 *1 *1) (-5 *1 (-107))) (-3977 (*1 *1 *1 *1) (-5 *1 (-107))) (-2292 (*1 *1 *1 *1) (-5 *1 (-107))) (-2042 (*1 *1 *1 *1) (-5 *1 (-107))) (-3531 (*1 *1 *1 *1) (-5 *1 (-107))) (-2278 (*1 *1 *1 *1) (-5 *1 (-107))) (-4053 (*1 *1 *1) (-5 *1 (-107))))
+(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1446 ($) -1384) (-15 -2394 ($) -1384) (-15 -2813 ($ $)) (-15 -2477 ($ $)) (-15 -3992 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -2042 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -4053 ((-107) $))))
+((-3592 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-2338 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-2080 (((-109) |#1|) 54 (|has| |#1| (-779)))) (-1700 (((-3 |#1| "failed") (-109)) 49 (|has| |#1| (-779)))))
+(((-108 |#1|) (-10 -7 (-15 -3592 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3592 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3592 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3592 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -2338 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2338 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2338 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2080 ((-109) |#1|)) (-15 -1700 ((-3 |#1| "failed") (-109)))) |%noBranch|)) (-1004)) (T -108))
+((-1700 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1004)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1004)))) (-2338 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1004)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1004)) (-5 *1 (-108 *4)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1004)) (-5 *1 (-108 *4)))) (-3592 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1004)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1004)) (-5 *1 (-108 *4)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1004)) (-5 *1 (-108 *4)))) (-3592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1004)))))
+(-10 -7 (-15 -3592 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3592 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3592 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3592 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -2338 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2338 ((-109) (-109) (-1 |#1| |#1|))) (-15 -2338 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2080 ((-109) |#1|)) (-15 -1700 ((-3 |#1| "failed") (-109)))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-1463 (((-703) $) 68) (($ $ (-703)) 30)) (-2474 (((-107) $) 32)) (-3380 (($ $ (-1058) (-706)) 26)) (-1851 (($ $ (-44 (-1058) (-706))) 13)) (-2445 (((-3 (-706) "failed") $ (-1058)) 24)) (-3154 (((-44 (-1058) (-706)) $) 12)) (-3034 (($ (-1075)) 15) (($ (-1075) (-703)) 20)) (-2586 (((-107) $) 31)) (-2693 (((-107) $) 33)) (-2987 (((-1075) $) 8)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-1290 (((-107) $ (-1075)) 10)) (-1809 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-4123 (((-1022) $) NIL)) (-3174 (((-107) $ (-1058)) 29)) (-3045 (($ $ (-1 (-107) $ $)) 35)) (-1756 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-2857 (($ $ (-1058)) 45)) (-2460 (($ $) 61)) (-4046 (($ $ (-1 (-107) $ $)) 36)) (-2269 (((-787) $) 48)) (-3122 (($ $ (-1058)) 27)) (-1378 (((-3 (-703) "failed") $) 56)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 67)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 73)))
+(((-109) (-13 (-779) (-10 -8 (-15 -2987 ((-1075) $)) (-15 -3154 ((-44 (-1058) (-706)) $)) (-15 -2460 ($ $)) (-15 -3034 ($ (-1075))) (-15 -3034 ($ (-1075) (-703))) (-15 -1378 ((-3 (-703) "failed") $)) (-15 -2586 ((-107) $)) (-15 -2474 ((-107) $)) (-15 -2693 ((-107) $)) (-15 -1463 ((-703) $)) (-15 -1463 ($ $ (-703))) (-15 -3045 ($ $ (-1 (-107) $ $))) (-15 -4046 ($ $ (-1 (-107) $ $))) (-15 -1756 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1756 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1756 ($ $ (-1 (-787) (-787)))) (-15 -1809 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1809 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1290 ((-107) $ (-1075))) (-15 -3174 ((-107) $ (-1058))) (-15 -3122 ($ $ (-1058))) (-15 -2857 ($ $ (-1058))) (-15 -2445 ((-3 (-706) "failed") $ (-1058))) (-15 -3380 ($ $ (-1058) (-706))) (-15 -1851 ($ $ (-44 (-1058) (-706))))))) (T -109))
+((-2987 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-109)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-44 (-1058) (-706))) (-5 *1 (-109)))) (-2460 (*1 *1 *1) (-5 *1 (-109))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-109)))) (-3034 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *1 (-109)))) (-1378 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1756 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1809 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1809 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1290 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3174 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-109)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-109)))) (-2445 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1058)) (-5 *2 (-706)) (-5 *1 (-109)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1851 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1058) (-706))) (-5 *1 (-109)))))
+(-13 (-779) (-10 -8 (-15 -2987 ((-1075) $)) (-15 -3154 ((-44 (-1058) (-706)) $)) (-15 -2460 ($ $)) (-15 -3034 ($ (-1075))) (-15 -3034 ($ (-1075) (-703))) (-15 -1378 ((-3 (-703) "failed") $)) (-15 -2586 ((-107) $)) (-15 -2474 ((-107) $)) (-15 -2693 ((-107) $)) (-15 -1463 ((-703) $)) (-15 -1463 ($ $ (-703))) (-15 -3045 ($ $ (-1 (-107) $ $))) (-15 -4046 ($ $ (-1 (-107) $ $))) (-15 -1756 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1756 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1756 ($ $ (-1 (-787) (-787)))) (-15 -1809 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1809 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1290 ((-107) $ (-1075))) (-15 -3174 ((-107) $ (-1058))) (-15 -3122 ($ $ (-1058))) (-15 -2857 ($ $ (-1058))) (-15 -2445 ((-3 (-706) "failed") $ (-1058))) (-15 -3380 ($ $ (-1058) (-706))) (-15 -1851 ($ $ (-44 (-1058) (-706))))))
+((-1917 (((-517) |#2|) 36)))
+(((-110 |#1| |#2|) (-10 -7 (-15 -1917 ((-517) |#2|))) (-13 (-333) (-953 (-377 (-517)))) (-1132 |#1|)) (T -110))
+((-1917 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-953 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -1917 ((-517) |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $ (-517)) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2986 (($ (-1071 (-517)) (-517)) NIL)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3626 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2053 (((-703) $) NIL)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3326 (((-517)) NIL)) (-2625 (((-517) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2640 (($ $ (-517)) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2207 (((-1056 (-517)) $) NIL)) (-3478 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2202 (((-517) $ (-517)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-111 |#1|) (-793 |#1|) (-517)) (T -111))
NIL
(-793 |#1|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-111 |#1|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-3232 (((-111 |#1|) $) NIL) (((-1074) $) NIL (|has| (-111 |#1|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-2561 (($ $) NIL) (($ (-517) $) NIL)) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-111 |#1|))) (|:| |vec| (-1154 (-111 |#1|)))) (-623 $) (-1154 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-111 |#1|) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-111 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-111 |#1|) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-111 |#1|) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1050)))) (-1199 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3105 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-1939 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-111 |#1|) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2908 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-111 |#1|) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1074)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1074) (-111 |#1|)))) (($ $ (-1074) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1074) (-111 |#1|))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-111 |#1|) $) NIL)) (-3667 (((-814 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-937))) (((-199) $) NIL (|has| (-111 |#1|) (-937)))) (-2552 (((-157 (-377 (-517))) $) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1074)) NIL (|has| (-111 |#1|) (-952 (-1074))))) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))) (|has| (-111 |#1|) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2673 (((-107) $ $) NIL)) (-3405 (((-377 (-517)) $ (-517)) NIL)) (-1724 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1074)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1678 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
-(((-112 |#1|) (-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $)))) (-517)) (T -112))
-((-3405 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2561 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2561 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
-(-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $))))
-((-2412 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3883 (((-583 $) $) 27)) (-4082 (((-107) $ $) 32)) (-1653 (((-107) |#2| $) 36)) (-2281 (((-583 |#2|) $) 22)) (-2284 (((-107) $) 16)) (-1437 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1985 (((-107) $) 45)) (-2254 (((-787) $) 41)) (-2125 (((-583 $) $) 28)) (-1534 (((-107) $ $) 34)) (-2290 (((-703) $) 43)))
-(((-113 |#1| |#2|) (-10 -8 (-15 -2412 (|#1| |#1| "right" |#1|)) (-15 -2412 (|#1| |#1| "left" |#1|)) (-15 -1437 (|#1| |#1| "right")) (-15 -1437 (|#1| |#1| "left")) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -4082 ((-107) |#1| |#1|)) (-15 -2281 ((-583 |#2|) |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1653 ((-107) |#2| |#1|)) (-15 -2290 ((-703) |#1|))) (-114 |#2|) (-1109)) (T -113))
-NIL
-(-10 -8 (-15 -2412 (|#1| |#1| "right" |#1|)) (-15 -2412 (|#1| |#1| "left" |#1|)) (-15 -1437 (|#1| |#1| "right")) (-15 -1437 (|#1| |#1| "left")) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -4082 ((-107) |#1| |#1|)) (-15 -2281 ((-583 |#2|) |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1653 ((-107) |#2| |#1|)) (-15 -2290 ((-703) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3120 (($ $ $) 52 (|has| $ (-6 -4184)))) (-2872 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) (($ $ "left" $) 55 (|has| $ (-6 -4184))) (($ $ "right" $) 53 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-3633 (($ $) 57)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-3623 (($ $) 59)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3792 (((-517) $ $) 44)) (-1985 (((-107) $) 46)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-114 |#1|) (-1185) (-1109)) (T -114))
-((-3623 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-3633 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-2412 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-2872 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))) (-2412 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) (-3120 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -3623 ($ $)) (-15 -1437 ($ $ "left")) (-15 -3633 ($ $)) (-15 -1437 ($ $ "right")) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2412 ($ $ "left" $)) (-15 -2872 ($ $ $)) (-15 -2412 ($ $ "right" $)) (-15 -3120 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-3415 (((-107) |#1|) 24)) (-2672 (((-703) (-703)) 23) (((-703)) 22)) (-3085 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
-(((-115 |#1|) (-10 -7 (-15 -3085 ((-107) |#1|)) (-15 -3085 ((-107) |#1| (-107))) (-15 -2672 ((-703))) (-15 -2672 ((-703) (-703))) (-15 -3415 ((-107) |#1|))) (-1131 (-517))) (T -115))
-((-3415 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-2672 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-3085 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) (-3085 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
-(-10 -7 (-15 -3085 ((-107) |#1|)) (-15 -3085 ((-107) |#1| (-107))) (-15 -2672 ((-703))) (-15 -2672 ((-703) (-703))) (-15 -3415 ((-107) |#1|)))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) 15)) (-3447 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3120 (($ $ $) 18 (|has| $ (-6 -4184)))) (-2872 (($ $ $) 20 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3633 (($ $) 17)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4158 (($ $ |#1| $) 23)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3623 (($ $) 19)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1940 (($ |#1| $) 24)) (-3676 (($ |#1| $) 10)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 14)) (-2756 (($) 8)) (-1437 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1303 (($ (-583 |#1|)) 12)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1303 ($ (-583 |#1|))) (-15 -3676 ($ |#1| $)) (-15 -1940 ($ |#1| $)) (-15 -3447 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
-((-1303 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-3676 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1940 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-3447 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1303 ($ (-583 |#1|))) (-15 -3676 ($ |#1| $)) (-15 -1940 ($ |#1| $)) (-15 -3447 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1522 (($ $) 14)) (-2650 (($ $) 11)) (-2351 (($ $ $) 24)) (-2456 (($ $ $) 22)) (-2196 (($ $) 12)) (-2403 (($ $ $) 20)) (-2392 (($ $ $) 18)))
-(((-117 |#1|) (-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1| |#1|))) (-118)) (T -117))
-NIL
-(-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2392 (|#1| |#1| |#1|)) (-15 -2403 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1522 (($ $) 104)) (-1790 (($ $ $) 25)) (-2787 (((-1159) $ (-517) (-517)) 67 (|has| $ (-6 -4184)))) (-3753 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-3500 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4184)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4184)))) (-4044 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-3552 (((-107) $ (-703)) 38)) (-2412 (((-107) $ (-1122 (-517)) (-107)) 89 (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4183)))) (-2706 (($) 39 T CONST)) (-3182 (($ $) 101 (|has| $ (-6 -4184)))) (-3173 (($ $) 91)) (-1783 (($ $) 69 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4183))) (($ (-107) $) 70 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-1292 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-3705 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4184)))) (-3537 (((-107) $ (-517)) 56)) (-2624 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1003))) (((-517) (-107) $) 95 (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) 94)) (-3240 (((-583 (-107)) $) 46 (|has| $ (-6 -4183)))) (-4024 (($ $ $) 26)) (-2650 (($ $) 31)) (-2351 (($ $ $) 28)) (-3475 (($ (-703) (-107)) 78)) (-2456 (($ $ $) 29)) (-2629 (((-107) $ (-703)) 37)) (-1739 (((-517) $) 64 (|has| (-517) (-779)))) (-4055 (($ $ $) 13)) (-1676 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-2332 (((-583 (-107)) $) 47 (|has| $ (-6 -4183)))) (-1653 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 63 (|has| (-517) (-779)))) (-3105 (($ $ $) 14)) (-3696 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-2026 (((-107) $ (-703)) 36)) (-1277 (((-1057) $) 9)) (-2636 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-2950 (((-583 (-517)) $) 61)) (-4093 (((-107) (-517) $) 60)) (-3214 (((-1021) $) 10)) (-1750 (((-107) $) 65 (|has| (-517) (-779)))) (-3222 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2880 (($ $ (-107)) 66 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-2349 (((-107) $ $) 32)) (-3865 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3949 (((-583 (-107)) $) 59)) (-1596 (((-107) $) 35)) (-2756 (($) 34)) (-1437 (($ $ (-1122 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3726 (($ $ (-1122 (-517))) 86) (($ $ (-517)) 85)) (-3223 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4183)))) (-2878 (($ $ $ (-517)) 100 (|has| $ (-6 -4184)))) (-2435 (($ $) 33)) (-3667 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2272 (($ (-583 (-107))) 77)) (-2455 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2254 (((-787) $) 11)) (-2258 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4183)))) (-4032 (($ $ $) 27)) (-2196 (($ $) 30)) (-2403 (($ $ $) 106)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-2392 (($ $ $) 105)) (-2290 (((-703) $) 40 (|has| $ (-6 -4183)))))
-(((-118) (-1185)) (T -118))
-((-2650 (*1 *1 *1) (-4 *1 (-118))) (-2196 (*1 *1 *1) (-4 *1 (-118))) (-2456 (*1 *1 *1 *1) (-4 *1 (-118))) (-2351 (*1 *1 *1 *1) (-4 *1 (-118))) (-4032 (*1 *1 *1 *1) (-4 *1 (-118))) (-4024 (*1 *1 *1 *1) (-4 *1 (-118))) (-1790 (*1 *1 *1 *1) (-4 *1 (-118))))
-(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2650 ($ $)) (-15 -2196 ($ $)) (-15 -2456 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -1790 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 (-517) (-107)) . T) ((-260 (-517) (-107)) . T) ((-280 (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-343 (-107)) . T) ((-456 (-107)) . T) ((-550 (-517) (-107)) . T) ((-478 (-107) (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-588 (-107)) . T) ((-598) . T) ((-19 (-107)) . T) ((-779) . T) ((-1003) . T) ((-1109) . T))
-((-3696 (($ (-1 |#2| |#2|) $) 22)) (-2435 (($ $) 16)) (-2290 (((-703) $) 24)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -2435 (|#1| |#1|))) (-120 |#2|) (-1003)) (T -119))
-NIL
-(-10 -8 (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -2435 (|#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3120 (($ $ $) 52 (|has| $ (-6 -4184)))) (-2872 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) (($ $ "left" $) 55 (|has| $ (-6 -4184))) (($ $ "right" $) 53 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-3633 (($ $) 57)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4158 (($ $ |#1| $) 60)) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-3623 (($ $) 59)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3792 (((-517) $ $) 44)) (-1985 (((-107) $) 46)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-120 |#1|) (-1185) (-1003)) (T -120))
-((-4158 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
-(-13 (-114 |t#1|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -4158 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-114 |#1|) . T) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) 15)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) 19 (|has| $ (-6 -4184)))) (-3120 (($ $ $) 20 (|has| $ (-6 -4184)))) (-2872 (($ $ $) 18 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3633 (($ $) 21)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4158 (($ $ |#1| $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3623 (($ $) NIL)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3676 (($ |#1| $) 10)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 14)) (-2756 (($) 8)) (-1437 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 17)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1705 (($ (-583 |#1|)) 12)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4184) (-15 -1705 ($ (-583 |#1|))) (-15 -3676 ($ |#1| $)))) (-779)) (T -121))
-((-1705 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-3676 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4184) (-15 -1705 ($ (-583 |#1|))) (-15 -3676 ($ |#1| $))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) 24)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) 26 (|has| $ (-6 -4184)))) (-3120 (($ $ $) 30 (|has| $ (-6 -4184)))) (-2872 (($ $ $) 28 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3633 (($ $) 20)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4158 (($ $ |#1| $) 15)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3623 (($ $) 19)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) 21)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 18)) (-2756 (($) 11)) (-1437 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3374 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 10 (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -3374 ($ |#1|)) (-15 -3374 ($ $ |#1| $)))) (-1003)) (T -122))
-((-3374 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) (-3374 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
-(-13 (-120 |#1|) (-10 -8 (-15 -3374 ($ |#1|)) (-15 -3374 ($ $ |#1| $))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
-(((-123) (-1185)) (T -123))
-((-2646 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(-13 (-23) (-10 -8 (-15 -2646 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-1628 (((-1159) $ (-703)) 19)) (-2624 (((-703) $) 20)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)))
-(((-124) (-1185)) (T -124))
-((-2624 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-1628 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1159)))))
-(-13 (-779) (-10 -8 (-15 -2624 ((-703) $)) (-15 -1628 ((-1159) $ (-703)))))
-(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-703) "failed") $) 38)) (-3232 (((-703) $) 36)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) 26)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1331 (((-107)) 39)) (-1304 (((-107) (-107)) 41)) (-1945 (((-107) $) 23)) (-2081 (((-107) $) 35)) (-2254 (((-787) $) 22) (($ (-703)) 14)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) 12 T CONST)) (-2411 (($) 11 T CONST)) (-4031 (($ (-703)) 15)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 24)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 25)) (-1663 (((-3 $ "failed") $ $) 29)) (-1645 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-843) $) NIL) (($ $ $) 30)))
-(((-125) (-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4185 "*")) (-15 -1663 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4031 ($ (-703))) (-15 -1945 ((-107) $)) (-15 -2081 ((-107) $)) (-15 -1331 ((-107))) (-15 -1304 ((-107) (-107)))))) (T -125))
-((-1663 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1331 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1304 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4185 "*")) (-15 -1663 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4031 ($ (-703))) (-15 -1945 ((-107) $)) (-15 -2081 ((-107) $)) (-15 -1331 ((-107))) (-15 -1304 ((-107) (-107)))))
-((-2480 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-1939 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
-(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2480 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1939 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2480 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1939 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
-((-1587 (((-107) $ $) NIL)) (-2940 (($ (-583 |#3|)) 38)) (-3860 (($ $) 97) (($ $ (-517) (-517)) 96)) (-2706 (($) 17)) (-1837 (((-3 |#3| "failed") $) 58)) (-3232 ((|#3| $) NIL)) (-3681 (($ $ (-583 (-517))) 98)) (-2466 (((-583 |#3|) $) 34)) (-3334 (((-703) $) 42)) (-1509 (($ $ $) 91)) (-2032 (($) 41)) (-1277 (((-1057) $) NIL)) (-1226 (($) 16)) (-3214 (((-1021) $) NIL)) (-1437 ((|#3| $) 44) ((|#3| $ (-517)) 45) ((|#3| $ (-517) (-517)) 46) ((|#3| $ (-517) (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517) (-517)) 48) ((|#3| $ (-583 (-517))) 50)) (-3625 (((-703) $) 43)) (-1581 (($ $ (-517) $ (-517)) 92) (($ $ (-517) (-517)) 94)) (-2254 (((-787) $) 65) (($ |#3|) 66) (($ (-214 |#2| |#3|)) 73) (($ (-1041 |#2| |#3|)) 76) (($ (-583 |#3|)) 51) (($ (-583 $)) 56)) (-2398 (($) 67 T CONST)) (-2411 (($) 68 T CONST)) (-1534 (((-107) $ $) 78)) (-1663 (($ $) 84) (($ $ $) 82)) (-1645 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-517)) 87) (($ (-517) $) 86) (($ $ $) 93)))
-(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2254 ($ (-214 |#2| |#3|))) (-15 -2254 ($ (-1041 |#2| |#3|))) (-15 -2254 ($ (-583 |#3|))) (-15 -2254 ($ (-583 $))) (-15 -3334 ((-703) $)) (-15 -1437 (|#3| $)) (-15 -1437 (|#3| $ (-517))) (-15 -1437 (|#3| $ (-517) (-517))) (-15 -1437 (|#3| $ (-517) (-517) (-517))) (-15 -1437 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1437 (|#3| $ (-583 (-517)))) (-15 -1509 ($ $ $)) (-15 * ($ $ $)) (-15 -1581 ($ $ (-517) $ (-517))) (-15 -1581 ($ $ (-517) (-517))) (-15 -3860 ($ $)) (-15 -3860 ($ $ (-517) (-517))) (-15 -3681 ($ $ (-583 (-517)))) (-15 -1226 ($)) (-15 -2032 ($)) (-15 -2466 ((-583 |#3|) $)) (-15 -2940 ($ (-583 |#3|))) (-15 -2706 ($)))) (-517) (-703) (-156)) (T -127))
-((-1509 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1041 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-1437 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1437 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1437 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1437 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1581 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1581 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3860 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1226 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2032 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2706 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2254 ($ (-214 |#2| |#3|))) (-15 -2254 ($ (-1041 |#2| |#3|))) (-15 -2254 ($ (-583 |#3|))) (-15 -2254 ($ (-583 $))) (-15 -3334 ((-703) $)) (-15 -1437 (|#3| $)) (-15 -1437 (|#3| $ (-517))) (-15 -1437 (|#3| $ (-517) (-517))) (-15 -1437 (|#3| $ (-517) (-517) (-517))) (-15 -1437 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1437 (|#3| $ (-583 (-517)))) (-15 -1509 ($ $ $)) (-15 * ($ $ $)) (-15 -1581 ($ $ (-517) $ (-517))) (-15 -1581 ($ $ (-517) (-517))) (-15 -3860 ($ $)) (-15 -3860 ($ $ (-517) (-517))) (-15 -3681 ($ $ (-583 (-517)))) (-15 -1226 ($)) (-15 -2032 ($)) (-15 -2466 ((-583 |#3|) $)) (-15 -2940 ($ (-583 |#3|))) (-15 -2706 ($))))
-((-1587 (((-107) $ $) NIL)) (-1420 (($) 15 T CONST)) (-2476 (($) NIL (|has| (-131) (-338)))) (-1400 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3867 (($ $ $) NIL)) (-3994 (((-107) $ $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| (-131) (-338)))) (-1353 (($) NIL) (($ (-583 (-131))) NIL)) (-2975 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-1835 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (($ (-131) $) 51 (|has| $ (-6 -4183)))) (-2050 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-1292 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-4100 (($) NIL (|has| (-131) (-338)))) (-3240 (((-583 (-131)) $) 60 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-4055 (((-131) $) NIL (|has| (-131) (-779)))) (-2332 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3105 (((-131) $) NIL (|has| (-131) (-779)))) (-3696 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-131) (-131)) $) 55)) (-2115 (($) 16 T CONST)) (-4034 (((-843) $) NIL (|has| (-131) (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2375 (($ $ $) 29)) (-3074 (((-131) $) 52)) (-3676 (($ (-131) $) 50)) (-3544 (($ (-843)) NIL (|has| (-131) (-338)))) (-3913 (($) 14 T CONST)) (-3214 (((-1021) $) NIL)) (-3222 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3773 (((-131) $) 53)) (-3029 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 48)) (-1782 (($) 13 T CONST)) (-1853 (($ $ $) 31) (($ $ (-131)) NIL)) (-3230 (($ (-583 (-131))) NIL) (($) NIL)) (-3223 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-1057) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2272 (($ (-583 (-131))) NIL)) (-3553 (($ $) 32 (|has| (-131) (-338)))) (-2254 (((-787) $) 46)) (-1463 (($ (-1057)) 12) (($ (-583 (-131))) 43)) (-4107 (((-703) $) NIL)) (-3171 (($) 49) (($ (-583 (-131))) NIL)) (-2882 (($ (-583 (-131))) NIL)) (-2258 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3002 (($) 19 T CONST)) (-3350 (($) 18 T CONST)) (-1534 (((-107) $ $) 22)) (-1558 (((-107) $ $) NIL)) (-2290 (((-703) $) 47 (|has| $ (-6 -4183)))))
-(((-128) (-13 (-1003) (-558 (-1057)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -1463 ($ (-1057))) (-15 -1463 ($ (-583 (-131)))) (-15 -1782 ($) -2497) (-15 -3913 ($) -2497) (-15 -1420 ($) -2497) (-15 -2115 ($) -2497) (-15 -3350 ($) -2497) (-15 -3002 ($) -2497)))) (T -128))
-((-1463 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-128)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-1782 (*1 *1) (-5 *1 (-128))) (-3913 (*1 *1) (-5 *1 (-128))) (-1420 (*1 *1) (-5 *1 (-128))) (-2115 (*1 *1) (-5 *1 (-128))) (-3350 (*1 *1) (-5 *1 (-128))) (-3002 (*1 *1) (-5 *1 (-128))))
-(-13 (-1003) (-558 (-1057)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -1463 ($ (-1057))) (-15 -1463 ($ (-583 (-131)))) (-15 -1782 ($) -2497) (-15 -3913 ($) -2497) (-15 -1420 ($) -2497) (-15 -2115 ($) -2497) (-15 -3350 ($) -2497) (-15 -3002 ($) -2497)))
-((-1617 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3123 ((|#1| |#3|) 9)) (-3327 ((|#3| |#3|) 15)))
-(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -3123 (|#1| |#3|)) (-15 -3327 (|#3| |#3|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-343 |#2|)) (T -129))
-((-1617 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -3123 (|#1| |#3|)) (-15 -3327 (|#3| |#3|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1630 (($ $ $) 8)) (-1803 (($ $) 7)) (-4033 (($ $ $) 6)))
-(((-130) (-1185)) (T -130))
-((-1630 (*1 *1 *1 *1) (-4 *1 (-130))) (-1803 (*1 *1 *1) (-4 *1 (-130))) (-4033 (*1 *1 *1 *1) (-4 *1 (-130))))
-(-13 (-10 -8 (-15 -4033 ($ $ $)) (-15 -1803 ($ $)) (-15 -1630 ($ $ $))))
-((-1587 (((-107) $ $) NIL)) (-2406 (((-107) $) 38)) (-1420 (($ $) 50)) (-4130 (($) 25)) (-1719 (((-703)) 16)) (-4100 (($) 24)) (-1431 (($) 26)) (-2261 (((-517) $) 21)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-2846 (((-107) $) 40)) (-2115 (($ $) 51)) (-4034 (((-843) $) 22)) (-1277 (((-1057) $) 46)) (-3544 (($ (-843)) 20)) (-1317 (((-107) $) 36)) (-3214 (((-1021) $) NIL)) (-4132 (($) 27)) (-3427 (((-107) $) 34)) (-2254 (((-787) $) 29)) (-1189 (($ (-517)) 18) (($ (-1057)) 49)) (-4027 (((-107) $) 44)) (-3051 (((-107) $) 42)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 13)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 14)))
-(((-131) (-13 (-773) (-10 -8 (-15 -2261 ((-517) $)) (-15 -1189 ($ (-517))) (-15 -1189 ($ (-1057))) (-15 -4130 ($)) (-15 -1431 ($)) (-15 -4132 ($)) (-15 -1420 ($ $)) (-15 -2115 ($ $)) (-15 -3427 ((-107) $)) (-15 -1317 ((-107) $)) (-15 -3051 ((-107) $)) (-15 -2406 ((-107) $)) (-15 -2846 ((-107) $)) (-15 -4027 ((-107) $))))) (T -131))
-((-2261 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1189 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1189 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-131)))) (-4130 (*1 *1) (-5 *1 (-131))) (-1431 (*1 *1) (-5 *1 (-131))) (-4132 (*1 *1) (-5 *1 (-131))) (-1420 (*1 *1 *1) (-5 *1 (-131))) (-2115 (*1 *1 *1) (-5 *1 (-131))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(-13 (-773) (-10 -8 (-15 -2261 ((-517) $)) (-15 -1189 ($ (-517))) (-15 -1189 ($ (-1057))) (-15 -4130 ($)) (-15 -1431 ($)) (-15 -4132 ($)) (-15 -1420 ($ $)) (-15 -2115 ($ $)) (-15 -3427 ((-107) $)) (-15 -1317 ((-107) $)) (-15 -3051 ((-107) $)) (-15 -2406 ((-107) $)) (-15 -2846 ((-107) $)) (-15 -4027 ((-107) $))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-2486 (((-3 $ "failed") $) 35)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-132) (-1185)) (T -132))
-((-2486 (*1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-961) (-10 -8 (-15 -2486 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1924 ((|#1| (-623 |#1|) |#1|) 17)))
-(((-133 |#1|) (-10 -7 (-15 -1924 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
-((-1924 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
-(-10 -7 (-15 -1924 (|#1| (-623 |#1|) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-134) (-1185)) (T -134))
-NIL
-(-13 (-961))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3565 (((-2 (|:| -3010 (-703)) (|:| -1965 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 69)) (-4041 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 51)) (-1229 (((-2 (|:| -1965 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1765 ((|#1| |#3| |#3|) 39)) (-2049 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2642 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 48)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1229 ((-2 (|:| -1965 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4041 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -3565 ((-2 (|:| -3010 (-703)) (|:| -1965 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1765 (|#1| |#3| |#3|)) (-15 -2049 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2642 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1113) (-1131 |#1|) (-1131 (-377 |#2|))) (T -135))
-((-2642 (*1 *2 *3 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))) (-2049 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1131 *3)))) (-1765 (*1 *2 *3 *3) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-1113)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1131 *3)))) (-4041 (*1 *2 *3) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -1965 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
-(-10 -7 (-15 -1229 ((-2 (|:| -1965 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4041 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -3565 ((-2 (|:| -3010 (-703)) (|:| -1965 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1765 (|#1| |#3| |#3|)) (-15 -2049 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2642 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
-((-2899 (((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)) 31)))
-(((-136 |#1| |#2|) (-10 -7 (-15 -2899 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)))) (-502) (-150 |#1|)) (T -136))
-((-2899 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
-(-10 -7 (-15 -2899 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))))
-((-3555 (($ (-1 (-107) |#2|) $) 29)) (-1783 (($ $) 36)) (-2050 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-1292 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3222 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-3029 (((-107) (-1 (-107) |#2|) $) 16)) (-3223 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-2258 (((-107) (-1 (-107) |#2|) $) 15)) (-2290 (((-703) $) 11)))
-(((-137 |#1| |#2|) (-10 -8 (-15 -1783 (|#1| |#1|)) (-15 -2050 (|#1| |#2| |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3555 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2050 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|))) (-138 |#2|) (-1109)) (T -137))
-NIL
-(-10 -8 (-15 -1783 (|#1| |#1|)) (-15 -2050 (|#1| |#2| |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3555 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2050 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-3555 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-1783 (($ $) 41 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183))) (($ |#1| $) 42 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 49)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-138 |#1|) (-1185) (-1109)) (T -138))
-((-2272 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-138 *3)))) (-3222 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-1292 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-1292 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-2050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) (-3555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) (-1292 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) (-2050 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-1783 (*1 *1 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -2272 ($ (-583 |t#1|))) (-15 -3222 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4183)) (PROGN (-15 -1292 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1292 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2050 ($ (-1 (-107) |t#1|) $)) (-15 -3555 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -1292 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2050 ($ |t#1| $)) (-15 -1783 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) 85)) (-3469 (((-107) $) NIL)) (-1336 (($ |#2| (-583 (-843))) 56)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2126 (($ (-843)) 48)) (-2232 (((-125)) 23)) (-2254 (((-787) $) 68) (($ (-517)) 46) (($ |#2|) 47)) (-4104 ((|#2| $ (-583 (-843))) 58)) (-1217 (((-703)) 20)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 40 T CONST)) (-2411 (($) 44 T CONST)) (-1534 (((-107) $ $) 26)) (-1678 (($ $ |#2|) NIL)) (-1663 (($ $) 34) (($ $ $) 32)) (-1645 (($ $ $) 30)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-139 |#1| |#2| |#3|) (-13 (-961) (-37 |#2|) (-1161 |#2|) (-10 -8 (-15 -2126 ($ (-843))) (-15 -1336 ($ |#2| (-583 (-843)))) (-15 -4104 (|#2| $ (-583 (-843)))) (-15 -3775 ((-3 $ "failed") $)))) (-843) (-333) (-910 |#1| |#2|)) (T -139))
-((-3775 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))))
-(-13 (-961) (-37 |#2|) (-1161 |#2|) (-10 -8 (-15 -2126 ($ (-843))) (-15 -1336 ($ |#2| (-583 (-843)))) (-15 -4104 (|#2| $ (-583 (-843)))) (-15 -3775 ((-3 $ "failed") $))))
-((-3233 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-3279 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 64)) (-2598 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 59)))
-(((-140) (-10 -7 (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3279 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -3279 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3233 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))) (T -140))
-((-2598 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) (-3233 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))) (-3279 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-2598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
-(-10 -7 (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3279 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -3279 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -3233 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -2598 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))
-((-2989 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
-(((-141 |#1| |#2|) (-10 -7 (-15 -2989 ((-583 (-153 |#2|)) |#1| |#2|))) (-1131 (-153 (-517))) (-13 (-333) (-777))) (T -141))
-((-2989 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1131 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -2989 ((-583 (-153 |#2|)) |#1| |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2457 (($) 15)) (-2164 (($) 14)) (-4146 (((-843)) 22)) (-1277 (((-1057) $) NIL)) (-1793 (((-517) $) 19)) (-3214 (((-1021) $) NIL)) (-1646 (($) 16)) (-4137 (($ (-517)) 23)) (-2254 (((-787) $) 29)) (-2621 (($) 17)) (-1534 (((-107) $ $) 13)) (-1645 (($ $ $) 11)) (* (($ (-843) $) 21) (($ (-199) $) 8)))
-(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1645 ($ $ $)) (-15 -2164 ($)) (-15 -2457 ($)) (-15 -1646 ($)) (-15 -2621 ($)) (-15 -1793 ((-517) $)) (-15 -4146 ((-843))) (-15 -4137 ($ (-517)))))) (T -142))
-((-1645 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2164 (*1 *1) (-5 *1 (-142))) (-2457 (*1 *1) (-5 *1 (-142))) (-1646 (*1 *1) (-5 *1 (-142))) (-2621 (*1 *1) (-5 *1 (-142))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-4146 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1645 ($ $ $)) (-15 -2164 ($)) (-15 -2457 ($)) (-15 -1646 ($)) (-15 -2621 ($)) (-15 -1793 ((-517) $)) (-15 -4146 ((-843))) (-15 -4137 ($ (-517)))))
-((-1413 ((|#2| |#2| (-996 |#2|)) 87) ((|#2| |#2| (-1074)) 67)) (-1509 ((|#2| |#2| (-996 |#2|)) 86) ((|#2| |#2| (-1074)) 66)) (-1630 ((|#2| |#2| |#2|) 27)) (-2283 (((-109) (-109)) 97)) (-3464 ((|#2| (-583 |#2|)) 116)) (-4092 ((|#2| (-583 |#2|)) 134)) (-1861 ((|#2| (-583 |#2|)) 124)) (-2304 ((|#2| |#2|) 122)) (-1725 ((|#2| (-583 |#2|)) 109)) (-3829 ((|#2| (-583 |#2|)) 110)) (-4022 ((|#2| (-583 |#2|)) 132)) (-3225 ((|#2| |#2| (-1074)) 54) ((|#2| |#2|) 53)) (-1803 ((|#2| |#2|) 23)) (-4033 ((|#2| |#2| |#2|) 26)) (-2794 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -4033 (|#2| |#2| |#2|)) (-15 -1630 (|#2| |#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -3225 (|#2| |#2|)) (-15 -3225 (|#2| |#2| (-1074))) (-15 -1413 (|#2| |#2| (-1074))) (-15 -1413 (|#2| |#2| (-996 |#2|))) (-15 -1509 (|#2| |#2| (-1074))) (-15 -1509 (|#2| |#2| (-996 |#2|))) (-15 -2304 (|#2| |#2|)) (-15 -4022 (|#2| (-583 |#2|))) (-15 -1861 (|#2| (-583 |#2|))) (-15 -4092 (|#2| (-583 |#2|))) (-15 -1725 (|#2| (-583 |#2|))) (-15 -3829 (|#2| (-583 |#2|))) (-15 -3464 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
-((-3464 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3225 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3225 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1630 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-4033 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -4033 (|#2| |#2| |#2|)) (-15 -1630 (|#2| |#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -3225 (|#2| |#2|)) (-15 -3225 (|#2| |#2| (-1074))) (-15 -1413 (|#2| |#2| (-1074))) (-15 -1413 (|#2| |#2| (-996 |#2|))) (-15 -1509 (|#2| |#2| (-1074))) (-15 -1509 (|#2| |#2| (-996 |#2|))) (-15 -2304 (|#2| |#2|)) (-15 -4022 (|#2| (-583 |#2|))) (-15 -1861 (|#2| (-583 |#2|))) (-15 -4092 (|#2| (-583 |#2|))) (-15 -1725 (|#2| (-583 |#2|))) (-15 -3829 (|#2| (-583 |#2|))) (-15 -3464 (|#2| (-583 |#2|))))
-((-3823 ((|#1| |#1| |#1|) 52)) (-2108 ((|#1| |#1| |#1|) 49)) (-1630 ((|#1| |#1| |#1|) 43)) (-1274 ((|#1| |#1|) 34)) (-3444 ((|#1| |#1| (-583 |#1|)) 42)) (-1803 ((|#1| |#1|) 36)) (-4033 ((|#1| |#1| |#1|) 39)))
-(((-144 |#1|) (-10 -7 (-15 -4033 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3444 (|#1| |#1| (-583 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1| |#1|))) (-502)) (T -144))
-((-3823 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1630 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1274 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-1803 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-4033 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(-10 -7 (-15 -4033 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3444 (|#1| |#1| (-583 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1| |#1|)))
-((-1413 (($ $ (-1074)) 12) (($ $ (-996 $)) 11)) (-1509 (($ $ (-1074)) 10) (($ $ (-996 $)) 9)) (-1630 (($ $ $) 8)) (-3225 (($ $) 14) (($ $ (-1074)) 13)) (-1803 (($ $) 7)) (-4033 (($ $ $) 6)))
-(((-145) (-1185)) (T -145))
-((-3225 (*1 *1 *1) (-4 *1 (-145))) (-3225 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-1413 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-1413 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) (-1509 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) (-1509 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))))
-(-13 (-130) (-10 -8 (-15 -3225 ($ $)) (-15 -3225 ($ $ (-1074))) (-15 -1413 ($ $ (-1074))) (-15 -1413 ($ $ (-996 $))) (-15 -1509 ($ $ (-1074))) (-15 -1509 ($ $ (-996 $)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-111 |#1|) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-111 |#1|) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-111 |#1|) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-953 (-517))))) (-3388 (((-111 |#1|) $) NIL) (((-1075) $) NIL (|has| (-111 |#1|) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-953 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-953 (-517))))) (-1675 (($ $) NIL) (($ (-517) $) NIL)) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-111 |#1|))) (|:| |vec| (-1156 (-111 |#1|)))) (-623 $) (-1156 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-111 |#1|) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-111 |#1|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-111 |#1|) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-111 |#1|) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1051)))) (-1469 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-4082 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3308 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-111 |#1|) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2309 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-111 |#1|) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-111 |#1|) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1075)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1075) (-111 |#1|)))) (($ $ (-1075) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1075) (-111 |#1|))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1075)) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-111 |#1|) $) NIL)) (-3357 (((-815 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-938))) (((-199) $) NIL (|has| (-111 |#1|) (-938)))) (-3089 (((-157 (-377 (-517))) $) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1075)) NIL (|has| (-111 |#1|) (-953 (-1075))))) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-832))) (|has| (-111 |#1|) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2914 (((-107) $ $) NIL)) (-2202 (((-377 (-517)) $ (-517)) NIL)) (-2339 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1075)) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-111 |#1|) (-823 (-1075)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1703 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
+(((-112 |#1|) (-13 (-910 (-111 |#1|)) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $)))) (-517)) (T -112))
+((-2202 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-1675 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-1675 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
+(-13 (-910 (-111 |#1|)) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $))))
+((-2443 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1345 (((-583 $) $) 27)) (-1528 (((-107) $ $) 32)) (-4008 (((-107) |#2| $) 36)) (-1938 (((-583 |#2|) $) 22)) (-4141 (((-107) $) 16)) (-2607 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1657 (((-107) $) 45)) (-2269 (((-787) $) 41)) (-1497 (((-583 $) $) 28)) (-1583 (((-107) $ $) 34)) (-3533 (((-703) $) 43)))
+(((-113 |#1| |#2|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -2443 (|#1| |#1| "right" |#1|)) (-15 -2443 (|#1| |#1| "left" |#1|)) (-15 -2607 (|#1| |#1| "right")) (-15 -2607 (|#1| |#1| "left")) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -1528 ((-107) |#1| |#1|)) (-15 -1938 ((-583 |#2|) |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -4008 ((-107) |#2| |#1|)) (-15 -3533 ((-703) |#1|))) (-114 |#2|) (-1110)) (T -113))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -2443 (|#1| |#1| "right" |#1|)) (-15 -2443 (|#1| |#1| "left" |#1|)) (-15 -2607 (|#1| |#1| "right")) (-15 -2607 (|#1| |#1| "left")) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -1528 ((-107) |#1| |#1|)) (-15 -1938 ((-583 |#2|) |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -4008 ((-107) |#2| |#1|)) (-15 -3533 ((-703) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-1270 (($ $ $) 52 (|has| $ (-6 -4191)))) (-1289 (($ $ $) 54 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) (($ $ "left" $) 55 (|has| $ (-6 -4191))) (($ $ "right" $) 53 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-3298 (($ $) 57)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-3286 (($ $) 59)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2093 (((-517) $ $) 44)) (-1657 (((-107) $) 46)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-114 |#1|) (-1187) (-1110)) (T -114))
+((-3286 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1110)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1110)))) (-3298 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1110)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1110)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4191)) (-4 *1 (-114 *3)) (-4 *3 (-1110)))) (-1289 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-114 *2)) (-4 *2 (-1110)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4191)) (-4 *1 (-114 *3)) (-4 *3 (-1110)))) (-1270 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-114 *2)) (-4 *2 (-1110)))))
+(-13 (-927 |t#1|) (-10 -8 (-15 -3286 ($ $)) (-15 -2607 ($ $ "left")) (-15 -3298 ($ $)) (-15 -2607 ($ $ "right")) (IF (|has| $ (-6 -4191)) (PROGN (-15 -2443 ($ $ "left" $)) (-15 -1289 ($ $ $)) (-15 -2443 ($ $ "right" $)) (-15 -1270 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-1395 (((-107) |#1|) 24)) (-3705 (((-703) (-703)) 23) (((-703)) 22)) (-2492 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
+(((-115 |#1|) (-10 -7 (-15 -2492 ((-107) |#1|)) (-15 -2492 ((-107) |#1| (-107))) (-15 -3705 ((-703))) (-15 -3705 ((-703) (-703))) (-15 -1395 ((-107) |#1|))) (-1132 (-517))) (T -115))
+((-1395 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))) (-3705 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))) (-2492 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))) (-2492 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))))
+(-10 -7 (-15 -2492 ((-107) |#1|)) (-15 -2492 ((-107) |#1| (-107))) (-15 -3705 ((-703))) (-15 -3705 ((-703) (-703))) (-15 -1395 ((-107) |#1|)))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) 15)) (-2975 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-1270 (($ $ $) 18 (|has| $ (-6 -4191)))) (-1289 (($ $ $) 20 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "left" $) NIL (|has| $ (-6 -4191))) (($ $ "right" $) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3298 (($ $) 17)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2036 (($ $ |#1| $) 23)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3286 (($ $) 19)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1542 (($ |#1| $) 24)) (-2704 (($ |#1| $) 10)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 14)) (-1529 (($) 8)) (-2607 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3002 (($ (-583 |#1|)) 12)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4191) (-6 -4190) (-15 -3002 ($ (-583 |#1|))) (-15 -2704 ($ |#1| $)) (-15 -1542 ($ |#1| $)) (-15 -2975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
+((-3002 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-2704 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1542 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2975 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4191) (-6 -4190) (-15 -3002 ($ (-583 |#1|))) (-15 -2704 ($ |#1| $)) (-15 -1542 ($ |#1| $)) (-15 -2975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3621 (($ $) 14)) (-2477 (($ $) 11)) (-3531 (($ $ $) 24)) (-2042 (($ $ $) 22)) (-2813 (($ $) 12)) (-3815 (($ $ $) 20)) (-3803 (($ $ $) 18)))
+(((-117 |#1|) (-10 -8 (-15 -3531 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -2477 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|))) (-118)) (T -117))
+NIL
+(-10 -8 (-15 -3531 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -2477 (|#1| |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-3621 (($ $) 104)) (-2292 (($ $ $) 25)) (-1478 (((-1161) $ (-517) (-517)) 67 (|has| $ (-6 -4191)))) (-3560 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-3613 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4191)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4191)))) (-2162 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2670 (((-107) $ (-703)) 38)) (-2443 (((-107) $ (-1123 (-517)) (-107)) 89 (|has| $ (-6 -4191))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4190)))) (-1681 (($) 39 T CONST)) (-1407 (($ $) 101 (|has| $ (-6 -4191)))) (-1905 (($ $) 91)) (-2453 (($ $) 69 (-12 (|has| (-107) (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4190))) (($ (-107) $) 70 (-12 (|has| (-107) (-1004)) (|has| $ (-6 -4190))))) (-1521 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1004)) (|has| $ (-6 -4190))))) (-2757 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4191)))) (-2563 (((-107) $ (-517)) 56)) (-1211 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1004))) (((-517) (-107) $) 95 (|has| (-107) (-1004))) (((-517) (-1 (-107) (-107)) $) 94)) (-1535 (((-583 (-107)) $) 46 (|has| $ (-6 -4190)))) (-3977 (($ $ $) 26)) (-2477 (($ $) 31)) (-3531 (($ $ $) 28)) (-3211 (($ (-703) (-107)) 78)) (-2042 (($ $ $) 29)) (-2361 (((-107) $ (-703)) 37)) (-3735 (((-517) $) 64 (|has| (-517) (-779)))) (-3456 (($ $ $) 13)) (-3798 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-2898 (((-583 (-107)) $) 47 (|has| $ (-6 -4190)))) (-4008 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 63 (|has| (-517) (-779)))) (-4082 (($ $ $) 14)) (-2744 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-4043 (((-107) $ (-703)) 36)) (-1895 (((-1058) $) 9)) (-1745 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-4121 (((-583 (-517)) $) 61)) (-3536 (((-107) (-517) $) 60)) (-4123 (((-1022) $) 10)) (-2427 (((-107) $) 65 (|has| (-517) (-779)))) (-2999 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-3191 (($ $ (-107)) 66 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004))))) (-3180 (((-107) $ $) 32)) (-3669 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1831 (((-583 (-107)) $) 59)) (-3270 (((-107) $) 35)) (-1529 (($) 34)) (-2607 (($ $ (-1123 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3726 (($ $ (-1123 (-517))) 86) (($ $ (-517)) 85)) (-4135 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4190)))) (-2790 (($ $ $ (-517)) 100 (|has| $ (-6 -4191)))) (-2460 (($ $) 33)) (-3357 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2286 (($ (-583 (-107))) 77)) (-4108 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2269 (((-787) $) 11)) (-3160 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4190)))) (-3992 (($ $ $) 27)) (-2813 (($ $) 30)) (-3815 (($ $ $) 106)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-3803 (($ $ $) 105)) (-3533 (((-703) $) 40 (|has| $ (-6 -4190)))))
+(((-118) (-1187)) (T -118))
+((-2477 (*1 *1 *1) (-4 *1 (-118))) (-2813 (*1 *1 *1) (-4 *1 (-118))) (-2042 (*1 *1 *1 *1) (-4 *1 (-118))) (-3531 (*1 *1 *1 *1) (-4 *1 (-118))) (-3992 (*1 *1 *1 *1) (-4 *1 (-118))) (-3977 (*1 *1 *1 *1) (-4 *1 (-118))) (-2292 (*1 *1 *1 *1) (-4 *1 (-118))))
+(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2477 ($ $)) (-15 -2813 ($ $)) (-15 -2042 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -2292 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004))) ((-588 #0#) . T) ((-598) . T) ((-19 #0#) . T) ((-779) . T) ((-1004) . T) ((-1110) . T))
+((-2744 (($ (-1 |#2| |#2|) $) 22)) (-2460 (($ $) 16)) (-3533 (((-703) $) 24)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2460 (|#1| |#1|))) (-120 |#2|) (-1004)) (T -119))
+NIL
+(-10 -8 (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2460 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-1270 (($ $ $) 52 (|has| $ (-6 -4191)))) (-1289 (($ $ $) 54 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) (($ $ "left" $) 55 (|has| $ (-6 -4191))) (($ $ "right" $) 53 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-3298 (($ $) 57)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-2036 (($ $ |#1| $) 60)) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-3286 (($ $) 59)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2093 (((-517) $ $) 44)) (-1657 (((-107) $) 46)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-120 |#1|) (-1187) (-1004)) (T -120))
+((-2036 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1004)))))
+(-13 (-114 |t#1|) (-10 -8 (-6 -4191) (-6 -4190) (-15 -2036 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-114 |#1|) . T) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) 15)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) 19 (|has| $ (-6 -4191)))) (-1270 (($ $ $) 20 (|has| $ (-6 -4191)))) (-1289 (($ $ $) 18 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "left" $) NIL (|has| $ (-6 -4191))) (($ $ "right" $) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3298 (($ $) 21)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2036 (($ $ |#1| $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3286 (($ $) NIL)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2704 (($ |#1| $) 10)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 14)) (-1529 (($) 8)) (-2607 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 17)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2770 (($ (-583 |#1|)) 12)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4191) (-15 -2770 ($ (-583 |#1|))) (-15 -2704 ($ |#1| $)))) (-779)) (T -121))
+((-2770 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-2704 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4191) (-15 -2770 ($ (-583 |#1|))) (-15 -2704 ($ |#1| $))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) 24)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) 26 (|has| $ (-6 -4191)))) (-1270 (($ $ $) 30 (|has| $ (-6 -4191)))) (-1289 (($ $ $) 28 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "left" $) NIL (|has| $ (-6 -4191))) (($ $ "right" $) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3298 (($ $) 20)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2036 (($ $ |#1| $) 15)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3286 (($ $) 19)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) 21)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 18)) (-1529 (($) 11)) (-2607 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2816 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 10 (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -2816 ($ |#1|)) (-15 -2816 ($ $ |#1| $)))) (-1004)) (T -122))
+((-2816 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1004)))) (-2816 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1004)))))
+(-13 (-120 |#1|) (-10 -8 (-15 -2816 ($ |#1|)) (-15 -2816 ($ $ |#1| $))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15)))
+(((-123) (-1187)) (T -123))
+((-1250 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(-13 (-23) (-10 -8 (-15 -1250 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-3145 (((-1161) $ (-703)) 19)) (-1211 (((-703) $) 20)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)))
+(((-124) (-1187)) (T -124))
+((-1211 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-3145 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1161)))))
+(-13 (-779) (-10 -8 (-15 -1211 ((-703) $)) (-15 -3145 ((-1161) $ (-703)))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-703) "failed") $) 38)) (-3388 (((-703) $) 36)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) 26)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2494 (((-107)) 39)) (-3341 (((-107) (-107)) 41)) (-3733 (((-107) $) 23)) (-1302 (((-107) $) 35)) (-2269 (((-787) $) 22) (($ (-703)) 14)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) 12 T CONST)) (-3617 (($) 11 T CONST)) (-1582 (($ (-703)) 15)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 24)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 25)) (-1691 (((-3 $ "failed") $ $) 29)) (-1677 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-844) $) NIL) (($ $ $) 30)))
+(((-125) (-13 (-779) (-23) (-659) (-953 (-703)) (-10 -8 (-6 (-4192 "*")) (-15 -1691 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1582 ($ (-703))) (-15 -3733 ((-107) $)) (-15 -1302 ((-107) $)) (-15 -2494 ((-107))) (-15 -3341 ((-107) (-107)))))) (T -125))
+((-1691 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2494 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(-13 (-779) (-23) (-659) (-953 (-703)) (-10 -8 (-6 (-4192 "*")) (-15 -1691 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1582 ($ (-703))) (-15 -3733 ((-107) $)) (-15 -1302 ((-107) $)) (-15 -2494 ((-107))) (-15 -3341 ((-107) (-107)))))
+((-2496 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-3308 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
+(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3308 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2496 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3308 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
+((-2118 (((-107) $ $) NIL)) (-1584 (($ (-583 |#3|)) 39)) (-1670 (($ $) 98) (($ $ (-517) (-517)) 97)) (-1681 (($) 17)) (-3226 (((-3 |#3| "failed") $) 59)) (-3388 ((|#3| $) NIL)) (-2796 (($ $ (-583 (-517))) 99)) (-2486 (((-583 |#3|) $) 35)) (-3736 (((-703) $) 43)) (-3544 (($ $ $) 92)) (-2127 (($) 42)) (-1895 (((-1058) $) NIL)) (-4136 (($) 16)) (-4123 (((-1022) $) NIL)) (-2607 ((|#3| $) 45) ((|#3| $ (-517)) 46) ((|#3| $ (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517)) 48) ((|#3| $ (-517) (-517) (-517) (-517)) 49) ((|#3| $ (-583 (-517))) 51)) (-2769 (((-703) $) 44)) (-3999 (($ $ (-517) $ (-517)) 93) (($ $ (-517) (-517)) 95)) (-2269 (((-787) $) 66) (($ |#3|) 67) (($ (-214 |#2| |#3|)) 74) (($ (-1042 |#2| |#3|)) 77) (($ (-583 |#3|)) 52) (($ (-583 $)) 57)) (-3608 (($) 68 T CONST)) (-3617 (($) 69 T CONST)) (-1583 (((-107) $ $) 79)) (-1691 (($ $) 85) (($ $ $) 83)) (-1677 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-517)) 88) (($ (-517) $) 87) (($ $ $) 94)))
+(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2269 ($ (-214 |#2| |#3|))) (-15 -2269 ($ (-1042 |#2| |#3|))) (-15 -2269 ($ (-583 |#3|))) (-15 -2269 ($ (-583 $))) (-15 -3736 ((-703) $)) (-15 -2607 (|#3| $)) (-15 -2607 (|#3| $ (-517))) (-15 -2607 (|#3| $ (-517) (-517))) (-15 -2607 (|#3| $ (-517) (-517) (-517))) (-15 -2607 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2607 (|#3| $ (-583 (-517)))) (-15 -3544 ($ $ $)) (-15 * ($ $ $)) (-15 -3999 ($ $ (-517) $ (-517))) (-15 -3999 ($ $ (-517) (-517))) (-15 -1670 ($ $)) (-15 -1670 ($ $ (-517) (-517))) (-15 -2796 ($ $ (-583 (-517)))) (-15 -4136 ($)) (-15 -2127 ($)) (-15 -2486 ((-583 |#3|) $)) (-15 -1584 ($ (-583 |#3|))) (-15 -1681 ($)))) (-517) (-703) (-156)) (T -127))
+((-3544 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1042 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-2607 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2607 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2607 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2607 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3999 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3999 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1670 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1670 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-4136 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2127 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1681 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2269 ($ (-214 |#2| |#3|))) (-15 -2269 ($ (-1042 |#2| |#3|))) (-15 -2269 ($ (-583 |#3|))) (-15 -2269 ($ (-583 $))) (-15 -3736 ((-703) $)) (-15 -2607 (|#3| $)) (-15 -2607 (|#3| $ (-517))) (-15 -2607 (|#3| $ (-517) (-517))) (-15 -2607 (|#3| $ (-517) (-517) (-517))) (-15 -2607 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2607 (|#3| $ (-583 (-517)))) (-15 -3544 ($ $ $)) (-15 * ($ $ $)) (-15 -3999 ($ $ (-517) $ (-517))) (-15 -3999 ($ $ (-517) (-517))) (-15 -1670 ($ $)) (-15 -1670 ($ $ (-517) (-517))) (-15 -2796 ($ $ (-583 (-517)))) (-15 -4136 ($)) (-15 -2127 ($)) (-15 -2486 ((-583 |#3|) $)) (-15 -1584 ($ (-583 |#3|))) (-15 -1681 ($))))
+((-2118 (((-107) $ $) NIL)) (-1611 (($) 15 T CONST)) (-2457 (($) NIL (|has| (-131) (-338)))) (-2382 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-1826 (($ $ $) NIL)) (-2104 (((-107) $ $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| (-131) (-338)))) (-1883 (($) NIL) (($ (-583 (-131))) NIL)) (-3042 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-3593 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190))) (($ (-131) $) 51 (|has| $ (-6 -4190)))) (-1422 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1521 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-2200 (($) NIL (|has| (-131) (-338)))) (-1535 (((-583 (-131)) $) 60 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3456 (((-131) $) NIL (|has| (-131) (-779)))) (-2898 (((-583 (-131)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-4082 (((-131) $) NIL (|has| (-131) (-779)))) (-2744 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-131) (-131)) $) 55)) (-1929 (($) 16 T CONST)) (-2031 (((-844) $) NIL (|has| (-131) (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-3257 (($ $ $) 29)) (-2431 (((-131) $) 52)) (-2704 (($ (-131) $) 50)) (-2810 (($ (-844)) NIL (|has| (-131) (-338)))) (-2538 (($) 14 T CONST)) (-4123 (((-1022) $) NIL)) (-2999 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1785 (((-131) $) 53)) (-3480 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 48)) (-3330 (($) 13 T CONST)) (-1598 (($ $ $) 31) (($ $ (-131)) NIL)) (-1494 (($ (-583 (-131))) NIL) (($) NIL)) (-4135 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-1058) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2286 (($ (-583 (-131))) NIL)) (-2381 (($ $) 32 (|has| (-131) (-338)))) (-2269 (((-787) $) 46)) (-1995 (($ (-1058)) 12) (($ (-583 (-131))) 43)) (-3288 (((-703) $) NIL)) (-3073 (($) 49) (($ (-583 (-131))) NIL)) (-4155 (($ (-583 (-131))) NIL)) (-3160 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-2182 (($) 19 T CONST)) (-1838 (($) 18 T CONST)) (-1583 (((-107) $ $) 22)) (-1607 (((-107) $ $) NIL)) (-3533 (((-703) $) 47 (|has| $ (-6 -4190)))))
+(((-128) (-13 (-1004) (-558 (-1058)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -1995 ($ (-1058))) (-15 -1995 ($ (-583 (-131)))) (-15 -3330 ($) -1384) (-15 -2538 ($) -1384) (-15 -1611 ($) -1384) (-15 -1929 ($) -1384) (-15 -1838 ($) -1384) (-15 -2182 ($) -1384)))) (T -128))
+((-1995 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-128)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-3330 (*1 *1) (-5 *1 (-128))) (-2538 (*1 *1) (-5 *1 (-128))) (-1611 (*1 *1) (-5 *1 (-128))) (-1929 (*1 *1) (-5 *1 (-128))) (-1838 (*1 *1) (-5 *1 (-128))) (-2182 (*1 *1) (-5 *1 (-128))))
+(-13 (-1004) (-558 (-1058)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -1995 ($ (-1058))) (-15 -1995 ($ (-583 (-131)))) (-15 -3330 ($) -1384) (-15 -2538 ($) -1384) (-15 -1611 ($) -1384) (-15 -1929 ($) -1384) (-15 -1838 ($) -1384) (-15 -2182 ($) -1384)))
+((-1383 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2222 ((|#1| |#3|) 9)) (-2158 ((|#3| |#3|) 15)))
+(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -2222 (|#1| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-910 |#1|) (-343 |#2|)) (T -129))
+((-1383 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-910 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-910 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -2222 (|#1| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1298 (($ $ $) 8)) (-3012 (($ $) 7)) (-3972 (($ $ $) 6)))
+(((-130) (-1187)) (T -130))
+((-1298 (*1 *1 *1 *1) (-4 *1 (-130))) (-3012 (*1 *1 *1) (-4 *1 (-130))) (-3972 (*1 *1 *1 *1) (-4 *1 (-130))))
+(-13 (-10 -8 (-15 -3972 ($ $ $)) (-15 -3012 ($ $)) (-15 -1298 ($ $ $))))
+((-2118 (((-107) $ $) NIL)) (-3896 (((-107) $) 38)) (-1611 (($ $) 50)) (-2850 (($) 25)) (-2397 (((-703)) 16)) (-2200 (($) 24)) (-1253 (($) 26)) (-1314 (((-517) $) 21)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1624 (((-107) $) 40)) (-1929 (($ $) 51)) (-2031 (((-844) $) 22)) (-1895 (((-1058) $) 46)) (-2810 (($ (-844)) 20)) (-1259 (((-107) $) 36)) (-4123 (((-1022) $) NIL)) (-2674 (($) 27)) (-2432 (((-107) $) 34)) (-2269 (((-787) $) 29)) (-3559 (($ (-517)) 18) (($ (-1058)) 49)) (-3578 (((-107) $) 44)) (-2546 (((-107) $) 42)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 13)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 14)))
+(((-131) (-13 (-773) (-10 -8 (-15 -1314 ((-517) $)) (-15 -3559 ($ (-517))) (-15 -3559 ($ (-1058))) (-15 -2850 ($)) (-15 -1253 ($)) (-15 -2674 ($)) (-15 -1611 ($ $)) (-15 -1929 ($ $)) (-15 -2432 ((-107) $)) (-15 -1259 ((-107) $)) (-15 -2546 ((-107) $)) (-15 -3896 ((-107) $)) (-15 -1624 ((-107) $)) (-15 -3578 ((-107) $))))) (T -131))
+((-1314 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-131)))) (-2850 (*1 *1) (-5 *1 (-131))) (-1253 (*1 *1) (-5 *1 (-131))) (-2674 (*1 *1) (-5 *1 (-131))) (-1611 (*1 *1 *1) (-5 *1 (-131))) (-1929 (*1 *1 *1) (-5 *1 (-131))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1259 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(-13 (-773) (-10 -8 (-15 -1314 ((-517) $)) (-15 -3559 ($ (-517))) (-15 -3559 ($ (-1058))) (-15 -2850 ($)) (-15 -1253 ($)) (-15 -2674 ($)) (-15 -1611 ($ $)) (-15 -1929 ($ $)) (-15 -2432 ((-107) $)) (-15 -1259 ((-107) $)) (-15 -2546 ((-107) $)) (-15 -3896 ((-107) $)) (-15 -1624 ((-107) $)) (-15 -3578 ((-107) $))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2650 (((-3 $ "failed") $) 35)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-132) (-1187)) (T -132))
+((-2650 (*1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-962) (-10 -8 (-15 -2650 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-1900 ((|#1| (-623 |#1|) |#1|) 17)))
+(((-133 |#1|) (-10 -7 (-15 -1900 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
+((-1900 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
+(-10 -7 (-15 -1900 (|#1| (-623 |#1|) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-134) (-1187)) (T -134))
+NIL
+(-13 (-962))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2666 (((-2 (|:| -2356 (-703)) (|:| -1580 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 70)) (-2701 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 52)) (-2824 (((-2 (|:| -1580 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3927 ((|#1| |#3| |#3|) 40)) (-3522 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-3538 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 49)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2824 ((-2 (|:| -1580 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2701 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2666 ((-2 (|:| -2356 (-703)) (|:| -1580 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -3927 (|#1| |#3| |#3|)) (-15 -3522 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -3538 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1114) (-1132 |#1|) (-1132 (-377 |#2|))) (T -135))
+((-3538 (*1 *2 *3 *3) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))) (-3522 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1132 *3)))) (-3927 (*1 *2 *3 *3) (-12 (-4 *4 (-1132 *2)) (-4 *2 (-1114)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1132 (-377 *4))))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1114)) (-4 *6 (-1132 *5)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1132 *3)))) (-2701 (*1 *2 *3) (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))) (-2824 (*1 *2 *3) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| -1580 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))))
+(-10 -7 (-15 -2824 ((-2 (|:| -1580 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2701 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2666 ((-2 (|:| -2356 (-703)) (|:| -1580 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -3927 (|#1| |#3| |#3|)) (-15 -3522 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -3538 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
+((-2387 (((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|)) 32)))
+(((-136 |#1| |#2|) (-10 -7 (-15 -2387 ((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|)))) (-502) (-150 |#1|)) (T -136))
+((-2387 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 *5))) (-5 *3 (-1071 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
+(-10 -7 (-15 -2387 ((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|))))
+((-2324 (($ (-1 (-107) |#2|) $) 29)) (-2453 (($ $) 36)) (-1422 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-1521 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2999 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-3480 (((-107) (-1 (-107) |#2|) $) 16)) (-4135 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3160 (((-107) (-1 (-107) |#2|) $) 15)) (-3533 (((-703) $) 11)))
+(((-137 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2324 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1422 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|))) (-138 |#2|) (-1110)) (T -137))
+NIL
+(-10 -8 (-15 -2453 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2324 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1422 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-2324 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2453 (($ $) 41 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190))) (($ |#1| $) 42 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 49)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-138 |#1|) (-1187) (-1110)) (T -138))
+((-2286 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-138 *3)))) (-2999 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1110)))) (-1521 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110)))) (-1521 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110)))) (-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *3)) (-4 *3 (-1110)))) (-2324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *3)) (-4 *3 (-1110)))) (-1521 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1004)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110)))) (-1422 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110)) (-4 *2 (-1004)))) (-2453 (*1 *1 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110)) (-4 *2 (-1004)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -2286 ($ (-583 |t#1|))) (-15 -2999 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4190)) (PROGN (-15 -1521 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1422 ($ (-1 (-107) |t#1|) $)) (-15 -2324 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -1521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1422 ($ |t#1| $)) (-15 -2453 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) 86)) (-1865 (((-107) $) NIL)) (-2077 (($ |#2| (-583 (-844))) 57)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3029 (($ (-844)) 48)) (-1880 (((-125)) 23)) (-2269 (((-787) $) 69) (($ (-517)) 46) (($ |#2|) 47)) (-3952 ((|#2| $ (-583 (-844))) 59)) (-2950 (((-703)) 20)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 40 T CONST)) (-3617 (($) 44 T CONST)) (-1583 (((-107) $ $) 26)) (-1703 (($ $ |#2|) NIL)) (-1691 (($ $) 34) (($ $ $) 32)) (-1677 (($ $ $) 30)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-139 |#1| |#2| |#3|) (-13 (-962) (-37 |#2|) (-1163 |#2|) (-10 -8 (-15 -3029 ($ (-844))) (-15 -2077 ($ |#2| (-583 (-844)))) (-15 -3952 (|#2| $ (-583 (-844)))) (-15 -3163 ((-3 $ "failed") $)))) (-844) (-333) (-911 |#1| |#2|)) (T -139))
+((-3163 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-844)) (-4 *3 (-333)) (-14 *4 (-911 *2 *3)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-911 *3 *4)))) (-2077 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-844))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844)) (-4 *2 (-333)) (-14 *5 (-911 *4 *2)))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-844))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844)) (-14 *5 (-911 *4 *2)))))
+(-13 (-962) (-37 |#2|) (-1163 |#2|) (-10 -8 (-15 -3029 ($ (-844))) (-15 -2077 ($ |#2| (-583 (-844)))) (-15 -3952 (|#2| $ (-583 (-844)))) (-15 -3163 ((-3 $ "failed") $))))
+((-1330 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199)) 38)) (-2110 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850)) 64)) (-3356 (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-866 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850)) 59)))
+(((-140) (-10 -7 (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2110 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850))) (-15 -2110 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -1330 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-866 (-199))))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199)))))))) (T -140))
+((-3356 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 (-199))))))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-866 (-199)))))) (-1330 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 *4)))) (|:| |xValues| (-999 *4)) (|:| |yValues| (-999 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 *4)))))) (-2110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)))) (-3356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199))))) (-5 *1 (-140)))))
+(-10 -7 (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -2110 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850))) (-15 -2110 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-850) (-377 (-517)) (-377 (-517)))) (-15 -1330 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-866 (-199))))) (-15 -3356 ((-2 (|:| |brans| (-583 (-583 (-866 (-199))))) (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))) (-583 (-583 (-866 (-199)))))))
+((-2134 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
+(((-141 |#1| |#2|) (-10 -7 (-15 -2134 ((-583 (-153 |#2|)) |#1| |#2|))) (-1132 (-153 (-517))) (-13 (-333) (-777))) (T -141))
+((-2134 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1132 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -2134 ((-583 (-153 |#2|)) |#1| |#2|)))
+((-2118 (((-107) $ $) NIL)) (-4047 (($) 16)) (-2808 (($) 15)) (-1501 (((-844)) 23)) (-1895 (((-1058) $) NIL)) (-3919 (((-517) $) 20)) (-4123 (((-1022) $) NIL)) (-2802 (($) 17)) (-3198 (($ (-517)) 24)) (-2269 (((-787) $) 30)) (-3881 (($) 18)) (-1583 (((-107) $ $) 14)) (-1677 (($ $ $) 13)) (* (($ (-844) $) 22) (($ (-199) $) 8)))
+(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-844) $)) (-15 * ($ (-199) $)) (-15 -1677 ($ $ $)) (-15 -2808 ($)) (-15 -4047 ($)) (-15 -2802 ($)) (-15 -3881 ($)) (-15 -3919 ((-517) $)) (-15 -1501 ((-844))) (-15 -3198 ($ (-517)))))) (T -142))
+((-1677 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2808 (*1 *1) (-5 *1 (-142))) (-4047 (*1 *1) (-5 *1 (-142))) (-2802 (*1 *1) (-5 *1 (-142))) (-3881 (*1 *1) (-5 *1 (-142))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-1501 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-142)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-844) $)) (-15 * ($ (-199) $)) (-15 -1677 ($ $ $)) (-15 -2808 ($)) (-15 -4047 ($)) (-15 -2802 ($)) (-15 -3881 ($)) (-15 -3919 ((-517) $)) (-15 -1501 ((-844))) (-15 -3198 ($ (-517)))))
+((-1810 ((|#2| |#2| (-997 |#2|)) 87) ((|#2| |#2| (-1075)) 67)) (-3544 ((|#2| |#2| (-997 |#2|)) 86) ((|#2| |#2| (-1075)) 66)) (-1298 ((|#2| |#2| |#2|) 27)) (-3034 (((-109) (-109)) 97)) (-1628 ((|#2| (-583 |#2|)) 116)) (-4166 ((|#2| (-583 |#2|)) 134)) (-3376 ((|#2| (-583 |#2|)) 124)) (-2125 ((|#2| |#2|) 122)) (-2818 ((|#2| (-583 |#2|)) 109)) (-3479 ((|#2| (-583 |#2|)) 110)) (-3695 ((|#2| (-583 |#2|)) 132)) (-3519 ((|#2| |#2| (-1075)) 54) ((|#2| |#2|) 53)) (-3012 ((|#2| |#2|) 23)) (-3972 ((|#2| |#2| |#2|) 26)) (-1752 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -3972 (|#2| |#2| |#2|)) (-15 -1298 (|#2| |#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3519 (|#2| |#2| (-1075))) (-15 -1810 (|#2| |#2| (-1075))) (-15 -1810 (|#2| |#2| (-997 |#2|))) (-15 -3544 (|#2| |#2| (-1075))) (-15 -3544 (|#2| |#2| (-997 |#2|))) (-15 -2125 (|#2| |#2|)) (-15 -3695 (|#2| (-583 |#2|))) (-15 -3376 (|#2| (-583 |#2|))) (-15 -4166 (|#2| (-583 |#2|))) (-15 -2818 (|#2| (-583 |#2|))) (-15 -3479 (|#2| (-583 |#2|))) (-15 -1628 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
+((-1628 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3544 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3544 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-1810 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1810 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3519 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1298 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3972 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -3972 (|#2| |#2| |#2|)) (-15 -1298 (|#2| |#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3519 (|#2| |#2| (-1075))) (-15 -1810 (|#2| |#2| (-1075))) (-15 -1810 (|#2| |#2| (-997 |#2|))) (-15 -3544 (|#2| |#2| (-1075))) (-15 -3544 (|#2| |#2| (-997 |#2|))) (-15 -2125 (|#2| |#2|)) (-15 -3695 (|#2| (-583 |#2|))) (-15 -3376 (|#2| (-583 |#2|))) (-15 -4166 (|#2| (-583 |#2|))) (-15 -2818 (|#2| (-583 |#2|))) (-15 -3479 (|#2| (-583 |#2|))) (-15 -1628 (|#2| (-583 |#2|))))
+((-2227 ((|#1| |#1| |#1|) 52)) (-2837 ((|#1| |#1| |#1|) 49)) (-1298 ((|#1| |#1| |#1|) 43)) (-3450 ((|#1| |#1|) 34)) (-4058 ((|#1| |#1| (-583 |#1|)) 42)) (-3012 ((|#1| |#1|) 36)) (-3972 ((|#1| |#1| |#1|) 39)))
+(((-144 |#1|) (-10 -7 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -4058 (|#1| |#1| (-583 |#1|))) (-15 -3450 (|#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|))) (-502)) (T -144))
+((-2227 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1298 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3450 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-4058 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-3012 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3972 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(-10 -7 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -4058 (|#1| |#1| (-583 |#1|))) (-15 -3450 (|#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1| |#1|)))
+((-1810 (($ $ (-1075)) 12) (($ $ (-997 $)) 11)) (-3544 (($ $ (-1075)) 10) (($ $ (-997 $)) 9)) (-1298 (($ $ $) 8)) (-3519 (($ $) 14) (($ $ (-1075)) 13)) (-3012 (($ $) 7)) (-3972 (($ $ $) 6)))
+(((-145) (-1187)) (T -145))
+((-3519 (*1 *1 *1) (-4 *1 (-145))) (-3519 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-145)))) (-3544 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-145)))))
+(-13 (-130) (-10 -8 (-15 -3519 ($ $)) (-15 -3519 ($ $ (-1075))) (-15 -1810 ($ $ (-1075))) (-15 -1810 ($ $ (-997 $))) (-15 -3544 ($ $ (-1075))) (-15 -3544 ($ $ (-997 $)))))
(((-130) . T))
-((-1587 (((-107) $ $) NIL)) (-1370 (($ (-517)) 13) (($ $ $) 14)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 17)) (-1534 (((-107) $ $) 9)))
-(((-146) (-13 (-1003) (-10 -8 (-15 -1370 ($ (-517))) (-15 -1370 ($ $ $))))) (T -146))
-((-1370 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-1370 (*1 *1 *1 *1) (-5 *1 (-146))))
-(-13 (-1003) (-10 -8 (-15 -1370 ($ (-517))) (-15 -1370 ($ $ $))))
-((-2283 (((-109) (-1074)) 97)))
-(((-147) (-10 -7 (-15 -2283 ((-109) (-1074))))) (T -147))
-((-2283 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-109)) (-5 *1 (-147)))))
-(-10 -7 (-15 -2283 ((-109) (-1074))))
-((-1716 ((|#3| |#3|) 19)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1716 (|#3| |#3|))) (-961) (-1131 |#1|) (-1131 |#2|)) (T -148))
-((-1716 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1131 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1131 *4)))))
-(-10 -7 (-15 -1716 (|#3| |#3|)))
-((-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 215)) (-1462 ((|#2| $) 95)) (-2725 (($ $) 242)) (-2602 (($ $) 236)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 39)) (-2705 (($ $) 240)) (-2580 (($ $) 234)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 137)) (-2532 (($ $ $) 220)) (-2749 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 153) (((-623 |#2|) (-623 $)) 147)) (-1292 (($ (-1070 |#2|)) 118) (((-3 $ "failed") (-377 (-1070 |#2|))) NIL)) (-3775 (((-3 $ "failed") $) 207)) (-3937 (((-3 (-377 (-517)) "failed") $) 197)) (-1541 (((-107) $) 192)) (-3320 (((-377 (-517)) $) 195)) (-3334 (((-843)) 88)) (-2509 (($ $ $) 222)) (-2305 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2665 (($) 231)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 184) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 189)) (-2962 ((|#2| $) 93)) (-2956 (((-1070 |#2|) $) 120)) (-1939 (($ (-1 |#2| |#2|) $) 101)) (-1875 (($ $) 233)) (-1283 (((-1070 |#2|) $) 119)) (-1639 (($ $) 200)) (-1392 (($) 96)) (-2736 (((-388 (-1070 $)) (-1070 $)) 87)) (-1673 (((-388 (-1070 $)) (-1070 $)) 56)) (-2483 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2643 (($ $) 232)) (-3196 (((-703) $) 217)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 226)) (-3383 ((|#2| (-1154 $)) NIL) ((|#2|) 90)) (-1248 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2780 (((-1070 |#2|)) 113)) (-2714 (($ $) 241)) (-2590 (($ $) 235)) (-3589 (((-1154 |#2|) $ (-1154 $)) 126) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) 109) (((-623 |#2|) (-1154 $)) NIL)) (-3667 (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) (((-1070 |#2|) $) NIL) (($ (-1070 |#2|)) NIL) (((-814 (-517)) $) 175) (((-814 (-349)) $) 179) (((-153 (-349)) $) 165) (((-153 (-199)) $) 160) (((-493) $) 171)) (-1757 (($ $) 97)) (-2254 (((-787) $) 136) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1924 (((-1070 |#2|) $) 23)) (-1217 (((-703)) 99)) (-1584 (($ $) 245)) (-2670 (($ $) 239)) (-1557 (($ $) 243)) (-2651 (($ $) 237)) (-4142 ((|#2| $) 230)) (-1570 (($ $) 244)) (-2660 (($ $) 238)) (-1724 (($ $) 155)) (-1534 (((-107) $ $) 103)) (-1558 (((-107) $ $) 191)) (-1663 (($ $) 105) (($ $ $) NIL)) (-1645 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 264) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -2254 (|#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3196 ((-703) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-153 (-199)) |#1|)) (-15 -3667 ((-153 (-349)) |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -2714 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1875 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2665 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -2305 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4142 (|#2| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1757 (|#1| |#1|)) (-15 -1392 (|#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1292 ((-3 |#1| "failed") (-377 (-1070 |#2|)))) (-15 -1283 ((-1070 |#2|) |#1|)) (-15 -3667 (|#1| (-1070 |#2|))) (-15 -1292 (|#1| (-1070 |#2|))) (-15 -2780 ((-1070 |#2|))) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 ((-1070 |#2|) |#1|)) (-15 -3383 (|#2|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -2956 ((-1070 |#2|) |#1|)) (-15 -1924 ((-1070 |#2|) |#1|)) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2962 (|#2| |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3334 ((-843))) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
-((-1217 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3334 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3383 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2780 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
-(-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -2254 (|#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3196 ((-703) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-153 (-199)) |#1|)) (-15 -3667 ((-153 (-349)) |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -2714 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1875 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2665 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -2305 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4142 (|#2| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1757 (|#1| |#1|)) (-15 -1392 (|#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1292 ((-3 |#1| "failed") (-377 (-1070 |#2|)))) (-15 -1283 ((-1070 |#2|) |#1|)) (-15 -3667 (|#1| (-1070 |#2|))) (-15 -1292 (|#1| (-1070 |#2|))) (-15 -2780 ((-1070 |#2|))) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 ((-1070 |#2|) |#1|)) (-15 -3383 (|#2|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -2956 ((-1070 |#2|) |#1|)) (-15 -1924 ((-1070 |#2|) |#1|)) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2962 (|#2| |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -3334 ((-843))) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2239 (($ $) 94 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3531 (((-107) $) 96 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1205 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1462 ((|#1| $) 52)) (-2725 (($ $) 228 (|has| |#1| (-1095)))) (-2602 (($ $) 211 (|has| |#1| (-1095)))) (-2577 (((-1083 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2377 (($ $) 113 (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2674 (((-388 $) $) 114 (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-1386 (($ $) 241 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2448 (((-107) $ $) 104 (|has| |#1| (-278)))) (-1719 (((-703)) 87 (|has| |#1| (-338)))) (-2705 (($ $) 227 (|has| |#1| (-1095)))) (-2580 (($ $) 212 (|has| |#1| (-1095)))) (-1533 (($ $) 226 (|has| |#1| (-1095)))) (-2626 (($ $) 213 (|has| |#1| (-1095)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3232 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-4047 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2532 (($ $ $) 108 (|has| |#1| (-278)))) (-2739 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-2749 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1292 (($ (-1070 |#1|)) 158) (((-3 $ "failed") (-377 (-1070 |#1|))) 155 (|has| |#1| (-333)))) (-3775 (((-3 $ "failed") $) 34)) (-1398 ((|#1| $) 253)) (-3937 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-1541 (((-107) $) 248 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3334 (((-843)) 54)) (-4100 (($) 90 (|has| |#1| (-338)))) (-2509 (($ $ $) 107 (|has| |#1| (-278)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-2170 (($) 149 (|has| |#1| (-319)))) (-3449 (((-107) $) 150 (|has| |#1| (-319)))) (-2616 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3083 (((-107) $) 115 (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2305 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-970)) (|has| |#1| (-1095))))) (-2665 (($) 238 (|has| |#1| (-1095)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 261 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 260 (|has| |#1| (-808 (-349))))) (-3730 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 240 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2962 ((|#1| $) 51)) (-3326 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-2956 (((-1070 |#1|) $) 44 (|has| |#1| (-333)))) (-4055 (($ $ $) 207 (|has| |#1| (-779)))) (-3105 (($ $ $) 206 (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) 262)) (-4034 (((-843) $) 89 (|has| |#1| (-338)))) (-1875 (($ $) 235 (|has| |#1| (-1095)))) (-1283 (((-1070 |#1|) $) 156)) (-1360 (($ (-583 $)) 100 (-3782 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 99 (-3782 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 116 (|has| |#1| (-333)))) (-3680 (($) 143 (|has| |#1| (-319)) CONST)) (-3544 (($ (-843)) 88 (|has| |#1| (-338)))) (-1392 (($) 257)) (-1410 ((|#1| $) 254)) (-3214 (((-1021) $) 10)) (-3244 (($) 160)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 101 (-3782 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1387 (($ (-583 $)) 98 (-3782 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 97 (-3782 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 146 (|has| |#1| (-319)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1673 (((-388 (-1070 $)) (-1070 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1376 (((-388 $) $) 112 (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 109 (|has| |#1| (-278)))) (-2483 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-2643 (($ $) 236 (|has| |#1| (-1095)))) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 263 (|has| |#1| (-478 (-1074) |#1|)))) (-3196 (((-703) $) 105 (|has| |#1| (-278)))) (-1437 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 106 (|has| |#1| (-278)))) (-3383 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-3459 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-1248 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1074)) (-583 (-703))) 130 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 131 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 132 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 133 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 135 (-3782 (-4032 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3782 (-4032 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4032 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-2072 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2780 (((-1070 |#1|)) 159)) (-1543 (($ $) 225 (|has| |#1| (-1095)))) (-2638 (($ $) 214 (|has| |#1| (-1095)))) (-2858 (($) 148 (|has| |#1| (-319)))) (-2735 (($ $) 224 (|has| |#1| (-1095)))) (-2614 (($ $) 215 (|has| |#1| (-1095)))) (-2714 (($ $) 223 (|has| |#1| (-1095)))) (-2590 (($ $) 216 (|has| |#1| (-1095)))) (-3589 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3667 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62) (((-1070 |#1|) $) 171) (($ (-1070 |#1|)) 157) (((-814 (-517)) $) 259 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 258 (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-937))) (((-153 (-199)) $) 209 (|has| |#1| (-937))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1757 (($ $) 256)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 145 (-3782 (-4032 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-319))))) (-3417 (($ |#1| |#1|) 255)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) 91 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2486 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3782 (-4032 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-132))))) (-1924 (((-1070 |#1|) $) 45)) (-1217 (((-703)) 29)) (-2080 (((-1154 $)) 67)) (-1584 (($ $) 234 (|has| |#1| (-1095)))) (-2670 (($ $) 222 (|has| |#1| (-1095)))) (-2673 (((-107) $ $) 95 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1557 (($ $) 233 (|has| |#1| (-1095)))) (-2651 (($ $) 221 (|has| |#1| (-1095)))) (-1614 (($ $) 232 (|has| |#1| (-1095)))) (-2688 (($ $) 220 (|has| |#1| (-1095)))) (-4142 ((|#1| $) 250 (|has| |#1| (-1095)))) (-3756 (($ $) 231 (|has| |#1| (-1095)))) (-2698 (($ $) 219 (|has| |#1| (-1095)))) (-1599 (($ $) 230 (|has| |#1| (-1095)))) (-2678 (($ $) 218 (|has| |#1| (-1095)))) (-1570 (($ $) 229 (|has| |#1| (-1095)))) (-2660 (($ $) 217 (|has| |#1| (-1095)))) (-1724 (($ $) 251 (|has| |#1| (-970)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1074)) (-583 (-703))) 126 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 127 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 128 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 129 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 134 (-3782 (-4032 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3782 (-4032 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4032 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1600 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1678 (($ $ $) 121 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))) (($ $ $) 237 (|has| |#1| (-1095))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-150 |#1|) (-1185) (-156)) (T -150))
-((-2962 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1392 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1757 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3417 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2483 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1724 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1095)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1095)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3937 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-657 |t#1| (-1070 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-806 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3417) (-15 -1392 ($)) (-15 -1757 ($ $)) (-15 -3417 ($ |t#1| |t#1|)) (-15 -1410 (|t#1| $)) (-15 -1398 (|t#1| $)) (-15 -2962 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2483 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |%noBranch|) (IF (|has| |t#1| (-6 -4182)) (-6 -4182) |%noBranch|) (IF (|has| |t#1| (-6 -4179)) (-6 -4179) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |%noBranch|) (IF (|has| |t#1| (-970)) (-15 -1724 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1095)) (PROGN (-6 (-1095)) (-15 -4142 (|t#1| $)) (IF (|has| |t#1| (-918)) (-6 (-918)) |%noBranch|) (IF (|has| |t#1| (-970)) (-15 -2305 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-831)) (IF (|has| |t#1| (-278)) (-6 (-831)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1095)) ((-91) |has| |#1| (-1095)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3782 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-937)) ((-558 (-153 (-349))) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-558 (-1070 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3782 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1095)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3782 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3782 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3782 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| (-1070 |#1|)) . T) ((-379 |#1| (-1070 |#1|)) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1095)) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3782 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| (-1070 |#1|)) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) -12 (|has| |#1| (-278)) (|has| |#1| (-831))) ((-842) -3782 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-918) -12 (|has| |#1| (-918)) (|has| |#1| (-1095))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-319)) ((-1095) |has| |#1| (-1095)) ((-1098) |has| |#1| (-1095)) ((-1109) . T) ((-1113) -3782 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))
-((-1376 (((-388 |#2|) |#2|) 63)))
-(((-151 |#1| |#2|) (-10 -7 (-15 -1376 ((-388 |#2|) |#2|))) (-278) (-1131 (-153 |#1|))) (T -151))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(-10 -7 (-15 -1376 ((-388 |#2|) |#2|)))
-((-1939 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -1939 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
-(-10 -7 (-15 -1939 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 33)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-2239 (($ $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3531 (((-107) $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1205 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) NIL)) (-1462 ((|#1| $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-1095)))) (-2602 (($ $) NIL (|has| |#1| (-1095)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2377 (($ $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2674 (((-388 $) $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-1386 (($ $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-278)))) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2705 (($ $) NIL (|has| |#1| (-1095)))) (-2580 (($ $) NIL (|has| |#1| (-1095)))) (-1533 (($ $) NIL (|has| |#1| (-1095)))) (-2626 (($ $) NIL (|has| |#1| (-1095)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-4047 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2532 (($ $ $) NIL (|has| |#1| (-278)))) (-2739 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1292 (($ (-1070 |#1|)) NIL) (((-3 $ "failed") (-377 (-1070 |#1|))) NIL (|has| |#1| (-333)))) (-3775 (((-3 $ "failed") $) NIL)) (-1398 ((|#1| $) 13)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1541 (((-107) $) NIL (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3334 (((-843)) NIL)) (-4100 (($) NIL (|has| |#1| (-338)))) (-2509 (($ $ $) NIL (|has| |#1| (-278)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-2170 (($) NIL (|has| |#1| (-319)))) (-3449 (((-107) $) NIL (|has| |#1| (-319)))) (-2616 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3083 (((-107) $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2305 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-970)) (|has| |#1| (-1095))))) (-2665 (($) NIL (|has| |#1| (-1095)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3730 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3469 (((-107) $) 35)) (-2003 (($ $ (-517)) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095))))) (-2962 ((|#1| $) 46)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2956 (((-1070 |#1|) $) NIL (|has| |#1| (-333)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-1875 (($ $) NIL (|has| |#1| (-1095)))) (-1283 (((-1070 |#1|) $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3680 (($) NIL (|has| |#1| (-319)) CONST)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-1392 (($) NIL)) (-1410 ((|#1| $) 15)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-278)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| |#1| (-319)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1376 (((-388 $) $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-278)))) (-2483 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2643 (($ $) NIL (|has| |#1| (-1095)))) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-3196 (((-703) $) NIL (|has| |#1| (-278)))) (-1437 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-278)))) (-3383 ((|#1| (-1154 $)) NIL) ((|#1|) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-1248 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2072 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2780 (((-1070 |#1|)) NIL)) (-1543 (($ $) NIL (|has| |#1| (-1095)))) (-2638 (($ $) NIL (|has| |#1| (-1095)))) (-2858 (($) NIL (|has| |#1| (-319)))) (-2735 (($ $) NIL (|has| |#1| (-1095)))) (-2614 (($ $) NIL (|has| |#1| (-1095)))) (-2714 (($ $) NIL (|has| |#1| (-1095)))) (-2590 (($ $) NIL (|has| |#1| (-1095)))) (-3589 (((-1154 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-3667 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) (((-1070 |#1|) $) NIL) (($ (-1070 |#1|)) NIL) (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-937))) (((-153 (-199)) $) NIL (|has| |#1| (-937))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1757 (($ $) 45)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-319))))) (-3417 (($ |#1| |#1|) 37)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-2486 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1924 (((-1070 |#1|) $) NIL)) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL)) (-1584 (($ $) NIL (|has| |#1| (-1095)))) (-2670 (($ $) NIL (|has| |#1| (-1095)))) (-2673 (((-107) $ $) NIL (-3782 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1557 (($ $) NIL (|has| |#1| (-1095)))) (-2651 (($ $) NIL (|has| |#1| (-1095)))) (-1614 (($ $) NIL (|has| |#1| (-1095)))) (-2688 (($ $) NIL (|has| |#1| (-1095)))) (-4142 ((|#1| $) NIL (|has| |#1| (-1095)))) (-3756 (($ $) NIL (|has| |#1| (-1095)))) (-2698 (($ $) NIL (|has| |#1| (-1095)))) (-1599 (($ $) NIL (|has| |#1| (-1095)))) (-2678 (($ $) NIL (|has| |#1| (-1095)))) (-1570 (($ $) NIL (|has| |#1| (-1095)))) (-2660 (($ $) NIL (|has| |#1| (-1095)))) (-1724 (($ $) NIL (|has| |#1| (-970)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 28 T CONST)) (-2411 (($) 30 T CONST)) (-2822 (((-1057) $) 23 (|has| |#1| (-760))) (((-1057) $ (-107)) 25 (|has| |#1| (-760))) (((-1159) (-754) $) 26 (|has| |#1| (-760))) (((-1159) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-2738 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 39)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1095)))) (($ $ $) NIL (|has| |#1| (-1095))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+((-2118 (((-107) $ $) NIL)) (-2617 (($ (-517)) 13) (($ $ $) 14)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 17)) (-1583 (((-107) $ $) 9)))
+(((-146) (-13 (-1004) (-10 -8 (-15 -2617 ($ (-517))) (-15 -2617 ($ $ $))))) (T -146))
+((-2617 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-2617 (*1 *1 *1 *1) (-5 *1 (-146))))
+(-13 (-1004) (-10 -8 (-15 -2617 ($ (-517))) (-15 -2617 ($ $ $))))
+((-3034 (((-109) (-1075)) 97)))
+(((-147) (-10 -7 (-15 -3034 ((-109) (-1075))))) (T -147))
+((-3034 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-109)) (-5 *1 (-147)))))
+(-10 -7 (-15 -3034 ((-109) (-1075))))
+((-1858 ((|#3| |#3|) 20)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1858 (|#3| |#3|))) (-962) (-1132 |#1|) (-1132 |#2|)) (T -148))
+((-1858 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1132 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1132 *4)))))
+(-10 -7 (-15 -1858 (|#3| |#3|)))
+((-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 216)) (-2008 ((|#2| $) 96)) (-1646 (($ $) 243)) (-1493 (($ $) 237)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 40)) (-1622 (($ $) 241)) (-1470 (($ $) 235)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 138)) (-2378 (($ $ $) 221)) (-2306 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 154) (((-623 |#2|) (-623 $)) 148)) (-1521 (($ (-1071 |#2|)) 119) (((-3 $ "failed") (-377 (-1071 |#2|))) NIL)) (-3163 (((-3 $ "failed") $) 208)) (-2253 (((-3 (-377 (-517)) "failed") $) 198)) (-1654 (((-107) $) 193)) (-3652 (((-377 (-517)) $) 196)) (-3736 (((-844)) 89)) (-2354 (($ $ $) 223)) (-1640 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2115 (($) 232)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 185) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 190)) (-2754 ((|#2| $) 94)) (-2456 (((-1071 |#2|) $) 121)) (-3308 (($ (-1 |#2| |#2|) $) 102)) (-1225 (($ $) 234)) (-1508 (((-1071 |#2|) $) 120)) (-2298 (($ $) 201)) (-1919 (($) 97)) (-1510 (((-388 (-1071 $)) (-1071 $)) 88)) (-4071 (((-388 (-1071 $)) (-1071 $)) 57)) (-2327 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3868 (($ $) 233)) (-4094 (((-703) $) 218)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 227)) (-4032 ((|#2| (-1156 $)) NIL) ((|#2|) 91)) (-2059 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3586 (((-1071 |#2|)) 114)) (-1632 (($ $) 242)) (-1482 (($ $) 236)) (-3369 (((-1156 |#2|) $ (-1156 $)) 127) (((-623 |#2|) (-1156 $) (-1156 $)) NIL) (((-1156 |#2|) $) 110) (((-623 |#2|) (-1156 $)) NIL)) (-3357 (((-1156 |#2|) $) NIL) (($ (-1156 |#2|)) NIL) (((-1071 |#2|) $) NIL) (($ (-1071 |#2|)) NIL) (((-815 (-517)) $) 176) (((-815 (-349)) $) 180) (((-153 (-349)) $) 166) (((-153 (-199)) $) 161) (((-493) $) 172)) (-3026 (($ $) 98)) (-2269 (((-787) $) 137) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1900 (((-1071 |#2|) $) 23)) (-2950 (((-703)) 100)) (-1721 (($ $) 246)) (-1575 (($ $) 240)) (-1695 (($ $) 244)) (-1547 (($ $) 238)) (-3418 ((|#2| $) 231)) (-1708 (($ $) 245)) (-1561 (($ $) 239)) (-2339 (($ $) 156)) (-1583 (((-107) $ $) 104)) (-1607 (((-107) $ $) 192)) (-1691 (($ $) 106) (($ $ $) NIL)) (-1677 (($ $ $) 105)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 265) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2269 (|#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -4094 ((-703) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -2378 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-153 (-199)) |#1|)) (-15 -3357 ((-153 (-349)) |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1225 (|#1| |#1|)) (-15 -3868 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2115 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -1640 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3418 (|#2| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3026 (|#1| |#1|)) (-15 -1919 (|#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1521 ((-3 |#1| "failed") (-377 (-1071 |#2|)))) (-15 -1508 ((-1071 |#2|) |#1|)) (-15 -3357 (|#1| (-1071 |#2|))) (-15 -1521 (|#1| (-1071 |#2|))) (-15 -3586 ((-1071 |#2|))) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 ((-1071 |#2|) |#1|)) (-15 -4032 (|#2|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2456 ((-1071 |#2|) |#1|)) (-15 -1900 ((-1071 |#2|) |#1|)) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -2754 (|#2| |#1|)) (-15 -2008 (|#2| |#1|)) (-15 -3736 ((-844))) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
+((-2950 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3736 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-844)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-4032 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-3586 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1071 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
+(-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2269 (|#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -4094 ((-703) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -2378 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-153 (-199)) |#1|)) (-15 -3357 ((-153 (-349)) |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1225 (|#1| |#1|)) (-15 -3868 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2115 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -1640 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3418 (|#2| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3026 (|#1| |#1|)) (-15 -1919 (|#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1521 ((-3 |#1| "failed") (-377 (-1071 |#2|)))) (-15 -1508 ((-1071 |#2|) |#1|)) (-15 -3357 (|#1| (-1071 |#2|))) (-15 -1521 (|#1| (-1071 |#2|))) (-15 -3586 ((-1071 |#2|))) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 ((-1071 |#2|) |#1|)) (-15 -4032 (|#2|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2456 ((-1071 |#2|) |#1|)) (-15 -1900 ((-1071 |#2|) |#1|)) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -2754 (|#2| |#1|)) (-15 -2008 (|#2| |#1|)) (-15 -3736 ((-844))) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 93 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2729 (($ $) 94 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2566 (((-107) $) 96 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-3861 (((-623 |#1|) (-1156 $)) 46) (((-623 |#1|)) 61)) (-2008 ((|#1| $) 52)) (-1646 (($ $) 228 (|has| |#1| (-1096)))) (-1493 (($ $) 211 (|has| |#1| (-1096)))) (-2886 (((-1084 (-844) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3088 (($ $) 113 (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1581 (((-388 $) $) 114 (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3879 (($ $) 241 (-12 (|has| |#1| (-919)) (|has| |#1| (-1096))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3998 (((-107) $ $) 104 (|has| |#1| (-278)))) (-2397 (((-703)) 87 (|has| |#1| (-338)))) (-1622 (($ $) 227 (|has| |#1| (-1096)))) (-1470 (($ $) 212 (|has| |#1| (-1096)))) (-1669 (($ $) 226 (|has| |#1| (-1096)))) (-1519 (($ $) 213 (|has| |#1| (-1096)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 169 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3388 (((-517) $) 170 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 165)) (-1953 (($ (-1156 |#1|) (-1156 $)) 48) (($ (-1156 |#1|)) 64)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2378 (($ $ $) 108 (|has| |#1| (-278)))) (-1416 (((-623 |#1|) $ (-1156 $)) 53) (((-623 |#1|) $) 59)) (-2306 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1521 (($ (-1071 |#1|)) 158) (((-3 $ "failed") (-377 (-1071 |#1|))) 155 (|has| |#1| (-333)))) (-3163 (((-3 $ "failed") $) 34)) (-3891 ((|#1| $) 253)) (-2253 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-1654 (((-107) $) 248 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3736 (((-844)) 54)) (-2200 (($) 90 (|has| |#1| (-338)))) (-2354 (($ $ $) 107 (|has| |#1| (-278)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-1672 (($) 149 (|has| |#1| (-319)))) (-3454 (((-107) $) 150 (|has| |#1| (-319)))) (-2464 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2963 (((-107) $) 115 (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1640 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-971)) (|has| |#1| (-1096))))) (-2115 (($) 238 (|has| |#1| (-1096)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 261 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 260 (|has| |#1| (-809 (-349))))) (-2053 (((-844) $) 152 (|has| |#1| (-319))) (((-765 (-844)) $) 138 (|has| |#1| (-319)))) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 240 (-12 (|has| |#1| (-919)) (|has| |#1| (-1096))))) (-2754 ((|#1| $) 51)) (-3572 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-2456 (((-1071 |#1|) $) 44 (|has| |#1| (-333)))) (-3456 (($ $ $) 207 (|has| |#1| (-779)))) (-4082 (($ $ $) 206 (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) 262)) (-2031 (((-844) $) 89 (|has| |#1| (-338)))) (-1225 (($ $) 235 (|has| |#1| (-1096)))) (-1508 (((-1071 |#1|) $) 156)) (-2330 (($ (-583 $)) 100 (-3745 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (($ $ $) 99 (-3745 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 116 (|has| |#1| (-333)))) (-2585 (($) 143 (|has| |#1| (-319)) CONST)) (-2810 (($ (-844)) 88 (|has| |#1| (-338)))) (-1919 (($) 257)) (-3904 ((|#1| $) 254)) (-4123 (((-1022) $) 10)) (-1317 (($) 160)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 101 (-3745 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2368 (($ (-583 $)) 98 (-3745 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (($ $ $) 97 (-3745 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 146 (|has| |#1| (-319)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-4071 (((-388 (-1071 $)) (-1071 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3866 (((-388 $) $) 112 (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 109 (|has| |#1| (-278)))) (-2327 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-3868 (($ $) 236 (|has| |#1| (-1096)))) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) 263 (|has| |#1| (-478 (-1075) |#1|)))) (-4094 (((-703) $) 105 (|has| |#1| (-278)))) (-2607 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 106 (|has| |#1| (-278)))) (-4032 ((|#1| (-1156 $)) 47) ((|#1|) 60)) (-1496 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2059 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1075)) (-583 (-703))) 130 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 131 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 132 (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) 133 (|has| |#1| (-823 (-1075)))) (($ $ (-703)) 135 (-3745 (-3992 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3745 (-3992 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3992 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-2678 (((-623 |#1|) (-1156 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-3586 (((-1071 |#1|)) 159)) (-1682 (($ $) 225 (|has| |#1| (-1096)))) (-1532 (($ $) 214 (|has| |#1| (-1096)))) (-3958 (($) 148 (|has| |#1| (-319)))) (-1656 (($ $) 224 (|has| |#1| (-1096)))) (-1506 (($ $) 215 (|has| |#1| (-1096)))) (-1632 (($ $) 223 (|has| |#1| (-1096)))) (-1482 (($ $) 216 (|has| |#1| (-1096)))) (-3369 (((-1156 |#1|) $ (-1156 $)) 50) (((-623 |#1|) (-1156 $) (-1156 $)) 49) (((-1156 |#1|) $) 66) (((-623 |#1|) (-1156 $)) 65)) (-3357 (((-1156 |#1|) $) 63) (($ (-1156 |#1|)) 62) (((-1071 |#1|) $) 171) (($ (-1071 |#1|)) 157) (((-815 (-517)) $) 259 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 258 (|has| |#1| (-558 (-815 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-938))) (((-153 (-199)) $) 209 (|has| |#1| (-938))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-3026 (($ $) 256)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 145 (-3745 (-3992 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (|has| |#1| (-319))))) (-3887 (($ |#1| |#1|) 255)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517)))))) (($ $) 91 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-2650 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3745 (-3992 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))) (|has| |#1| (-132))))) (-1900 (((-1071 |#1|) $) 45)) (-2950 (((-703)) 29)) (-2062 (((-1156 $)) 67)) (-1721 (($ $) 234 (|has| |#1| (-1096)))) (-1575 (($ $) 222 (|has| |#1| (-1096)))) (-2914 (((-107) $ $) 95 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))) (-1695 (($ $) 233 (|has| |#1| (-1096)))) (-1547 (($ $) 221 (|has| |#1| (-1096)))) (-3487 (($ $) 232 (|has| |#1| (-1096)))) (-1599 (($ $) 220 (|has| |#1| (-1096)))) (-3418 ((|#1| $) 250 (|has| |#1| (-1096)))) (-2822 (($ $) 231 (|has| |#1| (-1096)))) (-1612 (($ $) 219 (|has| |#1| (-1096)))) (-1735 (($ $) 230 (|has| |#1| (-1096)))) (-1588 (($ $) 218 (|has| |#1| (-1096)))) (-1708 (($ $) 229 (|has| |#1| (-1096)))) (-1561 (($ $) 217 (|has| |#1| (-1096)))) (-2339 (($ $) 251 (|has| |#1| (-971)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1075)) (-583 (-703))) 126 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 127 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 128 (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) 129 (|has| |#1| (-823 (-1075)))) (($ $ (-703)) 134 (-3745 (-3992 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3745 (-3992 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-3992 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1641 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1703 (($ $ $) 121 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-919)) (|has| |#1| (-1096)))) (($ $ $) 237 (|has| |#1| (-1096))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-150 |#1|) (-1187) (-156)) (T -150))
+((-2754 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1919 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3887 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2327 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2339 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-971)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1096)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-971)) (-4 *3 (-1096)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2253 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-657 |t#1| (-1071 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-807 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3887) (-15 -1919 ($)) (-15 -3026 ($ $)) (-15 -3887 ($ |t#1| |t#1|)) (-15 -3904 (|t#1| $)) (-15 -3891 (|t#1| $)) (-15 -2754 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2327 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |%noBranch|) (IF (|has| |t#1| (-6 -4189)) (-6 -4189) |%noBranch|) (IF (|has| |t#1| (-6 -4186)) (-6 -4186) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-938)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |%noBranch|) (IF (|has| |t#1| (-971)) (-15 -2339 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1096)) (PROGN (-6 (-1096)) (-15 -3418 (|t#1| $)) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|) (IF (|has| |t#1| (-971)) (-15 -1640 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-832)) (IF (|has| |t#1| (-278)) (-6 (-832)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1096)) ((-91) |has| |#1| (-1096)) ((-97) . T) ((-106 #0# #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3745 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-938)) ((-558 (-153 (-349))) |has| |#1| (-938)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-558 #1=(-1071 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3745 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1096)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3745 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3745 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3745 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| #1#) . T) ((-379 |#1| #1#) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1096)) ((-478 (-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3745 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| #1#) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-832) -12 (|has| |#1| (-278)) (|has| |#1| (-832))) ((-843) -3745 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-919) -12 (|has| |#1| (-919)) (|has| |#1| (-1096))) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-968 |#1|) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| |#1| (-319)) ((-1096) |has| |#1| (-1096)) ((-1099) |has| |#1| (-1096)) ((-1110) . T) ((-1114) -3745 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-832)))))
+((-3866 (((-388 |#2|) |#2|) 63)))
+(((-151 |#1| |#2|) (-10 -7 (-15 -3866 ((-388 |#2|) |#2|))) (-278) (-1132 (-153 |#1|))) (T -151))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(-10 -7 (-15 -3866 ((-388 |#2|) |#2|)))
+((-3308 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -3308 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
+(-10 -7 (-15 -3308 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 33)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-2729 (($ $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-2566 (((-107) $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-3861 (((-623 |#1|) (-1156 $)) NIL) (((-623 |#1|)) NIL)) (-2008 ((|#1| $) NIL)) (-1646 (($ $) NIL (|has| |#1| (-1096)))) (-1493 (($ $) NIL (|has| |#1| (-1096)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3088 (($ $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1581 (((-388 $) $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-3879 (($ $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1096))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-278)))) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1622 (($ $) NIL (|has| |#1| (-1096)))) (-1470 (($ $) NIL (|has| |#1| (-1096)))) (-1669 (($ $) NIL (|has| |#1| (-1096)))) (-1519 (($ $) NIL (|has| |#1| (-1096)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-1953 (($ (-1156 |#1|) (-1156 $)) NIL) (($ (-1156 |#1|)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2378 (($ $ $) NIL (|has| |#1| (-278)))) (-1416 (((-623 |#1|) $ (-1156 $)) NIL) (((-623 |#1|) $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1521 (($ (-1071 |#1|)) NIL) (((-3 $ "failed") (-377 (-1071 |#1|))) NIL (|has| |#1| (-333)))) (-3163 (((-3 $ "failed") $) NIL)) (-3891 ((|#1| $) 13)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1654 (((-107) $) NIL (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3736 (((-844)) NIL)) (-2200 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-278)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-1672 (($) NIL (|has| |#1| (-319)))) (-3454 (((-107) $) NIL (|has| |#1| (-319)))) (-2464 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2963 (((-107) $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1640 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1096))))) (-2115 (($) NIL (|has| |#1| (-1096)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#1| (-809 (-349))))) (-2053 (((-844) $) NIL (|has| |#1| (-319))) (((-765 (-844)) $) NIL (|has| |#1| (-319)))) (-1865 (((-107) $) 35)) (-1484 (($ $ (-517)) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1096))))) (-2754 ((|#1| $) 46)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2456 (((-1071 |#1|) $) NIL (|has| |#1| (-333)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-1225 (($ $) NIL (|has| |#1| (-1096)))) (-1508 (((-1071 |#1|) $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-2585 (($) NIL (|has| |#1| (-319)) CONST)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-1919 (($) NIL)) (-3904 ((|#1| $) 15)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-278)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| |#1| (-319)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-832))))) (-3866 (((-388 $) $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-333))))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-278)))) (-2327 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3868 (($ $) NIL (|has| |#1| (-1096)))) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-478 (-1075) |#1|)))) (-4094 (((-703) $) NIL (|has| |#1| (-278)))) (-2607 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-278)))) (-4032 ((|#1| (-1156 $)) NIL) ((|#1|) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2059 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2678 (((-623 |#1|) (-1156 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3586 (((-1071 |#1|)) NIL)) (-1682 (($ $) NIL (|has| |#1| (-1096)))) (-1532 (($ $) NIL (|has| |#1| (-1096)))) (-3958 (($) NIL (|has| |#1| (-319)))) (-1656 (($ $) NIL (|has| |#1| (-1096)))) (-1506 (($ $) NIL (|has| |#1| (-1096)))) (-1632 (($ $) NIL (|has| |#1| (-1096)))) (-1482 (($ $) NIL (|has| |#1| (-1096)))) (-3369 (((-1156 |#1|) $ (-1156 $)) NIL) (((-623 |#1|) (-1156 $) (-1156 $)) NIL) (((-1156 |#1|) $) NIL) (((-623 |#1|) (-1156 $)) NIL)) (-3357 (((-1156 |#1|) $) NIL) (($ (-1156 |#1|)) NIL) (((-1071 |#1|) $) NIL) (($ (-1071 |#1|)) NIL) (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-938))) (((-153 (-199)) $) NIL (|has| |#1| (-938))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-3026 (($ $) 45)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-319))))) (-3887 (($ |#1| |#1|) 37)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-2650 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-1900 (((-1071 |#1|) $) NIL)) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL)) (-1721 (($ $) NIL (|has| |#1| (-1096)))) (-1575 (($ $) NIL (|has| |#1| (-1096)))) (-2914 (((-107) $ $) NIL (-3745 (-12 (|has| |#1| (-278)) (|has| |#1| (-832))) (|has| |#1| (-509))))) (-1695 (($ $) NIL (|has| |#1| (-1096)))) (-1547 (($ $) NIL (|has| |#1| (-1096)))) (-3487 (($ $) NIL (|has| |#1| (-1096)))) (-1599 (($ $) NIL (|has| |#1| (-1096)))) (-3418 ((|#1| $) NIL (|has| |#1| (-1096)))) (-2822 (($ $) NIL (|has| |#1| (-1096)))) (-1612 (($ $) NIL (|has| |#1| (-1096)))) (-1735 (($ $) NIL (|has| |#1| (-1096)))) (-1588 (($ $) NIL (|has| |#1| (-1096)))) (-1708 (($ $) NIL (|has| |#1| (-1096)))) (-1561 (($ $) NIL (|has| |#1| (-1096)))) (-2339 (($ $) NIL (|has| |#1| (-971)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 28 T CONST)) (-3617 (($) 30 T CONST)) (-1964 (((-1058) $) 23 (|has| |#1| (-760))) (((-1058) $ (-107)) 25 (|has| |#1| (-760))) (((-1161) (-754) $) 26 (|has| |#1| (-760))) (((-1161) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-3340 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 39)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-1096)))) (($ $ $) NIL (|has| |#1| (-1096))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-156)) (T -153))
NIL
(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
-((-3667 (((-814 |#1|) |#3|) 22)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3667 ((-814 |#1|) |#3|))) (-1003) (-13 (-558 (-814 |#1|)) (-156)) (-150 |#2|)) (T -154))
-((-3667 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))))
-(-10 -7 (-15 -3667 ((-814 |#1|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-1297 (((-107) $) 9)) (-2647 (((-107) $ (-107)) 11)) (-3475 (($) 12)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2435 (($ $) 13)) (-2254 (((-787) $) 17)) (-2496 (((-107) $) 8)) (-1219 (((-107) $ (-107)) 10)) (-1534 (((-107) $ $) NIL)))
-(((-155) (-13 (-1003) (-10 -8 (-15 -3475 ($)) (-15 -2496 ((-107) $)) (-15 -1297 ((-107) $)) (-15 -1219 ((-107) $ (-107))) (-15 -2647 ((-107) $ (-107))) (-15 -2435 ($ $))))) (T -155))
-((-3475 (*1 *1) (-5 *1 (-155))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1219 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2647 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2435 (*1 *1 *1) (-5 *1 (-155))))
-(-13 (-1003) (-10 -8 (-15 -3475 ($)) (-15 -2496 ((-107) $)) (-15 -1297 ((-107) $)) (-15 -1219 ((-107) $ (-107))) (-15 -2647 ((-107) $ (-107))) (-15 -2435 ($ $))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-156) (-1185)) (T -156))
-NIL
-(-13 (-961) (-106 $ $) (-10 -7 (-6 (-4185 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 ((|#1| $) 74)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL)) (-2171 (($ $) 19)) (-3436 (($ |#1| (-1055 |#1|)) 47)) (-3775 (((-3 $ "failed") $) 116)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-1990 (((-1055 |#1|) $) 81)) (-1566 (((-1055 |#1|) $) 78)) (-3237 (((-1055 |#1|) $) 79)) (-3469 (((-107) $) NIL)) (-2505 (((-1055 |#1|) $) 87)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1360 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2204 (($ $ (-517)) 90)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1745 (((-1055 |#1|) $) 88)) (-3632 (((-1055 (-377 |#1|)) $) 13)) (-2552 (($ (-377 |#1|)) 17) (($ |#1| (-1055 |#1|) (-1055 |#1|)) 37)) (-1486 (($ $) 92)) (-2254 (((-787) $) 126) (($ (-517)) 50) (($ |#1|) 51) (($ (-377 |#1|)) 35) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1217 (((-703)) 63)) (-2673 (((-107) $ $) NIL)) (-3529 (((-1055 (-377 |#1|)) $) 18)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 25 T CONST)) (-2411 (($) 28 T CONST)) (-1534 (((-107) $ $) 34)) (-1678 (($ $ $) 114)) (-1663 (($ $) 105) (($ $ $) 102)) (-1645 (($ $ $) 100)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-377 |#1|) $) 110) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
-(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2552 ($ (-377 |#1|))) (-15 -2552 ($ |#1| (-1055 |#1|) (-1055 |#1|))) (-15 -3436 ($ |#1| (-1055 |#1|))) (-15 -1566 ((-1055 |#1|) $)) (-15 -3237 ((-1055 |#1|) $)) (-15 -1990 ((-1055 |#1|) $)) (-15 -2065 (|#1| $)) (-15 -2171 ($ $)) (-15 -3529 ((-1055 (-377 |#1|)) $)) (-15 -3632 ((-1055 (-377 |#1|)) $)) (-15 -2505 ((-1055 |#1|) $)) (-15 -1745 ((-1055 |#1|) $)) (-15 -2204 ($ $ (-517))) (-15 -1486 ($ $)))) (-278)) (T -157))
-((-2552 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-2552 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3436 (*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2065 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1486 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2552 ($ (-377 |#1|))) (-15 -2552 ($ |#1| (-1055 |#1|) (-1055 |#1|))) (-15 -3436 ($ |#1| (-1055 |#1|))) (-15 -1566 ((-1055 |#1|) $)) (-15 -3237 ((-1055 |#1|) $)) (-15 -1990 ((-1055 |#1|) $)) (-15 -2065 (|#1| $)) (-15 -2171 ($ $)) (-15 -3529 ((-1055 (-377 |#1|)) $)) (-15 -3632 ((-1055 (-377 |#1|)) $)) (-15 -2505 ((-1055 |#1|) $)) (-15 -1745 ((-1055 |#1|) $)) (-15 -2204 ($ $ (-517))) (-15 -1486 ($ $))))
-((-2005 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 40)) (-2188 (((-865 |#1|) (-865 |#1|)) 19)) (-1699 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 36)) (-2312 (((-865 |#1|) (-865 |#1|)) 17)) (-3939 (((-865 |#1|) (-865 |#1|)) 25)) (-3815 (((-865 |#1|) (-865 |#1|)) 24)) (-1688 (((-865 |#1|) (-865 |#1|)) 23)) (-3220 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 37)) (-2748 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 35)) (-1476 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 34)) (-1312 (((-865 |#1|) (-865 |#1|)) 18)) (-2177 (((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|) 43)) (-3489 (((-865 |#1|) (-865 |#1|)) 8)) (-3708 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 39)) (-2637 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 38)))
-(((-158 |#1|) (-10 -7 (-15 -3489 ((-865 |#1|) (-865 |#1|))) (-15 -2312 ((-865 |#1|) (-865 |#1|))) (-15 -1312 ((-865 |#1|) (-865 |#1|))) (-15 -2188 ((-865 |#1|) (-865 |#1|))) (-15 -1688 ((-865 |#1|) (-865 |#1|))) (-15 -3815 ((-865 |#1|) (-865 |#1|))) (-15 -3939 ((-865 |#1|) (-865 |#1|))) (-15 -1476 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2748 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1699 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3220 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2637 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3708 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2005 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2177 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) (-13 (-333) (-1095) (-918))) (T -158))
-((-2177 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-2005 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-2637 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-3220 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-1699 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-3815 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-1312 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(-10 -7 (-15 -3489 ((-865 |#1|) (-865 |#1|))) (-15 -2312 ((-865 |#1|) (-865 |#1|))) (-15 -1312 ((-865 |#1|) (-865 |#1|))) (-15 -2188 ((-865 |#1|) (-865 |#1|))) (-15 -1688 ((-865 |#1|) (-865 |#1|))) (-15 -3815 ((-865 |#1|) (-865 |#1|))) (-15 -3939 ((-865 |#1|) (-865 |#1|))) (-15 -1476 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2748 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1699 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3220 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2637 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3708 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2005 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2177 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|)))
-((-1924 ((|#2| |#3|) 27)))
-(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -1924 (|#2| |#3|))) (-156) (-1131 |#1|) (-657 |#1| |#2|)) (T -159))
-((-1924 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1131 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
-(-10 -7 (-15 -1924 (|#2| |#3|)))
-((-3975 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 47 (|has| (-874 |#2|) (-808 |#1|)))))
-(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |%noBranch|)) (-1003) (-13 (-808 |#1|) (-156)) (-150 |#2|)) (T -160))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |%noBranch|))
-((-3940 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-2278 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-3354 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
-(((-161 |#1|) (-10 -7 (-15 -2278 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3354 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3354 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -3940 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
-((-3940 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-3354 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-2278 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(-10 -7 (-15 -2278 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3354 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3354 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -3940 ((-583 |#1|) (-583 |#1|) |#1|)))
-((-2818 (((-2 (|:| |start| |#2|) (|:| -1343 (-388 |#2|))) |#2|) 61)) (-2762 ((|#1| |#1|) 54)) (-1791 (((-153 |#1|) |#2|) 82)) (-3955 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-4062 ((|#2| |#2|) 81)) (-2707 (((-388 |#2|) |#2| |#1|) 112) (((-388 |#2|) |#2| |#1| (-107)) 79)) (-2962 ((|#1| |#2|) 111)) (-2127 ((|#2| |#2|) 118)) (-1376 (((-388 |#2|) |#2|) 133) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 132)) (-2570 (((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2|) 131) (((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2| (-107)) 75)) (-2989 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -2989 ((-583 (-153 |#1|)) |#2|)) (-15 -2989 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -2570 ((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2| (-107))) (-15 -2570 ((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2|)) (-15 -1376 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1376 ((-388 |#2|) |#2| |#1|)) (-15 -1376 ((-388 |#2|) |#2|)) (-15 -2127 (|#2| |#2|)) (-15 -2962 (|#1| |#2|)) (-15 -2707 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2707 ((-388 |#2|) |#2| |#1|)) (-15 -4062 (|#2| |#2|)) (-15 -3955 (|#1| |#2| |#1|)) (-15 -3955 (|#1| |#2|)) (-15 -1791 ((-153 |#1|) |#2|)) (-15 -2762 (|#1| |#1|)) (-15 -2818 ((-2 (|:| |start| |#2|) (|:| -1343 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1131 (-153 |#1|))) (T -162))
-((-2818 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -1343 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2762 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-1791 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1131 *2)))) (-3955 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-3955 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))) (-2707 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2962 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-1376 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-1376 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2570 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1343 (-583 *3)) (|:| -2099 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2570 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1343 (-583 *3)) (|:| -2099 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1131 (-153 *5))))) (-2989 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(-10 -7 (-15 -2989 ((-583 (-153 |#1|)) |#2|)) (-15 -2989 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -2570 ((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2| (-107))) (-15 -2570 ((-583 (-2 (|:| -1343 (-583 |#2|)) (|:| -2099 |#1|))) |#2| |#2|)) (-15 -1376 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1376 ((-388 |#2|) |#2| |#1|)) (-15 -1376 ((-388 |#2|) |#2|)) (-15 -2127 (|#2| |#2|)) (-15 -2962 (|#1| |#2|)) (-15 -2707 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2707 ((-388 |#2|) |#2| |#1|)) (-15 -4062 (|#2| |#2|)) (-15 -3955 (|#1| |#2| |#1|)) (-15 -3955 (|#1| |#2|)) (-15 -1791 ((-153 |#1|) |#2|)) (-15 -2762 (|#1| |#1|)) (-15 -2818 ((-2 (|:| |start| |#2|) (|:| -1343 (-388 |#2|))) |#2|)))
-((-2363 (((-3 |#2| "failed") |#2|) 14)) (-2564 (((-703) |#2|) 16)) (-3075 ((|#2| |#2| |#2|) 18)))
-(((-163 |#1| |#2|) (-10 -7 (-15 -2363 ((-3 |#2| "failed") |#2|)) (-15 -2564 ((-703) |#2|)) (-15 -3075 (|#2| |#2| |#2|))) (-1109) (-610 |#1|)) (T -163))
-((-3075 (*1 *2 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-2564 (*1 *2 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-2363 (*1 *2 *2) (|partial| -12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(-10 -7 (-15 -2363 ((-3 |#2| "failed") |#2|)) (-15 -2564 ((-703) |#2|)) (-15 -3075 (|#2| |#2| |#2|)))
-((-3549 ((|#2| |#2|) 28)) (-1544 (((-107) |#2|) 19)) (-1398 (((-286 |#1|) |#2|) 12)) (-1410 (((-286 |#1|) |#2|) 14)) (-2967 ((|#2| |#2| (-1074)) 68) ((|#2| |#2|) 69)) (-1330 (((-153 (-286 |#1|)) |#2|) 9)) (-3801 ((|#2| |#2| (-1074)) 65) ((|#2| |#2|) 58)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -2967 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-1074))) (-15 -3801 (|#2| |#2|)) (-15 -3801 (|#2| |#2| (-1074))) (-15 -1398 ((-286 |#1|) |#2|)) (-15 -1410 ((-286 |#1|) |#2|)) (-15 -1544 ((-107) |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -1330 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-952 (-517))) (-13 (-27) (-1095) (-400 (-153 |#1|)))) (T -164))
-((-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-1398 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3801 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) (-2967 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))))
-(-10 -7 (-15 -2967 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-1074))) (-15 -3801 (|#2| |#2|)) (-15 -3801 (|#2| |#2| (-1074))) (-15 -1398 ((-286 |#1|) |#2|)) (-15 -1410 ((-286 |#1|) |#2|)) (-15 -1544 ((-107) |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -1330 ((-153 (-286 |#1|)) |#2|)))
-((-3854 (((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|))) 22)) (-2254 (((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|))) 30)))
-(((-165 |#1|) (-10 -7 (-15 -3854 ((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|)))) (-15 -2254 ((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|))))) (-156)) (T -165))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
-(-10 -7 (-15 -3854 ((-1154 (-623 (-874 |#1|))) (-1154 (-623 |#1|)))) (-15 -2254 ((-1154 (-623 (-377 (-874 |#1|)))) (-1154 (-623 |#1|)))))
-((-3943 (((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 66)) (-3052 (((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-2436 (((-1076 (-377 (-517))) (-517)) 40)) (-2895 (((-1076 (-377 (-517))) (-517)) 52)) (-2049 (((-377 (-517)) (-1076 (-377 (-517)))) 62)) (-1427 (((-1076 (-377 (-517))) (-517)) 32)) (-4025 (((-1076 (-377 (-517))) (-517)) 48)) (-2716 (((-1076 (-377 (-517))) (-517)) 46)) (-3040 (((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 60)) (-1486 (((-1076 (-377 (-517))) (-517)) 25)) (-2717 (((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517)))) 64)) (-2387 (((-1076 (-377 (-517))) (-517)) 30)) (-2006 (((-1076 (-377 (-517))) (-583 (-517))) 71)))
-(((-166) (-10 -7 (-15 -1486 ((-1076 (-377 (-517))) (-517))) (-15 -2436 ((-1076 (-377 (-517))) (-517))) (-15 -1427 ((-1076 (-377 (-517))) (-517))) (-15 -2387 ((-1076 (-377 (-517))) (-517))) (-15 -2716 ((-1076 (-377 (-517))) (-517))) (-15 -4025 ((-1076 (-377 (-517))) (-517))) (-15 -2895 ((-1076 (-377 (-517))) (-517))) (-15 -2717 ((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3040 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -2049 ((-377 (-517)) (-1076 (-377 (-517))))) (-15 -3943 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -2006 ((-1076 (-377 (-517))) (-583 (-517)))) (-15 -3052 ((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
-((-3052 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3040 (*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-2895 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-4025 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2716 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2436 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1486 (*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1486 ((-1076 (-377 (-517))) (-517))) (-15 -2436 ((-1076 (-377 (-517))) (-517))) (-15 -1427 ((-1076 (-377 (-517))) (-517))) (-15 -2387 ((-1076 (-377 (-517))) (-517))) (-15 -2716 ((-1076 (-377 (-517))) (-517))) (-15 -4025 ((-1076 (-377 (-517))) (-517))) (-15 -2895 ((-1076 (-377 (-517))) (-517))) (-15 -2717 ((-377 (-517)) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -3040 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -2049 ((-377 (-517)) (-1076 (-377 (-517))))) (-15 -3943 ((-1076 (-377 (-517))) (-1076 (-377 (-517))) (-1076 (-377 (-517))))) (-15 -2006 ((-1076 (-377 (-517))) (-583 (-517)))) (-15 -3052 ((-1076 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
-((-2297 (((-388 (-1070 (-517))) (-517)) 28)) (-1807 (((-583 (-1070 (-517))) (-517)) 23)) (-2964 (((-1070 (-517)) (-517)) 21)))
-(((-167) (-10 -7 (-15 -1807 ((-583 (-1070 (-517))) (-517))) (-15 -2964 ((-1070 (-517)) (-517))) (-15 -2297 ((-388 (-1070 (-517))) (-517))))) (T -167))
-((-2297 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2964 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-1807 (*1 *2 *3) (-12 (-5 *2 (-583 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(-10 -7 (-15 -1807 ((-583 (-1070 (-517))) (-517))) (-15 -2964 ((-1070 (-517)) (-517))) (-15 -2297 ((-388 (-1070 (-517))) (-517))))
-((-1365 (((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2367 (((-583 (-1057)) (-1055 (-199))) NIL)) (-1899 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-3530 (((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199)))) NIL)) (-3117 (((-583 (-1057)) (-583 (-199))) NIL)) (-2853 (((-199) (-998 (-772 (-199)))) 22)) (-2331 (((-199) (-998 (-772 (-199)))) 23)) (-1395 (((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-2923 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3746 (((-1057) (-199)) NIL)) (-1769 (((-1057) (-583 (-1057))) 19)) (-1986 (((-950) (-1074) (-1074) (-950)) 12)))
-(((-168) (-10 -7 (-15 -1899 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2923 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -1395 ((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3530 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))) (-15 -1769 ((-1057) (-583 (-1057)))) (-15 -1986 ((-950) (-1074) (-1074) (-950))))) (T -168))
-((-1986 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-168)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-168)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-168)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-168)))) (-3530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(-10 -7 (-15 -1899 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2923 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -1395 ((-349) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3530 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))) (-15 -1769 ((-1057) (-583 (-1057)))) (-15 -1986 ((-950) (-1074) (-1074) (-950))))
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 53) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-3357 (((-815 |#1|) |#3|) 22)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3357 ((-815 |#1|) |#3|))) (-1004) (-13 (-558 (-815 |#1|)) (-156)) (-150 |#2|)) (T -154))
+((-3357 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-815 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1004)) (-4 *3 (-150 *5)))))
+(-10 -7 (-15 -3357 ((-815 |#1|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-3290 (((-107) $) 9)) (-1815 (((-107) $ (-107)) 11)) (-3211 (($) 12)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2460 (($ $) 13)) (-2269 (((-787) $) 17)) (-1487 (((-107) $) 8)) (-1723 (((-107) $ (-107)) 10)) (-1583 (((-107) $ $) NIL)))
+(((-155) (-13 (-1004) (-10 -8 (-15 -3211 ($)) (-15 -1487 ((-107) $)) (-15 -3290 ((-107) $)) (-15 -1723 ((-107) $ (-107))) (-15 -1815 ((-107) $ (-107))) (-15 -2460 ($ $))))) (T -155))
+((-3211 (*1 *1) (-5 *1 (-155))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1723 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1815 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2460 (*1 *1 *1) (-5 *1 (-155))))
+(-13 (-1004) (-10 -8 (-15 -3211 ($)) (-15 -1487 ((-107) $)) (-15 -3290 ((-107) $)) (-15 -1723 ((-107) $ (-107))) (-15 -1815 ((-107) $ (-107))) (-15 -2460 ($ $))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-156) (-1187)) (T -156))
+NIL
+(-13 (-962) (-106 $ $) (-10 -7 (-6 (-4192 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 ((|#1| $) 75)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL)) (-3299 (($ $) 19)) (-3181 (($ |#1| (-1056 |#1|)) 48)) (-3163 (((-3 $ "failed") $) 117)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-1435 (((-1056 |#1|) $) 82)) (-3253 (((-1056 |#1|) $) 79)) (-2211 (((-1056 |#1|) $) 80)) (-1865 (((-107) $) NIL)) (-3963 (((-1056 |#1|) $) 88)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2330 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2640 (($ $ (-517)) 91)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3225 (((-1056 |#1|) $) 89)) (-3164 (((-1056 (-377 |#1|)) $) 13)) (-3089 (($ (-377 |#1|)) 17) (($ |#1| (-1056 |#1|) (-1056 |#1|)) 38)) (-3478 (($ $) 93)) (-2269 (((-787) $) 127) (($ (-517)) 51) (($ |#1|) 52) (($ (-377 |#1|)) 36) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2950 (((-703)) 64)) (-2914 (((-107) $ $) NIL)) (-1534 (((-1056 (-377 |#1|)) $) 18)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 25 T CONST)) (-3617 (($) 28 T CONST)) (-1583 (((-107) $ $) 35)) (-1703 (($ $ $) 115)) (-1691 (($ $) 106) (($ $ $) 103)) (-1677 (($ $ $) 101)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-377 |#1|) $) 111) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -3089 ($ (-377 |#1|))) (-15 -3089 ($ |#1| (-1056 |#1|) (-1056 |#1|))) (-15 -3181 ($ |#1| (-1056 |#1|))) (-15 -3253 ((-1056 |#1|) $)) (-15 -2211 ((-1056 |#1|) $)) (-15 -1435 ((-1056 |#1|) $)) (-15 -3297 (|#1| $)) (-15 -3299 ($ $)) (-15 -1534 ((-1056 (-377 |#1|)) $)) (-15 -3164 ((-1056 (-377 |#1|)) $)) (-15 -3963 ((-1056 |#1|) $)) (-15 -3225 ((-1056 |#1|) $)) (-15 -2640 ($ $ (-517))) (-15 -3478 ($ $)))) (-278)) (T -157))
+((-3089 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-3089 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3297 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3299 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-1056 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-1056 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2640 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3478 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -3089 ($ (-377 |#1|))) (-15 -3089 ($ |#1| (-1056 |#1|) (-1056 |#1|))) (-15 -3181 ($ |#1| (-1056 |#1|))) (-15 -3253 ((-1056 |#1|) $)) (-15 -2211 ((-1056 |#1|) $)) (-15 -1435 ((-1056 |#1|) $)) (-15 -3297 (|#1| $)) (-15 -3299 ($ $)) (-15 -1534 ((-1056 (-377 |#1|)) $)) (-15 -3164 ((-1056 (-377 |#1|)) $)) (-15 -3963 ((-1056 |#1|) $)) (-15 -3225 ((-1056 |#1|) $)) (-15 -2640 ($ $ (-517))) (-15 -3478 ($ $))))
+((-3436 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 40)) (-3957 (((-866 |#1|) (-866 |#1|)) 19)) (-2372 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 36)) (-3107 (((-866 |#1|) (-866 |#1|)) 17)) (-2596 (((-866 |#1|) (-866 |#1|)) 25)) (-1592 (((-866 |#1|) (-866 |#1|)) 24)) (-2409 (((-866 |#1|) (-866 |#1|)) 23)) (-2030 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 37)) (-4041 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 35)) (-3602 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 34)) (-3261 (((-866 |#1|) (-866 |#1|)) 18)) (-3850 (((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|) 43)) (-3573 (((-866 |#1|) (-866 |#1|)) 8)) (-3732 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 39)) (-2218 (((-1 (-866 |#1|) (-866 |#1|)) |#1|) 38)))
+(((-158 |#1|) (-10 -7 (-15 -3573 ((-866 |#1|) (-866 |#1|))) (-15 -3107 ((-866 |#1|) (-866 |#1|))) (-15 -3261 ((-866 |#1|) (-866 |#1|))) (-15 -3957 ((-866 |#1|) (-866 |#1|))) (-15 -2409 ((-866 |#1|) (-866 |#1|))) (-15 -1592 ((-866 |#1|) (-866 |#1|))) (-15 -2596 ((-866 |#1|) (-866 |#1|))) (-15 -3602 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -4041 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2372 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2030 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2218 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3732 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3436 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3850 ((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|))) (-13 (-333) (-1096) (-919))) (T -158))
+((-3850 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-3436 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-2218 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-2030 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-2372 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-4041 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-3602 (*1 *2 *3) (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1096) (-919))))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919))) (-5 *1 (-158 *3)))))
+(-10 -7 (-15 -3573 ((-866 |#1|) (-866 |#1|))) (-15 -3107 ((-866 |#1|) (-866 |#1|))) (-15 -3261 ((-866 |#1|) (-866 |#1|))) (-15 -3957 ((-866 |#1|) (-866 |#1|))) (-15 -2409 ((-866 |#1|) (-866 |#1|))) (-15 -1592 ((-866 |#1|) (-866 |#1|))) (-15 -2596 ((-866 |#1|) (-866 |#1|))) (-15 -3602 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -4041 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2372 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2030 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -2218 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3732 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3436 ((-1 (-866 |#1|) (-866 |#1|)) |#1|)) (-15 -3850 ((-1 (-866 |#1|) (-866 |#1|)) |#1| |#1|)))
+((-1900 ((|#2| |#3|) 27)))
+(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -1900 (|#2| |#3|))) (-156) (-1132 |#1|) (-657 |#1| |#2|)) (T -159))
+((-1900 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1132 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
+(-10 -7 (-15 -1900 (|#2| |#3|)))
+((-2399 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 47 (|has| (-875 |#2|) (-809 |#1|)))))
+(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-875 |#2|) (-809 |#1|)) (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) |%noBranch|)) (-1004) (-13 (-809 |#1|) (-156)) (-150 |#2|)) (T -160))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-4 *3 (-150 *6)) (-4 (-875 *6) (-809 *5)) (-4 *6 (-13 (-809 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-875 |#2|) (-809 |#1|)) (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) |%noBranch|))
+((-1636 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-1931 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-3840 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
+(((-161 |#1|) (-10 -7 (-15 -1931 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3840 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3840 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1636 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
+((-1636 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-3840 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-3840 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-1931 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(-10 -7 (-15 -1931 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -3840 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -3840 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1636 ((-583 |#1|) (-583 |#1|) |#1|)))
+((-1863 (((-2 (|:| |start| |#2|) (|:| -1878 (-388 |#2|))) |#2|) 61)) (-3792 ((|#1| |#1|) 54)) (-3169 (((-153 |#1|) |#2|) 83)) (-2543 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-3632 ((|#2| |#2|) 82)) (-1869 (((-388 |#2|) |#2| |#1|) 113) (((-388 |#2|) |#2| |#1| (-107)) 80)) (-2754 ((|#1| |#2|) 112)) (-2833 ((|#2| |#2|) 119)) (-3866 (((-388 |#2|) |#2|) 134) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 133)) (-2206 (((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2|) 132) (((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2| (-107)) 75)) (-2134 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -2134 ((-583 (-153 |#1|)) |#2|)) (-15 -2134 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -2206 ((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2| (-107))) (-15 -2206 ((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2|)) (-15 -3866 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3866 ((-388 |#2|) |#2| |#1|)) (-15 -3866 ((-388 |#2|) |#2|)) (-15 -2833 (|#2| |#2|)) (-15 -2754 (|#1| |#2|)) (-15 -1869 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1869 ((-388 |#2|) |#2| |#1|)) (-15 -3632 (|#2| |#2|)) (-15 -2543 (|#1| |#2| |#1|)) (-15 -2543 (|#1| |#2|)) (-15 -3169 ((-153 |#1|) |#2|)) (-15 -3792 (|#1| |#1|)) (-15 -1863 ((-2 (|:| |start| |#2|) (|:| -1878 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1132 (-153 |#1|))) (T -162))
+((-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -1878 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-3792 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1132 (-153 *2))))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1132 *2)))) (-2543 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1132 (-153 *2))))) (-2543 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1132 (-153 *2))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1132 (-153 *3))))) (-1869 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-2754 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1132 (-153 *2))))) (-2833 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1132 (-153 *3))))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-3866 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-3866 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-2206 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1878 (-583 *3)) (|:| -3108 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-2206 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1878 (-583 *3)) (|:| -3108 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1132 (-153 *5))))) (-2134 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(-10 -7 (-15 -2134 ((-583 (-153 |#1|)) |#2|)) (-15 -2134 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -2206 ((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2| (-107))) (-15 -2206 ((-583 (-2 (|:| -1878 (-583 |#2|)) (|:| -3108 |#1|))) |#2| |#2|)) (-15 -3866 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3866 ((-388 |#2|) |#2| |#1|)) (-15 -3866 ((-388 |#2|) |#2|)) (-15 -2833 (|#2| |#2|)) (-15 -2754 (|#1| |#2|)) (-15 -1869 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1869 ((-388 |#2|) |#2| |#1|)) (-15 -3632 (|#2| |#2|)) (-15 -2543 (|#1| |#2| |#1|)) (-15 -2543 (|#1| |#2|)) (-15 -3169 ((-153 |#1|) |#2|)) (-15 -3792 (|#1| |#1|)) (-15 -1863 ((-2 (|:| |start| |#2|) (|:| -1878 (-388 |#2|))) |#2|)))
+((-2904 (((-3 |#2| "failed") |#2|) 14)) (-3314 (((-703) |#2|) 16)) (-4028 ((|#2| |#2| |#2|) 18)))
+(((-163 |#1| |#2|) (-10 -7 (-15 -2904 ((-3 |#2| "failed") |#2|)) (-15 -3314 ((-703) |#2|)) (-15 -4028 (|#2| |#2| |#2|))) (-1110) (-610 |#1|)) (T -163))
+((-4028 (*1 *2 *2 *2) (-12 (-4 *3 (-1110)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-1110)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-2904 (*1 *2 *2) (|partial| -12 (-4 *3 (-1110)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(-10 -7 (-15 -2904 ((-3 |#2| "failed") |#2|)) (-15 -3314 ((-703) |#2|)) (-15 -4028 (|#2| |#2| |#2|)))
+((-3973 ((|#2| |#2|) 28)) (-4020 (((-107) |#2|) 19)) (-3891 (((-286 |#1|) |#2|) 12)) (-3904 (((-286 |#1|) |#2|) 14)) (-3410 ((|#2| |#2| (-1075)) 68) ((|#2| |#2|) 69)) (-2524 (((-153 (-286 |#1|)) |#2|) 9)) (-3774 ((|#2| |#2| (-1075)) 65) ((|#2| |#2|) 58)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -3410 (|#2| |#2|)) (-15 -3410 (|#2| |#2| (-1075))) (-15 -3774 (|#2| |#2|)) (-15 -3774 (|#2| |#2| (-1075))) (-15 -3891 ((-286 |#1|) |#2|)) (-15 -3904 ((-286 |#1|) |#2|)) (-15 -4020 ((-107) |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -2524 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-953 (-517))) (-13 (-27) (-1096) (-400 (-153 |#1|)))) (T -164))
+((-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3)))))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3)))))) (-3410 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *4)))))) (-3410 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3)))))))
+(-10 -7 (-15 -3410 (|#2| |#2|)) (-15 -3410 (|#2| |#2| (-1075))) (-15 -3774 (|#2| |#2|)) (-15 -3774 (|#2| |#2| (-1075))) (-15 -3891 ((-286 |#1|) |#2|)) (-15 -3904 ((-286 |#1|) |#2|)) (-15 -4020 ((-107) |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -2524 ((-153 (-286 |#1|)) |#2|)))
+((-1912 (((-1156 (-623 (-875 |#1|))) (-1156 (-623 |#1|))) 22)) (-2269 (((-1156 (-623 (-377 (-875 |#1|)))) (-1156 (-623 |#1|))) 30)))
+(((-165 |#1|) (-10 -7 (-15 -1912 ((-1156 (-623 (-875 |#1|))) (-1156 (-623 |#1|)))) (-15 -2269 ((-1156 (-623 (-377 (-875 |#1|)))) (-1156 (-623 |#1|))))) (-156)) (T -165))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-1156 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1156 (-623 (-377 (-875 *4))))) (-5 *1 (-165 *4)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1156 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1156 (-623 (-875 *4)))) (-5 *1 (-165 *4)))))
+(-10 -7 (-15 -1912 ((-1156 (-623 (-875 |#1|))) (-1156 (-623 |#1|)))) (-15 -2269 ((-1156 (-623 (-377 (-875 |#1|)))) (-1156 (-623 |#1|)))))
+((-3378 (((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517)))) 66)) (-2725 (((-1077 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-3212 (((-1077 (-377 (-517))) (-517)) 40)) (-3679 (((-1077 (-377 (-517))) (-517)) 52)) (-3522 (((-377 (-517)) (-1077 (-377 (-517)))) 62)) (-2529 (((-1077 (-377 (-517))) (-517)) 32)) (-3636 (((-1077 (-377 (-517))) (-517)) 48)) (-1762 (((-1077 (-377 (-517))) (-517)) 46)) (-3614 (((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517)))) 60)) (-3478 (((-1077 (-377 (-517))) (-517)) 25)) (-1767 (((-377 (-517)) (-1077 (-377 (-517))) (-1077 (-377 (-517)))) 64)) (-2681 (((-1077 (-377 (-517))) (-517)) 30)) (-3206 (((-1077 (-377 (-517))) (-583 (-517))) 71)))
+(((-166) (-10 -7 (-15 -3478 ((-1077 (-377 (-517))) (-517))) (-15 -3212 ((-1077 (-377 (-517))) (-517))) (-15 -2529 ((-1077 (-377 (-517))) (-517))) (-15 -2681 ((-1077 (-377 (-517))) (-517))) (-15 -1762 ((-1077 (-377 (-517))) (-517))) (-15 -3636 ((-1077 (-377 (-517))) (-517))) (-15 -3679 ((-1077 (-377 (-517))) (-517))) (-15 -1767 ((-377 (-517)) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3614 ((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3522 ((-377 (-517)) (-1077 (-377 (-517))))) (-15 -3378 ((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3206 ((-1077 (-377 (-517))) (-583 (-517)))) (-15 -2725 ((-1077 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
+((-2725 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-1077 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3614 (*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))) (-1767 (*1 *2 *3 *3) (-12 (-5 *3 (-1077 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3679 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3636 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1762 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2681 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2529 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3212 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3478 (*1 *2 *3) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3478 ((-1077 (-377 (-517))) (-517))) (-15 -3212 ((-1077 (-377 (-517))) (-517))) (-15 -2529 ((-1077 (-377 (-517))) (-517))) (-15 -2681 ((-1077 (-377 (-517))) (-517))) (-15 -1762 ((-1077 (-377 (-517))) (-517))) (-15 -3636 ((-1077 (-377 (-517))) (-517))) (-15 -3679 ((-1077 (-377 (-517))) (-517))) (-15 -1767 ((-377 (-517)) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3614 ((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3522 ((-377 (-517)) (-1077 (-377 (-517))))) (-15 -3378 ((-1077 (-377 (-517))) (-1077 (-377 (-517))) (-1077 (-377 (-517))))) (-15 -3206 ((-1077 (-377 (-517))) (-583 (-517)))) (-15 -2725 ((-1077 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
+((-3007 (((-388 (-1071 (-517))) (-517)) 28)) (-2994 (((-583 (-1071 (-517))) (-517)) 23)) (-2806 (((-1071 (-517)) (-517)) 21)))
+(((-167) (-10 -7 (-15 -2994 ((-583 (-1071 (-517))) (-517))) (-15 -2806 ((-1071 (-517)) (-517))) (-15 -3007 ((-388 (-1071 (-517))) (-517))))) (T -167))
+((-3007 (*1 *2 *3) (-12 (-5 *2 (-388 (-1071 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2994 (*1 *2 *3) (-12 (-5 *2 (-583 (-1071 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2994 ((-583 (-1071 (-517))) (-517))) (-15 -2806 ((-1071 (-517)) (-517))) (-15 -3007 ((-388 (-1071 (-517))) (-517))))
+((-1969 (((-1056 (-199)) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2523 (((-583 (-1058)) (-1056 (-199))) NIL)) (-2846 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-3754 (((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199)))) NIL)) (-2803 (((-583 (-1058)) (-583 (-199))) NIL)) (-2435 (((-199) (-999 (-772 (-199)))) 22)) (-1327 (((-199) (-999 (-772 (-199)))) 23)) (-2433 (((-349) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-3936 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3172 (((-1058) (-199)) NIL)) (-1235 (((-1058) (-583 (-1058))) 19)) (-1792 (((-951) (-1075) (-1075) (-951)) 12)))
+(((-168) (-10 -7 (-15 -2846 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3936 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -2433 ((-349) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3754 ((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))) (-15 -1235 ((-1058) (-583 (-1058)))) (-15 -1792 ((-951) (-1075) (-1075) (-951))))) (T -168))
+((-1792 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-951)) (-5 *3 (-1075)) (-5 *1 (-168)))) (-1235 (*1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-168)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-168)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-168)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-168)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-168)))) (-3754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1075)) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(-10 -7 (-15 -2846 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3936 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -2433 ((-349) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3754 ((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))) (-15 -1235 ((-1058) (-583 (-1058)))) (-15 -1792 ((-951) (-1075) (-1075) (-951))))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 53) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-169) (-719)) (T -169))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 58) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 58) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-170) (-719)) (T -170))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 67) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 67) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-171) (-719)) (T -171))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 54) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-172) (-719)) (T -172))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 65) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 65) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-173) (-719)) (T -173))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 71) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 71) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-174) (-719)) (T -174))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 78) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 78) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-175) (-719)) (T -175))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 68) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 68) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-176) (-719)) (T -176))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 62)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 62)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-177) (-719)) (T -177))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 60)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 60)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-178) (-719)) (T -178))
NIL
(-719)
-((-1587 (((-107) $ $) NIL)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 89) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 89) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-179) (-719)) (T -179))
NIL
(-719)
-((-1242 (((-3 (-2 (|:| -3819 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-2968 (((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3386 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
-(((-180) (-10 -7 (-15 -1242 ((-3 (-2 (|:| -3819 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3386 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2968 ((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
-((-2968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3386 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-1242 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3819 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(-10 -7 (-15 -1242 ((-3 (-2 (|:| -3819 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3386 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2968 ((-517) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2759 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1689 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-4085 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 87)) (-3737 (((-349) (-623 (-286 (-199)))) 110)) (-3324 (((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074))) 107)) (-2218 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-3076 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-2049 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199)))) 99)) (-2301 (((-349) (-349) (-583 (-349))) 104) (((-349) (-349) (-349)) 102)) (-1551 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
-(((-181) (-10 -7 (-15 -2301 ((-349) (-349) (-349))) (-15 -2301 ((-349) (-349) (-583 (-349)))) (-15 -3737 ((-349) (-623 (-286 (-199))))) (-15 -3324 ((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074)))) (-15 -2049 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199))))) (-15 -4085 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1689 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2759 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3076 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1551 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2218 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
-((-2218 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-2049 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1074))) (-5 *4 (-1154 (-286 (-199)))) (-5 *1 (-181)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2301 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
-(-10 -7 (-15 -2301 ((-349) (-349) (-349))) (-15 -2301 ((-349) (-349) (-583 (-349)))) (-15 -3737 ((-349) (-623 (-286 (-199))))) (-15 -3324 ((-623 (-286 (-199))) (-1154 (-286 (-199))) (-583 (-1074)))) (-15 -2049 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1074)) (-1154 (-286 (-199))))) (-15 -4085 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1689 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2759 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3076 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1551 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2218 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1457 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1534 (((-107) $ $) NIL)))
+((-2462 (((-3 (-2 (|:| -1406 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 81)) (-3106 (((-517) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3649 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
+(((-180) (-10 -7 (-15 -2462 ((-3 (-2 (|:| -1406 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3649 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3106 ((-517) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
+((-3106 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3649 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1406 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(-10 -7 (-15 -2462 ((-3 (-2 (|:| -1406 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3649 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3106 ((-517) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-4006 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3610 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 128)) (-1409 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 88)) (-2872 (((-349) (-623 (-286 (-199)))) 111)) (-1545 (((-623 (-286 (-199))) (-1156 (-286 (-199))) (-583 (-1075))) 108)) (-4118 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2172 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3522 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1075)) (-1156 (-286 (-199)))) 100)) (-1194 (((-349) (-349) (-583 (-349))) 105) (((-349) (-349) (-349)) 103)) (-2591 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
+(((-181) (-10 -7 (-15 -1194 ((-349) (-349) (-349))) (-15 -1194 ((-349) (-349) (-583 (-349)))) (-15 -2872 ((-349) (-623 (-286 (-199))))) (-15 -1545 ((-623 (-286 (-199))) (-1156 (-286 (-199))) (-583 (-1075)))) (-15 -3522 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1075)) (-1156 (-286 (-199))))) (-15 -1409 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -3610 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4006 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2172 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2591 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4118 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
+((-4118 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3522 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1075))) (-5 *4 (-1156 (-286 (-199)))) (-5 *1 (-181)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *4 (-583 (-1075))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1194 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1194 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
+(-10 -7 (-15 -1194 ((-349) (-349) (-349))) (-15 -1194 ((-349) (-349) (-583 (-349)))) (-15 -2872 ((-349) (-623 (-286 (-199))))) (-15 -1545 ((-623 (-286 (-199))) (-1156 (-286 (-199))) (-583 (-1075)))) (-15 -3522 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1075)) (-1156 (-286 (-199))))) (-15 -1409 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -3610 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4006 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2172 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2591 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4118 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2611 (((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1583 (((-107) $ $) NIL)))
(((-182) (-732)) (T -182))
NIL
(-732)
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1457 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2611 (((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1583 (((-107) $ $) NIL)))
(((-183) (-732)) (T -183))
NIL
(-732)
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1457 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2611 (((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1583 (((-107) $ $) NIL)))
(((-184) (-732)) (T -184))
NIL
(-732)
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1457 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2611 (((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1583 (((-107) $ $) NIL)))
(((-185) (-732)) (T -185))
NIL
(-732)
-((-3556 (((-583 (-1074)) (-1074) (-703)) 22)) (-3572 (((-286 (-199)) (-286 (-199))) 29)) (-1203 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 67)) (-2781 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
-(((-186) (-10 -7 (-15 -3556 ((-583 (-1074)) (-1074) (-703))) (-15 -3572 ((-286 (-199)) (-286 (-199)))) (-15 -2781 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1203 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))))) (T -186))
-((-1203 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2781 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-186)) (-5 *3 (-1074)))))
-(-10 -7 (-15 -3556 ((-583 (-1074)) (-1074) (-703))) (-15 -3572 ((-286 (-199)) (-286 (-199)))) (-15 -2781 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -1203 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))))
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 17)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2295 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 55)) (-1534 (((-107) $ $) NIL)))
-(((-187) (-817)) (T -187))
-NIL
-(-817)
-((-1587 (((-107) $ $) NIL)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 12)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2295 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) NIL)) (-1534 (((-107) $ $) NIL)))
-(((-188) (-817)) (T -188))
-NIL
-(-817)
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3600 (((-1159) $) 36) (((-1159) $ (-843) (-843)) 38)) (-1437 (($ $ (-906)) 19) (((-219 (-1057)) $ (-1074)) 15)) (-1253 (((-1159) $) 34)) (-2254 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $ $) 27)) (-1645 (($ $ $) 22)))
-(((-189 |#1|) (-13 (-1003) (-10 -8 (-15 -1437 ($ $ (-906))) (-15 -1437 ((-219 (-1057)) $ (-1074))) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -2254 ($ (-583 |#1|))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $)) (-15 -3600 ((-1159) $ (-843) (-843))))) (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))) (T -189))
-((-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-219 (-1057))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ *3)) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) (-1645 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) (-1663 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))) (-5 *1 (-189 *3)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))) (-3600 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))))
-(-13 (-1003) (-10 -8 (-15 -1437 ($ $ (-906))) (-15 -1437 ((-219 (-1057)) $ (-1074))) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -2254 ($ (-583 |#1|))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $)) (-15 -3600 ((-1159) $ (-843) (-843)))))
-((-2213 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2213 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
-((-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1131 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
-(-10 -7 (-15 -2213 (|#2| |#4| (-1 |#2| |#2|))))
-((-3904 ((|#2| |#2| (-703) |#2|) 41)) (-2539 ((|#2| |#2| (-703) |#2|) 37)) (-3344 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|)))) 55)) (-1319 (((-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|))) |#2|) 51)) (-3566 (((-107) |#2|) 48)) (-1943 (((-388 |#2|) |#2|) 74)) (-1376 (((-388 |#2|) |#2|) 73)) (-2851 ((|#2| |#2| (-703) |#2|) 35)) (-3213 (((-2 (|:| |cont| |#1|) (|:| -1343 (-583 (-2 (|:| |irr| |#2|) (|:| -1436 (-517)))))) |#2| (-107)) 66)))
-(((-191 |#1| |#2|) (-10 -7 (-15 -1376 ((-388 |#2|) |#2|)) (-15 -1943 ((-388 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -1343 (-583 (-2 (|:| |irr| |#2|) (|:| -1436 (-517)))))) |#2| (-107))) (-15 -1319 ((-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|))) |#2|)) (-15 -3344 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|))))) (-15 -2851 (|#2| |#2| (-703) |#2|)) (-15 -2539 (|#2| |#2| (-703) |#2|)) (-15 -3904 (|#2| |#2| (-703) |#2|)) (-15 -3566 ((-107) |#2|))) (-319) (-1131 |#1|)) (T -191))
-((-3566 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-3904 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-2539 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-2851 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -2533 *5)))) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-1319 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2533 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1131 *5)))) (-1943 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -1376 ((-388 |#2|) |#2|)) (-15 -1943 ((-388 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -1343 (-583 (-2 (|:| |irr| |#2|) (|:| -1436 (-517)))))) |#2| (-107))) (-15 -1319 ((-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|))) |#2|)) (-15 -3344 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -2533 |#2|))))) (-15 -2851 (|#2| |#2| (-703) |#2|)) (-15 -2539 (|#2| |#2| (-703) |#2|)) (-15 -3904 (|#2| |#2| (-703) |#2|)) (-15 -3566 ((-107) |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-517) $) NIL (|has| (-517) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-517) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3232 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-517) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-517) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-517) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1199 (((-107) $) NIL (|has| (-517) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-517) (-779)))) (-1939 (($ (-1 (-517) (-517)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-517) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2908 (((-517) $) NIL (|has| (-517) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-517) $) NIL)) (-2200 (($ (-377 (-517))) 8)) (-3667 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 10) $) 9)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-517) $) NIL (|has| (-517) (-502)))) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| (-517) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1678 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-192) (-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 10) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2200 ($ (-377 (-517))))))) (T -192))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 10) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2200 ($ (-377 (-517))))))
-((-3563 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|))) 23)) (-1371 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107)) 16)))
-(((-193 |#1| |#2|) (-10 -7 (-15 -3563 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -3563 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057))) (-15 -1371 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -193))
-((-1371 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1074)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1095) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1057)) (-4 *3 (-13 (-1095) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1095) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
-(-10 -7 (-15 -3563 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -3563 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1057))) (-15 -1371 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074) (-772 |#2|) (-772 |#2|) (-107))))
-((-3563 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|)))) 17)))
-(((-194 |#1|) (-10 -7 (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (T -194))
-((-3563 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1057)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
-(-10 -7 (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1057))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -3563 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1057))))
-((-1292 (((-2 (|:| -1465 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|)) 20)) (-3523 (((-583 (-286 |#2|)) (-286 |#2|) (-843)) 42)))
-(((-195 |#1| |#2|) (-10 -7 (-15 -1292 ((-2 (|:| -1465 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|))) (-15 -3523 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) (-961) (-13 (-509) (-779))) (T -195))
-((-3523 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) (-1292 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1465 (-1070 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-13 (-509) (-779))))))
-(-10 -7 (-15 -1292 ((-2 (|:| -1465 (-1070 |#1|)) (|:| |deg| (-843))) (-1070 |#1|))) (-15 -3523 ((-583 (-286 |#2|)) (-286 |#2|) (-843))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3231 ((|#1| $) NIL)) (-1261 ((|#1| $) 25)) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-3859 (($ $) NIL)) (-3182 (($ $) 31)) (-3660 ((|#1| |#1| $) NIL)) (-3591 ((|#1| $) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1631 (((-703) $) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) NIL)) (-1640 ((|#1| |#1| $) 28)) (-2233 ((|#1| |#1| $) 30)) (-3676 (($ |#1| $) NIL)) (-1916 (((-703) $) 27)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2867 ((|#1| $) NIL)) (-2521 ((|#1| $) 26)) (-1636 ((|#1| $) 24)) (-3773 ((|#1| $) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3785 ((|#1| |#1| $) NIL)) (-1596 (((-107) $) 9)) (-2756 (($) NIL)) (-3041 ((|#1| $) NIL)) (-1404 (($) NIL) (($ (-583 |#1|)) 16)) (-2410 (((-703) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-4067 ((|#1| $) 13)) (-2882 (($ (-583 |#1|)) NIL)) (-1934 ((|#1| $) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -1404 ($ (-583 |#1|))))) (-1003)) (T -196))
-((-1404 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))))
-(-13 (-227 |#1|) (-10 -8 (-15 -1404 ($ (-583 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1380 (($ (-286 |#1|)) 23)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2874 (((-107) $) NIL)) (-1837 (((-3 (-286 |#1|) "failed") $) NIL)) (-3232 (((-286 |#1|) $) NIL)) (-1221 (($ $) 31)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-1939 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-1193 (((-286 |#1|) $) NIL)) (-2228 (($ $) 30)) (-1277 (((-1057) $) NIL)) (-3463 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($ (-703)) NIL)) (-3645 (($ $) 32)) (-3625 (((-517) $) NIL)) (-2254 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-4104 (((-286 |#1|) $ $) NIL)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 25 T CONST)) (-2411 (($) 50 T CONST)) (-1534 (((-107) $ $) 28)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
-(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1193 ((-286 |#1|) $)) (-15 -2228 ($ $)) (-15 -1221 ($ $)) (-15 -4104 ((-286 |#1|) $ $)) (-15 -3244 ($ (-703))) (-15 -3463 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -3625 ((-517) $)) (-15 -1939 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1380 ($ (-286 |#1|))) (-15 -3645 ($ $)))) (-13 (-961) (-779)) (-583 (-1074))) (T -197))
-((-1193 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-2228 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) (-1221 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) (-4104 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
-(-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1193 ((-286 |#1|) $)) (-15 -2228 ($ $)) (-15 -1221 ($ $)) (-15 -4104 ((-286 |#1|) $ $)) (-15 -3244 ($ (-703))) (-15 -3463 ((-107) $)) (-15 -2874 ((-107) $)) (-15 -3625 ((-517) $)) (-15 -1939 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1380 ($ (-286 |#1|))) (-15 -3645 ($ $))))
-((-2951 (((-107) (-1057)) 22)) (-4005 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-2041 (((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107)) 74)))
-(((-198 |#1| |#2|) (-10 -7 (-15 -2951 ((-107) (-1057))) (-15 -4005 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -2041 ((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107))) (-15 -2041 ((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-29 |#1|))) (T -198))
-((-2041 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1070 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1095) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-2041 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1074)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1095) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-4005 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1095) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1095) (-29 *4))))))
-(-10 -7 (-15 -2951 ((-107) (-1057))) (-15 -4005 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -2041 ((-3 (-107) "failed") (-874 |#1|) (-1074) (-772 |#2|) (-772 |#2|) (-107))) (-15 -2041 ((-3 (-107) "failed") (-1070 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 89)) (-2065 (((-517) $) 99)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1935 (($ $) NIL)) (-2725 (($ $) 77)) (-2602 (($ $) 65)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) 56)) (-2448 (((-107) $ $) NIL)) (-2705 (($ $) 75)) (-2580 (($ $) 63)) (-3345 (((-517) $) 116)) (-1533 (($ $) 80)) (-2626 (($ $) 67)) (-2706 (($) NIL T CONST)) (-3434 (($ $) NIL)) (-1837 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3232 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) 92)) (-3124 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2987 (((-843)) 29) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-3162 (((-107) $) NIL)) (-2665 (($) 39)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3730 (((-517) $) 35)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL)) (-2962 (($ $) NIL)) (-1199 (((-107) $) 88)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) 53) (($) 34 (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-3105 (($ $ $) 52) (($) 33 (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-4038 (((-517) $) 27)) (-2589 (($ $) 30)) (-3754 (($ $) 57)) (-1875 (($ $) 62)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-1397 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3214 (((-1021) $) NIL) (((-517) $) 90)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL)) (-2908 (($ $) NIL)) (-4002 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) 100)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3010 (((-517) $) 28)) (-2627 (($) 38)) (-2643 (($ $) 61)) (-3196 (((-703) $) NIL)) (-3584 (((-1057) (-1057)) 8)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2405 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-1248 (($ $ (-703)) NIL) (($ $) 93)) (-3953 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-1543 (($ $) 78)) (-2638 (($ $) 68)) (-2735 (($ $) 79)) (-2614 (($ $) 66)) (-2714 (($ $) 76)) (-2590 (($ $) 64)) (-3667 (((-349) $) 104) (((-199) $) 101) (((-814 (-349)) $) NIL) (((-493) $) 45)) (-2254 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-1217 (((-703)) NIL)) (-2434 (($ $) NIL)) (-2399 (((-843)) 32) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-1870 (((-843)) 25)) (-1584 (($ $) 83)) (-2670 (($ $) 71) (($ $ $) 109)) (-2673 (((-107) $ $) NIL)) (-1557 (($ $) 81)) (-2651 (($ $) 69)) (-1614 (($ $) 86)) (-2688 (($ $) 74)) (-3756 (($ $) 84)) (-2698 (($ $) 72)) (-1599 (($ $) 85)) (-2678 (($ $) 73)) (-1570 (($ $) 82)) (-2660 (($ $) 70)) (-1724 (($ $) 117)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 36 T CONST)) (-2411 (($) 37 T CONST)) (-2822 (((-1057) $) 19) (((-1057) $ (-107)) 21) (((-1159) (-754) $) 22) (((-1159) (-754) $ (-107)) 23)) (-2609 (($ $) 96)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-2393 (($ $ $) 98)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 54)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 46)) (-1678 (($ $ $) 87) (($ $ (-517)) 55)) (-1663 (($ $) 47) (($ $ $) 49)) (-1645 (($ $ $) 48)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-843) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-199) (-13 (-374) (-207) (-760) (-1095) (-558 (-493)) (-10 -8 (-15 -1678 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2627 ($)) (-15 -3214 ((-517) $)) (-15 -2589 ($ $)) (-15 -3754 ($ $)) (-15 -2670 ($ $ $)) (-15 -2609 ($ $)) (-15 -2393 ($ $ $)) (-15 -3584 ((-1057) (-1057))) (-15 -3124 ((-377 (-517)) $ (-703))) (-15 -3124 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
-((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2627 (*1 *1) (-5 *1 (-199))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2589 (*1 *1 *1) (-5 *1 (-199))) (-3754 (*1 *1 *1) (-5 *1 (-199))) (-2670 (*1 *1 *1 *1) (-5 *1 (-199))) (-2609 (*1 *1 *1) (-5 *1 (-199))) (-2393 (*1 *1 *1 *1) (-5 *1 (-199))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-199)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-3124 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
-(-13 (-374) (-207) (-760) (-1095) (-558 (-493)) (-10 -8 (-15 -1678 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2627 ($)) (-15 -3214 ((-517) $)) (-15 -2589 ($ $)) (-15 -3754 ($ $)) (-15 -2670 ($ $ $)) (-15 -2609 ($ $)) (-15 -2393 ($ $ $)) (-15 -3584 ((-1057) (-1057))) (-15 -3124 ((-377 (-517)) $ (-703))) (-15 -3124 ((-377 (-517)) $ (-703) (-703)))))
-((-2828 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-3599 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-3802 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-3744 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-1388 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-3958 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-3956 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-3770 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-1833 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-1878 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-2609 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2393 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
-(((-200) (-10 -7 (-15 -2609 ((-199) (-199))) (-15 -2609 ((-153 (-199)) (-153 (-199)))) (-15 -2393 ((-199) (-199) (-199))) (-15 -2393 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3599 ((-199) (-199))) (-15 -3599 ((-153 (-199)) (-153 (-199)))) (-15 -3744 ((-199) (-199))) (-15 -3744 ((-153 (-199)) (-153 (-199)))) (-15 -2828 ((-199) (-703) (-199))) (-15 -2828 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3956 ((-199) (-199) (-199))) (-15 -3956 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1388 ((-199) (-199) (-199))) (-15 -1388 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3770 ((-199) (-199) (-199))) (-15 -3770 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3958 ((-199) (-199) (-199))) (-15 -3958 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1878 ((-153 (-199)) (-153 (-199)))) (-15 -1878 ((-199) (-199))) (-15 -1833 ((-199) (-199))) (-15 -1833 ((-153 (-199)) (-153 (-199)))) (-15 -3802 ((-199) (-199) (-199))) (-15 -3802 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
-((-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3770 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3770 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1388 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1388 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3956 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3956 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2828 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-2828 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
-(-10 -7 (-15 -2609 ((-199) (-199))) (-15 -2609 ((-153 (-199)) (-153 (-199)))) (-15 -2393 ((-199) (-199) (-199))) (-15 -2393 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3599 ((-199) (-199))) (-15 -3599 ((-153 (-199)) (-153 (-199)))) (-15 -3744 ((-199) (-199))) (-15 -3744 ((-153 (-199)) (-153 (-199)))) (-15 -2828 ((-199) (-703) (-199))) (-15 -2828 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3956 ((-199) (-199) (-199))) (-15 -3956 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1388 ((-199) (-199) (-199))) (-15 -1388 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3770 ((-199) (-199) (-199))) (-15 -3770 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3958 ((-199) (-199) (-199))) (-15 -3958 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1878 ((-153 (-199)) (-153 (-199)))) (-15 -1878 ((-199) (-199))) (-15 -1833 ((-199) (-199))) (-15 -1833 ((-153 (-199)) (-153 (-199)))) (-15 -3802 ((-199) (-199) (-199))) (-15 -3802 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703) (-703)) NIL)) (-4094 (($ $ $) NIL)) (-3860 (($ (-1154 |#1|)) NIL) (($ $) NIL)) (-2471 (($ |#1| |#1| |#1|) 32)) (-1545 (((-107) $) NIL)) (-3128 (($ $ (-517) (-517)) NIL)) (-1898 (($ $ (-517) (-517)) NIL)) (-4143 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1886 (($ $) NIL)) (-3323 (((-107) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1495 (($ $ (-517) (-517) $) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-1616 (($ $ (-517) (-1154 |#1|)) NIL)) (-3742 (($ $ (-517) (-1154 |#1|)) NIL)) (-2221 (($ |#1| |#1| |#1|) 31)) (-3511 (($ (-703) |#1|) NIL)) (-2706 (($) NIL T CONST)) (-2889 (($ $) NIL (|has| |#1| (-278)))) (-3193 (((-1154 |#1|) $ (-517)) NIL)) (-2070 (($ |#1|) 30)) (-1423 (($ |#1|) 29)) (-3550 (($ |#1|) 28)) (-3334 (((-703) $) NIL (|has| |#1| (-509)))) (-3705 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3537 ((|#1| $ (-517) (-517)) NIL)) (-3240 (((-583 |#1|) $) NIL)) (-2879 (((-703) $) NIL (|has| |#1| (-509)))) (-1735 (((-583 (-1154 |#1|)) $) NIL (|has| |#1| (-509)))) (-1259 (((-703) $) NIL)) (-3475 (($ (-703) (-703) |#1|) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-3157 ((|#1| $) NIL (|has| |#1| (-6 (-4185 "*"))))) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-1884 (($ (-583 (-583 |#1|))) 10)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3418 (((-583 (-583 |#1|)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1779 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-1529 (($) 11)) (-3885 (($ $ $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3970 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-3402 (((-107) $) NIL)) (-1358 ((|#1| $) NIL (|has| |#1| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2939 (((-1154 |#1|) $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1154 |#1|)) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1154 |#1|) $ (-1154 |#1|)) 14) (((-1154 |#1|) (-1154 |#1|) $) NIL) (((-865 |#1|) $ (-865 |#1|)) 20)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-201 |#1|) (-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1529 ($)) (-15 -3550 ($ |#1|)) (-15 -1423 ($ |#1|)) (-15 -2070 ($ |#1|)) (-15 -2221 ($ |#1| |#1| |#1|)) (-15 -2471 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1095))) (T -201))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095))) (-5 *1 (-201 *3)))) (-1529 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-3550 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-1423 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2070 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2221 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) (-2471 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
-(-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1529 ($)) (-15 -3550 ($ |#1|)) (-15 -1423 ($ |#1|)) (-15 -2070 ($ |#1|)) (-15 -2221 ($ |#1| |#1| |#1|)) (-15 -2471 ($ |#1| |#1| |#1|))))
-((-2975 (($ (-1 (-107) |#2|) $) 17)) (-1835 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3230 (($) NIL) (($ (-583 |#2|)) 11)) (-1534 (((-107) $ $) 23)))
-(((-202 |#1| |#2|) (-10 -8 (-15 -2975 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -3230 (|#1| (-583 |#2|))) (-15 -3230 (|#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-203 |#2|) (-1003)) (T -202))
-NIL
-(-10 -8 (-15 -2975 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -3230 (|#1| (-583 |#2|))) (-15 -3230 (|#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-203 |#1|) (-1185) (-1003)) (T -203))
+((-3365 (((-583 (-1075)) (-1075) (-703)) 22)) (-4147 (((-286 (-199)) (-286 (-199))) 29)) (-2901 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 67)) (-2823 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
+(((-186) (-10 -7 (-15 -3365 ((-583 (-1075)) (-1075) (-703))) (-15 -4147 ((-286 (-199)) (-286 (-199)))) (-15 -2823 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2901 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))))))) (T -186))
+((-2901 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2823 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1075))) (-5 *1 (-186)) (-5 *3 (-1075)))))
+(-10 -7 (-15 -3365 ((-583 (-1075)) (-1075) (-703))) (-15 -4147 ((-286 (-199)) (-286 (-199)))) (-15 -2823 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2901 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))))))
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 17)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2242 (((-951) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 55)) (-1583 (((-107) $ $) NIL)))
+(((-187) (-818)) (T -187))
+NIL
+(-818)
+((-2118 (((-107) $ $) NIL)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 12)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2242 (((-951) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) NIL)) (-1583 (((-107) $ $) NIL)))
+(((-188) (-818)) (T -188))
+NIL
+(-818)
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3177 (((-1161) $) 36) (((-1161) $ (-844) (-844)) 38)) (-2607 (($ $ (-907)) 19) (((-219 (-1058)) $ (-1075)) 15)) (-1756 (((-1161) $) 34)) (-2269 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $ $) 27)) (-1677 (($ $ $) 22)))
+(((-189 |#1|) (-13 (-1004) (-10 -8 (-15 -2607 ($ $ (-907))) (-15 -2607 ((-219 (-1058)) $ (-1075))) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -2269 ($ (-583 |#1|))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $)) (-15 -3177 ((-1161) $ (-844) (-844))))) (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))) (T -189))
+((-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-907)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-219 (-1058))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ *3)) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))))) (-1677 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))))) (-1691 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $))))) (-5 *1 (-189 *3)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $)) (-15 -3177 (*2 $))))))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $)) (-15 -3177 (*2 $))))))) (-3177 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $)) (-15 -3177 (*2 $))))))))
+(-13 (-1004) (-10 -8 (-15 -2607 ($ $ (-907))) (-15 -2607 ((-219 (-1058)) $ (-1075))) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -2269 ($ (-583 |#1|))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $)) (-15 -3177 ((-1161) $ (-844) (-844)))))
+((-1852 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1852 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
+((-1852 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1132 (-377 *2))) (-4 *2 (-1132 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(-10 -7 (-15 -1852 (|#2| |#4| (-1 |#2| |#2|))))
+((-3656 ((|#2| |#2| (-703) |#2|) 41)) (-2325 ((|#2| |#2| (-703) |#2|) 37)) (-1874 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|)))) 57)) (-1224 (((-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|))) |#2|) 52)) (-2149 (((-107) |#2|) 49)) (-1625 (((-388 |#2|) |#2|) 76)) (-3866 (((-388 |#2|) |#2|) 75)) (-1694 ((|#2| |#2| (-703) |#2|) 35)) (-3094 (((-2 (|:| |cont| |#1|) (|:| -1878 (-583 (-2 (|:| |irr| |#2|) (|:| -2220 (-517)))))) |#2| (-107)) 68)))
+(((-191 |#1| |#2|) (-10 -7 (-15 -3866 ((-388 |#2|) |#2|)) (-15 -1625 ((-388 |#2|) |#2|)) (-15 -3094 ((-2 (|:| |cont| |#1|) (|:| -1878 (-583 (-2 (|:| |irr| |#2|) (|:| -2220 (-517)))))) |#2| (-107))) (-15 -1224 ((-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|))) |#2|)) (-15 -1874 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|))))) (-15 -1694 (|#2| |#2| (-703) |#2|)) (-15 -2325 (|#2| |#2| (-703) |#2|)) (-15 -3656 (|#2| |#2| (-703) |#2|)) (-15 -2149 ((-107) |#2|))) (-319) (-1132 |#1|)) (T -191))
+((-2149 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1132 *4)))) (-3656 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1132 *4)))) (-2325 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1132 *4)))) (-1694 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1132 *4)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3367 *5)))) (-4 *5 (-1132 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3367 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1132 *4)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1132 *5)))) (-1625 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1132 *4)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -3866 ((-388 |#2|) |#2|)) (-15 -1625 ((-388 |#2|) |#2|)) (-15 -3094 ((-2 (|:| |cont| |#1|) (|:| -1878 (-583 (-2 (|:| |irr| |#2|) (|:| -2220 (-517)))))) |#2| (-107))) (-15 -1224 ((-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|))) |#2|)) (-15 -1874 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3367 |#2|))))) (-15 -1694 (|#2| |#2| (-703) |#2|)) (-15 -2325 (|#2| |#2| (-703) |#2|)) (-15 -3656 (|#2| |#2| (-703) |#2|)) (-15 -2149 ((-107) |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-517) $) NIL (|has| (-517) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-517) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-517) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-953 (-517))))) (-3388 (((-517) $) NIL) (((-1075) $) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-517) (-953 (-517)))) (((-517) $) NIL (|has| (-517) (-953 (-517))))) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-517) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-517) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-517) (-1051)))) (-1469 (((-107) $) NIL (|has| (-517) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-517) (-779)))) (-3308 (($ (-1 (-517) (-517)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-517) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2309 (((-517) $) NIL (|has| (-517) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1075)) (-583 (-517))) NIL (|has| (-517) (-478 (-1075) (-517)))) (($ $ (-1075) (-517)) NIL (|has| (-517) (-478 (-1075) (-517))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-517) $) NIL)) (-3497 (($ (-377 (-517))) 8)) (-3357 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-938))) (((-199) $) NIL (|has| (-517) (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1075)) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL) (((-921 10) $) 9)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-517) $) NIL (|has| (-517) (-502)))) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| (-517) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1703 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-192) (-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 10) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -3497 ($ (-377 (-517))))))) (T -192))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-921 10)) (-5 *1 (-192)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 10) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -3497 ($ (-377 (-517))))))
+((-1518 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|)) (-1058)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|))) 23)) (-1415 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1075) (-772 |#2|) (-772 |#2|) (-107)) 16)))
+(((-193 |#1| |#2|) (-10 -7 (-15 -1518 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|)))) (-15 -1518 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|)) (-1058))) (-15 -1415 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1075) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-881) (-29 |#1|))) (T -193))
+((-1415 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1075)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1096) (-881) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-1518 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-772 *3))) (-5 *5 (-1058)) (-4 *3 (-13 (-1096) (-881) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-772 *3))) (-4 *3 (-13 (-1096) (-881) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
+(-10 -7 (-15 -1518 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|)))) (-15 -1518 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-997 (-772 |#2|)) (-1058))) (-15 -1415 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1075) (-772 |#2|) (-772 |#2|) (-107))))
+((-1518 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|)))) (-1058)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|))) (-1058)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|)))) 17)))
+(((-194 |#1|) (-10 -7 (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|))))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|))) (-1058))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|)))))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|)))) (-1058)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (T -194))
+((-1518 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-772 (-377 (-875 *6))))) (-5 *5 (-1058)) (-5 *3 (-377 (-875 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-772 (-377 (-875 *5))))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-1518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-997 (-772 (-286 *6)))) (-5 *5 (-1058)) (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-997 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
+(-10 -7 (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|))))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-286 |#1|))) (-1058))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|)))))) (-15 -1518 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-875 |#1|)) (-997 (-772 (-377 (-875 |#1|)))) (-1058))))
+((-1521 (((-2 (|:| -1713 (-1071 |#1|)) (|:| |deg| (-844))) (-1071 |#1|)) 21)) (-2294 (((-583 (-286 |#2|)) (-286 |#2|) (-844)) 43)))
+(((-195 |#1| |#2|) (-10 -7 (-15 -1521 ((-2 (|:| -1713 (-1071 |#1|)) (|:| |deg| (-844))) (-1071 |#1|))) (-15 -2294 ((-583 (-286 |#2|)) (-286 |#2|) (-844)))) (-962) (-13 (-509) (-779))) (T -195))
+((-2294 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-962)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -1713 (-1071 *4)) (|:| |deg| (-844)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-13 (-509) (-779))))))
+(-10 -7 (-15 -1521 ((-2 (|:| -1713 (-1071 |#1|)) (|:| |deg| (-844))) (-1071 |#1|))) (-15 -2294 ((-583 (-286 |#2|)) (-286 |#2|) (-844))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3806 ((|#1| $) NIL)) (-2551 ((|#1| $) 25)) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-2196 (($ $) NIL)) (-1407 (($ $) 31)) (-1426 ((|#1| |#1| $) NIL)) (-3751 ((|#1| $) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3680 (((-703) $) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) NIL)) (-3965 ((|#1| |#1| $) 28)) (-1320 ((|#1| |#1| $) 30)) (-2704 (($ |#1| $) NIL)) (-1807 (((-703) $) 27)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-4107 ((|#1| $) NIL)) (-2260 ((|#1| $) 26)) (-4079 ((|#1| $) 24)) (-1785 ((|#1| $) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3068 ((|#1| |#1| $) NIL)) (-3270 (((-107) $) 9)) (-1529 (($) NIL)) (-4036 ((|#1| $) NIL)) (-4142 (($) NIL) (($ (-583 |#1|)) 16)) (-3143 (((-703) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-4145 ((|#1| $) 13)) (-4155 (($ (-583 |#1|)) NIL)) (-3285 ((|#1| $) NIL)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -4142 ($ (-583 |#1|))))) (-1004)) (T -196))
+((-4142 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-196 *3)))))
+(-13 (-227 |#1|) (-10 -8 (-15 -4142 ($ (-583 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2847 (($ (-286 |#1|)) 23)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2236 (((-107) $) NIL)) (-3226 (((-3 (-286 |#1|) "failed") $) NIL)) (-3388 (((-286 |#1|) $) NIL)) (-2371 (($ $) 31)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-3308 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-2345 (((-286 |#1|) $) NIL)) (-3190 (($ $) 30)) (-1895 (((-1058) $) NIL)) (-2974 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($ (-703)) NIL)) (-1606 (($ $) 32)) (-2769 (((-517) $) NIL)) (-2269 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-3952 (((-286 |#1|) $ $) NIL)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 25 T CONST)) (-3617 (($) 50 T CONST)) (-1583 (((-107) $ $) 28)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 19)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
+(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-953 (-286 |#1|)) (-10 -8 (-15 -2345 ((-286 |#1|) $)) (-15 -3190 ($ $)) (-15 -2371 ($ $)) (-15 -3952 ((-286 |#1|) $ $)) (-15 -1317 ($ (-703))) (-15 -2974 ((-107) $)) (-15 -2236 ((-107) $)) (-15 -2769 ((-517) $)) (-15 -3308 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -2847 ($ (-286 |#1|))) (-15 -1606 ($ $)))) (-13 (-962) (-779)) (-583 (-1075))) (T -197))
+((-2345 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779))) (-14 *3 (-583 (-1075))))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779))) (-14 *3 (-583 (-1075))))) (-3952 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075))))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-962) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1075))))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-962) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1075))))) (-1606 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779))) (-14 *3 (-583 (-1075))))))
+(-13 (-561 (-286 |#1|)) (-953 (-286 |#1|)) (-10 -8 (-15 -2345 ((-286 |#1|) $)) (-15 -3190 ($ $)) (-15 -2371 ($ $)) (-15 -3952 ((-286 |#1|) $ $)) (-15 -1317 ($ (-703))) (-15 -2974 ((-107) $)) (-15 -2236 ((-107) $)) (-15 -2769 ((-517) $)) (-15 -3308 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -2847 ($ (-286 |#1|))) (-15 -1606 ($ $))))
+((-1237 (((-107) (-1058)) 22)) (-1803 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-1797 (((-3 (-107) "failed") (-1071 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-875 |#1|) (-1075) (-772 |#2|) (-772 |#2|) (-107)) 74)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -1237 ((-107) (-1058))) (-15 -1803 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1797 ((-3 (-107) "failed") (-875 |#1|) (-1075) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1797 ((-3 (-107) "failed") (-1071 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-29 |#1|))) (T -198))
+((-1797 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1071 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1096) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-1797 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-875 *6)) (-5 *4 (-1075)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1096) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-1803 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1096) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1096) (-29 *4))))))
+(-10 -7 (-15 -1237 ((-107) (-1058))) (-15 -1803 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1797 ((-3 (-107) "failed") (-875 |#1|) (-1075) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1797 ((-3 (-107) "failed") (-1071 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 89)) (-3297 (((-517) $) 99)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3509 (($ $) NIL)) (-1646 (($ $) 77)) (-1493 (($ $) 65)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) 56)) (-3998 (((-107) $ $) NIL)) (-1622 (($ $) 75)) (-1470 (($ $) 63)) (-1323 (((-517) $) 116)) (-1669 (($ $) 80)) (-1519 (($ $) 67)) (-1681 (($) NIL T CONST)) (-4013 (($ $) NIL)) (-3226 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3388 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) 92)) (-3721 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3434 (((-844)) 29) (((-844) (-844)) NIL (|has| $ (-6 -4181)))) (-3523 (((-107) $) NIL)) (-2115 (($) 39)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-2053 (((-517) $) 35)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL)) (-2754 (($ $) NIL)) (-1469 (((-107) $) 88)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) 53) (($) 34 (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-4082 (($ $ $) 52) (($) 33 (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-3697 (((-517) $) 27)) (-1715 (($ $) 30)) (-2894 (($ $) 57)) (-1225 (($ $) 62)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2787 (((-844) (-517)) NIL (|has| $ (-6 -4181)))) (-4123 (((-1022) $) NIL) (((-517) $) 90)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL)) (-2309 (($ $) NIL)) (-3209 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-844)) 100)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2356 (((-517) $) 28)) (-3495 (($) 38)) (-3868 (($ $) 61)) (-4094 (((-703) $) NIL)) (-1246 (((-1058) (-1058)) 8)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2207 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4181)))) (-2059 (($ $ (-703)) NIL) (($ $) 93)) (-2229 (((-844) (-517)) NIL (|has| $ (-6 -4181)))) (-1682 (($ $) 78)) (-1532 (($ $) 68)) (-1656 (($ $) 79)) (-1506 (($ $) 66)) (-1632 (($ $) 76)) (-1482 (($ $) 64)) (-3357 (((-349) $) 104) (((-199) $) 101) (((-815 (-349)) $) NIL) (((-493) $) 45)) (-2269 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-2950 (((-703)) NIL)) (-3475 (($ $) NIL)) (-2013 (((-844)) 32) (((-844) (-844)) NIL (|has| $ (-6 -4181)))) (-3984 (((-844)) 25)) (-1721 (($ $) 83)) (-1575 (($ $) 71) (($ $ $) 109)) (-2914 (((-107) $ $) NIL)) (-1695 (($ $) 81)) (-1547 (($ $) 69)) (-3487 (($ $) 86)) (-1599 (($ $) 74)) (-2822 (($ $) 84)) (-1612 (($ $) 72)) (-1735 (($ $) 85)) (-1588 (($ $) 73)) (-1708 (($ $) 82)) (-1561 (($ $) 70)) (-2339 (($ $) 117)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 36 T CONST)) (-3617 (($) 37 T CONST)) (-1964 (((-1058) $) 19) (((-1058) $ (-107)) 21) (((-1161) (-754) $) 22) (((-1161) (-754) $ (-107)) 23)) (-1350 (($ $) 96)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-3196 (($ $ $) 98)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 54)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 46)) (-1703 (($ $ $) 87) (($ $ (-517)) 55)) (-1691 (($ $) 47) (($ $ $) 49)) (-1677 (($ $ $) 48)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-844) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-199) (-13 (-374) (-207) (-760) (-1096) (-558 (-493)) (-10 -8 (-15 -1703 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3495 ($)) (-15 -4123 ((-517) $)) (-15 -1715 ($ $)) (-15 -2894 ($ $)) (-15 -1575 ($ $ $)) (-15 -1350 ($ $)) (-15 -3196 ($ $ $)) (-15 -1246 ((-1058) (-1058))) (-15 -3721 ((-377 (-517)) $ (-703))) (-15 -3721 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
+((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1703 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3495 (*1 *1) (-5 *1 (-199))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-1715 (*1 *1 *1) (-5 *1 (-199))) (-2894 (*1 *1 *1) (-5 *1 (-199))) (-1575 (*1 *1 *1 *1) (-5 *1 (-199))) (-1350 (*1 *1 *1) (-5 *1 (-199))) (-3196 (*1 *1 *1 *1) (-5 *1 (-199))) (-1246 (*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-199)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
+(-13 (-374) (-207) (-760) (-1096) (-558 (-493)) (-10 -8 (-15 -1703 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3495 ($)) (-15 -4123 ((-517) $)) (-15 -1715 ($ $)) (-15 -2894 ($ $)) (-15 -1575 ($ $ $)) (-15 -1350 ($ $)) (-15 -3196 ($ $ $)) (-15 -1246 ((-1058) (-1058))) (-15 -3721 ((-377 (-517)) $ (-703))) (-15 -3721 ((-377 (-517)) $ (-703) (-703)))))
+((-1841 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-1216 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-3642 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-4125 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-2184 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-1987 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-1794 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1726 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-3513 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-2605 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-1350 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-3196 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
+(((-200) (-10 -7 (-15 -1350 ((-199) (-199))) (-15 -1350 ((-153 (-199)) (-153 (-199)))) (-15 -3196 ((-199) (-199) (-199))) (-15 -3196 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1216 ((-199) (-199))) (-15 -1216 ((-153 (-199)) (-153 (-199)))) (-15 -4125 ((-199) (-199))) (-15 -4125 ((-153 (-199)) (-153 (-199)))) (-15 -1841 ((-199) (-703) (-199))) (-15 -1841 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -1794 ((-199) (-199) (-199))) (-15 -1794 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2184 ((-199) (-199) (-199))) (-15 -2184 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1726 ((-199) (-199) (-199))) (-15 -1726 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1987 ((-199) (-199) (-199))) (-15 -1987 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2605 ((-153 (-199)) (-153 (-199)))) (-15 -2605 ((-199) (-199))) (-15 -3513 ((-199) (-199))) (-15 -3513 ((-153 (-199)) (-153 (-199)))) (-15 -3642 ((-199) (-199) (-199))) (-15 -3642 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
+((-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1987 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1987 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2184 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2184 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1841 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-1841 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1216 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1216 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3196 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3196 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1350 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1350 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
+(-10 -7 (-15 -1350 ((-199) (-199))) (-15 -1350 ((-153 (-199)) (-153 (-199)))) (-15 -3196 ((-199) (-199) (-199))) (-15 -3196 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1216 ((-199) (-199))) (-15 -1216 ((-153 (-199)) (-153 (-199)))) (-15 -4125 ((-199) (-199))) (-15 -4125 ((-153 (-199)) (-153 (-199)))) (-15 -1841 ((-199) (-703) (-199))) (-15 -1841 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -1794 ((-199) (-199) (-199))) (-15 -1794 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2184 ((-199) (-199) (-199))) (-15 -2184 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1726 ((-199) (-199) (-199))) (-15 -1726 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1987 ((-199) (-199) (-199))) (-15 -1987 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2605 ((-153 (-199)) (-153 (-199)))) (-15 -2605 ((-199) (-199))) (-15 -3513 ((-199) (-199))) (-15 -3513 ((-153 (-199)) (-153 (-199)))) (-15 -3642 ((-199) (-199) (-199))) (-15 -3642 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703) (-703)) NIL)) (-2219 (($ $ $) NIL)) (-1670 (($ (-1156 |#1|)) NIL) (($ $) NIL)) (-3189 (($ |#1| |#1| |#1|) 32)) (-1572 (((-107) $) NIL)) (-1291 (($ $ (-517) (-517)) NIL)) (-3696 (($ $ (-517) (-517)) NIL)) (-2342 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-3574 (($ $) NIL)) (-1793 (((-107) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-1565 (($ $ (-517) (-517) $) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3813 (($ $ (-517) (-1156 |#1|)) NIL)) (-3233 (($ $ (-517) (-1156 |#1|)) NIL)) (-3383 (($ |#1| |#1| |#1|) 31)) (-3583 (($ (-703) |#1|) NIL)) (-1681 (($) NIL T CONST)) (-1680 (($ $) NIL (|has| |#1| (-278)))) (-3766 (((-1156 |#1|) $ (-517)) NIL)) (-1615 (($ |#1|) 30)) (-2119 (($ |#1|) 29)) (-1477 (($ |#1|) 28)) (-3736 (((-703) $) NIL (|has| |#1| (-509)))) (-2757 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2563 ((|#1| $ (-517) (-517)) NIL)) (-1535 (((-583 |#1|) $) NIL)) (-3805 (((-703) $) NIL (|has| |#1| (-509)))) (-3794 (((-583 (-1156 |#1|)) $) NIL (|has| |#1| (-509)))) (-1420 (((-703) $) NIL)) (-3211 (($ (-703) (-703) |#1|) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2924 ((|#1| $) NIL (|has| |#1| (-6 (-4192 "*"))))) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2369 (($ (-583 (-583 |#1|))) 10)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1548 (((-583 (-583 |#1|)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1368 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-1967 (($) 11)) (-3877 (($ $ $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3289 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-2434 (((-107) $) NIL)) (-4126 ((|#1| $) NIL (|has| |#1| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2708 (((-1156 |#1|) $ (-517)) NIL)) (-2269 (($ (-1156 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1156 |#1|) $ (-1156 |#1|)) 14) (((-1156 |#1|) (-1156 |#1|) $) NIL) (((-866 |#1|) $ (-866 |#1|)) 20)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-201 |#1|) (-13 (-621 |#1| (-1156 |#1|) (-1156 |#1|)) (-10 -8 (-15 * ((-866 |#1|) $ (-866 |#1|))) (-15 -1967 ($)) (-15 -1477 ($ |#1|)) (-15 -2119 ($ |#1|)) (-15 -1615 ($ |#1|)) (-15 -3383 ($ |#1| |#1| |#1|)) (-15 -3189 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1096))) (T -201))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096))) (-5 *1 (-201 *3)))) (-1967 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))) (-2119 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))) (-1615 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))) (-3383 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))) (-3189 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))))
+(-13 (-621 |#1| (-1156 |#1|) (-1156 |#1|)) (-10 -8 (-15 * ((-866 |#1|) $ (-866 |#1|))) (-15 -1967 ($)) (-15 -1477 ($ |#1|)) (-15 -2119 ($ |#1|)) (-15 -1615 ($ |#1|)) (-15 -3383 ($ |#1| |#1| |#1|)) (-15 -3189 ($ |#1| |#1| |#1|))))
+((-3042 (($ (-1 (-107) |#2|) $) 16)) (-3593 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 24)) (-1494 (($) NIL) (($ (-583 |#2|)) 11)) (-1583 (((-107) $ $) 22)))
+(((-202 |#1| |#2|) (-10 -8 (-15 -3042 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -1494 (|#1| (-583 |#2|))) (-15 -1494 (|#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-203 |#2|) (-1004)) (T -202))
+NIL
+(-10 -8 (-15 -3042 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -1494 (|#1| (-583 |#2|))) (-15 -1494 (|#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-203 |#1|) (-1187) (-1004)) (T -203))
NIL
(-13 (-209 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1248 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-2738 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
-(((-204 |#1| |#2|) (-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -2738 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2738 (|#1| |#1| (-1074))) (-15 -2738 (|#1| |#1| (-583 (-1074)))) (-15 -2738 (|#1| |#1| (-1074) (-703))) (-15 -2738 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2738 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2738 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-961)) (T -204))
-NIL
-(-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -2738 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2738 (|#1| |#1| (-1074))) (-15 -2738 (|#1| |#1| (-583 (-1074)))) (-15 -2738 (|#1| |#1| (-1074) (-703))) (-15 -2738 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2738 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2738 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1248 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1074)) (-583 (-703))) 44 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 43 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 42 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 41 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1074)) (-583 (-703))) 48 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 47 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 46 (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 45 (|has| |#1| (-822 (-1074)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-205 |#1|) (-1185) (-961)) (T -205))
-((-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-1248 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-2738 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))))
-(-13 (-961) (-10 -8 (-15 -1248 ($ $ (-1 |t#1| |t#1|))) (-15 -1248 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -2738 ($ $ (-1 |t#1| |t#1|))) (-15 -2738 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |%noBranch|) (IF (|has| |t#1| (-822 (-1074))) (-6 (-822 (-1074))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1248 (($ $) NIL) (($ $ (-703)) 10)) (-2738 (($ $) 8) (($ $ (-703)) 12)))
-(((-206 |#1|) (-10 -8 (-15 -2738 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-703))) (-15 -2738 (|#1| |#1|)) (-15 -1248 (|#1| |#1|))) (-207)) (T -206))
-NIL
-(-10 -8 (-15 -2738 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-703))) (-15 -2738 (|#1| |#1|)) (-15 -1248 (|#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1248 (($ $) 38) (($ $ (-703)) 36)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $) 37) (($ $ (-703)) 35)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-207) (-1185)) (T -207))
-((-1248 (*1 *1 *1) (-4 *1 (-207))) (-2738 (*1 *1 *1) (-4 *1 (-207))) (-1248 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-2738 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
-(-13 (-961) (-10 -8 (-15 -1248 ($ $)) (-15 -2738 ($ $)) (-15 -1248 ($ $ (-703))) (-15 -2738 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3230 (($) 12) (($ (-583 |#2|)) NIL)) (-2435 (($ $) 14)) (-2272 (($ (-583 |#2|)) 10)) (-2254 (((-787) $) 21)))
-(((-208 |#1| |#2|) (-10 -8 (-15 -3230 (|#1| (-583 |#2|))) (-15 -3230 (|#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -2254 ((-787) |#1|)) (-15 -2435 (|#1| |#1|))) (-209 |#2|) (-1003)) (T -208))
-NIL
-(-10 -8 (-15 -3230 (|#1| (-583 |#2|))) (-15 -3230 (|#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -2254 ((-787) |#1|)) (-15 -2435 (|#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-209 |#1|) (-1185) (-1003)) (T -209))
-((-3230 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3230 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) (-1835 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) (-2975 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))))
-(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3230 ($)) (-15 -3230 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4183)) (PROGN (-15 -1835 ($ |t#1| $)) (-15 -1835 ($ (-1 (-107) |t#1|) $)) (-15 -2975 ($ (-1 (-107) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-3317 (((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517)))) 25)))
-(((-210) (-10 -7 (-15 -3317 ((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517))))))) (T -210))
-((-3317 (*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703)))))) (-5 *1 (-210)))))
-(-10 -7 (-15 -3317 ((-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703))))) (-265 (-874 (-517))))))
-((-1719 (((-703)) 51)) (-2749 (((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-2232 (((-125)) 57)) (-1248 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2254 (((-1154 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-1217 (((-703)) 15)) (-1678 (($ $ |#3|) 54)))
-(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)) (-15 -1217 ((-703))) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2254 (|#1| |#3|)) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2749 ((-623 |#3|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -1719 ((-703))) (-15 -1678 (|#1| |#1| |#3|)) (-15 -2232 ((-125))) (-15 -2254 ((-1154 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1109)) (T -211))
-((-2232 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1109)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1719 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1217 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
-(-10 -8 (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)) (-15 -1217 ((-703))) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2254 (|#1| |#3|)) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2749 ((-623 |#3|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -1719 ((-703))) (-15 -1678 (|#1| |#1| |#3|)) (-15 -2232 ((-125))) (-15 -2254 ((-1154 |#3|) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2778 (((-107) $) 72 (|has| |#2| (-123)))) (-1441 (($ (-843)) 127 (|has| |#2| (-961)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3398 (($ $ $) 123 (|has| |#2| (-725)))) (-2646 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-3552 (((-107) $ (-703)) 8)) (-1719 (((-703)) 109 (|has| |#2| (-338)))) (-3345 (((-517) $) 121 (|has| |#2| (-777)))) (-2412 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-1837 (((-3 (-517) "failed") $) 67 (-4032 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) 64 (-4032 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1003)))) (-3232 (((-517) $) 68 (-4032 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) 65 (-4032 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 60 (|has| |#2| (-1003)))) (-2749 (((-623 (-517)) (-623 $)) 108 (-4032 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 107 (-4032 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 106 (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-961)))) (-3775 (((-3 $ "failed") $) 99 (|has| |#2| (-961)))) (-4100 (($) 112 (|has| |#2| (-338)))) (-3705 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#2| $ (-517)) 51)) (-3162 (((-107) $) 119 (|has| |#2| (-777)))) (-3240 (((-583 |#2|) $) 30 (|has| $ (-6 -4183)))) (-3469 (((-107) $) 102 (|has| |#2| (-961)))) (-1199 (((-107) $) 120 (|has| |#2| (-777)))) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 118 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2332 (((-583 |#2|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 117 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-3696 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2|) $) 35)) (-4034 (((-843) $) 111 (|has| |#2| (-338)))) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#2| (-1003)))) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3544 (($ (-843)) 110 (|has| |#2| (-338)))) (-3214 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1750 ((|#2| $) 42 (|has| (-517) (-779)))) (-2880 (($ $ |#2|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-1369 ((|#2| $ $) 126 (|has| |#2| (-961)))) (-1421 (($ (-1154 |#2|)) 128)) (-2232 (((-125)) 125 (|has| |#2| (-333)))) (-1248 (($ $) 92 (-4032 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 90 (-4032 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) 88 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) 87 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) 86 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) 85 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-961)))) (-3223 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4183))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-1154 |#2|) $) 129) (((-787) $) 20 (|has| |#2| (-1003))) (($ (-517)) 66 (-3782 (-4032 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) 63 (-4032 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 62 (|has| |#2| (-1003)))) (-1217 (((-703)) 104 (|has| |#2| (-961)))) (-2258 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4183)))) (-1724 (($ $) 122 (|has| |#2| (-777)))) (-2196 (($ $ (-703)) 100 (|has| |#2| (-961))) (($ $ (-843)) 96 (|has| |#2| (-961)))) (-2398 (($) 71 (|has| |#2| (-123)) CONST)) (-2411 (($) 103 (|has| |#2| (-961)) CONST)) (-2738 (($ $) 91 (-4032 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 89 (-4032 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) 84 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) 83 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) 82 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) 81 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-961)))) (-1600 (((-107) $ $) 115 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1571 (((-107) $ $) 114 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1534 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-1585 (((-107) $ $) 116 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1558 (((-107) $ $) 113 (-3782 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1678 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1663 (($ $ $) 94 (|has| |#2| (-961))) (($ $) 93 (|has| |#2| (-961)))) (-1645 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-961))) (($ $ (-843)) 97 (|has| |#2| (-961)))) (* (($ $ $) 98 (|has| |#2| (-961))) (($ (-517) $) 95 (|has| |#2| (-961))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-843) $) 70 (|has| |#2| (-25)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-212 |#1| |#2|) (-1185) (-703) (-1109)) (T -212))
-((-1421 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1109)) (-4 *1 (-212 *3 *4)))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1109)))) (-1369 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))))
-(-13 (-550 (-517) |t#2|) (-557 (-1154 |t#2|)) (-10 -8 (-6 -4183) (-15 -1421 ($ (-1154 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-381 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -1441 ($ (-843))) (-15 -1369 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |%noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |%noBranch|) (IF (|has| |t#2| (-6 -4180)) (-6 -4180) |%noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |%noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1161 |t#2|)) |%noBranch|)))
-(((-21) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3782 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3782 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3782 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1154 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-961)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-961))) ((-258 (-517) |#2|) . T) ((-260 (-517) |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-961)) ((-381 |#2|) |has| |#2| (-1003)) ((-456 |#2|) . T) ((-550 (-517) |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) -3782 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))) ((-579 |#2|) |has| |#2| (-961)) ((-650 |#2|) -3782 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3782 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3782 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3782 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3782 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-822 (-1074)) -12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961))) ((-952 (-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))) ((-952 (-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) ((-952 |#2|) |has| |#2| (-1003)) ((-967 |#2|) -3782 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-967 $) |has| |#2| (-156)) ((-961) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-968) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1015) -3782 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1003) -3782 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1109) . T) ((-1161 |#2|) |has| |#2| (-333)))
-((-3014 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-1292 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-1939 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
-(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3014 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1292 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1939 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1109) (-1109)) (T -213))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-213 *5 *6 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1109)) (-4 *5 (-1109)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
-(-10 -7 (-15 -3014 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1292 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1939 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
-((-1587 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2778 (((-107) $) NIL (|has| |#2| (-123)))) (-1441 (($ (-843)) 56 (|has| |#2| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) 60 (|has| |#2| (-725)))) (-2646 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-3552 (((-107) $ (-703)) 17)) (-1719 (((-703)) NIL (|has| |#2| (-338)))) (-3345 (((-517) $) NIL (|has| |#2| (-777)))) (-2412 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1003)))) (-3232 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 27 (|has| |#2| (-1003)))) (-2749 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3775 (((-3 $ "failed") $) 53 (|has| |#2| (-961)))) (-4100 (($) NIL (|has| |#2| (-338)))) (-3705 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ (-517)) 51)) (-3162 (((-107) $) NIL (|has| |#2| (-777)))) (-3240 (((-583 |#2|) $) 15 (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#2| (-961)))) (-1199 (((-107) $) NIL (|has| |#2| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 20 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2332 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 (((-517) $) 50 (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3696 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2|) $) 41)) (-4034 (((-843) $) NIL (|has| |#2| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#2| (-1003)))) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#2| (-338)))) (-3214 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1750 ((|#2| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-1369 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-1421 (($ (-1154 |#2|)) 18)) (-2232 (((-125)) NIL (|has| |#2| (-333)))) (-1248 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3223 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#2|) $) 10) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 13 (|has| |#2| (-1003)))) (-1217 (((-703)) NIL (|has| |#2| (-961)))) (-2258 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#2| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2398 (($) 35 (|has| |#2| (-123)) CONST)) (-2411 (($) 38 (|has| |#2| (-961)) CONST)) (-2738 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1534 (((-107) $ $) 26 (|has| |#2| (-1003)))) (-1585 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1558 (((-107) $ $) 58 (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1645 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) 49 (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1109)) (T -214))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2059 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-3340 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
+(((-204 |#1| |#2|) (-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -3340 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3340 (|#1| |#1| (-1075))) (-15 -3340 (|#1| |#1| (-583 (-1075)))) (-15 -3340 (|#1| |#1| (-1075) (-703))) (-15 -3340 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-962)) (T -204))
+NIL
+(-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -3340 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3340 (|#1| |#1| (-1075))) (-15 -3340 (|#1| |#1| (-583 (-1075)))) (-15 -3340 (|#1| |#1| (-1075) (-703))) (-15 -3340 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2059 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1075)) (-583 (-703))) 44 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 43 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 42 (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) 41 (|has| |#1| (-823 (-1075)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1075)) (-583 (-703))) 48 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 47 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 46 (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) 45 (|has| |#1| (-823 (-1075)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-205 |#1|) (-1187) (-962)) (T -205))
+((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-962)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-962)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-962)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-962)))))
+(-13 (-962) (-10 -8 (-15 -2059 ($ $ (-1 |t#1| |t#1|))) (-15 -2059 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -3340 ($ $ (-1 |t#1| |t#1|))) (-15 -3340 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |%noBranch|) (IF (|has| |t#1| (-823 (-1075))) (-6 (-823 (-1075))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2059 (($ $) NIL) (($ $ (-703)) 10)) (-3340 (($ $) 8) (($ $ (-703)) 12)))
+(((-206 |#1|) (-10 -8 (-15 -3340 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-703))) (-15 -3340 (|#1| |#1|)) (-15 -2059 (|#1| |#1|))) (-207)) (T -206))
+NIL
+(-10 -8 (-15 -3340 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-703))) (-15 -3340 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2059 (($ $) 38) (($ $ (-703)) 36)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $) 37) (($ $ (-703)) 35)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-207) (-1187)) (T -207))
+((-2059 (*1 *1 *1) (-4 *1 (-207))) (-3340 (*1 *1 *1) (-4 *1 (-207))) (-2059 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
+(-13 (-962) (-10 -8 (-15 -2059 ($ $)) (-15 -3340 ($ $)) (-15 -2059 ($ $ (-703))) (-15 -3340 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-1494 (($) 12) (($ (-583 |#2|)) NIL)) (-2460 (($ $) 14)) (-2286 (($ (-583 |#2|)) 10)) (-2269 (((-787) $) 21)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1494 (|#1| (-583 |#2|))) (-15 -1494 (|#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2460 (|#1| |#1|))) (-209 |#2|) (-1004)) (T -208))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1494 (|#1| (-583 |#2|))) (-15 -1494 (|#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2460 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-209 |#1|) (-1187) (-1004)) (T -209))
+((-1494 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1004)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-209 *3)))) (-3593 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-209 *2)) (-4 *2 (-1004)))) (-3593 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-209 *3)) (-4 *3 (-1004)))) (-3042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-209 *3)) (-4 *3 (-1004)))))
+(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -1494 ($)) (-15 -1494 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4190)) (PROGN (-15 -3593 ($ |t#1| $)) (-15 -3593 ($ (-1 (-107) |t#1|) $)) (-15 -3042 ($ (-1 (-107) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-1382 (((-2 (|:| |varOrder| (-583 (-1075))) (|:| |inhom| (-3 (-583 (-1156 (-703))) "failed")) (|:| |hom| (-583 (-1156 (-703))))) (-265 (-875 (-517)))) 25)))
+(((-210) (-10 -7 (-15 -1382 ((-2 (|:| |varOrder| (-583 (-1075))) (|:| |inhom| (-3 (-583 (-1156 (-703))) "failed")) (|:| |hom| (-583 (-1156 (-703))))) (-265 (-875 (-517))))))) (T -210))
+((-1382 (*1 *2 *3) (-12 (-5 *3 (-265 (-875 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1075))) (|:| |inhom| (-3 (-583 (-1156 (-703))) "failed")) (|:| |hom| (-583 (-1156 (-703)))))) (-5 *1 (-210)))))
+(-10 -7 (-15 -1382 ((-2 (|:| |varOrder| (-583 (-1075))) (|:| |inhom| (-3 (-583 (-1156 (-703))) "failed")) (|:| |hom| (-583 (-1156 (-703))))) (-265 (-875 (-517))))))
+((-2397 (((-703)) 51)) (-2306 (((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 $) (-1156 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1880 (((-125)) 57)) (-2059 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2269 (((-1156 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-2950 (((-703)) 15)) (-1703 (($ $ |#3|) 54)))
+(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)) (-15 -2950 ((-703))) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2269 (|#1| |#3|)) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2306 ((-623 |#3|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 |#1|) (-1156 |#1|))) (-15 -2397 ((-703))) (-15 -1703 (|#1| |#1| |#3|)) (-15 -1880 ((-125))) (-15 -2269 ((-1156 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1110)) (T -211))
+((-1880 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1110)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2397 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1110)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2950 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1110)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
+(-10 -8 (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)) (-15 -2950 ((-703))) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2269 (|#1| |#3|)) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2306 ((-623 |#3|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 |#1|) (-1156 |#1|))) (-15 -2397 ((-703))) (-15 -1703 (|#1| |#1| |#3|)) (-15 -1880 ((-125))) (-15 -2269 ((-1156 |#3|) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#2| (-1004)))) (-2033 (((-107) $) 72 (|has| |#2| (-123)))) (-2531 (($ (-844)) 127 (|has| |#2| (-962)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-1836 (($ $ $) 123 (|has| |#2| (-725)))) (-1250 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2670 (((-107) $ (-703)) 8)) (-2397 (((-703)) 109 (|has| |#2| (-338)))) (-1323 (((-517) $) 121 (|has| |#2| (-777)))) (-2443 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-3226 (((-3 (-517) "failed") $) 67 (-3992 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-3 (-377 (-517)) "failed") $) 64 (-3992 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1004)))) (-3388 (((-517) $) 68 (-3992 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-377 (-517)) $) 65 (-3992 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) ((|#2| $) 60 (|has| |#2| (-1004)))) (-2306 (((-623 (-517)) (-623 $)) 108 (-3992 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 107 (-3992 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 106 (|has| |#2| (-962))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-962)))) (-3163 (((-3 $ "failed") $) 99 (|has| |#2| (-962)))) (-2200 (($) 112 (|has| |#2| (-338)))) (-2757 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#2| $ (-517)) 51)) (-3523 (((-107) $) 119 (|has| |#2| (-777)))) (-1535 (((-583 |#2|) $) 30 (|has| $ (-6 -4190)))) (-1865 (((-107) $) 102 (|has| |#2| (-962)))) (-1469 (((-107) $) 120 (|has| |#2| (-777)))) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 118 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2898 (((-583 |#2|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 117 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2744 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2|) $) 35)) (-2031 (((-844) $) 111 (|has| |#2| (-338)))) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#2| (-1004)))) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-2810 (($ (-844)) 110 (|has| |#2| (-338)))) (-4123 (((-1022) $) 21 (|has| |#2| (-1004)))) (-2427 ((|#2| $) 42 (|has| (-517) (-779)))) (-3191 (($ $ |#2|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3989 ((|#2| $ $) 126 (|has| |#2| (-962)))) (-3907 (($ (-1156 |#2|)) 128)) (-1880 (((-125)) 125 (|has| |#2| (-333)))) (-2059 (($ $) 92 (-3992 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) 90 (-3992 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) 88 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) 87 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) 86 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) 85 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-962)))) (-4135 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4190))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-1156 |#2|) $) 129) (($ (-517)) 66 (-3745 (-3992 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (|has| |#2| (-962)))) (($ (-377 (-517))) 63 (-3992 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (($ |#2|) 62 (|has| |#2| (-1004))) (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-2950 (((-703)) 104 (|has| |#2| (-962)))) (-3160 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4190)))) (-2339 (($ $) 122 (|has| |#2| (-777)))) (-2813 (($ $ (-703)) 100 (|has| |#2| (-962))) (($ $ (-844)) 96 (|has| |#2| (-962)))) (-3608 (($) 71 (|has| |#2| (-123)) CONST)) (-3617 (($) 103 (|has| |#2| (-962)) CONST)) (-3340 (($ $) 91 (-3992 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) 89 (-3992 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) 84 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) 83 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) 82 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) 81 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-962)))) (-1641 (((-107) $ $) 115 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1617 (((-107) $ $) 114 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1583 (((-107) $ $) 20 (|has| |#2| (-1004)))) (-1629 (((-107) $ $) 116 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1607 (((-107) $ $) 113 (-3745 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1703 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1691 (($ $ $) 94 (|has| |#2| (-962))) (($ $) 93 (|has| |#2| (-962)))) (-1677 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-962))) (($ $ (-844)) 97 (|has| |#2| (-962)))) (* (($ $ $) 98 (|has| |#2| (-962))) (($ (-517) $) 95 (|has| |#2| (-962))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-844) $) 70 (|has| |#2| (-25)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-212 |#1| |#2|) (-1187) (-703) (-1110)) (T -212))
+((-3907 (*1 *1 *2) (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1110)) (-4 *1 (-212 *3 *4)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-212 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1110)))) (-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-962)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-659)))))
+(-13 (-550 (-517) |t#2|) (-557 (-1156 |t#2|)) (-10 -8 (-6 -4190) (-15 -3907 ($ (-1156 |t#2|))) (IF (|has| |t#2| (-1004)) (-6 (-381 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -2531 ($ (-844))) (-15 -3989 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |%noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |%noBranch|) (IF (|has| |t#2| (-6 -4187)) (-6 -4187) |%noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |%noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1163 |t#2|)) |%noBranch|)))
+(((-21) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3745 (|has| |#2| (-1004)) (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3745 (|has| |#2| (-962)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3745 (|has| |#2| (-1004)) (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1156 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-962)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-962))) ((-258 #0=(-517) |#2|) . T) ((-260 #0# |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-962)) ((-381 |#2|) |has| |#2| (-1004)) ((-456 |#2|) . T) ((-550 #0# |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-585 |#2|) -3745 (|has| |#2| (-962)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962))) ((-579 |#2|) |has| |#2| (-962)) ((-650 |#2|) -3745 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3745 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3745 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3745 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3745 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-823 (-1075)) -12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962))) ((-953 (-377 (-517))) -12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004))) ((-953 (-517)) -12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) ((-953 |#2|) |has| |#2| (-1004)) ((-968 |#2|) -3745 (|has| |#2| (-962)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-968 $) |has| |#2| (-156)) ((-962) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-969) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1016) -3745 (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1004) -3745 (|has| |#2| (-1004)) (|has| |#2| (-962)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1110) . T) ((-1163 |#2|) |has| |#2| (-333)))
+((-2499 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-1521 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-3308 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
+(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -2499 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1521 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3308 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1110) (-1110)) (T -213))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1110)) (-4 *2 (-1110)) (-5 *1 (-213 *5 *6 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1110)) (-4 *5 (-1110)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
+(-10 -7 (-15 -2499 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1521 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3308 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
+((-2118 (((-107) $ $) NIL (|has| |#2| (-1004)))) (-2033 (((-107) $) NIL (|has| |#2| (-123)))) (-2531 (($ (-844)) 56 (|has| |#2| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) 60 (|has| |#2| (-725)))) (-1250 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2670 (((-107) $ (-703)) 17)) (-2397 (((-703)) NIL (|has| |#2| (-338)))) (-1323 (((-517) $) NIL (|has| |#2| (-777)))) (-2443 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1004)))) (-3388 (((-517) $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) ((|#2| $) 27 (|has| |#2| (-1004)))) (-2306 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL (|has| |#2| (-962))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-962)))) (-3163 (((-3 $ "failed") $) 53 (|has| |#2| (-962)))) (-2200 (($) NIL (|has| |#2| (-338)))) (-2757 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ (-517)) 51)) (-3523 (((-107) $) NIL (|has| |#2| (-777)))) (-1535 (((-583 |#2|) $) 15 (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#2| (-962)))) (-1469 (((-107) $) NIL (|has| |#2| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 20 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2898 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 (((-517) $) 50 (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2744 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2|) $) 41)) (-2031 (((-844) $) NIL (|has| |#2| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#2| (-1004)))) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#2| (-338)))) (-4123 (((-1022) $) NIL (|has| |#2| (-1004)))) (-2427 ((|#2| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3989 ((|#2| $ $) NIL (|has| |#2| (-962)))) (-3907 (($ (-1156 |#2|)) 18)) (-1880 (((-125)) NIL (|has| |#2| (-333)))) (-2059 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-4135 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#2|) $) 10) (($ (-517)) NIL (-3745 (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (|has| |#2| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (($ |#2|) 13 (|has| |#2| (-1004))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-2950 (((-703)) NIL (|has| |#2| (-962)))) (-3160 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#2| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (-3608 (($) 35 (|has| |#2| (-123)) CONST)) (-3617 (($) 38 (|has| |#2| (-962)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) 26 (|has| |#2| (-1004)))) (-1629 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1607 (((-107) $ $) 58 (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $ $) NIL (|has| |#2| (-962))) (($ $) NIL (|has| |#2| (-962)))) (-1677 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (* (($ $ $) 49 (|has| |#2| (-962))) (($ (-517) $) NIL (|has| |#2| (-962))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1110)) (T -214))
NIL
(-212 |#1| |#2|)
-((-3932 (((-517) (-583 (-1057))) 24) (((-517) (-1057)) 19)) (-4050 (((-1159) (-583 (-1057))) 29) (((-1159) (-1057)) 28)) (-3524 (((-1057)) 14)) (-1363 (((-1057) (-517) (-1057)) 16)) (-2984 (((-583 (-1057)) (-583 (-1057)) (-517) (-1057)) 25) (((-1057) (-1057) (-517) (-1057)) 23)) (-2004 (((-583 (-1057)) (-583 (-1057))) 13) (((-583 (-1057)) (-1057)) 11)))
-(((-215) (-10 -7 (-15 -2004 ((-583 (-1057)) (-1057))) (-15 -2004 ((-583 (-1057)) (-583 (-1057)))) (-15 -3524 ((-1057))) (-15 -1363 ((-1057) (-517) (-1057))) (-15 -2984 ((-1057) (-1057) (-517) (-1057))) (-15 -2984 ((-583 (-1057)) (-583 (-1057)) (-517) (-1057))) (-15 -4050 ((-1159) (-1057))) (-15 -4050 ((-1159) (-583 (-1057)))) (-15 -3932 ((-517) (-1057))) (-15 -3932 ((-517) (-583 (-1057)))))) (T -215))
-((-3932 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-517)) (-5 *1 (-215)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-215)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1159)) (-5 *1 (-215)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-215)))) (-2984 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1057))) (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *1 (-215)))) (-2984 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1363 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) (-3524 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-215)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)))) (-2004 (*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)) (-5 *3 (-1057)))))
-(-10 -7 (-15 -2004 ((-583 (-1057)) (-1057))) (-15 -2004 ((-583 (-1057)) (-583 (-1057)))) (-15 -3524 ((-1057))) (-15 -1363 ((-1057) (-517) (-1057))) (-15 -2984 ((-1057) (-1057) (-517) (-1057))) (-15 -2984 ((-583 (-1057)) (-583 (-1057)) (-517) (-1057))) (-15 -4050 ((-1159) (-1057))) (-15 -4050 ((-1159) (-583 (-1057)))) (-15 -3932 ((-517) (-1057))) (-15 -3932 ((-517) (-583 (-1057)))))
-((-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
-(((-216 |#1|) (-10 -8 (-15 -2196 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2196 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2196 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-217)) (T -216))
-NIL
-(-10 -8 (-15 -2196 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2196 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2196 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 39)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
-(((-217) (-1185)) (T -217))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2196 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-1639 (*1 *1 *1) (-4 *1 (-217))))
-(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2196 ($ $ (-517))) (-15 -1639 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-659) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-2811 (($ $) 57)) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-3643 (($ $ $) 53 (|has| $ (-6 -4184)))) (-1448 (($ $ $) 52 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-3729 (($ $) 56)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3178 (($ $) 55)) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2067 ((|#1| $) 59)) (-3671 (($ $) 58)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47)) (-3792 (((-517) $ $) 44)) (-1985 (((-107) $) 46)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-1819 (($ $ $) 54 (|has| $ (-6 -4184)))) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-218 |#1|) (-1185) (-1109)) (T -218))
-((-2067 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-1819 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-3643 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) (-1448 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -2067 (|t#1| $)) (-15 -3671 ($ $)) (-15 -2811 ($ $)) (-15 -3729 ($ $)) (-15 -3178 ($ $)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1819 ($ $ $)) (-15 -3643 ($ $ $)) (-15 -1448 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) NIL)) (-3026 ((|#1| $) NIL)) (-2811 (($ $) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3500 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-4044 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-1326 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) NIL)) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3013 ((|#1| $) NIL)) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1761 (($ $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $) NIL (|has| |#1| (-1003)))) (-1783 (($ $) 7 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2050 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-3295 (((-107) $) NIL)) (-2624 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-2931 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1676 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1619 (($ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2067 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3676 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-1556 (((-107) $) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-3792 (((-517) $ $) NIL)) (-1415 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3503 (($ (-583 |#1|)) 22)) (-1985 (((-107) $) NIL)) (-2849 (($ $) NIL)) (-3825 (($ $) NIL (|has| $ (-6 -4184)))) (-2077 (((-703) $) NIL)) (-2334 (($ $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-1819 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2455 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2254 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) 14 (|has| $ (-6 -4183)))))
-(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2254 ($ (-583 |#1|))) (-15 -2254 ((-583 |#1|) $)) (-15 -3503 ($ (-583 |#1|))) (-15 -1437 ($ $ "unique")) (-15 -1437 ($ $ "sort")) (-15 -1437 ((-703) $ "count")))) (-779)) (T -219))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -2254 ($ (-583 |#1|))) (-15 -2254 ((-583 |#1|) $)) (-15 -3503 ($ (-583 |#1|))) (-15 -1437 ($ $ "unique")) (-15 -1437 ($ $ "sort")) (-15 -1437 ((-703) $ "count"))))
-((-2981 (((-3 (-703) "failed") |#1| |#1| (-703)) 26)))
-(((-220 |#1|) (-10 -7 (-15 -2981 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
-((-2981 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
-(-10 -7 (-15 -2981 ((-3 (-703) "failed") |#1| |#1| (-703))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-789 |#1|)) $) NIL)) (-2374 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2239 (($ $) NIL (|has| |#2| (-509)))) (-3531 (((-107) $) NIL (|has| |#2| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL (|has| |#2| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3167 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2251 (($ $ (-583 (-517))) NIL)) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#2| (-831)))) (-2083 (($ $ |#2| (-214 (-2290 |#1|) (-703)) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#2| (-214 (-2290 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-789 |#1|)) NIL)) (-3876 (((-214 (-2290 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-3602 (($ (-1 (-214 (-2290 |#1|) (-703)) (-214 (-2290 |#1|) (-703))) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-3382 (((-3 (-789 |#1|) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#2| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -3010 (-703))) "failed") $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#2| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3383 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1248 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3625 (((-214 (-2290 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-214 (-2290 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-221 |#1| |#2|) (-13 (-871 |#2| (-214 (-2290 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961)) (T -221))
-((-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
-(-13 (-871 |#2| (-214 (-2290 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517))))))
-((-2581 (((-1079) $) 11)) (-2254 (((-787) $) 7)))
-(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -2581 ((-1079) $))))) (T -222))
-((-2581 (*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-222)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2581 ((-1079) $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1441 (($ (-843)) NIL (|has| |#4| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) NIL (|has| |#4| (-725)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#4| (-338)))) (-3345 (((-517) $) NIL (|has| |#4| (-777)))) (-2412 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3232 ((|#4| $) NIL (|has| |#4| (-1003))) (((-517) $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-2749 (((-2 (|:| -3534 (-623 |#4|)) (|:| |vec| (-1154 |#4|))) (-623 $) (-1154 $)) NIL (|has| |#4| (-961))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-961))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))) (-3775 (((-3 $ "failed") $) NIL (|has| |#4| (-961)))) (-4100 (($) NIL (|has| |#4| (-338)))) (-3705 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#4| $ (-517)) NIL)) (-3162 (((-107) $) NIL (|has| |#4| (-777)))) (-3240 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#4| (-961)))) (-1199 (((-107) $) NIL (|has| |#4| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2332 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-3696 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#4| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#4| (-338)))) (-3214 (((-1021) $) NIL)) (-1750 ((|#4| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#4|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3949 (((-583 |#4|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-1369 ((|#4| $ $) NIL (|has| |#4| (-961)))) (-1421 (($ (-1154 |#4|)) NIL)) (-2232 (((-125)) NIL (|has| |#4| (-333)))) (-1248 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-3223 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (|has| |#4| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-1217 (((-703)) NIL (|has| |#4| (-961)))) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#4| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL (|has| |#4| (-961)) CONST)) (-2738 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#4| (-822 (-1074))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1558 (((-107) $ $) NIL (-3782 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1678 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-961)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-843) (-961) (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
+((-3684 (((-517) (-583 (-1058))) 24) (((-517) (-1058)) 19)) (-1898 (((-1161) (-583 (-1058))) 29) (((-1161) (-1058)) 28)) (-3324 (((-1058)) 14)) (-1685 (((-1058) (-517) (-1058)) 16)) (-3567 (((-583 (-1058)) (-583 (-1058)) (-517) (-1058)) 25) (((-1058) (-1058) (-517) (-1058)) 23)) (-3490 (((-583 (-1058)) (-583 (-1058))) 13) (((-583 (-1058)) (-1058)) 11)))
+(((-215) (-10 -7 (-15 -3490 ((-583 (-1058)) (-1058))) (-15 -3490 ((-583 (-1058)) (-583 (-1058)))) (-15 -3324 ((-1058))) (-15 -1685 ((-1058) (-517) (-1058))) (-15 -3567 ((-1058) (-1058) (-517) (-1058))) (-15 -3567 ((-583 (-1058)) (-583 (-1058)) (-517) (-1058))) (-15 -1898 ((-1161) (-1058))) (-15 -1898 ((-1161) (-583 (-1058)))) (-15 -3684 ((-517) (-1058))) (-15 -3684 ((-517) (-583 (-1058)))))) (T -215))
+((-3684 (*1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-517)) (-5 *1 (-215)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1161)) (-5 *1 (-215)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-215)))) (-3567 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1058))) (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *1 (-215)))) (-3567 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1685 (*1 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-215)))) (-3324 (*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-215)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-215)))) (-3490 (*1 *2 *3) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-215)) (-5 *3 (-1058)))))
+(-10 -7 (-15 -3490 ((-583 (-1058)) (-1058))) (-15 -3490 ((-583 (-1058)) (-583 (-1058)))) (-15 -3324 ((-1058))) (-15 -1685 ((-1058) (-517) (-1058))) (-15 -3567 ((-1058) (-1058) (-517) (-1058))) (-15 -3567 ((-583 (-1058)) (-583 (-1058)) (-517) (-1058))) (-15 -1898 ((-1161) (-1058))) (-15 -1898 ((-1161) (-583 (-1058)))) (-15 -3684 ((-517) (-1058))) (-15 -3684 ((-517) (-583 (-1058)))))
+((-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
+(((-216 |#1|) (-10 -8 (-15 -2813 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2813 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2813 (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-217)) (T -216))
+NIL
+(-10 -8 (-15 -2813 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2813 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2813 (|#1| |#1| (-844))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 39)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
+(((-217) (-1187)) (T -217))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2298 (*1 *1 *1) (-4 *1 (-217))))
+(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2813 ($ $ (-517))) (-15 -2298 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-659) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-1540 (($ $) 57)) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-3155 (($ $ $) 53 (|has| $ (-6 -4191)))) (-1524 (($ $ $) 52 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-4122 (($ $) 56)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-3462 (($ $) 55)) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1445 ((|#1| $) 59)) (-2868 (($ $) 58)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47)) (-2093 (((-517) $ $) 44)) (-1657 (((-107) $) 46)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-1718 (($ $ $) 54 (|has| $ (-6 -4191)))) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-218 |#1|) (-1187) (-1110)) (T -218))
+((-1445 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-3462 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-1718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-3155 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110)))) (-1524 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110)))))
+(-13 (-927 |t#1|) (-10 -8 (-15 -1445 (|t#1| $)) (-15 -2868 ($ $)) (-15 -1540 ($ $)) (-15 -4122 ($ $)) (-15 -3462 ($ $)) (IF (|has| $ (-6 -4191)) (PROGN (-15 -1718 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -1524 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) NIL)) (-2584 ((|#1| $) NIL)) (-1540 (($ $) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3613 (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-2162 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-3953 (($ $ $) NIL (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "rest" $) NIL (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) NIL)) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-2574 ((|#1| $) NIL)) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2437 (($ $) NIL) (($ $ (-703)) NIL)) (-3302 (($ $) NIL (|has| |#1| (-1004)))) (-2453 (($ $) 7 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) NIL (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) NIL)) (-1422 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1211 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004))) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-1974 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3798 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2322 (($ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1445 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2704 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3392 (((-107) $) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1123 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-2093 (((-517) $ $) NIL)) (-2710 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-2248 (($ (-583 |#1|)) 22)) (-1657 (((-107) $) NIL)) (-3769 (($ $) NIL)) (-1457 (($ $) NIL (|has| $ (-6 -4191)))) (-3277 (((-703) $) NIL)) (-2573 (($ $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-1718 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4108 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2269 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) 14 (|has| $ (-6 -4190)))))
+(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2269 ($ (-583 |#1|))) (-15 -2269 ((-583 |#1|) $)) (-15 -2248 ($ (-583 |#1|))) (-15 -2607 ($ $ "unique")) (-15 -2607 ($ $ "sort")) (-15 -2607 ((-703) $ "count")))) (-779)) (T -219))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2269 ($ (-583 |#1|))) (-15 -2269 ((-583 |#1|) $)) (-15 -2248 ($ (-583 |#1|))) (-15 -2607 ($ $ "unique")) (-15 -2607 ($ $ "sort")) (-15 -2607 ((-703) $ "count"))))
+((-3899 (((-3 (-703) "failed") |#1| |#1| (-703)) 27)))
+(((-220 |#1|) (-10 -7 (-15 -3899 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
+((-3899 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
+(-10 -7 (-15 -3899 ((-3 (-703) "failed") |#1| |#1| (-703))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1071 $) $ (-789 |#1|)) NIL) (((-1071 |#2|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2729 (($ $) NIL (|has| |#2| (-509)))) (-2566 (((-107) $) NIL (|has| |#2| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL (|has| |#2| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-789 |#1|) $) NIL)) (-2272 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2896 (($ $ (-583 (-517))) NIL)) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#2| (-832)))) (-2027 (($ $ |#2| (-214 (-3533 |#1|) (-703)) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#2|) (-789 |#1|)) NIL) (($ (-1071 $) (-789 |#1|)) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#2| (-214 (-3533 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-789 |#1|)) NIL)) (-2210 (((-214 (-3533 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3200 (($ (-1 (-214 (-3533 |#1|) (-703)) (-214 (-3533 |#1|) (-703))) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1512 (((-3 (-789 |#1|) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#2| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2356 (-703))) "failed") $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#2| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4032 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2059 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2769 (((-214 (-3533 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-214 (-3533 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-221 |#1| |#2|) (-13 (-872 |#2| (-214 (-3533 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517)))))) (-583 (-1075)) (-962)) (T -221))
+((-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1075))) (-4 *4 (-962)))))
+(-13 (-872 |#2| (-214 (-3533 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517))))))
+((-1264 (((-1161) $) 13)) (-2355 (((-1080) $) 11)) (-2269 (((-787) $) 7)))
+(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -2355 ((-1080) $)) (-15 -1264 ((-1161) $))))) (T -222))
+((-2355 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-222)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-222)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2355 ((-1080) $)) (-15 -1264 ((-1161) $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2531 (($ (-844)) NIL (|has| |#4| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) NIL (|has| |#4| (-725)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#4| (-338)))) (-1323 (((-517) $) NIL (|has| |#4| (-777)))) (-2443 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1004))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-953 (-517))) (|has| |#4| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-953 (-377 (-517)))) (|has| |#4| (-1004))))) (-3388 ((|#4| $) NIL (|has| |#4| (-1004))) (((-517) $) NIL (-12 (|has| |#4| (-953 (-517))) (|has| |#4| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-953 (-377 (-517)))) (|has| |#4| (-1004))))) (-2306 (((-2 (|:| -2831 (-623 |#4|)) (|:| |vec| (-1156 |#4|))) (-623 $) (-1156 $)) NIL (|has| |#4| (-962))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-962))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-962)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-962))))) (-3163 (((-3 $ "failed") $) NIL (|has| |#4| (-962)))) (-2200 (($) NIL (|has| |#4| (-338)))) (-2757 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#4| $ (-517)) NIL)) (-3523 (((-107) $) NIL (|has| |#4| (-777)))) (-1535 (((-583 |#4|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#4| (-962)))) (-1469 (((-107) $) NIL (|has| |#4| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2898 (((-583 |#4|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2744 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#4| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#4| (-338)))) (-4123 (((-1022) $) NIL)) (-2427 ((|#4| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#4|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1831 (((-583 |#4|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3989 ((|#4| $ $) NIL (|has| |#4| (-962)))) (-3907 (($ (-1156 |#4|)) NIL)) (-1880 (((-125)) NIL (|has| |#4| (-333)))) (-2059 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-962))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-962)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-962))))) (-4135 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1004))) (($ (-517)) NIL (-3745 (-12 (|has| |#4| (-953 (-517))) (|has| |#4| (-1004))) (|has| |#4| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-953 (-377 (-517)))) (|has| |#4| (-1004))))) (-2950 (((-703)) NIL (|has| |#4| (-962)))) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#4| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#4| (-962))) (($ $ (-844)) NIL (|has| |#4| (-962)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL (|has| |#4| (-962)) CONST)) (-3340 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-962))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#4| (-823 (-1075))) (|has| |#4| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-962)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-962))))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1607 (((-107) $ $) NIL (-3745 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1703 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-962))) (($ $ (-844)) NIL (|has| |#4| (-962)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-962)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-844) (-962) (-1025 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
NIL
(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1441 (($ (-843)) NIL (|has| |#3| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) NIL (|has| |#3| (-725)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#3| (-338)))) (-3345 (((-517) $) NIL (|has| |#3| (-777)))) (-2412 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3232 ((|#3| $) NIL (|has| |#3| (-1003))) (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-2749 (((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))) (-3775 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-4100 (($) NIL (|has| |#3| (-338)))) (-3705 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#3| $ (-517)) NIL)) (-3162 (((-107) $) NIL (|has| |#3| (-777)))) (-3240 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#3| (-961)))) (-1199 (((-107) $) NIL (|has| |#3| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2332 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3696 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#3| |#3|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#3| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#3| (-338)))) (-3214 (((-1021) $) NIL)) (-1750 ((|#3| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#3|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3949 (((-583 |#3|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-1369 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-1421 (($ (-1154 |#3|)) NIL)) (-2232 (((-125)) NIL (|has| |#3| (-333)))) (-1248 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-3223 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-1217 (((-703)) NIL (|has| |#3| (-961)))) (-2258 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#3| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL (|has| |#3| (-961)) CONST)) (-2738 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1558 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1678 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-961)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-961) (-585 |#2|)) (T -224))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2531 (($ (-844)) NIL (|has| |#3| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) NIL (|has| |#3| (-725)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#3| (-338)))) (-1323 (((-517) $) NIL (|has| |#3| (-777)))) (-2443 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1004))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004))))) (-3388 ((|#3| $) NIL (|has| |#3| (-1004))) (((-517) $) NIL (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004))))) (-2306 (((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 $) (-1156 $)) NIL (|has| |#3| (-962))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-962))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962))))) (-3163 (((-3 $ "failed") $) NIL (|has| |#3| (-962)))) (-2200 (($) NIL (|has| |#3| (-338)))) (-2757 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#3| $ (-517)) NIL)) (-3523 (((-107) $) NIL (|has| |#3| (-777)))) (-1535 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#3| (-962)))) (-1469 (((-107) $) NIL (|has| |#3| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2898 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2744 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#3| |#3|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#3| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#3| (-338)))) (-4123 (((-1022) $) NIL)) (-2427 ((|#3| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#3|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-1831 (((-583 |#3|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3989 ((|#3| $ $) NIL (|has| |#3| (-962)))) (-3907 (($ (-1156 |#3|)) NIL)) (-1880 (((-125)) NIL (|has| |#3| (-333)))) (-2059 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-962))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962))))) (-4135 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1004))) (($ (-517)) NIL (-3745 (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004))) (|has| |#3| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004))))) (-2950 (((-703)) NIL (|has| |#3| (-962)))) (-3160 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#3| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#3| (-962))) (($ $ (-844)) NIL (|has| |#3| (-962)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL (|has| |#3| (-962)) CONST)) (-3340 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-962))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962))))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1607 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1703 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-962))) (($ $ (-844)) NIL (|has| |#3| (-962)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-962)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-962) (-585 |#2|)) (T -224))
NIL
(-13 (-212 |#1| |#3|) (-585 |#2|))
-((-1195 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-2388 (((-703) $) 49) (((-703) $ |#3|) 52)) (-1445 (($ $) 65)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3730 (((-703) $ |#3|) 39) (((-703) $) 36)) (-1393 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-2141 ((|#4| $) 58)) (-1836 (((-107) $) 56)) (-2645 (($ $) 64)) (-2049 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-1248 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1849 (((-583 |#3|) $) 75)) (-3625 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2049 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#3| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#3| |#1|)) (-15 -1393 ((-1 |#1| (-703)) |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2141 (|#4| |#1|)) (-15 -1836 ((-107) |#1|)) (-15 -2388 ((-703) |#1| |#3|)) (-15 -1195 ((-583 (-703)) |#1| |#3|)) (-15 -2388 ((-703) |#1|)) (-15 -1195 ((-583 (-703)) |#1|)) (-15 -3625 ((-703) |#1| |#3|)) (-15 -3730 ((-703) |#1|)) (-15 -3730 ((-703) |#1| |#3|)) (-15 -1849 ((-583 |#3|) |#1|)) (-15 -1393 ((-1 |#1| (-703)) |#3|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2254 (|#1| |#3|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -3625 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3625 ((-703) |#1| |#4|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2254 (|#1| |#4|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#4| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#4| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3625 (|#5| |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1248 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1248 (|#1| |#1| |#4| (-703))) (-15 -1248 (|#1| |#1| (-583 |#4|))) (-15 -1248 (|#1| |#1| |#4|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-961) (-779) (-239 |#3|) (-725)) (T -225))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2049 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#3| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#3| |#1|)) (-15 -1393 ((-1 |#1| (-703)) |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2141 (|#4| |#1|)) (-15 -1836 ((-107) |#1|)) (-15 -2388 ((-703) |#1| |#3|)) (-15 -1195 ((-583 (-703)) |#1| |#3|)) (-15 -2388 ((-703) |#1|)) (-15 -1195 ((-583 (-703)) |#1|)) (-15 -3625 ((-703) |#1| |#3|)) (-15 -3730 ((-703) |#1|)) (-15 -3730 ((-703) |#1| |#3|)) (-15 -1849 ((-583 |#3|) |#1|)) (-15 -1393 ((-1 |#1| (-703)) |#3|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2254 (|#1| |#3|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -3625 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3625 ((-703) |#1| |#4|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2254 (|#1| |#4|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#4| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#4| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3625 (|#5| |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1248 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1248 (|#1| |#1| |#4| (-703))) (-15 -1248 (|#1| |#1| (-583 |#4|))) (-15 -1248 (|#1| |#1| |#4|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1195 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-2388 (((-703) $) 213) (((-703) $ |#2|) 211)) (-1357 (((-583 |#3|) $) 110)) (-2374 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2239 (($ $) 88 (|has| |#1| (-509)))) (-3531 (((-107) $) 90 (|has| |#1| (-509)))) (-3916 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-2377 (($ $) 98 (|has| |#1| (-421)))) (-2674 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-1445 (($ $) 207)) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3232 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-3167 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1221 (($ $) 154)) (-2749 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3775 (((-3 $ "failed") $) 34)) (-2038 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1206 (((-583 $) $) 109)) (-3083 (((-107) $) 96 (|has| |#1| (-831)))) (-2083 (($ $ |#1| |#4| $) 172)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ |#2|) 217) (((-703) $) 216)) (-3469 (((-107) $) 31)) (-3604 (((-703) $) 169)) (-1347 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3284 (((-583 $) $) 126)) (-2029 (((-107) $) 152)) (-1336 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#3|) 120)) (-3876 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-4055 (($ $ $) 79 (|has| |#1| (-779)))) (-3105 (($ $ $) 78 (|has| |#1| (-779)))) (-3602 (($ (-1 |#4| |#4|) $) 171)) (-1939 (($ (-1 |#1| |#1|) $) 151)) (-1393 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-3382 (((-3 |#3| "failed") $) 123)) (-1687 (($ $) 149)) (-1193 ((|#1| $) 148)) (-2141 ((|#3| $) 209)) (-1360 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1277 (((-1057) $) 9)) (-1836 (((-107) $) 210)) (-3789 (((-3 (-583 $) "failed") $) 114)) (-1674 (((-3 (-583 $) "failed") $) 115)) (-3106 (((-3 (-2 (|:| |var| |#3|) (|:| -3010 (-703))) "failed") $) 113)) (-2645 (($ $) 208)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 166)) (-1671 ((|#1| $) 167)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1387 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3383 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1248 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1074)) 234 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 233 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 232 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 231 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1849 (((-583 |#2|) $) 218)) (-3625 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3667 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 104 (-4032 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3782 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) 168)) (-4104 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2486 (((-3 $ "failed") $) 73 (-3782 (-4032 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 29)) (-2829 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1074)) 230 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 229 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 228 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 227 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1600 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-226 |#1| |#2| |#3| |#4|) (-1185) (-961) (-779) (-239 |t#2|) (-725)) (T -226))
-((-1393 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3730 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3625 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1195 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1195 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2388 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2645 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1445 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1393 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
-(-13 (-871 |t#1| |t#4| |t#3|) (-205 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1393 ((-1 $ (-703)) |t#2|)) (-15 -1849 ((-583 |t#2|) $)) (-15 -3730 ((-703) $ |t#2|)) (-15 -3730 ((-703) $)) (-15 -3625 ((-703) $ |t#2|)) (-15 -1195 ((-583 (-703)) $)) (-15 -2388 ((-703) $)) (-15 -1195 ((-583 (-703)) $ |t#2|)) (-15 -2388 ((-703) $ |t#2|)) (-15 -1836 ((-107) $)) (-15 -2141 (|t#3| $)) (-15 -2645 ($ $)) (-15 -1445 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -1393 ((-1 $ (-703)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#4| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3231 ((|#1| $) 54)) (-1261 ((|#1| $) 44)) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3859 (($ $) 60)) (-3182 (($ $) 48)) (-3660 ((|#1| |#1| $) 46)) (-3591 ((|#1| $) 45)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1631 (((-703) $) 61)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-1640 ((|#1| |#1| $) 52)) (-2233 ((|#1| |#1| $) 51)) (-3676 (($ |#1| $) 40)) (-1916 (((-703) $) 55)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2867 ((|#1| $) 62)) (-2521 ((|#1| $) 50)) (-1636 ((|#1| $) 49)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3785 ((|#1| |#1| $) 58)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3041 ((|#1| $) 59)) (-1404 (($) 57) (($ (-583 |#1|)) 56)) (-2410 (((-703) $) 43)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-4067 ((|#1| $) 53)) (-2882 (($ (-583 |#1|)) 42)) (-1934 ((|#1| $) 63)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-227 |#1|) (-1185) (-1109)) (T -227))
-((-1404 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1404 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-227 *3)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1640 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-2233 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) (-3182 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(-13 (-1022 |t#1|) (-911 |t#1|) (-10 -8 (-15 -1404 ($)) (-15 -1404 ($ (-583 |t#1|))) (-15 -1916 ((-703) $)) (-15 -3231 (|t#1| $)) (-15 -4067 (|t#1| $)) (-15 -1640 (|t#1| |t#1| $)) (-15 -2233 (|t#1| |t#1| $)) (-15 -2521 (|t#1| $)) (-15 -1636 (|t#1| $)) (-15 -3182 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-911 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1022 |#1|) . T) ((-1109) . T))
-((-3121 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1941 (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 160) (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 158) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 163) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 159) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 150) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 149) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349))) 129) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 127) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349))) 128) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 125)) (-1903 (((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 162) (((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 161) (((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 165) (((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 164) (((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 152) (((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 151) (((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349))) 135) (((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 134) (((-1156) (-802 (-1 (-199) (-199))) (-998 (-349))) 133) (((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 132) (((-1155) (-800 (-1 (-199) (-199))) (-998 (-349))) 99) (((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 98) (((-1155) (-1 (-199) (-199)) (-998 (-349))) 95) (((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236))) 94)))
-(((-228) (-10 -7 (-15 -1903 ((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1903 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1903 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1903 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3121 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
-((-3121 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))))
-(-10 -7 (-15 -1903 ((-1155) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1903 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1903 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1903 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1941 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3121 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-1903 (((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236))) 93)))
-(((-229 |#1| |#2|) (-10 -7 (-15 -1903 ((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236))))) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|)) (T -229))
-((-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1074)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1155)) (-5 *1 (-229 *6 *7)))))
-(-10 -7 (-15 -1903 ((-1155) (-265 |#2|) (-1074) (-1074) (-583 (-236)))))
-((-1846 (((-517) (-517)) 50)) (-2498 (((-517) (-517)) 51)) (-1794 (((-199) (-199)) 52)) (-3930 (((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199))) 49)) (-2737 (((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107)) 47)))
-(((-230) (-10 -7 (-15 -2737 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -3930 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -1846 ((-517) (-517))) (-15 -2498 ((-517) (-517))) (-15 -1794 ((-199) (-199))))) (T -230))
-((-1794 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-2498 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-3930 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1156)) (-5 *1 (-230)))) (-2737 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1156)) (-5 *1 (-230)))))
-(-10 -7 (-15 -2737 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -3930 ((-1156) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -1846 ((-517) (-517))) (-15 -2498 ((-517) (-517))) (-15 -1794 ((-199) (-199))))
-((-2254 (((-996 (-349)) (-996 (-286 |#1|))) 16)))
-(((-231 |#1|) (-10 -7 (-15 -2254 ((-996 (-349)) (-996 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))))
-(-10 -7 (-15 -2254 ((-996 (-349)) (-996 (-286 |#1|)))))
-((-1941 (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))) 69) (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 68) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349))) 59) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 58) (((-1034 (-199)) (-802 |#1|) (-996 (-349))) 50) (((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236))) 49)) (-1903 (((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349))) 72) (((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 71) (((-1156) |#1| (-996 (-349)) (-996 (-349))) 62) (((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 61) (((-1156) (-802 |#1|) (-996 (-349))) 54) (((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236))) 53) (((-1155) (-800 |#1|) (-996 (-349))) 41) (((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236))) 40) (((-1155) |#1| (-996 (-349))) 33) (((-1155) |#1| (-996 (-349)) (-583 (-236))) 32)))
-(((-232 |#1|) (-10 -7 (-15 -1903 ((-1155) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) |#1| (-996 (-349)))) (-15 -1903 ((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-800 |#1|) (-996 (-349)))) (-15 -1903 ((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-802 |#1|) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1903 ((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1903 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) (-13 (-558 (-493)) (-1003))) (T -232))
-((-1941 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1941 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) (-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) (-1941 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1941 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1903 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1903 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))))
-(-10 -7 (-15 -1903 ((-1155) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) |#1| (-996 (-349)))) (-15 -1903 ((-1155) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1155) (-800 |#1|) (-996 (-349)))) (-15 -1903 ((-1156) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-802 |#1|) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1903 ((-1156) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1903 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1903 ((-1156) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1941 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1941 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)))))
-((-1903 (((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1155) (-583 (-865 (-199))) (-583 (-236))) 13) (((-1155) (-583 (-865 (-199)))) 14) (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1155) (-583 (-199)) (-583 (-199))) 19)))
-(((-233) (-10 -7 (-15 -1903 ((-1155) (-583 (-199)) (-583 (-199)))) (-15 -1903 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1903 ((-1155) (-583 (-865 (-199))))) (-15 -1903 ((-1155) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1903 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1903 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
-((-1903 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-233)))) (-1903 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156)) (-5 *1 (-233)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1903 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1903 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))))
-(-10 -7 (-15 -1903 ((-1155) (-583 (-199)) (-583 (-199)))) (-15 -1903 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1903 ((-1155) (-583 (-865 (-199))))) (-15 -1903 ((-1155) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1903 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1903 ((-1156) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
-((-2365 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1609 (((-843) (-583 (-236)) (-843)) 49)) (-3235 (((-843) (-583 (-236)) (-843)) 48)) (-3016 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-1567 (((-349) (-583 (-236)) (-349)) 55)) (-2353 (((-843) (-583 (-236)) (-843)) 50)) (-3325 (((-107) (-583 (-236)) (-107)) 26)) (-4154 (((-1057) (-583 (-236)) (-1057)) 19)) (-2949 (((-1057) (-583 (-236)) (-1057)) 25)) (-4130 (((-1034 (-199)) (-583 (-236))) 43)) (-2795 (((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349)))) 37)) (-3088 (((-797) (-583 (-236)) (-797)) 31)) (-3707 (((-797) (-583 (-236)) (-797)) 32)) (-2553 (((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199)))) 60)) (-3302 (((-107) (-583 (-236)) (-107)) 15)) (-1830 (((-107) (-583 (-236)) (-107)) 14)))
-(((-234) (-10 -7 (-15 -1830 ((-107) (-583 (-236)) (-107))) (-15 -3302 ((-107) (-583 (-236)) (-107))) (-15 -2365 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4154 ((-1057) (-583 (-236)) (-1057))) (-15 -2949 ((-1057) (-583 (-236)) (-1057))) (-15 -3325 ((-107) (-583 (-236)) (-107))) (-15 -3088 ((-797) (-583 (-236)) (-797))) (-15 -3707 ((-797) (-583 (-236)) (-797))) (-15 -2795 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3235 ((-843) (-583 (-236)) (-843))) (-15 -1609 ((-843) (-583 (-236)) (-843))) (-15 -4130 ((-1034 (-199)) (-583 (-236)))) (-15 -2353 ((-843) (-583 (-236)) (-843))) (-15 -1567 ((-349) (-583 (-236)) (-349))) (-15 -2553 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3016 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
-((-3016 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2353 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) (-1609 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3235 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2795 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3707 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3088 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3325 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2949 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4154 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2365 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3302 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1830 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(-10 -7 (-15 -1830 ((-107) (-583 (-236)) (-107))) (-15 -3302 ((-107) (-583 (-236)) (-107))) (-15 -2365 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4154 ((-1057) (-583 (-236)) (-1057))) (-15 -2949 ((-1057) (-583 (-236)) (-1057))) (-15 -3325 ((-107) (-583 (-236)) (-107))) (-15 -3088 ((-797) (-583 (-236)) (-797))) (-15 -3707 ((-797) (-583 (-236)) (-797))) (-15 -2795 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3235 ((-843) (-583 (-236)) (-843))) (-15 -1609 ((-843) (-583 (-236)) (-843))) (-15 -4130 ((-1034 (-199)) (-583 (-236)))) (-15 -2353 ((-843) (-583 (-236)) (-843))) (-15 -1567 ((-349) (-583 (-236)) (-349))) (-15 -2553 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3016 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
-((-2087 (((-3 |#1| "failed") (-583 (-236)) (-1074)) 17)))
-(((-235 |#1|) (-10 -7 (-15 -2087 ((-3 |#1| "failed") (-583 (-236)) (-1074)))) (-1109)) (T -235))
-((-2087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *1 (-235 *2)) (-4 *2 (-1109)))))
-(-10 -7 (-15 -2087 ((-3 |#1| "failed") (-583 (-236)) (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2365 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1609 (($ (-843)) 70)) (-3235 (($ (-843)) 69)) (-1346 (($ (-583 (-349))) 76)) (-1567 (($ (-349)) 55)) (-2353 (($ (-843)) 71)) (-3325 (($ (-107)) 22)) (-4154 (($ (-1057)) 17)) (-2949 (($ (-1057)) 18)) (-4130 (($ (-1034 (-199))) 65)) (-2795 (($ (-583 (-998 (-349)))) 61)) (-2554 (($ (-583 (-998 (-349)))) 56) (($ (-583 (-998 (-377 (-517))))) 60)) (-1784 (($ (-349)) 28) (($ (-797)) 32)) (-4122 (((-107) (-583 $) (-1074)) 85)) (-2087 (((-3 (-51) "failed") (-583 $) (-1074)) 87)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2982 (($ (-349)) 33) (($ (-797)) 34)) (-3589 (($ (-1 (-865 (-199)) (-865 (-199)))) 54)) (-2553 (($ (-1 (-865 (-199)) (-865 (-199)))) 72)) (-2158 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2254 (((-787) $) 81)) (-2598 (($ (-107)) 23) (($ (-583 (-998 (-349)))) 50)) (-1830 (($ (-107)) 24)) (-1534 (((-107) $ $) 83)))
-(((-236) (-13 (-1003) (-10 -8 (-15 -1830 ($ (-107))) (-15 -2598 ($ (-107))) (-15 -2365 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4154 ($ (-1057))) (-15 -2949 ($ (-1057))) (-15 -3325 ($ (-107))) (-15 -2598 ($ (-583 (-998 (-349))))) (-15 -3589 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1784 ($ (-349))) (-15 -1784 ($ (-797))) (-15 -2982 ($ (-349))) (-15 -2982 ($ (-797))) (-15 -2158 ($ (-1 (-199) (-199)))) (-15 -2158 ($ (-1 (-199) (-199) (-199)))) (-15 -2158 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -1567 ($ (-349))) (-15 -2554 ($ (-583 (-998 (-349))))) (-15 -2554 ($ (-583 (-998 (-377 (-517)))))) (-15 -2795 ($ (-583 (-998 (-349))))) (-15 -4130 ($ (-1034 (-199)))) (-15 -3235 ($ (-843))) (-15 -1609 ($ (-843))) (-15 -2353 ($ (-843))) (-15 -2553 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1346 ($ (-583 (-349)))) (-15 -2087 ((-3 (-51) "failed") (-583 $) (-1074))) (-15 -4122 ((-107) (-583 $) (-1074)))))) (T -236))
-((-1830 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-2982 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2982 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) (-2795 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-4130 (*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-2353 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-2087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-51)) (-5 *1 (-236)))) (-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-107)) (-5 *1 (-236)))))
-(-13 (-1003) (-10 -8 (-15 -1830 ($ (-107))) (-15 -2598 ($ (-107))) (-15 -2365 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4154 ($ (-1057))) (-15 -2949 ($ (-1057))) (-15 -3325 ($ (-107))) (-15 -2598 ($ (-583 (-998 (-349))))) (-15 -3589 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1784 ($ (-349))) (-15 -1784 ($ (-797))) (-15 -2982 ($ (-349))) (-15 -2982 ($ (-797))) (-15 -2158 ($ (-1 (-199) (-199)))) (-15 -2158 ($ (-1 (-199) (-199) (-199)))) (-15 -2158 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -1567 ($ (-349))) (-15 -2554 ($ (-583 (-998 (-349))))) (-15 -2554 ($ (-583 (-998 (-377 (-517)))))) (-15 -2795 ($ (-583 (-998 (-349))))) (-15 -4130 ($ (-1034 (-199)))) (-15 -3235 ($ (-843))) (-15 -1609 ($ (-843))) (-15 -2353 ($ (-843))) (-15 -2553 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1346 ($ (-583 (-349)))) (-15 -2087 ((-3 (-51) "failed") (-583 $) (-1074))) (-15 -4122 ((-107) (-583 $) (-1074)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1195 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-2388 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-1357 (((-583 |#3|) $) NIL)) (-2374 (((-1070 $) $ |#3|) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1445 (($ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1026 |#1| |#2|) "failed") $) 20)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1026 |#1| |#2|) $) NIL)) (-3167 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-489 |#3|) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))))) (-3730 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#1|) |#3|) NIL) (($ (-1070 $) |#3|) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#3|) NIL)) (-3876 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-3382 (((-3 |#3| "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-2141 ((|#3| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-1836 (((-107) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| |#3|) (|:| -3010 (-703))) "failed") $) NIL)) (-2645 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3383 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-1248 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1849 (((-583 |#2|) $) NIL)) (-3625 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1026 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|))) (-961) (-779) (-239 |#2|)) (T -237))
-NIL
-(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|)))
-((-2388 (((-703) $) 30)) (-1837 (((-3 |#2| "failed") $) 17)) (-3232 ((|#2| $) 27)) (-1248 (($ $) 12) (($ $ (-703)) 15)) (-2254 (((-787) $) 26) (($ |#2|) 10)) (-1534 (((-107) $ $) 20)) (-1558 (((-107) $ $) 29)))
-(((-238 |#1| |#2|) (-10 -8 (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -2388 ((-703) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
-NIL
-(-10 -8 (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -2388 ((-703) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2388 (((-703) $) 22)) (-3518 ((|#1| $) 23)) (-1837 (((-3 |#1| "failed") $) 27)) (-3232 ((|#1| $) 26)) (-3730 (((-703) $) 24)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1393 (($ |#1| (-703)) 25)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1248 (($ $) 21) (($ $ (-703)) 20)) (-2254 (((-787) $) 11) (($ |#1|) 28)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)))
-(((-239 |#1|) (-1185) (-779)) (T -239))
-((-2254 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1248 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 |t#1|) (-10 -8 (-15 -1393 ($ |t#1| (-703))) (-15 -3730 ((-703) $)) (-15 -3518 (|t#1| $)) (-15 -2388 ((-703) $)) (-15 -1248 ($ $)) (-15 -1248 ($ $ (-703))) (-15 -2254 ($ |t#1|))))
-(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-1357 (((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 40)) (-3556 (((-583 (-1074)) (-286 (-199)) (-703)) 79)) (-1507 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2159 (((-286 (-199)) (-286 (-199))) 65)) (-1747 (((-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-3520 (((-107) (-583 (-286 (-199)))) 83)) (-1568 (((-107) (-286 (-199))) 24)) (-3908 (((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) 104)) (-3998 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 86)) (-3839 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-3250 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 93)) (-2293 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-1976 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-3109 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 99)) (-3612 (((-950) (-1074) (-950)) 33)))
-(((-240) (-10 -7 (-15 -1976 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1747 ((-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1507 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2159 ((-286 (-199)) (-286 (-199)))) (-15 -3520 ((-107) (-583 (-286 (-199))))) (-15 -2293 ((-107) (-583 (-286 (-199))))) (-15 -2293 ((-107) (-286 (-199)))) (-15 -3250 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3839 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3998 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1568 ((-107) (-286 (-199)))) (-15 -1357 ((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3556 ((-583 (-1074)) (-286 (-199)) (-703))) (-15 -3612 ((-950) (-1074) (-950))) (-15 -3109 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3908 ((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))))))) (T -240))
-((-3908 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *2 (-583 (-1057))) (-5 *1 (-240)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3612 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-240)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1507 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
-(-10 -7 (-15 -1976 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1747 ((-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1507 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2159 ((-286 (-199)) (-286 (-199)))) (-15 -3520 ((-107) (-583 (-286 (-199))))) (-15 -2293 ((-107) (-583 (-286 (-199))))) (-15 -2293 ((-107) (-286 (-199)))) (-15 -3250 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3839 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3998 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1568 ((-107) (-286 (-199)))) (-15 -1357 ((-583 (-1074)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3556 ((-583 (-1074)) (-286 (-199)) (-703))) (-15 -3612 ((-950) (-1074) (-950))) (-15 -3109 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3908 ((-583 (-1057)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))))))
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-3502 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-1463 (((-703) $) 49) (((-703) $ |#3|) 52)) (-1527 (($ $) 65)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2053 (((-703) $ |#3|) 39) (((-703) $) 36)) (-3528 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-3301 ((|#4| $) 58)) (-3033 (((-107) $) 56)) (-2623 (($ $) 64)) (-3522 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-2059 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1255 (((-583 |#3|) $) 75)) (-2769 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3522 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#3| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#3| |#1|)) (-15 -3528 ((-1 |#1| (-703)) |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -2623 (|#1| |#1|)) (-15 -3301 (|#4| |#1|)) (-15 -3033 ((-107) |#1|)) (-15 -1463 ((-703) |#1| |#3|)) (-15 -3502 ((-583 (-703)) |#1| |#3|)) (-15 -1463 ((-703) |#1|)) (-15 -3502 ((-583 (-703)) |#1|)) (-15 -2769 ((-703) |#1| |#3|)) (-15 -2053 ((-703) |#1|)) (-15 -2053 ((-703) |#1| |#3|)) (-15 -1255 ((-583 |#3|) |#1|)) (-15 -3528 ((-1 |#1| (-703)) |#3|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2269 (|#1| |#3|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -2769 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -2769 ((-703) |#1| |#4|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -2269 (|#1| |#4|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#4| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#4| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2769 (|#5| |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2059 (|#1| |#1| (-583 |#4|))) (-15 -2059 (|#1| |#1| |#4|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-962) (-779) (-239 |#3|) (-725)) (T -225))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3522 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#3| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#3| |#1|)) (-15 -3528 ((-1 |#1| (-703)) |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -2623 (|#1| |#1|)) (-15 -3301 (|#4| |#1|)) (-15 -3033 ((-107) |#1|)) (-15 -1463 ((-703) |#1| |#3|)) (-15 -3502 ((-583 (-703)) |#1| |#3|)) (-15 -1463 ((-703) |#1|)) (-15 -3502 ((-583 (-703)) |#1|)) (-15 -2769 ((-703) |#1| |#3|)) (-15 -2053 ((-703) |#1|)) (-15 -2053 ((-703) |#1| |#3|)) (-15 -1255 ((-583 |#3|) |#1|)) (-15 -3528 ((-1 |#1| (-703)) |#3|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2269 (|#1| |#3|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -2769 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -2769 ((-703) |#1| |#4|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -2269 (|#1| |#4|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#4| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#4| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2769 (|#5| |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2059 (|#1| |#1| (-583 |#4|))) (-15 -2059 (|#1| |#1| |#4|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3502 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-1463 (((-703) $) 213) (((-703) $ |#2|) 211)) (-2096 (((-583 |#3|) $) 110)) (-1440 (((-1071 $) $ |#3|) 125) (((-1071 |#1|) $) 124)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2729 (($ $) 88 (|has| |#1| (-509)))) (-2566 (((-107) $) 90 (|has| |#1| (-509)))) (-2629 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 100 (|has| |#1| (-832)))) (-3088 (($ $) 98 (|has| |#1| (-421)))) (-1581 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 103 (|has| |#1| (-832)))) (-1527 (($ $) 207)) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-953 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3388 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-953 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-953 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-2272 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2371 (($ $) 154)) (-2306 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3163 (((-3 $ "failed") $) 34)) (-2186 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2358 (((-583 $) $) 109)) (-2963 (((-107) $) 96 (|has| |#1| (-832)))) (-2027 (($ $ |#1| |#4| $) 172)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ |#2|) 217) (((-703) $) 216)) (-1865 (((-107) $) 31)) (-1942 (((-703) $) 169)) (-2086 (($ (-1071 |#1|) |#3|) 117) (($ (-1071 $) |#3|) 116)) (-3370 (((-583 $) $) 126)) (-1960 (((-107) $) 152)) (-2077 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#3|) 120)) (-2210 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3456 (($ $ $) 79 (|has| |#1| (-779)))) (-4082 (($ $ $) 78 (|has| |#1| (-779)))) (-3200 (($ (-1 |#4| |#4|) $) 171)) (-3308 (($ (-1 |#1| |#1|) $) 151)) (-3528 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1512 (((-3 |#3| "failed") $) 123)) (-2333 (($ $) 149)) (-2345 ((|#1| $) 148)) (-3301 ((|#3| $) 209)) (-2330 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1895 (((-1058) $) 9)) (-3033 (((-107) $) 210)) (-3807 (((-3 (-583 $) "failed") $) 114)) (-2875 (((-3 (-583 $) "failed") $) 115)) (-1812 (((-3 (-2 (|:| |var| |#3|) (|:| -2356 (-703))) "failed") $) 113)) (-2623 (($ $) 208)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 166)) (-2319 ((|#1| $) 167)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 95 (|has| |#1| (-421)))) (-2368 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 102 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 101 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-4032 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2059 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1075)) 234 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 233 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 232 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 231 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1255 (((-583 |#2|) $) 218)) (-2769 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3357 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 104 (-3992 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3745 (|has| |#1| (-953 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) 168)) (-3952 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2650 (((-3 $ "failed") $) 73 (-3745 (-3992 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 29)) (-3510 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1075)) 230 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 229 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 228 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 227 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1641 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-226 |#1| |#2| |#3| |#4|) (-1187) (-962) (-779) (-239 |t#2|) (-725)) (T -226))
+((-3528 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-2053 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3502 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-1463 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2623 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
+(-13 (-872 |t#1| |t#4| |t#3|) (-205 |t#1|) (-953 |t#2|) (-10 -8 (-15 -3528 ((-1 $ (-703)) |t#2|)) (-15 -1255 ((-583 |t#2|) $)) (-15 -2053 ((-703) $ |t#2|)) (-15 -2053 ((-703) $)) (-15 -2769 ((-703) $ |t#2|)) (-15 -3502 ((-583 (-703)) $)) (-15 -1463 ((-703) $)) (-15 -3502 ((-583 (-703)) $ |t#2|)) (-15 -1463 ((-703) $ |t#2|)) (-15 -3033 ((-107) $)) (-15 -3301 (|t#3| $)) (-15 -2623 ($ $)) (-15 -1527 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -3528 ((-1 $ (-703)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-872 |#1| |#4| |#3|) . T) ((-832) |has| |#1| (-832)) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-953 |#2|) . T) ((-953 |#3|) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) |has| |#1| (-832)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3806 ((|#1| $) 54)) (-2551 ((|#1| $) 44)) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-2196 (($ $) 60)) (-1407 (($ $) 48)) (-1426 ((|#1| |#1| $) 46)) (-3751 ((|#1| $) 45)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-3680 (((-703) $) 61)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-3965 ((|#1| |#1| $) 52)) (-1320 ((|#1| |#1| $) 51)) (-2704 (($ |#1| $) 40)) (-1807 (((-703) $) 55)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-4107 ((|#1| $) 62)) (-2260 ((|#1| $) 50)) (-4079 ((|#1| $) 49)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3068 ((|#1| |#1| $) 58)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4036 ((|#1| $) 59)) (-4142 (($) 57) (($ (-583 |#1|)) 56)) (-3143 (((-703) $) 43)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4145 ((|#1| $) 53)) (-4155 (($ (-583 |#1|)) 42)) (-3285 ((|#1| $) 63)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-227 |#1|) (-1187) (-1110)) (T -227))
+((-4142 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-227 *3)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-3965 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-1320 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-2260 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))) (-1407 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(-13 (-1023 |t#1|) (-912 |t#1|) (-10 -8 (-15 -4142 ($)) (-15 -4142 ($ (-583 |t#1|))) (-15 -1807 ((-703) $)) (-15 -3806 (|t#1| $)) (-15 -4145 (|t#1| $)) (-15 -3965 (|t#1| |t#1| $)) (-15 -1320 (|t#1| |t#1| $)) (-15 -2260 (|t#1| $)) (-15 -4079 (|t#1| $)) (-15 -1407 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-912 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1023 |#1|) . T) ((-1110) . T))
+((-2419 (((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1549 (((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349))) 160) (((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236))) 158) (((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349))) 163) (((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236))) 159) (((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349))) 150) (((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236))) 149) (((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349))) 129) (((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236))) 127) (((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349))) 128) (((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236))) 125)) (-1498 (((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349))) 162) (((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236))) 161) (((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349))) 165) (((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236))) 164) (((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349))) 152) (((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236))) 151) (((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349))) 135) (((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236))) 134) (((-1158) (-802 (-1 (-199) (-199))) (-999 (-349))) 133) (((-1158) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236))) 132) (((-1157) (-800 (-1 (-199) (-199))) (-999 (-349))) 99) (((-1157) (-800 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236))) 98) (((-1157) (-1 (-199) (-199)) (-999 (-349))) 95) (((-1157) (-1 (-199) (-199)) (-999 (-349)) (-583 (-236))) 94)))
+(((-228) (-10 -7 (-15 -1498 ((-1157) (-1 (-199) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-1 (-199) (-199)) (-999 (-349)))) (-15 -1498 ((-1157) (-800 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-800 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1498 ((-1158) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-802 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1498 ((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)))) (-15 -2419 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
+((-2419 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *2 (-1157)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1157)) (-5 *1 (-228)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-228)))))
+(-10 -7 (-15 -1498 ((-1157) (-1 (-199) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-1 (-199) (-199)) (-999 (-349)))) (-15 -1498 ((-1157) (-800 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-800 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1498 ((-1158) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-802 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-802 (-1 (-199) (-199))) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199)) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-349)) (-999 (-349)))) (-15 -1498 ((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)))) (-15 -1549 ((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-805 (-1 (-199) (-199) (-199))) (-999 (-349)) (-999 (-349)))) (-15 -2419 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-1498 (((-1157) (-265 |#2|) (-1075) (-1075) (-583 (-236))) 93)))
+(((-229 |#1| |#2|) (-10 -7 (-15 -1498 ((-1157) (-265 |#2|) (-1075) (-1075) (-583 (-236))))) (-13 (-509) (-779) (-953 (-517))) (-400 |#1|)) (T -229))
+((-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1075)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-1157)) (-5 *1 (-229 *6 *7)))))
+(-10 -7 (-15 -1498 ((-1157) (-265 |#2|) (-1075) (-1075) (-583 (-236)))))
+((-2191 (((-517) (-517)) 50)) (-2237 (((-517) (-517)) 51)) (-2628 (((-199) (-199)) 52)) (-3758 (((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199))) 49)) (-4068 (((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199)) (-107)) 47)))
+(((-230) (-10 -7 (-15 -4068 ((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199)) (-107))) (-15 -3758 ((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199)))) (-15 -2191 ((-517) (-517))) (-15 -2237 ((-517) (-517))) (-15 -2628 ((-199) (-199))))) (T -230))
+((-2628 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-3758 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-999 (-199))) (-5 *2 (-1158)) (-5 *1 (-230)))) (-4068 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-999 (-199))) (-5 *5 (-107)) (-5 *2 (-1158)) (-5 *1 (-230)))))
+(-10 -7 (-15 -4068 ((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199)) (-107))) (-15 -3758 ((-1158) (-1 (-153 (-199)) (-153 (-199))) (-999 (-199)) (-999 (-199)))) (-15 -2191 ((-517) (-517))) (-15 -2237 ((-517) (-517))) (-15 -2628 ((-199) (-199))))
+((-2269 (((-997 (-349)) (-997 (-286 |#1|))) 16)))
+(((-231 |#1|) (-10 -7 (-15 -2269 ((-997 (-349)) (-997 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-997 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-997 (-349))) (-5 *1 (-231 *4)))))
+(-10 -7 (-15 -2269 ((-997 (-349)) (-997 (-286 |#1|)))))
+((-1549 (((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349))) 69) (((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236))) 68) (((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349))) 59) (((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236))) 58) (((-1035 (-199)) (-802 |#1|) (-997 (-349))) 50) (((-1035 (-199)) (-802 |#1|) (-997 (-349)) (-583 (-236))) 49)) (-1498 (((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349))) 72) (((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236))) 71) (((-1158) |#1| (-997 (-349)) (-997 (-349))) 62) (((-1158) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236))) 61) (((-1158) (-802 |#1|) (-997 (-349))) 54) (((-1158) (-802 |#1|) (-997 (-349)) (-583 (-236))) 53) (((-1157) (-800 |#1|) (-997 (-349))) 41) (((-1157) (-800 |#1|) (-997 (-349)) (-583 (-236))) 40) (((-1157) |#1| (-997 (-349))) 33) (((-1157) |#1| (-997 (-349)) (-583 (-236))) 32)))
+(((-232 |#1|) (-10 -7 (-15 -1498 ((-1157) |#1| (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) |#1| (-997 (-349)))) (-15 -1498 ((-1157) (-800 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-800 |#1|) (-997 (-349)))) (-15 -1498 ((-1158) (-802 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-802 |#1|) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) (-802 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-802 |#1|) (-997 (-349)))) (-15 -1498 ((-1158) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) |#1| (-997 (-349)) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349)))) (-15 -1498 ((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349))))) (-13 (-558 (-493)) (-1004))) (T -232))
+((-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-997 (-349))) (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *5)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-997 (-349))) (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158)) (-5 *1 (-232 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158)) (-5 *1 (-232 *6)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1158)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-997 (-349))) (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *5)))) (-1549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *6)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-997 (-349))) (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158)) (-5 *1 (-232 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158)) (-5 *1 (-232 *6)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-997 (-349))) (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1157)) (-5 *1 (-232 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1157)) (-5 *1 (-232 *6)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1157)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004))))))
+(-10 -7 (-15 -1498 ((-1157) |#1| (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) |#1| (-997 (-349)))) (-15 -1498 ((-1157) (-800 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1157) (-800 |#1|) (-997 (-349)))) (-15 -1498 ((-1158) (-802 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-802 |#1|) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) (-802 |#1|) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-802 |#1|) (-997 (-349)))) (-15 -1498 ((-1158) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) |#1| (-997 (-349)) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) |#1| (-997 (-349)) (-997 (-349)))) (-15 -1498 ((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1498 ((-1158) (-805 |#1|) (-997 (-349)) (-997 (-349)))) (-15 -1549 ((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349)) (-583 (-236)))) (-15 -1549 ((-1035 (-199)) (-805 |#1|) (-997 (-349)) (-997 (-349)))))
+((-1498 (((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1157) (-583 (-866 (-199))) (-583 (-236))) 13) (((-1157) (-583 (-866 (-199)))) 14) (((-1157) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1157) (-583 (-199)) (-583 (-199))) 19)))
+(((-233) (-10 -7 (-15 -1498 ((-1157) (-583 (-199)) (-583 (-199)))) (-15 -1498 ((-1157) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1498 ((-1157) (-583 (-866 (-199))))) (-15 -1498 ((-1157) (-583 (-866 (-199))) (-583 (-236)))) (-15 -1498 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1498 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
+((-1498 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-233)))) (-1498 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158)) (-5 *1 (-233)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-233)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *2 (-1157)) (-5 *1 (-233)))) (-1498 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-233)))) (-1498 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1157)) (-5 *1 (-233)))))
+(-10 -7 (-15 -1498 ((-1157) (-583 (-199)) (-583 (-199)))) (-15 -1498 ((-1157) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1498 ((-1157) (-583 (-866 (-199))))) (-15 -1498 ((-1157) (-583 (-866 (-199))) (-583 (-236)))) (-15 -1498 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1498 ((-1158) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
+((-1485 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-2491 (((-844) (-583 (-236)) (-844)) 49)) (-1620 (((-844) (-583 (-236)) (-844)) 48)) (-2471 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3842 (((-349) (-583 (-236)) (-349)) 55)) (-3857 (((-844) (-583 (-236)) (-844)) 50)) (-2072 (((-107) (-583 (-236)) (-107)) 26)) (-3092 (((-1058) (-583 (-236)) (-1058)) 19)) (-1593 (((-1058) (-583 (-236)) (-1058)) 25)) (-2850 (((-1035 (-199)) (-583 (-236))) 43)) (-3082 (((-583 (-999 (-349))) (-583 (-236)) (-583 (-999 (-349)))) 37)) (-2532 (((-797) (-583 (-236)) (-797)) 31)) (-3147 (((-797) (-583 (-236)) (-797)) 32)) (-3484 (((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199)))) 60)) (-1996 (((-107) (-583 (-236)) (-107)) 15)) (-2311 (((-107) (-583 (-236)) (-107)) 14)))
+(((-234) (-10 -7 (-15 -2311 ((-107) (-583 (-236)) (-107))) (-15 -1996 ((-107) (-583 (-236)) (-107))) (-15 -1485 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3092 ((-1058) (-583 (-236)) (-1058))) (-15 -1593 ((-1058) (-583 (-236)) (-1058))) (-15 -2072 ((-107) (-583 (-236)) (-107))) (-15 -2532 ((-797) (-583 (-236)) (-797))) (-15 -3147 ((-797) (-583 (-236)) (-797))) (-15 -3082 ((-583 (-999 (-349))) (-583 (-236)) (-583 (-999 (-349))))) (-15 -1620 ((-844) (-583 (-236)) (-844))) (-15 -2491 ((-844) (-583 (-236)) (-844))) (-15 -2850 ((-1035 (-199)) (-583 (-236)))) (-15 -3857 ((-844) (-583 (-236)) (-844))) (-15 -3842 ((-349) (-583 (-236)) (-349))) (-15 -3484 ((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199))))) (-15 -2471 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
+((-2471 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3484 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3857 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-234)))) (-2491 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1620 (*1 *2 *3 *2) (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2532 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2072 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3092 (*1 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1485 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2311 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(-10 -7 (-15 -2311 ((-107) (-583 (-236)) (-107))) (-15 -1996 ((-107) (-583 (-236)) (-107))) (-15 -1485 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3092 ((-1058) (-583 (-236)) (-1058))) (-15 -1593 ((-1058) (-583 (-236)) (-1058))) (-15 -2072 ((-107) (-583 (-236)) (-107))) (-15 -2532 ((-797) (-583 (-236)) (-797))) (-15 -3147 ((-797) (-583 (-236)) (-797))) (-15 -3082 ((-583 (-999 (-349))) (-583 (-236)) (-583 (-999 (-349))))) (-15 -1620 ((-844) (-583 (-236)) (-844))) (-15 -2491 ((-844) (-583 (-236)) (-844))) (-15 -2850 ((-1035 (-199)) (-583 (-236)))) (-15 -3857 ((-844) (-583 (-236)) (-844))) (-15 -3842 ((-349) (-583 (-236)) (-349))) (-15 -3484 ((-1 (-866 (-199)) (-866 (-199))) (-583 (-236)) (-1 (-866 (-199)) (-866 (-199))))) (-15 -2471 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
+((-3159 (((-3 |#1| "failed") (-583 (-236)) (-1075)) 17)))
+(((-235 |#1|) (-10 -7 (-15 -3159 ((-3 |#1| "failed") (-583 (-236)) (-1075)))) (-1110)) (T -235))
+((-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1075)) (-5 *1 (-235 *2)) (-4 *2 (-1110)))))
+(-10 -7 (-15 -3159 ((-3 |#1| "failed") (-583 (-236)) (-1075))))
+((-2118 (((-107) $ $) NIL)) (-1485 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-2491 (($ (-844)) 70)) (-1620 (($ (-844)) 69)) (-1875 (($ (-583 (-349))) 76)) (-3842 (($ (-349)) 55)) (-3857 (($ (-844)) 71)) (-2072 (($ (-107)) 22)) (-3092 (($ (-1058)) 17)) (-1593 (($ (-1058)) 18)) (-2850 (($ (-1035 (-199))) 65)) (-3082 (($ (-583 (-999 (-349)))) 61)) (-2192 (($ (-583 (-999 (-349)))) 56) (($ (-583 (-999 (-377 (-517))))) 60)) (-2536 (($ (-349)) 28) (($ (-797)) 32)) (-2559 (((-107) (-583 $) (-1075)) 85)) (-3159 (((-3 (-51) "failed") (-583 $) (-1075)) 87)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3268 (($ (-349)) 33) (($ (-797)) 34)) (-3369 (($ (-1 (-866 (-199)) (-866 (-199)))) 54)) (-3484 (($ (-1 (-866 (-199)) (-866 (-199)))) 72)) (-3047 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2269 (((-787) $) 81)) (-3356 (($ (-107)) 23) (($ (-583 (-999 (-349)))) 50)) (-2311 (($ (-107)) 24)) (-1583 (((-107) $ $) 83)))
+(((-236) (-13 (-1004) (-10 -8 (-15 -2311 ($ (-107))) (-15 -3356 ($ (-107))) (-15 -1485 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3092 ($ (-1058))) (-15 -1593 ($ (-1058))) (-15 -2072 ($ (-107))) (-15 -3356 ($ (-583 (-999 (-349))))) (-15 -3369 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -2536 ($ (-349))) (-15 -2536 ($ (-797))) (-15 -3268 ($ (-349))) (-15 -3268 ($ (-797))) (-15 -3047 ($ (-1 (-199) (-199)))) (-15 -3047 ($ (-1 (-199) (-199) (-199)))) (-15 -3047 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3842 ($ (-349))) (-15 -2192 ($ (-583 (-999 (-349))))) (-15 -2192 ($ (-583 (-999 (-377 (-517)))))) (-15 -3082 ($ (-583 (-999 (-349))))) (-15 -2850 ($ (-1035 (-199)))) (-15 -1620 ($ (-844))) (-15 -2491 ($ (-844))) (-15 -3857 ($ (-844))) (-15 -3484 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1875 ($ (-583 (-349)))) (-15 -3159 ((-3 (-51) "failed") (-583 $) (-1075))) (-15 -2559 ((-107) (-583 $) (-1075)))))) (T -236))
+((-2311 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-236)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-236)))) (-2072 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236)))) (-2536 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2536 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3268 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3268 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-377 (-517))))) (-5 *1 (-236)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236)))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-236)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))) (-3484 (*1 *1 *2) (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236)))) (-1875 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1075)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1075)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(-13 (-1004) (-10 -8 (-15 -2311 ($ (-107))) (-15 -3356 ($ (-107))) (-15 -1485 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3092 ($ (-1058))) (-15 -1593 ($ (-1058))) (-15 -2072 ($ (-107))) (-15 -3356 ($ (-583 (-999 (-349))))) (-15 -3369 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -2536 ($ (-349))) (-15 -2536 ($ (-797))) (-15 -3268 ($ (-349))) (-15 -3268 ($ (-797))) (-15 -3047 ($ (-1 (-199) (-199)))) (-15 -3047 ($ (-1 (-199) (-199) (-199)))) (-15 -3047 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3842 ($ (-349))) (-15 -2192 ($ (-583 (-999 (-349))))) (-15 -2192 ($ (-583 (-999 (-377 (-517)))))) (-15 -3082 ($ (-583 (-999 (-349))))) (-15 -2850 ($ (-1035 (-199)))) (-15 -1620 ($ (-844))) (-15 -2491 ($ (-844))) (-15 -3857 ($ (-844))) (-15 -3484 ($ (-1 (-866 (-199)) (-866 (-199))))) (-15 -1875 ($ (-583 (-349)))) (-15 -3159 ((-3 (-51) "failed") (-583 $) (-1075))) (-15 -2559 ((-107) (-583 $) (-1075)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3502 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-1463 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-2096 (((-583 |#3|) $) NIL)) (-1440 (((-1071 $) $ |#3|) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1527 (($ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1027 |#1| |#2|) "failed") $) 20)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1027 |#1| |#2|) $) NIL)) (-2272 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-489 |#3|) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))))) (-2053 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#1|) |#3|) NIL) (($ (-1071 $) |#3|) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#3|) NIL)) (-2210 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-3528 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1512 (((-3 |#3| "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-3301 ((|#3| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-3033 (((-107) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| |#3|) (|:| -2356 (-703))) "failed") $) NIL)) (-2623 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4032 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2059 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1255 (((-583 |#2|) $) NIL)) (-2769 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1027 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-953 (-1027 |#1| |#2|))) (-962) (-779) (-239 |#2|)) (T -237))
+NIL
+(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-953 (-1027 |#1| |#2|)))
+((-1463 (((-703) $) 30)) (-3226 (((-3 |#2| "failed") $) 17)) (-3388 ((|#2| $) 27)) (-2059 (($ $) 12) (($ $ (-703)) 15)) (-2269 (((-787) $) 26) (($ |#2|) 10)) (-1583 (((-107) $ $) 20)) (-1607 (((-107) $ $) 29)))
+(((-238 |#1| |#2|) (-10 -8 (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -1463 ((-703) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
+NIL
+(-10 -8 (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -1463 ((-703) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-1463 (((-703) $) 22)) (-3750 ((|#1| $) 23)) (-3226 (((-3 |#1| "failed") $) 27)) (-3388 ((|#1| $) 26)) (-2053 (((-703) $) 24)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-3528 (($ |#1| (-703)) 25)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2059 (($ $) 21) (($ $ (-703)) 20)) (-2269 (((-787) $) 11) (($ |#1|) 28)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)))
+(((-239 |#1|) (-1187) (-779)) (T -239))
+((-2269 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-953 |t#1|) (-10 -8 (-15 -3528 ($ |t#1| (-703))) (-15 -2053 ((-703) $)) (-15 -3750 (|t#1| $)) (-15 -1463 ((-703) $)) (-15 -2059 ($ $)) (-15 -2059 ($ $ (-703))) (-15 -2269 ($ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-953 |#1|) . T) ((-1004) . T))
+((-2096 (((-583 (-1075)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 40)) (-3365 (((-583 (-1075)) (-286 (-199)) (-703)) 79)) (-1864 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2390 (((-286 (-199)) (-286 (-199))) 65)) (-1198 (((-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-2507 (((-107) (-583 (-286 (-199)))) 83)) (-3166 (((-107) (-286 (-199))) 24)) (-3428 (((-583 (-1058)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))))) 105)) (-3997 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 87)) (-2181 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-2895 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 94)) (-1753 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-2177 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-2784 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 100)) (-1191 (((-951) (-1075) (-951)) 33)))
+(((-240) (-10 -7 (-15 -2177 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1198 ((-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1864 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2390 ((-286 (-199)) (-286 (-199)))) (-15 -2507 ((-107) (-583 (-286 (-199))))) (-15 -1753 ((-107) (-583 (-286 (-199))))) (-15 -1753 ((-107) (-286 (-199)))) (-15 -2895 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2181 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3997 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3166 ((-107) (-286 (-199)))) (-15 -2096 ((-583 (-1075)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -3365 ((-583 (-1075)) (-286 (-199)) (-703))) (-15 -1191 ((-951) (-1075) (-951))) (-15 -2784 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -3428 ((-583 (-1058)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))))))) (T -240))
+((-3428 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))))) (-5 *2 (-583 (-1058))) (-5 *1 (-240)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-1191 (*1 *2 *3 *2) (-12 (-5 *2 (-951)) (-5 *3 (-1075)) (-5 *1 (-240)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1075))) (-5 *1 (-240)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) (-5 *2 (-583 (-1075))) (-5 *1 (-240)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1864 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-1198 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
+(-10 -7 (-15 -2177 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -1198 ((-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1864 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2390 ((-286 (-199)) (-286 (-199)))) (-15 -2507 ((-107) (-583 (-286 (-199))))) (-15 -1753 ((-107) (-583 (-286 (-199))))) (-15 -1753 ((-107) (-286 (-199)))) (-15 -2895 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2181 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3997 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3166 ((-107) (-286 (-199)))) (-15 -2096 ((-583 (-1075)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -3365 ((-583 (-1075)) (-286 (-199)) (-703))) (-15 -1191 ((-951) (-1075) (-951))) (-15 -2784 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -3428 ((-583 (-1058)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))))))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-241) (-768)) (T -241))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 31)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 54) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 31)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-242) (-768)) (T -242))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 73) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 51)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 73) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 51)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-243) (-768)) (T -243))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-244) (-768)) (T -244))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-245) (-768)) (T -245))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-246) (-768)) (T -246))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-1534 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-1583 (((-107) $ $) NIL)))
(((-247) (-768)) (T -247))
NIL
(-768)
-((-1587 (((-107) $ $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2226 (((-583 (-517)) $) 16)) (-3625 (((-703) $) 14)) (-2254 (((-787) $) 20) (($ (-583 (-517))) 12)) (-4023 (($ (-703)) 17)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 9)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 10)))
-(((-248) (-13 (-779) (-10 -8 (-15 -2254 ($ (-583 (-517)))) (-15 -3625 ((-703) $)) (-15 -2226 ((-583 (-517)) $)) (-15 -4023 ($ (-703)))))) (T -248))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(-13 (-779) (-10 -8 (-15 -2254 ($ (-583 (-517)))) (-15 -3625 ((-703) $)) (-15 -2226 ((-583 (-517)) $)) (-15 -4023 ($ (-703)))))
-((-2725 ((|#2| |#2|) 77)) (-2602 ((|#2| |#2|) 65)) (-1919 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-2705 ((|#2| |#2|) 75)) (-2580 ((|#2| |#2|) 63)) (-1533 ((|#2| |#2|) 79)) (-2626 ((|#2| |#2|) 67)) (-2665 ((|#2|) 46)) (-2283 (((-109) (-109)) 95)) (-1875 ((|#2| |#2|) 61)) (-2941 (((-107) |#2|) 134)) (-3289 ((|#2| |#2|) 180)) (-1847 ((|#2| |#2|) 156)) (-1999 ((|#2|) 59)) (-3647 ((|#2|) 58)) (-3525 ((|#2| |#2|) 176)) (-2827 ((|#2| |#2|) 152)) (-3033 ((|#2| |#2|) 184)) (-1379 ((|#2| |#2|) 160)) (-2033 ((|#2| |#2|) 148)) (-3543 ((|#2| |#2|) 150)) (-2921 ((|#2| |#2|) 186)) (-1979 ((|#2| |#2|) 162)) (-3300 ((|#2| |#2|) 182)) (-1929 ((|#2| |#2|) 158)) (-3189 ((|#2| |#2|) 178)) (-1197 ((|#2| |#2|) 154)) (-1580 ((|#2| |#2|) 192)) (-3899 ((|#2| |#2|) 168)) (-3290 ((|#2| |#2|) 188)) (-1510 ((|#2| |#2|) 164)) (-2133 ((|#2| |#2|) 196)) (-1946 ((|#2| |#2|) 172)) (-2876 ((|#2| |#2|) 198)) (-1863 ((|#2| |#2|) 174)) (-3687 ((|#2| |#2|) 194)) (-2135 ((|#2| |#2|) 170)) (-2407 ((|#2| |#2|) 190)) (-2419 ((|#2| |#2|) 166)) (-2643 ((|#2| |#2|) 62)) (-1543 ((|#2| |#2|) 80)) (-2638 ((|#2| |#2|) 68)) (-2735 ((|#2| |#2|) 78)) (-2614 ((|#2| |#2|) 66)) (-2714 ((|#2| |#2|) 76)) (-2590 ((|#2| |#2|) 64)) (-2794 (((-107) (-109)) 93)) (-1584 ((|#2| |#2|) 83)) (-2670 ((|#2| |#2|) 71)) (-1557 ((|#2| |#2|) 81)) (-2651 ((|#2| |#2|) 69)) (-1614 ((|#2| |#2|) 85)) (-2688 ((|#2| |#2|) 73)) (-3756 ((|#2| |#2|) 86)) (-2698 ((|#2| |#2|) 74)) (-1599 ((|#2| |#2|) 84)) (-2678 ((|#2| |#2|) 72)) (-1570 ((|#2| |#2|) 82)) (-2660 ((|#2| |#2|) 70)))
-(((-249 |#1| |#2|) (-10 -7 (-15 -2643 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -2580 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2670 (|#2| |#2|)) (-15 -2678 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2665 (|#2|)) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -3647 (|#2|)) (-15 -1999 (|#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1197 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1863 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -3300 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -2876 (|#2| |#2|)) (-15 -1919 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -2941 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918))) (T -249))
-((-2941 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))) (-1919 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2876 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2133 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2921 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3300 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3189 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1863 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1510 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1999 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3647 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) (-2665 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2688 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2580 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(-10 -7 (-15 -2643 (|#2| |#2|)) (-15 -1875 (|#2| |#2|)) (-15 -2580 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2670 (|#2| |#2|)) (-15 -2678 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -1570 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -3756 (|#2| |#2|)) (-15 -2665 (|#2|)) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -3647 (|#2|)) (-15 -1999 (|#2|)) (-15 -3543 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -1197 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1863 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3189 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -3300 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -2133 (|#2| |#2|)) (-15 -2876 (|#2| |#2|)) (-15 -1919 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -2941 ((-107) |#2|)))
-((-1951 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074)) 133)) (-3963 ((|#2| (-377 (-517)) |#2|) 50)) (-3979 ((|#2| |#2| (-556 |#2|)) 126)) (-2809 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074)) 125)) (-2306 ((|#2| |#2| (-1074)) 19) ((|#2| |#2|) 22)) (-4163 ((|#2| |#2| (-1074)) 139) ((|#2| |#2|) 137)))
-(((-250 |#1| |#2|) (-10 -7 (-15 -4163 (|#2| |#2|)) (-15 -4163 (|#2| |#2| (-1074))) (-15 -2809 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074))) (-15 -2306 (|#2| |#2|)) (-15 -2306 (|#2| |#2| (-1074))) (-15 -1951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074))) (-15 -3979 (|#2| |#2| (-556 |#2|))) (-15 -3963 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -250))
-((-3963 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-3979 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1074)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2306 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-2809 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-4163 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-4163 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
-(-10 -7 (-15 -4163 (|#2| |#2|)) (-15 -4163 (|#2| |#2| (-1074))) (-15 -2809 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1074))) (-15 -2306 (|#2| |#2|)) (-15 -2306 (|#2| |#2| (-1074))) (-15 -1951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1074))) (-15 -3979 (|#2| |#2| (-556 |#2|))) (-15 -3963 (|#2| (-377 (-517)) |#2|)))
-((-3750 (((-3 |#3| "failed") |#3|) 110)) (-2725 ((|#3| |#3|) 131)) (-2307 (((-3 |#3| "failed") |#3|) 82)) (-2602 ((|#3| |#3|) 121)) (-2046 (((-3 |#3| "failed") |#3|) 58)) (-2705 ((|#3| |#3|) 129)) (-1897 (((-3 |#3| "failed") |#3|) 46)) (-2580 ((|#3| |#3|) 119)) (-2659 (((-3 |#3| "failed") |#3|) 112)) (-1533 ((|#3| |#3|) 133)) (-1607 (((-3 |#3| "failed") |#3|) 84)) (-2626 ((|#3| |#3|) 123)) (-2086 (((-3 |#3| "failed") |#3| (-703)) 36)) (-2438 (((-3 |#3| "failed") |#3|) 74)) (-1875 ((|#3| |#3|) 118)) (-2443 (((-3 |#3| "failed") |#3|) 44)) (-2643 ((|#3| |#3|) 117)) (-3181 (((-3 |#3| "failed") |#3|) 113)) (-1543 ((|#3| |#3|) 134)) (-1334 (((-3 |#3| "failed") |#3|) 85)) (-2638 ((|#3| |#3|) 124)) (-2157 (((-3 |#3| "failed") |#3|) 111)) (-2735 ((|#3| |#3|) 132)) (-1881 (((-3 |#3| "failed") |#3|) 83)) (-2614 ((|#3| |#3|) 122)) (-1352 (((-3 |#3| "failed") |#3|) 60)) (-2714 ((|#3| |#3|) 130)) (-2404 (((-3 |#3| "failed") |#3|) 48)) (-2590 ((|#3| |#3|) 120)) (-1531 (((-3 |#3| "failed") |#3|) 66)) (-1584 ((|#3| |#3|) 137)) (-1461 (((-3 |#3| "failed") |#3|) 104)) (-2670 ((|#3| |#3|) 142)) (-2166 (((-3 |#3| "failed") |#3|) 62)) (-1557 ((|#3| |#3|) 135)) (-1679 (((-3 |#3| "failed") |#3|) 50)) (-2651 ((|#3| |#3|) 125)) (-3986 (((-3 |#3| "failed") |#3|) 70)) (-1614 ((|#3| |#3|) 139)) (-1708 (((-3 |#3| "failed") |#3|) 54)) (-2688 ((|#3| |#3|) 127)) (-2416 (((-3 |#3| "failed") |#3|) 72)) (-3756 ((|#3| |#3|) 140)) (-1760 (((-3 |#3| "failed") |#3|) 56)) (-2698 ((|#3| |#3|) 128)) (-2694 (((-3 |#3| "failed") |#3|) 68)) (-1599 ((|#3| |#3|) 138)) (-3648 (((-3 |#3| "failed") |#3|) 107)) (-2678 ((|#3| |#3|) 143)) (-3806 (((-3 |#3| "failed") |#3|) 64)) (-1570 ((|#3| |#3|) 136)) (-3229 (((-3 |#3| "failed") |#3|) 52)) (-2660 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-251 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -2643 (|#3| |#3|)) (-15 -1875 (|#3| |#3|)) (-15 -2580 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2602 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2651 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2670 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2688 (|#3| |#3|)) (-15 -2698 (|#3| |#3|)) (-15 -2705 (|#3| |#3|)) (-15 -2714 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1543 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1614 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)))) (-37 (-377 (-517))) (-1146 |#1|) (-1117 |#1| |#2|)) (T -251))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1146 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1117 *4 *5)))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2580 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2688 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))))
-(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -2643 (|#3| |#3|)) (-15 -1875 (|#3| |#3|)) (-15 -2580 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2602 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2651 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2670 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2688 (|#3| |#3|)) (-15 -2698 (|#3| |#3|)) (-15 -2705 (|#3| |#3|)) (-15 -2714 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1543 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1614 (|#3| |#3|)) (-15 -3756 (|#3| |#3|))))
-((-3750 (((-3 |#3| "failed") |#3|) 66)) (-2725 ((|#3| |#3|) 133)) (-2307 (((-3 |#3| "failed") |#3|) 50)) (-2602 ((|#3| |#3|) 121)) (-2046 (((-3 |#3| "failed") |#3|) 62)) (-2705 ((|#3| |#3|) 131)) (-1897 (((-3 |#3| "failed") |#3|) 46)) (-2580 ((|#3| |#3|) 119)) (-2659 (((-3 |#3| "failed") |#3|) 70)) (-1533 ((|#3| |#3|) 135)) (-1607 (((-3 |#3| "failed") |#3|) 54)) (-2626 ((|#3| |#3|) 123)) (-2086 (((-3 |#3| "failed") |#3| (-703)) 35)) (-2438 (((-3 |#3| "failed") |#3|) 44)) (-1875 ((|#3| |#3|) 112)) (-2443 (((-3 |#3| "failed") |#3|) 42)) (-2643 ((|#3| |#3|) 118)) (-3181 (((-3 |#3| "failed") |#3|) 72)) (-1543 ((|#3| |#3|) 136)) (-1334 (((-3 |#3| "failed") |#3|) 56)) (-2638 ((|#3| |#3|) 124)) (-2157 (((-3 |#3| "failed") |#3|) 68)) (-2735 ((|#3| |#3|) 134)) (-1881 (((-3 |#3| "failed") |#3|) 52)) (-2614 ((|#3| |#3|) 122)) (-1352 (((-3 |#3| "failed") |#3|) 64)) (-2714 ((|#3| |#3|) 132)) (-2404 (((-3 |#3| "failed") |#3|) 48)) (-2590 ((|#3| |#3|) 120)) (-1531 (((-3 |#3| "failed") |#3|) 78)) (-1584 ((|#3| |#3|) 139)) (-1461 (((-3 |#3| "failed") |#3|) 58)) (-2670 ((|#3| |#3|) 127)) (-2166 (((-3 |#3| "failed") |#3|) 74)) (-1557 ((|#3| |#3|) 137)) (-1679 (((-3 |#3| "failed") |#3|) 102)) (-2651 ((|#3| |#3|) 125)) (-3986 (((-3 |#3| "failed") |#3|) 82)) (-1614 ((|#3| |#3|) 141)) (-1708 (((-3 |#3| "failed") |#3|) 109)) (-2688 ((|#3| |#3|) 129)) (-2416 (((-3 |#3| "failed") |#3|) 84)) (-3756 ((|#3| |#3|) 142)) (-1760 (((-3 |#3| "failed") |#3|) 111)) (-2698 ((|#3| |#3|) 130)) (-2694 (((-3 |#3| "failed") |#3|) 80)) (-1599 ((|#3| |#3|) 140)) (-3648 (((-3 |#3| "failed") |#3|) 60)) (-2678 ((|#3| |#3|) 128)) (-3806 (((-3 |#3| "failed") |#3|) 76)) (-1570 ((|#3| |#3|) 138)) (-3229 (((-3 |#3| "failed") |#3|) 105)) (-2660 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
-(((-252 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -2643 (|#3| |#3|)) (-15 -1875 (|#3| |#3|)) (-15 -2580 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2602 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2651 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2670 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2688 (|#3| |#3|)) (-15 -2698 (|#3| |#3|)) (-15 -2705 (|#3| |#3|)) (-15 -2714 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1543 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1614 (|#3| |#3|)) (-15 -3756 (|#3| |#3|)))) (-37 (-377 (-517))) (-1115 |#1|) (-1138 |#1| |#2|) (-900 |#2|)) (T -252))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1115 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1138 *4 *5)) (-4 *6 (-900 *5)))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2580 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2688 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))))
-(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -2643 (|#3| |#3|)) (-15 -1875 (|#3| |#3|)) (-15 -2580 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2602 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2638 (|#3| |#3|)) (-15 -2651 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2670 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2688 (|#3| |#3|)) (-15 -2698 (|#3| |#3|)) (-15 -2705 (|#3| |#3|)) (-15 -2714 (|#3| |#3|)) (-15 -2725 (|#3| |#3|)) (-15 -2735 (|#3| |#3|)) (-15 -1533 (|#3| |#3|)) (-15 -1543 (|#3| |#3|)) (-15 -1557 (|#3| |#3|)) (-15 -1570 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1614 (|#3| |#3|)) (-15 -3756 (|#3| |#3|))))
-((-3555 (($ (-1 (-107) |#2|) $) 23)) (-1783 (($ $) 36)) (-1835 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-2050 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2931 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2636 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3726 (($ $ (-517)) 11) (($ $ (-1122 (-517))) 14)) (-1819 (($ $ |#2|) 29) (($ $ $) NIL)) (-2455 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
-(((-253 |#1| |#2|) (-10 -8 (-15 -2931 (|#1| |#1| |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -2931 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1| |#2|)) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2050 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3555 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2050 (|#1| |#2| |#1|)) (-15 -1783 (|#1| |#1|))) (-254 |#2|) (-1109)) (T -253))
-NIL
-(-10 -8 (-15 -2931 (|#1| |#1| |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -2931 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1| |#2|)) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2050 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3555 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2050 (|#1| |#2| |#1|)) (-15 -1783 (|#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) 85)) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3439 (($ $) 83 (|has| |#1| (-1003)))) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1003)))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-2931 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3676 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-1415 (($ $ (-517)) 91) (($ $ (-1122 (-517))) 90)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 70)) (-1819 (($ $ |#1|) 93) (($ $ $) 92)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-254 |#1|) (-1185) (-1109)) (T -254))
-((-1819 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-3676 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1109)))) (-3676 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2931 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-2975 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) (-1835 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-3439 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4184) (-15 -1819 ($ $ |t#1|)) (-15 -1819 ($ $ $)) (-15 -1415 ($ $ (-517))) (-15 -1415 ($ $ (-1122 (-517)))) (-15 -1835 ($ (-1 (-107) |t#1|) $)) (-15 -3676 ($ |t#1| $ (-517))) (-15 -3676 ($ $ $ (-517))) (-15 -2931 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2975 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -1835 ($ |t#1| $)) (-15 -3439 ($ $))) |%noBranch|) (IF (|has| |t#1| (-779)) (-15 -2931 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
+((-2118 (((-107) $ $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3598 (((-583 (-517)) $) 17)) (-2769 (((-703) $) 15)) (-2269 (((-787) $) 21) (($ (-583 (-517))) 13)) (-1295 (($ (-703)) 18)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 9)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 11)))
+(((-248) (-13 (-779) (-10 -8 (-15 -2269 ($ (-583 (-517)))) (-15 -2769 ((-703) $)) (-15 -3598 ((-583 (-517)) $)) (-15 -1295 ($ (-703)))))) (T -248))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(-13 (-779) (-10 -8 (-15 -2269 ($ (-583 (-517)))) (-15 -2769 ((-703) $)) (-15 -3598 ((-583 (-517)) $)) (-15 -1295 ($ (-703)))))
+((-1646 ((|#2| |#2|) 77)) (-1493 ((|#2| |#2|) 65)) (-1248 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1622 ((|#2| |#2|) 75)) (-1470 ((|#2| |#2|) 63)) (-1669 ((|#2| |#2|) 79)) (-1519 ((|#2| |#2|) 67)) (-2115 ((|#2|) 46)) (-3034 (((-109) (-109)) 95)) (-1225 ((|#2| |#2|) 61)) (-3236 (((-107) |#2|) 134)) (-3962 ((|#2| |#2|) 180)) (-3310 ((|#2| |#2|) 156)) (-3692 ((|#2|) 59)) (-2130 ((|#2|) 58)) (-3785 ((|#2| |#2|) 176)) (-2619 ((|#2| |#2|) 152)) (-2364 ((|#2| |#2|) 184)) (-2484 ((|#2| |#2|) 160)) (-3658 ((|#2| |#2|) 148)) (-3853 ((|#2| |#2|) 150)) (-4010 ((|#2| |#2|) 186)) (-1472 ((|#2| |#2|) 162)) (-3048 ((|#2| |#2|) 182)) (-1925 ((|#2| |#2|) 158)) (-1813 ((|#2| |#2|) 178)) (-1939 ((|#2| |#2|) 154)) (-3928 ((|#2| |#2|) 192)) (-2853 ((|#2| |#2|) 168)) (-3282 ((|#2| |#2|) 188)) (-2555 ((|#2| |#2|) 164)) (-2487 ((|#2| |#2|) 196)) (-2762 ((|#2| |#2|) 172)) (-3149 ((|#2| |#2|) 198)) (-3966 ((|#2| |#2|) 174)) (-1247 ((|#2| |#2|) 194)) (-2154 ((|#2| |#2|) 170)) (-2919 ((|#2| |#2|) 190)) (-1854 ((|#2| |#2|) 166)) (-3868 ((|#2| |#2|) 62)) (-1682 ((|#2| |#2|) 80)) (-1532 ((|#2| |#2|) 68)) (-1656 ((|#2| |#2|) 78)) (-1506 ((|#2| |#2|) 66)) (-1632 ((|#2| |#2|) 76)) (-1482 ((|#2| |#2|) 64)) (-1752 (((-107) (-109)) 93)) (-1721 ((|#2| |#2|) 83)) (-1575 ((|#2| |#2|) 71)) (-1695 ((|#2| |#2|) 81)) (-1547 ((|#2| |#2|) 69)) (-3487 ((|#2| |#2|) 85)) (-1599 ((|#2| |#2|) 73)) (-2822 ((|#2| |#2|) 86)) (-1612 ((|#2| |#2|) 74)) (-1735 ((|#2| |#2|) 84)) (-1588 ((|#2| |#2|) 72)) (-1708 ((|#2| |#2|) 82)) (-1561 ((|#2| |#2|) 70)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -3868 (|#2| |#2|)) (-15 -1225 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2822 (|#2| |#2|)) (-15 -2115 (|#2|)) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2130 (|#2|)) (-15 -3692 (|#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -2619 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -3310 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -3962 (|#2| |#2|)) (-15 -3048 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -3149 (|#2| |#2|)) (-15 -1248 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3236 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-919))) (T -249))
+((-3236 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-919))))) (-1248 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-919))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-3149 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3048 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1854 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3310 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1939 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-2619 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3692 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2130 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-919))))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-919))))) (-2115 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2822 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-919))))))
+(-10 -7 (-15 -3868 (|#2| |#2|)) (-15 -1225 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2822 (|#2| |#2|)) (-15 -2115 (|#2|)) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2130 (|#2|)) (-15 -3692 (|#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -2619 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -3310 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -3962 (|#2| |#2|)) (-15 -3048 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -3149 (|#2| |#2|)) (-15 -1248 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3236 ((-107) |#2|)))
+((-1698 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1075)) 133)) (-2965 ((|#2| (-377 (-517)) |#2|) 50)) (-3130 ((|#2| |#2| (-556 |#2|)) 126)) (-3407 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1075)) 125)) (-1221 ((|#2| |#2| (-1075)) 19) ((|#2| |#2|) 22)) (-2006 ((|#2| |#2| (-1075)) 139) ((|#2| |#2|) 137)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -2006 (|#2| |#2|)) (-15 -2006 (|#2| |#2| (-1075))) (-15 -3407 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1075))) (-15 -1221 (|#2| |#2|)) (-15 -1221 (|#2| |#2| (-1075))) (-15 -1698 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1075))) (-15 -3130 (|#2| |#2| (-556 |#2|))) (-15 -2965 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -250))
+((-2965 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-3130 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1698 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1075)) (-4 *2 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-1221 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-1221 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))) (-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-2006 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))))
+(-10 -7 (-15 -2006 (|#2| |#2|)) (-15 -2006 (|#2| |#2| (-1075))) (-15 -3407 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1075))) (-15 -1221 (|#2| |#2|)) (-15 -1221 (|#2| |#2| (-1075))) (-15 -1698 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1075))) (-15 -3130 (|#2| |#2| (-556 |#2|))) (-15 -2965 (|#2| (-377 (-517)) |#2|)))
+((-2870 (((-3 |#3| "failed") |#3|) 110)) (-1646 ((|#3| |#3|) 131)) (-3698 (((-3 |#3| "failed") |#3|) 82)) (-1493 ((|#3| |#3|) 121)) (-2291 (((-3 |#3| "failed") |#3|) 58)) (-1622 ((|#3| |#3|) 129)) (-3060 (((-3 |#3| "failed") |#3|) 46)) (-1470 ((|#3| |#3|) 119)) (-2163 (((-3 |#3| "failed") |#3|) 112)) (-1669 ((|#3| |#3|) 133)) (-1736 (((-3 |#3| "failed") |#3|) 84)) (-1519 ((|#3| |#3|) 123)) (-1560 (((-3 |#3| "failed") |#3| (-703)) 36)) (-2601 (((-3 |#3| "failed") |#3|) 74)) (-1225 ((|#3| |#3|) 118)) (-2817 (((-3 |#3| "failed") |#3|) 44)) (-3868 ((|#3| |#3|) 117)) (-3415 (((-3 |#3| "failed") |#3|) 113)) (-1682 ((|#3| |#3|) 134)) (-2575 (((-3 |#3| "failed") |#3|) 85)) (-1532 ((|#3| |#3|) 124)) (-1814 (((-3 |#3| "failed") |#3|) 111)) (-1656 ((|#3| |#3|) 132)) (-2116 (((-3 |#3| "failed") |#3|) 83)) (-1506 ((|#3| |#3|) 122)) (-3128 (((-3 |#3| "failed") |#3|) 60)) (-1632 ((|#3| |#3|) 130)) (-1333 (((-3 |#3| "failed") |#3|) 48)) (-1482 ((|#3| |#3|) 120)) (-1413 (((-3 |#3| "failed") |#3|) 66)) (-1721 ((|#3| |#3|) 137)) (-4159 (((-3 |#3| "failed") |#3|) 104)) (-1575 ((|#3| |#3|) 142)) (-3903 (((-3 |#3| "failed") |#3|) 62)) (-1695 ((|#3| |#3|) 135)) (-1673 (((-3 |#3| "failed") |#3|) 50)) (-1547 ((|#3| |#3|) 125)) (-3461 (((-3 |#3| "failed") |#3|) 70)) (-3487 ((|#3| |#3|) 139)) (-2923 (((-3 |#3| "failed") |#3|) 54)) (-1599 ((|#3| |#3|) 127)) (-1276 (((-3 |#3| "failed") |#3|) 72)) (-2822 ((|#3| |#3|) 140)) (-2706 (((-3 |#3| "failed") |#3|) 56)) (-1612 ((|#3| |#3|) 128)) (-2183 (((-3 |#3| "failed") |#3|) 68)) (-1735 ((|#3| |#3|) 138)) (-3390 (((-3 |#3| "failed") |#3|) 107)) (-1588 ((|#3| |#3|) 143)) (-1613 (((-3 |#3| "failed") |#3|) 64)) (-1708 ((|#3| |#3|) 136)) (-2969 (((-3 |#3| "failed") |#3|) 52)) (-1561 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-251 |#1| |#2| |#3|) (-13 (-901 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3868 (|#3| |#3|)) (-15 -1225 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1646 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -2822 (|#3| |#3|)))) (-37 (-377 (-517))) (-1147 |#1|) (-1118 |#1| |#2|)) (T -251))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1147 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1118 *4 *5)))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))) (-2822 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4)))))
+(-13 (-901 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3868 (|#3| |#3|)) (-15 -1225 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1646 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -2822 (|#3| |#3|))))
+((-2870 (((-3 |#3| "failed") |#3|) 66)) (-1646 ((|#3| |#3|) 133)) (-3698 (((-3 |#3| "failed") |#3|) 50)) (-1493 ((|#3| |#3|) 121)) (-2291 (((-3 |#3| "failed") |#3|) 62)) (-1622 ((|#3| |#3|) 131)) (-3060 (((-3 |#3| "failed") |#3|) 46)) (-1470 ((|#3| |#3|) 119)) (-2163 (((-3 |#3| "failed") |#3|) 70)) (-1669 ((|#3| |#3|) 135)) (-1736 (((-3 |#3| "failed") |#3|) 54)) (-1519 ((|#3| |#3|) 123)) (-1560 (((-3 |#3| "failed") |#3| (-703)) 35)) (-2601 (((-3 |#3| "failed") |#3|) 44)) (-1225 ((|#3| |#3|) 112)) (-2817 (((-3 |#3| "failed") |#3|) 42)) (-3868 ((|#3| |#3|) 118)) (-3415 (((-3 |#3| "failed") |#3|) 72)) (-1682 ((|#3| |#3|) 136)) (-2575 (((-3 |#3| "failed") |#3|) 56)) (-1532 ((|#3| |#3|) 124)) (-1814 (((-3 |#3| "failed") |#3|) 68)) (-1656 ((|#3| |#3|) 134)) (-2116 (((-3 |#3| "failed") |#3|) 52)) (-1506 ((|#3| |#3|) 122)) (-3128 (((-3 |#3| "failed") |#3|) 64)) (-1632 ((|#3| |#3|) 132)) (-1333 (((-3 |#3| "failed") |#3|) 48)) (-1482 ((|#3| |#3|) 120)) (-1413 (((-3 |#3| "failed") |#3|) 78)) (-1721 ((|#3| |#3|) 139)) (-4159 (((-3 |#3| "failed") |#3|) 58)) (-1575 ((|#3| |#3|) 127)) (-3903 (((-3 |#3| "failed") |#3|) 74)) (-1695 ((|#3| |#3|) 137)) (-1673 (((-3 |#3| "failed") |#3|) 102)) (-1547 ((|#3| |#3|) 125)) (-3461 (((-3 |#3| "failed") |#3|) 82)) (-3487 ((|#3| |#3|) 141)) (-2923 (((-3 |#3| "failed") |#3|) 109)) (-1599 ((|#3| |#3|) 129)) (-1276 (((-3 |#3| "failed") |#3|) 84)) (-2822 ((|#3| |#3|) 142)) (-2706 (((-3 |#3| "failed") |#3|) 111)) (-1612 ((|#3| |#3|) 130)) (-2183 (((-3 |#3| "failed") |#3|) 80)) (-1735 ((|#3| |#3|) 140)) (-3390 (((-3 |#3| "failed") |#3|) 60)) (-1588 ((|#3| |#3|) 128)) (-1613 (((-3 |#3| "failed") |#3|) 76)) (-1708 ((|#3| |#3|) 138)) (-2969 (((-3 |#3| "failed") |#3|) 105)) (-1561 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-901 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3868 (|#3| |#3|)) (-15 -1225 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1646 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -2822 (|#3| |#3|)))) (-37 (-377 (-517))) (-1116 |#1|) (-1139 |#1| |#2|) (-901 |#2|)) (T -252))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1116 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1139 *4 *5)) (-4 *6 (-901 *5)))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))) (-2822 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4)))))
+(-13 (-901 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3868 (|#3| |#3|)) (-15 -1225 (|#3| |#3|)) (-15 -1470 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1493 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1519 (|#3| |#3|)) (-15 -1532 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1646 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1708 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -2822 (|#3| |#3|))))
+((-2324 (($ (-1 (-107) |#2|) $) 23)) (-2453 (($ $) 36)) (-3593 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1422 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-1974 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1745 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3726 (($ $ (-517)) 11) (($ $ (-1123 (-517))) 14)) (-1718 (($ $ |#2|) 29) (($ $ $) NIL)) (-4108 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
+(((-253 |#1| |#2|) (-10 -8 (-15 -1974 (|#1| |#1| |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -1974 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1718 (|#1| |#1| |#1|)) (-15 -1718 (|#1| |#1| |#2|)) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -1422 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2324 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -2453 (|#1| |#1|))) (-254 |#2|) (-1110)) (T -253))
+NIL
+(-10 -8 (-15 -1974 (|#1| |#1| |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -1974 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1718 (|#1| |#1| |#1|)) (-15 -1718 (|#1| |#1| |#2|)) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -1422 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2324 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -2453 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) 85)) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-3302 (($ $) 83 (|has| |#1| (-1004)))) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1004)))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-1974 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2704 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-2710 (($ $ (-517)) 91) (($ $ (-1123 (-517))) 90)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 70)) (-1718 (($ $ |#1|) 93) (($ $ $) 92)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-254 |#1|) (-1187) (-1110)) (T -254))
+((-1718 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)))) (-1718 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)))) (-2710 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-2710 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-3593 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-2704 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1110)))) (-2704 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-1974 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-3042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))) (-3593 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-1004)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-1004)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4191) (-15 -1718 ($ $ |t#1|)) (-15 -1718 ($ $ $)) (-15 -2710 ($ $ (-517))) (-15 -2710 ($ $ (-1123 (-517)))) (-15 -3593 ($ (-1 (-107) |t#1|) $)) (-15 -2704 ($ |t#1| $ (-517))) (-15 -2704 ($ $ $ (-517))) (-15 -1974 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3042 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -3593 ($ |t#1| $)) (-15 -3302 ($ $))) |%noBranch|) (IF (|has| |t#1| (-779)) (-15 -1974 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
((** (($ $ $) 10)))
(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1875 (($ $) 6)) (-2643 (($ $) 7)) (** (($ $ $) 8)))
-(((-256) (-1185)) (T -256))
-((** (*1 *1 *1 *1) (-4 *1 (-256))) (-2643 (*1 *1 *1) (-4 *1 (-256))) (-1875 (*1 *1 *1) (-4 *1 (-256))))
-(-13 (-10 -8 (-15 -1875 ($ $)) (-15 -2643 ($ $)) (-15 ** ($ $ $))))
-((-3170 (((-583 (-1055 |#1|)) (-1055 |#1|) |#1|) 35)) (-2373 ((|#2| |#2| |#1|) 38)) (-2366 ((|#2| |#2| |#1|) 40)) (-2484 ((|#2| |#2| |#1|) 39)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -2373 (|#2| |#2| |#1|)) (-15 -2484 (|#2| |#2| |#1|)) (-15 -2366 (|#2| |#2| |#1|)) (-15 -3170 ((-583 (-1055 |#1|)) (-1055 |#1|) |#1|))) (-333) (-1146 |#1|)) (T -257))
-((-3170 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1055 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1055 *4)) (-4 *5 (-1146 *4)))) (-2366 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))) (-2484 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))) (-2373 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
-(-10 -7 (-15 -2373 (|#2| |#2| |#1|)) (-15 -2484 (|#2| |#2| |#1|)) (-15 -2366 (|#2| |#2| |#1|)) (-15 -3170 ((-583 (-1055 |#1|)) (-1055 |#1|) |#1|)))
-((-1437 ((|#2| $ |#1|) 6)))
-(((-258 |#1| |#2|) (-1185) (-1003) (-1109)) (T -258))
-((-1437 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
-(-13 (-10 -8 (-15 -1437 (|t#2| $ |t#1|))))
-((-3705 ((|#3| $ |#2| |#3|) 12)) (-3537 ((|#3| $ |#2|) 10)))
-(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -3705 (|#3| |#1| |#2| |#3|)) (-15 -3537 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1003) (-1109)) (T -259))
-NIL
-(-10 -8 (-15 -3705 (|#3| |#1| |#2| |#3|)) (-15 -3537 (|#3| |#1| |#2|)))
-((-2412 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4184)))) (-3705 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) 11)) (-1437 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-260 |#1| |#2|) (-1185) (-1003) (-1109)) (T -260))
-((-1437 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-3537 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-2412 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-3705 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
-(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -1437 (|t#2| $ |t#1| |t#2|)) (-15 -3537 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2412 (|t#2| $ |t#1| |t#2|)) (-15 -3705 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-1225 (($ $) 6)) (-3868 (($ $) 7)) (** (($ $ $) 8)))
+(((-256) (-1187)) (T -256))
+((** (*1 *1 *1 *1) (-4 *1 (-256))) (-3868 (*1 *1 *1) (-4 *1 (-256))) (-1225 (*1 *1 *1) (-4 *1 (-256))))
+(-13 (-10 -8 (-15 -1225 ($ $)) (-15 -3868 ($ $)) (-15 ** ($ $ $))))
+((-3262 (((-583 (-1056 |#1|)) (-1056 |#1|) |#1|) 35)) (-1491 ((|#2| |#2| |#1|) 38)) (-3421 ((|#2| |#2| |#1|) 40)) (-3628 ((|#2| |#2| |#1|) 39)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -1491 (|#2| |#2| |#1|)) (-15 -3628 (|#2| |#2| |#1|)) (-15 -3421 (|#2| |#2| |#1|)) (-15 -3262 ((-583 (-1056 |#1|)) (-1056 |#1|) |#1|))) (-333) (-1147 |#1|)) (T -257))
+((-3262 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1056 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1056 *4)) (-4 *5 (-1147 *4)))) (-3421 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))) (-3628 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))) (-1491 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))))
+(-10 -7 (-15 -1491 (|#2| |#2| |#1|)) (-15 -3628 (|#2| |#2| |#1|)) (-15 -3421 (|#2| |#2| |#1|)) (-15 -3262 ((-583 (-1056 |#1|)) (-1056 |#1|) |#1|)))
+((-2607 ((|#2| $ |#1|) 6)))
+(((-258 |#1| |#2|) (-1187) (-1004) (-1110)) (T -258))
+((-2607 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))))
+(-13 (-10 -8 (-15 -2607 (|t#2| $ |t#1|))))
+((-2757 ((|#3| $ |#2| |#3|) 12)) (-2563 ((|#3| $ |#2|) 10)))
+(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -2563 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1004) (-1110)) (T -259))
+NIL
+(-10 -8 (-15 -2757 (|#3| |#1| |#2| |#3|)) (-15 -2563 (|#3| |#1| |#2|)))
+((-2443 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4191)))) (-2757 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) 11)) (-2607 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-260 |#1| |#2|) (-1187) (-1004) (-1110)) (T -260))
+((-2607 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))) (-2563 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))) (-2443 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))) (-2757 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))))
+(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -2607 (|t#2| $ |t#1| |t#2|)) (-15 -2563 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4191)) (PROGN (-15 -2443 (|t#2| $ |t#1| |t#2|)) (-15 -2757 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-258 |#1| |#2|) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 34)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 39)) (-2239 (($ $) 37)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) 32)) (-1292 (($ |#2| |#3|) 19)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3668 ((|#3| $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 20)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1944 (((-3 $ "failed") $ $) NIL)) (-3196 (((-703) $) 33)) (-1437 ((|#2| $ |#2|) 41)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 24)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 27 T CONST)) (-2411 (($) 35 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36)))
-(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -3668 (|#3| $)) (-15 -2254 (|#2| $)) (-15 -1292 ($ |#2| |#3|)) (-15 -1944 ((-3 $ "failed") $ $)) (-15 -3775 ((-3 $ "failed") $)) (-15 -1639 ($ $)) (-15 -1437 (|#2| $ |#2|)))) (-156) (-1131 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
-((-3775 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3668 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1131 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2254 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1292 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1131 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1944 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1639 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1437 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1131 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-278) (-10 -8 (-15 -3668 (|#3| $)) (-15 -2254 (|#2| $)) (-15 -1292 ($ |#2| |#3|)) (-15 -1944 ((-3 $ "failed") $ $)) (-15 -3775 ((-3 $ "failed") $)) (-15 -1639 ($ $)) (-15 -1437 (|#2| $ |#2|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-262) (-1185)) (T -262))
-NIL
-(-13 (-961) (-106 $ $) (-10 -7 (-6 -4176)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1446 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 83)) (-3087 (((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|)))) 78) (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703)) 36)) (-1224 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 80)) (-2517 (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|)))) 60)) (-1981 (((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|)))) 59)) (-1924 (((-874 |#1|) (-623 (-377 (-874 |#1|)))) 47) (((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074)) 48)))
-(((-263 |#1|) (-10 -7 (-15 -1924 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074))) (-15 -1924 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -1981 ((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -2517 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -3087 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -3087 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1446 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1224 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) (-421)) (T -263))
-((-1224 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-1446 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-3087 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1064 (-1074) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4))))) (-5 *1 (-263 *4)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1074)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
-(-10 -7 (-15 -1924 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1074))) (-15 -1924 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -1981 ((-583 (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -2517 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -3087 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -3087 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1446 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1224 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1064 (-1074) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))))
-((-1939 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
-(((-264 |#1| |#2|) (-10 -7 (-15 -1939 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1109) (-1109)) (T -264))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
-(-10 -7 (-15 -1939 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2778 (((-107) $) NIL (|has| |#1| (-21)))) (-1716 (($ $) 22)) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1786 (($ $ $) 93 (|has| |#1| (-273)))) (-2706 (($) NIL (-3782 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-2359 (($ $) 8 (|has| |#1| (-21)))) (-3328 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-3684 ((|#1| $) 21)) (-3775 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-3469 (((-107) $) NIL (|has| |#1| (-659)))) (-1939 (($ (-1 |#1| |#1|) $) 24)) (-3672 ((|#1| $) 9)) (-2522 (($ $) 57 (|has| |#1| (-21)))) (-3777 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1639 (($ $) 70 (-3782 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2883 (((-583 $) $) 19 (|has| |#1| (-509)))) (-2049 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-1074) |#1|) 27 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1074) |#1|)))) (-2769 (($ |#1| |#1|) 17)) (-2232 (((-125)) 88 (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) 85 (|has| |#1| (-822 (-1074))))) (-1757 (($ $ $) NIL (|has| |#1| (-442)))) (-2901 (($ $ $) NIL (|has| |#1| (-442)))) (-2254 (($ (-517)) NIL (|has| |#1| (-961))) (((-107) $) 45 (|has| |#1| (-1003))) (((-787) $) 44 (|has| |#1| (-1003)))) (-1217 (((-703)) 73 (|has| |#1| (-961)))) (-2196 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (-2398 (($) 55 (|has| |#1| (-21)) CONST)) (-2411 (($) 63 (|has| |#1| (-659)) CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074))))) (-1534 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1003)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3782 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1663 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1645 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (* (($ $ |#1|) 61 (|has| |#1| (-1015))) (($ |#1| $) 60 (|has| |#1| (-1015))) (($ $ $) 59 (|has| |#1| (-1015))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-25)))))
-(((-265 |#1|) (-13 (-1109) (-10 -8 (-15 -1534 ($ |#1| |#1|)) (-15 -2769 ($ |#1| |#1|)) (-15 -1716 ($ $)) (-15 -3672 (|#1| $)) (-15 -3684 (|#1| $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1074) |#1|)) (-6 (-478 (-1074) |#1|)) |%noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2049 ($ $ $)) (-15 -2049 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1645 ($ |#1| $)) (-15 -1645 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2522 ($ $)) (-15 -2359 ($ $)) (-15 -1663 ($ |#1| $)) (-15 -1663 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3777 ((-3 $ "failed") $)) (-15 -3328 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3777 ((-3 $ "failed") $)) (-15 -3328 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -2883 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-822 (-1074))) (-6 (-822 (-1074))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1161 |#1|)) (-15 -1678 ($ $ $)) (-15 -1639 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -1786 ($ $ $)) |%noBranch|))) (-1109)) (T -265))
-((-1534 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-2769 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-1716 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-3672 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-3684 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) (-2049 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)) (-5 *1 (-265 *2)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) (-1645 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) (-2522 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-2359 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-1663 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-1663 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) (-3777 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))) (-3328 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1109)))) (-1786 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) (-1678 (*1 *1 *1 *1) (-3782 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) (-1639 (*1 *1 *1) (-3782 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))))
-(-13 (-1109) (-10 -8 (-15 -1534 ($ |#1| |#1|)) (-15 -2769 ($ |#1| |#1|)) (-15 -1716 ($ $)) (-15 -3672 (|#1| $)) (-15 -3684 (|#1| $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1074) |#1|)) (-6 (-478 (-1074) |#1|)) |%noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2049 ($ $ $)) (-15 -2049 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1645 ($ |#1| $)) (-15 -1645 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2522 ($ $)) (-15 -2359 ($ $)) (-15 -1663 ($ |#1| $)) (-15 -1663 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3777 ((-3 $ "failed") $)) (-15 -3328 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3777 ((-3 $ "failed") $)) (-15 -3328 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -2883 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-822 (-1074))) (-6 (-822 (-1074))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1161 |#1|)) (-15 -1678 ($ $ $)) (-15 -1639 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -1786 ($ $ $)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) NIL)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-266 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003)) (T -266))
-NIL
-(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
-((-2099 (((-282) (-1057) (-583 (-1057))) 16) (((-282) (-1057) (-1057)) 15) (((-282) (-583 (-1057))) 14) (((-282) (-1057)) 12)))
-(((-267) (-10 -7 (-15 -2099 ((-282) (-1057))) (-15 -2099 ((-282) (-583 (-1057)))) (-15 -2099 ((-282) (-1057) (-1057))) (-15 -2099 ((-282) (-1057) (-583 (-1057)))))) (T -267))
-((-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1057))) (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2099 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-282)) (-5 *1 (-267)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))))
-(-10 -7 (-15 -2099 ((-282) (-1057))) (-15 -2099 ((-282) (-583 (-1057)))) (-15 -2099 ((-282) (-1057) (-1057))) (-15 -2099 ((-282) (-1057) (-583 (-1057)))))
-((-1939 ((|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|)) 17)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1939 (|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|)))) (-273) (-1109)) (T -268))
-((-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1057)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1109)) (-5 *1 (-268 *6 *2)))))
-(-10 -7 (-15 -1939 (|#2| (-1 |#2| |#1|) (-1057) (-556 |#1|))))
-((-1939 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
-(((-269 |#1| |#2|) (-10 -7 (-15 -1939 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
-(-10 -7 (-15 -1939 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
-((-2102 (((-107) (-199)) 10)))
-(((-270 |#1| |#2|) (-10 -7 (-15 -2102 ((-107) (-199)))) (-199) (-199)) (T -270))
-((-2102 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2102 ((-107) (-199))))
-((-2592 (((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199)))) 88)) (-1365 (((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199)))) 103) (((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199)))) 58)) (-2367 (((-583 (-1057)) (-1055 (-199))) NIL)) (-3530 (((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199)))) 55)) (-1762 (((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199)))) 47)) (-3117 (((-583 (-1057)) (-583 (-199))) NIL)) (-2853 (((-199) (-998 (-772 (-199)))) 23)) (-2331 (((-199) (-998 (-772 (-199)))) 24)) (-1733 (((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3746 (((-1057) (-199)) NIL)))
-(((-271) (-10 -7 (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -1733 ((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3530 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -2592 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1762 ((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))))) (T -271))
-((-2367 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-271)))) (-1762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-1365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-2592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) (-3530 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
-(-10 -7 (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -1733 ((-107) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3530 ((-583 (-199)) (-286 (-199)) (-1074) (-998 (-772 (-199))))) (-15 -2592 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-286 (-199)) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1365 ((-1055 (-199)) (-1154 (-286 (-199))) (-583 (-1074)) (-998 (-772 (-199))))) (-15 -1762 ((-583 (-199)) (-874 (-377 (-517))) (-1074) (-998 (-772 (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))))
-((-1341 (((-583 (-556 $)) $) 28)) (-1786 (($ $ (-265 $)) 80) (($ $ (-583 (-265 $))) 120) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1837 (((-3 (-556 $) "failed") $) 110)) (-3232 (((-556 $) $) 109)) (-2870 (($ $) 19) (($ (-583 $)) 54)) (-2576 (((-583 (-109)) $) 37)) (-2283 (((-109) (-109)) 90)) (-2119 (((-107) $) 128)) (-1939 (($ (-1 $ $) (-556 $)) 88)) (-1337 (((-3 (-556 $) "failed") $) 92)) (-1893 (($ (-109) $) 60) (($ (-109) (-583 $)) 98)) (-2506 (((-107) $ (-109)) 114) (((-107) $ (-1074)) 113)) (-1916 (((-703) $) 45)) (-2376 (((-107) $ $) 58) (((-107) $ (-1074)) 49)) (-1947 (((-107) $) 126)) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 118) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 83) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) 68) (($ $ (-1074) (-1 $ $)) 74) (($ $ (-583 (-109)) (-583 (-1 $ $))) 82) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 84) (($ $ (-109) (-1 $ (-583 $))) 70) (($ $ (-109) (-1 $ $)) 76)) (-1437 (($ (-109) $) 61) (($ (-109) $ $) 62) (($ (-109) $ $ $) 63) (($ (-109) $ $ $ $) 64) (($ (-109) (-583 $)) 106)) (-1394 (($ $) 51) (($ $ $) 116)) (-3137 (($ $) 17) (($ (-583 $)) 53)) (-2794 (((-107) (-109)) 22)))
-(((-272 |#1|) (-10 -8 (-15 -2119 ((-107) |#1|)) (-15 -1947 ((-107) |#1|)) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2376 ((-107) |#1| (-1074))) (-15 -2376 ((-107) |#1| |#1|)) (-15 -1939 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1893 (|#1| (-109) (-583 |#1|))) (-15 -1893 (|#1| (-109) |#1|)) (-15 -2506 ((-107) |#1| (-1074))) (-15 -2506 ((-107) |#1| (-109))) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2576 ((-583 (-109)) |#1|)) (-15 -1341 ((-583 (-556 |#1|)) |#1|)) (-15 -1337 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1916 ((-703) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2870 (|#1| (-583 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -3137 (|#1| (-583 |#1|))) (-15 -3137 (|#1| |#1|)) (-15 -1786 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1786 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1786 (|#1| |#1| (-265 |#1|))) (-15 -1437 (|#1| (-109) (-583 |#1|))) (-15 -1437 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3232 ((-556 |#1|) |#1|)) (-15 -1837 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
-((-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
-(-10 -8 (-15 -2119 ((-107) |#1|)) (-15 -1947 ((-107) |#1|)) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2376 ((-107) |#1| (-1074))) (-15 -2376 ((-107) |#1| |#1|)) (-15 -1939 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1893 (|#1| (-109) (-583 |#1|))) (-15 -1893 (|#1| (-109) |#1|)) (-15 -2506 ((-107) |#1| (-1074))) (-15 -2506 ((-107) |#1| (-109))) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2576 ((-583 (-109)) |#1|)) (-15 -1341 ((-583 (-556 |#1|)) |#1|)) (-15 -1337 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1916 ((-703) |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -2870 (|#1| (-583 |#1|))) (-15 -2870 (|#1| |#1|)) (-15 -3137 (|#1| (-583 |#1|))) (-15 -3137 (|#1| |#1|)) (-15 -1786 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1786 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1786 (|#1| |#1| (-265 |#1|))) (-15 -1437 (|#1| (-109) (-583 |#1|))) (-15 -1437 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3232 ((-556 |#1|) |#1|)) (-15 -1837 ((-3 (-556 |#1|) "failed") |#1|)))
-((-1587 (((-107) $ $) 7)) (-1341 (((-583 (-556 $)) $) 44)) (-1786 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1837 (((-3 (-556 $) "failed") $) 69)) (-3232 (((-556 $) $) 68)) (-2870 (($ $) 51) (($ (-583 $)) 50)) (-2576 (((-583 (-109)) $) 43)) (-2283 (((-109) (-109)) 42)) (-2119 (((-107) $) 22 (|has| $ (-952 (-517))))) (-3733 (((-1070 $) (-556 $)) 25 (|has| $ (-961)))) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1939 (($ (-1 $ $) (-556 $)) 36)) (-1337 (((-3 (-556 $) "failed") $) 46)) (-1277 (((-1057) $) 9)) (-2362 (((-583 (-556 $)) $) 45)) (-1893 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-2506 (((-107) $ (-109)) 40) (((-107) $ (-1074)) 39)) (-1916 (((-703) $) 47)) (-3214 (((-1021) $) 10)) (-2376 (((-107) $ $) 35) (((-107) $ (-1074)) 34)) (-1947 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1074) (-1 $ (-583 $))) 31) (($ $ (-1074) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-1437 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1394 (($ $) 49) (($ $ $) 48)) (-2780 (($ $) 24 (|has| $ (-961)))) (-2254 (((-787) $) 11) (($ (-556 $)) 70)) (-3137 (($ $) 53) (($ (-583 $)) 52)) (-2794 (((-107) (-109)) 41)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)))
-(((-273) (-1185)) (T -273))
-((-1437 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1437 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1437 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1437 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1437 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-1786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3137 (*1 *1 *1) (-4 *1 (-273))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-2870 (*1 *1 *1) (-4 *1 (-273))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1394 (*1 *1 *1) (-4 *1 (-273))) (-1394 (*1 *1 *1 *1) (-4 *1 (-273))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1337 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-2283 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2794 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-2506 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-2506 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) (-1893 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-2376 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-2376 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1070 *1)))) (-2780 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
-(-13 (-779) (-952 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -1437 ($ (-109) $)) (-15 -1437 ($ (-109) $ $)) (-15 -1437 ($ (-109) $ $ $)) (-15 -1437 ($ (-109) $ $ $ $)) (-15 -1437 ($ (-109) (-583 $))) (-15 -1786 ($ $ (-265 $))) (-15 -1786 ($ $ (-583 (-265 $)))) (-15 -1786 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3137 ($ $)) (-15 -3137 ($ (-583 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-583 $))) (-15 -1394 ($ $)) (-15 -1394 ($ $ $)) (-15 -1916 ((-703) $)) (-15 -1337 ((-3 (-556 $) "failed") $)) (-15 -2362 ((-583 (-556 $)) $)) (-15 -1341 ((-583 (-556 $)) $)) (-15 -2576 ((-583 (-109)) $)) (-15 -2283 ((-109) (-109))) (-15 -2794 ((-107) (-109))) (-15 -2506 ((-107) $ (-109))) (-15 -2506 ((-107) $ (-1074))) (-15 -1893 ($ (-109) $)) (-15 -1893 ($ (-109) (-583 $))) (-15 -1939 ($ (-1 $ $) (-556 $))) (-15 -2376 ((-107) $ $)) (-15 -2376 ((-107) $ (-1074))) (-15 -2049 ($ $ (-583 (-1074)) (-583 (-1 $ $)))) (-15 -2049 ($ $ (-583 (-1074)) (-583 (-1 $ (-583 $))))) (-15 -2049 ($ $ (-1074) (-1 $ (-583 $)))) (-15 -2049 ($ $ (-1074) (-1 $ $))) (-15 -2049 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -2049 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -2049 ($ $ (-109) (-1 $ (-583 $)))) (-15 -2049 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -3733 ((-1070 $) (-556 $))) (-15 -2780 ($ $))) |%noBranch|) (IF (|has| $ (-952 (-517))) (PROGN (-15 -1947 ((-107) $)) (-15 -2119 ((-107) $))) |%noBranch|)))
-(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-952 (-556 $)) . T) ((-1003) . T))
-((-3514 (((-583 |#1|) (-583 |#1|)) 10)))
-(((-274 |#1|) (-10 -7 (-15 -3514 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
-((-3514 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(-10 -7 (-15 -3514 ((-583 |#1|) (-583 |#1|))))
-((-1939 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -1939 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-961) (-961)) (T -275))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
-(-10 -7 (-15 -1939 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
-((-3541 (((-1154 (-286 (-349))) (-1154 (-286 (-199)))) 105)) (-2409 (((-998 (-772 (-199))) (-998 (-772 (-349)))) 39)) (-2367 (((-583 (-1057)) (-1055 (-199))) 87)) (-3153 (((-286 (-349)) (-874 (-199))) 49)) (-3573 (((-199) (-874 (-199))) 45)) (-1904 (((-1057) (-349)) 167)) (-1535 (((-772 (-199)) (-772 (-349))) 33)) (-2699 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199)))) 142)) (-2227 (((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) 180) (((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) 178)) (-3534 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-2995 (((-1154 (-632)) (-583 (-199))) 94)) (-3117 (((-583 (-1057)) (-583 (-199))) 74)) (-2986 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-2102 (((-107) (-199) (-998 (-772 (-199)))) 109)) (-2045 (((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-2853 (((-199) (-998 (-772 (-199)))) 107)) (-2331 (((-199) (-998 (-772 (-199)))) 108)) (-3636 (((-199) (-377 (-517))) 26)) (-2469 (((-1057) (-349)) 72)) (-2917 (((-199) (-349)) 17)) (-3109 (((-349) (-1154 (-286 (-199)))) 153)) (-1525 (((-286 (-199)) (-286 (-349))) 23)) (-2420 (((-377 (-517)) (-286 (-199))) 52)) (-2966 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-2279 (((-286 (-349)) (-286 (-199))) 98)) (-3919 (((-199) (-286 (-199))) 53)) (-1711 (((-583 (-199)) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) 63)) (-3878 (((-998 (-772 (-199))) (-998 (-772 (-199)))) 60)) (-3746 (((-1057) (-199)) 71)) (-3787 (((-632) (-199)) 90)) (-2122 (((-377 (-517)) (-199)) 54)) (-4071 (((-286 (-349)) (-199)) 48)) (-3667 (((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349))))) 42)) (-2455 (((-950) (-583 (-950))) 163) (((-950) (-950) (-950)) 160)) (-3990 (((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-276) (-10 -7 (-15 -2917 ((-199) (-349))) (-15 -1525 ((-286 (-199)) (-286 (-349)))) (-15 -1535 ((-772 (-199)) (-772 (-349)))) (-15 -2409 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3667 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2122 ((-377 (-517)) (-199))) (-15 -2420 ((-377 (-517)) (-286 (-199)))) (-15 -3919 ((-199) (-286 (-199)))) (-15 -2986 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -3109 ((-349) (-1154 (-286 (-199))))) (-15 -2699 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199))))) (-15 -2966 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -3878 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -1711 ((-583 (-199)) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) (-15 -3787 ((-632) (-199))) (-15 -2995 ((-1154 (-632)) (-583 (-199)))) (-15 -2279 ((-286 (-349)) (-286 (-199)))) (-15 -3541 ((-1154 (-286 (-349))) (-1154 (-286 (-199))))) (-15 -2102 ((-107) (-199) (-998 (-772 (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -2469 ((-1057) (-349))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))) (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -2455 ((-950) (-950) (-950))) (-15 -2455 ((-950) (-583 (-950)))) (-15 -1904 ((-1057) (-349))) (-15 -2227 ((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))))) (-15 -2227 ((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))))) (-15 -3990 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2045 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3153 ((-286 (-349)) (-874 (-199)))) (-15 -3573 ((-199) (-874 (-199)))) (-15 -4071 ((-286 (-349)) (-199))) (-15 -3636 ((-199) (-377 (-517)))) (-15 -3534 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
-((-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2455 (*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-276)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-1154 (-286 (-349)))) (-5 *1 (-276)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154 (-632))) (-5 *1 (-276)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-2986 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(-10 -7 (-15 -2917 ((-199) (-349))) (-15 -1525 ((-286 (-199)) (-286 (-349)))) (-15 -1535 ((-772 (-199)) (-772 (-349)))) (-15 -2409 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3667 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2122 ((-377 (-517)) (-199))) (-15 -2420 ((-377 (-517)) (-286 (-199)))) (-15 -3919 ((-199) (-286 (-199)))) (-15 -2986 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -3109 ((-349) (-1154 (-286 (-199))))) (-15 -2699 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1154 (-286 (-199))))) (-15 -2966 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -3878 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -1711 ((-583 (-199)) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) (-15 -3787 ((-632) (-199))) (-15 -2995 ((-1154 (-632)) (-583 (-199)))) (-15 -2279 ((-286 (-349)) (-286 (-199)))) (-15 -3541 ((-1154 (-286 (-349))) (-1154 (-286 (-199))))) (-15 -2102 ((-107) (-199) (-998 (-772 (-199))))) (-15 -3746 ((-1057) (-199))) (-15 -2469 ((-1057) (-349))) (-15 -3117 ((-583 (-1057)) (-583 (-199)))) (-15 -2367 ((-583 (-1057)) (-1055 (-199)))) (-15 -2853 ((-199) (-998 (-772 (-199))))) (-15 -2331 ((-199) (-998 (-772 (-199))))) (-15 -2455 ((-950) (-950) (-950))) (-15 -2455 ((-950) (-583 (-950)))) (-15 -1904 ((-1057) (-349))) (-15 -2227 ((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))))) (-15 -2227 ((-950) (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))))) (-15 -3990 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2045 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3153 ((-286 (-349)) (-874 (-199)))) (-15 -3573 ((-199) (-874 (-199)))) (-15 -4071 ((-286 (-349)) (-199))) (-15 -3636 ((-199) (-377 (-517)))) (-15 -3534 ((-623 (-199)) (-583 (-199)) (-703))))
-((-2448 (((-107) $ $) 11)) (-2532 (($ $ $) 15)) (-2509 (($ $ $) 14)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 43)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1387 (($ $ $) 20) (($ (-583 $)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2483 (((-3 $ "failed") $ $) 17)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 45)))
-(((-277 |#1|) (-10 -8 (-15 -2047 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3082 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3082 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1|)) (-15 -2448 ((-107) |#1| |#1|)) (-15 -1681 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2299 ((-2 (|:| -1965 (-583 |#1|)) (|:| -3244 |#1|)) (-583 |#1|))) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
-NIL
-(-10 -8 (-15 -2047 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3082 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3082 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1|)) (-15 -2448 ((-107) |#1| |#1|)) (-15 -1681 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2299 ((-2 (|:| -1965 (-583 |#1|)) (|:| -3244 |#1|)) (-583 |#1|))) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3469 (((-107) $) 31)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-278) (-1185)) (T -278))
-((-2448 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-2816 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-278)))) (-2509 (*1 *1 *1 *1) (-4 *1 (-278))) (-2532 (*1 *1 *1 *1) (-4 *1 (-278))) (-3082 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-278)))) (-3082 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2047 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(-13 (-842) (-10 -8 (-15 -2448 ((-107) $ $)) (-15 -3196 ((-703) $)) (-15 -2816 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -2509 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -3082 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $)) (-15 -3082 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2047 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2049 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
-(((-279 |#1| |#2|) (-10 -8 (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1003)) (T -279))
-NIL
-(-10 -8 (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
-((-2049 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
-(((-280 |#1|) (-1185) (-1003)) (T -280))
-((-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))))
-(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -2049 ($ $ (-265 |t#1|))) (-15 -2049 ($ $ (-583 (-265 |t#1|))))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 35)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 40)) (-2729 (($ $) 38)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) 33)) (-1521 (($ |#2| |#3|) 19)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3326 ((|#3| $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 20)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4094 (((-703) $) 34)) (-2607 ((|#2| $ |#2|) 42)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 24)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 29 T CONST)) (-3617 (($) 36 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 37)))
+(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -3326 (|#3| $)) (-15 -2269 (|#2| $)) (-15 -1521 ($ |#2| |#3|)) (-15 -3167 ((-3 $ "failed") $ $)) (-15 -3163 ((-3 $ "failed") $)) (-15 -2298 ($ $)) (-15 -2607 (|#2| $ |#2|)))) (-156) (-1132 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
+((-3163 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1132 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2269 (*1 *2 *1) (-12 (-4 *2 (-1132 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1521 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1132 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3167 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2298 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2607 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1132 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-278) (-10 -8 (-15 -3326 (|#3| $)) (-15 -2269 (|#2| $)) (-15 -1521 ($ |#2| |#3|)) (-15 -3167 ((-3 $ "failed") $ $)) (-15 -3163 ((-3 $ "failed") $)) (-15 -2298 ($ $)) (-15 -2607 (|#2| $ |#2|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-262) (-1187)) (T -262))
+NIL
+(-13 (-962) (-106 $ $) (-10 -7 (-6 -4183)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-1265 (((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))) 84)) (-3097 (((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|)))) 79) (((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703)) 37)) (-2682 (((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))) 81)) (-2472 (((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|)))) 61)) (-4072 (((-583 (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (-623 (-377 (-875 |#1|)))) 60)) (-1900 (((-875 |#1|) (-623 (-377 (-875 |#1|)))) 48) (((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1075)) 49)))
+(((-263 |#1|) (-10 -7 (-15 -1900 ((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1075))) (-15 -1900 ((-875 |#1|) (-623 (-377 (-875 |#1|))))) (-15 -4072 ((-583 (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (-623 (-377 (-875 |#1|))))) (-15 -2472 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|))))) (-15 -3097 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703))) (-15 -3097 ((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|))))) (-15 -1265 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))) (-15 -2682 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|)))))) (-421)) (T -263))
+((-2682 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))) (-1265 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-875 *5)) (-1065 (-1075) (-875 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))) (-3097 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-875 *6)) (-1065 (-1075) (-875 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-875 *6)))))) (-2472 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-875 *5)) (-1065 (-1075) (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4))))) (-5 *1 (-263 *4)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-5 *2 (-875 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-875 *5)))) (-5 *4 (-1075)) (-5 *2 (-875 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
+(-10 -7 (-15 -1900 ((-875 |#1|) (-623 (-377 (-875 |#1|))) (-1075))) (-15 -1900 ((-875 |#1|) (-623 (-377 (-875 |#1|))))) (-15 -4072 ((-583 (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (-623 (-377 (-875 |#1|))))) (-15 -2472 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|))))) (-15 -3097 ((-583 (-623 (-377 (-875 |#1|)))) (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|))) (-623 (-377 (-875 |#1|))) (-703) (-703))) (-15 -3097 ((-583 (-623 (-377 (-875 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|)))))) (-623 (-377 (-875 |#1|))))) (-15 -1265 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))) (-15 -2682 ((-583 (-2 (|:| |eigval| (-3 (-377 (-875 |#1|)) (-1065 (-1075) (-875 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-875 |#1|))))))) (-623 (-377 (-875 |#1|))))))
+((-3308 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -3308 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1110) (-1110)) (T -264))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
+(-10 -7 (-15 -3308 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2033 (((-107) $) NIL (|has| |#1| (-21)))) (-1858 (($ $) 22)) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3913 (($ $ $) 93 (|has| |#1| (-273)))) (-1681 (($) NIL (-3745 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-1272 (($ $) 8 (|has| |#1| (-21)))) (-1961 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-2513 ((|#1| $) 21)) (-3163 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-1865 (((-107) $) NIL (|has| |#1| (-659)))) (-3308 (($ (-1 |#1| |#1|) $) 24)) (-2505 ((|#1| $) 9)) (-2019 (($ $) 57 (|has| |#1| (-21)))) (-3707 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2298 (($ $) 70 (-3745 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3188 (((-583 $) $) 19 (|has| |#1| (-509)))) (-3522 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-1075) |#1|) 27 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1075) |#1|)))) (-2966 (($ |#1| |#1|) 17)) (-1880 (((-125)) 88 (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) 85 (|has| |#1| (-823 (-1075))))) (-3026 (($ $ $) NIL (|has| |#1| (-442)))) (-2609 (($ $ $) NIL (|has| |#1| (-442)))) (-2269 (($ (-517)) NIL (|has| |#1| (-962))) (((-107) $) 45 (|has| |#1| (-1004))) (((-787) $) 44 (|has| |#1| (-1004)))) (-2950 (((-703)) 73 (|has| |#1| (-962)))) (-2813 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-844)) NIL (|has| |#1| (-1016)))) (-3608 (($) 55 (|has| |#1| (-21)) CONST)) (-3617 (($) 63 (|has| |#1| (-659)) CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075))))) (-1583 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1004)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3745 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1691 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1677 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-844)) NIL (|has| |#1| (-1016)))) (* (($ $ |#1|) 61 (|has| |#1| (-1016))) (($ |#1| $) 60 (|has| |#1| (-1016))) (($ $ $) 59 (|has| |#1| (-1016))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-25)))))
+(((-265 |#1|) (-13 (-1110) (-10 -8 (-15 -1583 ($ |#1| |#1|)) (-15 -2966 ($ |#1| |#1|)) (-15 -1858 ($ $)) (-15 -2505 (|#1| $)) (-15 -2513 (|#1| $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1075) |#1|)) (-6 (-478 (-1075) |#1|)) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3522 ($ $ $)) (-15 -3522 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1677 ($ |#1| $)) (-15 -1677 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2019 ($ $)) (-15 -1272 ($ $)) (-15 -1691 ($ |#1| $)) (-15 -1691 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3707 ((-3 $ "failed") $)) (-15 -1961 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3707 ((-3 $ "failed") $)) (-15 -1961 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -3188 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-823 (-1075))) (-6 (-823 (-1075))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1163 |#1|)) (-15 -1703 ($ $ $)) (-15 -2298 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3913 ($ $ $)) |%noBranch|))) (-1110)) (T -265))
+((-1583 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))) (-2966 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))) (-1858 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))) (-2505 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))) (-2513 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-265 *3)))) (-3522 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)) (-5 *1 (-265 *2)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1004)) (-4 *3 (-1110)) (-5 *1 (-265 *3)))) (-1677 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1110)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1110)))) (-2019 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))) (-1272 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))) (-1691 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))) (-1691 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))) (-3707 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1110)))) (-1961 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1110)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1110)))) (-3913 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1110)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1016)) (-4 *2 (-1110)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1016)) (-4 *2 (-1110)))) (-1703 (*1 *1 *1 *1) (-3745 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1110))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1110))))) (-2298 (*1 *1 *1) (-3745 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1110))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1110))))))
+(-13 (-1110) (-10 -8 (-15 -1583 ($ |#1| |#1|)) (-15 -2966 ($ |#1| |#1|)) (-15 -1858 ($ $)) (-15 -2505 (|#1| $)) (-15 -2513 (|#1| $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1075) |#1|)) (-6 (-478 (-1075) |#1|)) |%noBranch|) (IF (|has| |#1| (-1004)) (PROGN (-6 (-1004)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3522 ($ $ $)) (-15 -3522 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1677 ($ |#1| $)) (-15 -1677 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2019 ($ $)) (-15 -1272 ($ $)) (-15 -1691 ($ |#1| $)) (-15 -1691 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3707 ((-3 $ "failed") $)) (-15 -1961 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3707 ((-3 $ "failed") $)) (-15 -1961 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -3188 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-823 (-1075))) (-6 (-823 (-1075))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1163 |#1|)) (-15 -1703 ($ $ $)) (-15 -2298 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3913 ($ $ $)) |%noBranch|)))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) NIL)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-266 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190))) (-1004) (-1004)) (T -266))
+NIL
+(-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190)))
+((-3108 (((-282) (-1058) (-583 (-1058))) 16) (((-282) (-1058) (-1058)) 15) (((-282) (-583 (-1058))) 14) (((-282) (-1058)) 12)))
+(((-267) (-10 -7 (-15 -3108 ((-282) (-1058))) (-15 -3108 ((-282) (-583 (-1058)))) (-15 -3108 ((-282) (-1058) (-1058))) (-15 -3108 ((-282) (-1058) (-583 (-1058)))))) (T -267))
+((-3108 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1058))) (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3108 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-282)) (-5 *1 (-267)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(-10 -7 (-15 -3108 ((-282) (-1058))) (-15 -3108 ((-282) (-583 (-1058)))) (-15 -3108 ((-282) (-1058) (-1058))) (-15 -3108 ((-282) (-1058) (-583 (-1058)))))
+((-3308 ((|#2| (-1 |#2| |#1|) (-1058) (-556 |#1|)) 17)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -3308 (|#2| (-1 |#2| |#1|) (-1058) (-556 |#1|)))) (-273) (-1110)) (T -268))
+((-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1058)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1110)) (-5 *1 (-268 *6 *2)))))
+(-10 -7 (-15 -3308 (|#2| (-1 |#2| |#1|) (-1058) (-556 |#1|))))
+((-3308 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -3308 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
+(-10 -7 (-15 -3308 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
+((-3983 (((-107) (-199)) 10)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -3983 ((-107) (-199)))) (-199) (-199)) (T -270))
+((-3983 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -3983 ((-107) (-199))))
+((-1464 (((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199)))) 88)) (-1969 (((-1056 (-199)) (-1156 (-286 (-199))) (-583 (-1075)) (-999 (-772 (-199)))) 103) (((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199)))) 58)) (-2523 (((-583 (-1058)) (-1056 (-199))) NIL)) (-3754 (((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199)))) 55)) (-2414 (((-583 (-199)) (-875 (-377 (-517))) (-1075) (-999 (-772 (-199)))) 47)) (-2803 (((-583 (-1058)) (-583 (-199))) NIL)) (-2435 (((-199) (-999 (-772 (-199)))) 23)) (-1327 (((-199) (-999 (-772 (-199)))) 24)) (-3534 (((-107) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3172 (((-1058) (-199)) NIL)))
+(((-271) (-10 -7 (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -3534 ((-107) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3754 ((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199))))) (-15 -1464 ((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-1156 (-286 (-199))) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -2414 ((-583 (-199)) (-875 (-377 (-517))) (-1075) (-999 (-772 (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))))) (T -271))
+((-2523 (*1 *2 *3) (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-271)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-271)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-271)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *4 (-1075)) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *4 (-583 (-1075))) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271)))) (-1969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1075))) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1075))) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271)))) (-3754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1075)) (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
+(-10 -7 (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -3534 ((-107) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3754 ((-583 (-199)) (-286 (-199)) (-1075) (-999 (-772 (-199))))) (-15 -1464 ((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-286 (-199)) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -1969 ((-1056 (-199)) (-1156 (-286 (-199))) (-583 (-1075)) (-999 (-772 (-199))))) (-15 -2414 ((-583 (-199)) (-875 (-377 (-517))) (-1075) (-999 (-772 (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))))
+((-3831 (((-583 (-556 $)) $) 28)) (-3913 (($ $ (-265 $)) 81) (($ $ (-583 (-265 $))) 121) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3226 (((-3 (-556 $) "failed") $) 111)) (-3388 (((-556 $) $) 110)) (-3039 (($ $) 19) (($ (-583 $)) 55)) (-1976 (((-583 (-109)) $) 37)) (-3034 (((-109) (-109)) 91)) (-1623 (((-107) $) 129)) (-3308 (($ (-1 $ $) (-556 $)) 89)) (-2466 (((-3 (-556 $) "failed") $) 93)) (-1396 (($ (-109) $) 61) (($ (-109) (-583 $)) 99)) (-1290 (((-107) $ (-109)) 115) (((-107) $ (-1075)) 114)) (-1807 (((-703) $) 45)) (-2376 (((-107) $ $) 59) (((-107) $ (-1075)) 50)) (-2085 (((-107) $) 127)) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 119) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) 84) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1075) (-1 $ (-583 $))) 69) (($ $ (-1075) (-1 $ $)) 75) (($ $ (-583 (-109)) (-583 (-1 $ $))) 83) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 85) (($ $ (-109) (-1 $ (-583 $))) 71) (($ $ (-109) (-1 $ $)) 77)) (-2607 (($ (-109) $) 62) (($ (-109) $ $) 63) (($ (-109) $ $ $) 64) (($ (-109) $ $ $ $) 65) (($ (-109) (-583 $)) 107)) (-3618 (($ $) 52) (($ $ $) 117)) (-3438 (($ $) 17) (($ (-583 $)) 54)) (-1752 (((-107) (-109)) 22)))
+(((-272 |#1|) (-10 -8 (-15 -1623 ((-107) |#1|)) (-15 -2085 ((-107) |#1|)) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| |#1|)))) (-15 -2376 ((-107) |#1| (-1075))) (-15 -2376 ((-107) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1396 (|#1| (-109) (-583 |#1|))) (-15 -1396 (|#1| (-109) |#1|)) (-15 -1290 ((-107) |#1| (-1075))) (-15 -1290 ((-107) |#1| (-109))) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -1976 ((-583 (-109)) |#1|)) (-15 -3831 ((-583 (-556 |#1|)) |#1|)) (-15 -2466 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1807 ((-703) |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3039 (|#1| (-583 |#1|))) (-15 -3039 (|#1| |#1|)) (-15 -3438 (|#1| (-583 |#1|))) (-15 -3438 (|#1| |#1|)) (-15 -3913 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3913 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3913 (|#1| |#1| (-265 |#1|))) (-15 -2607 (|#1| (-109) (-583 |#1|))) (-15 -2607 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3388 ((-556 |#1|) |#1|)) (-15 -3226 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
+((-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
+(-10 -8 (-15 -1623 ((-107) |#1|)) (-15 -2085 ((-107) |#1|)) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| |#1|)))) (-15 -2376 ((-107) |#1| (-1075))) (-15 -2376 ((-107) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1396 (|#1| (-109) (-583 |#1|))) (-15 -1396 (|#1| (-109) |#1|)) (-15 -1290 ((-107) |#1| (-1075))) (-15 -1290 ((-107) |#1| (-109))) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -1976 ((-583 (-109)) |#1|)) (-15 -3831 ((-583 (-556 |#1|)) |#1|)) (-15 -2466 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1807 ((-703) |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3039 (|#1| (-583 |#1|))) (-15 -3039 (|#1| |#1|)) (-15 -3438 (|#1| (-583 |#1|))) (-15 -3438 (|#1| |#1|)) (-15 -3913 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3913 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3913 (|#1| |#1| (-265 |#1|))) (-15 -2607 (|#1| (-109) (-583 |#1|))) (-15 -2607 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3388 ((-556 |#1|) |#1|)) (-15 -3226 ((-3 (-556 |#1|) "failed") |#1|)))
+((-2118 (((-107) $ $) 7)) (-3831 (((-583 (-556 $)) $) 44)) (-3913 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3226 (((-3 (-556 $) "failed") $) 69)) (-3388 (((-556 $) $) 68)) (-3039 (($ $) 51) (($ (-583 $)) 50)) (-1976 (((-583 (-109)) $) 43)) (-3034 (((-109) (-109)) 42)) (-1623 (((-107) $) 22 (|has| $ (-953 (-517))))) (-3049 (((-1071 $) (-556 $)) 25 (|has| $ (-962)))) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-3308 (($ (-1 $ $) (-556 $)) 36)) (-2466 (((-3 (-556 $) "failed") $) 46)) (-1895 (((-1058) $) 9)) (-1423 (((-583 (-556 $)) $) 45)) (-1396 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1290 (((-107) $ (-109)) 40) (((-107) $ (-1075)) 39)) (-1807 (((-703) $) 47)) (-4123 (((-1022) $) 10)) (-2376 (((-107) $ $) 35) (((-107) $ (-1075)) 34)) (-2085 (((-107) $) 23 (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1075)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1075) (-1 $ (-583 $))) 31) (($ $ (-1075) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-2607 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-3618 (($ $) 49) (($ $ $) 48)) (-3586 (($ $) 24 (|has| $ (-962)))) (-2269 (((-787) $) 11) (($ (-556 $)) 70)) (-3438 (($ $) 53) (($ (-583 $)) 52)) (-1752 (((-107) (-109)) 41)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)))
+(((-273) (-1187)) (T -273))
+((-2607 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2607 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2607 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2607 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3913 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-3913 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3438 (*1 *1 *1) (-4 *1 (-273))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3039 (*1 *1 *1) (-4 *1 (-273))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3618 (*1 *1 *1) (-4 *1 (-273))) (-3618 (*1 *1 *1 *1) (-4 *1 (-273))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-2466 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-3034 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1752 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1290 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1290 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1075)) (-5 *2 (-107)))) (-1396 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1396 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3308 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-2376 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-2376 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1075)) (-5 *2 (-107)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-962)) (-4 *1 (-273)) (-5 *2 (-1071 *1)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-273)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-953 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-953 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
+(-13 (-779) (-953 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -2607 ($ (-109) $)) (-15 -2607 ($ (-109) $ $)) (-15 -2607 ($ (-109) $ $ $)) (-15 -2607 ($ (-109) $ $ $ $)) (-15 -2607 ($ (-109) (-583 $))) (-15 -3913 ($ $ (-265 $))) (-15 -3913 ($ $ (-583 (-265 $)))) (-15 -3913 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3438 ($ $)) (-15 -3438 ($ (-583 $))) (-15 -3039 ($ $)) (-15 -3039 ($ (-583 $))) (-15 -3618 ($ $)) (-15 -3618 ($ $ $)) (-15 -1807 ((-703) $)) (-15 -2466 ((-3 (-556 $) "failed") $)) (-15 -1423 ((-583 (-556 $)) $)) (-15 -3831 ((-583 (-556 $)) $)) (-15 -1976 ((-583 (-109)) $)) (-15 -3034 ((-109) (-109))) (-15 -1752 ((-107) (-109))) (-15 -1290 ((-107) $ (-109))) (-15 -1290 ((-107) $ (-1075))) (-15 -1396 ($ (-109) $)) (-15 -1396 ($ (-109) (-583 $))) (-15 -3308 ($ (-1 $ $) (-556 $))) (-15 -2376 ((-107) $ $)) (-15 -2376 ((-107) $ (-1075))) (-15 -3522 ($ $ (-583 (-1075)) (-583 (-1 $ $)))) (-15 -3522 ($ $ (-583 (-1075)) (-583 (-1 $ (-583 $))))) (-15 -3522 ($ $ (-1075) (-1 $ (-583 $)))) (-15 -3522 ($ $ (-1075) (-1 $ $))) (-15 -3522 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -3522 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -3522 ($ $ (-109) (-1 $ (-583 $)))) (-15 -3522 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -3049 ((-1071 $) (-556 $))) (-15 -3586 ($ $))) |%noBranch|) (IF (|has| $ (-953 (-517))) (PROGN (-15 -2085 ((-107) $)) (-15 -1623 ((-107) $))) |%noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-953 (-556 $)) . T) ((-1004) . T))
+((-3716 (((-583 |#1|) (-583 |#1|)) 10)))
+(((-274 |#1|) (-10 -7 (-15 -3716 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
+((-3716 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(-10 -7 (-15 -3716 ((-583 |#1|) (-583 |#1|))))
+((-3308 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -3308 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-962) (-962)) (T -275))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -3308 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
+((-3070 (((-1156 (-286 (-349))) (-1156 (-286 (-199)))) 105)) (-1488 (((-999 (-772 (-199))) (-999 (-772 (-349)))) 39)) (-2523 (((-583 (-1058)) (-1056 (-199))) 87)) (-1618 (((-286 (-349)) (-875 (-199))) 49)) (-1322 (((-199) (-875 (-199))) 45)) (-2920 (((-1058) (-349)) 167)) (-3947 (((-772 (-199)) (-772 (-349))) 33)) (-2344 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1156 (-286 (-199)))) 142)) (-1899 (((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951)))) 180) (((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) 178)) (-2831 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-1884 (((-1156 (-632)) (-583 (-199))) 94)) (-2803 (((-583 (-1058)) (-583 (-199))) 74)) (-1755 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-3983 (((-107) (-199) (-999 (-772 (-199)))) 109)) (-3354 (((-951) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-2435 (((-199) (-999 (-772 (-199)))) 107)) (-1327 (((-199) (-999 (-772 (-199)))) 108)) (-3793 (((-199) (-377 (-517))) 26)) (-3829 (((-1058) (-349)) 72)) (-2800 (((-199) (-349)) 17)) (-2784 (((-349) (-1156 (-286 (-199)))) 153)) (-2967 (((-286 (-199)) (-286 (-349))) 23)) (-4129 (((-377 (-517)) (-286 (-199))) 52)) (-1475 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-2820 (((-286 (-349)) (-286 (-199))) 98)) (-4083 (((-199) (-286 (-199))) 53)) (-3250 (((-583 (-199)) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) 63)) (-1983 (((-999 (-772 (-199))) (-999 (-772 (-199)))) 60)) (-3172 (((-1058) (-199)) 71)) (-3568 (((-632) (-199)) 90)) (-3770 (((-377 (-517)) (-199)) 54)) (-1757 (((-286 (-349)) (-199)) 48)) (-3357 (((-583 (-999 (-772 (-199)))) (-583 (-999 (-772 (-349))))) 42)) (-4108 (((-951) (-583 (-951))) 163) (((-951) (-951) (-951)) 160)) (-3433 (((-951) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-276) (-10 -7 (-15 -2800 ((-199) (-349))) (-15 -2967 ((-286 (-199)) (-286 (-349)))) (-15 -3947 ((-772 (-199)) (-772 (-349)))) (-15 -1488 ((-999 (-772 (-199))) (-999 (-772 (-349))))) (-15 -3357 ((-583 (-999 (-772 (-199)))) (-583 (-999 (-772 (-349)))))) (-15 -3770 ((-377 (-517)) (-199))) (-15 -4129 ((-377 (-517)) (-286 (-199)))) (-15 -4083 ((-199) (-286 (-199)))) (-15 -1755 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2784 ((-349) (-1156 (-286 (-199))))) (-15 -2344 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1156 (-286 (-199))))) (-15 -1475 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1983 ((-999 (-772 (-199))) (-999 (-772 (-199))))) (-15 -3250 ((-583 (-199)) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))) (-15 -3568 ((-632) (-199))) (-15 -1884 ((-1156 (-632)) (-583 (-199)))) (-15 -2820 ((-286 (-349)) (-286 (-199)))) (-15 -3070 ((-1156 (-286 (-349))) (-1156 (-286 (-199))))) (-15 -3983 ((-107) (-199) (-999 (-772 (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -3829 ((-1058) (-349))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))) (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -4108 ((-951) (-951) (-951))) (-15 -4108 ((-951) (-583 (-951)))) (-15 -2920 ((-1058) (-349))) (-15 -1899 ((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))))) (-15 -1899 ((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))))) (-15 -3433 ((-951) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3354 ((-951) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -1618 ((-286 (-349)) (-875 (-199)))) (-15 -1322 ((-199) (-875 (-199)))) (-15 -1757 ((-286 (-349)) (-199))) (-15 -3793 ((-199) (-377 (-517)))) (-15 -2831 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
+((-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-951)) (-5 *1 (-276)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-951)) (-5 *1 (-276)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951)))) (-5 *2 (-951)) (-5 *1 (-276)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *2 (-951)) (-5 *1 (-276)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1058)) (-5 *1 (-276)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-583 (-951))) (-5 *2 (-951)) (-5 *1 (-276)))) (-4108 (*1 *2 *2 *2) (-12 (-5 *2 (-951)) (-5 *1 (-276)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-276)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-276)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1058)) (-5 *1 (-276)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-276)))) (-3983 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *2 (-1156 (-286 (-349)))) (-5 *1 (-276)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156 (-632))) (-5 *1 (-276)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-999 (-772 (-199)))) (-5 *1 (-276)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-1755 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-583 (-999 (-772 (-349))))) (-5 *2 (-583 (-999 (-772 (-199))))) (-5 *1 (-276)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-999 (-772 (-349)))) (-5 *2 (-999 (-772 (-199)))) (-5 *1 (-276)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(-10 -7 (-15 -2800 ((-199) (-349))) (-15 -2967 ((-286 (-199)) (-286 (-349)))) (-15 -3947 ((-772 (-199)) (-772 (-349)))) (-15 -1488 ((-999 (-772 (-199))) (-999 (-772 (-349))))) (-15 -3357 ((-583 (-999 (-772 (-199)))) (-583 (-999 (-772 (-349)))))) (-15 -3770 ((-377 (-517)) (-199))) (-15 -4129 ((-377 (-517)) (-286 (-199)))) (-15 -4083 ((-199) (-286 (-199)))) (-15 -1755 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2784 ((-349) (-1156 (-286 (-199))))) (-15 -2344 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1156 (-286 (-199))))) (-15 -1475 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1983 ((-999 (-772 (-199))) (-999 (-772 (-199))))) (-15 -3250 ((-583 (-199)) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))) (-15 -3568 ((-632) (-199))) (-15 -1884 ((-1156 (-632)) (-583 (-199)))) (-15 -2820 ((-286 (-349)) (-286 (-199)))) (-15 -3070 ((-1156 (-286 (-349))) (-1156 (-286 (-199))))) (-15 -3983 ((-107) (-199) (-999 (-772 (-199))))) (-15 -3172 ((-1058) (-199))) (-15 -3829 ((-1058) (-349))) (-15 -2803 ((-583 (-1058)) (-583 (-199)))) (-15 -2523 ((-583 (-1058)) (-1056 (-199)))) (-15 -2435 ((-199) (-999 (-772 (-199))))) (-15 -1327 ((-199) (-999 (-772 (-199))))) (-15 -4108 ((-951) (-951) (-951))) (-15 -4108 ((-951) (-583 (-951)))) (-15 -2920 ((-1058) (-349))) (-15 -1899 ((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))))) (-15 -1899 ((-951) (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))))) (-15 -3433 ((-951) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3354 ((-951) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -1618 ((-286 (-349)) (-875 (-199)))) (-15 -1322 ((-199) (-875 (-199)))) (-15 -1757 ((-286 (-349)) (-199))) (-15 -3793 ((-199) (-377 (-517)))) (-15 -2831 ((-623 (-199)) (-583 (-199)) (-703))))
+((-3998 (((-107) $ $) 11)) (-2378 (($ $ $) 15)) (-2354 (($ $ $) 14)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 44)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 53)) (-2368 (($ $ $) 21) (($ (-583 $)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2327 (((-3 $ "failed") $ $) 17)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 46)))
+(((-277 |#1|) (-10 -8 (-15 -2832 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1334 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1334 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -2378 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -3998 ((-107) |#1| |#1|)) (-15 -1456 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2776 ((-2 (|:| -1580 (-583 |#1|)) (|:| -1317 |#1|)) (-583 |#1|))) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
+NIL
+(-10 -8 (-15 -2832 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1334 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1334 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -2378 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1| |#1|)) (-15 -3998 ((-107) |#1| |#1|)) (-15 -1456 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2776 ((-2 (|:| -1580 (-583 |#1|)) (|:| -1317 |#1|)) (-583 |#1|))) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-1865 (((-107) $) 31)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-278) (-1187)) (T -278))
+((-3998 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-2928 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-278)))) (-2354 (*1 *1 *1 *1) (-4 *1 (-278))) (-2378 (*1 *1 *1 *1) (-4 *1 (-278))) (-1334 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1))) (-4 *1 (-278)))) (-1334 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2832 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(-13 (-843) (-10 -8 (-15 -3998 ((-107) $ $)) (-15 -4094 ((-703) $)) (-15 -2928 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -2354 ($ $ $)) (-15 -2378 ($ $ $)) (-15 -1334 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $)) (-15 -1334 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2832 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3522 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
+(((-279 |#1| |#2|) (-10 -8 (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1004)) (T -279))
+NIL
+(-10 -8 (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
+((-3522 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
+(((-280 |#1|) (-1187) (-1004)) (T -280))
+((-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1004)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1004)))))
+(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -3522 ($ $ (-265 |t#1|))) (-15 -3522 ($ $ (-583 (-265 |t#1|))))))
(((-478 |#1| |#1|) . T))
-((-2049 ((|#1| (-1 |#1| (-517)) (-1076 (-377 (-517)))) 24)))
-(((-281 |#1|) (-10 -7 (-15 -2049 (|#1| (-1 |#1| (-517)) (-1076 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
-((-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1076 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
-(-10 -7 (-15 -2049 (|#1| (-1 |#1| (-517)) (-1076 (-377 (-517))))))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 7)) (-1534 (((-107) $ $) 9)))
-(((-282) (-1003)) (T -282))
-NIL
-(-1003)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 62)) (-2065 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-1141 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-1140 |#2| |#3| |#4|) "failed") $) 24)) (-3232 (((-1141 |#1| |#2| |#3| |#4|) $) NIL) (((-1074) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-517) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-1140 |#2| |#3| |#4|) $) NIL)) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-1141 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1154 (-1141 |#1| |#2| |#3| |#4|)))) (-623 $) (-1154 $)) NIL) (((-623 (-1141 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-1141 |#1| |#2| |#3| |#4|) $) 21)) (-3326 (((-3 $ "failed") $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-1050)))) (-1199 (((-107) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-3105 (($ $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1939 (($ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) $) NIL)) (-1672 (((-3 (-772 |#2|) "failed") $) 76)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-278)))) (-2908 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-1141 |#1| |#2| |#3| |#4|)) (-583 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1141 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-280 (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1074)) (-583 (-1141 |#1| |#2| |#3| |#4|))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|)))) (($ $ (-1074) (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-478 (-1074) (-1141 |#1| |#2| |#3| |#4|))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-1141 |#1| |#2| |#3| |#4|)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-258 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-1141 |#1| |#2| |#3| |#4|) $) 17)) (-3667 (((-814 (-517)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-937))) (((-199) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1141 |#1| |#2| |#3| |#4|) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1141 |#1| |#2| |#3| |#4|)) 28) (($ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-952 (-1074)))) (($ (-1140 |#2| |#3| |#4|)) 36)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-1141 |#1| |#2| |#3| |#4|) (-831))) (|has| (-1141 |#1| |#2| |#3| |#4|) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-1141 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-502)))) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 41 T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1074)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-822 (-1074)))) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-1141 |#1| |#2| |#3| |#4|) (-779)))) (-1678 (($ $ $) 33) (($ (-1141 |#1| |#2| |#3| |#4|) (-1141 |#1| |#2| |#3| |#4|)) 30)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1141 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1141 |#1| |#2| |#3| |#4|)) NIL)))
-(((-283 |#1| |#2| |#3| |#4|) (-13 (-909 (-1141 |#1| |#2| |#3| |#4|)) (-952 (-1140 |#2| |#3| |#4|)) (-10 -8 (-15 -1672 ((-3 (-772 |#2|) "failed") $)) (-15 -2254 ($ (-1140 |#2| |#3| |#4|))))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -283))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1140 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-1672 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
-(-13 (-909 (-1141 |#1| |#2| |#3| |#4|)) (-952 (-1140 |#2| |#3| |#4|)) (-10 -8 (-15 -1672 ((-3 (-772 |#2|) "failed") $)) (-15 -2254 ($ (-1140 |#2| |#3| |#4|)))))
-((-1939 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -1939 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
-(-10 -7 (-15 -1939 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
-((-1565 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1074)) 21)) (-4016 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1074)) 47)) (-1594 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1074)) 42)) (-1579 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1074)) 34)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -1565 ((-51) (-1074))) (-15 -1565 ((-51) |#2|)) (-15 -1565 ((-51) |#2| (-703))) (-15 -1565 ((-51) |#2| (-265 |#2|))) (-15 -1565 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1579 ((-51) (-1074))) (-15 -1579 ((-51) |#2|)) (-15 -1579 ((-51) |#2| (-517))) (-15 -1579 ((-51) |#2| (-265 |#2|))) (-15 -1579 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1594 ((-51) (-1074))) (-15 -1594 ((-51) |#2|)) (-15 -1594 ((-51) |#2| (-377 (-517)))) (-15 -1594 ((-51) |#2| (-265 |#2|))) (-15 -1594 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -4016 ((-51) (-1074))) (-15 -4016 ((-51) |#2|)) (-15 -4016 ((-51) |#2| (-377 (-517)))) (-15 -4016 ((-51) |#2| (-265 |#2|))) (-15 -4016 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -285))
-((-4016 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1594 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) (-1565 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))))
-(-10 -7 (-15 -1565 ((-51) (-1074))) (-15 -1565 ((-51) |#2|)) (-15 -1565 ((-51) |#2| (-703))) (-15 -1565 ((-51) |#2| (-265 |#2|))) (-15 -1565 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1579 ((-51) (-1074))) (-15 -1579 ((-51) |#2|)) (-15 -1579 ((-51) |#2| (-517))) (-15 -1579 ((-51) |#2| (-265 |#2|))) (-15 -1579 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1594 ((-51) (-1074))) (-15 -1594 ((-51) |#2|)) (-15 -1594 ((-51) |#2| (-377 (-517)))) (-15 -1594 ((-51) |#2| (-265 |#2|))) (-15 -1594 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -4016 ((-51) (-1074))) (-15 -4016 ((-51) |#2|)) (-15 -4016 ((-51) |#2| (-377 (-517)))) (-15 -4016 ((-51) |#2| (-265 |#2|))) (-15 -4016 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
-((-1587 (((-107) $ $) NIL)) (-2592 (((-583 $) $ (-1074)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3098 (($ $ (-1074)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (($ (-1070 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-2778 (((-107) $) 27 (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1357 (((-583 (-1074)) $) 346)) (-2374 (((-377 (-1070 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1341 (((-583 (-556 $)) $) NIL)) (-2725 (($ $) 156 (|has| |#1| (-509)))) (-2602 (($ $) 132 (|has| |#1| (-509)))) (-1413 (($ $ (-996 $)) 217 (|has| |#1| (-509))) (($ $ (-1074)) 213 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) NIL (-3782 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1786 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 362) (($ $ (-583 (-556 $)) (-583 $)) 405)) (-1851 (((-388 (-1070 $)) (-1070 $)) 290 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-2377 (($ $) NIL (|has| |#1| (-509)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-509)))) (-1386 (($ $) NIL (|has| |#1| (-509)))) (-2448 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2705 (($ $) 152 (|has| |#1| (-509)))) (-2580 (($ $) 128 (|has| |#1| (-509)))) (-3206 (($ $ (-517)) 68 (|has| |#1| (-509)))) (-1533 (($ $) 160 (|has| |#1| (-509)))) (-2626 (($ $) 136 (|has| |#1| (-509)))) (-2706 (($) NIL (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1488 (((-583 $) $ (-1074)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $) (-1074)) NIL (|has| |#1| (-509))) (((-583 $) (-1070 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3249 (($ $ (-1074)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1070 $) (-1074)) 119 (|has| |#1| (-509))) (($ (-1070 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-1837 (((-3 (-556 $) "failed") $) 17) (((-3 (-1074) "failed") $) NIL) (((-3 |#1| "failed") $) 414) (((-3 (-47) "failed") $) 319 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-874 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) NIL (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 45 (-3782 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3232 (((-556 $) $) 11) (((-1074) $) NIL) ((|#1| $) 396) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-874 |#1|)) $) NIL (|has| |#1| (-509))) (((-874 |#1|) $) NIL (|has| |#1| (-961))) (((-377 (-517)) $) 303 (-3782 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2532 (($ $ $) NIL (|has| |#1| (-509)))) (-2749 (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 112 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 104 (|has| |#1| (-961))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (-1292 (($ $) 86 (|has| |#1| (-509)))) (-3775 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2509 (($ $ $) NIL (|has| |#1| (-509)))) (-1509 (($ $ (-996 $)) 221 (|has| |#1| (-509))) (($ $ (-1074)) 219 (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-3083 (((-107) $) NIL (|has| |#1| (-509)))) (-2828 (($ $ $) 187 (|has| |#1| (-509)))) (-2665 (($) 122 (|has| |#1| (-509)))) (-1630 (($ $ $) 207 (|has| |#1| (-509)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 368 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 374 (|has| |#1| (-808 (-349))))) (-2870 (($ $) NIL) (($ (-583 $)) NIL)) (-2576 (((-583 (-109)) $) NIL)) (-2283 (((-109) (-109)) 262)) (-3469 (((-107) $) 25 (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2119 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1583 (($ $) 67 (|has| |#1| (-961)))) (-1842 (((-1026 |#1| (-556 $)) $) 81 (|has| |#1| (-961)))) (-3855 (((-107) $) 60 (|has| |#1| (-509)))) (-2003 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3733 (((-1070 $) (-556 $)) 263 (|has| $ (-961)))) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 $ $) (-556 $)) 401)) (-1337 (((-3 (-556 $) "failed") $) NIL)) (-1875 (($ $) 126 (|has| |#1| (-509)))) (-3159 (($ $) 232 (|has| |#1| (-509)))) (-1360 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1277 (((-1057) $) NIL)) (-2362 (((-583 (-556 $)) $) 48)) (-1893 (($ (-109) $) NIL) (($ (-109) (-583 $)) 406)) (-3789 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1015)))) (-2337 (((-3 (-2 (|:| |val| $) (|:| -3010 (-517))) "failed") $) NIL (|has| |#1| (-961)))) (-1674 (((-3 (-583 $) "failed") $) 409 (|has| |#1| (-25)))) (-1266 (((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 $))) "failed") $) 413 (|has| |#1| (-25)))) (-3106 (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $) NIL (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-1074)) NIL (|has| |#1| (-961)))) (-2506 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) 52)) (-1639 (($ $) NIL (-3782 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1721 (($ $ (-1074)) 236 (|has| |#1| (-509))) (($ $ (-996 $)) 238 (|has| |#1| (-509)))) (-1916 (((-703) $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) 43)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 283 (|has| |#1| (-509)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2376 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-3225 (($ $ (-1074)) 211 (|has| |#1| (-509))) (($ $) 209 (|has| |#1| (-509)))) (-1803 (($ $) 203 (|has| |#1| (-509)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 288 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-1376 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-509)))) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-2643 (($ $) 124 (|has| |#1| (-509)))) (-1947 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 400) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 356) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1074)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 344 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1074)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ $)) NIL (|has| |#1| (-961)))) (-3196 (((-703) $) NIL (|has| |#1| (-509)))) (-2530 (($ $) 224 (|has| |#1| (-509)))) (-1437 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-1394 (($ $) NIL) (($ $ $) NIL)) (-2569 (($ $) 234 (|has| |#1| (-509)))) (-3744 (($ $) 185 (|has| |#1| (-509)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-961))) (($ $ (-1074)) NIL (|has| |#1| (-961)))) (-1728 (($ $) 69 (|has| |#1| (-509)))) (-1852 (((-1026 |#1| (-556 $)) $) 83 (|has| |#1| (-509)))) (-2780 (($ $) 301 (|has| $ (-961)))) (-1543 (($ $) 162 (|has| |#1| (-509)))) (-2638 (($ $) 138 (|has| |#1| (-509)))) (-2735 (($ $) 158 (|has| |#1| (-509)))) (-2614 (($ $) 134 (|has| |#1| (-509)))) (-2714 (($ $) 154 (|has| |#1| (-509)))) (-2590 (($ $) 130 (|has| |#1| (-509)))) (-3667 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 341 (|has| |#1| (-558 (-493))))) (-1757 (($ $ $) NIL (|has| |#1| (-442)))) (-2901 (($ $ $) NIL (|has| |#1| (-442)))) (-2254 (((-787) $) 399) (($ (-556 $)) 390) (($ (-1074)) 358) (($ |#1|) 320) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 295 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (($ (-1026 |#1| (-556 $))) 85 (|has| |#1| (-961))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) NIL (|has| |#1| (-509))) (($ (-874 |#1|)) NIL (|has| |#1| (-961))) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-509)) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 34 (-3782 (|has| |#1| (-952 (-517))) (|has| |#1| (-961))))) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL (|has| |#1| (-961)))) (-3137 (($ $) NIL) (($ (-583 $)) NIL)) (-4033 (($ $ $) 205 (|has| |#1| (-509)))) (-1388 (($ $ $) 191 (|has| |#1| (-509)))) (-3958 (($ $ $) 195 (|has| |#1| (-509)))) (-3956 (($ $ $) 189 (|has| |#1| (-509)))) (-3770 (($ $ $) 193 (|has| |#1| (-509)))) (-2794 (((-107) (-109)) 9)) (-1584 (($ $) 168 (|has| |#1| (-509)))) (-2670 (($ $) 144 (|has| |#1| (-509)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) 164 (|has| |#1| (-509)))) (-2651 (($ $) 140 (|has| |#1| (-509)))) (-1614 (($ $) 172 (|has| |#1| (-509)))) (-2688 (($ $) 148 (|has| |#1| (-509)))) (-1661 (($ (-1074) $) NIL) (($ (-1074) $ $) NIL) (($ (-1074) $ $ $) NIL) (($ (-1074) $ $ $ $) NIL) (($ (-1074) (-583 $)) NIL)) (-1833 (($ $) 199 (|has| |#1| (-509)))) (-1878 (($ $) 197 (|has| |#1| (-509)))) (-3756 (($ $) 174 (|has| |#1| (-509)))) (-2698 (($ $) 150 (|has| |#1| (-509)))) (-1599 (($ $) 170 (|has| |#1| (-509)))) (-2678 (($ $) 146 (|has| |#1| (-509)))) (-1570 (($ $) 166 (|has| |#1| (-509)))) (-2660 (($ $) 142 (|has| |#1| (-509)))) (-1724 (($ $) 177 (|has| |#1| (-509)))) (-2196 (($ $ (-517)) NIL (-3782 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) NIL (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2398 (($) 20 (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) CONST)) (-3168 (($ $) 228 (|has| |#1| (-509)))) (-2411 (($) 22 (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-2609 (($ $) 179 (|has| |#1| (-509))) (($ $ $) 181 (|has| |#1| (-509)))) (-2333 (($ $) 226 (|has| |#1| (-509)))) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-961))) (($ $ (-1074)) NIL (|has| |#1| (-961)))) (-2800 (($ $) 230 (|has| |#1| (-509)))) (-2393 (($ $ $) 183 (|has| |#1| (-509)))) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 78)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 77)) (-1678 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 95 (|has| |#1| (-509))) (($ $ $) 42 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1663 (($ $ $) 40 (-3782 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ $) 29 (-3782 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1645 (($ $ $) 38 (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (** (($ $ $) 62 (|has| |#1| (-509))) (($ $ (-377 (-517))) 298 (|has| |#1| (-509))) (($ $ (-517)) 73 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 70 (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) 75 (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3782 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ (-517) $) 32 (-3782 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-703) $) NIL (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-843) $) NIL (-3782 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))))
-(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1095)) (-6 (-145)) (-6 (-569)) (-6 (-1038)) (-15 -1292 ($ $)) (-15 -3855 ((-107) $)) (-15 -3206 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1673 ((-388 (-1070 $)) (-1070 $))) (-15 -1851 ((-388 (-1070 $)) (-1070 $)))) |%noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |%noBranch|)) |%noBranch|))) (-779)) (T -286))
-((-1292 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3206 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1673 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-1851 (*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
-(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1095)) (-6 (-145)) (-6 (-569)) (-6 (-1038)) (-15 -1292 ($ $)) (-15 -3855 ((-107) $)) (-15 -3206 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1673 ((-388 (-1070 $)) (-1070 $))) (-15 -1851 ((-388 (-1070 $)) (-1070 $)))) |%noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |%noBranch|)) |%noBranch|)))
-((-3731 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3731 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
-((-3731 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3731 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3731 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3731 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3731 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3731 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3731 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3731 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3731 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3731 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
-(-10 -7 (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3731 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3731 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3731 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3731 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-2206 (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057)) 45) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517)) 46) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057)) 42) (((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517)) 43)) (-1236 (((-1 (-199) (-199)) (-199)) 44)))
-(((-288) (-10 -7 (-15 -1236 ((-1 (-199) (-199)) (-199))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057))))) (T -288))
-((-2206 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-2206 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-2206 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-2206 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) (-1236 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(-10 -7 (-15 -1236 ((-1 (-199) (-199)) (-199))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1057))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2206 ((-1105 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1057))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 24)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) 30)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1375 (((-377 (-517)) $) 16)) (-1885 (($ (-1140 |#1| |#2| |#3|)) 11)) (-3010 (((-1140 |#1| |#2| |#3|) $) 12)) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3625 (((-377 (-517)) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 10)) (-2254 (((-787) $) 36) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) 28)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) NIL)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 26)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 31)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-289 |#1| |#2| |#3|) (-13 (-1136 |#1|) (-724) (-10 -8 (-15 -1885 ($ (-1140 |#1| |#2| |#3|))) (-15 -3010 ((-1140 |#1| |#2| |#3|) $)) (-15 -1375 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1074) |#1|) (T -289))
-((-1885 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1140 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))))
-(-13 (-1136 |#1|) (-724) (-10 -8 (-15 -1885 ($ (-1140 |#1| |#2| |#3|))) (-15 -3010 ((-1140 |#1| |#2| |#3|) $)) (-15 -1375 ((-377 (-517)) $))))
-((-2003 (((-2 (|:| -3010 (-703)) (|:| -1965 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1875 (((-583 (-2 (|:| -1965 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
-(((-290 |#1|) (-10 -7 (-15 -2003 ((-2 (|:| -3010 (-703)) (|:| -1965 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1875 ((-583 (-2 (|:| -1965 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
-((-1875 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1965 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
-(-10 -7 (-15 -2003 ((-2 (|:| -3010 (-703)) (|:| -1965 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1875 ((-583 (-2 (|:| -1965 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
-((-1357 (((-583 |#2|) (-1070 |#4|)) 43)) (-2731 ((|#3| (-517)) 46)) (-1428 (((-1070 |#4|) (-1070 |#3|)) 30)) (-1795 (((-1070 |#4|) (-1070 |#4|) (-517)) 55)) (-1648 (((-1070 |#3|) (-1070 |#4|)) 21)) (-3625 (((-583 (-703)) (-1070 |#4|) (-583 |#2|)) 40)) (-2607 (((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
-(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2607 ((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3625 ((-583 (-703)) (-1070 |#4|) (-583 |#2|))) (-15 -1357 ((-583 |#2|) (-1070 |#4|))) (-15 -1648 ((-1070 |#3|) (-1070 |#4|))) (-15 -1428 ((-1070 |#4|) (-1070 |#3|))) (-15 -1795 ((-1070 |#4|) (-1070 |#4|) (-517))) (-15 -2731 (|#3| (-517)))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|)) (T -291))
-((-2731 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))) (-1795 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1070 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-2607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1070 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2607 ((-1070 |#3|) (-1070 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3625 ((-583 (-703)) (-1070 |#4|) (-583 |#2|))) (-15 -1357 ((-583 |#2|) (-1070 |#4|))) (-15 -1648 ((-1070 |#3|) (-1070 |#4|))) (-15 -1428 ((-1070 |#4|) (-1070 |#3|))) (-15 -1795 ((-1070 |#4|) (-1070 |#4|) (-517))) (-15 -2731 (|#3| (-517))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 14)) (-1378 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-517)))) $) 18)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703) $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3380 ((|#1| $ (-517)) NIL)) (-2615 (((-517) $ (-517)) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-2654 (($ (-1 |#1| |#1|) $) NIL)) (-2515 (($ (-1 (-517) (-517)) $) 10)) (-1277 (((-1057) $) NIL)) (-3539 (($ $ $) NIL (|has| (-517) (-724)))) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL) (($ |#1|) NIL)) (-4104 (((-517) |#1| $) NIL)) (-2398 (($) 15 T CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1663 (($ $) 11) (($ $ $) 20)) (-1645 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
-(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1003)) (T -292))
+((-3522 ((|#1| (-1 |#1| (-517)) (-1077 (-377 (-517)))) 24)))
+(((-281 |#1|) (-10 -7 (-15 -3522 (|#1| (-1 |#1| (-517)) (-1077 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
+((-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1077 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
+(-10 -7 (-15 -3522 (|#1| (-1 |#1| (-517)) (-1077 (-377 (-517))))))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 7)) (-1583 (((-107) $ $) 9)))
+(((-282) (-1004)) (T -282))
+NIL
+(-1004)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 62)) (-3297 (((-1142 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-1142 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-517)))) (((-3 (-1141 |#2| |#3| |#4|) "failed") $) 24)) (-3388 (((-1142 |#1| |#2| |#3| |#4|) $) NIL) (((-1075) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-517)))) (((-517) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-517)))) (((-1141 |#2| |#3| |#4|) $) NIL)) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-1142 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1156 (-1142 |#1| |#2| |#3| |#4|)))) (-623 $) (-1156 $)) NIL) (((-623 (-1142 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-1142 |#1| |#2| |#3| |#4|) $) 21)) (-3572 (((-3 $ "failed") $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-1051)))) (-1469 (((-107) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-4082 (($ $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-3308 (($ (-1 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|)) $) NIL)) (-2297 (((-3 (-772 |#2|) "failed") $) 76)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-278)))) (-2309 (((-1142 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-1142 |#1| |#2| |#3| |#4|)) (-583 (-1142 |#1| |#2| |#3| |#4|))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-280 (-1142 |#1| |#2| |#3| |#4|)))) (($ $ (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-280 (-1142 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1142 |#1| |#2| |#3| |#4|))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-280 (-1142 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1142 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-280 (-1142 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1075)) (-583 (-1142 |#1| |#2| |#3| |#4|))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-478 (-1075) (-1142 |#1| |#2| |#3| |#4|)))) (($ $ (-1075) (-1142 |#1| |#2| |#3| |#4|)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-478 (-1075) (-1142 |#1| |#2| |#3| |#4|))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-1142 |#1| |#2| |#3| |#4|)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-258 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1075)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-1 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-1142 |#1| |#2| |#3| |#4|) $) 17)) (-3357 (((-815 (-517)) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-938))) (((-199) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1142 |#1| |#2| |#3| |#4|) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1142 |#1| |#2| |#3| |#4|)) 28) (($ (-1075)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-953 (-1075)))) (($ (-1141 |#2| |#3| |#4|)) 36)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-1142 |#1| |#2| |#3| |#4|) (-832))) (|has| (-1142 |#1| |#2| |#3| |#4|) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-1142 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-502)))) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 41 T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1075)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-823 (-1075)))) (($ $ (-1 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-1142 |#1| |#2| |#3| |#4|) (-779)))) (-1703 (($ $ $) 33) (($ (-1142 |#1| |#2| |#3| |#4|) (-1142 |#1| |#2| |#3| |#4|)) 30)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1142 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1142 |#1| |#2| |#3| |#4|)) NIL)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-910 (-1142 |#1| |#2| |#3| |#4|)) (-953 (-1141 |#2| |#3| |#4|)) (-10 -8 (-15 -2297 ((-3 (-772 |#2|) "failed") $)) (-15 -2269 ($ (-1141 |#2| |#3| |#4|))))) (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1096) (-400 |#1|)) (-1075) |#2|) (T -283))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075)) (-14 *6 *4) (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-2297 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075)) (-14 *6 *4))))
+(-13 (-910 (-1142 |#1| |#2| |#3| |#4|)) (-953 (-1141 |#2| |#3| |#4|)) (-10 -8 (-15 -2297 ((-3 (-772 |#2|) "failed") $)) (-15 -2269 ($ (-1141 |#2| |#3| |#4|)))))
+((-3308 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -3308 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
+(-10 -7 (-15 -3308 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
+((-2144 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1075)) 21)) (-3431 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1075)) 47)) (-2164 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1075)) 42)) (-2153 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1075)) 34)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -2144 ((-51) (-1075))) (-15 -2144 ((-51) |#2|)) (-15 -2144 ((-51) |#2| (-703))) (-15 -2144 ((-51) |#2| (-265 |#2|))) (-15 -2144 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2153 ((-51) (-1075))) (-15 -2153 ((-51) |#2|)) (-15 -2153 ((-51) |#2| (-517))) (-15 -2153 ((-51) |#2| (-265 |#2|))) (-15 -2153 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2164 ((-51) (-1075))) (-15 -2164 ((-51) |#2|)) (-15 -2164 ((-51) |#2| (-377 (-517)))) (-15 -2164 ((-51) |#2| (-265 |#2|))) (-15 -2164 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3431 ((-51) (-1075))) (-15 -3431 ((-51) |#2|)) (-15 -3431 ((-51) |#2| (-377 (-517)))) (-15 -3431 ((-51) |#2| (-265 |#2|))) (-15 -3431 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -285))
+((-3431 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-3431 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1096) (-400 *4))))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-2164 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1096) (-400 *4))))) (-2153 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-953 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-953 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1096) (-400 *4))))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-2144 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1096) (-400 *4))))))
+(-10 -7 (-15 -2144 ((-51) (-1075))) (-15 -2144 ((-51) |#2|)) (-15 -2144 ((-51) |#2| (-703))) (-15 -2144 ((-51) |#2| (-265 |#2|))) (-15 -2144 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2153 ((-51) (-1075))) (-15 -2153 ((-51) |#2|)) (-15 -2153 ((-51) |#2| (-517))) (-15 -2153 ((-51) |#2| (-265 |#2|))) (-15 -2153 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2164 ((-51) (-1075))) (-15 -2164 ((-51) |#2|)) (-15 -2164 ((-51) |#2| (-377 (-517)))) (-15 -2164 ((-51) |#2| (-265 |#2|))) (-15 -2164 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3431 ((-51) (-1075))) (-15 -3431 ((-51) |#2|)) (-15 -3431 ((-51) |#2| (-377 (-517)))) (-15 -3431 ((-51) |#2| (-265 |#2|))) (-15 -3431 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
+((-2118 (((-107) $ $) NIL)) (-1464 (((-583 $) $ (-1075)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1071 $) (-1075)) NIL (|has| |#1| (-509))) (((-583 $) (-1071 $)) NIL (|has| |#1| (-509))) (((-583 $) (-875 $)) NIL (|has| |#1| (-509)))) (-3458 (($ $ (-1075)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1071 $) (-1075)) NIL (|has| |#1| (-509))) (($ (-1071 $)) NIL (|has| |#1| (-509))) (($ (-875 $)) NIL (|has| |#1| (-509)))) (-2033 (((-107) $) 27 (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))) (-2096 (((-583 (-1075)) $) 345)) (-1440 (((-377 (-1071 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3831 (((-583 (-556 $)) $) NIL)) (-1646 (($ $) 154 (|has| |#1| (-509)))) (-1493 (($ $) 130 (|has| |#1| (-509)))) (-1810 (($ $ (-997 $)) 215 (|has| |#1| (-509))) (($ $ (-1075)) 211 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) NIL (-3745 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))) (-3913 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 361) (($ $ (-583 (-556 $)) (-583 $)) 404)) (-2121 (((-388 (-1071 $)) (-1071 $)) 289 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3088 (($ $) NIL (|has| |#1| (-509)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3879 (($ $) NIL (|has| |#1| (-509)))) (-3998 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1622 (($ $) 150 (|has| |#1| (-509)))) (-1470 (($ $) 126 (|has| |#1| (-509)))) (-2827 (($ $ (-517)) 64 (|has| |#1| (-509)))) (-1669 (($ $) 158 (|has| |#1| (-509)))) (-1519 (($ $) 134 (|has| |#1| (-509)))) (-1681 (($) NIL (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))) CONST)) (-4054 (((-583 $) $ (-1075)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1071 $) (-1075)) NIL (|has| |#1| (-509))) (((-583 $) (-1071 $)) NIL (|has| |#1| (-509))) (((-583 $) (-875 $)) NIL (|has| |#1| (-509)))) (-3772 (($ $ (-1075)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1071 $) (-1075)) 117 (|has| |#1| (-509))) (($ (-1071 $)) NIL (|has| |#1| (-509))) (($ (-875 $)) NIL (|has| |#1| (-509)))) (-3226 (((-3 (-556 $) "failed") $) 17) (((-3 (-1075) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-875 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-875 |#1|) "failed") $) NIL (|has| |#1| (-962))) (((-3 (-377 (-517)) "failed") $) 45 (-3745 (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-3388 (((-556 $) $) 11) (((-1075) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-875 |#1|)) $) NIL (|has| |#1| (-509))) (((-875 |#1|) $) NIL (|has| |#1| (-962))) (((-377 (-517)) $) 302 (-3745 (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-2378 (($ $ $) NIL (|has| |#1| (-509)))) (-2306 (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 110 (|has| |#1| (-962))) (((-623 |#1|) (-623 $)) 102 (|has| |#1| (-962))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))) (-1521 (($ $) 84 (|has| |#1| (-509)))) (-3163 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))))) (-2354 (($ $ $) NIL (|has| |#1| (-509)))) (-3544 (($ $ (-997 $)) 219 (|has| |#1| (-509))) (($ $ (-1075)) 217 (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-2963 (((-107) $) NIL (|has| |#1| (-509)))) (-1841 (($ $ $) 185 (|has| |#1| (-509)))) (-2115 (($) 120 (|has| |#1| (-509)))) (-1298 (($ $ $) 205 (|has| |#1| (-509)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 367 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 373 (|has| |#1| (-809 (-349))))) (-3039 (($ $) NIL) (($ (-583 $)) NIL)) (-1976 (((-583 (-109)) $) NIL)) (-3034 (((-109) (-109)) 260)) (-1865 (((-107) $) 25 (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))))) (-1623 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3967 (($ $) 66 (|has| |#1| (-962)))) (-3824 (((-1027 |#1| (-556 $)) $) 79 (|has| |#1| (-962)))) (-1380 (((-107) $) 46 (|has| |#1| (-509)))) (-1484 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3049 (((-1071 $) (-556 $)) 261 (|has| $ (-962)))) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 $ $) (-556 $)) 400)) (-2466 (((-3 (-556 $) "failed") $) NIL)) (-1225 (($ $) 124 (|has| |#1| (-509)))) (-2179 (($ $) 230 (|has| |#1| (-509)))) (-2330 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1895 (((-1058) $) NIL)) (-1423 (((-583 (-556 $)) $) 48)) (-1396 (($ (-109) $) NIL) (($ (-109) (-583 $)) 405)) (-3807 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1016)))) (-2692 (((-3 (-2 (|:| |val| $) (|:| -2356 (-517))) "failed") $) NIL (|has| |#1| (-962)))) (-2875 (((-3 (-583 $) "failed") $) 408 (|has| |#1| (-25)))) (-3818 (((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 $))) "failed") $) 412 (|has| |#1| (-25)))) (-1812 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $) NIL (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-962))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-1075)) NIL (|has| |#1| (-962)))) (-1290 (((-107) $ (-109)) NIL) (((-107) $ (-1075)) 52)) (-2298 (($ $) NIL (-3745 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1217 (($ $ (-1075)) 234 (|has| |#1| (-509))) (($ $ (-997 $)) 236 (|has| |#1| (-509)))) (-1807 (((-703) $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) 43)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 282 (|has| |#1| (-509)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2376 (((-107) $ $) NIL) (((-107) $ (-1075)) NIL)) (-3519 (($ $ (-1075)) 209 (|has| |#1| (-509))) (($ $) 207 (|has| |#1| (-509)))) (-3012 (($ $) 201 (|has| |#1| (-509)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 287 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3866 (((-388 $) $) NIL (|has| |#1| (-509)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-509)))) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3868 (($ $) 122 (|has| |#1| (-509)))) (-2085 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 399) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1075) (-1 $ (-583 $))) NIL) (($ $ (-1075) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 355) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1075)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1075)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1075)) 342 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-962))) (($ $ (-1075) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-962))) (($ $ (-1075) (-703) (-1 $ $)) NIL (|has| |#1| (-962)))) (-4094 (((-703) $) NIL (|has| |#1| (-509)))) (-1421 (($ $) 222 (|has| |#1| (-509)))) (-2607 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-3618 (($ $) NIL) (($ $ $) NIL)) (-1459 (($ $) 232 (|has| |#1| (-509)))) (-4125 (($ $) 183 (|has| |#1| (-509)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-962))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-962))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-962))) (($ $ (-1075)) NIL (|has| |#1| (-962)))) (-3596 (($ $) 67 (|has| |#1| (-509)))) (-2097 (((-1027 |#1| (-556 $)) $) 81 (|has| |#1| (-509)))) (-3586 (($ $) 300 (|has| $ (-962)))) (-1682 (($ $) 160 (|has| |#1| (-509)))) (-1532 (($ $) 136 (|has| |#1| (-509)))) (-1656 (($ $) 156 (|has| |#1| (-509)))) (-1506 (($ $) 132 (|has| |#1| (-509)))) (-1632 (($ $) 152 (|has| |#1| (-509)))) (-1482 (($ $) 128 (|has| |#1| (-509)))) (-3357 (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 340 (|has| |#1| (-558 (-493))))) (-3026 (($ $ $) NIL (|has| |#1| (-442)))) (-2609 (($ $ $) NIL (|has| |#1| (-442)))) (-2269 (((-787) $) 398) (($ (-556 $)) 389) (($ (-1075)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 294 (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517))))) (($ (-1027 |#1| (-556 $))) 83 (|has| |#1| (-962))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-875 |#1|))) NIL (|has| |#1| (-509))) (($ (-875 |#1|)) NIL (|has| |#1| (-962))) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-509)) (|has| |#1| (-953 (-377 (-517)))))) (($ (-517)) 34 (-3745 (|has| |#1| (-953 (-517))) (|has| |#1| (-962))))) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL (|has| |#1| (-962)))) (-3438 (($ $) NIL) (($ (-583 $)) NIL)) (-3972 (($ $ $) 203 (|has| |#1| (-509)))) (-2184 (($ $ $) 189 (|has| |#1| (-509)))) (-1987 (($ $ $) 193 (|has| |#1| (-509)))) (-1794 (($ $ $) 187 (|has| |#1| (-509)))) (-1726 (($ $ $) 191 (|has| |#1| (-509)))) (-1752 (((-107) (-109)) 9)) (-1721 (($ $) 166 (|has| |#1| (-509)))) (-1575 (($ $) 142 (|has| |#1| (-509)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) 162 (|has| |#1| (-509)))) (-1547 (($ $) 138 (|has| |#1| (-509)))) (-3487 (($ $) 170 (|has| |#1| (-509)))) (-1599 (($ $) 146 (|has| |#1| (-509)))) (-3511 (($ (-1075) $) NIL) (($ (-1075) $ $) NIL) (($ (-1075) $ $ $) NIL) (($ (-1075) $ $ $ $) NIL) (($ (-1075) (-583 $)) NIL)) (-3513 (($ $) 197 (|has| |#1| (-509)))) (-2605 (($ $) 195 (|has| |#1| (-509)))) (-2822 (($ $) 172 (|has| |#1| (-509)))) (-1612 (($ $) 148 (|has| |#1| (-509)))) (-1735 (($ $) 168 (|has| |#1| (-509)))) (-1588 (($ $) 144 (|has| |#1| (-509)))) (-1708 (($ $) 164 (|has| |#1| (-509)))) (-1561 (($ $) 140 (|has| |#1| (-509)))) (-2339 (($ $) 175 (|has| |#1| (-509)))) (-2813 (($ $ (-517)) NIL (-3745 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016)))) (($ $ (-844)) NIL (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))))) (-3608 (($) 20 (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))) CONST)) (-2067 (($ $) 226 (|has| |#1| (-509)))) (-3617 (($) 22 (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))) CONST)) (-1350 (($ $) 177 (|has| |#1| (-509))) (($ $ $) 179 (|has| |#1| (-509)))) (-2168 (($ $) 224 (|has| |#1| (-509)))) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-962))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-962))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-962))) (($ $ (-1075)) NIL (|has| |#1| (-962)))) (-2243 (($ $) 228 (|has| |#1| (-509)))) (-3196 (($ $ $) 181 (|has| |#1| (-509)))) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 76)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 75)) (-1703 (($ (-1027 |#1| (-556 $)) (-1027 |#1| (-556 $))) 93 (|has| |#1| (-509))) (($ $ $) 42 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1691 (($ $ $) 40 (-3745 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))) (($ $) 29 (-3745 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))) (-1677 (($ $ $) 38 (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))) (** (($ $ $) 61 (|has| |#1| (-509))) (($ $ (-377 (-517))) 297 (|has| |#1| (-509))) (($ $ (-517)) 71 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 68 (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016)))) (($ $ (-844)) 73 (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3745 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) (|has| |#1| (-1016)))) (($ (-517) $) 32 (-3745 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))) (($ (-703) $) NIL (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))))) (($ (-844) $) NIL (-3745 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))))))
+(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1096)) (-6 (-145)) (-6 (-569)) (-6 (-1039)) (-15 -1521 ($ $)) (-15 -1380 ((-107) $)) (-15 -2827 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -4071 ((-388 (-1071 $)) (-1071 $))) (-15 -2121 ((-388 (-1071 $)) (-1071 $)))) |%noBranch|) (IF (|has| |#1| (-953 (-517))) (-6 (-953 (-47))) |%noBranch|)) |%noBranch|))) (-779)) (T -286))
+((-1521 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2827 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-4071 (*1 *2 *3) (-12 (-5 *2 (-388 (-1071 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1071 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-388 (-1071 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1071 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
+(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1096)) (-6 (-145)) (-6 (-569)) (-6 (-1039)) (-15 -1521 ($ $)) (-15 -1380 ((-107) $)) (-15 -2827 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -4071 ((-388 (-1071 $)) (-1071 $))) (-15 -2121 ((-388 (-1071 $)) (-1071 $)))) |%noBranch|) (IF (|has| |#1| (-953 (-517))) (-6 (-953 (-47))) |%noBranch|)) |%noBranch|)))
+((-3708 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3708 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
+((-3708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3708 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3708 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3708 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3708 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3708 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3708 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-1278 (((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517) (-1058)) 46) (((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517)) 47) (((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517) (-1058)) 43) (((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517)) 44)) (-2861 (((-1 (-199) (-199)) (-199)) 45)))
+(((-288) (-10 -7 (-15 -2861 ((-1 (-199) (-199)) (-199))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517) (-1058))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517) (-1058))))) (T -288))
+((-1278 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-999 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1058)) (-5 *2 (-1106 (-849))) (-5 *1 (-288)))) (-1278 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-999 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1106 (-849))) (-5 *1 (-288)))) (-1278 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-999 (-199))) (-5 *6 (-517)) (-5 *7 (-1058)) (-5 *2 (-1106 (-849))) (-5 *1 (-288)))) (-1278 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-999 (-199))) (-5 *6 (-517)) (-5 *2 (-1106 (-849))) (-5 *1 (-288)))) (-2861 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(-10 -7 (-15 -2861 ((-1 (-199) (-199)) (-199))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-1 (-199) (-199)) (-517) (-1058))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517))) (-15 -1278 ((-1106 (-849)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-199) (-517) (-1058))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 24)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) 31)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-377 (-517))) NIL) (($ $ (-990) (-377 (-517))) NIL) (($ $ (-583 (-990)) (-583 (-377 (-517)))) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096)))))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4152 (((-377 (-517)) $) 16)) (-1559 (($ (-1141 |#1| |#2| |#3|)) 11)) (-2356 (((-1141 |#1| |#2| |#3|) $) 12)) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-2769 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 10)) (-2269 (((-787) $) 37) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) 29)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) NIL)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 26)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 32)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-289 |#1| |#2| |#3|) (-13 (-1137 |#1|) (-724) (-10 -8 (-15 -1559 ($ (-1141 |#1| |#2| |#3|))) (-15 -2356 ((-1141 |#1| |#2| |#3|) $)) (-15 -4152 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1075) |#1|) (T -289))
+((-1559 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1141 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1075)) (-14 *5 *3))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1075)) (-14 *5 *3))))
+(-13 (-1137 |#1|) (-724) (-10 -8 (-15 -1559 ($ (-1141 |#1| |#2| |#3|))) (-15 -2356 ((-1141 |#1| |#2| |#3|) $)) (-15 -4152 ((-377 (-517)) $))))
+((-1484 (((-2 (|:| -2356 (-703)) (|:| -1580 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1225 (((-583 (-2 (|:| -1580 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
+(((-290 |#1|) (-10 -7 (-15 -1484 ((-2 (|:| -2356 (-703)) (|:| -1580 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1225 ((-583 (-2 (|:| -1580 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
+((-1225 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1580 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
+(-10 -7 (-15 -1484 ((-2 (|:| -2356 (-703)) (|:| -1580 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1225 ((-583 (-2 (|:| -1580 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
+((-2096 (((-583 |#2|) (-1071 |#4|)) 43)) (-1305 ((|#3| (-517)) 46)) (-1772 (((-1071 |#4|) (-1071 |#3|)) 30)) (-2527 (((-1071 |#4|) (-1071 |#4|) (-517)) 56)) (-3543 (((-1071 |#3|) (-1071 |#4|)) 21)) (-2769 (((-583 (-703)) (-1071 |#4|) (-583 |#2|)) 40)) (-3269 (((-1071 |#3|) (-1071 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
+(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3269 ((-1071 |#3|) (-1071 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -2769 ((-583 (-703)) (-1071 |#4|) (-583 |#2|))) (-15 -2096 ((-583 |#2|) (-1071 |#4|))) (-15 -3543 ((-1071 |#3|) (-1071 |#4|))) (-15 -1772 ((-1071 |#4|) (-1071 |#3|))) (-15 -2527 ((-1071 |#4|) (-1071 |#4|) (-517))) (-15 -1305 (|#3| (-517)))) (-725) (-779) (-962) (-872 |#3| |#1| |#2|)) (T -291))
+((-1305 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-962)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-872 *2 *4 *5)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *7)) (-5 *3 (-517)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1071 *6)) (-4 *6 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1071 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-1071 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-5 *2 (-1071 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-1071 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-872 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-962)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-3269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-962)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1071 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3269 ((-1071 |#3|) (-1071 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -2769 ((-583 (-703)) (-1071 |#4|) (-583 |#2|))) (-15 -2096 ((-583 |#2|) (-1071 |#4|))) (-15 -3543 ((-1071 |#3|) (-1071 |#4|))) (-15 -1772 ((-1071 |#4|) (-1071 |#3|))) (-15 -2527 ((-1071 |#4|) (-1071 |#4|) (-517))) (-15 -1305 (|#3| (-517))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 14)) (-3349 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-517)))) $) 18)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703) $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3336 ((|#1| $ (-517)) NIL)) (-3371 (((-517) $ (-517)) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-1954 (($ (-1 |#1| |#1|) $) NIL)) (-1410 (($ (-1 (-517) (-517)) $) 10)) (-1895 (((-1058) $) NIL)) (-4096 (($ $ $) NIL (|has| (-517) (-724)))) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL) (($ |#1|) NIL)) (-3952 (((-517) |#1| $) NIL)) (-3608 (($) 15 T CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1691 (($ $) 11) (($ $ $) 20)) (-1677 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
+(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1004)) (T -292))
NIL
(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1378 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))) $) 27)) (-2646 (((-3 $ "failed") $ $) 19)) (-1719 (((-703) $) 28)) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 32)) (-3232 ((|#1| $) 31)) (-3380 ((|#1| $ (-517)) 25)) (-2615 ((|#2| $ (-517)) 26)) (-2654 (($ (-1 |#1| |#1|) $) 22)) (-2515 (($ (-1 |#2| |#2|) $) 23)) (-1277 (((-1057) $) 9)) (-3539 (($ $ $) 21 (|has| |#2| (-724)))) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ |#1|) 33)) (-4104 ((|#2| |#1| $) 24)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1645 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
-(((-293 |#1| |#2|) (-1185) (-1003) (-123)) (T -293))
-((-1645 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))))) (-2615 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) (-4104 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-2515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-2654 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3539 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
-(-13 (-123) (-952 |t#1|) (-10 -8 (-15 -1645 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1719 ((-703) $)) (-15 -1378 ((-583 (-2 (|:| |gen| |t#1|) (|:| -2643 |t#2|))) $)) (-15 -2615 (|t#2| $ (-517))) (-15 -3380 (|t#1| $ (-517))) (-15 -4104 (|t#2| |t#1| $)) (-15 -2515 ($ (-1 |t#2| |t#2|) $)) (-15 -2654 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3539 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1378 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703) $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3380 ((|#1| $ (-517)) NIL)) (-2615 (((-703) $ (-517)) NIL)) (-2654 (($ (-1 |#1| |#1|) $) NIL)) (-2515 (($ (-1 (-703) (-703)) $) NIL)) (-1277 (((-1057) $) NIL)) (-3539 (($ $ $) NIL (|has| (-703) (-724)))) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL) (($ |#1|) NIL)) (-4104 (((-703) |#1| $) NIL)) (-2398 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1645 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
-(((-294 |#1|) (-293 |#1| (-703)) (-1003)) (T -294))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3349 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))) $) 27)) (-1250 (((-3 $ "failed") $ $) 19)) (-2397 (((-703) $) 28)) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 32)) (-3388 ((|#1| $) 31)) (-3336 ((|#1| $ (-517)) 25)) (-3371 ((|#2| $ (-517)) 26)) (-1954 (($ (-1 |#1| |#1|) $) 22)) (-1410 (($ (-1 |#2| |#2|) $) 23)) (-1895 (((-1058) $) 9)) (-4096 (($ $ $) 21 (|has| |#2| (-724)))) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ |#1|) 33)) (-3952 ((|#2| |#1| $) 24)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1677 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
+(((-293 |#1| |#2|) (-1187) (-1004) (-123)) (T -293))
+((-1677 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-123)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123)) (-5 *2 (-703)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4)))))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1004)) (-4 *2 (-123)))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1004)))) (-3952 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-123)))) (-1410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123)))) (-4096 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(-13 (-123) (-953 |t#1|) (-10 -8 (-15 -1677 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2397 ((-703) $)) (-15 -3349 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3868 |t#2|))) $)) (-15 -3371 (|t#2| $ (-517))) (-15 -3336 (|t#1| $ (-517))) (-15 -3952 (|t#2| |t#1| $)) (-15 -1410 ($ (-1 |t#2| |t#2|) $)) (-15 -1954 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -4096 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-953 |#1|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3349 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703) $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3336 ((|#1| $ (-517)) NIL)) (-3371 (((-703) $ (-517)) NIL)) (-1954 (($ (-1 |#1| |#1|) $) NIL)) (-1410 (($ (-1 (-703) (-703)) $) NIL)) (-1895 (((-1058) $) NIL)) (-4096 (($ $ $) NIL (|has| (-703) (-724)))) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL) (($ |#1|) NIL)) (-3952 (((-703) |#1| $) NIL)) (-3608 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1677 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
+(((-294 |#1|) (-293 |#1| (-703)) (-1004)) (T -294))
NIL
(-293 |#1| (-703))
-((-2038 (($ $) 52)) (-2083 (($ $ |#2| |#3| $) 14)) (-3602 (($ (-1 |#3| |#3|) $) 35)) (-1656 (((-107) $) 27)) (-1671 ((|#2| $) 29)) (-2483 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-4128 ((|#2| $) 48)) (-3165 (((-583 |#2|) $) 38)) (-2829 (($ $ $ (-703)) 23)) (-1678 (($ $ |#2|) 42)))
-(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2038 (|#1| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2829 (|#1| |#1| |#1| (-703))) (-15 -2083 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3602 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3165 ((-583 |#2|) |#1|)) (-15 -1671 (|#2| |#1|)) (-15 -1656 ((-107) |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1678 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-961) (-724)) (T -295))
-NIL
-(-10 -8 (-15 -2038 (|#1| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2829 (|#1| |#1| |#1| (-703))) (-15 -2083 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3602 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3165 ((-583 |#2|) |#1|)) (-15 -1671 (|#2| |#1|)) (-15 -1656 ((-107) |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1678 (|#1| |#1| |#2|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 90 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3232 (((-517) $) 91 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 86)) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-2038 (($ $) 75 (|has| |#1| (-421)))) (-2083 (($ $ |#1| |#2| $) 79)) (-3469 (((-107) $) 31)) (-3604 (((-703) $) 82)) (-2029 (((-107) $) 62)) (-1336 (($ |#1| |#2|) 61)) (-3876 ((|#2| $) 81)) (-3602 (($ (-1 |#2| |#2|) $) 80)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 85)) (-1671 ((|#1| $) 84)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-3625 ((|#2| $) 64)) (-4128 ((|#1| $) 76 (|has| |#1| (-421)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3782 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3165 (((-583 |#1|) $) 83)) (-4104 ((|#1| $ |#2|) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2829 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-296 |#1| |#2|) (-1185) (-961) (-724)) (T -296))
-((-1656 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3602 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-2083 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2829 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2483 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) (-2038 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))))
-(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -1656 ((-107) $)) (-15 -1671 (|t#1| $)) (-15 -3165 ((-583 |t#1|) $)) (-15 -3604 ((-703) $)) (-15 -3876 (|t#2| $)) (-15 -3602 ($ (-1 |t#2| |t#2|) $)) (-15 -2083 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2829 ($ $ $ (-703))) |%noBranch|) (IF (|has| |t#1| (-509)) (-15 -2483 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4128 (|t#1| $)) (-15 -2038 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2724 (((-107) (-107)) NIL)) (-2412 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) NIL)) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-3439 (($ $) NIL (|has| |#1| (-1003)))) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2056 (($ $ (-517)) NIL)) (-4043 (((-703) $) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-2931 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3676 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2442 (($ (-583 |#1|)) NIL)) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1415 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-1819 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2442 ($ (-583 |#1|))) (-15 -4043 ((-703) $)) (-15 -2056 ($ $ (-517))) (-15 -2724 ((-107) (-107))))) (-1109)) (T -297))
-((-2442 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-297 *3)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) (-2056 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2442 ($ (-583 |#1|))) (-15 -4043 ((-703) $)) (-15 -2056 ($ $ (-517))) (-15 -2724 ((-107) (-107)))))
-((-3065 (((-107) $) 42)) (-3877 (((-703)) 22)) (-1462 ((|#2| $) 46) (($ $ (-843)) 102)) (-1719 (((-703)) 96)) (-4047 (($ (-1154 |#2|)) 20)) (-3228 (((-107) $) 114)) (-2962 ((|#2| $) 48) (($ $ (-843)) 100)) (-2956 (((-1070 |#2|) $) NIL) (((-1070 $) $ (-843)) 93)) (-4150 (((-1070 |#2|) $) 83)) (-4111 (((-1070 |#2|) $) 80) (((-3 (-1070 |#2|) "failed") $ $) 77)) (-2892 (($ $ (-1070 |#2|)) 53)) (-4110 (((-765 (-843))) 28) (((-843)) 43)) (-2232 (((-125)) 25)) (-3625 (((-765 (-843)) $) 30) (((-843) $) 115)) (-3551 (($) 108)) (-3589 (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 39)) (-2486 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1892 (((-107) $) 41)))
-(((-298 |#1| |#2|) (-10 -8 (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -1719 ((-703))) (-15 -2486 (|#1| |#1|)) (-15 -4111 ((-3 (-1070 |#2|) "failed") |#1| |#1|)) (-15 -4111 ((-1070 |#2|) |#1|)) (-15 -4150 ((-1070 |#2|) |#1|)) (-15 -2892 (|#1| |#1| (-1070 |#2|))) (-15 -3228 ((-107) |#1|)) (-15 -3551 (|#1|)) (-15 -1462 (|#1| |#1| (-843))) (-15 -2962 (|#1| |#1| (-843))) (-15 -2956 ((-1070 |#1|) |#1| (-843))) (-15 -1462 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -3625 ((-843) |#1|)) (-15 -4110 ((-843))) (-15 -2956 ((-1070 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -3877 ((-703))) (-15 -4110 ((-765 (-843)))) (-15 -3625 ((-765 (-843)) |#1|)) (-15 -3065 ((-107) |#1|)) (-15 -1892 ((-107) |#1|)) (-15 -2232 ((-125)))) (-299 |#2|) (-333)) (T -298))
-((-2232 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-4110 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3877 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-4110 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
-(-10 -8 (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -1719 ((-703))) (-15 -2486 (|#1| |#1|)) (-15 -4111 ((-3 (-1070 |#2|) "failed") |#1| |#1|)) (-15 -4111 ((-1070 |#2|) |#1|)) (-15 -4150 ((-1070 |#2|) |#1|)) (-15 -2892 (|#1| |#1| (-1070 |#2|))) (-15 -3228 ((-107) |#1|)) (-15 -3551 (|#1|)) (-15 -1462 (|#1| |#1| (-843))) (-15 -2962 (|#1| |#1| (-843))) (-15 -2956 ((-1070 |#1|) |#1| (-843))) (-15 -1462 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -3625 ((-843) |#1|)) (-15 -4110 ((-843))) (-15 -2956 ((-1070 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -3877 ((-703))) (-15 -4110 ((-765 (-843)))) (-15 -3625 ((-765 (-843)) |#1|)) (-15 -3065 ((-107) |#1|)) (-15 -1892 ((-107) |#1|)) (-15 -2232 ((-125))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-3065 (((-107) $) 94)) (-3877 (((-703)) 90)) (-1462 ((|#1| $) 140) (($ $ (-843)) 137 (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2448 (((-107) $ $) 59)) (-1719 (((-703)) 112 (|has| |#1| (-338)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 101)) (-3232 ((|#1| $) 100)) (-4047 (($ (-1154 |#1|)) 146)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-4100 (($) 109 (|has| |#1| (-338)))) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-2170 (($) 124 (|has| |#1| (-338)))) (-3449 (((-107) $) 125 (|has| |#1| (-338)))) (-2616 (($ $ (-703)) 87 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) 71)) (-3730 (((-843) $) 127 (|has| |#1| (-338))) (((-765 (-843)) $) 84 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) 31)) (-1921 (($) 135 (|has| |#1| (-338)))) (-3228 (((-107) $) 134 (|has| |#1| (-338)))) (-2962 ((|#1| $) 141) (($ $ (-843)) 138 (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2956 (((-1070 |#1|) $) 145) (((-1070 $) $ (-843)) 139 (|has| |#1| (-338)))) (-4034 (((-843) $) 110 (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) 131 (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) 132 (|has| |#1| (-338)))) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3680 (($) 114 (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) 111 (|has| |#1| (-338)))) (-2368 (((-107) $) 93)) (-3214 (((-1021) $) 10)) (-3244 (($) 133 (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 121 (|has| |#1| (-338)))) (-1376 (((-388 $) $) 74)) (-4110 (((-765 (-843))) 91) (((-843)) 143)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-3459 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) 99)) (-1248 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) 92) (((-843) $) 142)) (-2780 (((-1070 |#1|)) 144)) (-2858 (($) 123 (|has| |#1| (-338)))) (-3551 (($) 136 (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) 148) (((-623 |#1|) (-1154 $)) 147)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-2486 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) 29)) (-2080 (((-1154 $)) 150) (((-1154 $) (-843)) 149)) (-2673 (((-107) $ $) 39)) (-1892 (((-107) $) 95)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2415 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-2738 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64) (($ $ |#1|) 98)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-299 |#1|) (-1185) (-333)) (T -299))
-((-2080 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *3)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *4)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1154 *3)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) (-2780 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) (-4110 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-2956 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1070 *1)) (-4 *1 (-299 *4)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-3551 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1921 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-3244 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2892 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) (-4111 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
-(-13 (-1171 |t#1|) (-952 |t#1|) (-10 -8 (-15 -2080 ((-1154 $))) (-15 -2080 ((-1154 $) (-843))) (-15 -3589 ((-1154 |t#1|) $)) (-15 -3589 ((-623 |t#1|) (-1154 $))) (-15 -4047 ($ (-1154 |t#1|))) (-15 -2956 ((-1070 |t#1|) $)) (-15 -2780 ((-1070 |t#1|))) (-15 -4110 ((-843))) (-15 -3625 ((-843) $)) (-15 -2962 (|t#1| $)) (-15 -1462 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -2956 ((-1070 $) $ (-843))) (-15 -2962 ($ $ (-843))) (-15 -1462 ($ $ (-843))) (-15 -3551 ($)) (-15 -1921 ($)) (-15 -3228 ((-107) $)) (-15 -3244 ($)) (-15 -2892 ($ $ (-1070 |t#1|))) (-15 -4150 ((-1070 |t#1|) $)) (-15 -4111 ((-1070 |t#1|) $)) (-15 -4111 ((-3 (-1070 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3782 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1171 |#1|) . T) ((-333) . T) ((-372) -3782 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-338)) ((-1113) . T) ((-1161 |#1|) . T))
-((-1587 (((-107) $ $) NIL)) (-2518 (($ (-1073) $) 88)) (-3639 (($) 76)) (-3957 (((-1021) (-1021)) 11)) (-2324 (($) 77)) (-2754 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3637 (($ (-1073) $) 89)) (-2182 (($ (-583 (-787))) 79)) (-3044 (((-1159) $) 73)) (-2160 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1865 (($ (-1021)) 45)) (-3007 (((-1007) $) 25)) (-2930 (($ (-996 (-874 (-517))) $) 85) (($ (-996 (-874 (-517))) (-874 (-517)) $) 86)) (-1270 (($ (-1021)) 87)) (-2709 (($ (-1073) $) 110) (($ (-1073) $ $) 111)) (-4073 (($ (-1074) (-583 (-1074))) 75)) (-3951 (($ (-1057)) 82) (($ (-583 (-1057))) 80)) (-2254 (((-787) $) 113)) (-3061 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1596 (-107)) (|:| -3207 (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -2554 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1214 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2422 (($ (-1057)) 182)) (-2906 (($ (-583 $)) 109)) (-1906 (($ (-1074) (-1057)) 115) (($ (-1074) (-286 (-634))) 155) (($ (-1074) (-286 (-632))) 156) (($ (-1074) (-286 (-627))) 157) (($ (-1074) (-623 (-634))) 118) (($ (-1074) (-623 (-632))) 121) (($ (-1074) (-623 (-627))) 124) (($ (-1074) (-1154 (-634))) 127) (($ (-1074) (-1154 (-632))) 130) (($ (-1074) (-1154 (-627))) 133) (($ (-1074) (-623 (-286 (-634)))) 136) (($ (-1074) (-623 (-286 (-632)))) 139) (($ (-1074) (-623 (-286 (-627)))) 142) (($ (-1074) (-1154 (-286 (-634)))) 145) (($ (-1074) (-1154 (-286 (-632)))) 148) (($ (-1074) (-1154 (-286 (-627)))) 151) (($ (-1074) (-583 (-874 (-517))) (-286 (-634))) 152) (($ (-1074) (-583 (-874 (-517))) (-286 (-632))) 153) (($ (-1074) (-583 (-874 (-517))) (-286 (-627))) 154) (($ (-1074) (-286 (-517))) 179) (($ (-1074) (-286 (-349))) 180) (($ (-1074) (-286 (-153 (-349)))) 181) (($ (-1074) (-623 (-286 (-517)))) 160) (($ (-1074) (-623 (-286 (-349)))) 163) (($ (-1074) (-623 (-286 (-153 (-349))))) 166) (($ (-1074) (-1154 (-286 (-517)))) 169) (($ (-1074) (-1154 (-286 (-349)))) 172) (($ (-1074) (-1154 (-286 (-153 (-349))))) 175) (($ (-1074) (-583 (-874 (-517))) (-286 (-517))) 176) (($ (-1074) (-583 (-874 (-517))) (-286 (-349))) 177) (($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349)))) 178)) (-1534 (((-107) $ $) NIL)))
-(((-300) (-13 (-1003) (-10 -8 (-15 -2254 ((-787) $)) (-15 -2930 ($ (-996 (-874 (-517))) $)) (-15 -2930 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -2518 ($ (-1073) $)) (-15 -3637 ($ (-1073) $)) (-15 -1865 ($ (-1021))) (-15 -1270 ($ (-1021))) (-15 -3951 ($ (-1057))) (-15 -3951 ($ (-583 (-1057)))) (-15 -2422 ($ (-1057))) (-15 -2754 ($)) (-15 -2754 ($ (-286 (-632)))) (-15 -2754 ($ (-286 (-634)))) (-15 -2754 ($ (-286 (-627)))) (-15 -2754 ($ (-286 (-349)))) (-15 -2754 ($ (-286 (-517)))) (-15 -2754 ($ (-286 (-153 (-349))))) (-15 -2709 ($ (-1073) $)) (-15 -2709 ($ (-1073) $ $)) (-15 -1906 ($ (-1074) (-1057))) (-15 -1906 ($ (-1074) (-286 (-634)))) (-15 -1906 ($ (-1074) (-286 (-632)))) (-15 -1906 ($ (-1074) (-286 (-627)))) (-15 -1906 ($ (-1074) (-623 (-634)))) (-15 -1906 ($ (-1074) (-623 (-632)))) (-15 -1906 ($ (-1074) (-623 (-627)))) (-15 -1906 ($ (-1074) (-1154 (-634)))) (-15 -1906 ($ (-1074) (-1154 (-632)))) (-15 -1906 ($ (-1074) (-1154 (-627)))) (-15 -1906 ($ (-1074) (-623 (-286 (-634))))) (-15 -1906 ($ (-1074) (-623 (-286 (-632))))) (-15 -1906 ($ (-1074) (-623 (-286 (-627))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-634))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-632))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-627))))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1906 ($ (-1074) (-286 (-517)))) (-15 -1906 ($ (-1074) (-286 (-349)))) (-15 -1906 ($ (-1074) (-286 (-153 (-349))))) (-15 -1906 ($ (-1074) (-623 (-286 (-517))))) (-15 -1906 ($ (-1074) (-623 (-286 (-349))))) (-15 -1906 ($ (-1074) (-623 (-286 (-153 (-349)))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-517))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-349))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-153 (-349)))))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2906 ($ (-583 $))) (-15 -3639 ($)) (-15 -2324 ($)) (-15 -2182 ($ (-583 (-787)))) (-15 -4073 ($ (-1074) (-583 (-1074)))) (-15 -2160 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3061 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1596 (-107)) (|:| -3207 (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -2554 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1214 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3044 ((-1159) $)) (-15 -3007 ((-1007) $)) (-15 -3957 ((-1021) (-1021)))))) (T -300))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-2930 (*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))) (-2930 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) (-2518 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-1865 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-300)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))) (-2754 (*1 *1) (-5 *1 (-300))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2709 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-2709 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-634))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-632))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-627))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-634)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-632)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-627)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-517)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-349)))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1906 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2906 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-3639 (*1 *1) (-5 *1 (-300))) (-2324 (*1 *1) (-5 *1 (-300))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-4073 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-300)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1596 (-107)) (|:| -3207 (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -2554 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1214 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-300)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ((-787) $)) (-15 -2930 ($ (-996 (-874 (-517))) $)) (-15 -2930 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -2518 ($ (-1073) $)) (-15 -3637 ($ (-1073) $)) (-15 -1865 ($ (-1021))) (-15 -1270 ($ (-1021))) (-15 -3951 ($ (-1057))) (-15 -3951 ($ (-583 (-1057)))) (-15 -2422 ($ (-1057))) (-15 -2754 ($)) (-15 -2754 ($ (-286 (-632)))) (-15 -2754 ($ (-286 (-634)))) (-15 -2754 ($ (-286 (-627)))) (-15 -2754 ($ (-286 (-349)))) (-15 -2754 ($ (-286 (-517)))) (-15 -2754 ($ (-286 (-153 (-349))))) (-15 -2709 ($ (-1073) $)) (-15 -2709 ($ (-1073) $ $)) (-15 -1906 ($ (-1074) (-1057))) (-15 -1906 ($ (-1074) (-286 (-634)))) (-15 -1906 ($ (-1074) (-286 (-632)))) (-15 -1906 ($ (-1074) (-286 (-627)))) (-15 -1906 ($ (-1074) (-623 (-634)))) (-15 -1906 ($ (-1074) (-623 (-632)))) (-15 -1906 ($ (-1074) (-623 (-627)))) (-15 -1906 ($ (-1074) (-1154 (-634)))) (-15 -1906 ($ (-1074) (-1154 (-632)))) (-15 -1906 ($ (-1074) (-1154 (-627)))) (-15 -1906 ($ (-1074) (-623 (-286 (-634))))) (-15 -1906 ($ (-1074) (-623 (-286 (-632))))) (-15 -1906 ($ (-1074) (-623 (-286 (-627))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-634))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-632))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-627))))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1906 ($ (-1074) (-286 (-517)))) (-15 -1906 ($ (-1074) (-286 (-349)))) (-15 -1906 ($ (-1074) (-286 (-153 (-349))))) (-15 -1906 ($ (-1074) (-623 (-286 (-517))))) (-15 -1906 ($ (-1074) (-623 (-286 (-349))))) (-15 -1906 ($ (-1074) (-623 (-286 (-153 (-349)))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-517))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-349))))) (-15 -1906 ($ (-1074) (-1154 (-286 (-153 (-349)))))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1906 ($ (-1074) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2906 ($ (-583 $))) (-15 -3639 ($)) (-15 -2324 ($)) (-15 -2182 ($ (-583 (-787)))) (-15 -4073 ($ (-1074) (-583 (-1074)))) (-15 -2160 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3061 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1596 (-107)) (|:| -3207 (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -2554 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1214 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3044 ((-1159) $)) (-15 -3007 ((-1007) $)) (-15 -3957 ((-1021) (-1021)))))
-((-1587 (((-107) $ $) NIL)) (-1741 (((-107) $) 11)) (-2580 (($ |#1|) 8)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2590 (($ |#1|) 9)) (-2254 (((-787) $) 17)) (-4142 ((|#1| $) 12)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 19)))
-(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -2580 ($ |#1|)) (-15 -2590 ($ |#1|)) (-15 -1741 ((-107) $)) (-15 -4142 (|#1| $)))) (-779)) (T -301))
-((-2580 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-2590 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-4142 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
-(-13 (-779) (-10 -8 (-15 -2580 ($ |#1|)) (-15 -2590 ($ |#1|)) (-15 -1741 ((-107) $)) (-15 -4142 (|#1| $))))
-((-3142 (((-300) (-1074) (-874 (-517))) 22)) (-3809 (((-300) (-1074) (-874 (-517))) 26)) (-3959 (((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517)))) 25) (((-300) (-1074) (-874 (-517)) (-874 (-517))) 23)) (-3009 (((-300) (-1074) (-874 (-517))) 30)))
-(((-302) (-10 -7 (-15 -3142 ((-300) (-1074) (-874 (-517)))) (-15 -3959 ((-300) (-1074) (-874 (-517)) (-874 (-517)))) (-15 -3959 ((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -3809 ((-300) (-1074) (-874 (-517)))) (-15 -3009 ((-300) (-1074) (-874 (-517)))))) (T -302))
-((-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3959 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(-10 -7 (-15 -3142 ((-300) (-1074) (-874 (-517)))) (-15 -3959 ((-300) (-1074) (-874 (-517)) (-874 (-517)))) (-15 -3959 ((-300) (-1074) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -3809 ((-300) (-1074) (-874 (-517)))) (-15 -3009 ((-300) (-1074) (-874 (-517)))))
-((-1939 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
-(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1939 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1131 |#5|) (-1131 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1131 *9)) (-4 *11 (-1131 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
-(-10 -7 (-15 -1939 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
-((-1348 (((-107) $) 14)))
-(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1348 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
-NIL
-(-10 -8 (-15 -1348 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1292 (($ $) 26)) (-1348 (((-107) $) 25)) (-1277 (((-1057) $) 9)) (-3395 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-3214 (((-1021) $) 10)) (-3244 (((-3 |#4| "failed") $) 24)) (-1680 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2176 (((-2 (|:| -3429 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
-(((-305 |#1| |#2| |#3| |#4|) (-1185) (-333) (-1131 |t#1|) (-1131 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
-((-3395 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-1680 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-1680 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-1680 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-1680 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1131 *2)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3429 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-1292 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-3244 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-1680 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3395 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -1680 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -1680 ($ |t#4|)) (-15 -1680 ($ |t#1| |t#1|)) (-15 -1680 ($ |t#1| |t#1| (-517))) (-15 -2176 ((-2 (|:| -3429 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1292 ($ $)) (-15 -1348 ((-107) $)) (-15 -3244 ((-3 |t#4| "failed") $)) (-15 -1680 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1292 (($ $) 32)) (-1348 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-2700 (((-1154 |#4|) $) 124)) (-3395 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-3214 (((-1021) $) NIL)) (-3244 (((-3 |#4| "failed") $) 35)) (-1914 (((-1154 |#4|) $) 117)) (-1680 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2176 (((-2 (|:| -3429 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2254 (((-787) $) 17)) (-2398 (($) 14 T CONST)) (-1534 (((-107) $ $) 20)) (-1663 (($ $) 27) (($ $ $) NIL)) (-1645 (($ $ $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
-(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1914 ((-1154 |#4|) $)) (-15 -2700 ((-1154 |#4|) $)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
-((-1914 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-2700 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1914 ((-1154 |#4|) $)) (-15 -2700 ((-1154 |#4|) $))))
-((-2049 (($ $ (-1074) |#2|) NIL) (($ $ (-583 (-1074)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-1437 (($ $ |#2|) 11)))
-(((-307 |#1| |#2|) (-10 -8 (-15 -1437 (|#1| |#1| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 |#2|))) (-15 -2049 (|#1| |#1| (-1074) |#2|))) (-308 |#2|) (-1003)) (T -307))
-NIL
-(-10 -8 (-15 -1437 (|#1| |#1| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 |#2|))) (-15 -2049 (|#1| |#1| (-1074) |#2|)))
-((-1939 (($ (-1 |#1| |#1|) $) 6)) (-2049 (($ $ (-1074) |#1|) 17 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-1437 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
-(((-308 |#1|) (-1185) (-1003)) (T -308))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))))
-(-13 (-10 -8 (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-478 (-1074) |t#1|)) (-6 (-478 (-1074) |t#1|)) |%noBranch|)))
-(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-1074)) $) NIL)) (-2039 (((-107)) 89) (((-107) (-107)) 90)) (-1341 (((-583 (-556 $)) $) NIL)) (-2725 (($ $) NIL)) (-2602 (($ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1786 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1386 (($ $) NIL)) (-2705 (($ $) NIL)) (-2580 (($ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 69) (((-3 $ "failed") (-1074)) 95) (((-3 $ "failed") (-286 (-517))) 56 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-377 (-874 (-517)))) 62 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-874 (-517))) 57 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-286 (-349))) 87 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-377 (-874 (-349)))) 80 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-874 (-349))) 75 (|has| |#3| (-952 (-349))))) (-3232 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 70) (($ (-1074)) 96) (($ (-286 (-517))) 58 (|has| |#3| (-952 (-517)))) (($ (-377 (-874 (-517)))) 63 (|has| |#3| (-952 (-517)))) (($ (-874 (-517))) 59 (|has| |#3| (-952 (-517)))) (($ (-286 (-349))) 88 (|has| |#3| (-952 (-349)))) (($ (-377 (-874 (-349)))) 81 (|has| |#3| (-952 (-349)))) (($ (-874 (-349))) 77 (|has| |#3| (-952 (-349))))) (-3775 (((-3 $ "failed") $) NIL)) (-2665 (($) 10)) (-2870 (($ $) NIL) (($ (-583 $)) NIL)) (-2576 (((-583 (-109)) $) NIL)) (-2283 (((-109) (-109)) NIL)) (-3469 (((-107) $) NIL)) (-2119 (((-107) $) NIL (|has| $ (-952 (-517))))) (-3733 (((-1070 $) (-556 $)) NIL (|has| $ (-961)))) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 $ $) (-556 $)) NIL)) (-1337 (((-3 (-556 $) "failed") $) NIL)) (-3754 (($ $) 92)) (-1875 (($ $) NIL)) (-1277 (((-1057) $) NIL)) (-2362 (((-583 (-556 $)) $) NIL)) (-1893 (($ (-109) $) 91) (($ (-109) (-583 $)) NIL)) (-2506 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-1916 (((-703) $) NIL)) (-3214 (((-1021) $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-2643 (($ $) NIL)) (-1947 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-1437 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1394 (($ $) NIL) (($ $ $) NIL)) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL)) (-2780 (($ $) NIL (|has| $ (-961)))) (-2714 (($ $) NIL)) (-2590 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 94)) (-1217 (((-703)) NIL)) (-3137 (($ $) NIL) (($ (-583 $)) NIL)) (-2794 (((-107) (-109)) NIL)) (-2670 (($ $) NIL)) (-2651 (($ $) NIL)) (-2660 (($ $) NIL)) (-1724 (($ $) NIL)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) 93 T CONST)) (-2411 (($) 22 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1074)) (-10 -8 (-15 -3232 ($ (-286 |#3|))) (-15 -1837 ((-3 $ "failed") (-286 |#3|))) (-15 -3232 ($ (-1074))) (-15 -1837 ((-3 $ "failed") (-1074))) (-15 -2254 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3232 ($ (-286 (-517)))) (-15 -1837 ((-3 $ "failed") (-286 (-517)))) (-15 -3232 ($ (-377 (-874 (-517))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3232 ($ (-874 (-517)))) (-15 -1837 ((-3 $ "failed") (-874 (-517))))) |%noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3232 ($ (-286 (-349)))) (-15 -1837 ((-3 $ "failed") (-286 (-349)))) (-15 -3232 ($ (-377 (-874 (-349))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3232 ($ (-874 (-349)))) (-15 -1837 ((-3 $ "failed") (-874 (-349))))) |%noBranch|) (-15 -1724 ($ $)) (-15 -1386 ($ $)) (-15 -2643 ($ $)) (-15 -1875 ($ $)) (-15 -3754 ($ $)) (-15 -2580 ($ $)) (-15 -2590 ($ $)) (-15 -2602 ($ $)) (-15 -2651 ($ $)) (-15 -2660 ($ $)) (-15 -2670 ($ $)) (-15 -2705 ($ $)) (-15 -2714 ($ $)) (-15 -2725 ($ $)) (-15 -2665 ($)) (-15 -1357 ((-583 (-1074)) $)) (-15 -2039 ((-107))) (-15 -2039 ((-107) (-107))))) (-583 (-1074)) (-583 (-1074)) (-357)) (T -309))
-((-3232 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1386 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1875 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2580 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2590 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2602 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2660 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2670 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2705 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-2665 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-2039 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))))
-(-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1074)) (-10 -8 (-15 -3232 ($ (-286 |#3|))) (-15 -1837 ((-3 $ "failed") (-286 |#3|))) (-15 -3232 ($ (-1074))) (-15 -1837 ((-3 $ "failed") (-1074))) (-15 -2254 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3232 ($ (-286 (-517)))) (-15 -1837 ((-3 $ "failed") (-286 (-517)))) (-15 -3232 ($ (-377 (-874 (-517))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3232 ($ (-874 (-517)))) (-15 -1837 ((-3 $ "failed") (-874 (-517))))) |%noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3232 ($ (-286 (-349)))) (-15 -1837 ((-3 $ "failed") (-286 (-349)))) (-15 -3232 ($ (-377 (-874 (-349))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3232 ($ (-874 (-349)))) (-15 -1837 ((-3 $ "failed") (-874 (-349))))) |%noBranch|) (-15 -1724 ($ $)) (-15 -1386 ($ $)) (-15 -2643 ($ $)) (-15 -1875 ($ $)) (-15 -3754 ($ $)) (-15 -2580 ($ $)) (-15 -2590 ($ $)) (-15 -2602 ($ $)) (-15 -2651 ($ $)) (-15 -2660 ($ $)) (-15 -2670 ($ $)) (-15 -2705 ($ $)) (-15 -2714 ($ $)) (-15 -2725 ($ $)) (-15 -2665 ($)) (-15 -1357 ((-583 (-1074)) $)) (-15 -2039 ((-107))) (-15 -2039 ((-107) (-107)))))
-((-1939 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1939 (|#8| (-1 |#5| |#1|) |#4|))) (-1113) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1113) (-1131 |#5|) (-1131 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1113)) (-4 *8 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *9 (-1131 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1131 (-377 *9))))))
-(-10 -7 (-15 -1939 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2548 (((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) $) 37)) (-4047 (($ (-1154 (-377 |#3|)) (-1154 $)) NIL) (($ (-1154 (-377 |#3|))) NIL) (($ (-1154 |#3|) |#3|) 158)) (-2747 (((-1154 $) (-1154 $)) 142)) (-3299 (((-583 (-583 |#2|))) 115)) (-3659 (((-107) |#2| |#2|) 71)) (-2038 (($ $) 136)) (-2430 (((-703)) 30)) (-3540 (((-1154 $) (-1154 $)) 195)) (-1734 (((-583 (-874 |#2|)) (-1074)) 108)) (-3406 (((-107) $) 155)) (-2464 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-3719 (((-3 |#3| "failed")) 48)) (-1900 (((-703)) 167)) (-1437 ((|#2| $ |#2| |#2|) 129)) (-1476 (((-3 |#3| "failed")) 66)) (-1248 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2510 (((-1154 $) (-1154 $)) 148)) (-1342 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-2249 (((-107)) 32)))
-(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3299 ((-583 (-583 |#2|)))) (-15 -1734 ((-583 (-874 |#2|)) (-1074))) (-15 -1342 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3719 ((-3 |#3| "failed"))) (-15 -1476 ((-3 |#3| "failed"))) (-15 -1437 (|#2| |#1| |#2| |#2|)) (-15 -2038 (|#1| |#1|)) (-15 -4047 (|#1| (-1154 |#3|) |#3|)) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2464 ((-107) |#1| |#3|)) (-15 -2464 ((-107) |#1| |#2|)) (-15 -2548 ((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2747 ((-1154 |#1|) (-1154 |#1|))) (-15 -3540 ((-1154 |#1|) (-1154 |#1|))) (-15 -2510 ((-1154 |#1|) (-1154 |#1|))) (-15 -2464 ((-107) |#1|)) (-15 -3406 ((-107) |#1|)) (-15 -3659 ((-107) |#2| |#2|)) (-15 -2249 ((-107))) (-15 -1900 ((-703))) (-15 -2430 ((-703))) (-15 -1248 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -1248 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -4047 (|#1| (-1154 (-377 |#3|)))) (-15 -4047 (|#1| (-1154 (-377 |#3|)) (-1154 |#1|)))) (-312 |#2| |#3| |#4|) (-1113) (-1131 |#2|) (-1131 (-377 |#3|))) (T -311))
-((-2430 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1900 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2249 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3659 (*1 *2 *3 *3) (-12 (-4 *3 (-1113)) (-4 *5 (-1131 *3)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-1476 (*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-3719 (*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3299 (*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
-(-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -3299 ((-583 (-583 |#2|)))) (-15 -1734 ((-583 (-874 |#2|)) (-1074))) (-15 -1342 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3719 ((-3 |#3| "failed"))) (-15 -1476 ((-3 |#3| "failed"))) (-15 -1437 (|#2| |#1| |#2| |#2|)) (-15 -2038 (|#1| |#1|)) (-15 -4047 (|#1| (-1154 |#3|) |#3|)) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2464 ((-107) |#1| |#3|)) (-15 -2464 ((-107) |#1| |#2|)) (-15 -2548 ((-2 (|:| |num| (-1154 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2747 ((-1154 |#1|) (-1154 |#1|))) (-15 -3540 ((-1154 |#1|) (-1154 |#1|))) (-15 -2510 ((-1154 |#1|) (-1154 |#1|))) (-15 -2464 ((-107) |#1|)) (-15 -3406 ((-107) |#1|)) (-15 -3659 ((-107) |#2| |#2|)) (-15 -2249 ((-107))) (-15 -1900 ((-703))) (-15 -2430 ((-703))) (-15 -1248 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -1248 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -4047 (|#1| (-1154 (-377 |#3|)))) (-15 -4047 (|#1| (-1154 (-377 |#3|)) (-1154 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2548 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 196)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-2239 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-3531 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-1205 (((-623 (-377 |#2|)) (-1154 $)) 46) (((-623 (-377 |#2|))) 61)) (-1462 (((-377 |#2|) $) 52)) (-2577 (((-1083 (-843) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-2674 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-2448 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-1719 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-1660 (((-107)) 213)) (-3837 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3232 (((-517) $) 170 (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) 165)) (-4047 (($ (-1154 (-377 |#2|)) (-1154 $)) 48) (($ (-1154 (-377 |#2|))) 64) (($ (-1154 |#2|) |#2|) 189)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2532 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2739 (((-623 (-377 |#2|)) $ (-1154 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-2749 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-2747 (((-1154 $) (-1154 $)) 201)) (-1292 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3775 (((-3 $ "failed") $) 34)) (-3299 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3659 (((-107) |#1| |#1|) 217)) (-3334 (((-843)) 54)) (-4100 (($) 90 (|has| (-377 |#2|) (-338)))) (-3735 (((-107)) 210)) (-3387 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2509 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-2038 (($ $) 188)) (-2170 (($) 149 (|has| (-377 |#2|) (-319)))) (-3449 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2616 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-3083 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3730 (((-843) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) 138 (|has| (-377 |#2|) (-319)))) (-3469 (((-107) $) 31)) (-2430 (((-703)) 220)) (-3540 (((-1154 $) (-1154 $)) 202)) (-2962 (((-377 |#2|) $) 51)) (-1734 (((-583 (-874 |#1|)) (-1074)) 183 (|has| |#1| (-333)))) (-3326 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-2956 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-4034 (((-843) $) 89 (|has| (-377 |#2|) (-338)))) (-1283 ((|#3| $) 156)) (-1360 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-1277 (((-1057) $) 9)) (-1340 (((-623 (-377 |#2|))) 197)) (-3454 (((-623 (-377 |#2|))) 199)) (-1639 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-1909 (($ (-1154 |#2|) |#2|) 194)) (-2062 (((-623 (-377 |#2|))) 198)) (-1474 (((-623 (-377 |#2|))) 200)) (-2397 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2216 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 195)) (-3816 (((-1154 $)) 206)) (-1866 (((-1154 $)) 207)) (-3406 (((-107) $) 205)) (-2464 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-3680 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-3544 (($ (-843)) 88 (|has| (-377 |#2|) (-338)))) (-3719 (((-3 |#2| "failed")) 185)) (-3214 (((-1021) $) 10)) (-1900 (((-703)) 219)) (-3244 (($) 160)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 101 (|has| (-377 |#2|) (-333)))) (-1387 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-1376 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2483 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3196 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-1437 ((|#1| $ |#1| |#1|) 187)) (-1476 (((-3 |#2| "failed")) 186)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3383 (((-377 |#2|) (-1154 $)) 47) (((-377 |#2|)) 60)) (-3459 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-1248 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1074)) (-583 (-703))) 130 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074) (-703)) 131 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1074))) 132 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074)) 133 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4032 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4032 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2072 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2780 ((|#3|) 159)) (-2858 (($) 148 (|has| (-377 |#2|) (-319)))) (-3589 (((-1154 (-377 |#2|)) $ (-1154 $)) 50) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) 49) (((-1154 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1154 $)) 65)) (-3667 (((-1154 (-377 |#2|)) $) 63) (($ (-1154 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-2510 (((-1154 $) (-1154 $)) 203)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3782 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-952 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-2486 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-1924 ((|#3| $) 45)) (-1217 (((-703)) 29)) (-2662 (((-107)) 216)) (-2378 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-2080 (((-1154 $)) 67)) (-2673 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-1342 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2249 (((-107)) 218)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) 126 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074) (-703)) 127 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1074))) 128 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-1074)) 129 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) (-4032 (|has| (-377 |#2|) (-822 (-1074))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4032 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3782 (-4032 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4032 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
-(((-312 |#1| |#2| |#3|) (-1185) (-1113) (-1131 |t#1|) (-1131 (-377 |t#2|))) (T -312))
-((-2430 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) (-1900 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) (-2249 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3659 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2662 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2378 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2378 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-1660 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3837 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3837 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-3735 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3387 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-3387 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-1866 (*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3816 (*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-1474 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3454 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2062 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1340 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-2464 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) (-2464 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) (-4047 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) (-2038 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) (-1437 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) (-1476 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))) (-3719 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))) (-1342 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-1113)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))) (-3299 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -2430 ((-703))) (-15 -1900 ((-703))) (-15 -2249 ((-107))) (-15 -3659 ((-107) |t#1| |t#1|)) (-15 -2662 ((-107))) (-15 -2378 ((-107) |t#1|)) (-15 -2378 ((-107) |t#2|)) (-15 -1660 ((-107))) (-15 -3837 ((-107) |t#1|)) (-15 -3837 ((-107) |t#2|)) (-15 -3735 ((-107))) (-15 -3387 ((-107) |t#1|)) (-15 -3387 ((-107) |t#2|)) (-15 -1866 ((-1154 $))) (-15 -3816 ((-1154 $))) (-15 -3406 ((-107) $)) (-15 -2464 ((-107) $)) (-15 -2510 ((-1154 $) (-1154 $))) (-15 -3540 ((-1154 $) (-1154 $))) (-15 -2747 ((-1154 $) (-1154 $))) (-15 -1474 ((-623 (-377 |t#2|)))) (-15 -3454 ((-623 (-377 |t#2|)))) (-15 -2062 ((-623 (-377 |t#2|)))) (-15 -1340 ((-623 (-377 |t#2|)))) (-15 -2548 ((-2 (|:| |num| (-1154 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4047 ($ (-1154 |t#2|) |t#2|)) (-15 -2216 ((-2 (|:| |num| (-1154 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1909 ($ (-1154 |t#2|) |t#2|)) (-15 -2397 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2464 ((-107) $ |t#1|)) (-15 -2464 ((-107) $ |t#2|)) (-15 -1248 ($ $ (-1 |t#2| |t#2|))) (-15 -4047 ($ (-1154 |t#2|) |t#2|)) (-15 -2038 ($ $)) (-15 -1437 (|t#1| $ |t#1| |t#1|)) (-15 -1476 ((-3 |t#2| "failed"))) (-15 -3719 ((-3 |t#2| "failed"))) (-15 -1342 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -1734 ((-583 (-874 |t#1|)) (-1074))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3299 ((-583 (-583 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 (-377 |#2|)) . T) ((-37 $) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 (-377 |#2|) (-377 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 (-377 |#2|)) |has| (-377 |#2|) (-333)) ((-207) -3782 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3782 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 (-377 |#2|) |#3|) . T) ((-379 (-377 |#2|) |#3|) . T) ((-347 (-377 |#2|)) . T) ((-381 (-377 |#2|)) . T) ((-421) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 (-517))) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 |#2|)) . T) ((-585 $) . T) ((-579 (-377 |#2|)) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 (-377 (-517))) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 (-377 |#2|)) . T) ((-650 $) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 (-377 |#2|) |#3|) . T) ((-659) . T) ((-822 (-1074)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074)))) ((-842) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-952 (-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) ((-952 (-377 |#2|)) . T) ((-952 (-517)) |has| (-377 |#2|) (-952 (-517))) ((-967 (-377 (-517))) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-967 (-377 |#2|)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| (-377 |#2|) (-319)) ((-1113) -3782 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-832 |#1|) "failed") $) NIL)) (-3232 (((-832 |#1|) $) NIL)) (-4047 (($ (-1154 (-832 |#1|))) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-832 |#1|) (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| (-832 |#1|) (-338)))) (-3449 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| (-832 |#1|) (-338)))) (-3228 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2962 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4034 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-4150 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-4111 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2892 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3179 (((-879 (-1021))) NIL)) (-3244 (($) NIL (|has| (-832 |#1|) (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 (-832 |#1|))) NIL)) (-2858 (($) NIL (|has| (-832 |#1|) (-338)))) (-3551 (($) NIL (|has| (-832 |#1|) (-338)))) (-3589 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-2486 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2738 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
-(((-313 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3179 ((-879 (-1021)))))) (-843) (-843)) (T -313))
-((-3179 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3179 ((-879 (-1021))))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 46)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 113)) (-3232 ((|#1| $) 84)) (-4047 (($ (-1154 |#1|)) 102)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) 96 (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) 128 (|has| |#1| (-338)))) (-3449 (((-107) $) 49 (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) 47 (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) 130 (|has| |#1| (-338)))) (-3228 (((-107) $) NIL (|has| |#1| (-338)))) (-2962 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) 88) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) 138 (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 145)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) 70 (|has| |#1| (-338)))) (-2368 (((-107) $) 116)) (-3214 (((-1021) $) NIL)) (-3179 (((-879 (-1021))) 44)) (-3244 (($) 126 (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 91 (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) 67) (((-843)) 68)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) 129 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 123 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 |#1|)) 94)) (-2858 (($) 127 (|has| |#1| (-338)))) (-3551 (($) 135 (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) 59) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) 141) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) 137)) (-2080 (((-1154 $)) 115) (((-1154 $) (-843)) 72)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 32 T CONST)) (-2411 (($) 19 T CONST)) (-2415 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) 48)) (-1678 (($ $ $) 143) (($ $ |#1|) 144)) (-1663 (($ $) 125) (($ $ $) NIL)) (-1645 (($ $ $) 61)) (** (($ $ (-843)) 147) (($ $ (-703)) 148) (($ $ (-517)) 146)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
-(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3179 ((-879 (-1021)))))) (-319) (-1070 |#1|)) (T -314))
-((-3179 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1070 *3)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -3179 ((-879 (-1021))))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-4047 (($ (-1154 |#1|)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| |#1| (-338)))) (-3449 (((-107) $) NIL (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| |#1| (-338)))) (-3228 (((-107) $) NIL (|has| |#1| (-338)))) (-2962 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3179 (((-879 (-1021))) NIL)) (-3244 (($) NIL (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 |#1|)) NIL)) (-2858 (($) NIL (|has| |#1| (-338)))) (-3551 (($) NIL (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3179 ((-879 (-1021)))))) (-319) (-843)) (T -315))
-((-3179 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -3179 ((-879 (-1021))))))
-((-3239 (((-703) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) 40)) (-3269 (((-879 (-1021)) (-1070 |#1|)) 84)) (-3694 (((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) (-1070 |#1|)) 77)) (-2558 (((-623 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) 85)) (-1604 (((-3 (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) "failed") (-843)) 10)) (-1654 (((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) (-843)) 15)))
-(((-316 |#1|) (-10 -7 (-15 -3269 ((-879 (-1021)) (-1070 |#1|))) (-15 -3694 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) (-1070 |#1|))) (-15 -2558 ((-623 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -3239 ((-703) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -1604 ((-3 (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) "failed") (-843))) (-15 -1654 ((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) (-843)))) (-319)) (T -316))
-((-1654 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1070 *4) (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-1604 (*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-5 *1 (-316 *4)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
-(-10 -7 (-15 -3269 ((-879 (-1021)) (-1070 |#1|))) (-15 -3694 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) (-1070 |#1|))) (-15 -2558 ((-623 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -3239 ((-703) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -1604 ((-3 (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) "failed") (-843))) (-15 -1654 ((-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) (-843))))
-((-2254 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2254 (|#3| |#1|)) (-15 -2254 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
-((-2254 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
-(-10 -7 (-15 -2254 (|#3| |#1|)) (-15 -2254 (|#1| |#3|)))
-((-3449 (((-107) $) 50)) (-3730 (((-765 (-843)) $) 21) (((-843) $) 51)) (-3326 (((-3 $ "failed") $) 16)) (-3680 (($) 9)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 91)) (-3459 (((-3 (-703) "failed") $ $) 70) (((-703) $) 59)) (-1248 (($ $ (-703)) NIL) (($ $) 8)) (-2858 (($) 44)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 33)) (-2486 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-318 |#1|) (-10 -8 (-15 -3730 ((-843) |#1|)) (-15 -3459 ((-703) |#1|)) (-15 -3449 ((-107) |#1|)) (-15 -2858 (|#1|)) (-15 -1643 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -2486 (|#1| |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3459 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3730 ((-765 (-843)) |#1|)) (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-319)) (T -318))
-NIL
-(-10 -8 (-15 -3730 ((-843) |#1|)) (-15 -3459 ((-703) |#1|)) (-15 -3449 ((-107) |#1|)) (-15 -2858 (|#1|)) (-15 -1643 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -2486 (|#1| |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3459 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3730 ((-765 (-843)) |#1|)) (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2577 (((-1083 (-843) (-703)) (-517)) 93)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2448 (((-107) $ $) 59)) (-1719 (((-703)) 103)) (-2706 (($) 17 T CONST)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-4100 (($) 106)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-2170 (($) 91)) (-3449 (((-107) $) 90)) (-2616 (($ $) 79) (($ $ (-703)) 78)) (-3083 (((-107) $) 71)) (-3730 (((-765 (-843)) $) 81) (((-843) $) 88)) (-3469 (((-107) $) 31)) (-3326 (((-3 $ "failed") $) 102)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4034 (((-843) $) 105)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3680 (($) 101 T CONST)) (-3544 (($ (-843)) 104)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 94)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-3459 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-1248 (($ $ (-703)) 99) (($ $) 97)) (-2858 (($) 92)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 95)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2486 (((-3 $ "failed") $) 82) (($ $) 96)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-703)) 100) (($ $) 98)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-319) (-1185)) (T -319))
-((-2486 (*1 *1 *1) (-4 *1 (-319))) (-1643 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1154 *1)))) (-2151 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))))) (-2577 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1083 (-843) (-703))))) (-2858 (*1 *1) (-4 *1 (-319))) (-2170 (*1 *1) (-4 *1 (-319))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) (-3603 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-372) (-338) (-1050) (-207) (-10 -8 (-15 -2486 ($ $)) (-15 -1643 ((-3 (-1154 $) "failed") (-623 $))) (-15 -2151 ((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517)))))) (-15 -2577 ((-1083 (-843) (-703)) (-517))) (-15 -2858 ($)) (-15 -2170 ($)) (-15 -3449 ((-107) $)) (-15 -3459 ((-703) $)) (-15 -3730 ((-843) $)) (-15 -3603 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) . T) ((-1113) . T))
-((-2591 (((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-1866 (((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $)))) (-1131 |#1|) (-379 |#1| |#2|)) (T -320))
-((-2591 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1866 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-3239 (((-703)) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-832 |#1|) "failed") $) NIL)) (-3232 (((-832 |#1|) $) NIL)) (-4047 (($ (-1154 (-832 |#1|))) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-832 |#1|) (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| (-832 |#1|) (-338)))) (-3449 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| (-832 |#1|) (-338)))) (-3228 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2962 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4034 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-4150 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-4111 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2892 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-1967 (((-1154 (-583 (-2 (|:| -3207 (-832 |#1|)) (|:| -3544 (-1021)))))) NIL)) (-2842 (((-623 (-832 |#1|))) NIL)) (-3244 (($) NIL (|has| (-832 |#1|) (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 (-832 |#1|))) NIL)) (-2858 (($) NIL (|has| (-832 |#1|) (-338)))) (-3551 (($) NIL (|has| (-832 |#1|) (-338)))) (-3589 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-2486 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2738 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
-(((-321 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 (-832 |#1|)) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 (-832 |#1|)))) (-15 -3239 ((-703))))) (-843) (-843)) (T -321))
-((-1967 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 (-832 *3)) (|:| -3544 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2842 (*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3239 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 (-832 |#1|)) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 (-832 |#1|)))) (-15 -3239 ((-703)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 74)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) 92) (($ $ (-843)) 90 (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) 148 (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-3239 (((-703)) 89)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) 162 (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 111)) (-3232 ((|#1| $) 91)) (-4047 (($ (-1154 |#1|)) 57)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) 158 (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) 149 (|has| |#1| (-338)))) (-3449 (((-107) $) NIL (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) 97 (|has| |#1| (-338)))) (-3228 (((-107) $) 175 (|has| |#1| (-338)))) (-2962 ((|#1| $) 94) (($ $ (-843)) 93 (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) 188) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) 133 (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) 73 (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) 70 (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) 82 (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) 69 (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 191)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) 136 (|has| |#1| (-338)))) (-2368 (((-107) $) 107)) (-3214 (((-1021) $) NIL)) (-1967 (((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) 83)) (-2842 (((-623 |#1|)) 87)) (-3244 (($) 96 (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 150 (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) 151)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) 62)) (-2780 (((-1070 |#1|)) 152)) (-2858 (($) 132 (|has| |#1| (-338)))) (-3551 (($) NIL (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) 105) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) 123) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 56)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) 156)) (-2080 (((-1154 $)) 172) (((-1154 $) (-843)) 100)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 30 T CONST)) (-2411 (($) 22 T CONST)) (-2415 (($ $) 106 (|has| |#1| (-338))) (($ $ (-703)) 98 (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) 60)) (-1678 (($ $ $) 103) (($ $ |#1|) 104)) (-1663 (($ $) 177) (($ $ $) 181)) (-1645 (($ $ $) 179)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 137)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 142) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102)))
-(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 |#1|))) (-15 -3239 ((-703))))) (-319) (-3 (-1070 |#1|) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (T -322))
-((-1967 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) *2)))) (-2842 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021))))))))) (-3239 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021))))))))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 |#1|))) (-15 -3239 ((-703)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-3239 (((-703)) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-4047 (($ (-1154 |#1|)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| |#1| (-338)))) (-3449 (((-107) $) NIL (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| |#1| (-338)))) (-3228 (((-107) $) NIL (|has| |#1| (-338)))) (-2962 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-1967 (((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021)))))) NIL)) (-2842 (((-623 |#1|)) NIL)) (-3244 (($) NIL (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 |#1|)) NIL)) (-2858 (($) NIL (|has| |#1| (-338)))) (-3551 (($) NIL (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 |#1|))) (-15 -3239 ((-703))))) (-319) (-843)) (T -323))
-((-1967 (*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-2842 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3239 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(-13 (-299 |#1|) (-10 -7 (-15 -1967 ((-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))))) (-15 -2842 ((-623 |#1|))) (-15 -3239 ((-703)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-832 |#1|) "failed") $) NIL)) (-3232 (((-832 |#1|) $) NIL)) (-4047 (($ (-1154 (-832 |#1|))) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-832 |#1|) (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| (-832 |#1|) (-338)))) (-3449 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| (-832 |#1|) (-338)))) (-3228 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2962 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 (-832 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-4034 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-4150 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-4111 (((-1070 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1070 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-2892 (($ $ (-1070 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL (|has| (-832 |#1|) (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 (-832 |#1|))) NIL)) (-2858 (($) NIL (|has| (-832 |#1|) (-338)))) (-3551 (($) NIL (|has| (-832 |#1|) (-338)))) (-3589 (((-1154 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-2486 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2738 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
-(((-324 |#1| |#2|) (-299 (-832 |#1|)) (-843) (-843)) (T -324))
-NIL
-(-299 (-832 |#1|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) 138 (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 91)) (-3232 ((|#1| $) 88)) (-4047 (($ (-1154 |#1|)) 83)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) 80 (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) 39 (|has| |#1| (-338)))) (-3449 (((-107) $) NIL (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) 120 (|has| |#1| (-338)))) (-3228 (((-107) $) 72 (|has| |#1| (-338)))) (-2962 ((|#1| $) 38) (($ $ (-843)) 40 (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) 62) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) 95 (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) 93 (|has| |#1| (-338)))) (-2368 (((-107) $) 140)) (-3214 (((-1021) $) NIL)) (-3244 (($) 35 (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 113 (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) 137)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) 56)) (-2780 (((-1070 |#1|)) 86)) (-2858 (($) 125 (|has| |#1| (-338)))) (-3551 (($) NIL (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) 50) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) 136) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) 142)) (-2080 (((-1154 $)) 107) (((-1154 $) (-843)) 46)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 109 T CONST)) (-2411 (($) 31 T CONST)) (-2415 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) 105)) (-1678 (($ $ $) 97) (($ $ |#1|) 98)) (-1663 (($ $) 78) (($ $ $) 103)) (-1645 (($ $ $) 101)) (** (($ $ (-843)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 128)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1070 |#1|)) (T -325))
+((-2186 (($ $) 53)) (-2027 (($ $ |#2| |#3| $) 14)) (-3200 (($ (-1 |#3| |#3|) $) 35)) (-2308 (((-107) $) 27)) (-2319 ((|#2| $) 29)) (-2327 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2035 ((|#2| $) 49)) (-2907 (((-583 |#2|) $) 38)) (-3510 (($ $ $ (-703)) 23)) (-1703 (($ $ |#2|) 42)))
+(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2186 (|#1| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3510 (|#1| |#1| |#1| (-703))) (-15 -2027 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3200 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2907 ((-583 |#2|) |#1|)) (-15 -2319 (|#2| |#1|)) (-15 -2308 ((-107) |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1703 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-962) (-724)) (T -295))
+NIL
+(-10 -8 (-15 -2186 (|#1| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3510 (|#1| |#1| |#1| (-703))) (-15 -2027 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3200 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2907 ((-583 |#2|) |#1|)) (-15 -2319 (|#2| |#1|)) (-15 -2308 ((-107) |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1703 (|#1| |#1| |#2|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 90 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3388 (((-517) $) 91 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 86)) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-2186 (($ $) 75 (|has| |#1| (-421)))) (-2027 (($ $ |#1| |#2| $) 79)) (-1865 (((-107) $) 31)) (-1942 (((-703) $) 82)) (-1960 (((-107) $) 62)) (-2077 (($ |#1| |#2|) 61)) (-2210 ((|#2| $) 81)) (-3200 (($ (-1 |#2| |#2|) $) 80)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 85)) (-2319 ((|#1| $) 84)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-2769 ((|#2| $) 64)) (-2035 ((|#1| $) 76 (|has| |#1| (-421)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3745 (|has| |#1| (-953 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-2907 (((-583 |#1|) $) 83)) (-3952 ((|#1| $ |#2|) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3510 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-296 |#1| |#2|) (-1187) (-962) (-724)) (T -296))
+((-2308 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-703)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-3200 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)))) (-2027 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)))) (-3510 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2327 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)) (-4 *2 (-509)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)) (-4 *2 (-421)))) (-2186 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)) (-4 *2 (-421)))))
+(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -2308 ((-107) $)) (-15 -2319 (|t#1| $)) (-15 -2907 ((-583 |t#1|) $)) (-15 -1942 ((-703) $)) (-15 -2210 (|t#2| $)) (-15 -3200 ($ (-1 |t#2| |t#2|) $)) (-15 -2027 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -3510 ($ $ $ (-703))) |%noBranch|) (IF (|has| |t#1| (-509)) (-15 -2327 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2035 (|t#1| $)) (-15 -2186 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2844 (((-107) (-107)) NIL)) (-2443 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) NIL)) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-3302 (($ $) NIL (|has| |#1| (-1004)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) NIL (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) NIL)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-3242 (($ $ (-517)) NIL)) (-3686 (((-703) $) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-1974 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2704 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1587 (($ (-583 |#1|)) NIL)) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-2710 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-1718 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1587 ($ (-583 |#1|))) (-15 -3686 ((-703) $)) (-15 -3242 ($ $ (-517))) (-15 -2844 ((-107) (-107))))) (-1110)) (T -297))
+((-1587 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-297 *3)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1110)))) (-3242 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1110)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1110)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1587 ($ (-583 |#1|))) (-15 -3686 ((-703) $)) (-15 -3242 ($ $ (-517))) (-15 -2844 ((-107) (-107)))))
+((-3825 (((-107) $) 42)) (-2495 (((-703)) 22)) (-2008 ((|#2| $) 46) (($ $ (-844)) 103)) (-2397 (((-703)) 97)) (-1953 (($ (-1156 |#2|)) 20)) (-1798 (((-107) $) 115)) (-2754 ((|#2| $) 48) (($ $ (-844)) 101)) (-2456 (((-1071 |#2|) $) NIL) (((-1071 $) $ (-844)) 94)) (-2508 (((-1071 |#2|) $) 83)) (-1199 (((-1071 |#2|) $) 80) (((-3 (-1071 |#2|) "failed") $ $) 77)) (-1526 (($ $ (-1071 |#2|)) 53)) (-2370 (((-765 (-844))) 28) (((-844)) 43)) (-1880 (((-125)) 25)) (-2769 (((-765 (-844)) $) 30) (((-844) $) 116)) (-3304 (($) 109)) (-3369 (((-1156 |#2|) $) NIL) (((-623 |#2|) (-1156 $)) 39)) (-2650 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3980 (((-107) $) 41)))
+(((-298 |#1| |#2|) (-10 -8 (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2397 ((-703))) (-15 -2650 (|#1| |#1|)) (-15 -1199 ((-3 (-1071 |#2|) "failed") |#1| |#1|)) (-15 -1199 ((-1071 |#2|) |#1|)) (-15 -2508 ((-1071 |#2|) |#1|)) (-15 -1526 (|#1| |#1| (-1071 |#2|))) (-15 -1798 ((-107) |#1|)) (-15 -3304 (|#1|)) (-15 -2008 (|#1| |#1| (-844))) (-15 -2754 (|#1| |#1| (-844))) (-15 -2456 ((-1071 |#1|) |#1| (-844))) (-15 -2008 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -2769 ((-844) |#1|)) (-15 -2370 ((-844))) (-15 -2456 ((-1071 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2495 ((-703))) (-15 -2370 ((-765 (-844)))) (-15 -2769 ((-765 (-844)) |#1|)) (-15 -3825 ((-107) |#1|)) (-15 -3980 ((-107) |#1|)) (-15 -1880 ((-125)))) (-299 |#2|) (-333)) (T -298))
+((-1880 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2370 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-844))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2495 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2370 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-844)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2397 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
+(-10 -8 (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2397 ((-703))) (-15 -2650 (|#1| |#1|)) (-15 -1199 ((-3 (-1071 |#2|) "failed") |#1| |#1|)) (-15 -1199 ((-1071 |#2|) |#1|)) (-15 -2508 ((-1071 |#2|) |#1|)) (-15 -1526 (|#1| |#1| (-1071 |#2|))) (-15 -1798 ((-107) |#1|)) (-15 -3304 (|#1|)) (-15 -2008 (|#1| |#1| (-844))) (-15 -2754 (|#1| |#1| (-844))) (-15 -2456 ((-1071 |#1|) |#1| (-844))) (-15 -2008 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -2769 ((-844) |#1|)) (-15 -2370 ((-844))) (-15 -2456 ((-1071 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2495 ((-703))) (-15 -2370 ((-765 (-844)))) (-15 -2769 ((-765 (-844)) |#1|)) (-15 -3825 ((-107) |#1|)) (-15 -3980 ((-107) |#1|)) (-15 -1880 ((-125))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-3825 (((-107) $) 94)) (-2495 (((-703)) 90)) (-2008 ((|#1| $) 140) (($ $ (-844)) 137 (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3998 (((-107) $ $) 59)) (-2397 (((-703)) 112 (|has| |#1| (-338)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 101)) (-3388 ((|#1| $) 100)) (-1953 (($ (-1156 |#1|)) 146)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2200 (($) 109 (|has| |#1| (-338)))) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-1672 (($) 124 (|has| |#1| (-338)))) (-3454 (((-107) $) 125 (|has| |#1| (-338)))) (-2464 (($ $ (-703)) 87 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) 71)) (-2053 (((-844) $) 127 (|has| |#1| (-338))) (((-765 (-844)) $) 84 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) 31)) (-3040 (($) 135 (|has| |#1| (-338)))) (-1798 (((-107) $) 134 (|has| |#1| (-338)))) (-2754 ((|#1| $) 141) (($ $ (-844)) 138 (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2456 (((-1071 |#1|) $) 145) (((-1071 $) $ (-844)) 139 (|has| |#1| (-338)))) (-2031 (((-844) $) 110 (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) 131 (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) 132 (|has| |#1| (-338)))) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-2585 (($) 114 (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) 111 (|has| |#1| (-338)))) (-1214 (((-107) $) 93)) (-4123 (((-1022) $) 10)) (-1317 (($) 133 (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 121 (|has| |#1| (-338)))) (-3866 (((-388 $) $) 74)) (-2370 (((-765 (-844))) 91) (((-844)) 143)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-1496 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) 99)) (-2059 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) 92) (((-844) $) 142)) (-3586 (((-1071 |#1|)) 144)) (-3958 (($) 123 (|has| |#1| (-338)))) (-3304 (($) 136 (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) 148) (((-623 |#1|) (-1156 $)) 147)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-2650 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) 29)) (-2062 (((-1156 $)) 150) (((-1156 $) (-844)) 149)) (-2914 (((-107) $ $) 39)) (-3980 (((-107) $) 95)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1739 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-3340 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64) (($ $ |#1|) 98)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-299 |#1|) (-1187) (-333)) (T -299))
+((-2062 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1156 *1)) (-4 *1 (-299 *3)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-333)) (-5 *2 (-1156 *1)) (-4 *1 (-299 *4)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1156 *3)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1071 *3)))) (-3586 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1071 *3)))) (-2370 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-2456 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1071 *1)) (-4 *1 (-299 *4)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-3304 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3040 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1798 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-1317 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1526 (*1 *1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1071 *3)))) (-1199 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1071 *3)))) (-1199 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1071 *3)))))
+(-13 (-1173 |t#1|) (-953 |t#1|) (-10 -8 (-15 -2062 ((-1156 $))) (-15 -2062 ((-1156 $) (-844))) (-15 -3369 ((-1156 |t#1|) $)) (-15 -3369 ((-623 |t#1|) (-1156 $))) (-15 -1953 ($ (-1156 |t#1|))) (-15 -2456 ((-1071 |t#1|) $)) (-15 -3586 ((-1071 |t#1|))) (-15 -2370 ((-844))) (-15 -2769 ((-844) $)) (-15 -2754 (|t#1| $)) (-15 -2008 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -2456 ((-1071 $) $ (-844))) (-15 -2754 ($ $ (-844))) (-15 -2008 ($ $ (-844))) (-15 -3304 ($)) (-15 -3040 ($)) (-15 -1798 ((-107) $)) (-15 -1317 ($)) (-15 -1526 ($ $ (-1071 |t#1|))) (-15 -2508 ((-1071 |t#1|) $)) (-15 -1199 ((-1071 |t#1|) $)) (-15 -1199 ((-3 (-1071 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3745 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1173 |#1|) . T) ((-333) . T) ((-372) -3745 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-953 |#1|) . T) ((-968 #0#) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| |#1| (-338)) ((-1114) . T) ((-1163 |#1|) . T))
+((-2118 (((-107) $ $) NIL)) (-4140 (($ (-1074) $) 88)) (-1476 (($) 76)) (-1232 (((-1022) (-1022)) 11)) (-1684 (($) 77)) (-2190 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-2254 (($ (-1074) $) 89)) (-3755 (($ (-583 (-787))) 79)) (-2189 (((-1161) $) 73)) (-3374 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2028 (($ (-1022)) 45)) (-3888 (((-1008) $) 25)) (-3600 (($ (-997 (-875 (-517))) $) 85) (($ (-997 (-875 (-517))) (-875 (-517)) $) 86)) (-2560 (($ (-1022)) 87)) (-1885 (($ (-1074) $) 110) (($ (-1074) $ $) 111)) (-3347 (($ (-1075) (-583 (-1075))) 75)) (-4040 (($ (-1058)) 82) (($ (-583 (-1058))) 80)) (-2269 (((-787) $) 113)) (-2514 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1075)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1075)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1074)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3270 (-107)) (|:| -3119 (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1058))) (|:| |callBranch| (-1058)) (|:| |forBranch| (-2 (|:| -2192 (-997 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1022)) (|:| |loopBranch| (-2 (|:| |switch| (-1074)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2987 (-1075)) (|:| |contents| (-583 (-1075))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2571 (($ (-1058)) 182)) (-3955 (($ (-583 $)) 109)) (-2280 (($ (-1075) (-1058)) 115) (($ (-1075) (-286 (-634))) 155) (($ (-1075) (-286 (-632))) 156) (($ (-1075) (-286 (-627))) 157) (($ (-1075) (-623 (-634))) 118) (($ (-1075) (-623 (-632))) 121) (($ (-1075) (-623 (-627))) 124) (($ (-1075) (-1156 (-634))) 127) (($ (-1075) (-1156 (-632))) 130) (($ (-1075) (-1156 (-627))) 133) (($ (-1075) (-623 (-286 (-634)))) 136) (($ (-1075) (-623 (-286 (-632)))) 139) (($ (-1075) (-623 (-286 (-627)))) 142) (($ (-1075) (-1156 (-286 (-634)))) 145) (($ (-1075) (-1156 (-286 (-632)))) 148) (($ (-1075) (-1156 (-286 (-627)))) 151) (($ (-1075) (-583 (-875 (-517))) (-286 (-634))) 152) (($ (-1075) (-583 (-875 (-517))) (-286 (-632))) 153) (($ (-1075) (-583 (-875 (-517))) (-286 (-627))) 154) (($ (-1075) (-286 (-517))) 179) (($ (-1075) (-286 (-349))) 180) (($ (-1075) (-286 (-153 (-349)))) 181) (($ (-1075) (-623 (-286 (-517)))) 160) (($ (-1075) (-623 (-286 (-349)))) 163) (($ (-1075) (-623 (-286 (-153 (-349))))) 166) (($ (-1075) (-1156 (-286 (-517)))) 169) (($ (-1075) (-1156 (-286 (-349)))) 172) (($ (-1075) (-1156 (-286 (-153 (-349))))) 175) (($ (-1075) (-583 (-875 (-517))) (-286 (-517))) 176) (($ (-1075) (-583 (-875 (-517))) (-286 (-349))) 177) (($ (-1075) (-583 (-875 (-517))) (-286 (-153 (-349)))) 178)) (-1583 (((-107) $ $) NIL)))
+(((-300) (-13 (-1004) (-10 -8 (-15 -2269 ((-787) $)) (-15 -3600 ($ (-997 (-875 (-517))) $)) (-15 -3600 ($ (-997 (-875 (-517))) (-875 (-517)) $)) (-15 -4140 ($ (-1074) $)) (-15 -2254 ($ (-1074) $)) (-15 -2028 ($ (-1022))) (-15 -2560 ($ (-1022))) (-15 -4040 ($ (-1058))) (-15 -4040 ($ (-583 (-1058)))) (-15 -2571 ($ (-1058))) (-15 -2190 ($)) (-15 -2190 ($ (-286 (-632)))) (-15 -2190 ($ (-286 (-634)))) (-15 -2190 ($ (-286 (-627)))) (-15 -2190 ($ (-286 (-349)))) (-15 -2190 ($ (-286 (-517)))) (-15 -2190 ($ (-286 (-153 (-349))))) (-15 -1885 ($ (-1074) $)) (-15 -1885 ($ (-1074) $ $)) (-15 -2280 ($ (-1075) (-1058))) (-15 -2280 ($ (-1075) (-286 (-634)))) (-15 -2280 ($ (-1075) (-286 (-632)))) (-15 -2280 ($ (-1075) (-286 (-627)))) (-15 -2280 ($ (-1075) (-623 (-634)))) (-15 -2280 ($ (-1075) (-623 (-632)))) (-15 -2280 ($ (-1075) (-623 (-627)))) (-15 -2280 ($ (-1075) (-1156 (-634)))) (-15 -2280 ($ (-1075) (-1156 (-632)))) (-15 -2280 ($ (-1075) (-1156 (-627)))) (-15 -2280 ($ (-1075) (-623 (-286 (-634))))) (-15 -2280 ($ (-1075) (-623 (-286 (-632))))) (-15 -2280 ($ (-1075) (-623 (-286 (-627))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-634))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-632))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-627))))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-634)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-632)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-627)))) (-15 -2280 ($ (-1075) (-286 (-517)))) (-15 -2280 ($ (-1075) (-286 (-349)))) (-15 -2280 ($ (-1075) (-286 (-153 (-349))))) (-15 -2280 ($ (-1075) (-623 (-286 (-517))))) (-15 -2280 ($ (-1075) (-623 (-286 (-349))))) (-15 -2280 ($ (-1075) (-623 (-286 (-153 (-349)))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-517))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-349))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-153 (-349)))))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-517)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-349)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-153 (-349))))) (-15 -3955 ($ (-583 $))) (-15 -1476 ($)) (-15 -1684 ($)) (-15 -3755 ($ (-583 (-787)))) (-15 -3347 ($ (-1075) (-583 (-1075)))) (-15 -3374 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2514 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1075)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1075)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1074)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3270 (-107)) (|:| -3119 (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1058))) (|:| |callBranch| (-1058)) (|:| |forBranch| (-2 (|:| -2192 (-997 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1022)) (|:| |loopBranch| (-2 (|:| |switch| (-1074)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2987 (-1075)) (|:| |contents| (-583 (-1075))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2189 ((-1161) $)) (-15 -3888 ((-1008) $)) (-15 -1232 ((-1022) (-1022)))))) (T -300))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-3600 (*1 *1 *2 *1) (-12 (-5 *2 (-997 (-875 (-517)))) (-5 *1 (-300)))) (-3600 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-997 (-875 (-517)))) (-5 *3 (-875 (-517))) (-5 *1 (-300)))) (-4140 (*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))) (-2254 (*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-300)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-300)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-300)))) (-2190 (*1 *1) (-5 *1 (-300))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1885 (*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))) (-1885 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1058)) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-634))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-632))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-627))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-634)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-632)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-627)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-517)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-349)))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-2280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-1476 (*1 *1) (-5 *1 (-300))) (-1684 (*1 *1) (-5 *1 (-300))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-3347 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1075)) (-5 *1 (-300)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1075)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1075)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1074)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3270 (-107)) (|:| -3119 (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1058))) (|:| |callBranch| (-1058)) (|:| |forBranch| (-2 (|:| -2192 (-997 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1022)) (|:| |loopBranch| (-2 (|:| |switch| (-1074)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -2987 (-1075)) (|:| |contents| (-583 (-1075))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-300)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-300)))) (-1232 (*1 *2 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ((-787) $)) (-15 -3600 ($ (-997 (-875 (-517))) $)) (-15 -3600 ($ (-997 (-875 (-517))) (-875 (-517)) $)) (-15 -4140 ($ (-1074) $)) (-15 -2254 ($ (-1074) $)) (-15 -2028 ($ (-1022))) (-15 -2560 ($ (-1022))) (-15 -4040 ($ (-1058))) (-15 -4040 ($ (-583 (-1058)))) (-15 -2571 ($ (-1058))) (-15 -2190 ($)) (-15 -2190 ($ (-286 (-632)))) (-15 -2190 ($ (-286 (-634)))) (-15 -2190 ($ (-286 (-627)))) (-15 -2190 ($ (-286 (-349)))) (-15 -2190 ($ (-286 (-517)))) (-15 -2190 ($ (-286 (-153 (-349))))) (-15 -1885 ($ (-1074) $)) (-15 -1885 ($ (-1074) $ $)) (-15 -2280 ($ (-1075) (-1058))) (-15 -2280 ($ (-1075) (-286 (-634)))) (-15 -2280 ($ (-1075) (-286 (-632)))) (-15 -2280 ($ (-1075) (-286 (-627)))) (-15 -2280 ($ (-1075) (-623 (-634)))) (-15 -2280 ($ (-1075) (-623 (-632)))) (-15 -2280 ($ (-1075) (-623 (-627)))) (-15 -2280 ($ (-1075) (-1156 (-634)))) (-15 -2280 ($ (-1075) (-1156 (-632)))) (-15 -2280 ($ (-1075) (-1156 (-627)))) (-15 -2280 ($ (-1075) (-623 (-286 (-634))))) (-15 -2280 ($ (-1075) (-623 (-286 (-632))))) (-15 -2280 ($ (-1075) (-623 (-286 (-627))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-634))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-632))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-627))))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-634)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-632)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-627)))) (-15 -2280 ($ (-1075) (-286 (-517)))) (-15 -2280 ($ (-1075) (-286 (-349)))) (-15 -2280 ($ (-1075) (-286 (-153 (-349))))) (-15 -2280 ($ (-1075) (-623 (-286 (-517))))) (-15 -2280 ($ (-1075) (-623 (-286 (-349))))) (-15 -2280 ($ (-1075) (-623 (-286 (-153 (-349)))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-517))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-349))))) (-15 -2280 ($ (-1075) (-1156 (-286 (-153 (-349)))))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-517)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-349)))) (-15 -2280 ($ (-1075) (-583 (-875 (-517))) (-286 (-153 (-349))))) (-15 -3955 ($ (-583 $))) (-15 -1476 ($)) (-15 -1684 ($)) (-15 -3755 ($ (-583 (-787)))) (-15 -3347 ($ (-1075) (-583 (-1075)))) (-15 -3374 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2514 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1075)) (|:| |arrayIndex| (-583 (-875 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1075)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1074)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3270 (-107)) (|:| -3119 (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1058))) (|:| |callBranch| (-1058)) (|:| |forBranch| (-2 (|:| -2192 (-997 (-875 (-517)))) (|:| |span| (-875 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1022)) (|:| |loopBranch| (-2 (|:| |switch| (-1074)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2987 (-1075)) (|:| |contents| (-583 (-1075))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -2189 ((-1161) $)) (-15 -3888 ((-1008) $)) (-15 -1232 ((-1022) (-1022)))))
+((-2118 (((-107) $ $) NIL)) (-2223 (((-107) $) 11)) (-1470 (($ |#1|) 8)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-1482 (($ |#1|) 9)) (-2269 (((-787) $) 17)) (-3418 ((|#1| $) 12)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 19)))
+(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1470 ($ |#1|)) (-15 -1482 ($ |#1|)) (-15 -2223 ((-107) $)) (-15 -3418 (|#1| $)))) (-779)) (T -301))
+((-1470 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1482 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-3418 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
+(-13 (-779) (-10 -8 (-15 -1470 ($ |#1|)) (-15 -1482 ($ |#1|)) (-15 -2223 ((-107) $)) (-15 -3418 (|#1| $))))
+((-1359 (((-300) (-1075) (-875 (-517))) 22)) (-2722 (((-300) (-1075) (-875 (-517))) 26)) (-3231 (((-300) (-1075) (-997 (-875 (-517))) (-997 (-875 (-517)))) 25) (((-300) (-1075) (-875 (-517)) (-875 (-517))) 23)) (-3639 (((-300) (-1075) (-875 (-517))) 30)))
+(((-302) (-10 -7 (-15 -1359 ((-300) (-1075) (-875 (-517)))) (-15 -3231 ((-300) (-1075) (-875 (-517)) (-875 (-517)))) (-15 -3231 ((-300) (-1075) (-997 (-875 (-517))) (-997 (-875 (-517))))) (-15 -2722 ((-300) (-1075) (-875 (-517)))) (-15 -3639 ((-300) (-1075) (-875 (-517)))))) (T -302))
+((-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3231 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-997 (-875 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3231 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(-10 -7 (-15 -1359 ((-300) (-1075) (-875 (-517)))) (-15 -3231 ((-300) (-1075) (-875 (-517)) (-875 (-517)))) (-15 -3231 ((-300) (-1075) (-997 (-875 (-517))) (-997 (-875 (-517))))) (-15 -2722 ((-300) (-1075) (-875 (-517)))) (-15 -3639 ((-300) (-1075) (-875 (-517)))))
+((-3308 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
+(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3308 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1132 |#5|) (-1132 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1132 *9)) (-4 *11 (-1132 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
+(-10 -7 (-15 -3308 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
+((-3222 (((-107) $) 14)))
+(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3222 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1132 |#2|) (-1132 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
+NIL
+(-10 -8 (-15 -3222 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1521 (($ $) 26)) (-3222 (((-107) $) 25)) (-1895 (((-1058) $) 9)) (-1373 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-4123 (((-1022) $) 10)) (-1317 (((-3 |#4| "failed") $) 24)) (-3539 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2582 (((-2 (|:| -3184 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-305 |#1| |#2| |#3| |#4|) (-1187) (-333) (-1132 |t#1|) (-1132 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
+((-1373 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-3539 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-3539 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1132 *2)) (-4 *4 (-1132 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-3539 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1132 *2)) (-4 *5 (-1132 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3184 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1132 *2)) (-4 *4 (-1132 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-1317 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-3539 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1373 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -3539 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -3539 ($ |t#4|)) (-15 -3539 ($ |t#1| |t#1|)) (-15 -3539 ($ |t#1| |t#1| (-517))) (-15 -2582 ((-2 (|:| -3184 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1521 ($ $)) (-15 -3222 ((-107) $)) (-15 -1317 ((-3 |t#4| "failed") $)) (-15 -3539 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-1521 (($ $) 32)) (-3222 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-3991 (((-1156 |#4|) $) 124)) (-1373 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-4123 (((-1022) $) NIL)) (-1317 (((-3 |#4| "failed") $) 35)) (-1251 (((-1156 |#4|) $) 117)) (-3539 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2582 (((-2 (|:| -3184 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2269 (((-787) $) 17)) (-3608 (($) 14 T CONST)) (-1583 (((-107) $ $) 20)) (-1691 (($ $) 27) (($ $ $) NIL)) (-1677 (($ $ $) 25)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1251 ((-1156 |#4|) $)) (-15 -3991 ((-1156 |#4|) $)))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
+((-1251 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-1156 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3991 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-1156 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1251 ((-1156 |#4|) $)) (-15 -3991 ((-1156 |#4|) $))))
+((-3522 (($ $ (-1075) |#2|) NIL) (($ $ (-583 (-1075)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-2607 (($ $ |#2|) 11)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -2607 (|#1| |#1| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 |#2|))) (-15 -3522 (|#1| |#1| (-1075) |#2|))) (-308 |#2|) (-1004)) (T -307))
+NIL
+(-10 -8 (-15 -2607 (|#1| |#1| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 |#2|))) (-15 -3522 (|#1| |#1| (-1075) |#2|)))
+((-3308 (($ (-1 |#1| |#1|) $) 6)) (-3522 (($ $ (-1075) |#1|) 17 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-2607 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
+(((-308 |#1|) (-1187) (-1004)) (T -308))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1004)))))
+(-13 (-10 -8 (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-478 (-1075) |t#1|)) (-6 (-478 (-1075) |t#1|)) |%noBranch|)))
+(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-1075)) $) NIL)) (-3901 (((-107)) 88) (((-107) (-107)) 89)) (-3831 (((-583 (-556 $)) $) NIL)) (-1646 (($ $) NIL)) (-1493 (($ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3913 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3879 (($ $) NIL)) (-1622 (($ $) NIL)) (-1470 (($ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 70) (((-3 $ "failed") (-1075)) 94) (((-3 $ "failed") (-286 (-517))) 57 (|has| |#3| (-953 (-517)))) (((-3 $ "failed") (-377 (-875 (-517)))) 63 (|has| |#3| (-953 (-517)))) (((-3 $ "failed") (-875 (-517))) 58 (|has| |#3| (-953 (-517)))) (((-3 $ "failed") (-286 (-349))) 75 (|has| |#3| (-953 (-349)))) (((-3 $ "failed") (-377 (-875 (-349)))) 81 (|has| |#3| (-953 (-349)))) (((-3 $ "failed") (-875 (-349))) 76 (|has| |#3| (-953 (-349))))) (-3388 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 71) (($ (-1075)) 95) (($ (-286 (-517))) 59 (|has| |#3| (-953 (-517)))) (($ (-377 (-875 (-517)))) 64 (|has| |#3| (-953 (-517)))) (($ (-875 (-517))) 60 (|has| |#3| (-953 (-517)))) (($ (-286 (-349))) 77 (|has| |#3| (-953 (-349)))) (($ (-377 (-875 (-349)))) 82 (|has| |#3| (-953 (-349)))) (($ (-875 (-349))) 78 (|has| |#3| (-953 (-349))))) (-3163 (((-3 $ "failed") $) NIL)) (-2115 (($) 10)) (-3039 (($ $) NIL) (($ (-583 $)) NIL)) (-1976 (((-583 (-109)) $) NIL)) (-3034 (((-109) (-109)) NIL)) (-1865 (((-107) $) NIL)) (-1623 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3049 (((-1071 $) (-556 $)) NIL (|has| $ (-962)))) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 $ $) (-556 $)) NIL)) (-2466 (((-3 (-556 $) "failed") $) NIL)) (-2894 (($ $) 91)) (-1225 (($ $) NIL)) (-1895 (((-1058) $) NIL)) (-1423 (((-583 (-556 $)) $) NIL)) (-1396 (($ (-109) $) 90) (($ (-109) (-583 $)) NIL)) (-1290 (((-107) $ (-109)) NIL) (((-107) $ (-1075)) NIL)) (-1807 (((-703) $) NIL)) (-4123 (((-1022) $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1075)) NIL)) (-3868 (($ $) NIL)) (-2085 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1075) (-1 $ (-583 $))) NIL) (($ $ (-1075) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2607 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-3618 (($ $) NIL) (($ $ $) NIL)) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL)) (-3586 (($ $) NIL (|has| $ (-962)))) (-1632 (($ $) NIL)) (-1482 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 93)) (-2950 (((-703)) NIL)) (-3438 (($ $) NIL) (($ (-583 $)) NIL)) (-1752 (((-107) (-109)) NIL)) (-1575 (($ $) NIL)) (-1547 (($ $) NIL)) (-1561 (($ $) NIL)) (-2339 (($ $) NIL)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) 92 T CONST)) (-3617 (($) 22 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
+(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-953 |#3|) (-823 (-1075)) (-10 -8 (-15 -3388 ($ (-286 |#3|))) (-15 -3226 ((-3 $ "failed") (-286 |#3|))) (-15 -3388 ($ (-1075))) (-15 -3226 ((-3 $ "failed") (-1075))) (-15 -2269 ((-286 |#3|) $)) (IF (|has| |#3| (-953 (-517))) (PROGN (-15 -3388 ($ (-286 (-517)))) (-15 -3226 ((-3 $ "failed") (-286 (-517)))) (-15 -3388 ($ (-377 (-875 (-517))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-517))))) (-15 -3388 ($ (-875 (-517)))) (-15 -3226 ((-3 $ "failed") (-875 (-517))))) |%noBranch|) (IF (|has| |#3| (-953 (-349))) (PROGN (-15 -3388 ($ (-286 (-349)))) (-15 -3226 ((-3 $ "failed") (-286 (-349)))) (-15 -3388 ($ (-377 (-875 (-349))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3388 ($ (-875 (-349)))) (-15 -3226 ((-3 $ "failed") (-875 (-349))))) |%noBranch|) (-15 -2339 ($ $)) (-15 -3879 ($ $)) (-15 -3868 ($ $)) (-15 -1225 ($ $)) (-15 -2894 ($ $)) (-15 -1470 ($ $)) (-15 -1482 ($ $)) (-15 -1493 ($ $)) (-15 -1547 ($ $)) (-15 -1561 ($ $)) (-15 -1575 ($ $)) (-15 -1622 ($ $)) (-15 -1632 ($ $)) (-15 -1646 ($ $)) (-15 -2115 ($)) (-15 -2096 ((-583 (-1075)) $)) (-15 -3901 ((-107))) (-15 -3901 ((-107) (-107))))) (-583 (-1075)) (-583 (-1075)) (-357)) (T -309))
+((-3388 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-3879 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-2894 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1470 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1482 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1493 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1561 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1632 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-1646 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-2115 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075))) (-14 *3 (-583 (-1075))) (-4 *4 (-357)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-3901 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357)))))
+(-13 (-273) (-37 |#3|) (-953 |#3|) (-823 (-1075)) (-10 -8 (-15 -3388 ($ (-286 |#3|))) (-15 -3226 ((-3 $ "failed") (-286 |#3|))) (-15 -3388 ($ (-1075))) (-15 -3226 ((-3 $ "failed") (-1075))) (-15 -2269 ((-286 |#3|) $)) (IF (|has| |#3| (-953 (-517))) (PROGN (-15 -3388 ($ (-286 (-517)))) (-15 -3226 ((-3 $ "failed") (-286 (-517)))) (-15 -3388 ($ (-377 (-875 (-517))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-517))))) (-15 -3388 ($ (-875 (-517)))) (-15 -3226 ((-3 $ "failed") (-875 (-517))))) |%noBranch|) (IF (|has| |#3| (-953 (-349))) (PROGN (-15 -3388 ($ (-286 (-349)))) (-15 -3226 ((-3 $ "failed") (-286 (-349)))) (-15 -3388 ($ (-377 (-875 (-349))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3388 ($ (-875 (-349)))) (-15 -3226 ((-3 $ "failed") (-875 (-349))))) |%noBranch|) (-15 -2339 ($ $)) (-15 -3879 ($ $)) (-15 -3868 ($ $)) (-15 -1225 ($ $)) (-15 -2894 ($ $)) (-15 -1470 ($ $)) (-15 -1482 ($ $)) (-15 -1493 ($ $)) (-15 -1547 ($ $)) (-15 -1561 ($ $)) (-15 -1575 ($ $)) (-15 -1622 ($ $)) (-15 -1632 ($ $)) (-15 -1646 ($ $)) (-15 -2115 ($)) (-15 -2096 ((-583 (-1075)) $)) (-15 -3901 ((-107))) (-15 -3901 ((-107) (-107)))))
+((-3308 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3308 (|#8| (-1 |#5| |#1|) |#4|))) (-1114) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1114) (-1132 |#5|) (-1132 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1114)) (-4 *8 (-1114)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *9 (-1132 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1132 (-377 *9))))))
+(-10 -7 (-15 -3308 (|#8| (-1 |#5| |#1|) |#4|)))
+((-1337 (((-2 (|:| |num| (-1156 |#3|)) (|:| |den| |#3|)) $) 38)) (-1953 (($ (-1156 (-377 |#3|)) (-1156 $)) NIL) (($ (-1156 (-377 |#3|))) NIL) (($ (-1156 |#3|) |#3|) 159)) (-3311 (((-1156 $) (-1156 $)) 143)) (-3601 (((-583 (-583 |#2|))) 116)) (-3518 (((-107) |#2| |#2|) 72)) (-2186 (($ $) 137)) (-3821 (((-703)) 31)) (-1664 (((-1156 $) (-1156 $)) 196)) (-2258 (((-583 (-875 |#2|)) (-1075)) 109)) (-1576 (((-107) $) 156)) (-3256 (((-107) $) 24) (((-107) $ |#2|) 29) (((-107) $ |#3|) 200)) (-1782 (((-3 |#3| "failed")) 49)) (-1486 (((-703)) 168)) (-2607 ((|#2| $ |#2| |#2|) 130)) (-3602 (((-3 |#3| "failed")) 67)) (-2059 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-1156 $) (-1156 $)) 149)) (-1453 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-2139 (((-107)) 33)))
+(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3601 ((-583 (-583 |#2|)))) (-15 -2258 ((-583 (-875 |#2|)) (-1075))) (-15 -1453 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1782 ((-3 |#3| "failed"))) (-15 -3602 ((-3 |#3| "failed"))) (-15 -2607 (|#2| |#1| |#2| |#2|)) (-15 -2186 (|#1| |#1|)) (-15 -1953 (|#1| (-1156 |#3|) |#3|)) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3256 ((-107) |#1| |#3|)) (-15 -3256 ((-107) |#1| |#2|)) (-15 -1337 ((-2 (|:| |num| (-1156 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3311 ((-1156 |#1|) (-1156 |#1|))) (-15 -1664 ((-1156 |#1|) (-1156 |#1|))) (-15 -3688 ((-1156 |#1|) (-1156 |#1|))) (-15 -3256 ((-107) |#1|)) (-15 -1576 ((-107) |#1|)) (-15 -3518 ((-107) |#2| |#2|)) (-15 -2139 ((-107))) (-15 -1486 ((-703))) (-15 -3821 ((-703))) (-15 -2059 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2059 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1953 (|#1| (-1156 (-377 |#3|)))) (-15 -1953 (|#1| (-1156 (-377 |#3|)) (-1156 |#1|)))) (-312 |#2| |#3| |#4|) (-1114) (-1132 |#2|) (-1132 (-377 |#3|))) (T -311))
+((-3821 (*1 *2) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1486 (*1 *2) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2139 (*1 *2) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3518 (*1 *2 *3 *3) (-12 (-4 *3 (-1114)) (-4 *5 (-1132 *3)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-3602 (*1 *2) (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 (-377 *2))) (-4 *2 (-1132 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-1782 (*1 *2) (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 (-377 *2))) (-4 *2 (-1132 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *5 (-1114)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-5 *2 (-583 (-875 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3601 (*1 *2) (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
+(-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -3601 ((-583 (-583 |#2|)))) (-15 -2258 ((-583 (-875 |#2|)) (-1075))) (-15 -1453 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1782 ((-3 |#3| "failed"))) (-15 -3602 ((-3 |#3| "failed"))) (-15 -2607 (|#2| |#1| |#2| |#2|)) (-15 -2186 (|#1| |#1|)) (-15 -1953 (|#1| (-1156 |#3|) |#3|)) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3256 ((-107) |#1| |#3|)) (-15 -3256 ((-107) |#1| |#2|)) (-15 -1337 ((-2 (|:| |num| (-1156 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3311 ((-1156 |#1|) (-1156 |#1|))) (-15 -1664 ((-1156 |#1|) (-1156 |#1|))) (-15 -3688 ((-1156 |#1|) (-1156 |#1|))) (-15 -3256 ((-107) |#1|)) (-15 -1576 ((-107) |#1|)) (-15 -3518 ((-107) |#2| |#2|)) (-15 -2139 ((-107))) (-15 -1486 ((-703))) (-15 -3821 ((-703))) (-15 -2059 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2059 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1953 (|#1| (-1156 (-377 |#3|)))) (-15 -1953 (|#1| (-1156 (-377 |#3|)) (-1156 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1337 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) 196)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-2729 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2566 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-3861 (((-623 (-377 |#2|)) (-1156 $)) 46) (((-623 (-377 |#2|))) 61)) (-2008 (((-377 |#2|) $) 52)) (-2886 (((-1084 (-844) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-1581 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-3998 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-2397 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-1859 (((-107)) 213)) (-3329 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3388 (((-517) $) 170 (|has| (-377 |#2|) (-953 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-377 |#2|) $) 165)) (-1953 (($ (-1156 (-377 |#2|)) (-1156 $)) 48) (($ (-1156 (-377 |#2|))) 64) (($ (-1156 |#2|) |#2|) 189)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2378 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-1416 (((-623 (-377 |#2|)) $ (-1156 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-2306 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-377 |#2|))) (|:| |vec| (-1156 (-377 |#2|)))) (-623 $) (-1156 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-3311 (((-1156 $) (-1156 $)) 201)) (-1521 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3163 (((-3 $ "failed") $) 34)) (-3601 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3518 (((-107) |#1| |#1|) 217)) (-3736 (((-844)) 54)) (-2200 (($) 90 (|has| (-377 |#2|) (-338)))) (-3444 (((-107)) 210)) (-2214 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2354 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-2186 (($ $) 188)) (-1672 (($) 149 (|has| (-377 |#2|) (-319)))) (-3454 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2464 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-2963 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-2053 (((-844) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) 138 (|has| (-377 |#2|) (-319)))) (-1865 (((-107) $) 31)) (-3821 (((-703)) 220)) (-1664 (((-1156 $) (-1156 $)) 202)) (-2754 (((-377 |#2|) $) 51)) (-2258 (((-583 (-875 |#1|)) (-1075)) 183 (|has| |#1| (-333)))) (-3572 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-2456 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-2031 (((-844) $) 89 (|has| (-377 |#2|) (-338)))) (-1508 ((|#3| $) 156)) (-2330 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-1895 (((-1058) $) 9)) (-2771 (((-623 (-377 |#2|))) 197)) (-1389 (((-623 (-377 |#2|))) 199)) (-2298 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-2055 (($ (-1156 |#2|) |#2|) 194)) (-3941 (((-623 (-377 |#2|))) 198)) (-1932 (((-623 (-377 |#2|))) 200)) (-3379 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3481 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) 195)) (-3706 (((-1156 $)) 206)) (-3057 (((-1156 $)) 207)) (-1576 (((-107) $) 205)) (-3256 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2585 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-2810 (($ (-844)) 88 (|has| (-377 |#2|) (-338)))) (-1782 (((-3 |#2| "failed")) 185)) (-4123 (((-1022) $) 10)) (-1486 (((-703)) 219)) (-1317 (($) 160)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 101 (|has| (-377 |#2|) (-333)))) (-2368 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3866 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2327 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-4094 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-2607 ((|#1| $ |#1| |#1|) 187)) (-3602 (((-3 |#2| "failed")) 186)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-4032 (((-377 |#2|) (-1156 $)) 47) (((-377 |#2|)) 60)) (-1496 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-2059 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1075)) (-583 (-703))) 130 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-1075) (-703)) 131 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1075))) 132 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-1075)) 133 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3992 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3992 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2678 (((-623 (-377 |#2|)) (-1156 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-3586 ((|#3|) 159)) (-3958 (($) 148 (|has| (-377 |#2|) (-319)))) (-3369 (((-1156 (-377 |#2|)) $ (-1156 $)) 50) (((-623 (-377 |#2|)) (-1156 $) (-1156 $)) 49) (((-1156 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1156 $)) 65)) (-3357 (((-1156 (-377 |#2|)) $) 63) (($ (-1156 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-3688 (((-1156 $) (-1156 $)) 203)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3745 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-953 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-2650 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-1900 ((|#3| $) 45)) (-2950 (((-703)) 29)) (-4029 (((-107)) 216)) (-4011 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-2062 (((-1156 $)) 67)) (-2914 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-1453 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2139 (((-107)) 218)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1075)) (-583 (-703))) 126 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-1075) (-703)) 127 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1075))) 128 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-1075)) 129 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) (-3992 (|has| (-377 |#2|) (-823 (-1075))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3992 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3745 (-3992 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-3992 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
+(((-312 |#1| |#2| |#3|) (-1187) (-1114) (-1132 |t#1|) (-1132 (-377 |t#2|))) (T -312))
+((-3821 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-703)))) (-1486 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-703)))) (-2139 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3518 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-4029 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-4011 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-4011 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107)))) (-1859 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3329 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3329 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107)))) (-3444 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-2214 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-2214 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107)))) (-3057 (*1 *2) (-12 (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3706 (*1 *2) (-12 (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))) (-3311 (*1 *2 *2) (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))) (-1932 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1389 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3941 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2771 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1156 *4)) (|:| |den| *4))))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1156 *4)) (|:| |den| *4))))) (-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1132 *4)) (-4 *4 (-1114)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1132 (-377 *3))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3256 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))) (-3256 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1132 *4)) (-4 *4 (-1114)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1132 (-377 *3))))) (-2186 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-1132 *2)) (-4 *4 (-1132 (-377 *3))))) (-2607 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-1132 *2)) (-4 *4 (-1132 (-377 *3))))) (-3602 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1114)) (-4 *4 (-1132 (-377 *2))) (-4 *2 (-1132 *3)))) (-1782 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1114)) (-4 *4 (-1132 (-377 *2))) (-4 *2 (-1132 *3)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-1114)) (-4 *6 (-1132 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-875 *4))))) (-3601 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -3821 ((-703))) (-15 -1486 ((-703))) (-15 -2139 ((-107))) (-15 -3518 ((-107) |t#1| |t#1|)) (-15 -4029 ((-107))) (-15 -4011 ((-107) |t#1|)) (-15 -4011 ((-107) |t#2|)) (-15 -1859 ((-107))) (-15 -3329 ((-107) |t#1|)) (-15 -3329 ((-107) |t#2|)) (-15 -3444 ((-107))) (-15 -2214 ((-107) |t#1|)) (-15 -2214 ((-107) |t#2|)) (-15 -3057 ((-1156 $))) (-15 -3706 ((-1156 $))) (-15 -1576 ((-107) $)) (-15 -3256 ((-107) $)) (-15 -3688 ((-1156 $) (-1156 $))) (-15 -1664 ((-1156 $) (-1156 $))) (-15 -3311 ((-1156 $) (-1156 $))) (-15 -1932 ((-623 (-377 |t#2|)))) (-15 -1389 ((-623 (-377 |t#2|)))) (-15 -3941 ((-623 (-377 |t#2|)))) (-15 -2771 ((-623 (-377 |t#2|)))) (-15 -1337 ((-2 (|:| |num| (-1156 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1953 ($ (-1156 |t#2|) |t#2|)) (-15 -3481 ((-2 (|:| |num| (-1156 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2055 ($ (-1156 |t#2|) |t#2|)) (-15 -3379 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3256 ((-107) $ |t#1|)) (-15 -3256 ((-107) $ |t#2|)) (-15 -2059 ($ $ (-1 |t#2| |t#2|))) (-15 -1953 ($ (-1156 |t#2|) |t#2|)) (-15 -2186 ($ $)) (-15 -2607 (|t#1| $ |t#1| |t#1|)) (-15 -3602 ((-3 |t#2| "failed"))) (-15 -1782 ((-3 |t#2| "failed"))) (-15 -1453 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2258 ((-583 (-875 |t#1|)) (-1075))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3601 ((-583 (-583 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 #1=(-377 |#2|)) . T) ((-37 $) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 #0# #0#) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 #1#) |has| (-377 |#2|) (-333)) ((-207) -3745 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3745 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 #1# |#3|) . T) ((-379 #1# |#3|) . T) ((-347 #1#) . T) ((-381 #1#) . T) ((-421) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #0#) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #1#) . T) ((-585 $) . T) ((-579 #1#) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 #0#) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 #1#) . T) ((-650 $) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 #1# |#3|) . T) ((-659) . T) ((-823 (-1075)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075)))) ((-843) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-953 (-377 (-517))) |has| (-377 |#2|) (-953 (-377 (-517)))) ((-953 #1#) . T) ((-953 (-517)) |has| (-377 |#2|) (-953 (-517))) ((-968 #0#) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-968 #1#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| (-377 |#2|) (-319)) ((-1114) -3745 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-833 |#1|) "failed") $) NIL)) (-3388 (((-833 |#1|) $) NIL)) (-1953 (($ (-1156 (-833 |#1|))) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| (-833 |#1|) (-338)))) (-3454 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| (-833 |#1|) (-338)))) (-1798 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2754 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 (-833 |#1|)) $) NIL) (((-1071 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2031 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-2508 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1199 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1071 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-1526 (($ $ (-1071 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-3406 (((-880 (-1022))) NIL)) (-1317 (($) NIL (|has| (-833 |#1|) (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 (-833 |#1|))) NIL)) (-3958 (($) NIL (|has| (-833 |#1|) (-338)))) (-3304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3369 (((-1156 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-2650 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3340 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
+(((-313 |#1| |#2|) (-13 (-299 (-833 |#1|)) (-10 -7 (-15 -3406 ((-880 (-1022)))))) (-844) (-844)) (T -313))
+((-3406 (*1 *2) (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-313 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))))
+(-13 (-299 (-833 |#1|)) (-10 -7 (-15 -3406 ((-880 (-1022))))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 46)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 114)) (-3388 ((|#1| $) 85)) (-1953 (($ (-1156 |#1|)) 103)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) 97 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) 129 (|has| |#1| (-338)))) (-3454 (((-107) $) 49 (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) 47 (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) 131 (|has| |#1| (-338)))) (-1798 (((-107) $) NIL (|has| |#1| (-338)))) (-2754 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) 89) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) 139 (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) NIL (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) NIL (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 146)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) 70 (|has| |#1| (-338)))) (-1214 (((-107) $) 117)) (-4123 (((-1022) $) NIL)) (-3406 (((-880 (-1022))) 44)) (-1317 (($) 127 (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 92 (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) 67) (((-844)) 68)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) 130 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 124 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 |#1|)) 95)) (-3958 (($) 128 (|has| |#1| (-338)))) (-3304 (($) 136 (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) 59) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) 142) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) 138)) (-2062 (((-1156 $)) 116) (((-1156 $) (-844)) 72)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 32 T CONST)) (-3617 (($) 19 T CONST)) (-1739 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) 48)) (-1703 (($ $ $) 144) (($ $ |#1|) 145)) (-1691 (($ $) 126) (($ $ $) NIL)) (-1677 (($ $ $) 61)) (** (($ $ (-844)) 148) (($ $ (-703)) 149) (($ $ (-517)) 147)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3406 ((-880 (-1022)))))) (-319) (-1071 |#1|)) (T -314))
+((-3406 (*1 *2) (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1071 *3)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3406 ((-880 (-1022))))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-1953 (($ (-1156 |#1|)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| |#1| (-338)))) (-3454 (((-107) $) NIL (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| |#1| (-338)))) (-1798 (((-107) $) NIL (|has| |#1| (-338)))) (-2754 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) NIL) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) NIL (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) NIL (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-3406 (((-880 (-1022))) NIL)) (-1317 (($) NIL (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 |#1|)) NIL)) (-3958 (($) NIL (|has| |#1| (-338)))) (-3304 (($) NIL (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) NIL) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3406 ((-880 (-1022)))))) (-319) (-844)) (T -315))
+((-3406 (*1 *2) (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3406 ((-880 (-1022))))))
+((-1570 (((-703) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) 40)) (-2421 (((-880 (-1022)) (-1071 |#1|)) 85)) (-1376 (((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) (-1071 |#1|)) 78)) (-2383 (((-623 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) 86)) (-1465 (((-3 (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) "failed") (-844)) 10)) (-2908 (((-3 (-1071 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) (-844)) 15)))
+(((-316 |#1|) (-10 -7 (-15 -2421 ((-880 (-1022)) (-1071 |#1|))) (-15 -1376 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) (-1071 |#1|))) (-15 -2383 ((-623 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -1570 ((-703) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -1465 ((-3 (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) "failed") (-844))) (-15 -2908 ((-3 (-1071 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) (-844)))) (-319)) (T -316))
+((-2908 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-3 (-1071 *4) (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-1465 (*1 *2 *3) (|partial| -12 (-5 *3 (-844)) (-5 *2 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))) (-5 *1 (-316 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-880 (-1022))) (-5 *1 (-316 *4)))))
+(-10 -7 (-15 -2421 ((-880 (-1022)) (-1071 |#1|))) (-15 -1376 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) (-1071 |#1|))) (-15 -2383 ((-623 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -1570 ((-703) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -1465 ((-3 (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) "failed") (-844))) (-15 -2908 ((-3 (-1071 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) (-844))))
+((-2269 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2269 (|#3| |#1|)) (-15 -2269 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
+((-2269 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2269 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
+(-10 -7 (-15 -2269 (|#3| |#1|)) (-15 -2269 (|#1| |#3|)))
+((-3454 (((-107) $) 51)) (-2053 (((-765 (-844)) $) 21) (((-844) $) 52)) (-3572 (((-3 $ "failed") $) 16)) (-2585 (($) 9)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 92)) (-1496 (((-3 (-703) "failed") $ $) 71) (((-703) $) 60)) (-2059 (($ $ (-703)) NIL) (($ $) 8)) (-3958 (($) 45)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 33)) (-2650 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-318 |#1|) (-10 -8 (-15 -2053 ((-844) |#1|)) (-15 -1496 ((-703) |#1|)) (-15 -3454 ((-107) |#1|)) (-15 -3958 (|#1|)) (-15 -3024 ((-3 (-1156 |#1|) "failed") (-623 |#1|))) (-15 -2650 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-3 (-703) "failed") |#1| |#1|)) (-15 -2053 ((-765 (-844)) |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)))) (-319)) (T -318))
+NIL
+(-10 -8 (-15 -2053 ((-844) |#1|)) (-15 -1496 ((-703) |#1|)) (-15 -3454 ((-107) |#1|)) (-15 -3958 (|#1|)) (-15 -3024 ((-3 (-1156 |#1|) "failed") (-623 |#1|))) (-15 -2650 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-3 (-703) "failed") |#1| |#1|)) (-15 -2053 ((-765 (-844)) |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-2886 (((-1084 (-844) (-703)) (-517)) 93)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3998 (((-107) $ $) 59)) (-2397 (((-703)) 103)) (-1681 (($) 17 T CONST)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2200 (($) 106)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-1672 (($) 91)) (-3454 (((-107) $) 90)) (-2464 (($ $) 79) (($ $ (-703)) 78)) (-2963 (((-107) $) 71)) (-2053 (((-765 (-844)) $) 81) (((-844) $) 88)) (-1865 (((-107) $) 31)) (-3572 (((-3 $ "failed") $) 102)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2031 (((-844) $) 105)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-2585 (($) 101 T CONST)) (-2810 (($ (-844)) 104)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 94)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-1496 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-2059 (($ $ (-703)) 99) (($ $) 97)) (-3958 (($) 92)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 95)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2650 (((-3 $ "failed") $) 82) (($ $) 96)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-703)) 100) (($ $) 98)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-319) (-1187)) (T -319))
+((-2650 (*1 *1 *1) (-4 *1 (-319))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1156 *1)))) (-3699 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))))) (-2886 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1084 (-844) (-703))))) (-3958 (*1 *1) (-4 *1 (-319))) (-1672 (*1 *1) (-4 *1 (-319))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-844)))) (-2081 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-372) (-338) (-1051) (-207) (-10 -8 (-15 -2650 ($ $)) (-15 -3024 ((-3 (-1156 $) "failed") (-623 $))) (-15 -3699 ((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517)))))) (-15 -2886 ((-1084 (-844) (-703)) (-517))) (-15 -3958 ($)) (-15 -1672 ($)) (-15 -3454 ((-107) $)) (-15 -1496 ((-703) $)) (-15 -2053 ((-844) $)) (-15 -2081 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) . T) ((-1114) . T))
+((-4146 (((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-3057 (((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
+(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))) (-1132 |#1|) (-379 |#1| |#2|)) (T -320))
+((-4146 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3057 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-1570 (((-703)) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-833 |#1|) "failed") $) NIL)) (-3388 (((-833 |#1|) $) NIL)) (-1953 (($ (-1156 (-833 |#1|))) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| (-833 |#1|) (-338)))) (-3454 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| (-833 |#1|) (-338)))) (-1798 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2754 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 (-833 |#1|)) $) NIL) (((-1071 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2031 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-2508 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1199 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1071 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-1526 (($ $ (-1071 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-2949 (((-1156 (-583 (-2 (|:| -3119 (-833 |#1|)) (|:| -2810 (-1022)))))) NIL)) (-3072 (((-623 (-833 |#1|))) NIL)) (-1317 (($) NIL (|has| (-833 |#1|) (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 (-833 |#1|))) NIL)) (-3958 (($) NIL (|has| (-833 |#1|) (-338)))) (-3304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3369 (((-1156 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-2650 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3340 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-299 (-833 |#1|)) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 (-833 |#1|)) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 (-833 |#1|)))) (-15 -1570 ((-703))))) (-844) (-844)) (T -321))
+((-2949 (*1 *2) (-12 (-5 *2 (-1156 (-583 (-2 (|:| -3119 (-833 *3)) (|:| -2810 (-1022)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-3072 (*1 *2) (-12 (-5 *2 (-623 (-833 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-1570 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))))
+(-13 (-299 (-833 |#1|)) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 (-833 |#1|)) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 (-833 |#1|)))) (-15 -1570 ((-703)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 75)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) 93) (($ $ (-844)) 91 (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) 149 (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-1570 (((-703)) 90)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) 163 (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 112)) (-3388 ((|#1| $) 92)) (-1953 (($ (-1156 |#1|)) 56)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) 159 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) 150 (|has| |#1| (-338)))) (-3454 (((-107) $) NIL (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) 98 (|has| |#1| (-338)))) (-1798 (((-107) $) 176 (|has| |#1| (-338)))) (-2754 ((|#1| $) 95) (($ $ (-844)) 94 (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) 188) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) 134 (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) 74 (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) 71 (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) 83 (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) 70 (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 191)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) 137 (|has| |#1| (-338)))) (-1214 (((-107) $) 108)) (-4123 (((-1022) $) NIL)) (-2949 (((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) 84)) (-3072 (((-623 |#1|)) 88)) (-1317 (($) 97 (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 151 (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) 152)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) 63)) (-3586 (((-1071 |#1|)) 153)) (-3958 (($) 133 (|has| |#1| (-338)))) (-3304 (($) NIL (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) 106) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) 124) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 55)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) 157)) (-2062 (((-1156 $)) 173) (((-1156 $) (-844)) 101)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 29 T CONST)) (-3617 (($) 22 T CONST)) (-1739 (($ $) 107 (|has| |#1| (-338))) (($ $ (-703)) 99 (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) 59)) (-1703 (($ $ $) 104) (($ $ |#1|) 105)) (-1691 (($ $) 178) (($ $ $) 182)) (-1677 (($ $ $) 180)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 138)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 143) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 |#1|))) (-15 -1570 ((-703))))) (-319) (-3 (-1071 |#1|) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (T -322))
+((-2949 (*1 *2) (-12 (-5 *2 (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1071 *3) *2)))) (-3072 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1071 *3) (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022))))))))) (-1570 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1071 *3) (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022))))))))))
+(-13 (-299 |#1|) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 |#1|))) (-15 -1570 ((-703)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-1570 (((-703)) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-1953 (($ (-1156 |#1|)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| |#1| (-338)))) (-3454 (((-107) $) NIL (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| |#1| (-338)))) (-1798 (((-107) $) NIL (|has| |#1| (-338)))) (-2754 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) NIL) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) NIL (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) NIL (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-2949 (((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022)))))) NIL)) (-3072 (((-623 |#1|)) NIL)) (-1317 (($) NIL (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 |#1|)) NIL)) (-3958 (($) NIL (|has| |#1| (-338)))) (-3304 (($) NIL (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) NIL) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 |#1|))) (-15 -1570 ((-703))))) (-319) (-844)) (T -323))
+((-2949 (*1 *2) (-12 (-5 *2 (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))) (-3072 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))) (-1570 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -2949 ((-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))))) (-15 -3072 ((-623 |#1|))) (-15 -1570 ((-703)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-833 |#1|) (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| (-833 |#1|) (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-833 |#1|) "failed") $) NIL)) (-3388 (((-833 |#1|) $) NIL)) (-1953 (($ (-1156 (-833 |#1|))) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-833 |#1|) (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-833 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| (-833 |#1|) (-338)))) (-3454 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338)))) (($ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| (-833 |#1|) (-338))) (((-765 (-844)) $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| (-833 |#1|) (-338)))) (-1798 (((-107) $) NIL (|has| (-833 |#1|) (-338)))) (-2754 (((-833 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-833 |#1|) (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 (-833 |#1|)) $) NIL) (((-1071 $) $ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-2031 (((-844) $) NIL (|has| (-833 |#1|) (-338)))) (-2508 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338)))) (-1199 (((-1071 (-833 |#1|)) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-1071 (-833 |#1|)) "failed") $ $) NIL (|has| (-833 |#1|) (-338)))) (-1526 (($ $ (-1071 (-833 |#1|))) NIL (|has| (-833 |#1|) (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-833 |#1|) (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| (-833 |#1|) (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL (|has| (-833 |#1|) (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-833 |#1|) (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| (-833 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 (-833 |#1|))) NIL)) (-3958 (($) NIL (|has| (-833 |#1|) (-338)))) (-3304 (($) NIL (|has| (-833 |#1|) (-338)))) (-3369 (((-1156 (-833 |#1|)) $) NIL) (((-623 (-833 |#1|)) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-833 |#1|) (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-833 |#1|)) NIL)) (-2650 (($ $) NIL (|has| (-833 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| (-833 |#1|) (-132)) (|has| (-833 |#1|) (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-3340 (($ $) NIL (|has| (-833 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-833 |#1|) (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ (-833 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-833 |#1|)) NIL) (($ (-833 |#1|) $) NIL)))
+(((-324 |#1| |#2|) (-299 (-833 |#1|)) (-844) (-844)) (T -324))
+NIL
+(-299 (-833 |#1|))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) 139 (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 91)) (-3388 ((|#1| $) 88)) (-1953 (($ (-1156 |#1|)) 83)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) 80 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) 39 (|has| |#1| (-338)))) (-3454 (((-107) $) NIL (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) 120 (|has| |#1| (-338)))) (-1798 (((-107) $) 72 (|has| |#1| (-338)))) (-2754 ((|#1| $) 38) (($ $ (-844)) 40 (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) 62) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) 95 (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) NIL (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) NIL (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) 93 (|has| |#1| (-338)))) (-1214 (((-107) $) 141)) (-4123 (((-1022) $) NIL)) (-1317 (($) 35 (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 113 (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) 138)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) 56)) (-3586 (((-1071 |#1|)) 86)) (-3958 (($) 125 (|has| |#1| (-338)))) (-3304 (($) NIL (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) 50) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) 137) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) 143)) (-2062 (((-1156 $)) 107) (((-1156 $) (-844)) 46)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 109 T CONST)) (-3617 (($) 31 T CONST)) (-1739 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) 105)) (-1703 (($ $ $) 97) (($ $ |#1|) 98)) (-1691 (($ $) 78) (($ $ $) 103)) (-1677 (($ $ $) 101)) (** (($ $ (-844)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 129)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1071 |#1|)) (T -325))
NIL
(-299 |#1|)
-((-2256 ((|#1| (-1070 |#2|)) 51)))
-(((-326 |#1| |#2|) (-10 -7 (-15 -2256 (|#1| (-1070 |#2|)))) (-13 (-372) (-10 -7 (-15 -2254 (|#1| |#2|)) (-15 -4034 ((-843) |#1|)) (-15 -2080 ((-1154 |#1|) (-843))) (-15 -2415 (|#1| |#1|)))) (-319)) (T -326))
-((-2256 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2254 (*2 *4)) (-15 -4034 ((-843) *2)) (-15 -2080 ((-1154 *2) (-843))) (-15 -2415 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
-(-10 -7 (-15 -2256 (|#1| (-1070 |#2|))))
-((-1564 (((-879 (-1070 |#1|)) (-1070 |#1|)) 36)) (-4100 (((-1070 |#1|) (-843) (-843)) 109) (((-1070 |#1|) (-843)) 108)) (-3449 (((-107) (-1070 |#1|)) 81)) (-1641 (((-843) (-843)) 71)) (-2959 (((-843) (-843)) 73)) (-1526 (((-843) (-843)) 69)) (-3228 (((-107) (-1070 |#1|)) 85)) (-3841 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 97)) (-2952 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 100)) (-3361 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 99)) (-2131 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 98)) (-2437 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 94)) (-1665 (((-1070 |#1|) (-1070 |#1|)) 62)) (-3663 (((-1070 |#1|) (-843)) 103)) (-3964 (((-1070 |#1|) (-843)) 106)) (-1743 (((-1070 |#1|) (-843)) 105)) (-3561 (((-1070 |#1|) (-843)) 104)) (-3401 (((-1070 |#1|) (-843)) 101)))
-(((-327 |#1|) (-10 -7 (-15 -3449 ((-107) (-1070 |#1|))) (-15 -3228 ((-107) (-1070 |#1|))) (-15 -1526 ((-843) (-843))) (-15 -1641 ((-843) (-843))) (-15 -2959 ((-843) (-843))) (-15 -3401 ((-1070 |#1|) (-843))) (-15 -3663 ((-1070 |#1|) (-843))) (-15 -3561 ((-1070 |#1|) (-843))) (-15 -1743 ((-1070 |#1|) (-843))) (-15 -3964 ((-1070 |#1|) (-843))) (-15 -2437 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3841 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2131 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3361 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2952 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -4100 ((-1070 |#1|) (-843))) (-15 -4100 ((-1070 |#1|) (-843) (-843))) (-15 -1665 ((-1070 |#1|) (-1070 |#1|))) (-15 -1564 ((-879 (-1070 |#1|)) (-1070 |#1|)))) (-319)) (T -327))
-((-1564 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1070 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1070 *4)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-4100 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2952 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3361 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2131 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3841 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2437 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
-(-10 -7 (-15 -3449 ((-107) (-1070 |#1|))) (-15 -3228 ((-107) (-1070 |#1|))) (-15 -1526 ((-843) (-843))) (-15 -1641 ((-843) (-843))) (-15 -2959 ((-843) (-843))) (-15 -3401 ((-1070 |#1|) (-843))) (-15 -3663 ((-1070 |#1|) (-843))) (-15 -3561 ((-1070 |#1|) (-843))) (-15 -1743 ((-1070 |#1|) (-843))) (-15 -3964 ((-1070 |#1|) (-843))) (-15 -2437 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3841 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2131 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -3361 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2952 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -4100 ((-1070 |#1|) (-843))) (-15 -4100 ((-1070 |#1|) (-843) (-843))) (-15 -1665 ((-1070 |#1|) (-1070 |#1|))) (-15 -1564 ((-879 (-1070 |#1|)) (-1070 |#1|))))
-((-2899 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 33)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2899 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1131 |#1|) (-1131 |#2|)) (T -328))
-((-2899 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
-(-10 -7 (-15 -2899 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-4047 (($ (-1154 |#1|)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| |#1| (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| |#1| (-338)))) (-3449 (((-107) $) NIL (|has| |#1| (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| |#1| (-338)))) (-3228 (((-107) $) NIL (|has| |#1| (-338)))) (-2962 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 |#1|) $) NIL) (((-1070 $) $ (-843)) NIL (|has| |#1| (-338)))) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-4150 (((-1070 |#1|) $) NIL (|has| |#1| (-338)))) (-4111 (((-1070 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1070 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-2892 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| |#1| (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL (|has| |#1| (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| |#1| (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 |#1|)) NIL)) (-2858 (($) NIL (|has| |#1| (-338)))) (-3551 (($) NIL (|has| |#1| (-338)))) (-3589 (((-1154 |#1|) $) NIL) (((-623 |#1|) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2486 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2738 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-329 |#1| |#2|) (-299 |#1|) (-319) (-843)) (T -329))
+((-3176 ((|#1| (-1071 |#2|)) 51)))
+(((-326 |#1| |#2|) (-10 -7 (-15 -3176 (|#1| (-1071 |#2|)))) (-13 (-372) (-10 -7 (-15 -2269 (|#1| |#2|)) (-15 -2031 ((-844) |#1|)) (-15 -2062 ((-1156 |#1|) (-844))) (-15 -1739 (|#1| |#1|)))) (-319)) (T -326))
+((-3176 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2269 (*2 *4)) (-15 -2031 ((-844) *2)) (-15 -2062 ((-1156 *2) (-844))) (-15 -1739 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(-10 -7 (-15 -3176 (|#1| (-1071 |#2|))))
+((-3923 (((-880 (-1071 |#1|)) (-1071 |#1|)) 37)) (-2200 (((-1071 |#1|) (-844) (-844)) 110) (((-1071 |#1|) (-844)) 109)) (-3454 (((-107) (-1071 |#1|)) 82)) (-1586 (((-844) (-844)) 72)) (-3847 (((-844) (-844)) 74)) (-3661 (((-844) (-844)) 70)) (-1798 (((-107) (-1071 |#1|)) 86)) (-3385 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 98)) (-1945 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 101)) (-3545 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 100)) (-4148 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 99)) (-1589 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 95)) (-3095 (((-1071 |#1|) (-1071 |#1|)) 63)) (-2240 (((-1071 |#1|) (-844)) 104)) (-3059 (((-1071 |#1|) (-844)) 107)) (-3137 (((-1071 |#1|) (-844)) 106)) (-2261 (((-1071 |#1|) (-844)) 105)) (-1564 (((-1071 |#1|) (-844)) 102)))
+(((-327 |#1|) (-10 -7 (-15 -3454 ((-107) (-1071 |#1|))) (-15 -1798 ((-107) (-1071 |#1|))) (-15 -3661 ((-844) (-844))) (-15 -1586 ((-844) (-844))) (-15 -3847 ((-844) (-844))) (-15 -1564 ((-1071 |#1|) (-844))) (-15 -2240 ((-1071 |#1|) (-844))) (-15 -2261 ((-1071 |#1|) (-844))) (-15 -3137 ((-1071 |#1|) (-844))) (-15 -3059 ((-1071 |#1|) (-844))) (-15 -1589 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -3385 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -4148 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -3545 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -1945 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -2200 ((-1071 |#1|) (-844))) (-15 -2200 ((-1071 |#1|) (-844) (-844))) (-15 -3095 ((-1071 |#1|) (-1071 |#1|))) (-15 -3923 ((-880 (-1071 |#1|)) (-1071 |#1|)))) (-319)) (T -327))
+((-3923 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-880 (-1071 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1071 *4)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2200 (*1 *2 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1945 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3545 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-4148 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1589 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -3454 ((-107) (-1071 |#1|))) (-15 -1798 ((-107) (-1071 |#1|))) (-15 -3661 ((-844) (-844))) (-15 -1586 ((-844) (-844))) (-15 -3847 ((-844) (-844))) (-15 -1564 ((-1071 |#1|) (-844))) (-15 -2240 ((-1071 |#1|) (-844))) (-15 -2261 ((-1071 |#1|) (-844))) (-15 -3137 ((-1071 |#1|) (-844))) (-15 -3059 ((-1071 |#1|) (-844))) (-15 -1589 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -3385 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -4148 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -3545 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -1945 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -2200 ((-1071 |#1|) (-844))) (-15 -2200 ((-1071 |#1|) (-844) (-844))) (-15 -3095 ((-1071 |#1|) (-1071 |#1|))) (-15 -3923 ((-880 (-1071 |#1|)) (-1071 |#1|))))
+((-2387 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 34)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2387 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1132 |#1|) (-1132 |#2|)) (T -328))
+((-2387 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
+(-10 -7 (-15 -2387 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-1953 (($ (-1156 |#1|)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| |#1| (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| |#1| (-338)))) (-3454 (((-107) $) NIL (|has| |#1| (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| |#1| (-338))) (((-765 (-844)) $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| |#1| (-338)))) (-1798 (((-107) $) NIL (|has| |#1| (-338)))) (-2754 ((|#1| $) NIL) (($ $ (-844)) NIL (|has| |#1| (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 |#1|) $) NIL) (((-1071 $) $ (-844)) NIL (|has| |#1| (-338)))) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-2508 (((-1071 |#1|) $) NIL (|has| |#1| (-338)))) (-1199 (((-1071 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1071 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-1526 (($ $ (-1071 |#1|)) NIL (|has| |#1| (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| |#1| (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL (|has| |#1| (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| |#1| (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 |#1|)) NIL)) (-3958 (($) NIL (|has| |#1| (-338)))) (-3304 (($) NIL (|has| |#1| (-338)))) (-3369 (((-1156 |#1|) $) NIL) (((-623 |#1|) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-2650 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3340 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-329 |#1| |#2|) (-299 |#1|) (-319) (-844)) (T -329))
NIL
(-299 |#1|)
-((-1368 (((-107) (-583 (-874 |#1|))) 31)) (-3491 (((-583 (-874 |#1|)) (-583 (-874 |#1|))) 42)) (-1230 (((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|))) 38)))
-(((-330 |#1| |#2|) (-10 -7 (-15 -1368 ((-107) (-583 (-874 |#1|)))) (-15 -1230 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -3491 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) (-421) (-583 (-1074))) (T -330))
-((-3491 (*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) (-1230 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1074))))))
-(-10 -7 (-15 -1368 ((-107) (-583 (-874 |#1|)))) (-15 -1230 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -3491 ((-583 (-874 |#1|)) (-583 (-874 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-1719 (((-703) $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) 14)) (-3380 ((|#1| $ (-517)) NIL)) (-1773 (((-517) $ (-517)) NIL)) (-2654 (($ (-1 |#1| |#1|) $) 32)) (-3034 (($ (-1 (-517) (-517)) $) 24)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 26)) (-3214 (((-1021) $) NIL)) (-1343 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-517)))) $) 28)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) 38) (($ |#1|) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 9 T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-331 |#1|) (-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1719 ((-703) $)) (-15 -1773 ((-517) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3034 ($ (-1 (-517) (-517)) $)) (-15 -2654 ($ (-1 |#1| |#1|) $)) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-517)))) $)))) (-1003)) (T -331))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-3034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-2654 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))))
-(-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1719 ((-703) $)) (-15 -1773 ((-517) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3034 ($ (-1 (-517) (-517)) $)) (-15 -2654 ($ (-1 |#1| |#1|) $)) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-517)))) $))))
-((-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 13)) (-2239 (($ $) 14)) (-2674 (((-388 $) $) 29)) (-3083 (((-107) $) 25)) (-1639 (($ $) 18)) (-1387 (($ $ $) 22) (($ (-583 $)) NIL)) (-1376 (((-388 $) $) 30)) (-2483 (((-3 $ "failed") $ $) 21)) (-3196 (((-703) $) 24)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 34)) (-2673 (((-107) $ $) 15)) (-1678 (($ $ $) 32)))
-(((-332 |#1|) (-10 -8 (-15 -1678 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3083 ((-107) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3196 ((-703) |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|)) (-15 -2673 ((-107) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
-NIL
-(-10 -8 (-15 -1678 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3083 ((-107) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3196 ((-703) |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|)) (-15 -2673 ((-107) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-3469 (((-107) $) 31)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-333) (-1185)) (T -333))
-((-1678 (*1 *1 *1 *1) (-4 *1 (-333))))
-(-13 (-278) (-1113) (-217) (-10 -8 (-15 -1678 ($ $ $)) (-6 -4181) (-6 -4175)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-1587 (((-107) $ $) 7)) (-2528 ((|#2| $ |#2|) 13)) (-3909 (($ $ (-1057)) 18)) (-1256 ((|#2| $) 14)) (-1602 (($ |#1|) 20) (($ |#1| (-1057)) 19)) (-1214 ((|#1| $) 16)) (-1277 (((-1057) $) 9)) (-2639 (((-1057) $) 15)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2666 (($ $) 17)) (-1534 (((-107) $ $) 6)))
-(((-334 |#1| |#2|) (-1185) (-1003) (-1003)) (T -334))
-((-1602 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1602 (*1 *1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-3909 (*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2666 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1214 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1057)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2528 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -1602 ($ |t#1|)) (-15 -1602 ($ |t#1| (-1057))) (-15 -3909 ($ $ (-1057))) (-15 -2666 ($ $)) (-15 -1214 (|t#1| $)) (-15 -2639 ((-1057) $)) (-15 -1256 (|t#2| $)) (-15 -2528 (|t#2| $ |t#2|))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2528 ((|#1| $ |#1|) 29)) (-3909 (($ $ (-1057)) 22)) (-2513 (((-3 |#1| "failed") $) 28)) (-1256 ((|#1| $) 26)) (-1602 (($ (-358)) 21) (($ (-358) (-1057)) 20)) (-1214 (((-358) $) 24)) (-1277 (((-1057) $) NIL)) (-2639 (((-1057) $) 25)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 19)) (-2666 (($ $) 23)) (-1534 (((-107) $ $) 18)))
-(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -2513 ((-3 |#1| "failed") $)))) (-1003)) (T -335))
-((-2513 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))))
-(-13 (-334 (-358) |#1|) (-10 -8 (-15 -2513 ((-3 |#1| "failed") $))))
-((-2507 (((-1154 (-623 |#2|)) (-1154 $)) 61)) (-2318 (((-623 |#2|) (-1154 $)) 119)) (-2571 ((|#2| $) 32)) (-3981 (((-623 |#2|) $ (-1154 $)) 123)) (-1930 (((-3 $ "failed") $) 75)) (-2831 ((|#2| $) 35)) (-2775 (((-1070 |#2|) $) 83)) (-1618 ((|#2| (-1154 $)) 106)) (-2961 (((-1070 |#2|) $) 28)) (-2622 (((-107)) 100)) (-4047 (($ (-1154 |#2|) (-1154 $)) 113)) (-3775 (((-3 $ "failed") $) 79)) (-3762 (((-107)) 95)) (-2765 (((-107)) 90)) (-4079 (((-107)) 53)) (-1968 (((-623 |#2|) (-1154 $)) 117)) (-1385 ((|#2| $) 31)) (-2790 (((-623 |#2|) $ (-1154 $)) 122)) (-3174 (((-3 $ "failed") $) 73)) (-3368 ((|#2| $) 34)) (-3018 (((-1070 |#2|) $) 82)) (-2478 ((|#2| (-1154 $)) 104)) (-4020 (((-1070 |#2|) $) 26)) (-1816 (((-107)) 99)) (-3499 (((-107)) 92)) (-2220 (((-107)) 51)) (-2268 (((-107)) 87)) (-2836 (((-107)) 101)) (-3589 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) 111)) (-3484 (((-107)) 97)) (-2360 (((-583 (-1154 |#2|))) 86)) (-2534 (((-107)) 98)) (-1669 (((-107)) 96)) (-3610 (((-107)) 46)) (-3558 (((-107)) 102)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2775 ((-1070 |#2|) |#1|)) (-15 -3018 ((-1070 |#2|) |#1|)) (-15 -2360 ((-583 (-1154 |#2|)))) (-15 -1930 ((-3 |#1| "failed") |#1|)) (-15 -3174 ((-3 |#1| "failed") |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2765 ((-107))) (-15 -3499 ((-107))) (-15 -3762 ((-107))) (-15 -2220 ((-107))) (-15 -4079 ((-107))) (-15 -2268 ((-107))) (-15 -3558 ((-107))) (-15 -2836 ((-107))) (-15 -2622 ((-107))) (-15 -1816 ((-107))) (-15 -3610 ((-107))) (-15 -2534 ((-107))) (-15 -1669 ((-107))) (-15 -3484 ((-107))) (-15 -2961 ((-1070 |#2|) |#1|)) (-15 -4020 ((-1070 |#2|) |#1|)) (-15 -2318 ((-623 |#2|) (-1154 |#1|))) (-15 -1968 ((-623 |#2|) (-1154 |#1|))) (-15 -1618 (|#2| (-1154 |#1|))) (-15 -2478 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2831 (|#2| |#1|)) (-15 -3368 (|#2| |#1|)) (-15 -2571 (|#2| |#1|)) (-15 -1385 (|#2| |#1|)) (-15 -3981 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2790 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2507 ((-1154 (-623 |#2|)) (-1154 |#1|)))) (-337 |#2|) (-156)) (T -336))
-((-3484 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1669 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2534 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3610 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1816 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2622 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2836 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2268 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4079 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2220 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3762 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3499 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2765 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2360 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1154 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
-(-10 -8 (-15 -2775 ((-1070 |#2|) |#1|)) (-15 -3018 ((-1070 |#2|) |#1|)) (-15 -2360 ((-583 (-1154 |#2|)))) (-15 -1930 ((-3 |#1| "failed") |#1|)) (-15 -3174 ((-3 |#1| "failed") |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2765 ((-107))) (-15 -3499 ((-107))) (-15 -3762 ((-107))) (-15 -2220 ((-107))) (-15 -4079 ((-107))) (-15 -2268 ((-107))) (-15 -3558 ((-107))) (-15 -2836 ((-107))) (-15 -2622 ((-107))) (-15 -1816 ((-107))) (-15 -3610 ((-107))) (-15 -2534 ((-107))) (-15 -1669 ((-107))) (-15 -3484 ((-107))) (-15 -2961 ((-1070 |#2|) |#1|)) (-15 -4020 ((-1070 |#2|) |#1|)) (-15 -2318 ((-623 |#2|) (-1154 |#1|))) (-15 -1968 ((-623 |#2|) (-1154 |#1|))) (-15 -1618 (|#2| (-1154 |#1|))) (-15 -2478 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2831 (|#2| |#1|)) (-15 -3368 (|#2| |#1|)) (-15 -2571 (|#2| |#1|)) (-15 -1385 (|#2| |#1|)) (-15 -3981 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2790 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2507 ((-1154 (-623 |#2|)) (-1154 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1346 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2507 (((-1154 (-623 |#1|)) (-1154 $)) 78)) (-3118 (((-1154 $)) 81)) (-2706 (($) 17 T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-2588 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2318 (((-623 |#1|) (-1154 $)) 65)) (-2571 ((|#1| $) 74)) (-3981 (((-623 |#1|) $ (-1154 $)) 76)) (-1930 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3132 (($ $ (-843)) 28)) (-2831 ((|#1| $) 72)) (-2775 (((-1070 |#1|) $) 42 (|has| |#1| (-509)))) (-1618 ((|#1| (-1154 $)) 67)) (-2961 (((-1070 |#1|) $) 63)) (-2622 (((-107)) 57)) (-4047 (($ (-1154 |#1|) (-1154 $)) 69)) (-3775 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3334 (((-843)) 80)) (-3241 (((-107)) 54)) (-3363 (($ $ (-843)) 33)) (-3762 (((-107)) 50)) (-2765 (((-107)) 48)) (-4079 (((-107)) 52)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1202 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1968 (((-623 |#1|) (-1154 $)) 66)) (-1385 ((|#1| $) 75)) (-2790 (((-623 |#1|) $ (-1154 $)) 77)) (-3174 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2184 (($ $ (-843)) 29)) (-3368 ((|#1| $) 73)) (-3018 (((-1070 |#1|) $) 43 (|has| |#1| (-509)))) (-2478 ((|#1| (-1154 $)) 68)) (-4020 (((-1070 |#1|) $) 64)) (-1816 (((-107)) 58)) (-1277 (((-1057) $) 9)) (-3499 (((-107)) 49)) (-2220 (((-107)) 51)) (-2268 (((-107)) 53)) (-3214 (((-1021) $) 10)) (-2836 (((-107)) 56)) (-3589 (((-1154 |#1|) $ (-1154 $)) 71) (((-623 |#1|) (-1154 $) (-1154 $)) 70)) (-3346 (((-583 (-874 |#1|)) (-1154 $)) 79)) (-2901 (($ $ $) 25)) (-3484 (((-107)) 62)) (-2254 (((-787) $) 11)) (-2360 (((-583 (-1154 |#1|))) 44 (|has| |#1| (-509)))) (-3950 (($ $ $ $) 26)) (-2534 (((-107)) 60)) (-2145 (($ $ $) 24)) (-1669 (((-107)) 61)) (-3610 (((-107)) 59)) (-3558 (((-107)) 55)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-337 |#1|) (-1185) (-156)) (T -337))
-((-3118 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-337 *3)))) (-3334 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))))) (-2790 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3981 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 *4)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-4047 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))) (-3484 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1669 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2534 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3610 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1816 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2622 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2836 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3558 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3241 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2268 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4079 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2220 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3762 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3499 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2765 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3775 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3174 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1930 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2360 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1154 *3))))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))) (-3658 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2080 (-583 *1)))) (-4 *1 (-337 *3)))) (-2342 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2080 (-583 *1)))) (-4 *1 (-337 *3)))) (-1202 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-2588 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1346 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(-13 (-677 |t#1|) (-10 -8 (-15 -3118 ((-1154 $))) (-15 -3334 ((-843))) (-15 -3346 ((-583 (-874 |t#1|)) (-1154 $))) (-15 -2507 ((-1154 (-623 |t#1|)) (-1154 $))) (-15 -2790 ((-623 |t#1|) $ (-1154 $))) (-15 -3981 ((-623 |t#1|) $ (-1154 $))) (-15 -1385 (|t#1| $)) (-15 -2571 (|t#1| $)) (-15 -3368 (|t#1| $)) (-15 -2831 (|t#1| $)) (-15 -3589 ((-1154 |t#1|) $ (-1154 $))) (-15 -3589 ((-623 |t#1|) (-1154 $) (-1154 $))) (-15 -4047 ($ (-1154 |t#1|) (-1154 $))) (-15 -2478 (|t#1| (-1154 $))) (-15 -1618 (|t#1| (-1154 $))) (-15 -1968 ((-623 |t#1|) (-1154 $))) (-15 -2318 ((-623 |t#1|) (-1154 $))) (-15 -4020 ((-1070 |t#1|) $)) (-15 -2961 ((-1070 |t#1|) $)) (-15 -3484 ((-107))) (-15 -1669 ((-107))) (-15 -2534 ((-107))) (-15 -3610 ((-107))) (-15 -1816 ((-107))) (-15 -2622 ((-107))) (-15 -2836 ((-107))) (-15 -3558 ((-107))) (-15 -3241 ((-107))) (-15 -2268 ((-107))) (-15 -4079 ((-107))) (-15 -2220 ((-107))) (-15 -3762 ((-107))) (-15 -3499 ((-107))) (-15 -2765 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3775 ((-3 $ "failed") $)) (-15 -3174 ((-3 $ "failed") $)) (-15 -1930 ((-3 $ "failed") $)) (-15 -2360 ((-583 (-1154 |t#1|)))) (-15 -3018 ((-1070 |t#1|) $)) (-15 -2775 ((-1070 |t#1|) $)) (-15 -3658 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -2342 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -1202 ((-3 $ "failed"))) (-15 -2588 ((-3 $ "failed"))) (-15 -1346 ((-3 $ "failed"))) (-6 -4180)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-1719 (((-703)) 16)) (-4100 (($) 13)) (-4034 (((-843) $) 14)) (-1277 (((-1057) $) 9)) (-3544 (($ (-843)) 15)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-338) (-1185)) (T -338))
-((-1719 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) (-4100 (*1 *1) (-4 *1 (-338))))
-(-13 (-1003) (-10 -8 (-15 -1719 ((-703))) (-15 -3544 ($ (-843))) (-15 -4034 ((-843) $)) (-15 -4100 ($))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1205 (((-623 |#2|) (-1154 $)) 40)) (-4047 (($ (-1154 |#2|) (-1154 $)) 35)) (-2739 (((-623 |#2|) $ (-1154 $)) 43)) (-3383 ((|#2| (-1154 $)) 13)) (-3589 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) 25)))
-(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -1205 ((-623 |#2|) (-1154 |#1|))) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1154 |#1|)))) (-340 |#2| |#3|) (-156) (-1131 |#2|)) (T -339))
-NIL
-(-10 -8 (-15 -1205 ((-623 |#2|) (-1154 |#1|))) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1154 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1205 (((-623 |#1|) (-1154 $)) 46)) (-1462 ((|#1| $) 52)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-4047 (($ (-1154 |#1|) (-1154 $)) 48)) (-2739 (((-623 |#1|) $ (-1154 $)) 53)) (-3775 (((-3 $ "failed") $) 34)) (-3334 (((-843)) 54)) (-3469 (((-107) $) 31)) (-2962 ((|#1| $) 51)) (-2956 ((|#2| $) 44 (|has| |#1| (-333)))) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3383 ((|#1| (-1154 $)) 47)) (-3589 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2486 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1924 ((|#2| $) 45)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-340 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -340))
-((-3334 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-843)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *4)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-4047 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1131 *4)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1131 *2)) (-4 *2 (-156)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1131 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3334 ((-843))) (-15 -2739 ((-623 |t#1|) $ (-1154 $))) (-15 -1462 (|t#1| $)) (-15 -2962 (|t#1| $)) (-15 -3589 ((-1154 |t#1|) $ (-1154 $))) (-15 -3589 ((-623 |t#1|) (-1154 $) (-1154 $))) (-15 -4047 ($ (-1154 |t#1|) (-1154 $))) (-15 -3383 (|t#1| (-1154 $))) (-15 -1205 ((-623 |t#1|) (-1154 $))) (-15 -1924 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -2956 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3014 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1292 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1939 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3014 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1109) (-343 |#1|) (-1109) (-343 |#3|)) (T -341))
-((-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3014 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3753 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-3500 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-4044 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3173 (($ $) 25)) (-2624 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-1676 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-342 |#1| |#2|) (-10 -8 (-15 -3500 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3753 ((-107) |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -4044 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1109)) (T -342))
-NIL
-(-10 -8 (-15 -3500 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3753 ((-107) |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -4044 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-2624 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 70)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-343 |#1|) (-1185) (-1109)) (T -343))
-((-1676 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)))) (-4044 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-3753 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-2624 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-517)))) (-2624 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-517)))) (-2624 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)))) (-1676 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) (-4044 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2878 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-3182 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)))) (-3500 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) (-3500 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))))
-(-13 (-588 |t#1|) (-10 -8 (-6 -4183) (-15 -1676 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3173 ($ $)) (-15 -4044 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -3753 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -2624 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2624 ((-517) |t#1| $)) (-15 -2624 ((-517) |t#1| $ (-517)))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -1676 ($ $ $)) (-15 -4044 ($ $)) (-15 -3753 ((-107) $))) |%noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2878 ($ $ $ (-517))) (-15 -3182 ($ $)) (-15 -3500 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -3500 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-3556 (((-583 |#1|) $) 32)) (-3985 (($ $ (-703)) 33)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-2760 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 36)) (-3372 (($ $) 34)) (-4091 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 37)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2049 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-3625 (((-703) $) 38)) (-2272 (($ $ $) 29)) (-2254 (((-787) $) 11) (($ |#1|) 41) (((-1167 |#1| |#2|) $) 40) (((-1176 |#1| |#2|) $) 39)) (-1965 ((|#2| (-1176 |#1| |#2|) $) 42)) (-2398 (($) 18 T CONST)) (-2582 (($ (-608 |#1|)) 35)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-344 |#1| |#2|) (-1185) (-779) (-156)) (T -344))
-((-1965 (*1 *2 *3 *1) (-12 (-5 *3 (-1176 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2254 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1167 *3 *4)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1176 *3 *4)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-4091 (*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2760 (*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-3372 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3985 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-2049 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
-(-13 (-574 |t#2|) (-10 -8 (-15 -1965 (|t#2| (-1176 |t#1| |t#2|) $)) (-15 -2254 ($ |t#1|)) (-15 -2254 ((-1167 |t#1| |t#2|) $)) (-15 -2254 ((-1176 |t#1| |t#2|) $)) (-15 -3625 ((-703) $)) (-15 -4091 ((-1176 |t#1| |t#2|) (-1176 |t#1| |t#2|) $)) (-15 -2760 ((-1176 |t#1| |t#2|) (-1176 |t#1| |t#2|) $)) (-15 -2582 ($ (-608 |t#1|))) (-15 -3372 ($ $)) (-15 -3985 ($ $ (-703))) (-15 -3556 ((-583 |t#1|) $)) (-15 -2049 ($ $ |t#1| $)) (-15 -2049 ($ $ (-583 |t#1|) (-583 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-967 |#2|) . T) ((-1003) . T))
-((-2386 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-3827 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-1493 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
-(((-345 |#1| |#2|) (-10 -7 (-15 -3827 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1493 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2386 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1109) (-13 (-343 |#1|) (-10 -7 (-6 -4184)))) (T -345))
-((-2386 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))) (-1493 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))) (-3827 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
-(-10 -7 (-15 -3827 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1493 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2386 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
-((-2749 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 19) (((-623 (-517)) (-623 $)) 13)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-961)) (T -346))
-NIL
-(-10 -8 (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 |#2|) (-623 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-2749 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 35) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-347 |#1|) (-1185) (-961)) (T -347))
+((-2300 (((-107) (-583 (-875 |#1|))) 32)) (-1195 (((-583 (-875 |#1|)) (-583 (-875 |#1|))) 43)) (-3718 (((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|))) 39)))
+(((-330 |#1| |#2|) (-10 -7 (-15 -2300 ((-107) (-583 (-875 |#1|)))) (-15 -3718 ((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|)))) (-15 -1195 ((-583 (-875 |#1|)) (-583 (-875 |#1|))))) (-421) (-583 (-1075))) (T -330))
+((-1195 (*1 *2 *2) (-12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1075))))) (-3718 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1075))))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1075))))))
+(-10 -7 (-15 -2300 ((-107) (-583 (-875 |#1|)))) (-15 -3718 ((-3 (-583 (-875 |#1|)) "failed") (-583 (-875 |#1|)))) (-15 -1195 ((-583 (-875 |#1|)) (-583 (-875 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2397 (((-703) $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) 14)) (-3336 ((|#1| $ (-517)) NIL)) (-3655 (((-517) $ (-517)) NIL)) (-1954 (($ (-1 |#1| |#1|) $) 32)) (-2849 (($ (-1 (-517) (-517)) $) 24)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 26)) (-4123 (((-1022) $) NIL)) (-1878 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-517)))) $) 28)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) 38) (($ |#1|) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 9 T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-331 |#1|) (-13 (-442) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2397 ((-703) $)) (-15 -3655 ((-517) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -2849 ($ (-1 (-517) (-517)) $)) (-15 -1954 ($ (-1 |#1| |#1|) $)) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-517)))) $)))) (-1004)) (T -331))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1004)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1004)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1004)))) (-3655 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1004)))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1004)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1004)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-331 *3)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1004)))))
+(-13 (-442) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2397 ((-703) $)) (-15 -3655 ((-517) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -2849 ($ (-1 (-517) (-517)) $)) (-15 -1954 ($ (-1 |#1| |#1|) $)) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-517)))) $))))
+((-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 13)) (-2729 (($ $) 14)) (-1581 (((-388 $) $) 30)) (-2963 (((-107) $) 26)) (-2298 (($ $) 19)) (-2368 (($ $ $) 23) (($ (-583 $)) NIL)) (-3866 (((-388 $) $) 31)) (-2327 (((-3 $ "failed") $ $) 22)) (-4094 (((-703) $) 25)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 35)) (-2914 (((-107) $ $) 16)) (-1703 (($ $ $) 33)))
+(((-332 |#1|) (-10 -8 (-15 -1703 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2963 ((-107) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -4094 ((-703) |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2914 ((-107) |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
+NIL
+(-10 -8 (-15 -1703 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2963 ((-107) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -4094 ((-703) |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2914 ((-107) |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-1865 (((-107) $) 31)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-333) (-1187)) (T -333))
+((-1703 (*1 *1 *1 *1) (-4 *1 (-333))))
+(-13 (-278) (-1114) (-217) (-10 -8 (-15 -1703 ($ $ $)) (-6 -4188) (-6 -4182)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-2118 (((-107) $ $) 7)) (-3252 ((|#2| $ |#2|) 13)) (-2150 (($ $ (-1058)) 18)) (-2608 ((|#2| $) 14)) (-3674 (($ |#1|) 20) (($ |#1| (-1058)) 19)) (-2987 ((|#1| $) 16)) (-1895 (((-1058) $) 9)) (-2023 (((-1058) $) 15)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1513 (($ $) 17)) (-1583 (((-107) $ $) 6)))
+(((-334 |#1| |#2|) (-1187) (-1004) (-1004)) (T -334))
+((-3674 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-3674 (*1 *1 *2 *3) (-12 (-5 *3 (-1058)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1004)) (-4 *4 (-1004)))) (-2150 (*1 *1 *1 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-1513 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-1004)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-5 *2 (-1058)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))) (-3252 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -3674 ($ |t#1|)) (-15 -3674 ($ |t#1| (-1058))) (-15 -2150 ($ $ (-1058))) (-15 -1513 ($ $)) (-15 -2987 (|t#1| $)) (-15 -2023 ((-1058) $)) (-15 -2608 (|t#2| $)) (-15 -3252 (|t#2| $ |t#2|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-3252 ((|#1| $ |#1|) 29)) (-2150 (($ $ (-1058)) 22)) (-2866 (((-3 |#1| "failed") $) 28)) (-2608 ((|#1| $) 26)) (-3674 (($ (-358)) 21) (($ (-358) (-1058)) 20)) (-2987 (((-358) $) 24)) (-1895 (((-1058) $) NIL)) (-2023 (((-1058) $) 25)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 19)) (-1513 (($ $) 23)) (-1583 (((-107) $ $) 18)))
+(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -2866 ((-3 |#1| "failed") $)))) (-1004)) (T -335))
+((-2866 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1004)))))
+(-13 (-334 (-358) |#1|) (-10 -8 (-15 -2866 ((-3 |#1| "failed") $))))
+((-1402 (((-1156 (-623 |#2|)) (-1156 $)) 61)) (-2429 (((-623 |#2|) (-1156 $)) 119)) (-2684 ((|#2| $) 32)) (-2977 (((-623 |#2|) $ (-1156 $)) 123)) (-3237 (((-3 $ "failed") $) 75)) (-1227 ((|#2| $) 35)) (-1499 (((-1071 |#2|) $) 83)) (-2705 ((|#2| (-1156 $)) 106)) (-3724 (((-1071 |#2|) $) 28)) (-3764 (((-107)) 100)) (-1953 (($ (-1156 |#2|) (-1156 $)) 113)) (-3163 (((-3 $ "failed") $) 79)) (-4073 (((-107)) 95)) (-1495 (((-107)) 90)) (-2502 (((-107)) 53)) (-2547 (((-623 |#2|) (-1156 $)) 117)) (-3303 ((|#2| $) 31)) (-2739 (((-623 |#2|) $ (-1156 $)) 122)) (-1888 (((-3 $ "failed") $) 73)) (-3492 ((|#2| $) 34)) (-2328 (((-1071 |#2|) $) 82)) (-1946 ((|#2| (-1156 $)) 104)) (-1940 (((-1071 |#2|) $) 26)) (-2256 (((-107)) 99)) (-1952 (((-107)) 92)) (-2388 (((-107)) 51)) (-2631 (((-107)) 87)) (-1665 (((-107)) 101)) (-3369 (((-1156 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) (-1156 $) (-1156 $)) 111)) (-3722 (((-107)) 97)) (-4111 (((-583 (-1156 |#2|))) 86)) (-2126 (((-107)) 98)) (-1332 (((-107)) 96)) (-2685 (((-107)) 46)) (-1286 (((-107)) 102)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -1499 ((-1071 |#2|) |#1|)) (-15 -2328 ((-1071 |#2|) |#1|)) (-15 -4111 ((-583 (-1156 |#2|)))) (-15 -3237 ((-3 |#1| "failed") |#1|)) (-15 -1888 ((-3 |#1| "failed") |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -1495 ((-107))) (-15 -1952 ((-107))) (-15 -4073 ((-107))) (-15 -2388 ((-107))) (-15 -2502 ((-107))) (-15 -2631 ((-107))) (-15 -1286 ((-107))) (-15 -1665 ((-107))) (-15 -3764 ((-107))) (-15 -2256 ((-107))) (-15 -2685 ((-107))) (-15 -2126 ((-107))) (-15 -1332 ((-107))) (-15 -3722 ((-107))) (-15 -3724 ((-1071 |#2|) |#1|)) (-15 -1940 ((-1071 |#2|) |#1|)) (-15 -2429 ((-623 |#2|) (-1156 |#1|))) (-15 -2547 ((-623 |#2|) (-1156 |#1|))) (-15 -2705 (|#2| (-1156 |#1|))) (-15 -1946 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1227 (|#2| |#1|)) (-15 -3492 (|#2| |#1|)) (-15 -2684 (|#2| |#1|)) (-15 -3303 (|#2| |#1|)) (-15 -2977 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -1402 ((-1156 (-623 |#2|)) (-1156 |#1|)))) (-337 |#2|) (-156)) (T -336))
+((-3722 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1332 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2126 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2256 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3764 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1665 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1286 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2631 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2502 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2388 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4073 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1952 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1495 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4111 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1156 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
+(-10 -8 (-15 -1499 ((-1071 |#2|) |#1|)) (-15 -2328 ((-1071 |#2|) |#1|)) (-15 -4111 ((-583 (-1156 |#2|)))) (-15 -3237 ((-3 |#1| "failed") |#1|)) (-15 -1888 ((-3 |#1| "failed") |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -1495 ((-107))) (-15 -1952 ((-107))) (-15 -4073 ((-107))) (-15 -2388 ((-107))) (-15 -2502 ((-107))) (-15 -2631 ((-107))) (-15 -1286 ((-107))) (-15 -1665 ((-107))) (-15 -3764 ((-107))) (-15 -2256 ((-107))) (-15 -2685 ((-107))) (-15 -2126 ((-107))) (-15 -1332 ((-107))) (-15 -3722 ((-107))) (-15 -3724 ((-1071 |#2|) |#1|)) (-15 -1940 ((-1071 |#2|) |#1|)) (-15 -2429 ((-623 |#2|) (-1156 |#1|))) (-15 -2547 ((-623 |#2|) (-1156 |#1|))) (-15 -2705 (|#2| (-1156 |#1|))) (-15 -1946 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1227 (|#2| |#1|)) (-15 -3492 (|#2| |#1|)) (-15 -2684 (|#2| |#1|)) (-15 -3303 (|#2| |#1|)) (-15 -2977 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -1402 ((-1156 (-623 |#2|)) (-1156 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1875 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1402 (((-1156 (-623 |#1|)) (-1156 $)) 78)) (-2197 (((-1156 $)) 81)) (-1681 (($) 17 T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1504 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2429 (((-623 |#1|) (-1156 $)) 65)) (-2684 ((|#1| $) 74)) (-2977 (((-623 |#1|) $ (-1156 $)) 76)) (-3237 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-1537 (($ $ (-844)) 28)) (-1227 ((|#1| $) 72)) (-1499 (((-1071 |#1|) $) 42 (|has| |#1| (-509)))) (-2705 ((|#1| (-1156 $)) 67)) (-3724 (((-1071 |#1|) $) 63)) (-3764 (((-107)) 57)) (-1953 (($ (-1156 |#1|) (-1156 $)) 69)) (-3163 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3736 (((-844)) 80)) (-2438 (((-107)) 54)) (-3248 (($ $ (-844)) 33)) (-4073 (((-107)) 50)) (-1495 (((-107)) 48)) (-2502 (((-107)) 52)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3331 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2547 (((-623 |#1|) (-1156 $)) 66)) (-3303 ((|#1| $) 75)) (-2739 (((-623 |#1|) $ (-1156 $)) 77)) (-1888 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2848 (($ $ (-844)) 29)) (-3492 ((|#1| $) 73)) (-2328 (((-1071 |#1|) $) 43 (|has| |#1| (-509)))) (-1946 ((|#1| (-1156 $)) 68)) (-1940 (((-1071 |#1|) $) 64)) (-2256 (((-107)) 58)) (-1895 (((-1058) $) 9)) (-1952 (((-107)) 49)) (-2388 (((-107)) 51)) (-2631 (((-107)) 53)) (-4123 (((-1022) $) 10)) (-1665 (((-107)) 56)) (-3369 (((-1156 |#1|) $ (-1156 $)) 71) (((-623 |#1|) (-1156 $) (-1156 $)) 70)) (-4070 (((-583 (-875 |#1|)) (-1156 $)) 79)) (-2609 (($ $ $) 25)) (-3722 (((-107)) 62)) (-2269 (((-787) $) 11)) (-4111 (((-583 (-1156 |#1|))) 44 (|has| |#1| (-509)))) (-2516 (($ $ $ $) 26)) (-2126 (((-107)) 60)) (-1263 (($ $ $) 24)) (-1332 (((-107)) 61)) (-2685 (((-107)) 59)) (-1286 (((-107)) 55)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-337 |#1|) (-1187) (-156)) (T -337))
+((-2197 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1156 *1)) (-4 *1 (-337 *3)))) (-3736 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-844)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1156 (-623 *4))))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2977 (*1 *2 *1 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1227 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1156 *4)))) (-3369 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1156 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1071 *3)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1071 *3)))) (-3722 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1332 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2126 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2685 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2256 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3764 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1665 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1286 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2438 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2631 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2502 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2388 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4073 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1952 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1495 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3163 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1888 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3237 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-4111 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1156 *3))))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1071 *3)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1071 *3)))) (-2556 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2062 (-583 *1)))) (-4 *1 (-337 *3)))) (-3616 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2062 (-583 *1)))) (-4 *1 (-337 *3)))) (-3331 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1504 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1875 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(-13 (-677 |t#1|) (-10 -8 (-15 -2197 ((-1156 $))) (-15 -3736 ((-844))) (-15 -4070 ((-583 (-875 |t#1|)) (-1156 $))) (-15 -1402 ((-1156 (-623 |t#1|)) (-1156 $))) (-15 -2739 ((-623 |t#1|) $ (-1156 $))) (-15 -2977 ((-623 |t#1|) $ (-1156 $))) (-15 -3303 (|t#1| $)) (-15 -2684 (|t#1| $)) (-15 -3492 (|t#1| $)) (-15 -1227 (|t#1| $)) (-15 -3369 ((-1156 |t#1|) $ (-1156 $))) (-15 -3369 ((-623 |t#1|) (-1156 $) (-1156 $))) (-15 -1953 ($ (-1156 |t#1|) (-1156 $))) (-15 -1946 (|t#1| (-1156 $))) (-15 -2705 (|t#1| (-1156 $))) (-15 -2547 ((-623 |t#1|) (-1156 $))) (-15 -2429 ((-623 |t#1|) (-1156 $))) (-15 -1940 ((-1071 |t#1|) $)) (-15 -3724 ((-1071 |t#1|) $)) (-15 -3722 ((-107))) (-15 -1332 ((-107))) (-15 -2126 ((-107))) (-15 -2685 ((-107))) (-15 -2256 ((-107))) (-15 -3764 ((-107))) (-15 -1665 ((-107))) (-15 -1286 ((-107))) (-15 -2438 ((-107))) (-15 -2631 ((-107))) (-15 -2502 ((-107))) (-15 -2388 ((-107))) (-15 -4073 ((-107))) (-15 -1952 ((-107))) (-15 -1495 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3163 ((-3 $ "failed") $)) (-15 -1888 ((-3 $ "failed") $)) (-15 -3237 ((-3 $ "failed") $)) (-15 -4111 ((-583 (-1156 |t#1|)))) (-15 -2328 ((-1071 |t#1|) $)) (-15 -1499 ((-1071 |t#1|) $)) (-15 -2556 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3616 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3331 ((-3 $ "failed"))) (-15 -1504 ((-3 $ "failed"))) (-15 -1875 ((-3 $ "failed"))) (-6 -4187)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2397 (((-703)) 16)) (-2200 (($) 13)) (-2031 (((-844) $) 14)) (-1895 (((-1058) $) 9)) (-2810 (($ (-844)) 15)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-338) (-1187)) (T -338))
+((-2397 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-338)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-844)))) (-2200 (*1 *1) (-4 *1 (-338))))
+(-13 (-1004) (-10 -8 (-15 -2397 ((-703))) (-15 -2810 ($ (-844))) (-15 -2031 ((-844) $)) (-15 -2200 ($))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-3861 (((-623 |#2|) (-1156 $)) 40)) (-1953 (($ (-1156 |#2|) (-1156 $)) 35)) (-1416 (((-623 |#2|) $ (-1156 $)) 43)) (-4032 ((|#2| (-1156 $)) 13)) (-3369 (((-1156 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) (-1156 $) (-1156 $)) 25)))
+(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -3861 ((-623 |#2|) (-1156 |#1|))) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1416 ((-623 |#2|) |#1| (-1156 |#1|)))) (-340 |#2| |#3|) (-156) (-1132 |#2|)) (T -339))
+NIL
+(-10 -8 (-15 -3861 ((-623 |#2|) (-1156 |#1|))) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1416 ((-623 |#2|) |#1| (-1156 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3861 (((-623 |#1|) (-1156 $)) 46)) (-2008 ((|#1| $) 52)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1953 (($ (-1156 |#1|) (-1156 $)) 48)) (-1416 (((-623 |#1|) $ (-1156 $)) 53)) (-3163 (((-3 $ "failed") $) 34)) (-3736 (((-844)) 54)) (-1865 (((-107) $) 31)) (-2754 ((|#1| $) 51)) (-2456 ((|#2| $) 44 (|has| |#1| (-333)))) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-4032 ((|#1| (-1156 $)) 47)) (-3369 (((-1156 |#1|) $ (-1156 $)) 50) (((-623 |#1|) (-1156 $) (-1156 $)) 49)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2650 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1900 ((|#2| $) 45)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-340 |#1| |#2|) (-1187) (-156) (-1132 |t#1|)) (T -340))
+((-3736 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-844)))) (-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-1156 *4)))) (-3369 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1156 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1132 *4)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1132 *2)) (-4 *2 (-156)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1132 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3736 ((-844))) (-15 -1416 ((-623 |t#1|) $ (-1156 $))) (-15 -2008 (|t#1| $)) (-15 -2754 (|t#1| $)) (-15 -3369 ((-1156 |t#1|) $ (-1156 $))) (-15 -3369 ((-623 |t#1|) (-1156 $) (-1156 $))) (-15 -1953 ($ (-1156 |t#1|) (-1156 $))) (-15 -4032 (|t#1| (-1156 $))) (-15 -3861 ((-623 |t#1|) (-1156 $))) (-15 -1900 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -2456 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2499 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3308 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2499 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1110) (-343 |#1|) (-1110) (-343 |#3|)) (T -341))
+((-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1110)) (-4 *5 (-1110)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2499 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3560 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-3613 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2162 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-1905 (($ $) 25)) (-1211 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3798 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-342 |#1| |#2|) (-10 -8 (-15 -3613 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3560 ((-107) |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2162 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1905 (|#1| |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1110)) (T -342))
+NIL
+(-10 -8 (-15 -3613 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3560 ((-107) |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2162 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1905 (|#1| |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1211 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 70)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-343 |#1|) (-1187) (-1110)) (T -343))
+((-3798 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1110)))) (-1905 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1110)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1110)) (-5 *2 (-107)))) (-1211 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1110)) (-5 *2 (-517)))) (-1211 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-517)))) (-1211 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)))) (-3798 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110)) (-4 *2 (-779)))) (-2162 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110)) (-4 *2 (-779)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1110)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2790 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4191)) (-4 *1 (-343 *3)) (-4 *3 (-1110)))) (-1407 (*1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-343 *2)) (-4 *2 (-1110)))) (-3613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4191)) (-4 *1 (-343 *3)) (-4 *3 (-1110)))) (-3613 (*1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-343 *2)) (-4 *2 (-1110)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4190) (-15 -3798 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1905 ($ $)) (-15 -2162 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -3560 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1211 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -1211 ((-517) |t#1| $)) (-15 -1211 ((-517) |t#1| $ (-517)))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3798 ($ $ $)) (-15 -2162 ($ $)) (-15 -3560 ((-107) $))) |%noBranch|) (IF (|has| $ (-6 -4191)) (PROGN (-15 -2790 ($ $ $ (-517))) (-15 -1407 ($ $)) (-15 -3613 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -3613 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1004) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-1110) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3365 (((-583 |#1|) $) 32)) (-1843 (($ $ (-703)) 33)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3397 (((-1178 |#1| |#2|) (-1178 |#1| |#2|) $) 36)) (-1213 (($ $) 34)) (-1896 (((-1178 |#1| |#2|) (-1178 |#1| |#2|) $) 37)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-3522 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-2769 (((-703) $) 38)) (-2286 (($ $ $) 29)) (-2269 (((-787) $) 11) (($ |#1|) 41) (((-1169 |#1| |#2|) $) 40) (((-1178 |#1| |#2|) $) 39)) (-1580 ((|#2| (-1178 |#1| |#2|) $) 42)) (-3608 (($) 18 T CONST)) (-4119 (($ (-608 |#1|)) 35)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-344 |#1| |#2|) (-1187) (-779) (-156)) (T -344))
+((-1580 (*1 *2 *3 *1) (-12 (-5 *3 (-1178 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2269 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1169 *3 *4)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1178 *3 *4)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-1896 (*1 *2 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3397 (*1 *2 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-1213 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-3522 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
+(-13 (-574 |t#2|) (-10 -8 (-15 -1580 (|t#2| (-1178 |t#1| |t#2|) $)) (-15 -2269 ($ |t#1|)) (-15 -2269 ((-1169 |t#1| |t#2|) $)) (-15 -2269 ((-1178 |t#1| |t#2|) $)) (-15 -2769 ((-703) $)) (-15 -1896 ((-1178 |t#1| |t#2|) (-1178 |t#1| |t#2|) $)) (-15 -3397 ((-1178 |t#1| |t#2|) (-1178 |t#1| |t#2|) $)) (-15 -4119 ($ (-608 |t#1|))) (-15 -1213 ($ $)) (-15 -1843 ($ $ (-703))) (-15 -3365 ((-583 |t#1|) $)) (-15 -3522 ($ $ |t#1| $)) (-15 -3522 ($ $ (-583 |t#1|) (-583 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-968 |#2|) . T) ((-1004) . T))
+((-2362 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 24)) (-2089 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2645 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
+(((-345 |#1| |#2|) (-10 -7 (-15 -2089 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2645 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2362 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1110) (-13 (-343 |#1|) (-10 -7 (-6 -4191)))) (T -345))
+((-2362 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))) (-2645 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))) (-2089 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))))
+(-10 -7 (-15 -2089 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2645 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2362 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
+((-2306 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 19) (((-623 (-517)) (-623 $)) 13)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-962)) (T -346))
+NIL
+(-10 -8 (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 |#2|) (-623 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2306 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 35) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-347 |#1|) (-1187) (-962)) (T -347))
NIL
(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2007 (((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|) 52) (((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|) 51) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|) 47) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|) 40)) (-3614 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|) 28) (((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|) 15)))
-(((-348 |#1|) (-10 -7 (-15 -2007 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -2007 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -2007 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -2007 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3614 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3614 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|))) (-13 (-333) (-777))) (T -348))
-((-3614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3614 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -2007 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -2007 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -2007 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -2007 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3614 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3614 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1074)) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 33)) (-2065 (((-517) $) 55)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1935 (($ $) 109)) (-2725 (($ $) 81)) (-2602 (($ $) 70)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) 44)) (-2448 (((-107) $ $) NIL)) (-2705 (($ $) 79)) (-2580 (($ $) 68)) (-3345 (((-517) $) 63)) (-1356 (($ $ (-517)) 62)) (-1533 (($ $) NIL)) (-2626 (($ $) NIL)) (-2706 (($) NIL T CONST)) (-3434 (($ $) 111)) (-1837 (((-3 (-517) "failed") $) 187) (((-3 (-377 (-517)) "failed") $) 183)) (-3232 (((-517) $) 185) (((-377 (-517)) $) 181)) (-2532 (($ $ $) NIL)) (-3803 (((-517) $ $) 101)) (-3775 (((-3 $ "failed") $) 113)) (-3124 (((-377 (-517)) $ (-703)) 188) (((-377 (-517)) $ (-703) (-703)) 180)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2987 (((-843)) 72) (((-843) (-843)) 97 (|has| $ (-6 -4174)))) (-3162 (((-107) $) 105)) (-2665 (($) 40)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-2633 (((-1159) (-703)) 150)) (-2793 (((-1159)) 155) (((-1159) (-703)) 156)) (-1948 (((-1159)) 157) (((-1159) (-703)) 158)) (-4135 (((-1159)) 153) (((-1159) (-703)) 154)) (-3730 (((-517) $) 58)) (-3469 (((-107) $) 103)) (-2003 (($ $ (-517)) NIL)) (-4163 (($ $) 48)) (-2962 (($ $) NIL)) (-1199 (((-107) $) 35)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL) (($) NIL (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-3105 (($ $ $) NIL) (($) 98 (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-4038 (((-517) $) 17)) (-2589 (($) 86) (($ $) 91)) (-3754 (($) 90) (($ $) 92)) (-1875 (($ $) 82)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 115)) (-1397 (((-843) (-517)) 43 (|has| $ (-6 -4174)))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) 53)) (-2908 (($ $) 108)) (-4002 (($ (-517) (-517)) 106) (($ (-517) (-517) (-843)) 107)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3010 (((-517) $) 19)) (-2627 (($) 93)) (-2643 (($ $) 78)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2405 (((-843)) 99) (((-843) (-843)) 100 (|has| $ (-6 -4174)))) (-1248 (($ $ (-703)) NIL) (($ $) 114)) (-3953 (((-843) (-517)) 47 (|has| $ (-6 -4174)))) (-1543 (($ $) NIL)) (-2638 (($ $) NIL)) (-2735 (($ $) NIL)) (-2614 (($ $) NIL)) (-2714 (($ $) 80)) (-2590 (($ $) 69)) (-3667 (((-349) $) 173) (((-199) $) 175) (((-814 (-349)) $) NIL) (((-1057) $) 160) (((-493) $) 171) (($ (-199)) 179)) (-2254 (((-787) $) 162) (($ (-517)) 184) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 184) (($ (-377 (-517))) NIL) (((-199) $) 176)) (-1217 (((-703)) NIL)) (-2434 (($ $) 110)) (-2399 (((-843)) 54) (((-843) (-843)) 65 (|has| $ (-6 -4174)))) (-1870 (((-843)) 102)) (-1584 (($ $) 85)) (-2670 (($ $) 46) (($ $ $) 52)) (-2673 (((-107) $ $) NIL)) (-1557 (($ $) 83)) (-2651 (($ $) 37)) (-1614 (($ $) NIL)) (-2688 (($ $) NIL)) (-3756 (($ $) NIL)) (-2698 (($ $) NIL)) (-1599 (($ $) NIL)) (-2678 (($ $) NIL)) (-1570 (($ $) 84)) (-2660 (($ $) 49)) (-1724 (($ $) 51)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 34 T CONST)) (-2411 (($) 38 T CONST)) (-2822 (((-1057) $) 27) (((-1057) $ (-107)) 29) (((-1159) (-754) $) 30) (((-1159) (-754) $ (-107)) 31)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 39)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 42)) (-1678 (($ $ $) 45) (($ $ (-517)) 41)) (-1663 (($ $) 36) (($ $ $) 50)) (-1645 (($ $ $) 61)) (** (($ $ (-843)) 66) (($ $ (-703)) NIL) (($ $ (-517)) 87) (($ $ (-377 (-517))) 124) (($ $ $) 116)) (* (($ (-843) $) 64) (($ (-703) $) NIL) (($ (-517) $) 67) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-349) (-13 (-374) (-207) (-558 (-1057)) (-760) (-557 (-199)) (-1095) (-558 (-493)) (-10 -8 (-15 -1678 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -4163 ($ $)) (-15 -3803 ((-517) $ $)) (-15 -1356 ($ $ (-517))) (-15 -3124 ((-377 (-517)) $ (-703))) (-15 -3124 ((-377 (-517)) $ (-703) (-703))) (-15 -2589 ($)) (-15 -3754 ($)) (-15 -2627 ($)) (-15 -2670 ($ $ $)) (-15 -2589 ($ $)) (-15 -3754 ($ $)) (-15 -3667 ($ (-199))) (-15 -1948 ((-1159))) (-15 -1948 ((-1159) (-703))) (-15 -4135 ((-1159))) (-15 -4135 ((-1159) (-703))) (-15 -2793 ((-1159))) (-15 -2793 ((-1159) (-703))) (-15 -2633 ((-1159) (-703))) (-6 -4174) (-6 -4166)))) (T -349))
-((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-4163 (*1 *1 *1) (-5 *1 (-349))) (-3803 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3124 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-2589 (*1 *1) (-5 *1 (-349))) (-3754 (*1 *1) (-5 *1 (-349))) (-2627 (*1 *1) (-5 *1 (-349))) (-2670 (*1 *1 *1 *1) (-5 *1 (-349))) (-2589 (*1 *1 *1) (-5 *1 (-349))) (-3754 (*1 *1 *1) (-5 *1 (-349))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-1948 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-4135 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-2793 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))))
-(-13 (-374) (-207) (-558 (-1057)) (-760) (-557 (-199)) (-1095) (-558 (-493)) (-10 -8 (-15 -1678 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -4163 ($ $)) (-15 -3803 ((-517) $ $)) (-15 -1356 ($ $ (-517))) (-15 -3124 ((-377 (-517)) $ (-703))) (-15 -3124 ((-377 (-517)) $ (-703) (-703))) (-15 -2589 ($)) (-15 -3754 ($)) (-15 -2627 ($)) (-15 -2670 ($ $ $)) (-15 -2589 ($ $)) (-15 -3754 ($ $)) (-15 -3667 ($ (-199))) (-15 -1948 ((-1159))) (-15 -1948 ((-1159) (-703))) (-15 -4135 ((-1159))) (-15 -4135 ((-1159) (-703))) (-15 -2793 ((-1159))) (-15 -2793 ((-1159) (-703))) (-15 -2633 ((-1159) (-703))) (-6 -4174) (-6 -4166)))
-((-1955 (((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|) 47) (((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|) 46) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|) 42) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|) 36)) (-3276 (((-583 |#1|) (-377 (-874 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|) 31)))
-(((-350 |#1|) (-10 -7 (-15 -1955 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1955 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1955 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1955 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -3276 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|)) (-15 -3276 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
-((-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-3276 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
-(-10 -7 (-15 -1955 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1955 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1955 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1955 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -3276 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1074)) |#1|)) (-15 -3276 ((-583 |#1|) (-377 (-874 (-517))) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) 25)) (-3232 ((|#2| $) 27)) (-1221 (($ $) NIL)) (-3604 (((-703) $) 10)) (-3284 (((-583 $) $) 20)) (-2029 (((-107) $) NIL)) (-3838 (($ |#2| |#1|) 18)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1802 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1687 ((|#2| $) 15)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 43) (($ |#2|) 26)) (-3165 (((-583 |#1|) $) 17)) (-4104 ((|#1| $ |#2|) 45)) (-2398 (($) 28 T CONST)) (-1503 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34)))
-(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-779)) (T -351))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-1701 (((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|) 50) (((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|) 49) (((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|) 45) (((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|) 39)) (-4101 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1075)) |#1|) 27) (((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|) 15)))
+(((-348 |#1|) (-10 -7 (-15 -1701 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -1701 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|)) (-15 -1701 ((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -1701 ((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -4101 ((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -4101 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1075)) |#1|))) (-13 (-333) (-777))) (T -348))
+((-4101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517)))))) (-5 *4 (-583 (-1075))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 (-153 (-517)))))) (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1701 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -1701 ((-583 (-583 (-265 (-875 (-153 |#1|))))) (-583 (-265 (-377 (-875 (-153 (-517)))))) |#1|)) (-15 -1701 ((-583 (-265 (-875 (-153 |#1|)))) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -1701 ((-583 (-265 (-875 (-153 |#1|)))) (-265 (-377 (-875 (-153 (-517))))) |#1|)) (-15 -4101 ((-583 (-153 |#1|)) (-377 (-875 (-153 (-517)))) |#1|)) (-15 -4101 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-875 (-153 (-517))))) (-583 (-1075)) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 33)) (-3297 (((-517) $) 55)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3509 (($ $) 110)) (-1646 (($ $) 82)) (-1493 (($ $) 71)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) 44)) (-3998 (((-107) $ $) NIL)) (-1622 (($ $) 80)) (-1470 (($ $) 69)) (-1323 (((-517) $) 64)) (-2140 (($ $ (-517)) 62)) (-1669 (($ $) NIL)) (-1519 (($ $) NIL)) (-1681 (($) NIL T CONST)) (-4013 (($ $) 112)) (-3226 (((-3 (-517) "failed") $) 188) (((-3 (-377 (-517)) "failed") $) 184)) (-3388 (((-517) $) 186) (((-377 (-517)) $) 182)) (-2378 (($ $ $) NIL)) (-2672 (((-517) $ $) 102)) (-3163 (((-3 $ "failed") $) 114)) (-3721 (((-377 (-517)) $ (-703)) 189) (((-377 (-517)) $ (-703) (-703)) 181)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3434 (((-844)) 73) (((-844) (-844)) 98 (|has| $ (-6 -4181)))) (-3523 (((-107) $) 106)) (-2115 (($) 40)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-1651 (((-1161) (-703)) 151)) (-1550 (((-1161)) 156) (((-1161) (-703)) 157)) (-2738 (((-1161)) 158) (((-1161) (-703)) 159)) (-1243 (((-1161)) 154) (((-1161) (-703)) 155)) (-2053 (((-517) $) 58)) (-1865 (((-107) $) 104)) (-1484 (($ $ (-517)) NIL)) (-2006 (($ $) 48)) (-2754 (($ $) NIL)) (-1469 (((-107) $) 35)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL) (($) NIL (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-4082 (($ $ $) NIL) (($) 99 (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-3697 (((-517) $) 17)) (-1715 (($) 87) (($ $) 92)) (-2894 (($) 91) (($ $) 93)) (-1225 (($ $) 83)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 116)) (-2787 (((-844) (-517)) 43 (|has| $ (-6 -4181)))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) 53)) (-2309 (($ $) 109)) (-3209 (($ (-517) (-517)) 107) (($ (-517) (-517) (-844)) 108)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2356 (((-517) $) 19)) (-3495 (($) 94)) (-3868 (($ $) 79)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2207 (((-844)) 100) (((-844) (-844)) 101 (|has| $ (-6 -4181)))) (-2059 (($ $ (-703)) NIL) (($ $) 115)) (-2229 (((-844) (-517)) 47 (|has| $ (-6 -4181)))) (-1682 (($ $) NIL)) (-1532 (($ $) NIL)) (-1656 (($ $) NIL)) (-1506 (($ $) NIL)) (-1632 (($ $) 81)) (-1482 (($ $) 70)) (-3357 (((-349) $) 174) (((-199) $) 176) (((-815 (-349)) $) NIL) (((-1058) $) 161) (((-493) $) 172) (($ (-199)) 180)) (-2269 (((-787) $) 163) (($ (-517)) 185) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 185) (($ (-377 (-517))) NIL) (((-199) $) 177)) (-2950 (((-703)) NIL)) (-3475 (($ $) 111)) (-2013 (((-844)) 54) (((-844) (-844)) 66 (|has| $ (-6 -4181)))) (-3984 (((-844)) 103)) (-1721 (($ $) 86)) (-1575 (($ $) 46) (($ $ $) 52)) (-2914 (((-107) $ $) NIL)) (-1695 (($ $) 84)) (-1547 (($ $) 37)) (-3487 (($ $) NIL)) (-1599 (($ $) NIL)) (-2822 (($ $) NIL)) (-1612 (($ $) NIL)) (-1735 (($ $) NIL)) (-1588 (($ $) NIL)) (-1708 (($ $) 85)) (-1561 (($ $) 49)) (-2339 (($ $) 51)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 34 T CONST)) (-3617 (($) 38 T CONST)) (-1964 (((-1058) $) 27) (((-1058) $ (-107)) 29) (((-1161) (-754) $) 30) (((-1161) (-754) $ (-107)) 31)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 39)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 42)) (-1703 (($ $ $) 45) (($ $ (-517)) 41)) (-1691 (($ $) 36) (($ $ $) 50)) (-1677 (($ $ $) 61)) (** (($ $ (-844)) 67) (($ $ (-703)) NIL) (($ $ (-517)) 88) (($ $ (-377 (-517))) 125) (($ $ $) 117)) (* (($ (-844) $) 65) (($ (-703) $) NIL) (($ (-517) $) 68) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-349) (-13 (-374) (-207) (-558 (-1058)) (-760) (-557 (-199)) (-1096) (-558 (-493)) (-10 -8 (-15 -1703 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2006 ($ $)) (-15 -2672 ((-517) $ $)) (-15 -2140 ($ $ (-517))) (-15 -3721 ((-377 (-517)) $ (-703))) (-15 -3721 ((-377 (-517)) $ (-703) (-703))) (-15 -1715 ($)) (-15 -2894 ($)) (-15 -3495 ($)) (-15 -1575 ($ $ $)) (-15 -1715 ($ $)) (-15 -2894 ($ $)) (-15 -3357 ($ (-199))) (-15 -2738 ((-1161))) (-15 -2738 ((-1161) (-703))) (-15 -1243 ((-1161))) (-15 -1243 ((-1161) (-703))) (-15 -1550 ((-1161))) (-15 -1550 ((-1161) (-703))) (-15 -1651 ((-1161) (-703))) (-6 -4181) (-6 -4173)))) (T -349))
+((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1703 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2006 (*1 *1 *1) (-5 *1 (-349))) (-2672 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1715 (*1 *1) (-5 *1 (-349))) (-2894 (*1 *1) (-5 *1 (-349))) (-3495 (*1 *1) (-5 *1 (-349))) (-1575 (*1 *1 *1 *1) (-5 *1 (-349))) (-1715 (*1 *1 *1) (-5 *1 (-349))) (-2894 (*1 *1 *1) (-5 *1 (-349))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-2738 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349)))) (-1243 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349)))) (-1550 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349)))))
+(-13 (-374) (-207) (-558 (-1058)) (-760) (-557 (-199)) (-1096) (-558 (-493)) (-10 -8 (-15 -1703 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2006 ($ $)) (-15 -2672 ((-517) $ $)) (-15 -2140 ($ $ (-517))) (-15 -3721 ((-377 (-517)) $ (-703))) (-15 -3721 ((-377 (-517)) $ (-703) (-703))) (-15 -1715 ($)) (-15 -2894 ($)) (-15 -3495 ($)) (-15 -1575 ($ $ $)) (-15 -1715 ($ $)) (-15 -2894 ($ $)) (-15 -3357 ($ (-199))) (-15 -2738 ((-1161))) (-15 -2738 ((-1161) (-703))) (-15 -1243 ((-1161))) (-15 -1243 ((-1161) (-703))) (-15 -1550 ((-1161))) (-15 -1550 ((-1161) (-703))) (-15 -1651 ((-1161) (-703))) (-6 -4181) (-6 -4173)))
+((-2064 (((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|) 46) (((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|) 45) (((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|) 41) (((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|) 35)) (-2228 (((-583 |#1|) (-377 (-875 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1075)) |#1|) 30)))
+(((-350 |#1|) (-10 -7 (-15 -2064 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|)) (-15 -2064 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|)) (-15 -2064 ((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|)) (-15 -2064 ((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|)) (-15 -2228 ((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1075)) |#1|)) (-15 -2228 ((-583 |#1|) (-377 (-875 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
+((-2228 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *4 (-583 (-1075))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 (-517))))) (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 (-517)))))) (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(-10 -7 (-15 -2064 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-377 (-875 (-517)))) |#1|)) (-15 -2064 ((-583 (-583 (-265 (-875 |#1|)))) (-583 (-265 (-377 (-875 (-517))))) |#1|)) (-15 -2064 ((-583 (-265 (-875 |#1|))) (-377 (-875 (-517))) |#1|)) (-15 -2064 ((-583 (-265 (-875 |#1|))) (-265 (-377 (-875 (-517)))) |#1|)) (-15 -2228 ((-583 (-583 |#1|)) (-583 (-377 (-875 (-517)))) (-583 (-1075)) |#1|)) (-15 -2228 ((-583 |#1|) (-377 (-875 (-517))) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) 25)) (-3388 ((|#2| $) 27)) (-2371 (($ $) NIL)) (-1942 (((-703) $) 10)) (-3370 (((-583 $) $) 20)) (-1960 (((-107) $) NIL)) (-2423 (($ |#2| |#1|) 18)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1296 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2333 ((|#2| $) 15)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 44) (($ |#2|) 26)) (-2907 (((-583 |#1|) $) 17)) (-3952 ((|#1| $ |#2|) 46)) (-3608 (($) 28 T CONST)) (-2858 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-779)) (T -351))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-962)) (-4 *2 (-779)))))
(-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#2| "failed") $) 44)) (-3232 ((|#2| $) 43)) (-1221 (($ $) 30)) (-3604 (((-703) $) 34)) (-3284 (((-583 $) $) 35)) (-2029 (((-107) $) 38)) (-3838 (($ |#2| |#1|) 39)) (-1939 (($ (-1 |#1| |#1|) $) 40)) (-1802 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1687 ((|#2| $) 33)) (-1193 ((|#1| $) 32)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ |#2|) 45)) (-3165 (((-583 |#1|) $) 36)) (-4104 ((|#1| $ |#2|) 41)) (-2398 (($) 18 T CONST)) (-1503 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-352 |#1| |#2|) (-1185) (-961) (-1003)) (T -352))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) (-4104 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) (-3838 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-3284 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1193 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))))
-(-13 (-106 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4104 (|t#1| $ |t#2|)) (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (-15 -3838 ($ |t#2| |t#1|)) (-15 -2029 ((-107) $)) (-15 -1503 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3165 ((-583 |t#1|) $)) (-15 -3284 ((-583 $) $)) (-15 -3604 ((-703) $)) (-15 -1687 (|t#2| $)) (-15 -1193 (|t#1| $)) (-15 -1802 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1221 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-952 |#2|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 11)))
-(((-353) (-1185)) (T -353))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-353)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-623 (-632)))) (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-300))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
-((-1837 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-874 (-349)))) 17) (((-3 $ "failed") (-623 (-874 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 11)) (-3232 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-874 (-349)))) 18) (($ (-623 (-874 (-517)))) 16) (($ (-623 (-377 (-874 (-349))))) 14) (($ (-623 (-377 (-874 (-517))))) 12)) (-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 23)))
-(((-354) (-1185)) (T -354))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-300))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300)))))) (-15 -3232 ($ (-623 (-286 (-349))))) (-15 -1837 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3232 ($ (-623 (-286 (-517))))) (-15 -1837 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3232 ($ (-623 (-874 (-349))))) (-15 -1837 ((-3 $ "failed") (-623 (-874 (-349))))) (-15 -3232 ($ (-623 (-874 (-517))))) (-15 -1837 ((-3 $ "failed") (-623 (-874 (-517))))) (-15 -3232 ($ (-623 (-377 (-874 (-349)))))) (-15 -1837 ((-3 $ "failed") (-623 (-377 (-874 (-349)))))) (-15 -3232 ($ (-623 (-377 (-874 (-517)))))) (-15 -1837 ((-3 $ "failed") (-623 (-377 (-874 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-1336 (($ |#1| |#2|) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3495 ((|#2| $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 27)) (-2398 (($) 12 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18)))
-(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) (-961) (-779)) (T -355))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#2| "failed") $) 44)) (-3388 ((|#2| $) 43)) (-2371 (($ $) 30)) (-1942 (((-703) $) 34)) (-3370 (((-583 $) $) 35)) (-1960 (((-107) $) 38)) (-2423 (($ |#2| |#1|) 39)) (-3308 (($ (-1 |#1| |#1|) $) 40)) (-1296 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2333 ((|#2| $) 33)) (-2345 ((|#1| $) 32)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ |#2|) 45)) (-2907 (((-583 |#1|) $) 36)) (-3952 ((|#1| $ |#2|) 41)) (-3608 (($) 18 T CONST)) (-2858 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-352 |#1| |#2|) (-1187) (-962) (-1004)) (T -352))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1004)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-962)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)))) (-2423 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1004)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-107)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-583 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-703)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1004)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-962)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1004)))))
+(-13 (-106 |t#1| |t#1|) (-953 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3952 (|t#1| $ |t#2|)) (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (-15 -2423 ($ |t#2| |t#1|)) (-15 -1960 ((-107) $)) (-15 -2858 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2907 ((-583 |t#1|) $)) (-15 -3370 ((-583 $) $)) (-15 -1942 ((-703) $)) (-15 -2333 (|t#2| $)) (-15 -2345 (|t#1| $)) (-15 -1296 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2371 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-953 |#2|) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 11)))
+(((-353) (-1187)) (T -353))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-4 *1 (-353)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-623 (-632)))) (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-300))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1110) . T))
+((-3226 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-875 (-349)))) 17) (((-3 $ "failed") (-623 (-875 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-875 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-875 (-517))))) 11)) (-3388 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-875 (-349)))) 18) (($ (-623 (-875 (-517)))) 16) (($ (-623 (-377 (-875 (-349))))) 14) (($ (-623 (-377 (-875 (-517))))) 12)) (-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 23)))
+(((-354) (-1187)) (T -354))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-300))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))) (-15 -3388 ($ (-623 (-286 (-349))))) (-15 -3226 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3388 ($ (-623 (-286 (-517))))) (-15 -3226 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3388 ($ (-623 (-875 (-349))))) (-15 -3226 ((-3 $ "failed") (-623 (-875 (-349))))) (-15 -3388 ($ (-623 (-875 (-517))))) (-15 -3226 ((-3 $ "failed") (-623 (-875 (-517))))) (-15 -3388 ($ (-623 (-377 (-875 (-349)))))) (-15 -3226 ((-3 $ "failed") (-623 (-377 (-875 (-349)))))) (-15 -3388 ($ (-623 (-377 (-875 (-517)))))) (-15 -3226 ((-3 $ "failed") (-623 (-377 (-875 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-2077 (($ |#1| |#2|) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2040 ((|#2| $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 28)) (-3608 (($) 12 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) (-962) (-779)) (T -355))
NIL
(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-1719 (((-703) $) 56)) (-2706 (($) NIL T CONST)) (-2760 (((-3 $ "failed") $ $) 58)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2886 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3469 (((-107) $) 14)) (-3380 ((|#1| $ (-517)) NIL)) (-1773 (((-703) $ (-517)) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-2654 (($ (-1 |#1| |#1|) $) 37)) (-3034 (($ (-1 (-703) (-703)) $) 34)) (-4091 (((-3 $ "failed") $ $) 49)) (-1277 (((-1057) $) NIL)) (-4119 (($ $ $) 25)) (-3471 (($ $ $) 23)) (-3214 (((-1021) $) NIL)) (-1343 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $) 31)) (-2816 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2254 (((-787) $) 21) (($ |#1|) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2411 (($) 9 T CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 41)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) 60 (|has| |#1| (-779)))) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-356 |#1|) (-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3471 ($ $ $)) (-15 -4119 ($ $ $)) (-15 -4091 ((-3 $ "failed") $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -2816 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2886 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1719 ((-703) $)) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $)) (-15 -1773 ((-703) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3034 ($ (-1 (-703) (-703)) $)) (-15 -2654 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1003)) (T -356))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3471 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-4119 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-4091 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2760 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2816 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2886 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2654 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))))
-(-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3471 ($ $ $)) (-15 -4119 ($ $ $)) (-15 -4091 ((-3 $ "failed") $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -2816 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2886 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1719 ((-703) $)) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $)) (-15 -1773 ((-703) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3034 ($ (-1 (-703) (-703)) $)) (-15 -2654 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 47)) (-3232 (((-517) $) 46)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-4055 (($ $ $) 54)) (-3105 (($ $ $) 53)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ $) 42)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 51)) (-1571 (((-107) $ $) 50)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 52)) (-1558 (((-107) $ $) 49)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-357) (-1185)) (T -357))
-NIL
-(-13 (-509) (-779) (-952 (-517)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-3861 (((-107) $) 20)) (-3369 (((-107) $) 19)) (-3475 (($ (-1057) (-1057) (-1057)) 21)) (-1214 (((-1057) $) 16)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1513 (($ (-1057) (-1057) (-1057)) 14)) (-1693 (((-1057) $) 17)) (-2578 (((-107) $) 18)) (-2143 (((-1057) $) 15)) (-2254 (((-787) $) 12) (($ (-1057)) 13) (((-1057) $) 9)) (-1534 (((-107) $ $) 7)))
+((-2118 (((-107) $ $) NIL)) (-2397 (((-703) $) 57)) (-1681 (($) NIL T CONST)) (-3397 (((-3 $ "failed") $ $) 59)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3036 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1865 (((-107) $) 14)) (-3336 ((|#1| $ (-517)) NIL)) (-3655 (((-703) $ (-517)) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-1954 (($ (-1 |#1| |#1|) $) 37)) (-2849 (($ (-1 (-703) (-703)) $) 34)) (-1896 (((-3 $ "failed") $ $) 50)) (-1895 (((-1058) $) NIL)) (-2465 (($ $ $) 25)) (-2301 (($ $ $) 23)) (-4123 (((-1022) $) NIL)) (-1878 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $) 31)) (-2928 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2269 (((-787) $) 21) (($ |#1|) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3617 (($) 9 T CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 41)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) 61 (|has| |#1| (-779)))) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-356 |#1|) (-13 (-659) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -1896 ((-3 $ "failed") $ $)) (-15 -3397 ((-3 $ "failed") $ $)) (-15 -2928 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3036 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2397 ((-703) $)) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $)) (-15 -3655 ((-703) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -2849 ($ (-1 (-703) (-703)) $)) (-15 -1954 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1004)) (T -356))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-2465 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-1896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-3397 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-2928 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1004)))) (-3036 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1004)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1004)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1004)))) (-3655 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1004)))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1004)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1004)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-356 *3)))))
+(-13 (-659) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -1896 ((-3 $ "failed") $ $)) (-15 -3397 ((-3 $ "failed") $ $)) (-15 -2928 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3036 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2397 ((-703) $)) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $)) (-15 -3655 ((-703) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -2849 ($ (-1 (-703) (-703)) $)) (-15 -1954 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 47)) (-3388 (((-517) $) 46)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-3456 (($ $ $) 54)) (-4082 (($ $ $) 53)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ $) 42)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 51)) (-1617 (((-107) $ $) 50)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 52)) (-1607 (((-107) $ $) 49)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-357) (-1187)) (T -357))
+NIL
+(-13 (-509) (-779) (-953 (-517)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-953 (-517)) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-3362 (((-107) $) 20)) (-2461 (((-107) $) 19)) (-3211 (($ (-1058) (-1058) (-1058)) 21)) (-2987 (((-1058) $) 16)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2610 (($ (-1058) (-1058) (-1058)) 14)) (-3607 (((-1058) $) 17)) (-3786 (((-107) $) 18)) (-1324 (((-1058) $) 15)) (-2269 (((-787) $) 12) (($ (-1058)) 13) (((-1058) $) 9)) (-1583 (((-107) $ $) 7)))
(((-358) (-359)) (T -358))
NIL
(-359)
-((-1587 (((-107) $ $) 7)) (-3861 (((-107) $) 14)) (-3369 (((-107) $) 15)) (-3475 (($ (-1057) (-1057) (-1057)) 13)) (-1214 (((-1057) $) 18)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1513 (($ (-1057) (-1057) (-1057)) 20)) (-1693 (((-1057) $) 17)) (-2578 (((-107) $) 16)) (-2143 (((-1057) $) 19)) (-2254 (((-787) $) 11) (($ (-1057)) 22) (((-1057) $) 21)) (-1534 (((-107) $ $) 6)))
-(((-359) (-1185)) (T -359))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1513 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1214 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3475 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-1057))) (-15 -2254 ((-1057) $)) (-15 -1513 ($ (-1057) (-1057) (-1057))) (-15 -2143 ((-1057) $)) (-15 -1214 ((-1057) $)) (-15 -1693 ((-1057) $)) (-15 -2578 ((-107) $)) (-15 -3369 ((-107) $)) (-15 -3861 ((-107) $)) (-15 -3475 ($ (-1057) (-1057) (-1057)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2257 (((-787) $) 50)) (-2706 (($) NIL T CONST)) (-3132 (($ $ (-843)) NIL)) (-3363 (($ $ (-843)) NIL)) (-2184 (($ $ (-843)) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($ (-703)) 26)) (-2232 (((-703)) 15)) (-3185 (((-787) $) 52)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) NIL)) (-3950 (($ $ $ $) NIL)) (-2145 (($ $ $) NIL)) (-2398 (($) 20 T CONST)) (-1534 (((-107) $ $) 28)) (-1663 (($ $) 34) (($ $ $) 36)) (-1645 (($ $ $) 37)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -2232 ((-703))) (-15 -3185 ((-787) $)) (-15 -2257 ((-787) $)) (-15 -3244 ($ (-703))))) (-703) (-703) (-156)) (T -360))
-((-2232 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2257 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
-(-13 (-677 |#3|) (-10 -8 (-15 -2232 ((-703))) (-15 -3185 ((-787) $)) (-15 -2257 ((-787) $)) (-15 -3244 ($ (-703)))))
-((-2210 (((-1057)) 10)) (-2330 (((-1046 (-1057))) 28)) (-4077 (((-1159) (-1057)) 25) (((-1159) (-358)) 24)) (-4089 (((-1159)) 26)) (-2085 (((-1046 (-1057))) 27)))
-(((-361) (-10 -7 (-15 -2085 ((-1046 (-1057)))) (-15 -2330 ((-1046 (-1057)))) (-15 -4089 ((-1159))) (-15 -4077 ((-1159) (-358))) (-15 -4077 ((-1159) (-1057))) (-15 -2210 ((-1057))))) (T -361))
-((-2210 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-361)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-361)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-361)))) (-4089 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-361)))) (-2330 (*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))) (-2085 (*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
-(-10 -7 (-15 -2085 ((-1046 (-1057)))) (-15 -2330 ((-1046 (-1057)))) (-15 -4089 ((-1159))) (-15 -4077 ((-1159) (-358))) (-15 -4077 ((-1159) (-1057))) (-15 -2210 ((-1057))))
-((-3730 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
-(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
-((-3730 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3730 ((-703) (-306 |#1| |#2| |#3| |#4|))))
-((-2254 (((-364) |#1|) 11)))
-(((-363 |#1|) (-10 -7 (-15 -2254 ((-364) |#1|))) (-1003)) (T -363))
-((-2254 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2254 ((-364) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-3627 (((-583 (-1057)) $ (-583 (-1057))) 37)) (-2718 (((-583 (-1057)) $ (-583 (-1057))) 38)) (-3090 (((-583 (-1057)) $ (-583 (-1057))) 39)) (-3569 (((-583 (-1057)) $) 34)) (-3475 (($) 23)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1186 (((-583 (-1057)) $) 35)) (-2579 (((-583 (-1057)) $) 36)) (-1253 (((-1159) $ (-517)) 32) (((-1159) $) 33)) (-3667 (($ (-787) (-517)) 29)) (-2254 (((-787) $) 41) (($ (-787)) 25)) (-1534 (((-107) $ $) NIL)))
-(((-364) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-787))) (-15 -3667 ($ (-787) (-517))) (-15 -1253 ((-1159) $ (-517))) (-15 -1253 ((-1159) $)) (-15 -2579 ((-583 (-1057)) $)) (-15 -1186 ((-583 (-1057)) $)) (-15 -3475 ($)) (-15 -3569 ((-583 (-1057)) $)) (-15 -3090 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -2718 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3627 ((-583 (-1057)) $ (-583 (-1057))))))) (T -364))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3667 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1253 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-364)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-364)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-1186 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-3475 (*1 *1) (-5 *1 (-364))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-3090 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-2718 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) (-3627 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-787))) (-15 -3667 ($ (-787) (-517))) (-15 -1253 ((-1159) $ (-517))) (-15 -1253 ((-1159) $)) (-15 -2579 ((-583 (-1057)) $)) (-15 -1186 ((-583 (-1057)) $)) (-15 -3475 ($)) (-15 -3569 ((-583 (-1057)) $)) (-15 -3090 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -2718 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3627 ((-583 (-1057)) $ (-583 (-1057))))))
-((-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8)))
-(((-365) (-1185)) (T -365))
-((-4099 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1159)))))
-(-13 (-1109) (-557 (-787)) (-10 -8 (-15 -4099 ((-1159) $))))
-(((-557 (-787)) . T) ((-1109) . T))
-((-1837 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-874 (-349))) 17) (((-3 $ "failed") (-874 (-517))) 15) (((-3 $ "failed") (-377 (-874 (-349)))) 13) (((-3 $ "failed") (-377 (-874 (-517)))) 11)) (-3232 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-874 (-349))) 18) (($ (-874 (-517))) 16) (($ (-377 (-874 (-349)))) 14) (($ (-377 (-874 (-517)))) 12)) (-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 23)))
-(((-366) (-1185)) (T -366))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-300))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300)))))) (-15 -3232 ($ (-286 (-349)))) (-15 -1837 ((-3 $ "failed") (-286 (-349)))) (-15 -3232 ($ (-286 (-517)))) (-15 -1837 ((-3 $ "failed") (-286 (-517)))) (-15 -3232 ($ (-874 (-349)))) (-15 -1837 ((-3 $ "failed") (-874 (-349)))) (-15 -3232 ($ (-874 (-517)))) (-15 -1837 ((-3 $ "failed") (-874 (-517)))) (-15 -3232 ($ (-377 (-874 (-349))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3232 ($ (-377 (-874 (-517))))) (-15 -1837 ((-3 $ "failed") (-377 (-874 (-517)))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
-((-2729 (((-583 (-1057)) (-583 (-1057))) 8)) (-4099 (((-1159) (-358)) 27)) (-4064 (((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074))) 59) (((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074)) 35) (((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074))) 34)))
-(((-367) (-10 -7 (-15 -4064 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)))) (-15 -4064 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074))) (-15 -4064 ((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074)))) (-15 -4099 ((-1159) (-358))) (-15 -2729 ((-583 (-1057)) (-583 (-1057)))))) (T -367))
-((-2729 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-367)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-367)))) (-4064 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *5 (-1077)) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4064 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))))
-(-10 -7 (-15 -4064 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)))) (-15 -4064 ((-1007) (-1074) (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074)))) (-583 (-583 (-3 (|:| |array| (-583 (-1074))) (|:| |scalar| (-1074))))) (-583 (-1074)) (-1074))) (-15 -4064 ((-1007) (-1074) (-583 (-1074)) (-1077) (-583 (-1074)))) (-15 -4099 ((-1159) (-358))) (-15 -2729 ((-583 (-1057)) (-583 (-1057)))))
-((-4099 (((-1159) $) 37)) (-2254 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
-(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2254 ($ (-300))) (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300)))))) (-15 -2254 ($ (-286 (-634)))) (-15 -2254 ($ (-286 (-632)))) (-15 -2254 ($ (-286 (-627)))) (-15 -2254 ($ (-265 (-286 (-634))))) (-15 -2254 ($ (-265 (-286 (-632))))) (-15 -2254 ($ (-265 (-286 (-627))))) (-15 -2254 ($ (-286 (-517)))) (-15 -2254 ($ (-286 (-349)))) (-15 -2254 ($ (-286 (-153 (-349))))) (-15 -2254 ($ (-265 (-286 (-517))))) (-15 -2254 ($ (-265 (-286 (-349))))) (-15 -2254 ($ (-265 (-286 (-153 (-349)))))))) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-1074)) (-1078)) (T -368))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-300))) (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300)))))) (-15 -2254 ($ (-286 (-634)))) (-15 -2254 ($ (-286 (-632)))) (-15 -2254 ($ (-286 (-627)))) (-15 -2254 ($ (-265 (-286 (-634))))) (-15 -2254 ($ (-265 (-286 (-632))))) (-15 -2254 ($ (-265 (-286 (-627))))) (-15 -2254 ($ (-286 (-517)))) (-15 -2254 ($ (-286 (-349)))) (-15 -2254 ($ (-286 (-153 (-349))))) (-15 -2254 ($ (-265 (-286 (-517))))) (-15 -2254 ($ (-265 (-286 (-349))))) (-15 -2254 ($ (-265 (-286 (-153 (-349))))))))
-((-1587 (((-107) $ $) NIL)) (-2866 ((|#2| $) 36)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1359 (($ (-377 |#2|)) 84)) (-3408 (((-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|))) $) 37)) (-1248 (($ $) 32) (($ $ (-703)) 34)) (-3667 (((-377 |#2|) $) 46)) (-2272 (($ (-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|)))) 31)) (-2254 (((-787) $) 120)) (-2738 (($ $) 33) (($ $ (-703)) 35)) (-1534 (((-107) $ $) NIL)) (-1645 (($ |#2| $) 39)))
-(((-369 |#1| |#2|) (-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1645 ($ |#2| $)) (-15 -1359 ($ (-377 |#2|))) (-15 -2866 (|#2| $)) (-15 -3408 ((-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|))) $)) (-15 -2272 ($ (-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|))))) (-15 -1248 ($ $)) (-15 -2738 ($ $)) (-15 -1248 ($ $ (-703))) (-15 -2738 ($ $ (-703))))) (-13 (-333) (-134)) (-1131 |#1|)) (T -369))
-((-1645 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1131 *3)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2866 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-3408 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -3010 (-703)) (|:| -2984 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3010 (-703)) (|:| -2984 *4) (|:| |num| *4)))) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-1248 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) (-2738 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))))
-(-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1645 ($ |#2| $)) (-15 -1359 ($ (-377 |#2|))) (-15 -2866 (|#2| $)) (-15 -3408 ((-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|))) $)) (-15 -2272 ($ (-583 (-2 (|:| -3010 (-703)) (|:| -2984 |#2|) (|:| |num| |#2|))))) (-15 -1248 ($ $)) (-15 -2738 ($ $)) (-15 -1248 ($ $ (-703))) (-15 -2738 ($ $ (-703)))))
-((-1587 (((-107) $ $) 9 (-3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 15 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 14 (|has| |#1| (-808 (-517))))) (-1277 (((-1057) $) 13 (-3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3214 (((-1021) $) 12 (-3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-2254 (((-787) $) 11 (-3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-1534 (((-107) $ $) 10 (-3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))))
-(((-370 |#1|) (-1185) (-1109)) (T -370))
-NIL
-(-13 (-1109) (-10 -7 (IF (|has| |t#1| (-808 (-517))) (-6 (-808 (-517))) |%noBranch|) (IF (|has| |t#1| (-808 (-349))) (-6 (-808 (-349))) |%noBranch|)))
-(((-97) -3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-557 (-787)) -3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-1003) -3782 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-1109) . T))
-((-2616 (($ $) 10) (($ $ (-703)) 11)))
-(((-371 |#1|) (-10 -8 (-15 -2616 (|#1| |#1| (-703))) (-15 -2616 (|#1| |#1|))) (-372)) (T -371))
-NIL
-(-10 -8 (-15 -2616 (|#1| |#1| (-703))) (-15 -2616 (|#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-2616 (($ $) 79) (($ $ (-703)) 78)) (-3083 (((-107) $) 71)) (-3730 (((-765 (-843)) $) 81)) (-3469 (((-107) $) 31)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-3459 (((-3 (-703) "failed") $ $) 80)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2486 (((-3 $ "failed") $) 82)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-372) (-1185)) (T -372))
-((-3730 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) (-3459 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2616 (*1 *1 *1) (-4 *1 (-372))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(-13 (-333) (-132) (-10 -8 (-15 -3730 ((-765 (-843)) $)) (-15 -3459 ((-3 (-703) "failed") $ $)) (-15 -2616 ($ $)) (-15 -2616 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-4002 (($ (-517) (-517)) 11) (($ (-517) (-517) (-843)) NIL)) (-2405 (((-843)) 16) (((-843) (-843)) NIL)))
-(((-373 |#1|) (-10 -8 (-15 -2405 ((-843) (-843))) (-15 -2405 ((-843))) (-15 -4002 (|#1| (-517) (-517) (-843))) (-15 -4002 (|#1| (-517) (-517)))) (-374)) (T -373))
-((-2405 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-2405 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
-(-10 -8 (-15 -2405 ((-843) (-843))) (-15 -2405 ((-843))) (-15 -4002 (|#1| (-517) (-517) (-843))) (-15 -4002 (|#1| (-517) (-517))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2065 (((-517) $) 89)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-1935 (($ $) 87)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-1386 (($ $) 97)) (-2448 (((-107) $ $) 59)) (-3345 (((-517) $) 114)) (-2706 (($) 17 T CONST)) (-3434 (($ $) 86)) (-1837 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3232 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-2987 (((-843)) 130) (((-843) (-843)) 127 (|has| $ (-6 -4174)))) (-3162 (((-107) $) 112)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3730 (((-517) $) 136)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 96)) (-2962 (($ $) 92)) (-1199 (((-107) $) 113)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4055 (($ $ $) 111) (($) 124 (-12 (-2650 (|has| $ (-6 -4174))) (-2650 (|has| $ (-6 -4166)))))) (-3105 (($ $ $) 110) (($) 123 (-12 (-2650 (|has| $ (-6 -4174))) (-2650 (|has| $ (-6 -4166)))))) (-4038 (((-517) $) 133)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-1397 (((-843) (-517)) 126 (|has| $ (-6 -4174)))) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2172 (($ $) 88)) (-2908 (($ $) 90)) (-4002 (($ (-517) (-517)) 138) (($ (-517) (-517) (-843)) 137)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3010 (((-517) $) 134)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-2405 (((-843)) 131) (((-843) (-843)) 128 (|has| $ (-6 -4174)))) (-3953 (((-843) (-517)) 125 (|has| $ (-6 -4174)))) (-3667 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1217 (((-703)) 29)) (-2434 (($ $) 91)) (-2399 (((-843)) 132) (((-843) (-843)) 129 (|has| $ (-6 -4174)))) (-1870 (((-843)) 135)) (-2673 (((-107) $ $) 39)) (-1724 (($ $) 115)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 108)) (-1571 (((-107) $ $) 107)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 109)) (-1558 (((-107) $ $) 106)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-374) (-1185)) (T -374))
-((-4002 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-4002 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-1870 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2399 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2405 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2987 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2399 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-2405 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))) (-4055 (*1 *1) (-12 (-4 *1 (-374)) (-2650 (|has| *1 (-6 -4174))) (-2650 (|has| *1 (-6 -4166))))) (-3105 (*1 *1) (-12 (-4 *1 (-374)) (-2650 (|has| *1 (-6 -4174))) (-2650 (|has| *1 (-6 -4166))))))
-(-13 (-970) (-10 -8 (-6 -3405) (-15 -4002 ($ (-517) (-517))) (-15 -4002 ($ (-517) (-517) (-843))) (-15 -3730 ((-517) $)) (-15 -1870 ((-843))) (-15 -3010 ((-517) $)) (-15 -4038 ((-517) $)) (-15 -2399 ((-843))) (-15 -2405 ((-843))) (-15 -2987 ((-843))) (IF (|has| $ (-6 -4174)) (PROGN (-15 -2399 ((-843) (-843))) (-15 -2405 ((-843) (-843))) (-15 -2987 ((-843) (-843))) (-15 -1397 ((-843) (-517))) (-15 -3953 ((-843) (-517)))) |%noBranch|) (IF (|has| $ (-6 -4166)) |%noBranch| (IF (|has| $ (-6 -4174)) |%noBranch| (PROGN (-15 -4055 ($)) (-15 -3105 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-970) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-1939 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -1939 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
-(-10 -7 (-15 -1939 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
-((-1939 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
-(((-376 |#1| |#2|) (-10 -7 (-15 -1939 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
-(-10 -7 (-15 -1939 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 13)) (-2065 ((|#1| $) 21 (|has| |#1| (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| |#1| (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 17) (((-3 (-1074) "failed") $) NIL (|has| |#1| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517))))) (-3232 ((|#1| $) 15) (((-1074) $) NIL (|has| |#1| (-952 (-1074)))) (((-377 (-517)) $) 67 (|has| |#1| (-952 (-517)))) (((-517) $) NIL (|has| |#1| (-952 (-517))))) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) 50)) (-4100 (($) NIL (|has| |#1| (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| |#1| (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3469 (((-107) $) 64)) (-1583 (($ $) NIL)) (-1842 ((|#1| $) 71)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1199 (((-107) $) NIL (|has| |#1| (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| |#1| (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 97)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| |#1| (-278)))) (-2908 ((|#1| $) 28 (|has| |#1| (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 133 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 129 (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-3196 (((-703) $) NIL)) (-1437 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1728 (($ $) NIL)) (-1852 ((|#1| $) 73)) (-3667 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-937))) (((-199) $) NIL (|has| |#1| (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1074)) NIL (|has| |#1| (-952 (-1074))))) (-2486 (((-3 $ "failed") $) 99 (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 100)) (-2434 ((|#1| $) 26 (|has| |#1| (-502)))) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| |#1| (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 22 T CONST)) (-2411 (($) 8 T CONST)) (-2822 (((-1057) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1057) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1159) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1159) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-2738 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 56)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1678 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1663 (($ $) 25) (($ $ $) 55)) (-1645 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-377 |#1|) (-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4170)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4181)) (-6 -4170) |%noBranch|) |%noBranch|) |%noBranch|))) (-509)) (T -377))
-NIL
-(-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4170)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4181)) (-6 -4170) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1205 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 18)) (-4047 (($ (-1154 |#2|) (-1154 $)) NIL) (($ (-1154 |#2|)) 26)) (-2739 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 22)) (-2956 ((|#3| $) 59)) (-3383 ((|#2| (-1154 $)) NIL) ((|#2|) 20)) (-3589 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 24)) (-3667 (((-1154 |#2|) $) 11) (($ (-1154 |#2|)) 13)) (-1924 ((|#3| $) 51)))
-(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2739 ((-623 |#2|) |#1|)) (-15 -3383 (|#2|)) (-15 -1205 ((-623 |#2|))) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -2956 (|#3| |#1|)) (-15 -1924 (|#3| |#1|)) (-15 -1205 ((-623 |#2|) (-1154 |#1|))) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1154 |#1|)))) (-379 |#2| |#3|) (-156) (-1131 |#2|)) (T -378))
-((-1205 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3383 (*1 *2) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
-(-10 -8 (-15 -2739 ((-623 |#2|) |#1|)) (-15 -3383 (|#2|)) (-15 -1205 ((-623 |#2|))) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -2956 (|#3| |#1|)) (-15 -1924 (|#3| |#1|)) (-15 -1205 ((-623 |#2|) (-1154 |#1|))) (-15 -3383 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1154 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1205 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1462 ((|#1| $) 52)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-4047 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-2739 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-3775 (((-3 $ "failed") $) 34)) (-3334 (((-843)) 54)) (-3469 (((-107) $) 31)) (-2962 ((|#1| $) 51)) (-2956 ((|#2| $) 44 (|has| |#1| (-333)))) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3383 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-3589 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3667 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2486 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1924 ((|#2| $) 45)) (-1217 (((-703)) 29)) (-2080 (((-1154 $)) 67)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-379 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -379))
-((-2080 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *1)) (-4 *1 (-379 *3 *4)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) (-1205 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))) (-3383 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
-(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -2080 ((-1154 $))) (-15 -3589 ((-1154 |t#1|) $)) (-15 -3589 ((-623 |t#1|) (-1154 $))) (-15 -4047 ($ (-1154 |t#1|))) (-15 -3667 ((-1154 |t#1|) $)) (-15 -3667 ($ (-1154 |t#1|))) (-15 -1205 ((-623 |t#1|))) (-15 -3383 (|t#1|)) (-15 -2739 ((-623 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2254 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
-(((-380 |#1| |#2|) (-10 -8 (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -2254 (|#1| (-517))) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|))) (-381 |#2|) (-1109)) (T -380))
-NIL
-(-10 -8 (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -2254 (|#1| (-517))) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)))
-((-1837 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-952 (-517))))) (-3232 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-952 (-517))))) (-2254 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-952 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-952 (-517))))))
-(((-381 |#1|) (-1185) (-1109)) (T -381))
-NIL
-(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-517))) |%noBranch|) (IF (|has| |t#1| (-952 (-377 (-517)))) (-6 (-952 (-377 (-517)))) |%noBranch|)))
-(((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T))
-((-1939 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
-(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1939 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-909 |#1|) (-1131 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|)) (-278) (-909 |#5|) (-1131 |#6|) (-13 (-379 |#6| |#7|) (-952 |#6|))) (T -382))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1131 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1131 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))))
-(-10 -7 (-15 -1939 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
-((-1587 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-1879 ((|#4| (-703) (-1154 |#4|)) 55)) (-3469 (((-107) $) NIL)) (-1842 (((-1154 |#4|) $) 17)) (-2962 ((|#2| $) 53)) (-3590 (($ $) 136)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 98)) (-3395 (($ (-1154 |#4|)) 97)) (-3214 (((-1021) $) NIL)) (-1852 ((|#1| $) 18)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) 131)) (-2080 (((-1154 |#4|) $) 126)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 11 T CONST)) (-1534 (((-107) $ $) 39)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
-(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -3395 ($ (-1154 |#4|))) (-15 -2080 ((-1154 |#4|) $)) (-15 -2962 (|#2| $)) (-15 -1842 ((-1154 |#4|) $)) (-15 -1852 (|#1| $)) (-15 -3590 ($ $)) (-15 -1879 (|#4| (-703) (-1154 |#4|))))) (-278) (-909 |#1|) (-1131 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|))) (T -383))
-((-3395 (*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-2080 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-2962 (*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) (-1842 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1852 (*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-3590 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1154 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1131 *6)))))
-(-13 (-442) (-10 -8 (-15 -3395 ($ (-1154 |#4|))) (-15 -2080 ((-1154 |#4|) $)) (-15 -2962 (|#2| $)) (-15 -1842 ((-1154 |#4|) $)) (-15 -1852 (|#1| $)) (-15 -3590 ($ $)) (-15 -1879 (|#4| (-703) (-1154 |#4|)))))
-((-1587 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-2962 ((|#2| $) 60)) (-2118 (($ (-1154 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-952 |#2|)))) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 34)) (-2080 (((-1154 |#4|) $) 26)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2411 (($) 23 T CONST)) (-1534 (((-107) $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
-(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -2080 ((-1154 |#4|) $)) (-15 -2962 (|#2| $)) (-15 -2118 ($ (-1154 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -2118 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-278) (-909 |#1|) (-1131 |#2|) (-379 |#2| |#3|) (-1154 |#4|)) (T -384))
-((-2080 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-2962 (*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1154 *5)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
-(-13 (-659) (-10 -8 (-15 -2080 ((-1154 |#4|) $)) (-15 -2962 (|#2| $)) (-15 -2118 ($ (-1154 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -2118 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1939 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
-(-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1346 (((-3 $ "failed")) 85)) (-2507 (((-1154 (-623 |#2|)) (-1154 $)) NIL) (((-1154 (-623 |#2|))) 90)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 84)) (-2588 (((-3 $ "failed")) 83)) (-2318 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 101)) (-3981 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 109)) (-1559 (((-1070 (-874 |#2|))) 54)) (-1618 ((|#2| (-1154 $)) NIL) ((|#2|) 105)) (-4047 (($ (-1154 |#2|) (-1154 $)) NIL) (($ (-1154 |#2|)) 112)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 82)) (-1202 (((-3 $ "failed")) 74)) (-1968 (((-623 |#2|) (-1154 $)) NIL) (((-623 |#2|)) 99)) (-2790 (((-623 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) $) 107)) (-1638 (((-1070 (-874 |#2|))) 53)) (-2478 ((|#2| (-1154 $)) NIL) ((|#2|) 103)) (-3589 (((-1154 |#2|) $ (-1154 $)) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $)) 111)) (-3667 (((-1154 |#2|) $) 95) (($ (-1154 |#2|)) 97)) (-3346 (((-583 (-874 |#2|)) (-1154 $)) NIL) (((-583 (-874 |#2|))) 93)) (-1695 (($ (-623 |#2|) $) 89)))
-(((-386 |#1| |#2|) (-10 -8 (-15 -1695 (|#1| (-623 |#2|) |#1|)) (-15 -1559 ((-1070 (-874 |#2|)))) (-15 -1638 ((-1070 (-874 |#2|)))) (-15 -3981 ((-623 |#2|) |#1|)) (-15 -2790 ((-623 |#2|) |#1|)) (-15 -2318 ((-623 |#2|))) (-15 -1968 ((-623 |#2|))) (-15 -1618 (|#2|)) (-15 -2478 (|#2|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3346 ((-583 (-874 |#2|)))) (-15 -2507 ((-1154 (-623 |#2|)))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -1346 ((-3 |#1| "failed"))) (-15 -2588 ((-3 |#1| "failed"))) (-15 -1202 ((-3 |#1| "failed"))) (-15 -2342 ((-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed"))) (-15 -3658 ((-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed"))) (-15 -2318 ((-623 |#2|) (-1154 |#1|))) (-15 -1968 ((-623 |#2|) (-1154 |#1|))) (-15 -1618 (|#2| (-1154 |#1|))) (-15 -2478 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -3981 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2790 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2507 ((-1154 (-623 |#2|)) (-1154 |#1|))) (-15 -3346 ((-583 (-874 |#2|)) (-1154 |#1|)))) (-387 |#2|) (-156)) (T -386))
-((-2507 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3346 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2478 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-1618 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-1968 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2318 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1638 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1559 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
-(-10 -8 (-15 -1695 (|#1| (-623 |#2|) |#1|)) (-15 -1559 ((-1070 (-874 |#2|)))) (-15 -1638 ((-1070 (-874 |#2|)))) (-15 -3981 ((-623 |#2|) |#1|)) (-15 -2790 ((-623 |#2|) |#1|)) (-15 -2318 ((-623 |#2|))) (-15 -1968 ((-623 |#2|))) (-15 -1618 (|#2|)) (-15 -2478 (|#2|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -4047 (|#1| (-1154 |#2|))) (-15 -3346 ((-583 (-874 |#2|)))) (-15 -2507 ((-1154 (-623 |#2|)))) (-15 -3589 ((-623 |#2|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1|)) (-15 -1346 ((-3 |#1| "failed"))) (-15 -2588 ((-3 |#1| "failed"))) (-15 -1202 ((-3 |#1| "failed"))) (-15 -2342 ((-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed"))) (-15 -3658 ((-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed"))) (-15 -2318 ((-623 |#2|) (-1154 |#1|))) (-15 -1968 ((-623 |#2|) (-1154 |#1|))) (-15 -1618 (|#2| (-1154 |#1|))) (-15 -2478 (|#2| (-1154 |#1|))) (-15 -4047 (|#1| (-1154 |#2|) (-1154 |#1|))) (-15 -3589 ((-623 |#2|) (-1154 |#1|) (-1154 |#1|))) (-15 -3589 ((-1154 |#2|) |#1| (-1154 |#1|))) (-15 -3981 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2790 ((-623 |#2|) |#1| (-1154 |#1|))) (-15 -2507 ((-1154 (-623 |#2|)) (-1154 |#1|))) (-15 -3346 ((-583 (-874 |#2|)) (-1154 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1346 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2507 (((-1154 (-623 |#1|)) (-1154 $)) 78) (((-1154 (-623 |#1|))) 100)) (-3118 (((-1154 $)) 81)) (-2706 (($) 17 T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-2588 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2318 (((-623 |#1|) (-1154 $)) 65) (((-623 |#1|)) 92)) (-2571 ((|#1| $) 74)) (-3981 (((-623 |#1|) $ (-1154 $)) 76) (((-623 |#1|) $) 90)) (-1930 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-1559 (((-1070 (-874 |#1|))) 88 (|has| |#1| (-333)))) (-3132 (($ $ (-843)) 28)) (-2831 ((|#1| $) 72)) (-2775 (((-1070 |#1|) $) 42 (|has| |#1| (-509)))) (-1618 ((|#1| (-1154 $)) 67) ((|#1|) 94)) (-2961 (((-1070 |#1|) $) 63)) (-2622 (((-107)) 57)) (-4047 (($ (-1154 |#1|) (-1154 $)) 69) (($ (-1154 |#1|)) 98)) (-3775 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3334 (((-843)) 80)) (-3241 (((-107)) 54)) (-3363 (($ $ (-843)) 33)) (-3762 (((-107)) 50)) (-2765 (((-107)) 48)) (-4079 (((-107)) 52)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1202 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1968 (((-623 |#1|) (-1154 $)) 66) (((-623 |#1|)) 93)) (-1385 ((|#1| $) 75)) (-2790 (((-623 |#1|) $ (-1154 $)) 77) (((-623 |#1|) $) 91)) (-3174 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-1638 (((-1070 (-874 |#1|))) 89 (|has| |#1| (-333)))) (-2184 (($ $ (-843)) 29)) (-3368 ((|#1| $) 73)) (-3018 (((-1070 |#1|) $) 43 (|has| |#1| (-509)))) (-2478 ((|#1| (-1154 $)) 68) ((|#1|) 95)) (-4020 (((-1070 |#1|) $) 64)) (-1816 (((-107)) 58)) (-1277 (((-1057) $) 9)) (-3499 (((-107)) 49)) (-2220 (((-107)) 51)) (-2268 (((-107)) 53)) (-3214 (((-1021) $) 10)) (-2836 (((-107)) 56)) (-1437 ((|#1| $ (-517)) 101)) (-3589 (((-1154 |#1|) $ (-1154 $)) 71) (((-623 |#1|) (-1154 $) (-1154 $)) 70) (((-1154 |#1|) $) 103) (((-623 |#1|) (-1154 $)) 102)) (-3667 (((-1154 |#1|) $) 97) (($ (-1154 |#1|)) 96)) (-3346 (((-583 (-874 |#1|)) (-1154 $)) 79) (((-583 (-874 |#1|))) 99)) (-2901 (($ $ $) 25)) (-3484 (((-107)) 62)) (-2254 (((-787) $) 11)) (-2080 (((-1154 $)) 104)) (-2360 (((-583 (-1154 |#1|))) 44 (|has| |#1| (-509)))) (-3950 (($ $ $ $) 26)) (-2534 (((-107)) 60)) (-1695 (($ (-623 |#1|) $) 87)) (-2145 (($ $ $) 24)) (-1669 (((-107)) 61)) (-3610 (((-107)) 59)) (-3558 (((-107)) 55)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-387 |#1|) (-1185) (-156)) (T -387))
-((-2080 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-387 *3)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2507 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 (-623 *3))))) (-3346 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) (-4047 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-2478 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1618 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1968 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2318 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1638 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) (-1559 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
-(-13 (-337 |t#1|) (-10 -8 (-15 -2080 ((-1154 $))) (-15 -3589 ((-1154 |t#1|) $)) (-15 -3589 ((-623 |t#1|) (-1154 $))) (-15 -1437 (|t#1| $ (-517))) (-15 -2507 ((-1154 (-623 |t#1|)))) (-15 -3346 ((-583 (-874 |t#1|)))) (-15 -4047 ($ (-1154 |t#1|))) (-15 -3667 ((-1154 |t#1|) $)) (-15 -3667 ($ (-1154 |t#1|))) (-15 -2478 (|t#1|)) (-15 -1618 (|t#1|)) (-15 -1968 ((-623 |t#1|))) (-15 -2318 ((-623 |t#1|))) (-15 -2790 ((-623 |t#1|) $)) (-15 -3981 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1638 ((-1070 (-874 |t#1|)))) (-15 -1559 ((-1070 (-874 |t#1|))))) |%noBranch|) (-15 -1695 ($ (-623 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 40)) (-2652 (($ $) 55)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 143)) (-2239 (($ $) NIL)) (-3531 (((-107) $) 34)) (-1346 ((|#1| $) 12)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-1113)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-1113)))) (-2978 (($ |#1| (-517)) 30)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 53)) (-3775 (((-3 $ "failed") $) 128)) (-3937 (((-3 (-377 (-517)) "failed") $) 61 (|has| |#1| (-502)))) (-1541 (((-107) $) 57 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 68 (|has| |#1| (-502)))) (-1409 (($ |#1| (-517)) 32)) (-3083 (((-107) $) 149 (|has| |#1| (-1113)))) (-3469 (((-107) $) 41)) (-2370 (((-703) $) 36)) (-2648 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-3380 ((|#1| $ (-517)) 133)) (-3653 (((-517) $ (-517)) 132)) (-1912 (($ |#1| (-517)) 29)) (-1939 (($ (-1 |#1| |#1|) $) 140)) (-2913 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 56)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-3437 (($ |#1| (-517)) 31)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-1840 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1343 (((-583 (-2 (|:| -1376 |#1|) (|:| -3010 (-517)))) $) 52)) (-1798 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-1376 (((-388 $) $) NIL (|has| |#1| (-1113)))) (-2483 (((-3 $ "failed") $ $) 135)) (-3010 (((-517) $) 129)) (-3523 ((|#1| $) 54)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) $) NIL (|has| |#1| (-478 (-1074) $))) (($ $ (-583 (-1074)) (-583 $)) 83 (|has| |#1| (-478 (-1074) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-1437 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-1248 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3667 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-937))) (((-199) $) 92 (|has| |#1| (-937)))) (-2254 (((-787) $) 111) (($ (-517)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517)))))) (-1217 (((-703)) 46)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 38 T CONST)) (-2411 (($) 37 T CONST)) (-2738 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1534 (((-107) $ $) 93)) (-1663 (($ $) 125) (($ $ $) NIL)) (-1645 (($ $ $) 137)) (** (($ $ (-843)) NIL) (($ $ (-703)) 99)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL)))
-(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3010 ((-517) $)) (-15 -2913 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -1798 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1912 ($ |#1| (-517))) (-15 -1343 ((-583 (-2 (|:| -1376 |#1|) (|:| -3010 (-517)))) $)) (-15 -3437 ($ |#1| (-517))) (-15 -3653 ((-517) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -2648 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2370 ((-703) $)) (-15 -1409 ($ |#1| (-517))) (-15 -2978 ($ |#1| (-517))) (-15 -1840 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1346 (|#1| $)) (-15 -2652 ($ $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1074) $)) (-6 (-478 (-1074) $)) |%noBranch|))) (-509)) (T -388))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-3523 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2913 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1376 *3) (|:| -3010 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3437 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3653 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2648 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1409 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2978 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1840 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1346 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2652 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
-(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3010 ((-517) $)) (-15 -2913 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -1798 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1912 ($ |#1| (-517))) (-15 -1343 ((-583 (-2 (|:| -1376 |#1|) (|:| -3010 (-517)))) $)) (-15 -3437 ($ |#1| (-517))) (-15 -3653 ((-517) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -2648 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2370 ((-703) $)) (-15 -1409 ($ |#1| (-517))) (-15 -2978 ($ |#1| (-517))) (-15 -1840 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1346 (|#1| $)) (-15 -2652 ($ $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1074) $)) (-6 (-478 (-1074) $)) |%noBranch|)))
-((-2604 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2664 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
-(((-389 |#1|) (-10 -7 (-15 -2604 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2664 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
-((-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-2604 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
-(-10 -7 (-15 -2604 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2664 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
-((-1977 ((|#2| |#2|) 160)) (-2740 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107)) 55)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107))) (-15 -1977 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -390))
-((-1977 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1095) (-400 *3))) (-14 *4 (-1074)) (-14 *5 *2))) (-2740 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-14 *6 (-1074)) (-14 *7 *3))))
-(-10 -7 (-15 -2740 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107))) (-15 -1977 (|#2| |#2|)))
-((-1939 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-961) (-779)) (-400 |#1|) (-13 (-961) (-779)) (-400 |#3|)) (T -391))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1977 ((|#2| |#2|) 87)) (-3921 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057)) 46)) (-3560 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057)) 152)))
-(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3921 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -3560 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -1977 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|) (-10 -8 (-15 -2254 ($ |#3|)))) (-777) (-13 (-1133 |#2| |#3|) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $)))) (-900 |#4|) (-1074)) (T -392))
-((-1977 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1095) (-400 *3) (-10 -8 (-15 -2254 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1133 *2 *4) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1074)))) (-3560 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2254 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2254 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
-(-10 -7 (-15 -3921 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -3560 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057))))) |#2| (-107) (-1057))) (-15 -1977 (|#2| |#2|)))
-((-3014 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1292 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1939 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3014 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-395 |#1|) (-1003) (-395 |#3|)) (T -393))
-((-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1292 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3014 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2476 (($) 44)) (-1400 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3867 (($ $ $) 39)) (-3994 (((-107) $ $) 28)) (-1719 (((-703)) 47)) (-1353 (($ (-583 |#2|)) 20) (($) NIL)) (-4100 (($) 53)) (-4055 ((|#2| $) 61)) (-3105 ((|#2| $) 59)) (-4034 (((-843) $) 55)) (-2375 (($ $ $) 35)) (-3544 (($ (-843)) 50)) (-1853 (($ $ |#2|) NIL) (($ $ $) 38)) (-3223 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2272 (($ (-583 |#2|)) 24)) (-3553 (($ $) 46)) (-2254 (((-787) $) 33)) (-4107 (((-703) $) 21)) (-3171 (($ (-583 |#2|)) 19) (($) NIL)) (-1534 (((-107) $ $) 16)) (-1558 (((-107) $ $) 13)))
-(((-394 |#1| |#2|) (-10 -8 (-15 -1719 ((-703))) (-15 -3544 (|#1| (-843))) (-15 -4034 ((-843) |#1|)) (-15 -4100 (|#1|)) (-15 -4055 (|#2| |#1|)) (-15 -3105 (|#2| |#1|)) (-15 -2476 (|#1|)) (-15 -3553 (|#1| |#1|)) (-15 -4107 ((-703) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3171 (|#1|)) (-15 -3171 (|#1| (-583 |#2|))) (-15 -1353 (|#1|)) (-15 -1353 (|#1| (-583 |#2|))) (-15 -2375 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3994 ((-107) |#1| |#1|)) (-15 -1400 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1| |#2|)) (-15 -1400 (|#1| |#2| |#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1003)) (T -394))
-((-1719 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
-(-10 -8 (-15 -1719 ((-703))) (-15 -3544 (|#1| (-843))) (-15 -4034 ((-843) |#1|)) (-15 -4100 (|#1|)) (-15 -4055 (|#2| |#1|)) (-15 -3105 (|#2| |#1|)) (-15 -2476 (|#1|)) (-15 -3553 (|#1| |#1|)) (-15 -4107 ((-703) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3171 (|#1|)) (-15 -3171 (|#1| (-583 |#2|))) (-15 -1353 (|#1|)) (-15 -1353 (|#1| (-583 |#2|))) (-15 -2375 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3994 ((-107) |#1| |#1|)) (-15 -1400 (|#1| |#1| |#1|)) (-15 -1400 (|#1| |#1| |#2|)) (-15 -1400 (|#1| |#2| |#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -3223 ((-703) |#2| |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)))
-((-1587 (((-107) $ $) 18)) (-2476 (($) 67 (|has| |#1| (-338)))) (-1400 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3867 (($ $ $) 78)) (-3994 (((-107) $ $) 79)) (-3552 (((-107) $ (-703)) 8)) (-1719 (((-703)) 61 (|has| |#1| (-338)))) (-1353 (($ (-583 |#1|)) 74) (($) 73)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-4100 (($) 64 (|has| |#1| (-338)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-4055 ((|#1| $) 65 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3105 ((|#1| $) 66 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-4034 (((-843) $) 63 (|has| |#1| (-338)))) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22)) (-2375 (($ $ $) 75)) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3544 (($ (-843)) 62 (|has| |#1| (-338)))) (-3214 (((-1021) $) 21)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1853 (($ $ |#1|) 77) (($ $ $) 76)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-3553 (($ $) 68 (|has| |#1| (-338)))) (-2254 (((-787) $) 20)) (-4107 (((-703) $) 69)) (-3171 (($ (-583 |#1|)) 72) (($) 71)) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19)) (-1558 (((-107) $ $) 70)) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-395 |#1|) (-1185) (-1003)) (T -395))
-((-4107 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-3553 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))) (-2476 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))))
-(-13 (-203 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -4183) (-15 -4107 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -3553 ($ $)) (-15 -2476 ($))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3105 (|t#1| $)) (-15 -4055 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
-((-2236 (((-534 |#2|) |#2| (-1074)) 35)) (-1322 (((-534 |#2|) |#2| (-1074)) 19)) (-2192 ((|#2| |#2| (-1074)) 24)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -1322 ((-534 |#2|) |#2| (-1074))) (-15 -2236 ((-534 |#2|) |#2| (-1074))) (-15 -2192 (|#2| |#2| (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-29 |#1|))) (T -396))
-((-2192 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1095) (-29 *4))))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))) (-1322 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))))
-(-10 -7 (-15 -1322 ((-534 |#2|) |#2| (-1074))) (-15 -2236 ((-534 |#2|) |#2| (-1074))) (-15 -2192 (|#2| |#2| (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-3031 (($ |#2| |#1|) 35)) (-2723 (($ |#2| |#1|) 33)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 10 T CONST)) (-2411 (($) 16 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 34)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4170)) (IF (|has| |#1| (-6 -4170)) (-6 -4170) |%noBranch|) |%noBranch|) (-15 -2254 ($ |#1|)) (-15 -2254 ($ (-301 |#2|))) (-15 -3031 ($ |#2| |#1|)) (-15 -2723 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
-((-2254 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-3031 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2723 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4170)) (IF (|has| |#1| (-6 -4170)) (-6 -4170) |%noBranch|) |%noBranch|) (-15 -2254 ($ |#1|)) (-15 -2254 ($ (-301 |#2|))) (-15 -3031 ($ |#2| |#1|)) (-15 -2723 ($ |#2| |#1|))))
-((-3563 (((-3 |#2| (-583 |#2|)) |#2| (-1074)) 104)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -3563 ((-3 |#2| (-583 |#2|)) |#2| (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -398))
-((-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1095) (-880) (-29 *5))))))
-(-10 -7 (-15 -3563 ((-3 |#2| (-583 |#2|)) |#2| (-1074))))
-((-1357 (((-583 (-1074)) $) 72)) (-2374 (((-377 (-1070 $)) $ (-556 $)) 268)) (-1786 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233)) (-1837 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1074) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-377 (-874 |#2|)) "failed") $) 319) (((-3 (-874 |#2|) "failed") $) 231) (((-3 (-377 (-517)) "failed") $) NIL)) (-3232 (((-556 $) $) NIL) (((-1074) $) 30) (((-517) $) NIL) ((|#2| $) 227) (((-377 (-874 |#2|)) $) 300) (((-874 |#2|) $) 228) (((-377 (-517)) $) NIL)) (-2283 (((-109) (-109)) 47)) (-1583 (($ $) 87)) (-1337 (((-3 (-556 $) "failed") $) 224)) (-2362 (((-583 (-556 $)) $) 225)) (-3789 (((-3 (-583 $) "failed") $) 243)) (-2337 (((-3 (-2 (|:| |val| $) (|:| -3010 (-517))) "failed") $) 250)) (-1674 (((-3 (-583 $) "failed") $) 241)) (-1266 (((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 $))) "failed") $) 259)) (-3106 (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $) 247) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-109)) 214) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-1074)) 216)) (-1656 (((-107) $) 19)) (-1671 ((|#2| $) 21)) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 232) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1074)) 57) (($ $ (-583 (-1074))) 236) (($ $) 237) (($ $ (-109) $ (-1074)) 60) (($ $ (-583 (-109)) (-583 $) (-1074)) 67) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 238) (($ $ (-1074) (-703) (-1 $ (-583 $))) 94) (($ $ (-1074) (-703) (-1 $ $)) 93)) (-1437 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) 234)) (-1728 (($ $) 279)) (-3667 (((-814 (-517)) $) 253) (((-814 (-349)) $) 256) (($ (-388 $)) 315) (((-493) $) NIL)) (-2254 (((-787) $) 235) (($ (-556 $)) 84) (($ (-1074)) 26) (($ |#2|) NIL) (($ (-1026 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 284) (($ (-874 (-377 |#2|))) 324) (($ (-377 (-874 (-377 |#2|)))) 296) (($ (-377 (-874 |#2|))) 290) (($ $) NIL) (($ (-874 |#2|)) 183) (($ (-377 (-517))) 329) (($ (-517)) NIL)) (-1217 (((-703)) 79)) (-2794 (((-107) (-109)) 41)) (-1661 (($ (-1074) $) 33) (($ (-1074) $ $) 34) (($ (-1074) $ $ $) 35) (($ (-1074) $ $ $ $) 36) (($ (-1074) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1217 ((-703))) (-15 -2254 (|#1| (-517))) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-874 |#2|) |#1|)) (-15 -1837 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2254 (|#1| (-874 |#2|))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3232 ((-377 (-874 |#2|)) |#1|)) (-15 -1837 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-874 |#2|)))) (-15 -2374 ((-377 (-1070 |#1|)) |#1| (-556 |#1|))) (-15 -2254 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2254 (|#1| (-874 (-377 |#2|)))) (-15 -2254 (|#1| (-377 |#2|))) (-15 -1728 (|#1| |#1|)) (-15 -3667 (|#1| (-388 |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-703) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -2337 ((-3 (-2 (|:| |val| |#1|) (|:| -3010 (-517))) "failed") |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1| (-1074))) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1| (-109))) (-15 -1583 (|#1| |#1|)) (-15 -2254 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -1266 ((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1674 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1|)) (-15 -3789 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1074))) (-15 -2049 (|#1| |#1| (-109) |#1| (-1074))) (-15 -2049 (|#1| |#1|)) (-15 -2049 (|#1| |#1| (-583 (-1074)))) (-15 -2049 (|#1| |#1| (-1074))) (-15 -1661 (|#1| (-1074) (-583 |#1|))) (-15 -1661 (|#1| (-1074) |#1| |#1| |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1| |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1|)) (-15 -1357 ((-583 (-1074)) |#1|)) (-15 -1671 (|#2| |#1|)) (-15 -1656 ((-107) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -2254 (|#1| (-1074))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2362 ((-583 (-556 |#1|)) |#1|)) (-15 -1337 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1786 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1786 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1786 (|#1| |#1| (-265 |#1|))) (-15 -1437 (|#1| (-109) (-583 |#1|))) (-15 -1437 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3232 ((-556 |#1|) |#1|)) (-15 -1837 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2254 (|#1| (-556 |#1|))) (-15 -2254 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
-((-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-1217 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
-(-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1217 ((-703))) (-15 -2254 (|#1| (-517))) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-874 |#2|) |#1|)) (-15 -1837 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2254 (|#1| (-874 |#2|))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3232 ((-377 (-874 |#2|)) |#1|)) (-15 -1837 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2254 (|#1| (-377 (-874 |#2|)))) (-15 -2374 ((-377 (-1070 |#1|)) |#1| (-556 |#1|))) (-15 -2254 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2254 (|#1| (-874 (-377 |#2|)))) (-15 -2254 (|#1| (-377 |#2|))) (-15 -1728 (|#1| |#1|)) (-15 -3667 (|#1| (-388 |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-703) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -2337 ((-3 (-2 (|:| |val| |#1|) (|:| -3010 (-517))) "failed") |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1| (-1074))) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1| (-109))) (-15 -1583 (|#1| |#1|)) (-15 -2254 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -1266 ((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1674 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -3010 (-517))) "failed") |#1|)) (-15 -3789 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1074))) (-15 -2049 (|#1| |#1| (-109) |#1| (-1074))) (-15 -2049 (|#1| |#1|)) (-15 -2049 (|#1| |#1| (-583 (-1074)))) (-15 -2049 (|#1| |#1| (-1074))) (-15 -1661 (|#1| (-1074) (-583 |#1|))) (-15 -1661 (|#1| (-1074) |#1| |#1| |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1| |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1| |#1|)) (-15 -1661 (|#1| (-1074) |#1|)) (-15 -1357 ((-583 (-1074)) |#1|)) (-15 -1671 (|#2| |#1|)) (-15 -1656 ((-107) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -2254 (|#1| (-1074))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| |#1|))) (-15 -2049 (|#1| |#1| (-1074) (-1 |#1| (-583 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2049 (|#1| |#1| (-583 (-1074)) (-583 (-1 |#1| |#1|)))) (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2362 ((-583 (-556 |#1|)) |#1|)) (-15 -1337 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1786 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -1786 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1786 (|#1| |#1| (-265 |#1|))) (-15 -1437 (|#1| (-109) (-583 |#1|))) (-15 -1437 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1| |#1|)) (-15 -1437 (|#1| (-109) |#1|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2049 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3232 ((-556 |#1|) |#1|)) (-15 -1837 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2254 (|#1| (-556 |#1|))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 116 (|has| |#1| (-25)))) (-1357 (((-583 (-1074)) $) 203)) (-2374 (((-377 (-1070 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-2239 (($ $) 144 (|has| |#1| (-509)))) (-3531 (((-107) $) 146 (|has| |#1| (-509)))) (-1341 (((-583 (-556 $)) $) 44)) (-2646 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1786 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-2377 (($ $) 163 (|has| |#1| (-509)))) (-2674 (((-388 $) $) 164 (|has| |#1| (-509)))) (-2448 (((-107) $ $) 154 (|has| |#1| (-509)))) (-2706 (($) 102 (-3782 (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-1837 (((-3 (-556 $) "failed") $) 69) (((-3 (-1074) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-952 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-874 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) 123 (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 95 (-3782 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3232 (((-556 $) $) 68) (((-1074) $) 215) (((-517) $) 210 (|has| |#1| (-952 (-517)))) ((|#1| $) 206) (((-377 (-874 |#1|)) $) 168 (|has| |#1| (-509))) (((-874 |#1|) $) 122 (|has| |#1| (-961))) (((-377 (-517)) $) 94 (-3782 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2532 (($ $ $) 158 (|has| |#1| (-509)))) (-2749 (((-623 (-517)) (-623 $)) 137 (-4032 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 136 (-4032 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 135 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-961)))) (-3775 (((-3 $ "failed") $) 105 (|has| |#1| (-1015)))) (-2509 (($ $ $) 157 (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-3083 (((-107) $) 165 (|has| |#1| (-509)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 212 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 211 (|has| |#1| (-808 (-349))))) (-2870 (($ $) 51) (($ (-583 $)) 50)) (-2576 (((-583 (-109)) $) 43)) (-2283 (((-109) (-109)) 42)) (-3469 (((-107) $) 103 (|has| |#1| (-1015)))) (-2119 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1583 (($ $) 186 (|has| |#1| (-961)))) (-1842 (((-1026 |#1| (-556 $)) $) 187 (|has| |#1| (-961)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-3733 (((-1070 $) (-556 $)) 25 (|has| $ (-961)))) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1939 (($ (-1 $ $) (-556 $)) 36)) (-1337 (((-3 (-556 $) "failed") $) 46)) (-1360 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-1277 (((-1057) $) 9)) (-2362 (((-583 (-556 $)) $) 45)) (-1893 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3789 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1015)))) (-2337 (((-3 (-2 (|:| |val| $) (|:| -3010 (-517))) "failed") $) 183 (|has| |#1| (-961)))) (-1674 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-1266 (((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3106 (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $) 191 (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-1074)) 184 (|has| |#1| (-961)))) (-2506 (((-107) $ (-109)) 40) (((-107) $ (-1074)) 39)) (-1639 (($ $) 107 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1916 (((-703) $) 47)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 205)) (-1671 ((|#1| $) 204)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 151 (|has| |#1| (-509)))) (-1387 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-2376 (((-107) $ $) 35) (((-107) $ (-1074)) 34)) (-1376 (((-388 $) $) 162 (|has| |#1| (-509)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 159 (|has| |#1| (-509)))) (-2483 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-1947 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1074)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1074) (-1 $ (-583 $))) 31) (($ $ (-1074) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1074)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1074)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1074)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-961))) (($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-961))) (($ $ (-1074) (-703) (-1 $ $)) 179 (|has| |#1| (-961)))) (-3196 (((-703) $) 155 (|has| |#1| (-509)))) (-1437 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 156 (|has| |#1| (-509)))) (-1394 (($ $) 49) (($ $ $) 48)) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 128 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 127 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 126 (|has| |#1| (-961))) (($ $ (-1074)) 125 (|has| |#1| (-961)))) (-1728 (($ $) 176 (|has| |#1| (-509)))) (-1852 (((-1026 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2780 (($ $) 24 (|has| $ (-961)))) (-3667 (((-814 (-517)) $) 214 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 213 (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1757 (($ $ $) 111 (|has| |#1| (-442)))) (-2901 (($ $ $) 112 (|has| |#1| (-442)))) (-2254 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1074)) 217) (($ |#1|) 208) (($ (-1026 |#1| (-556 $))) 188 (|has| |#1| (-961))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-874 |#1|)) 124 (|has| |#1| (-961))) (($ (-377 (-517))) 96 (-3782 (|has| |#1| (-509)) (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 93 (-3782 (|has| |#1| (-961)) (|has| |#1| (-952 (-517)))))) (-2486 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-1217 (((-703)) 133 (|has| |#1| (-961)))) (-3137 (($ $) 53) (($ (-583 $)) 52)) (-2794 (((-107) (-109)) 41)) (-2673 (((-107) $ $) 145 (|has| |#1| (-509)))) (-1661 (($ (-1074) $) 202) (($ (-1074) $ $) 201) (($ (-1074) $ $ $) 200) (($ (-1074) $ $ $ $) 199) (($ (-1074) (-583 $)) 198)) (-2196 (($ $ (-517)) 110 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1015))) (($ $ (-843)) 100 (|has| |#1| (-1015)))) (-2398 (($) 115 (|has| |#1| (-25)) CONST)) (-2411 (($) 101 (|has| |#1| (-1015)) CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 132 (|has| |#1| (-961))) (($ $ (-1074) (-703)) 131 (|has| |#1| (-961))) (($ $ (-583 (-1074))) 130 (|has| |#1| (-961))) (($ $ (-1074)) 129 (|has| |#1| (-961)))) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1678 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1663 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1645 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3782 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1015))) (($ $ (-843)) 99 (|has| |#1| (-1015)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-843) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1015)))))
-(((-400 |#1|) (-1185) (-779)) (T -400))
-((-1656 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1074))))) (-1661 (*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-1661 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-1661 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-1661 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-1661 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2049 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-2049 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1074)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-2049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1074)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-3789 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3106 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *3)))) (-1674 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-1266 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1842 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) (-3106 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *4)))) (-3106 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *4)))) (-2337 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -3010 (-517)))) (-4 *1 (-400 *3)))) (-2049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2049 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1852 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1728 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1678 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2374 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1070 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))))
-(-13 (-273) (-952 (-1074)) (-806 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -1656 ((-107) $)) (-15 -1671 (|t#1| $)) (-15 -1357 ((-583 (-1074)) $)) (-15 -1661 ($ (-1074) $)) (-15 -1661 ($ (-1074) $ $)) (-15 -1661 ($ (-1074) $ $ $)) (-15 -1661 ($ (-1074) $ $ $ $)) (-15 -1661 ($ (-1074) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -2049 ($ $ (-1074))) (-15 -2049 ($ $ (-583 (-1074)))) (-15 -2049 ($ $)) (-15 -2049 ($ $ (-109) $ (-1074))) (-15 -2049 ($ $ (-583 (-109)) (-583 $) (-1074)))) |%noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -3789 ((-3 (-583 $) "failed") $)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1674 ((-3 (-583 $) "failed") $)) (-15 -1266 ((-3 (-2 (|:| -1965 (-517)) (|:| |var| (-556 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-952 (-874 |t#1|))) (-6 (-822 (-1074))) (-6 (-347 |t#1|)) (-15 -2254 ($ (-1026 |t#1| (-556 $)))) (-15 -1842 ((-1026 |t#1| (-556 $)) $)) (-15 -1583 ($ $)) (-15 -3106 ((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-109))) (-15 -3106 ((-3 (-2 (|:| |var| (-556 $)) (|:| -3010 (-517))) "failed") $ (-1074))) (-15 -2337 ((-3 (-2 (|:| |val| $) (|:| -3010 (-517))) "failed") $)) (-15 -2049 ($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -2049 ($ $ (-583 (-1074)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -2049 ($ $ (-1074) (-703) (-1 $ (-583 $)))) (-15 -2049 ($ $ (-1074) (-703) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-952 (-377 (-874 |t#1|)))) (-15 -3667 ($ (-388 $))) (-15 -1852 ((-1026 |t#1| (-556 $)) $)) (-15 -1728 ($ $)) (-15 -1678 ($ (-1026 |t#1| (-556 $)) (-1026 |t#1| (-556 $)))) (-15 -2254 ($ (-377 |t#1|))) (-15 -2254 ($ (-874 (-377 |t#1|)))) (-15 -2254 ($ (-377 (-874 (-377 |t#1|))))) (-15 -2374 ((-377 (-1070 $)) $ (-556 $))) (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-377 (-517)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3782 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-822 (-1074)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) |has| |#1| (-509)) ((-952 (-377 (-517))) -3782 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1074)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-509)) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) |has| |#1| (-509)) ((-961) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-968) -3782 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1015) -3782 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1003) . T) ((-1109) . T) ((-1113) |has| |#1| (-509)))
-((-2828 ((|#2| |#2| |#2|) 33)) (-2283 (((-109) (-109)) 44)) (-2470 ((|#2| |#2|) 66)) (-2037 ((|#2| |#2|) 69)) (-3744 ((|#2| |#2|) 32)) (-1388 ((|#2| |#2| |#2|) 35)) (-3958 ((|#2| |#2| |#2|) 37)) (-3956 ((|#2| |#2| |#2|) 34)) (-3770 ((|#2| |#2| |#2|) 36)) (-2794 (((-107) (-109)) 42)) (-1833 ((|#2| |#2|) 39)) (-1878 ((|#2| |#2|) 38)) (-1724 ((|#2| |#2|) 27)) (-2609 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2393 ((|#2| |#2| |#2|) 31)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -1724 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2609 (|#2| |#2| |#2|)) (-15 -2393 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -2828 (|#2| |#2| |#2|)) (-15 -3956 (|#2| |#2| |#2|)) (-15 -1388 (|#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2470 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
-((-2470 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1833 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3958 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3770 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1388 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3956 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2828 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2393 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2609 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
-(-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -1724 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2609 (|#2| |#2| |#2|)) (-15 -2393 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -2828 (|#2| |#2| |#2|)) (-15 -3956 (|#2| |#2| |#2|)) (-15 -1388 (|#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)))
-((-2170 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|)) 58)))
-(((-402 |#1| |#2|) (-10 -7 (-15 -2170 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2170 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
-((-2170 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) (|:| |prim| (-1070 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-402 *4 *5)))))
-(-10 -7 (-15 -2170 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2170 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3874 (((-1159)) 18)) (-2656 (((-1070 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
-(((-403 |#1| |#2|) (-10 -7 (-15 -2656 ((-377 (-517)) |#2|)) (-15 -2656 ((-1070 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3874 ((-1159)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|)) (T -403))
-((-3874 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1159)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-2656 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
-(-10 -7 (-15 -2656 ((-377 (-517)) |#2|)) (-15 -2656 ((-1070 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3874 ((-1159))))
-((-1544 (((-107) $) 28)) (-1578 (((-107) $) 30)) (-2413 (((-107) $) 31)) (-3260 (((-107) $) 34)) (-1349 (((-107) $) 29)) (-3139 (((-107) $) 33)) (-2254 (((-787) $) 18) (($ (-1057)) 27) (($ (-1074)) 23) (((-1074) $) 22) (((-1007) $) 21)) (-2389 (((-107) $) 32)) (-1534 (((-107) $ $) 15)))
-(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2254 ($ (-1057))) (-15 -2254 ($ (-1074))) (-15 -2254 ((-1074) $)) (-15 -2254 ((-1007) $)) (-15 -1544 ((-107) $)) (-15 -1349 ((-107) $)) (-15 -2413 ((-107) $)) (-15 -3139 ((-107) $)) (-15 -3260 ((-107) $)) (-15 -2389 ((-107) $)) (-15 -1578 ((-107) $)) (-15 -1534 ((-107) $ $))))) (T -404))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-404)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1534 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2254 ($ (-1057))) (-15 -2254 ($ (-1074))) (-15 -2254 ((-1074) $)) (-15 -2254 ((-1007) $)) (-15 -1544 ((-107) $)) (-15 -1349 ((-107) $)) (-15 -2413 ((-107) $)) (-15 -3139 ((-107) $)) (-15 -3260 ((-107) $)) (-15 -2389 ((-107) $)) (-15 -1578 ((-107) $)) (-15 -1534 ((-107) $ $))))
-((-2676 (((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|) 69)) (-3759 (((-388 |#3|) |#3|) 33)) (-3059 (((-3 (-388 (-1070 (-47))) "failed") |#3|) 44 (|has| |#2| (-952 (-47))))) (-1686 (((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3689 (-107))) |#3|) 35)))
-(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -3759 ((-388 |#3|) |#3|)) (-15 -2676 ((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|)) (-15 -1686 ((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3689 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -3059 ((-3 (-388 (-1070 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|) (-1131 |#2|)) (T -405))
-((-3059 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-1686 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3689 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-2676 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(-10 -7 (-15 -3759 ((-388 |#3|) |#3|)) (-15 -2676 ((-3 (-388 (-1070 (-377 (-517)))) "failed") |#3|)) (-15 -1686 ((-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3689 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -3059 ((-3 (-388 (-1070 (-47))) "failed") |#3|)) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-2528 (((-1057) $ (-1057)) NIL)) (-3909 (($ $ (-1057)) NIL)) (-1256 (((-1057) $) NIL)) (-2245 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-1602 (($ (-358)) NIL) (($ (-358) (-1057)) NIL)) (-1214 (((-358) $) NIL)) (-1277 (((-1057) $) NIL)) (-2639 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2431 (((-1159) (-1057)) 9)) (-3055 (((-1159) (-1057)) 10)) (-2322 (((-1159)) 11)) (-2254 (((-787) $) NIL)) (-2666 (($ $) 34)) (-1534 (((-107) $ $) NIL)))
-(((-406) (-13 (-334 (-358) (-1057)) (-10 -7 (-15 -2245 ((-358) (-358) (-358))) (-15 -2245 ((-358) (-358))) (-15 -2431 ((-1159) (-1057))) (-15 -3055 ((-1159) (-1057))) (-15 -2322 ((-1159)))))) (T -406))
-((-2245 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))) (-2322 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-406)))))
-(-13 (-334 (-358) (-1057)) (-10 -7 (-15 -2245 ((-358) (-358) (-358))) (-15 -2245 ((-358) (-358))) (-15 -2431 ((-1159) (-1057))) (-15 -3055 ((-1159) (-1057))) (-15 -2322 ((-1159)))))
-((-1587 (((-107) $ $) NIL)) (-1746 (((-3 (|:| |fst| (-404)) (|:| -2720 "void")) $) 10)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2727 (($) 31)) (-2546 (($) 37)) (-2179 (($) 33)) (-4133 (($) 35)) (-2350 (($) 32)) (-1191 (($) 34)) (-1928 (($) 36)) (-2489 (((-107) $) 8)) (-2796 (((-583 (-874 (-517))) $) 16)) (-2272 (($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-1074)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-874 (-517))) (-107)) 26)) (-2254 (((-787) $) 21) (($ (-404)) 28)) (-1534 (((-107) $ $) NIL)))
-(((-407) (-13 (-1003) (-10 -8 (-15 -2254 ((-787) $)) (-15 -2254 ($ (-404))) (-15 -1746 ((-3 (|:| |fst| (-404)) (|:| -2720 "void")) $)) (-15 -2796 ((-583 (-874 (-517))) $)) (-15 -2489 ((-107) $)) (-15 -2272 ($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-1074)) (-107))) (-15 -2272 ($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-874 (-517))) (-107))) (-15 -2727 ($)) (-15 -2350 ($)) (-15 -2179 ($)) (-15 -2546 ($)) (-15 -1191 ($)) (-15 -4133 ($)) (-15 -1928 ($))))) (T -407))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *1 (-407)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *3 (-583 (-1074))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2727 (*1 *1) (-5 *1 (-407))) (-2350 (*1 *1) (-5 *1 (-407))) (-2179 (*1 *1) (-5 *1 (-407))) (-2546 (*1 *1) (-5 *1 (-407))) (-1191 (*1 *1) (-5 *1 (-407))) (-4133 (*1 *1) (-5 *1 (-407))) (-1928 (*1 *1) (-5 *1 (-407))))
-(-13 (-1003) (-10 -8 (-15 -2254 ((-787) $)) (-15 -2254 ($ (-404))) (-15 -1746 ((-3 (|:| |fst| (-404)) (|:| -2720 "void")) $)) (-15 -2796 ((-583 (-874 (-517))) $)) (-15 -2489 ((-107) $)) (-15 -2272 ($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-1074)) (-107))) (-15 -2272 ($ (-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-583 (-874 (-517))) (-107))) (-15 -2727 ($)) (-15 -2350 ($)) (-15 -2179 ($)) (-15 -2546 ($)) (-15 -1191 ($)) (-15 -4133 ($)) (-15 -1928 ($))))
-((-1587 (((-107) $ $) NIL)) (-1214 (((-1074) $) 8)) (-1277 (((-1057) $) 16)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 13)))
-(((-408 |#1|) (-13 (-1003) (-10 -8 (-15 -1214 ((-1074) $)))) (-1074)) (T -408))
-((-1214 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-408 *3)) (-14 *3 *2))))
-(-13 (-1003) (-10 -8 (-15 -1214 ((-1074) $))))
-((-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8) (($ (-1154 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 11)))
-(((-409) (-1185)) (T -409))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-632))) (-4 *1 (-409)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-409)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-1154 (-632)))) (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-300))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
-((-1837 (((-3 $ "failed") (-1154 (-286 (-349)))) 21) (((-3 $ "failed") (-1154 (-286 (-517)))) 19) (((-3 $ "failed") (-1154 (-874 (-349)))) 17) (((-3 $ "failed") (-1154 (-874 (-517)))) 15) (((-3 $ "failed") (-1154 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-1154 (-377 (-874 (-517))))) 11)) (-3232 (($ (-1154 (-286 (-349)))) 22) (($ (-1154 (-286 (-517)))) 20) (($ (-1154 (-874 (-349)))) 18) (($ (-1154 (-874 (-517)))) 16) (($ (-1154 (-377 (-874 (-349))))) 14) (($ (-1154 (-377 (-874 (-517))))) 12)) (-4099 (((-1159) $) 7)) (-2254 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) 23)))
-(((-410) (-1185)) (T -410))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))))
-(-13 (-365) (-10 -8 (-15 -2254 ($ (-583 (-300)))) (-15 -2254 ($ (-300))) (-15 -2254 ($ (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300)))))) (-15 -3232 ($ (-1154 (-286 (-349))))) (-15 -1837 ((-3 $ "failed") (-1154 (-286 (-349))))) (-15 -3232 ($ (-1154 (-286 (-517))))) (-15 -1837 ((-3 $ "failed") (-1154 (-286 (-517))))) (-15 -3232 ($ (-1154 (-874 (-349))))) (-15 -1837 ((-3 $ "failed") (-1154 (-874 (-349))))) (-15 -3232 ($ (-1154 (-874 (-517))))) (-15 -1837 ((-3 $ "failed") (-1154 (-874 (-517))))) (-15 -3232 ($ (-1154 (-377 (-874 (-349)))))) (-15 -1837 ((-3 $ "failed") (-1154 (-377 (-874 (-349)))))) (-15 -3232 ($ (-1154 (-377 (-874 (-517)))))) (-15 -1837 ((-3 $ "failed") (-1154 (-377 (-874 (-517))))))))
-(((-557 (-787)) . T) ((-365) . T) ((-1109) . T))
-((-1464 (((-107)) 17)) (-1758 (((-107) (-107)) 18)) (-2286 (((-107)) 13)) (-1372 (((-107) (-107)) 14)) (-3811 (((-107)) 15)) (-4145 (((-107) (-107)) 16)) (-3392 (((-843) (-843)) 21) (((-843)) 20)) (-2370 (((-703) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517))))) 41)) (-1405 (((-843) (-843)) 23) (((-843)) 22)) (-1952 (((-2 (|:| -2628 (-517)) (|:| -1343 (-583 |#1|))) |#1|) 61)) (-2913 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517))))))) 125)) (-3893 (((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107)) 151)) (-1943 (((-388 |#1|) |#1| (-703) (-703)) 164) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 161) (((-388 |#1|) |#1| (-583 (-703))) 163) (((-388 |#1|) |#1| (-703)) 162) (((-388 |#1|) |#1|) 160)) (-3856 (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107)) 166) (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703)) 167) (((-3 |#1| "failed") (-843) |#1| (-583 (-703))) 169) (((-3 |#1| "failed") (-843) |#1| (-703)) 168) (((-3 |#1| "failed") (-843) |#1|) 170)) (-1376 (((-388 |#1|) |#1| (-703) (-703)) 159) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 155) (((-388 |#1|) |#1| (-583 (-703))) 157) (((-388 |#1|) |#1| (-703)) 156) (((-388 |#1|) |#1|) 154)) (-2599 (((-107) |#1|) 36)) (-2850 (((-670 (-703)) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517))))) 66)) (-2197 (((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)) 153)))
-(((-411 |#1|) (-10 -7 (-15 -2913 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))))) (-15 -2850 ((-670 (-703)) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))))) (-15 -1405 ((-843))) (-15 -1405 ((-843) (-843))) (-15 -3392 ((-843))) (-15 -3392 ((-843) (-843))) (-15 -2370 ((-703) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))))) (-15 -1952 ((-2 (|:| -2628 (-517)) (|:| -1343 (-583 |#1|))) |#1|)) (-15 -1464 ((-107))) (-15 -1758 ((-107) (-107))) (-15 -2286 ((-107))) (-15 -1372 ((-107) (-107))) (-15 -2599 ((-107) |#1|)) (-15 -3811 ((-107))) (-15 -4145 ((-107) (-107))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1376 ((-388 |#1|) |#1| (-703))) (-15 -1376 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1376 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1376 ((-388 |#1|) |#1| (-703) (-703))) (-15 -1943 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1| (-703))) (-15 -1943 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1943 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1943 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -3893 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107))) (-15 -2197 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) (-1131 (-517))) (T -411))
-((-2197 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3856 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-3856 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-3856 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-3856 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-3856 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) (-1943 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1943 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-4145 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3811 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2599 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2286 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1464 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2628 (-517)) (|:| -1343 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 *4) (|:| -3625 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-3392 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1405 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-1405 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 *4) (|:| -3625 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *4) (|:| -1436 (-517))))))) (-4 *4 (-1131 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
-(-10 -7 (-15 -2913 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))))) (-15 -2850 ((-670 (-703)) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))))) (-15 -1405 ((-843))) (-15 -1405 ((-843) (-843))) (-15 -3392 ((-843))) (-15 -3392 ((-843) (-843))) (-15 -2370 ((-703) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))))) (-15 -1952 ((-2 (|:| -2628 (-517)) (|:| -1343 (-583 |#1|))) |#1|)) (-15 -1464 ((-107))) (-15 -1758 ((-107) (-107))) (-15 -2286 ((-107))) (-15 -1372 ((-107) (-107))) (-15 -2599 ((-107) |#1|)) (-15 -3811 ((-107))) (-15 -4145 ((-107) (-107))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1376 ((-388 |#1|) |#1| (-703))) (-15 -1376 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1376 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1376 ((-388 |#1|) |#1| (-703) (-703))) (-15 -1943 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1| (-703))) (-15 -1943 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1943 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1943 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3856 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -3893 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107))) (-15 -2197 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107) (-1005 (-703)) (-703))))
-((-2477 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1913 (((-517) |#2|) 55)) (-3568 ((|#3| |#2|) 25)) (-2962 ((|#3| |#2| (-843)) 14)) (-1631 ((|#3| |#2|) 15)) (-3305 ((|#3| |#2|) 9)) (-1916 ((|#3| |#2|) 10)) (-2313 ((|#3| |#2| (-843)) 62) ((|#3| |#2|) 30)) (-1198 (((-517) |#2|) 57)))
-(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -1198 ((-517) |#2|)) (-15 -2313 (|#3| |#2|)) (-15 -2313 (|#3| |#2| (-843))) (-15 -1913 ((-517) |#2|)) (-15 -2477 ((-517) |#2| (-703))) (-15 -2477 ((-517) |#2|)) (-15 -2962 (|#3| |#2| (-843))) (-15 -3568 (|#3| |#2|)) (-15 -3305 (|#3| |#2|)) (-15 -1916 (|#3| |#2|)) (-15 -1631 (|#3| |#2|))) (-961) (-1131 |#1|) (-13 (-374) (-952 |#1|) (-333) (-1095) (-256))) (T -412))
-((-1631 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-3568 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))) (-2477 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1131 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1095) (-256))))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) (-1198 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
-(-10 -7 (-15 -1198 ((-517) |#2|)) (-15 -2313 (|#3| |#2|)) (-15 -2313 (|#3| |#2| (-843))) (-15 -1913 ((-517) |#2|)) (-15 -2477 ((-517) |#2| (-703))) (-15 -2477 ((-517) |#2|)) (-15 -2962 (|#3| |#2| (-843))) (-15 -3568 (|#3| |#2|)) (-15 -3305 (|#3| |#2|)) (-15 -1916 (|#3| |#2|)) (-15 -1631 (|#3| |#2|)))
-((-1425 ((|#2| (-1154 |#1|)) 36)) (-2055 ((|#2| |#2| |#1|) 49)) (-3879 ((|#2| |#2| |#1|) 41)) (-3173 ((|#2| |#2|) 38)) (-3973 (((-107) |#2|) 30)) (-3216 (((-583 |#2|) (-843) (-388 |#2|)) 16)) (-3856 ((|#2| (-843) (-388 |#2|)) 21)) (-2850 (((-670 (-703)) (-388 |#2|)) 25)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -3973 ((-107) |#2|)) (-15 -1425 (|#2| (-1154 |#1|))) (-15 -3173 (|#2| |#2|)) (-15 -3879 (|#2| |#2| |#1|)) (-15 -2055 (|#2| |#2| |#1|)) (-15 -2850 ((-670 (-703)) (-388 |#2|))) (-15 -3856 (|#2| (-843) (-388 |#2|))) (-15 -3216 ((-583 |#2|) (-843) (-388 |#2|)))) (-961) (-1131 |#1|)) (T -413))
-((-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-2055 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-3879 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-961)) (-4 *2 (-1131 *4)) (-5 *1 (-413 *4 *2)))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -3973 ((-107) |#2|)) (-15 -1425 (|#2| (-1154 |#1|))) (-15 -3173 (|#2| |#2|)) (-15 -3879 (|#2| |#2| |#1|)) (-15 -2055 (|#2| |#2| |#1|)) (-15 -2850 ((-670 (-703)) (-388 |#2|))) (-15 -3856 (|#2| (-843) (-388 |#2|))) (-15 -3216 ((-583 |#2|) (-843) (-388 |#2|))))
-((-1756 (((-703)) 41)) (-2712 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-1971 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-3700 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-4066 (((-703)) 40) (((-703) (-703)) 39)) (-2021 ((|#1| (-703) (-517)) 29)) (-3494 (((-1159)) 43)))
-(((-414 |#1|) (-10 -7 (-15 -2021 (|#1| (-703) (-517))) (-15 -4066 ((-703) (-703))) (-15 -4066 ((-703))) (-15 -1756 ((-703))) (-15 -3494 ((-1159))) (IF (|has| |#1| (-374)) (PROGN (-15 -3700 ((-517) |#1|)) (-15 -1971 ((-517) |#1|)) (-15 -2712 ((-703) (-703))) (-15 -2712 ((-703)))) |%noBranch|)) (-961)) (T -414))
-((-2712 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1971 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3700 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3494 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-1756 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-4066 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
-(-10 -7 (-15 -2021 (|#1| (-703) (-517))) (-15 -4066 ((-703) (-703))) (-15 -4066 ((-703))) (-15 -1756 ((-703))) (-15 -3494 ((-1159))) (IF (|has| |#1| (-374)) (PROGN (-15 -3700 ((-517) |#1|)) (-15 -1971 ((-517) |#1|)) (-15 -2712 ((-703) (-703))) (-15 -2712 ((-703)))) |%noBranch|))
-((-1518 (((-583 (-517)) (-517)) 57)) (-3083 (((-107) (-153 (-517))) 61)) (-1376 (((-388 (-153 (-517))) (-153 (-517))) 56)))
-(((-415) (-10 -7 (-15 -1376 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -1518 ((-583 (-517)) (-517))) (-15 -3083 ((-107) (-153 (-517)))))) (T -415))
-((-3083 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
-(-10 -7 (-15 -1376 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -1518 ((-583 (-517)) (-517))) (-15 -3083 ((-107) (-153 (-517)))))
-((-3428 ((|#4| |#4| (-583 |#4|)) 57)) (-1692 (((-583 |#4|) (-583 |#4|) (-1057) (-1057)) 17) (((-583 |#4|) (-583 |#4|) (-1057)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3428 (|#4| |#4| (-583 |#4|))) (-15 -1692 ((-583 |#4|) (-583 |#4|))) (-15 -1692 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -1692 ((-583 |#4|) (-583 |#4|) (-1057) (-1057)))) (-278) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -416))
-((-1692 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3428 (|#4| |#4| (-583 |#4|))) (-15 -1692 ((-583 |#4|) (-583 |#4|))) (-15 -1692 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -1692 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))))
-((-3445 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 70) (((-583 (-583 |#4|)) (-583 |#4|)) 69) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 63) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 64)) (-3056 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 40) (((-583 (-583 |#4|)) (-583 |#4|)) 60)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3056 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -417))
-((-3445 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3445 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3445 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3445 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(-10 -7 (-15 -3056 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3056 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3445 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
-((-2096 (((-703) |#4|) 12)) (-2823 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|)))) 31)) (-2319 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2309 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3078 ((|#4| |#4| (-583 |#4|)) 39)) (-3481 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 68)) (-3143 (((-1159) |#4|) 41)) (-2815 (((-1159) (-583 |#4|)) 50)) (-1479 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 47)) (-2440 (((-1159) (-517)) 75)) (-3510 (((-583 |#4|) (-583 |#4|)) 73)) (-3968 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|)) |#4| (-703)) 25)) (-1717 (((-517) |#4|) 74)) (-2314 ((|#4| |#4|) 29)) (-1889 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 54)) (-2120 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 85)) (-2757 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2242 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-2439 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-3982 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3404 (((-107) |#2| |#2|) 55)) (-2316 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2868 (((-107) |#2| |#2| |#2| |#2|) 58)) (-2549 ((|#4| |#4| (-583 |#4|)) 69)))
-(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2549 (|#4| |#4| (-583 |#4|))) (-15 -3078 (|#4| |#4| (-583 |#4|))) (-15 -1889 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2242 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3404 ((-107) |#2| |#2|)) (-15 -2868 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2316 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3982 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2439 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3481 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -2314 (|#4| |#4|)) (-15 -2823 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|))))) (-15 -2309 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3510 ((-583 |#4|) (-583 |#4|))) (-15 -1717 ((-517) |#4|)) (-15 -3143 ((-1159) |#4|)) (-15 -1479 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -2120 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2815 ((-1159) (-583 |#4|))) (-15 -2440 ((-1159) (-517))) (-15 -2757 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3968 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|)) |#4| (-703))) (-15 -2096 ((-703) |#4|))) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -418))
-((-2096 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-3968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1465 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-2757 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2120 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1479 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1717 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2319 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-2823 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-2439 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2316 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2868 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3404 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1889 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3078 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2549 (|#4| |#4| (-583 |#4|))) (-15 -3078 (|#4| |#4| (-583 |#4|))) (-15 -1889 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2242 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3404 ((-107) |#2| |#2|)) (-15 -2868 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2316 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3982 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2439 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3481 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -2314 (|#4| |#4|)) (-15 -2823 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|))))) (-15 -2309 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3510 ((-583 |#4|) (-583 |#4|))) (-15 -1717 ((-517) |#4|)) (-15 -3143 ((-1159) |#4|)) (-15 -1479 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -2120 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2815 ((-1159) (-583 |#4|))) (-15 -2440 ((-1159) (-517))) (-15 -2757 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3968 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1465 |#4|)) |#4| (-703))) (-15 -2096 ((-703) |#4|)))
-((-3293 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-3491 (((-583 |#4|) (-583 |#4|) (-1057) (-1057)) 41) (((-583 |#4|) (-583 |#4|) (-1057)) 40) (((-583 |#4|) (-583 |#4|)) 35)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3491 ((-583 |#4|) (-583 |#4|))) (-15 -3491 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -3491 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))) (IF (|has| |#1| (-333)) (-15 -3293 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -419))
-((-3293 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-3491 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3491 ((-583 |#4|) (-583 |#4|))) (-15 -3491 ((-583 |#4|) (-583 |#4|) (-1057))) (-15 -3491 ((-583 |#4|) (-583 |#4|) (-1057) (-1057))) (IF (|has| |#1| (-333)) (-15 -3293 (|#4| |#4| (-583 |#4|))) |%noBranch|))
-((-1360 (($ $ $) 14) (($ (-583 $)) 21)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 41)) (-1387 (($ $ $) NIL) (($ (-583 $)) 22)))
-(((-420 |#1|) (-10 -8 (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1360 (|#1| (-583 |#1|))) (-15 -1360 (|#1| |#1| |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|))) (-421)) (T -420))
-NIL
-(-10 -8 (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1360 (|#1| (-583 |#1|))) (-15 -1360 (|#1| |#1| |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -1387 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2483 (((-3 $ "failed") $ $) 42)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-421) (-1185)) (T -421))
-((-1387 (*1 *1 *1 *1) (-4 *1 (-421))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1360 (*1 *1 *1 *1) (-4 *1 (-421))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-421)))))
-(-13 (-509) (-10 -8 (-15 -1387 ($ $ $)) (-15 -1387 ($ (-583 $))) (-15 -1360 ($ $ $)) (-15 -1360 ($ (-583 $))) (-15 -3875 ((-1070 $) (-1070 $) (-1070 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1346 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2507 (((-1154 (-623 (-377 (-874 |#1|)))) (-1154 $)) NIL) (((-1154 (-623 (-377 (-874 |#1|))))) NIL)) (-3118 (((-1154 $)) NIL)) (-2706 (($) NIL T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL)) (-2588 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2318 (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-2571 (((-377 (-874 |#1|)) $) NIL)) (-3981 (((-623 (-377 (-874 |#1|))) $ (-1154 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-1930 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-1559 (((-1070 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1070 (-377 (-874 |#1|)))) 81 (|has| |#1| (-509)))) (-3132 (($ $ (-843)) NIL)) (-2831 (((-377 (-874 |#1|)) $) NIL)) (-2775 (((-1070 (-377 (-874 |#1|))) $) 79 (|has| (-377 (-874 |#1|)) (-509)))) (-1618 (((-377 (-874 |#1|)) (-1154 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2961 (((-1070 (-377 (-874 |#1|))) $) NIL)) (-2622 (((-107)) NIL)) (-4047 (($ (-1154 (-377 (-874 |#1|))) (-1154 $)) 101) (($ (-1154 (-377 (-874 |#1|)))) NIL)) (-3775 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3334 (((-843)) NIL)) (-3241 (((-107)) NIL)) (-3363 (($ $ (-843)) NIL)) (-3762 (((-107)) NIL)) (-2765 (((-107)) NIL)) (-4079 (((-107)) NIL)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL)) (-1202 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-1968 (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-1385 (((-377 (-874 |#1|)) $) NIL)) (-2790 (((-623 (-377 (-874 |#1|))) $ (-1154 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-3174 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-1638 (((-1070 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1070 (-377 (-874 |#1|)))) 80 (|has| |#1| (-509)))) (-2184 (($ $ (-843)) NIL)) (-3368 (((-377 (-874 |#1|)) $) NIL)) (-3018 (((-1070 (-377 (-874 |#1|))) $) 74 (|has| (-377 (-874 |#1|)) (-509)))) (-2478 (((-377 (-874 |#1|)) (-1154 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-4020 (((-1070 (-377 (-874 |#1|))) $) NIL)) (-1816 (((-107)) NIL)) (-1277 (((-1057) $) NIL)) (-3499 (((-107)) NIL)) (-2220 (((-107)) NIL)) (-2268 (((-107)) NIL)) (-3214 (((-1021) $) NIL)) (-3071 (((-377 (-874 |#1|)) $ $) 68 (|has| |#1| (-509)))) (-3135 (((-377 (-874 |#1|)) $) 91 (|has| |#1| (-509)))) (-3692 (((-377 (-874 |#1|)) $) 93 (|has| |#1| (-509)))) (-3197 (((-1070 (-377 (-874 |#1|))) $) 85 (|has| |#1| (-509)))) (-2680 (((-377 (-874 |#1|))) 69 (|has| |#1| (-509)))) (-4123 (((-377 (-874 |#1|)) $ $) 60 (|has| |#1| (-509)))) (-1824 (((-377 (-874 |#1|)) $) 90 (|has| |#1| (-509)))) (-3103 (((-377 (-874 |#1|)) $) 92 (|has| |#1| (-509)))) (-2043 (((-1070 (-377 (-874 |#1|))) $) 84 (|has| |#1| (-509)))) (-3131 (((-377 (-874 |#1|))) 65 (|has| |#1| (-509)))) (-2773 (($) 99) (($ (-1074)) 105) (($ (-1154 (-1074))) 104) (($ (-1154 $)) 94) (($ (-1074) (-1154 $)) 103) (($ (-1154 (-1074)) (-1154 $)) 102)) (-2836 (((-107)) NIL)) (-1437 (((-377 (-874 |#1|)) $ (-517)) NIL)) (-3589 (((-1154 (-377 (-874 |#1|))) $ (-1154 $)) 96) (((-623 (-377 (-874 |#1|))) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 (-874 |#1|))) $) 37) (((-623 (-377 (-874 |#1|))) (-1154 $)) NIL)) (-3667 (((-1154 (-377 (-874 |#1|))) $) NIL) (($ (-1154 (-377 (-874 |#1|)))) 34)) (-3346 (((-583 (-874 (-377 (-874 |#1|)))) (-1154 $)) NIL) (((-583 (-874 (-377 (-874 |#1|))))) NIL) (((-583 (-874 |#1|)) (-1154 $)) 97 (|has| |#1| (-509))) (((-583 (-874 |#1|))) 98 (|has| |#1| (-509)))) (-2901 (($ $ $) NIL)) (-3484 (((-107)) NIL)) (-2254 (((-787) $) NIL) (($ (-1154 (-377 (-874 |#1|)))) NIL)) (-2080 (((-1154 $)) 56)) (-2360 (((-583 (-1154 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3950 (($ $ $ $) NIL)) (-2534 (((-107)) NIL)) (-1695 (($ (-623 (-377 (-874 |#1|))) $) NIL)) (-2145 (($ $ $) NIL)) (-1669 (((-107)) NIL)) (-3610 (((-107)) NIL)) (-3558 (((-107)) NIL)) (-2398 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) 95)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-874 |#1|))) NIL) (($ (-377 (-874 |#1|)) $) NIL) (($ (-1041 |#2| (-377 (-874 |#1|))) $) NIL)))
-(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-874 |#1|))) (-585 (-1041 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2254 ($ (-1154 (-377 (-874 |#1|))))) (-15 -3658 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -2342 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -2773 ($)) (-15 -2773 ($ (-1074))) (-15 -2773 ($ (-1154 (-1074)))) (-15 -2773 ($ (-1154 $))) (-15 -2773 ($ (-1074) (-1154 $))) (-15 -2773 ($ (-1154 (-1074)) (-1154 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1638 ((-1070 (-377 (-874 |#1|))))) (-15 -2043 ((-1070 (-377 (-874 |#1|))) $)) (-15 -1824 ((-377 (-874 |#1|)) $)) (-15 -3103 ((-377 (-874 |#1|)) $)) (-15 -1559 ((-1070 (-377 (-874 |#1|))))) (-15 -3197 ((-1070 (-377 (-874 |#1|))) $)) (-15 -3135 ((-377 (-874 |#1|)) $)) (-15 -3692 ((-377 (-874 |#1|)) $)) (-15 -4123 ((-377 (-874 |#1|)) $ $)) (-15 -3131 ((-377 (-874 |#1|)))) (-15 -3071 ((-377 (-874 |#1|)) $ $)) (-15 -2680 ((-377 (-874 |#1|)))) (-15 -3346 ((-583 (-874 |#1|)) (-1154 $))) (-15 -3346 ((-583 (-874 |#1|))))) |%noBranch|))) (-156) (-843) (-583 (-1074)) (-1154 (-623 |#1|))) (T -422))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) (-3658 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2080 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2342 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2080 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2773 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1074))) (-14 *5 (-1154 (-623 *2))))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1154 (-623 *3))))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1154 (-1074))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1154 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2773 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1154 (-623 *4))))) (-2773 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-1074))) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) (-1638 (*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-1559 (*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-4123 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3131 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3071 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-2680 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) (-3346 (*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(-13 (-387 (-377 (-874 |#1|))) (-585 (-1041 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2254 ($ (-1154 (-377 (-874 |#1|))))) (-15 -3658 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -2342 ((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed"))) (-15 -2773 ($)) (-15 -2773 ($ (-1074))) (-15 -2773 ($ (-1154 (-1074)))) (-15 -2773 ($ (-1154 $))) (-15 -2773 ($ (-1074) (-1154 $))) (-15 -2773 ($ (-1154 (-1074)) (-1154 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1638 ((-1070 (-377 (-874 |#1|))))) (-15 -2043 ((-1070 (-377 (-874 |#1|))) $)) (-15 -1824 ((-377 (-874 |#1|)) $)) (-15 -3103 ((-377 (-874 |#1|)) $)) (-15 -1559 ((-1070 (-377 (-874 |#1|))))) (-15 -3197 ((-1070 (-377 (-874 |#1|))) $)) (-15 -3135 ((-377 (-874 |#1|)) $)) (-15 -3692 ((-377 (-874 |#1|)) $)) (-15 -4123 ((-377 (-874 |#1|)) $ $)) (-15 -3131 ((-377 (-874 |#1|)))) (-15 -3071 ((-377 (-874 |#1|)) $ $)) (-15 -2680 ((-377 (-874 |#1|)))) (-15 -3346 ((-583 (-874 |#1|)) (-1154 $))) (-15 -3346 ((-583 (-874 |#1|))))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 13)) (-1357 (((-583 (-789 |#1|)) $) 73)) (-2374 (((-1070 $) $ (-789 |#1|)) 46) (((-1070 |#2|) $) 115)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2239 (($ $) NIL (|has| |#2| (-509)))) (-3531 (((-107) $) NIL (|has| |#2| (-509)))) (-3916 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL (|has| |#2| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3232 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3167 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2251 (($ $ (-583 (-517))) 78)) (-1221 (($ $) 67)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#2| (-831)))) (-2083 (($ $ |#2| |#3| $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) 58)) (-1347 (($ (-1070 |#2|) (-789 |#1|)) 120) (($ (-1070 $) (-789 |#1|)) 52)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) 59)) (-1336 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-789 |#1|)) NIL)) (-3876 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-3602 (($ (-1 |#3| |#3|) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-3382 (((-3 (-789 |#1|) "failed") $) 39)) (-1687 (($ $) NIL)) (-1193 ((|#2| $) 41)) (-1360 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -3010 (-703))) "failed") $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) 40)) (-1671 ((|#2| $) 113)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 125 (|has| |#2| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 85) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 88) (($ $ (-789 |#1|) $) 83) (($ $ (-583 (-789 |#1|)) (-583 $)) 104)) (-3383 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1248 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3625 ((|#3| $) 66) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#2| $) 122 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2254 (((-787) $) 141) (($ (-517)) NIL) (($ |#2|) 84) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3782 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 16 T CONST)) (-2411 (($) 25 T CONST)) (-2738 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 109)) (** (($ $ (-843)) NIL) (($ $ (-703)) 107)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-423 |#1| |#2| |#3|) (-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961) (-212 (-2290 |#1|) (-703))) (T -423))
-((-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1074))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2290 *3) (-703))))))
-(-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517))))))
-((-1957 (((-107) |#1| (-583 |#2|)) 65)) (-3617 (((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 74)) (-3626 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|))) 76)) (-2137 ((|#2| |#2| |#1|) 28)) (-2990 (((-703) |#2| (-583 |#2|)) 20)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -2137 (|#2| |#2| |#1|)) (-15 -2990 ((-703) |#2| (-583 |#2|))) (-15 -3617 ((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3626 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|)))) (-15 -1957 ((-107) |#1| (-583 |#2|)))) (-278) (-1131 |#1|)) (T -424))
-((-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1131 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-3626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1154 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1131 *4)))) (-3617 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1131 *4)) (-5 *2 (-1154 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-2137 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1131 *3)))))
-(-10 -7 (-15 -2137 (|#2| |#2| |#1|)) (-15 -2990 ((-703) |#2| (-583 |#2|))) (-15 -3617 ((-3 (-1154 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3626 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1154 (-583 |#2|)))) (-15 -1957 ((-107) |#1| (-583 |#2|))))
-((-1376 (((-388 |#5|) |#5|) 24)))
-(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1376 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074))))) (-725) (-509) (-509) (-871 |#4| |#2| |#1|)) (T -425))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))))
-(-10 -7 (-15 -1376 ((-388 |#5|) |#5|)))
-((-3900 ((|#3|) 36)) (-3875 (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 32)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3875 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -3900 (|#3|))) (-725) (-779) (-831) (-871 |#3| |#1| |#2|)) (T -426))
-((-3900 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3875 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -3900 (|#3|)))
-((-1376 (((-388 (-1070 |#1|)) (-1070 |#1|)) 41)))
-(((-427 |#1|) (-10 -7 (-15 -1376 ((-388 (-1070 |#1|)) (-1070 |#1|)))) (-278)) (T -427))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1070 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1070 *4)))))
-(-10 -7 (-15 -1376 ((-388 (-1070 |#1|)) (-1070 |#1|))))
-((-1565 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703))) 41) (((-51) |#2| (-1074) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-4016 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517))) 77) (((-51) |#2| (-1074) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-1594 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))) 64)) (-1579 (((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517))) 47)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -1565 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1565 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1565 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703)))) (-15 -1565 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703)))) (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1594 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1594 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -4016 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -4016 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -4016 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -428))
-((-4016 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-4016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-4016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-4016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-4016 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-1594 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1579 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1565 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-703))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-703))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1565 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
-(-10 -7 (-15 -1565 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1565 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -1565 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-703)))) (-15 -1565 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-703)))) (-15 -1579 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -1579 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -1594 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -1594 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -4016 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|))) (-15 -4016 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1122 (-517)))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-517)))) (-15 -4016 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))) (-15 -4016 ((-51) |#2| (-1074) (-265 |#2|) (-1122 (-377 (-517))) (-377 (-517)))))
-((-2137 ((|#2| |#2| |#1|) 15)) (-4116 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-843)) 65)) (-1828 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843)) 58)))
-(((-429 |#1| |#2|) (-10 -7 (-15 -1828 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -4116 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -2137 (|#2| |#2| |#1|))) (-278) (-1131 |#1|)) (T -429))
-((-2137 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1131 *3)))) (-4116 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1131 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-1828 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1131 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(-10 -7 (-15 -1828 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -4116 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -2137 (|#2| |#2| |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 28)) (-1441 (($ |#3|) 25)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) 32)) (-1942 (($ |#2| |#4| $) 33)) (-1336 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-1687 (((-646 |#3| |#4| |#5|) $) 15)) (-2357 ((|#3| $) 19)) (-3832 ((|#4| $) 17)) (-1193 ((|#2| $) 29)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-3086 (($ |#2| |#3| |#4|) 26)) (-2398 (($) 36 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 34)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1193 (|#2| $)) (-15 -1687 ((-646 |#3| |#4| |#5|) $)) (-15 -3832 (|#4| $)) (-15 -2357 (|#3| $)) (-15 -1221 ($ $)) (-15 -1336 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -1441 ($ |#3|)) (-15 -3086 ($ |#2| |#3| |#4|)) (-15 -1942 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1074)) (-156) (-779) (-212 (-2290 |#1|) (-703)) (-1 (-107) (-2 (|:| -3544 |#3|) (|:| -3010 |#4|)) (-2 (|:| -3544 |#3|) (|:| -3010 |#4|))) (-871 |#2| |#4| (-789 |#1|))) (T -430))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2290 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) (-1193 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *4) (|:| -3010 *5)) (-2 (|:| -3544 *4) (|:| -3010 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) (-1687 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2290 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) (-3832 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *2)) (-2 (|:| -3544 *5) (|:| -3010 *2)))) (-4 *2 (-212 (-2290 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))) (-2357 (*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *5)) (-2 (|:| -3544 *2) (|:| -3010 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1221 (*1 *1 *1) (-12 (-14 *2 (-583 (-1074))) (-4 *3 (-156)) (-4 *5 (-212 (-2290 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *4) (|:| -3010 *5)) (-2 (|:| -3544 *4) (|:| -3010 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) (-1336 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2290 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) (-1441 (*1 *1 *2) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *5)) (-2 (|:| -3544 *2) (|:| -3010 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-3086 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1074))) (-4 *2 (-156)) (-4 *4 (-212 (-2290 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *3) (|:| -3010 *4)) (-2 (|:| -3544 *3) (|:| -3010 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))) (-1942 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-4 *3 (-212 (-2290 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *3)) (-2 (|:| -3544 *5) (|:| -3010 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
-(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1193 (|#2| $)) (-15 -1687 ((-646 |#3| |#4| |#5|) $)) (-15 -3832 (|#4| $)) (-15 -2357 (|#3| $)) (-15 -1221 ($ $)) (-15 -1336 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -1441 ($ |#3|)) (-15 -3086 ($ |#2| |#3| |#4|)) (-15 -1942 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3585 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3585 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2254 ($ |#4|)) (-15 -1842 (|#4| $)) (-15 -1852 (|#4| $))))) (T -431))
-((-3585 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(-10 -7 (-15 -3585 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-1357 (((-583 |#3|) $) 41)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) NIL (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-3381 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 47)) (-3232 (($ (-583 |#4|)) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2050 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183)))) (-3240 (((-583 |#4|) $) 18 (|has| $ (-6 -4183)))) (-2877 ((|#3| $) 45)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#4|) $) 14 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3696 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 21)) (-2402 (((-583 |#3|) $) NIL)) (-1694 (((-107) |#3| $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3214 (((-1021) $) NIL)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 39)) (-2756 (($) 17)) (-3223 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) 16)) (-3667 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2272 (($ (-583 |#4|)) 13)) (-1491 (($ $ |#3|) NIL)) (-2583 (($ $ |#3|) NIL)) (-3788 (($ $ |#3|) NIL)) (-2254 (((-787) $) 38) (((-583 |#4|) $) 48)) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 30)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-432 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3667 ($ (-583 |#4|))) (-6 -4183) (-6 -4184))) (-961) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -432))
-((-3667 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
-(-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3667 ($ (-583 |#4|))) (-6 -4183) (-6 -4184)))
-((-2398 (($) 11)) (-2411 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -2411 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2398 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
-NIL
-(-10 -8 (-15 -2411 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2398 (|#1|)))
-((-1587 (((-107) $ $) 7)) (-1837 (((-3 |#1| "failed") $) 26)) (-3232 ((|#1| $) 25)) (-1509 (($ $ $) 23)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3625 ((|#2| $) 19)) (-2254 (((-787) $) 11) (($ |#1|) 27)) (-2398 (($) 18 T CONST)) (-2411 (($) 24 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 15) (($ $ $) 13)) (-1645 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-434 |#1| |#2|) (-1185) (-156) (-23)) (T -434))
-((-2411 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1509 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-439 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 (-2411) ($) -2497) (-15 -1509 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-952 |#1|) . T) ((-1003) . T))
-((-1787 (((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843)) 18)) (-2893 (((-1154 (-1154 (-517))) (-843)) 16)))
-(((-435) (-10 -7 (-15 -1787 ((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843))) (-15 -2893 ((-1154 (-1154 (-517))) (-843))))) (T -435))
-((-2893 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 (-517)))) (-5 *1 (-435)))) (-1787 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-1154 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
-(-10 -7 (-15 -1787 ((-1154 (-1154 (-517))) (-1154 (-1154 (-517))) (-843))) (-15 -2893 ((-1154 (-1154 (-517))) (-843))))
-((-1435 (((-517) (-517)) 30) (((-517)) 22)) (-3259 (((-517) (-517)) 26) (((-517)) 18)) (-1575 (((-517) (-517)) 28) (((-517)) 20)) (-2555 (((-107) (-107)) 12) (((-107)) 10)) (-2053 (((-107) (-107)) 11) (((-107)) 9)) (-1830 (((-107) (-107)) 24) (((-107)) 15)))
-(((-436) (-10 -7 (-15 -2053 ((-107))) (-15 -2555 ((-107))) (-15 -2053 ((-107) (-107))) (-15 -2555 ((-107) (-107))) (-15 -1830 ((-107))) (-15 -1575 ((-517))) (-15 -3259 ((-517))) (-15 -1435 ((-517))) (-15 -1830 ((-107) (-107))) (-15 -1575 ((-517) (-517))) (-15 -3259 ((-517) (-517))) (-15 -1435 ((-517) (-517))))) (T -436))
-((-1435 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-1435 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3259 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1575 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1830 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2555 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2053 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(-10 -7 (-15 -2053 ((-107))) (-15 -2555 ((-107))) (-15 -2053 ((-107) (-107))) (-15 -2555 ((-107) (-107))) (-15 -1830 ((-107))) (-15 -1575 ((-517))) (-15 -3259 ((-517))) (-15 -1435 ((-517))) (-15 -1830 ((-107) (-107))) (-15 -1575 ((-517) (-517))) (-15 -3259 ((-517) (-517))) (-15 -1435 ((-517) (-517))))
-((-1587 (((-107) $ $) NIL)) (-3016 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 90)) (-2795 (((-583 (-998 (-349))) $) 14) (((-583 (-998 (-349))) $ (-583 (-998 (-349)))) 87)) (-1996 (((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797))) 42)) (-3863 (((-583 (-583 (-865 (-199)))) $) 83)) (-1482 (((-1159) $ (-865 (-199)) (-797)) 103)) (-1406 (($ $) 82) (($ (-583 (-583 (-865 (-199))))) 93) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843))) 92) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236))) 94)) (-1277 (((-1057) $) NIL)) (-3458 (((-517) $) 65)) (-3214 (((-1021) $) NIL)) (-2274 (($) 91)) (-3414 (((-583 (-199)) (-583 (-583 (-865 (-199))))) 52)) (-3596 (((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843)) 97) (((-1159) $ (-865 (-199))) 99) (((-1159) $ (-865 (-199)) (-797) (-797) (-843)) 98)) (-2254 (((-787) $) 109) (($ (-583 (-583 (-865 (-199))))) 104)) (-1611 (((-1159) $ (-865 (-199))) 102)) (-1534 (((-107) $ $) NIL)))
-(((-437) (-13 (-1003) (-10 -8 (-15 -2274 ($)) (-15 -1406 ($ $)) (-15 -1406 ($ (-583 (-583 (-865 (-199)))))) (-15 -1406 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1406 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -3863 ((-583 (-583 (-865 (-199)))) $)) (-15 -3458 ((-517) $)) (-15 -2795 ((-583 (-998 (-349))) $)) (-15 -2795 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3016 ((-583 (-349)) $)) (-15 -3016 ((-583 (-349)) $ (-583 (-349)))) (-15 -3596 ((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -3596 ((-1159) $ (-865 (-199)))) (-15 -3596 ((-1159) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -1611 ((-1159) $ (-865 (-199)))) (-15 -1482 ((-1159) $ (-865 (-199)) (-797))) (-15 -2254 ($ (-583 (-583 (-865 (-199)))))) (-15 -2254 ((-787) $)) (-15 -1996 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -3414 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))) (T -437))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2274 (*1 *1) (-5 *1 (-437))) (-1406 (*1 *1 *1) (-5 *1 (-437))) (-1406 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-1406 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) (-1406 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3016 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3596 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-3596 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) (-3596 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-1611 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) (-1482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-437)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-1996 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
-(-13 (-1003) (-10 -8 (-15 -2274 ($)) (-15 -1406 ($ $)) (-15 -1406 ($ (-583 (-583 (-865 (-199)))))) (-15 -1406 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1406 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -3863 ((-583 (-583 (-865 (-199)))) $)) (-15 -3458 ((-517) $)) (-15 -2795 ((-583 (-998 (-349))) $)) (-15 -2795 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3016 ((-583 (-349)) $)) (-15 -3016 ((-583 (-349)) $ (-583 (-349)))) (-15 -3596 ((-1159) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -3596 ((-1159) $ (-865 (-199)))) (-15 -3596 ((-1159) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -1611 ((-1159) $ (-865 (-199)))) (-15 -1482 ((-1159) $ (-865 (-199)) (-797))) (-15 -2254 ($ (-583 (-583 (-865 (-199)))))) (-15 -2254 ((-787) $)) (-15 -1996 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -3414 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))
-((-1663 (($ $) NIL) (($ $ $) 11)))
-(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
-NIL
-(-10 -8 (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3625 ((|#2| $) 19)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 15) (($ $ $) 13)) (-1645 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-439 |#1| |#2|) (-1185) (-156) (-23)) (T -439))
-((-3625 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-2398 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1663 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1663 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-1003) (-10 -8 (-15 -3625 (|t#2| $)) (-15 (-2398) ($) -2497) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1663 ($ $)) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3362 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2898 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 86)) (-1524 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
-(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2898 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3362 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1524 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1074)) (-421) (-421)) (T -440))
-((-1524 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-3362 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(-10 -7 (-15 -2898 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3362 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1524 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
-((-3775 (((-3 $ "failed") $) 11)) (-1757 (($ $ $) 20)) (-2901 (($ $ $) 21)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1678 (($ $ $) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
-(((-441 |#1|) (-10 -8 (-15 -2901 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1678 (|#1| |#1| |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-442)) (T -441))
-NIL
-(-10 -8 (-15 -2901 (|#1| |#1| |#1|)) (-15 -1757 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1678 (|#1| |#1| |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-2706 (($) 20 T CONST)) (-3775 (((-3 $ "failed") $) 16)) (-3469 (((-107) $) 19)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 27)) (-3214 (((-1021) $) 10)) (-1757 (($ $ $) 23)) (-2901 (($ $ $) 22)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2411 (($) 21 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-442) (-1185)) (T -442))
-((-1639 (*1 *1 *1) (-4 *1 (-442))) (-1678 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2196 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1757 (*1 *1 *1 *1) (-4 *1 (-442))) (-2901 (*1 *1 *1 *1) (-4 *1 (-442))))
-(-13 (-659) (-10 -8 (-15 -1639 ($ $)) (-15 -1678 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2196 ($ $ (-517))) (-6 -4180) (-15 -1757 ($ $ $)) (-15 -2901 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 17)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) 22)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 33 (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 15)) (-3625 (((-377 (-517)) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1150 |#2|)) NIL) (($ (-1140 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 18)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) 24)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-443 |#1| |#2| |#3|) (-13 (-1136 |#1|) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -2254 ($ (-1140 |#1| |#2| |#3|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -443))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1136 |#1|) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -2254 ($ (-1140 |#1| |#2| |#3|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) 18)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) 19)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 16)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) NIL)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-444 |#1| |#2| |#3| |#4|) (-1086 |#1| |#2|) (-1003) (-1003) (-1086 |#1| |#2|) |#2|) (T -444))
-NIL
-(-1086 |#1| |#2|)
-((-1587 (((-107) $ $) NIL)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3258 (((-583 $) (-583 |#4|)) NIL)) (-1357 (((-583 |#3|) $) NIL)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2802 ((|#4| |#4| $) NIL)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) 26 (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3381 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3232 (($ (-583 |#4|)) NIL)) (-1761 (((-3 $ "failed") $) 39)) (-3896 ((|#4| |#4| $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2050 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3797 ((|#4| |#4| $) NIL)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) NIL)) (-3240 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2877 ((|#3| $) 33)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3696 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 21)) (-2402 (((-583 |#3|) $) NIL)) (-1694 (((-107) |#3| $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2067 (((-3 |#4| "failed") $) 37)) (-2825 (((-583 |#4|) $) NIL)) (-1966 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4083 ((|#4| |#4| $) NIL)) (-3706 (((-107) $ $) NIL)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1382 ((|#4| |#4| $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-3 |#4| "failed") $) 35)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2463 (((-3 $ "failed") $ |#4|) 46)) (-2204 (($ $ |#4|) NIL)) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 15)) (-2756 (($) 13)) (-3625 (((-703) $) NIL)) (-3223 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) 12)) (-3667 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 20)) (-1491 (($ $ |#3|) 42)) (-2583 (($ $ |#3|) 43)) (-2202 (($ $) NIL)) (-3788 (($ $ |#3|) NIL)) (-2254 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1444 (((-703) $) NIL (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) NIL)) (-1892 (((-107) |#3| $) NIL)) (-1534 (((-107) $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-445 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -445))
-NIL
-(-1103 |#1| |#2| |#3| |#4|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2665 (($) 18)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3667 (((-349) $) 22) (((-199) $) 25) (((-377 (-1070 (-517))) $) 19) (((-493) $) 52)) (-2254 (((-787) $) 50) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 36 T CONST)) (-2411 (($) 11 T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-446) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1070 (-517)))) (-558 (-493)) (-10 -8 (-15 -2665 ($))))) (T -446))
-((-2665 (*1 *1) (-5 *1 (-446))))
-(-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1070 (-517)))) (-558 (-493)) (-10 -8 (-15 -2665 ($))))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) 16)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) 20)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 18)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) 13)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 19)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 11 (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) 15 (|has| $ (-6 -4183)))))
-(((-447 |#1| |#2| |#3|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003) (-1057)) (T -447))
-NIL
-(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
-((-2294 (((-517) (-517) (-517)) 7)) (-3199 (((-107) (-517) (-517) (-517) (-517)) 11)) (-3493 (((-1154 (-583 (-517))) (-703) (-703)) 22)))
-(((-448) (-10 -7 (-15 -2294 ((-517) (-517) (-517))) (-15 -3199 ((-107) (-517) (-517) (-517) (-517))) (-15 -3493 ((-1154 (-583 (-517))) (-703) (-703))))) (T -448))
-((-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1154 (-583 (-517)))) (-5 *1 (-448)))) (-3199 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-2294 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
-(-10 -7 (-15 -2294 ((-517) (-517) (-517))) (-15 -3199 ((-107) (-517) (-517) (-517) (-517))) (-15 -3493 ((-1154 (-583 (-517))) (-703) (-703))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-789 |#1|)) $) NIL)) (-2374 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2239 (($ $) NIL (|has| |#2| (-509)))) (-3531 (((-107) $) NIL (|has| |#2| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL (|has| |#2| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3167 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2251 (($ $ (-583 (-517))) NIL)) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#2| (-831)))) (-2083 (($ $ |#2| (-450 (-2290 |#1|) (-703)) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#2| (-450 (-2290 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-789 |#1|)) NIL)) (-3876 (((-450 (-2290 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-3602 (($ (-1 (-450 (-2290 |#1|) (-703)) (-450 (-2290 |#1|) (-703))) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-3382 (((-3 (-789 |#1|) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#2| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -3010 (-703))) "failed") $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#2| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3383 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1248 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3625 (((-450 (-2290 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-450 (-2290 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-449 |#1| |#2|) (-13 (-871 |#2| (-450 (-2290 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517)))))) (-583 (-1074)) (-961)) (T -449))
-((-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
-(-13 (-871 |#2| (-450 (-2290 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2251 ($ $ (-583 (-517))))))
-((-1587 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2778 (((-107) $) NIL (|has| |#2| (-123)))) (-1441 (($ (-843)) NIL (|has| |#2| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) NIL (|has| |#2| (-725)))) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#2| (-338)))) (-3345 (((-517) $) NIL (|has| |#2| (-777)))) (-2412 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3232 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-2749 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3775 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-4100 (($) NIL (|has| |#2| (-338)))) (-3705 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ (-517)) 11)) (-3162 (((-107) $) NIL (|has| |#2| (-777)))) (-3240 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#2| (-961)))) (-1199 (((-107) $) NIL (|has| |#2| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2332 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3696 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#2| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#2| (-1003)))) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#2| (-338)))) (-3214 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1750 ((|#2| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-1369 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-1421 (($ (-1154 |#2|)) NIL)) (-2232 (((-125)) NIL (|has| |#2| (-333)))) (-1248 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3223 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-1217 (((-703)) NIL (|has| |#2| (-961)))) (-2258 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#2| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2398 (($) NIL (|has| |#2| (-123)) CONST)) (-2411 (($) NIL (|has| |#2| (-961)) CONST)) (-2738 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1534 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1585 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1558 (((-107) $ $) 15 (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1645 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
+((-2118 (((-107) $ $) 7)) (-3362 (((-107) $) 14)) (-2461 (((-107) $) 15)) (-3211 (($ (-1058) (-1058) (-1058)) 13)) (-2987 (((-1058) $) 18)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2610 (($ (-1058) (-1058) (-1058)) 20)) (-3607 (((-1058) $) 17)) (-3786 (((-107) $) 16)) (-1324 (((-1058) $) 19)) (-2269 (((-787) $) 11) (($ (-1058)) 22) (((-1058) $) 21)) (-1583 (((-107) $ $) 6)))
+(((-359) (-1187)) (T -359))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))) (-2610 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359)))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3211 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-1058))) (-15 -2269 ((-1058) $)) (-15 -2610 ($ (-1058) (-1058) (-1058))) (-15 -1324 ((-1058) $)) (-15 -2987 ((-1058) $)) (-15 -3607 ((-1058) $)) (-15 -3786 ((-107) $)) (-15 -2461 ((-107) $)) (-15 -3362 ((-107) $)) (-15 -3211 ($ (-1058) (-1058) (-1058)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2020 (((-787) $) 50)) (-1681 (($) NIL T CONST)) (-1537 (($ $ (-844)) NIL)) (-3248 (($ $ (-844)) NIL)) (-2848 (($ $ (-844)) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($ (-703)) 26)) (-1880 (((-703)) 15)) (-2373 (((-787) $) 52)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) NIL)) (-2516 (($ $ $ $) NIL)) (-1263 (($ $ $) NIL)) (-3608 (($) 20 T CONST)) (-1583 (((-107) $ $) 28)) (-1691 (($ $) 34) (($ $ $) 36)) (-1677 (($ $ $) 37)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -1880 ((-703))) (-15 -2373 ((-787) $)) (-15 -2020 ((-787) $)) (-15 -1317 ($ (-703))))) (-703) (-703) (-156)) (T -360))
+((-1880 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
+(-13 (-677 |#3|) (-10 -8 (-15 -1880 ((-703))) (-15 -2373 ((-787) $)) (-15 -2020 ((-787) $)) (-15 -1317 ($ (-703)))))
+((-2011 (((-1058)) 10)) (-3332 (((-1047 (-1058))) 28)) (-1868 (((-1161) (-1058)) 25) (((-1161) (-358)) 24)) (-1882 (((-1161)) 26)) (-2310 (((-1047 (-1058))) 27)))
+(((-361) (-10 -7 (-15 -2310 ((-1047 (-1058)))) (-15 -3332 ((-1047 (-1058)))) (-15 -1882 ((-1161))) (-15 -1868 ((-1161) (-358))) (-15 -1868 ((-1161) (-1058))) (-15 -2011 ((-1058))))) (T -361))
+((-2011 (*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-361)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-361)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1161)) (-5 *1 (-361)))) (-1882 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-361)))) (-3332 (*1 *2) (-12 (-5 *2 (-1047 (-1058))) (-5 *1 (-361)))) (-2310 (*1 *2) (-12 (-5 *2 (-1047 (-1058))) (-5 *1 (-361)))))
+(-10 -7 (-15 -2310 ((-1047 (-1058)))) (-15 -3332 ((-1047 (-1058)))) (-15 -1882 ((-1161))) (-15 -1868 ((-1161) (-358))) (-15 -1868 ((-1161) (-1058))) (-15 -2011 ((-1058))))
+((-2053 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
+(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2053 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
+((-2053 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2053 ((-703) (-306 |#1| |#2| |#3| |#4|))))
+((-2269 (((-364) |#1|) 11)))
+(((-363 |#1|) (-10 -7 (-15 -2269 ((-364) |#1|))) (-1004)) (T -363))
+((-2269 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1004)))))
+(-10 -7 (-15 -2269 ((-364) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-4019 (((-583 (-1058)) $ (-583 (-1058))) 37)) (-1729 (((-583 (-1058)) $ (-583 (-1058))) 38)) (-2600 (((-583 (-1058)) $ (-583 (-1058))) 39)) (-2860 (((-583 (-1058)) $) 34)) (-3211 (($) 23)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-1364 (((-583 (-1058)) $) 35)) (-3453 (((-583 (-1058)) $) 36)) (-1756 (((-1161) $ (-517)) 32) (((-1161) $) 33)) (-3357 (($ (-787) (-517)) 29)) (-2269 (((-787) $) 41) (($ (-787)) 25)) (-1583 (((-107) $ $) NIL)))
+(((-364) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-787))) (-15 -3357 ($ (-787) (-517))) (-15 -1756 ((-1161) $ (-517))) (-15 -1756 ((-1161) $)) (-15 -3453 ((-583 (-1058)) $)) (-15 -1364 ((-583 (-1058)) $)) (-15 -3211 ($)) (-15 -2860 ((-583 (-1058)) $)) (-15 -2600 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -1729 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -4019 ((-583 (-1058)) $ (-583 (-1058))))))) (T -364))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3357 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1756 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-364)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-364)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))) (-3211 (*1 *1) (-5 *1 (-364))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))) (-2600 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))) (-1729 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-787))) (-15 -3357 ($ (-787) (-517))) (-15 -1756 ((-1161) $ (-517))) (-15 -1756 ((-1161) $)) (-15 -3453 ((-583 (-1058)) $)) (-15 -1364 ((-583 (-1058)) $)) (-15 -3211 ($)) (-15 -2860 ((-583 (-1058)) $)) (-15 -2600 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -1729 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -4019 ((-583 (-1058)) $ (-583 (-1058))))))
+((-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8)))
+(((-365) (-1187)) (T -365))
+((-1897 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1161)))))
+(-13 (-1110) (-557 (-787)) (-10 -8 (-15 -1897 ((-1161) $))))
+(((-557 (-787)) . T) ((-1110) . T))
+((-3226 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-875 (-349))) 17) (((-3 $ "failed") (-875 (-517))) 15) (((-3 $ "failed") (-377 (-875 (-349)))) 13) (((-3 $ "failed") (-377 (-875 (-517)))) 11)) (-3388 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-875 (-349))) 18) (($ (-875 (-517))) 16) (($ (-377 (-875 (-349)))) 14) (($ (-377 (-875 (-517)))) 12)) (-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 23)))
+(((-366) (-1187)) (T -366))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-300))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))) (-15 -3388 ($ (-286 (-349)))) (-15 -3226 ((-3 $ "failed") (-286 (-349)))) (-15 -3388 ($ (-286 (-517)))) (-15 -3226 ((-3 $ "failed") (-286 (-517)))) (-15 -3388 ($ (-875 (-349)))) (-15 -3226 ((-3 $ "failed") (-875 (-349)))) (-15 -3388 ($ (-875 (-517)))) (-15 -3226 ((-3 $ "failed") (-875 (-517)))) (-15 -3388 ($ (-377 (-875 (-349))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-349))))) (-15 -3388 ($ (-377 (-875 (-517))))) (-15 -3226 ((-3 $ "failed") (-377 (-875 (-517)))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1110) . T))
+((-1804 (((-583 (-1058)) (-583 (-1058))) 8)) (-1897 (((-1161) (-358)) 27)) (-2106 (((-1008) (-1075) (-583 (-1075)) (-1078) (-583 (-1075))) 59) (((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075)) (-1075)) 35) (((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075))) 34)))
+(((-367) (-10 -7 (-15 -2106 ((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075)))) (-15 -2106 ((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075)) (-1075))) (-15 -2106 ((-1008) (-1075) (-583 (-1075)) (-1078) (-583 (-1075)))) (-15 -1897 ((-1161) (-358))) (-15 -1804 ((-583 (-1058)) (-583 (-1058)))))) (T -367))
+((-1804 (*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-367)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1161)) (-5 *1 (-367)))) (-2106 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1075))) (-5 *5 (-1078)) (-5 *3 (-1075)) (-5 *2 (-1008)) (-5 *1 (-367)))) (-2106 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1075))))) (-5 *6 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1008)) (-5 *1 (-367)))) (-2106 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1075))))) (-5 *6 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1008)) (-5 *1 (-367)))))
+(-10 -7 (-15 -2106 ((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075)))) (-15 -2106 ((-1008) (-1075) (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075)))) (-583 (-583 (-3 (|:| |array| (-583 (-1075))) (|:| |scalar| (-1075))))) (-583 (-1075)) (-1075))) (-15 -2106 ((-1008) (-1075) (-583 (-1075)) (-1078) (-583 (-1075)))) (-15 -1897 ((-1161) (-358))) (-15 -1804 ((-583 (-1058)) (-583 (-1058)))))
+((-1897 (((-1161) $) 37)) (-2269 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
+(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2269 ($ (-300))) (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))) (-15 -2269 ($ (-286 (-634)))) (-15 -2269 ($ (-286 (-632)))) (-15 -2269 ($ (-286 (-627)))) (-15 -2269 ($ (-265 (-286 (-634))))) (-15 -2269 ($ (-265 (-286 (-632))))) (-15 -2269 ($ (-265 (-286 (-627))))) (-15 -2269 ($ (-286 (-517)))) (-15 -2269 ($ (-286 (-349)))) (-15 -2269 ($ (-286 (-153 (-349))))) (-15 -2269 ($ (-265 (-286 (-517))))) (-15 -2269 ($ (-265 (-286 (-349))))) (-15 -2269 ($ (-265 (-286 (-153 (-349)))))))) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-1075)) (-1079)) (T -368))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-14 *5 (-583 (-1075))) (-14 *6 (-1079)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-300))) (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))) (-15 -2269 ($ (-286 (-634)))) (-15 -2269 ($ (-286 (-632)))) (-15 -2269 ($ (-286 (-627)))) (-15 -2269 ($ (-265 (-286 (-634))))) (-15 -2269 ($ (-265 (-286 (-632))))) (-15 -2269 ($ (-265 (-286 (-627))))) (-15 -2269 ($ (-286 (-517)))) (-15 -2269 ($ (-286 (-349)))) (-15 -2269 ($ (-286 (-153 (-349))))) (-15 -2269 ($ (-265 (-286 (-517))))) (-15 -2269 ($ (-265 (-286 (-349))))) (-15 -2269 ($ (-265 (-286 (-153 (-349))))))))
+((-2118 (((-107) $ $) NIL)) (-4156 ((|#2| $) 36)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-1777 (($ (-377 |#2|)) 84)) (-2305 (((-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|))) $) 37)) (-2059 (($ $) 32) (($ $ (-703)) 34)) (-3357 (((-377 |#2|) $) 46)) (-2286 (($ (-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|)))) 31)) (-2269 (((-787) $) 120)) (-3340 (($ $) 33) (($ $ (-703)) 35)) (-1583 (((-107) $ $) NIL)) (-1677 (($ |#2| $) 39)))
+(((-369 |#1| |#2|) (-13 (-1004) (-558 (-377 |#2|)) (-10 -8 (-15 -1677 ($ |#2| $)) (-15 -1777 ($ (-377 |#2|))) (-15 -4156 (|#2| $)) (-15 -2305 ((-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|))) $)) (-15 -2286 ($ (-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|))))) (-15 -2059 ($ $)) (-15 -3340 ($ $)) (-15 -2059 ($ $ (-703))) (-15 -3340 ($ $ (-703))))) (-13 (-333) (-134)) (-1132 |#1|)) (T -369))
+((-1677 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1132 *3)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-4156 (*1 *2 *1) (-12 (-4 *2 (-1132 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-2305 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2356 (-703)) (|:| -3567 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1132 *3)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2356 (-703)) (|:| -3567 *4) (|:| |num| *4)))) (-4 *4 (-1132 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2059 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1132 *2)))) (-3340 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1132 *2)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1132 *3)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1132 *3)))))
+(-13 (-1004) (-558 (-377 |#2|)) (-10 -8 (-15 -1677 ($ |#2| $)) (-15 -1777 ($ (-377 |#2|))) (-15 -4156 (|#2| $)) (-15 -2305 ((-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|))) $)) (-15 -2286 ($ (-583 (-2 (|:| -2356 (-703)) (|:| -3567 |#2|) (|:| |num| |#2|))))) (-15 -2059 ($ $)) (-15 -3340 ($ $)) (-15 -2059 ($ $ (-703))) (-15 -3340 ($ $ (-703)))))
+((-2118 (((-107) $ $) 9 (-3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 15 (|has| |#1| (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 14 (|has| |#1| (-809 (-517))))) (-1895 (((-1058) $) 13 (-3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-4123 (((-1022) $) 12 (-3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-2269 (((-787) $) 11 (-3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))) (-1583 (((-107) $ $) 10 (-3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))))))
+(((-370 |#1|) (-1187) (-1110)) (T -370))
+NIL
+(-13 (-1110) (-10 -7 (IF (|has| |t#1| (-809 (-517))) (-6 (-809 (-517))) |%noBranch|) (IF (|has| |t#1| (-809 (-349))) (-6 (-809 (-349))) |%noBranch|)))
+(((-97) -3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-557 (-787)) -3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-1004) -3745 (|has| |#1| (-809 (-517))) (|has| |#1| (-809 (-349)))) ((-1110) . T))
+((-2464 (($ $) 10) (($ $ (-703)) 11)))
+(((-371 |#1|) (-10 -8 (-15 -2464 (|#1| |#1| (-703))) (-15 -2464 (|#1| |#1|))) (-372)) (T -371))
+NIL
+(-10 -8 (-15 -2464 (|#1| |#1| (-703))) (-15 -2464 (|#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2464 (($ $) 79) (($ $ (-703)) 78)) (-2963 (((-107) $) 71)) (-2053 (((-765 (-844)) $) 81)) (-1865 (((-107) $) 31)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-1496 (((-3 (-703) "failed") $ $) 80)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2650 (((-3 $ "failed") $) 82)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-372) (-1187)) (T -372))
+((-2053 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-844))))) (-1496 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2464 (*1 *1 *1) (-4 *1 (-372))) (-2464 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(-13 (-333) (-132) (-10 -8 (-15 -2053 ((-765 (-844)) $)) (-15 -1496 ((-3 (-703) "failed") $ $)) (-15 -2464 ($ $)) (-15 -2464 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-3209 (($ (-517) (-517)) 11) (($ (-517) (-517) (-844)) NIL)) (-2207 (((-844)) 16) (((-844) (-844)) NIL)))
+(((-373 |#1|) (-10 -8 (-15 -2207 ((-844) (-844))) (-15 -2207 ((-844))) (-15 -3209 (|#1| (-517) (-517) (-844))) (-15 -3209 (|#1| (-517) (-517)))) (-374)) (T -373))
+((-2207 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
+(-10 -8 (-15 -2207 ((-844) (-844))) (-15 -2207 ((-844))) (-15 -3209 (|#1| (-517) (-517) (-844))) (-15 -3209 (|#1| (-517) (-517))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3297 (((-517) $) 89)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-3509 (($ $) 87)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3879 (($ $) 97)) (-3998 (((-107) $ $) 59)) (-1323 (((-517) $) 114)) (-1681 (($) 17 T CONST)) (-4013 (($ $) 86)) (-3226 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3388 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-3434 (((-844)) 130) (((-844) (-844)) 127 (|has| $ (-6 -4181)))) (-3523 (((-107) $) 112)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 93)) (-2053 (((-517) $) 136)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 96)) (-2754 (($ $) 92)) (-1469 (((-107) $) 113)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3456 (($ $ $) 111) (($) 124 (-12 (-2477 (|has| $ (-6 -4181))) (-2477 (|has| $ (-6 -4173)))))) (-4082 (($ $ $) 110) (($) 123 (-12 (-2477 (|has| $ (-6 -4181))) (-2477 (|has| $ (-6 -4173)))))) (-3697 (((-517) $) 133)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-2787 (((-844) (-517)) 126 (|has| $ (-6 -4181)))) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1288 (($ $) 88)) (-2309 (($ $) 90)) (-3209 (($ (-517) (-517)) 138) (($ (-517) (-517) (-844)) 137)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2356 (((-517) $) 134)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2207 (((-844)) 131) (((-844) (-844)) 128 (|has| $ (-6 -4181)))) (-2229 (((-844) (-517)) 125 (|has| $ (-6 -4181)))) (-3357 (((-349) $) 105) (((-199) $) 104) (((-815 (-349)) $) 94)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2950 (((-703)) 29)) (-3475 (($ $) 91)) (-2013 (((-844)) 132) (((-844) (-844)) 129 (|has| $ (-6 -4181)))) (-3984 (((-844)) 135)) (-2914 (((-107) $ $) 39)) (-2339 (($ $) 115)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 108)) (-1617 (((-107) $ $) 107)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 109)) (-1607 (((-107) $ $) 106)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-374) (-1187)) (T -374))
+((-3209 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-3209 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-4 *1 (-374)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3984 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2013 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-2207 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-3434 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-374)) (-5 *2 (-844)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-374)) (-5 *2 (-844)))) (-3456 (*1 *1) (-12 (-4 *1 (-374)) (-2477 (|has| *1 (-6 -4181))) (-2477 (|has| *1 (-6 -4173))))) (-4082 (*1 *1) (-12 (-4 *1 (-374)) (-2477 (|has| *1 (-6 -4181))) (-2477 (|has| *1 (-6 -4173))))))
+(-13 (-971) (-10 -8 (-6 -2202) (-15 -3209 ($ (-517) (-517))) (-15 -3209 ($ (-517) (-517) (-844))) (-15 -2053 ((-517) $)) (-15 -3984 ((-844))) (-15 -2356 ((-517) $)) (-15 -3697 ((-517) $)) (-15 -2013 ((-844))) (-15 -2207 ((-844))) (-15 -3434 ((-844))) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2013 ((-844) (-844))) (-15 -2207 ((-844) (-844))) (-15 -3434 ((-844) (-844))) (-15 -2787 ((-844) (-517))) (-15 -2229 ((-844) (-517)))) |%noBranch|) (IF (|has| $ (-6 -4173)) |%noBranch| (IF (|has| $ (-6 -4181)) |%noBranch| (PROGN (-15 -3456 ($)) (-15 -4082 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-815 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-809 (-349)) . T) ((-843) . T) ((-919) . T) ((-938) . T) ((-971) . T) ((-953 (-377 (-517))) . T) ((-953 (-517)) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-3308 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -3308 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
+(-10 -7 (-15 -3308 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-3308 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -3308 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
+(-10 -7 (-15 -3308 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 13)) (-3297 ((|#1| $) 21 (|has| |#1| (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| |#1| (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 17) (((-3 (-1075) "failed") $) NIL (|has| |#1| (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517))))) (-3388 ((|#1| $) 15) (((-1075) $) NIL (|has| |#1| (-953 (-1075)))) (((-377 (-517)) $) 67 (|has| |#1| (-953 (-517)))) (((-517) $) NIL (|has| |#1| (-953 (-517))))) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) 50)) (-2200 (($) NIL (|has| |#1| (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| |#1| (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#1| (-809 (-349))))) (-1865 (((-107) $) 64)) (-3967 (($ $) NIL)) (-3824 ((|#1| $) 71)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-1051)))) (-1469 (((-107) $) NIL (|has| |#1| (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| |#1| (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 97)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| |#1| (-278)))) (-2309 ((|#1| $) 28 (|has| |#1| (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 133 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 129 (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-478 (-1075) |#1|)))) (-4094 (((-703) $) NIL)) (-2607 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3596 (($ $) NIL)) (-2097 ((|#1| $) 73)) (-3357 (((-815 (-517)) $) NIL (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#1| (-558 (-815 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-938))) (((-199) $) NIL (|has| |#1| (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1075)) NIL (|has| |#1| (-953 (-1075))))) (-2650 (((-3 $ "failed") $) 99 (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 100)) (-3475 ((|#1| $) 26 (|has| |#1| (-502)))) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| |#1| (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 22 T CONST)) (-3617 (($) 8 T CONST)) (-1964 (((-1058) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1058) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1161) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1161) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-3340 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 56)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1703 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1691 (($ $) 25) (($ $ $) 55)) (-1677 (($ $ $) 53)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-377 |#1|) (-13 (-910 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4177)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4188)) (-6 -4177) |%noBranch|) |%noBranch|) |%noBranch|))) (-509)) (T -377))
+NIL
+(-13 (-910 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4177)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4188)) (-6 -4177) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3861 (((-623 |#2|) (-1156 $)) NIL) (((-623 |#2|)) 18)) (-1953 (($ (-1156 |#2|) (-1156 $)) NIL) (($ (-1156 |#2|)) 26)) (-1416 (((-623 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) $) 22)) (-2456 ((|#3| $) 59)) (-4032 ((|#2| (-1156 $)) NIL) ((|#2|) 20)) (-3369 (((-1156 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) (-1156 $) (-1156 $)) NIL) (((-1156 |#2|) $) NIL) (((-623 |#2|) (-1156 $)) 24)) (-3357 (((-1156 |#2|) $) 11) (($ (-1156 |#2|)) 13)) (-1900 ((|#3| $) 51)))
+(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -1416 ((-623 |#2|) |#1|)) (-15 -4032 (|#2|)) (-15 -3861 ((-623 |#2|))) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2456 (|#3| |#1|)) (-15 -1900 (|#3| |#1|)) (-15 -3861 ((-623 |#2|) (-1156 |#1|))) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1416 ((-623 |#2|) |#1| (-1156 |#1|)))) (-379 |#2| |#3|) (-156) (-1132 |#2|)) (T -378))
+((-3861 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-4032 (*1 *2) (-12 (-4 *4 (-1132 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
+(-10 -8 (-15 -1416 ((-623 |#2|) |#1|)) (-15 -4032 (|#2|)) (-15 -3861 ((-623 |#2|))) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -2456 (|#3| |#1|)) (-15 -1900 (|#3| |#1|)) (-15 -3861 ((-623 |#2|) (-1156 |#1|))) (-15 -4032 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -1416 ((-623 |#2|) |#1| (-1156 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3861 (((-623 |#1|) (-1156 $)) 46) (((-623 |#1|)) 61)) (-2008 ((|#1| $) 52)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1953 (($ (-1156 |#1|) (-1156 $)) 48) (($ (-1156 |#1|)) 64)) (-1416 (((-623 |#1|) $ (-1156 $)) 53) (((-623 |#1|) $) 59)) (-3163 (((-3 $ "failed") $) 34)) (-3736 (((-844)) 54)) (-1865 (((-107) $) 31)) (-2754 ((|#1| $) 51)) (-2456 ((|#2| $) 44 (|has| |#1| (-333)))) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-4032 ((|#1| (-1156 $)) 47) ((|#1|) 60)) (-3369 (((-1156 |#1|) $ (-1156 $)) 50) (((-623 |#1|) (-1156 $) (-1156 $)) 49) (((-1156 |#1|) $) 66) (((-623 |#1|) (-1156 $)) 65)) (-3357 (((-1156 |#1|) $) 63) (($ (-1156 |#1|)) 62)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2650 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1900 ((|#2| $) 45)) (-2950 (((-703)) 29)) (-2062 (((-1156 $)) 67)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-379 |#1| |#2|) (-1187) (-156) (-1132 |t#1|)) (T -379))
+((-2062 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-1156 *1)) (-4 *1 (-379 *3 *4)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-1156 *3)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1132 *3)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-1156 *3)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1132 *3)))) (-3861 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-623 *3)))) (-4032 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-623 *3)))))
+(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -2062 ((-1156 $))) (-15 -3369 ((-1156 |t#1|) $)) (-15 -3369 ((-623 |t#1|) (-1156 $))) (-15 -1953 ($ (-1156 |t#1|))) (-15 -3357 ((-1156 |t#1|) $)) (-15 -3357 ($ (-1156 |t#1|))) (-15 -3861 ((-623 |t#1|))) (-15 -4032 (|t#1|)) (-15 -1416 ((-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2269 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -2269 (|#1| (-517))) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|))) (-381 |#2|) (-1110)) (T -380))
+NIL
+(-10 -8 (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -2269 (|#1| (-517))) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)))
+((-3226 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-953 (-517))))) (-3388 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-953 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-953 (-517))))) (-2269 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-953 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-953 (-517))))))
+(((-381 |#1|) (-1187) (-1110)) (T -381))
+NIL
+(-13 (-953 |t#1|) (-10 -7 (IF (|has| |t#1| (-953 (-517))) (-6 (-953 (-517))) |%noBranch|) (IF (|has| |t#1| (-953 (-377 (-517)))) (-6 (-953 (-377 (-517)))) |%noBranch|)))
+(((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T))
+((-3308 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
+(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3308 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-910 |#1|) (-1132 |#2|) (-13 (-379 |#2| |#3|) (-953 |#2|)) (-278) (-910 |#5|) (-1132 |#6|) (-13 (-379 |#6| |#7|) (-953 |#6|))) (T -382))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-910 *5)) (-4 *7 (-1132 *6)) (-4 *8 (-13 (-379 *6 *7) (-953 *6))) (-4 *9 (-278)) (-4 *10 (-910 *9)) (-4 *11 (-1132 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-953 *10))))))
+(-10 -7 (-15 -3308 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
+((-2118 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1328 ((|#4| (-703) (-1156 |#4|)) 55)) (-1865 (((-107) $) NIL)) (-3824 (((-1156 |#4|) $) 17)) (-2754 ((|#2| $) 53)) (-2713 (($ $) 136)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 98)) (-1373 (($ (-1156 |#4|)) 97)) (-4123 (((-1022) $) NIL)) (-2097 ((|#1| $) 18)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) 131)) (-2062 (((-1156 |#4|) $) 126)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 11 T CONST)) (-1583 (((-107) $ $) 39)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
+(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -1373 ($ (-1156 |#4|))) (-15 -2062 ((-1156 |#4|) $)) (-15 -2754 (|#2| $)) (-15 -3824 ((-1156 |#4|) $)) (-15 -2097 (|#1| $)) (-15 -2713 ($ $)) (-15 -1328 (|#4| (-703) (-1156 |#4|))))) (-278) (-910 |#1|) (-1132 |#2|) (-13 (-379 |#2| |#3|) (-953 |#2|))) (T -383))
+((-1373 (*1 *1 *2) (-12 (-5 *2 (-1156 *6)) (-4 *6 (-13 (-379 *4 *5) (-953 *4))) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-2062 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-5 *2 (-1156 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-953 *4))))) (-2754 (*1 *2 *1) (-12 (-4 *4 (-1132 *2)) (-4 *2 (-910 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-953 *2))))) (-3824 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-5 *2 (-1156 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-953 *4))))) (-2097 (*1 *2 *1) (-12 (-4 *3 (-910 *2)) (-4 *4 (-1132 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-953 *3))))) (-2713 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-910 *2)) (-4 *4 (-1132 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-953 *3))))) (-1328 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1156 *2)) (-4 *5 (-278)) (-4 *6 (-910 *5)) (-4 *2 (-13 (-379 *6 *7) (-953 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1132 *6)))))
+(-13 (-442) (-10 -8 (-15 -1373 ($ (-1156 |#4|))) (-15 -2062 ((-1156 |#4|) $)) (-15 -2754 (|#2| $)) (-15 -3824 ((-1156 |#4|) $)) (-15 -2097 (|#1| $)) (-15 -2713 ($ $)) (-15 -1328 (|#4| (-703) (-1156 |#4|)))))
+((-2118 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-2754 ((|#2| $) 60)) (-2717 (($ (-1156 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-953 |#2|)))) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 34)) (-2062 (((-1156 |#4|) $) 26)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3617 (($) 23 T CONST)) (-1583 (((-107) $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
+(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -2062 ((-1156 |#4|) $)) (-15 -2754 (|#2| $)) (-15 -2717 ($ (-1156 |#4|))) (IF (|has| |#4| (-953 |#2|)) (-15 -2717 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-278) (-910 |#1|) (-1132 |#2|) (-379 |#2| |#3|) (-1156 |#4|)) (T -384))
+((-2062 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-5 *2 (-1156 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-2754 (*1 *2 *1) (-12 (-4 *4 (-1132 *2)) (-4 *2 (-910 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1156 *5)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-1156 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-953 *4)) (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1156 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
+(-13 (-659) (-10 -8 (-15 -2062 ((-1156 |#4|) $)) (-15 -2754 (|#2| $)) (-15 -2717 ($ (-1156 |#4|))) (IF (|has| |#4| (-953 |#2|)) (-15 -2717 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3308 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
+(-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1875 (((-3 $ "failed")) 85)) (-1402 (((-1156 (-623 |#2|)) (-1156 $)) NIL) (((-1156 (-623 |#2|))) 90)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 84)) (-1504 (((-3 $ "failed")) 83)) (-2429 (((-623 |#2|) (-1156 $)) NIL) (((-623 |#2|)) 101)) (-2977 (((-623 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) $) 109)) (-2078 (((-1071 (-875 |#2|))) 54)) (-2705 ((|#2| (-1156 $)) NIL) ((|#2|) 105)) (-1953 (($ (-1156 |#2|) (-1156 $)) NIL) (($ (-1156 |#2|)) 112)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 82)) (-3331 (((-3 $ "failed")) 74)) (-2547 (((-623 |#2|) (-1156 $)) NIL) (((-623 |#2|)) 99)) (-2739 (((-623 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) $) 107)) (-1690 (((-1071 (-875 |#2|))) 53)) (-1946 ((|#2| (-1156 $)) NIL) ((|#2|) 103)) (-3369 (((-1156 |#2|) $ (-1156 $)) NIL) (((-623 |#2|) (-1156 $) (-1156 $)) NIL) (((-1156 |#2|) $) NIL) (((-623 |#2|) (-1156 $)) 111)) (-3357 (((-1156 |#2|) $) 95) (($ (-1156 |#2|)) 97)) (-4070 (((-583 (-875 |#2|)) (-1156 $)) NIL) (((-583 (-875 |#2|))) 93)) (-2374 (($ (-623 |#2|) $) 89)))
+(((-386 |#1| |#2|) (-10 -8 (-15 -2374 (|#1| (-623 |#2|) |#1|)) (-15 -2078 ((-1071 (-875 |#2|)))) (-15 -1690 ((-1071 (-875 |#2|)))) (-15 -2977 ((-623 |#2|) |#1|)) (-15 -2739 ((-623 |#2|) |#1|)) (-15 -2429 ((-623 |#2|))) (-15 -2547 ((-623 |#2|))) (-15 -2705 (|#2|)) (-15 -1946 (|#2|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -4070 ((-583 (-875 |#2|)))) (-15 -1402 ((-1156 (-623 |#2|)))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -1875 ((-3 |#1| "failed"))) (-15 -1504 ((-3 |#1| "failed"))) (-15 -3331 ((-3 |#1| "failed"))) (-15 -3616 ((-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed"))) (-15 -2556 ((-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed"))) (-15 -2429 ((-623 |#2|) (-1156 |#1|))) (-15 -2547 ((-623 |#2|) (-1156 |#1|))) (-15 -2705 (|#2| (-1156 |#1|))) (-15 -1946 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -2977 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -1402 ((-1156 (-623 |#2|)) (-1156 |#1|))) (-15 -4070 ((-583 (-875 |#2|)) (-1156 |#1|)))) (-387 |#2|) (-156)) (T -386))
+((-1402 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1156 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-4070 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1946 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2705 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2547 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2429 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1690 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1071 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2078 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1071 (-875 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
+(-10 -8 (-15 -2374 (|#1| (-623 |#2|) |#1|)) (-15 -2078 ((-1071 (-875 |#2|)))) (-15 -1690 ((-1071 (-875 |#2|)))) (-15 -2977 ((-623 |#2|) |#1|)) (-15 -2739 ((-623 |#2|) |#1|)) (-15 -2429 ((-623 |#2|))) (-15 -2547 ((-623 |#2|))) (-15 -2705 (|#2|)) (-15 -1946 (|#2|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -1953 (|#1| (-1156 |#2|))) (-15 -4070 ((-583 (-875 |#2|)))) (-15 -1402 ((-1156 (-623 |#2|)))) (-15 -3369 ((-623 |#2|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1|)) (-15 -1875 ((-3 |#1| "failed"))) (-15 -1504 ((-3 |#1| "failed"))) (-15 -3331 ((-3 |#1| "failed"))) (-15 -3616 ((-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed"))) (-15 -2556 ((-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed"))) (-15 -2429 ((-623 |#2|) (-1156 |#1|))) (-15 -2547 ((-623 |#2|) (-1156 |#1|))) (-15 -2705 (|#2| (-1156 |#1|))) (-15 -1946 (|#2| (-1156 |#1|))) (-15 -1953 (|#1| (-1156 |#2|) (-1156 |#1|))) (-15 -3369 ((-623 |#2|) (-1156 |#1|) (-1156 |#1|))) (-15 -3369 ((-1156 |#2|) |#1| (-1156 |#1|))) (-15 -2977 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -2739 ((-623 |#2|) |#1| (-1156 |#1|))) (-15 -1402 ((-1156 (-623 |#2|)) (-1156 |#1|))) (-15 -4070 ((-583 (-875 |#2|)) (-1156 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1875 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1402 (((-1156 (-623 |#1|)) (-1156 $)) 78) (((-1156 (-623 |#1|))) 100)) (-2197 (((-1156 $)) 81)) (-1681 (($) 17 T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1504 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2429 (((-623 |#1|) (-1156 $)) 65) (((-623 |#1|)) 92)) (-2684 ((|#1| $) 74)) (-2977 (((-623 |#1|) $ (-1156 $)) 76) (((-623 |#1|) $) 90)) (-3237 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2078 (((-1071 (-875 |#1|))) 88 (|has| |#1| (-333)))) (-1537 (($ $ (-844)) 28)) (-1227 ((|#1| $) 72)) (-1499 (((-1071 |#1|) $) 42 (|has| |#1| (-509)))) (-2705 ((|#1| (-1156 $)) 67) ((|#1|) 94)) (-3724 (((-1071 |#1|) $) 63)) (-3764 (((-107)) 57)) (-1953 (($ (-1156 |#1|) (-1156 $)) 69) (($ (-1156 |#1|)) 98)) (-3163 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3736 (((-844)) 80)) (-2438 (((-107)) 54)) (-3248 (($ $ (-844)) 33)) (-4073 (((-107)) 50)) (-1495 (((-107)) 48)) (-2502 (((-107)) 52)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3331 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2547 (((-623 |#1|) (-1156 $)) 66) (((-623 |#1|)) 93)) (-3303 ((|#1| $) 75)) (-2739 (((-623 |#1|) $ (-1156 $)) 77) (((-623 |#1|) $) 91)) (-1888 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-1690 (((-1071 (-875 |#1|))) 89 (|has| |#1| (-333)))) (-2848 (($ $ (-844)) 29)) (-3492 ((|#1| $) 73)) (-2328 (((-1071 |#1|) $) 43 (|has| |#1| (-509)))) (-1946 ((|#1| (-1156 $)) 68) ((|#1|) 95)) (-1940 (((-1071 |#1|) $) 64)) (-2256 (((-107)) 58)) (-1895 (((-1058) $) 9)) (-1952 (((-107)) 49)) (-2388 (((-107)) 51)) (-2631 (((-107)) 53)) (-4123 (((-1022) $) 10)) (-1665 (((-107)) 56)) (-2607 ((|#1| $ (-517)) 101)) (-3369 (((-1156 |#1|) $ (-1156 $)) 71) (((-623 |#1|) (-1156 $) (-1156 $)) 70) (((-1156 |#1|) $) 103) (((-623 |#1|) (-1156 $)) 102)) (-3357 (((-1156 |#1|) $) 97) (($ (-1156 |#1|)) 96)) (-4070 (((-583 (-875 |#1|)) (-1156 $)) 79) (((-583 (-875 |#1|))) 99)) (-2609 (($ $ $) 25)) (-3722 (((-107)) 62)) (-2269 (((-787) $) 11)) (-2062 (((-1156 $)) 104)) (-4111 (((-583 (-1156 |#1|))) 44 (|has| |#1| (-509)))) (-2516 (($ $ $ $) 26)) (-2126 (((-107)) 60)) (-2374 (($ (-623 |#1|) $) 87)) (-1263 (($ $ $) 24)) (-1332 (((-107)) 61)) (-2685 (((-107)) 59)) (-1286 (((-107)) 55)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-387 |#1|) (-1187) (-156)) (T -387))
+((-2062 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1156 *1)) (-4 *1 (-387 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 *3)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1402 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 (-623 *3))))) (-4070 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-875 *3))))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 *3)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1946 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2705 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2547 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2429 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1690 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1071 (-875 *3))))) (-2078 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1071 (-875 *3))))) (-2374 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
+(-13 (-337 |t#1|) (-10 -8 (-15 -2062 ((-1156 $))) (-15 -3369 ((-1156 |t#1|) $)) (-15 -3369 ((-623 |t#1|) (-1156 $))) (-15 -2607 (|t#1| $ (-517))) (-15 -1402 ((-1156 (-623 |t#1|)))) (-15 -4070 ((-583 (-875 |t#1|)))) (-15 -1953 ($ (-1156 |t#1|))) (-15 -3357 ((-1156 |t#1|) $)) (-15 -3357 ($ (-1156 |t#1|))) (-15 -1946 (|t#1|)) (-15 -2705 (|t#1|)) (-15 -2547 ((-623 |t#1|))) (-15 -2429 ((-623 |t#1|))) (-15 -2739 ((-623 |t#1|) $)) (-15 -2977 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1690 ((-1071 (-875 |t#1|)))) (-15 -2078 ((-1071 (-875 |t#1|))))) |%noBranch|) (-15 -2374 ($ (-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 41)) (-1275 (($ $) 56)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 143)) (-2729 (($ $) NIL)) (-2566 (((-107) $) 35)) (-1875 ((|#1| $) 12)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-1114)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-1114)))) (-3316 (($ |#1| (-517)) 30)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 54)) (-3163 (((-3 $ "failed") $) 128)) (-2253 (((-3 (-377 (-517)) "failed") $) 62 (|has| |#1| (-502)))) (-1654 (((-107) $) 58 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 60 (|has| |#1| (-502)))) (-3051 (($ |#1| (-517)) 32)) (-2963 (((-107) $) 149 (|has| |#1| (-1114)))) (-1865 (((-107) $) 42)) (-1848 (((-703) $) 37)) (-3964 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-3336 ((|#1| $ (-517)) 133)) (-1385 (((-517) $ (-517)) 132)) (-2883 (($ |#1| (-517)) 29)) (-3308 (($ (-1 |#1| |#1|) $) 140)) (-3643 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 57)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-1886 (($ |#1| (-517)) 31)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-1662 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1878 (((-583 (-2 (|:| -3866 |#1|) (|:| -2356 (-517)))) $) 53)) (-1944 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3866 (((-388 $) $) NIL (|has| |#1| (-1114)))) (-2327 (((-3 $ "failed") $ $) 135)) (-2356 (((-517) $) 129)) (-2294 ((|#1| $) 55)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) $) NIL (|has| |#1| (-478 (-1075) $))) (($ $ (-583 (-1075)) (-583 $)) 83 (|has| |#1| (-478 (-1075) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-2607 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-2059 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3357 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-938))) (((-199) $) 92 (|has| |#1| (-938)))) (-2269 (((-787) $) 111) (($ (-517)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517)))))) (-2950 (((-703)) 47)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 39 T CONST)) (-3617 (($) 38 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1583 (((-107) $ $) 93)) (-1691 (($ $) 125) (($ $ $) NIL)) (-1677 (($ $ $) 137)) (** (($ $ (-844)) NIL) (($ $ (-703)) 99)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
+(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2294 (|#1| $)) (-15 -2356 ((-517) $)) (-15 -3643 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -1944 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -2883 ($ |#1| (-517))) (-15 -1878 ((-583 (-2 (|:| -3866 |#1|) (|:| -2356 (-517)))) $)) (-15 -1886 ($ |#1| (-517))) (-15 -1385 ((-517) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -3964 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -1848 ((-703) $)) (-15 -3051 ($ |#1| (-517))) (-15 -3316 ($ |#1| (-517))) (-15 -1662 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1875 (|#1| $)) (-15 -1275 ($ $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-938)) (-6 (-938)) |%noBranch|) (IF (|has| |#1| (-1114)) (-6 (-1114)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1075) $)) (-6 (-478 (-1075) $)) |%noBranch|))) (-509)) (T -388))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-2294 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3643 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3866 *3) (|:| -2356 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1886 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1385 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3051 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3316 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1662 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1875 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1275 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
+(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2294 (|#1| $)) (-15 -2356 ((-517) $)) (-15 -3643 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -1944 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -2883 ($ |#1| (-517))) (-15 -1878 ((-583 (-2 (|:| -3866 |#1|) (|:| -2356 (-517)))) $)) (-15 -1886 ($ |#1| (-517))) (-15 -1385 ((-517) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -3964 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -1848 ((-703) $)) (-15 -3051 ($ |#1| (-517))) (-15 -3316 ($ |#1| (-517))) (-15 -1662 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1875 (|#1| $)) (-15 -1275 ($ $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-938)) (-6 (-938)) |%noBranch|) (IF (|has| |#1| (-1114)) (-6 (-1114)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1075) $)) (-6 (-478 (-1075) $)) |%noBranch|)))
+((-2403 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-3768 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
+(((-389 |#1|) (-10 -7 (-15 -2403 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3768 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
+((-3768 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-2403 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
+(-10 -7 (-15 -2403 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -3768 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
+((-1770 ((|#2| |#2|) 161)) (-3587 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107)) 55)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3587 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107))) (-15 -1770 (|#2| |#2|))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|)) (-1075) |#2|) (T -390))
+((-1770 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1096) (-400 *3))) (-14 *4 (-1075)) (-14 *5 *2))) (-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-14 *6 (-1075)) (-14 *7 *3))))
+(-10 -7 (-15 -3587 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107))) (-15 -1770 (|#2| |#2|)))
+((-3308 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-962) (-779)) (-400 |#1|) (-13 (-962) (-779)) (-400 |#3|)) (T -391))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-962) (-779))) (-4 *6 (-13 (-962) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1770 ((|#2| |#2|) 88)) (-1429 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058)) 46)) (-2618 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058)) 153)))
+(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1429 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058))) (-15 -2618 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058))) (-15 -1770 (|#2| |#2|))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|) (-10 -8 (-15 -2269 ($ |#3|)))) (-777) (-13 (-1134 |#2| |#3|) (-333) (-1096) (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $)))) (-901 |#4|) (-1075)) (T -392))
+((-1770 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1096) (-400 *3) (-10 -8 (-15 -2269 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1134 *2 *4) (-333) (-1096) (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-901 *5)) (-14 *7 (-1075)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1096) (-400 *6) (-10 -8 (-15 -2269 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1134 *3 *7) (-333) (-1096) (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1058)) (-4 *9 (-901 *8)) (-14 *10 (-1075)))) (-1429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1096) (-400 *6) (-10 -8 (-15 -2269 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1134 *3 *7) (-333) (-1096) (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1058)) (-4 *9 (-901 *8)) (-14 *10 (-1075)))))
+(-10 -7 (-15 -1429 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058))) (-15 -2618 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))) |#2| (-107) (-1058))) (-15 -1770 (|#2| |#2|)))
+((-2499 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3308 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2499 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1004) (-395 |#1|) (-1004) (-395 |#3|)) (T -393))
+((-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1004)) (-4 *5 (-1004)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2499 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2457 (($) 44)) (-2382 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1826 (($ $ $) 39)) (-2104 (((-107) $ $) 28)) (-2397 (((-703)) 47)) (-1883 (($ (-583 |#2|)) 20) (($) NIL)) (-2200 (($) 53)) (-3456 ((|#2| $) 61)) (-4082 ((|#2| $) 59)) (-2031 (((-844) $) 55)) (-3257 (($ $ $) 35)) (-2810 (($ (-844)) 50)) (-1598 (($ $ |#2|) NIL) (($ $ $) 38)) (-4135 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2286 (($ (-583 |#2|)) 24)) (-2381 (($ $) 46)) (-2269 (((-787) $) 33)) (-3288 (((-703) $) 21)) (-3073 (($ (-583 |#2|)) 19) (($) NIL)) (-1583 (((-107) $ $) 16)) (-1607 (((-107) $ $) 13)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -2397 ((-703))) (-15 -2810 (|#1| (-844))) (-15 -2031 ((-844) |#1|)) (-15 -2200 (|#1|)) (-15 -3456 (|#2| |#1|)) (-15 -4082 (|#2| |#1|)) (-15 -2457 (|#1|)) (-15 -2381 (|#1| |#1|)) (-15 -3288 ((-703) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3073 (|#1|)) (-15 -3073 (|#1| (-583 |#2|))) (-15 -1883 (|#1|)) (-15 -1883 (|#1| (-583 |#2|))) (-15 -3257 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#2|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -2104 ((-107) |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#2| |#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1004)) (T -394))
+((-2397 (*1 *2) (-12 (-4 *4 (-1004)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -2397 ((-703))) (-15 -2810 (|#1| (-844))) (-15 -2031 ((-844) |#1|)) (-15 -2200 (|#1|)) (-15 -3456 (|#2| |#1|)) (-15 -4082 (|#2| |#1|)) (-15 -2457 (|#1|)) (-15 -2381 (|#1| |#1|)) (-15 -3288 ((-703) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3073 (|#1|)) (-15 -3073 (|#1| (-583 |#2|))) (-15 -1883 (|#1|)) (-15 -1883 (|#1| (-583 |#2|))) (-15 -3257 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#2|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -2104 ((-107) |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#2| |#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -4135 ((-703) |#2| |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)))
+((-2118 (((-107) $ $) 19)) (-2457 (($) 67 (|has| |#1| (-338)))) (-2382 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1826 (($ $ $) 78)) (-2104 (((-107) $ $) 79)) (-2670 (((-107) $ (-703)) 8)) (-2397 (((-703)) 61 (|has| |#1| (-338)))) (-1883 (($ (-583 |#1|)) 74) (($) 73)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-2200 (($) 64 (|has| |#1| (-338)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-3456 ((|#1| $) 65 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-4082 ((|#1| $) 66 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-2031 (((-844) $) 63 (|has| |#1| (-338)))) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22)) (-3257 (($ $ $) 75)) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-2810 (($ (-844)) 62 (|has| |#1| (-338)))) (-4123 (((-1022) $) 21)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-1598 (($ $ |#1|) 77) (($ $ $) 76)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2381 (($ $) 68 (|has| |#1| (-338)))) (-2269 (((-787) $) 18)) (-3288 (((-703) $) 69)) (-3073 (($ (-583 |#1|)) 72) (($) 71)) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20)) (-1607 (((-107) $ $) 70)) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-395 |#1|) (-1187) (-1004)) (T -395))
+((-3288 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1004)) (-5 *2 (-703)))) (-2381 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-338)))) (-2457 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1004)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-779)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-779)))))
+(-13 (-203 |t#1|) (-1002 |t#1|) (-10 -8 (-6 -4190) (-15 -3288 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -2381 ($ $)) (-15 -2457 ($))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -4082 (|t#1| $)) (-15 -3456 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1002 |#1|) . T) ((-1004) . T) ((-1110) . T))
+((-3327 (((-534 |#2|) |#2| (-1075)) 35)) (-2794 (((-534 |#2|) |#2| (-1075)) 19)) (-3816 ((|#2| |#2| (-1075)) 24)))
+(((-396 |#1| |#2|) (-10 -7 (-15 -2794 ((-534 |#2|) |#2| (-1075))) (-15 -3327 ((-534 |#2|) |#2| (-1075))) (-15 -3816 (|#2| |#2| (-1075)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-29 |#1|))) (T -396))
+((-3816 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1096) (-29 *4))))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1096) (-29 *5))))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1096) (-29 *5))))))
+(-10 -7 (-15 -2794 ((-534 |#2|) |#2| (-1075))) (-15 -3327 ((-534 |#2|) |#2| (-1075))) (-15 -3816 (|#2| |#2| (-1075))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-2029 (($ |#2| |#1|) 35)) (-2606 (($ |#2| |#1|) 33)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 10 T CONST)) (-3617 (($) 16 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 34)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4177)) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |%noBranch|) |%noBranch|) (-15 -2269 ($ |#1|)) (-15 -2269 ($ (-301 |#2|))) (-15 -2029 ($ |#2| |#1|)) (-15 -2606 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
+((-2269 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-2029 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2606 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4177)) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |%noBranch|) |%noBranch|) (-15 -2269 ($ |#1|)) (-15 -2269 ($ (-301 |#2|))) (-15 -2029 ($ |#2| |#1|)) (-15 -2606 ($ |#2| |#1|))))
+((-1518 (((-3 |#2| (-583 |#2|)) |#2| (-1075)) 105)))
+(((-398 |#1| |#2|) (-10 -7 (-15 -1518 ((-3 |#2| (-583 |#2|)) |#2| (-1075)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-881) (-29 |#1|))) (T -398))
+((-1518 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1096) (-881) (-29 *5))))))
+(-10 -7 (-15 -1518 ((-3 |#2| (-583 |#2|)) |#2| (-1075))))
+((-2096 (((-583 (-1075)) $) 72)) (-1440 (((-377 (-1071 $)) $ (-556 $)) 269)) (-3913 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 234)) (-3226 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1075) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-377 (-875 |#2|)) "failed") $) 320) (((-3 (-875 |#2|) "failed") $) 232) (((-3 (-377 (-517)) "failed") $) NIL)) (-3388 (((-556 $) $) NIL) (((-1075) $) 30) (((-517) $) NIL) ((|#2| $) 228) (((-377 (-875 |#2|)) $) 301) (((-875 |#2|) $) 229) (((-377 (-517)) $) NIL)) (-3034 (((-109) (-109)) 47)) (-3967 (($ $) 87)) (-2466 (((-3 (-556 $) "failed") $) 225)) (-1423 (((-583 (-556 $)) $) 226)) (-3807 (((-3 (-583 $) "failed") $) 244)) (-2692 (((-3 (-2 (|:| |val| $) (|:| -2356 (-517))) "failed") $) 251)) (-2875 (((-3 (-583 $) "failed") $) 242)) (-3818 (((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 $))) "failed") $) 260)) (-1812 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $) 248) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-109)) 215) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-1075)) 217)) (-2308 (((-107) $) 19)) (-2319 ((|#2| $) 21)) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1075) (-1 $ (-583 $))) NIL) (($ $ (-1075) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1075)) 57) (($ $ (-583 (-1075))) 237) (($ $) 238) (($ $ (-109) $ (-1075)) 60) (($ $ (-583 (-109)) (-583 $) (-1075)) 67) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 239) (($ $ (-1075) (-703) (-1 $ (-583 $))) 94) (($ $ (-1075) (-703) (-1 $ $)) 93)) (-2607 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) 235)) (-3596 (($ $) 280)) (-3357 (((-815 (-517)) $) 254) (((-815 (-349)) $) 257) (($ (-388 $)) 316) (((-493) $) NIL)) (-2269 (((-787) $) 236) (($ (-556 $)) 84) (($ (-1075)) 26) (($ |#2|) NIL) (($ (-1027 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 285) (($ (-875 (-377 |#2|))) 325) (($ (-377 (-875 (-377 |#2|)))) 297) (($ (-377 (-875 |#2|))) 291) (($ $) NIL) (($ (-875 |#2|)) 184) (($ (-377 (-517))) 330) (($ (-517)) NIL)) (-2950 (((-703)) 79)) (-1752 (((-107) (-109)) 41)) (-3511 (($ (-1075) $) 33) (($ (-1075) $ $) 34) (($ (-1075) $ $ $) 35) (($ (-1075) $ $ $ $) 36) (($ (-1075) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
+(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-844) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 ((-703))) (-15 -2269 (|#1| (-517))) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-875 |#2|) |#1|)) (-15 -3226 ((-3 (-875 |#2|) "failed") |#1|)) (-15 -2269 (|#1| (-875 |#2|))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3388 ((-377 (-875 |#2|)) |#1|)) (-15 -3226 ((-3 (-377 (-875 |#2|)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-875 |#2|)))) (-15 -1440 ((-377 (-1071 |#1|)) |#1| (-556 |#1|))) (-15 -2269 (|#1| (-377 (-875 (-377 |#2|))))) (-15 -2269 (|#1| (-875 (-377 |#2|)))) (-15 -2269 (|#1| (-377 |#2|))) (-15 -3596 (|#1| |#1|)) (-15 -3357 (|#1| (-388 |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-703) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -2692 ((-3 (-2 (|:| |val| |#1|) (|:| -2356 (-517))) "failed") |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1| (-1075))) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1| (-109))) (-15 -3967 (|#1| |#1|)) (-15 -2269 (|#1| (-1027 |#2| (-556 |#1|)))) (-15 -3818 ((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -2875 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1|)) (-15 -3807 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1075))) (-15 -3522 (|#1| |#1| (-109) |#1| (-1075))) (-15 -3522 (|#1| |#1|)) (-15 -3522 (|#1| |#1| (-583 (-1075)))) (-15 -3522 (|#1| |#1| (-1075))) (-15 -3511 (|#1| (-1075) (-583 |#1|))) (-15 -3511 (|#1| (-1075) |#1| |#1| |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1| |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1|)) (-15 -2096 ((-583 (-1075)) |#1|)) (-15 -2319 (|#2| |#1|)) (-15 -2308 ((-107) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -2269 (|#1| (-1075))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| |#1|)))) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -1423 ((-583 (-556 |#1|)) |#1|)) (-15 -2466 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3913 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3913 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3913 (|#1| |#1| (-265 |#1|))) (-15 -2607 (|#1| (-109) (-583 |#1|))) (-15 -2607 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3388 ((-556 |#1|) |#1|)) (-15 -3226 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2269 (|#1| (-556 |#1|))) (-15 -2269 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
+((-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-2950 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
+(-10 -8 (-15 * (|#1| (-844) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2950 ((-703))) (-15 -2269 (|#1| (-517))) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-875 |#2|) |#1|)) (-15 -3226 ((-3 (-875 |#2|) "failed") |#1|)) (-15 -2269 (|#1| (-875 |#2|))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3388 ((-377 (-875 |#2|)) |#1|)) (-15 -3226 ((-3 (-377 (-875 |#2|)) "failed") |#1|)) (-15 -2269 (|#1| (-377 (-875 |#2|)))) (-15 -1440 ((-377 (-1071 |#1|)) |#1| (-556 |#1|))) (-15 -2269 (|#1| (-377 (-875 (-377 |#2|))))) (-15 -2269 (|#1| (-875 (-377 |#2|)))) (-15 -2269 (|#1| (-377 |#2|))) (-15 -3596 (|#1| |#1|)) (-15 -3357 (|#1| (-388 |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-703) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -2692 ((-3 (-2 (|:| |val| |#1|) (|:| -2356 (-517))) "failed") |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1| (-1075))) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1| (-109))) (-15 -3967 (|#1| |#1|)) (-15 -2269 (|#1| (-1027 |#2| (-556 |#1|)))) (-15 -3818 ((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -2875 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2356 (-517))) "failed") |#1|)) (-15 -3807 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1075))) (-15 -3522 (|#1| |#1| (-109) |#1| (-1075))) (-15 -3522 (|#1| |#1|)) (-15 -3522 (|#1| |#1| (-583 (-1075)))) (-15 -3522 (|#1| |#1| (-1075))) (-15 -3511 (|#1| (-1075) (-583 |#1|))) (-15 -3511 (|#1| (-1075) |#1| |#1| |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1| |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1| |#1|)) (-15 -3511 (|#1| (-1075) |#1|)) (-15 -2096 ((-583 (-1075)) |#1|)) (-15 -2319 (|#2| |#1|)) (-15 -2308 ((-107) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -2269 (|#1| (-1075))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3522 (|#1| |#1| (-1075) (-1 |#1| (-583 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3522 (|#1| |#1| (-583 (-1075)) (-583 (-1 |#1| |#1|)))) (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -1423 ((-583 (-556 |#1|)) |#1|)) (-15 -2466 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3913 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3913 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3913 (|#1| |#1| (-265 |#1|))) (-15 -2607 (|#1| (-109) (-583 |#1|))) (-15 -2607 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1| |#1|)) (-15 -2607 (|#1| (-109) |#1|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3522 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3388 ((-556 |#1|) |#1|)) (-15 -3226 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2269 (|#1| (-556 |#1|))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 116 (|has| |#1| (-25)))) (-2096 (((-583 (-1075)) $) 203)) (-1440 (((-377 (-1071 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-2729 (($ $) 144 (|has| |#1| (-509)))) (-2566 (((-107) $) 146 (|has| |#1| (-509)))) (-3831 (((-583 (-556 $)) $) 44)) (-1250 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3913 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3088 (($ $) 163 (|has| |#1| (-509)))) (-1581 (((-388 $) $) 164 (|has| |#1| (-509)))) (-3998 (((-107) $ $) 154 (|has| |#1| (-509)))) (-1681 (($) 102 (-3745 (|has| |#1| (-1016)) (|has| |#1| (-25))) CONST)) (-3226 (((-3 (-556 $) "failed") $) 69) (((-3 (-1075) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-953 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-875 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-875 |#1|) "failed") $) 123 (|has| |#1| (-962))) (((-3 (-377 (-517)) "failed") $) 95 (-3745 (-12 (|has| |#1| (-953 (-517))) (|has| |#1| (-509))) (|has| |#1| (-953 (-377 (-517))))))) (-3388 (((-556 $) $) 68) (((-1075) $) 215) (((-517) $) 210 (|has| |#1| (-953 (-517)))) ((|#1| $) 206) (((-377 (-875 |#1|)) $) 168 (|has| |#1| (-509))) (((-875 |#1|) $) 122 (|has| |#1| (-962))) (((-377 (-517)) $) 94 (-3745 (-12 (|has| |#1| (-953 (-517))) (|has| |#1| (-509))) (|has| |#1| (-953 (-377 (-517))))))) (-2378 (($ $ $) 158 (|has| |#1| (-509)))) (-2306 (((-623 (-517)) (-623 $)) 137 (-3992 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 136 (-3992 (|has| |#1| (-579 (-517))) (|has| |#1| (-962)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 135 (|has| |#1| (-962))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-962)))) (-3163 (((-3 $ "failed") $) 105 (|has| |#1| (-1016)))) (-2354 (($ $ $) 157 (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-2963 (((-107) $) 165 (|has| |#1| (-509)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 212 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 211 (|has| |#1| (-809 (-349))))) (-3039 (($ $) 51) (($ (-583 $)) 50)) (-1976 (((-583 (-109)) $) 43)) (-3034 (((-109) (-109)) 42)) (-1865 (((-107) $) 103 (|has| |#1| (-1016)))) (-1623 (((-107) $) 22 (|has| $ (-953 (-517))))) (-3967 (($ $) 186 (|has| |#1| (-962)))) (-3824 (((-1027 |#1| (-556 $)) $) 187 (|has| |#1| (-962)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-3049 (((-1071 $) (-556 $)) 25 (|has| $ (-962)))) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-3308 (($ (-1 $ $) (-556 $)) 36)) (-2466 (((-3 (-556 $) "failed") $) 46)) (-2330 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-1895 (((-1058) $) 9)) (-1423 (((-583 (-556 $)) $) 45)) (-1396 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3807 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1016)))) (-2692 (((-3 (-2 (|:| |val| $) (|:| -2356 (-517))) "failed") $) 183 (|has| |#1| (-962)))) (-2875 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-3818 (((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1812 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $) 191 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-962))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-1075)) 184 (|has| |#1| (-962)))) (-1290 (((-107) $ (-109)) 40) (((-107) $ (-1075)) 39)) (-2298 (($ $) 107 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1807 (((-703) $) 47)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 205)) (-2319 ((|#1| $) 204)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 151 (|has| |#1| (-509)))) (-2368 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-2376 (((-107) $ $) 35) (((-107) $ (-1075)) 34)) (-3866 (((-388 $) $) 162 (|has| |#1| (-509)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 159 (|has| |#1| (-509)))) (-2327 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-2085 (((-107) $) 23 (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1075)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1075) (-1 $ (-583 $))) 31) (($ $ (-1075) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1075)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1075))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1075)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1075)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-962))) (($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-962))) (($ $ (-1075) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-962))) (($ $ (-1075) (-703) (-1 $ $)) 179 (|has| |#1| (-962)))) (-4094 (((-703) $) 155 (|has| |#1| (-509)))) (-2607 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 156 (|has| |#1| (-509)))) (-3618 (($ $) 49) (($ $ $) 48)) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 128 (|has| |#1| (-962))) (($ $ (-1075) (-703)) 127 (|has| |#1| (-962))) (($ $ (-583 (-1075))) 126 (|has| |#1| (-962))) (($ $ (-1075)) 125 (|has| |#1| (-962)))) (-3596 (($ $) 176 (|has| |#1| (-509)))) (-2097 (((-1027 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-3586 (($ $) 24 (|has| $ (-962)))) (-3357 (((-815 (-517)) $) 214 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 213 (|has| |#1| (-558 (-815 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-3026 (($ $ $) 111 (|has| |#1| (-442)))) (-2609 (($ $ $) 112 (|has| |#1| (-442)))) (-2269 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1075)) 217) (($ |#1|) 208) (($ (-1027 |#1| (-556 $))) 188 (|has| |#1| (-962))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-875 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-875 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-875 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-875 |#1|)) 124 (|has| |#1| (-962))) (($ (-377 (-517))) 96 (-3745 (|has| |#1| (-509)) (-12 (|has| |#1| (-953 (-517))) (|has| |#1| (-509))) (|has| |#1| (-953 (-377 (-517)))))) (($ (-517)) 93 (-3745 (|has| |#1| (-962)) (|has| |#1| (-953 (-517)))))) (-2650 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-2950 (((-703)) 133 (|has| |#1| (-962)))) (-3438 (($ $) 53) (($ (-583 $)) 52)) (-1752 (((-107) (-109)) 41)) (-2914 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3511 (($ (-1075) $) 202) (($ (-1075) $ $) 201) (($ (-1075) $ $ $) 200) (($ (-1075) $ $ $ $) 199) (($ (-1075) (-583 $)) 198)) (-2813 (($ $ (-517)) 110 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1016))) (($ $ (-844)) 100 (|has| |#1| (-1016)))) (-3608 (($) 115 (|has| |#1| (-25)) CONST)) (-3617 (($) 101 (|has| |#1| (-1016)) CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 132 (|has| |#1| (-962))) (($ $ (-1075) (-703)) 131 (|has| |#1| (-962))) (($ $ (-583 (-1075))) 130 (|has| |#1| (-962))) (($ $ (-1075)) 129 (|has| |#1| (-962)))) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1703 (($ (-1027 |#1| (-556 $)) (-1027 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1691 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1677 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3745 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1016))) (($ $ (-844)) 99 (|has| |#1| (-1016)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-844) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1016)))))
+(((-400 |#1|) (-1187) (-779)) (T -400))
+((-2308 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1075))))) (-3511 (*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3511 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3511 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3511 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1075))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-3522 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1075)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-3522 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1075)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-3807 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-1812 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517)))) (-4 *1 (-400 *3)))) (-2875 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3818 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1580 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1027 *3 (-556 *1))) (-4 *3 (-962)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-3824 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-779)) (-5 *2 (-1027 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-3967 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-962)))) (-1812 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-962)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517)))) (-4 *1 (-400 *4)))) (-1812 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-962)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517)))) (-4 *1 (-400 *4)))) (-2692 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2356 (-517)))) (-4 *1 (-400 *3)))) (-3522 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962)))) (-3522 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962)))) (-3522 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962)))) (-3522 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2097 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1027 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1703 (*1 *1 *2 *2) (-12 (-5 *2 (-1027 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1440 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1071 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1016)))))
+(-13 (-273) (-953 (-1075)) (-807 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2308 ((-107) $)) (-15 -2319 (|t#1| $)) (-15 -2096 ((-583 (-1075)) $)) (-15 -3511 ($ (-1075) $)) (-15 -3511 ($ (-1075) $ $)) (-15 -3511 ($ (-1075) $ $ $)) (-15 -3511 ($ (-1075) $ $ $ $)) (-15 -3511 ($ (-1075) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -3522 ($ $ (-1075))) (-15 -3522 ($ $ (-583 (-1075)))) (-15 -3522 ($ $)) (-15 -3522 ($ $ (-109) $ (-1075))) (-15 -3522 ($ $ (-583 (-109)) (-583 $) (-1075)))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -3807 ((-3 (-583 $) "failed") $)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2875 ((-3 (-583 $) "failed") $)) (-15 -3818 ((-3 (-2 (|:| -1580 (-517)) (|:| |var| (-556 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-953 (-875 |t#1|))) (-6 (-823 (-1075))) (-6 (-347 |t#1|)) (-15 -2269 ($ (-1027 |t#1| (-556 $)))) (-15 -3824 ((-1027 |t#1| (-556 $)) $)) (-15 -3967 ($ $)) (-15 -1812 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-109))) (-15 -1812 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2356 (-517))) "failed") $ (-1075))) (-15 -2692 ((-3 (-2 (|:| |val| $) (|:| -2356 (-517))) "failed") $)) (-15 -3522 ($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -3522 ($ $ (-583 (-1075)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -3522 ($ $ (-1075) (-703) (-1 $ (-583 $)))) (-15 -3522 ($ $ (-1075) (-703) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-953 (-377 (-875 |t#1|)))) (-15 -3357 ($ (-388 $))) (-15 -2097 ((-1027 |t#1| (-556 $)) $)) (-15 -3596 ($ $)) (-15 -1703 ($ (-1027 |t#1| (-556 $)) (-1027 |t#1| (-556 $)))) (-15 -2269 ($ (-377 |t#1|))) (-15 -2269 ($ (-875 (-377 |t#1|)))) (-15 -2269 ($ (-377 (-875 (-377 |t#1|))))) (-15 -1440 ((-377 (-1071 $)) $ (-556 $))) (IF (|has| |t#1| (-953 (-517))) (-6 (-953 (-377 (-517)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-962)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-962))) ((-579 |#1|) |has| |#1| (-962)) ((-650 #0#) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3745 (|has| |#1| (-1016)) (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-823 (-1075)) |has| |#1| (-962)) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-843) |has| |#1| (-509)) ((-953 (-377 (-517))) -3745 (|has| |#1| (-953 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-953 (-517))))) ((-953 (-377 (-875 |#1|))) |has| |#1| (-509)) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 (-556 $)) . T) ((-953 (-875 |#1|)) |has| |#1| (-962)) ((-953 (-1075)) . T) ((-953 |#1|) . T) ((-968 #0#) |has| |#1| (-509)) ((-968 |#1|) |has| |#1| (-156)) ((-968 $) |has| |#1| (-509)) ((-962) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-969) -3745 (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1016) -3745 (|has| |#1| (-1016)) (|has| |#1| (-962)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1004) . T) ((-1110) . T) ((-1114) |has| |#1| (-509)))
+((-1841 ((|#2| |#2| |#2|) 33)) (-3034 (((-109) (-109)) 44)) (-2593 ((|#2| |#2|) 66)) (-2976 ((|#2| |#2|) 69)) (-4125 ((|#2| |#2|) 32)) (-2184 ((|#2| |#2| |#2|) 35)) (-1987 ((|#2| |#2| |#2|) 37)) (-1794 ((|#2| |#2| |#2|) 34)) (-1726 ((|#2| |#2| |#2|) 36)) (-1752 (((-107) (-109)) 42)) (-3513 ((|#2| |#2|) 39)) (-2605 ((|#2| |#2|) 38)) (-2339 ((|#2| |#2|) 27)) (-1350 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3196 ((|#2| |#2| |#2|) 31)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2339 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -4125 (|#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1794 (|#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -1987 (|#2| |#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3513 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2593 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
+((-2593 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1987 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1726 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2184 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1794 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1841 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3196 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1350 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2339 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -4125 (|#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1794 (|#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -1987 (|#2| |#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3513 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -2593 (|#2| |#2|)))
+((-1672 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1071 |#2|)) (|:| |pol2| (-1071 |#2|)) (|:| |prim| (-1071 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1071 |#2|))) (|:| |prim| (-1071 |#2|))) (-583 |#2|)) 58)))
+(((-402 |#1| |#2|) (-10 -7 (-15 -1672 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1071 |#2|))) (|:| |prim| (-1071 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -1672 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1071 |#2|)) (|:| |pol2| (-1071 |#2|)) (|:| |prim| (-1071 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
+((-1672 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1071 *3)) (|:| |pol2| (-1071 *3)) (|:| |prim| (-1071 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1071 *5))) (|:| |prim| (-1071 *5)))) (-5 *1 (-402 *4 *5)))))
+(-10 -7 (-15 -1672 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1071 |#2|))) (|:| |prim| (-1071 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -1672 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1071 |#2|)) (|:| |pol2| (-1071 |#2|)) (|:| |prim| (-1071 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2034 (((-1161)) 18)) (-3280 (((-1071 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
+(((-403 |#1| |#2|) (-10 -7 (-15 -3280 ((-377 (-517)) |#2|)) (-15 -3280 ((-1071 (-377 (-517))) |#2| (-556 |#2|))) (-15 -2034 ((-1161)))) (-13 (-779) (-509) (-953 (-517))) (-400 |#1|)) (T -403))
+((-2034 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-1161)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3280 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
+(-10 -7 (-15 -3280 ((-377 (-517)) |#2|)) (-15 -3280 ((-1071 (-377 (-517))) |#2| (-556 |#2|))) (-15 -2034 ((-1161))))
+((-4020 (((-107) $) 28)) (-1750 (((-107) $) 30)) (-2828 (((-107) $) 31)) (-2620 (((-107) $) 34)) (-2955 (((-107) $) 29)) (-4092 (((-107) $) 33)) (-2269 (((-787) $) 18) (($ (-1058)) 27) (($ (-1075)) 23) (((-1075) $) 22) (((-1008) $) 21)) (-3934 (((-107) $) 32)) (-1583 (((-107) $ $) 15)))
+(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2269 ($ (-1058))) (-15 -2269 ($ (-1075))) (-15 -2269 ((-1075) $)) (-15 -2269 ((-1008) $)) (-15 -4020 ((-107) $)) (-15 -2955 ((-107) $)) (-15 -2828 ((-107) $)) (-15 -4092 ((-107) $)) (-15 -2620 ((-107) $)) (-15 -3934 ((-107) $)) (-15 -1750 ((-107) $)) (-15 -1583 ((-107) $ $))))) (T -404))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-404)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-404)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-404)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-404)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1583 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2269 ($ (-1058))) (-15 -2269 ($ (-1075))) (-15 -2269 ((-1075) $)) (-15 -2269 ((-1008) $)) (-15 -4020 ((-107) $)) (-15 -2955 ((-107) $)) (-15 -2828 ((-107) $)) (-15 -4092 ((-107) $)) (-15 -2620 ((-107) $)) (-15 -3934 ((-107) $)) (-15 -1750 ((-107) $)) (-15 -1583 ((-107) $ $))))
+((-1311 (((-3 (-388 (-1071 (-377 (-517)))) "failed") |#3|) 69)) (-2978 (((-388 |#3|) |#3|) 33)) (-3666 (((-3 (-388 (-1071 (-47))) "failed") |#3|) 27 (|has| |#2| (-953 (-47))))) (-1958 (((-3 (|:| |overq| (-1071 (-377 (-517)))) (|:| |overan| (-1071 (-47))) (|:| -3208 (-107))) |#3|) 35)))
+(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -2978 ((-388 |#3|) |#3|)) (-15 -1311 ((-3 (-388 (-1071 (-377 (-517)))) "failed") |#3|)) (-15 -1958 ((-3 (|:| |overq| (-1071 (-377 (-517)))) (|:| |overan| (-1071 (-47))) (|:| -3208 (-107))) |#3|)) (IF (|has| |#2| (-953 (-47))) (-15 -3666 ((-3 (-388 (-1071 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-509) (-779) (-953 (-517))) (-400 |#1|) (-1132 |#2|)) (T -405))
+((-3666 (*1 *2 *3) (|partial| -12 (-4 *5 (-953 (-47))) (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1071 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))) (-1958 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1071 (-377 (-517)))) (|:| |overan| (-1071 (-47))) (|:| -3208 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))) (-1311 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1071 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(-10 -7 (-15 -2978 ((-388 |#3|) |#3|)) (-15 -1311 ((-3 (-388 (-1071 (-377 (-517)))) "failed") |#3|)) (-15 -1958 ((-3 (|:| |overq| (-1071 (-377 (-517)))) (|:| |overan| (-1071 (-47))) (|:| -3208 (-107))) |#3|)) (IF (|has| |#2| (-953 (-47))) (-15 -3666 ((-3 (-388 (-1071 (-47))) "failed") |#3|)) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-3252 (((-1058) $ (-1058)) NIL)) (-2150 (($ $ (-1058)) NIL)) (-2608 (((-1058) $) NIL)) (-3001 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-3674 (($ (-358)) NIL) (($ (-358) (-1058)) NIL)) (-2987 (((-358) $) NIL)) (-1895 (((-1058) $) NIL)) (-2023 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3313 (((-1161) (-1058)) 9)) (-2935 (((-1161) (-1058)) 10)) (-4091 (((-1161)) 11)) (-2269 (((-787) $) NIL)) (-1513 (($ $) 35)) (-1583 (((-107) $ $) NIL)))
+(((-406) (-13 (-334 (-358) (-1058)) (-10 -7 (-15 -3001 ((-358) (-358) (-358))) (-15 -3001 ((-358) (-358))) (-15 -3313 ((-1161) (-1058))) (-15 -2935 ((-1161) (-1058))) (-15 -4091 ((-1161)))))) (T -406))
+((-3001 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-406)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-406)))) (-4091 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-406)))))
+(-13 (-334 (-358) (-1058)) (-10 -7 (-15 -3001 ((-358) (-358) (-358))) (-15 -3001 ((-358) (-358))) (-15 -3313 ((-1161) (-1058))) (-15 -2935 ((-1161) (-1058))) (-15 -4091 ((-1161)))))
+((-2118 (((-107) $ $) NIL)) (-2839 (((-3 (|:| |fst| (-404)) (|:| -2043 "void")) $) 10)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2203 (($) 31)) (-1778 (($) 37)) (-1473 (($) 33)) (-3520 (($) 35)) (-3723 (($) 32)) (-1424 (($) 34)) (-3346 (($) 36)) (-2842 (((-107) $) 8)) (-3566 (((-583 (-875 (-517))) $) 16)) (-2286 (($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-1075)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-875 (-517))) (-107)) 26)) (-2269 (((-787) $) 21) (($ (-404)) 28)) (-1583 (((-107) $ $) NIL)))
+(((-407) (-13 (-1004) (-10 -8 (-15 -2269 ((-787) $)) (-15 -2269 ($ (-404))) (-15 -2839 ((-3 (|:| |fst| (-404)) (|:| -2043 "void")) $)) (-15 -3566 ((-583 (-875 (-517))) $)) (-15 -2842 ((-107) $)) (-15 -2286 ($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-1075)) (-107))) (-15 -2286 ($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-875 (-517))) (-107))) (-15 -2203 ($)) (-15 -3723 ($)) (-15 -1473 ($)) (-15 -1778 ($)) (-15 -1424 ($)) (-15 -3520 ($)) (-15 -3346 ($))))) (T -407))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *1 (-407)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-583 (-875 (-517)))) (-5 *1 (-407)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2286 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *3 (-583 (-1075))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2286 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2203 (*1 *1) (-5 *1 (-407))) (-3723 (*1 *1) (-5 *1 (-407))) (-1473 (*1 *1) (-5 *1 (-407))) (-1778 (*1 *1) (-5 *1 (-407))) (-1424 (*1 *1) (-5 *1 (-407))) (-3520 (*1 *1) (-5 *1 (-407))) (-3346 (*1 *1) (-5 *1 (-407))))
+(-13 (-1004) (-10 -8 (-15 -2269 ((-787) $)) (-15 -2269 ($ (-404))) (-15 -2839 ((-3 (|:| |fst| (-404)) (|:| -2043 "void")) $)) (-15 -3566 ((-583 (-875 (-517))) $)) (-15 -2842 ((-107) $)) (-15 -2286 ($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-1075)) (-107))) (-15 -2286 ($ (-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-583 (-875 (-517))) (-107))) (-15 -2203 ($)) (-15 -3723 ($)) (-15 -1473 ($)) (-15 -1778 ($)) (-15 -1424 ($)) (-15 -3520 ($)) (-15 -3346 ($))))
+((-2118 (((-107) $ $) NIL)) (-2987 (((-1075) $) 8)) (-1895 (((-1058) $) 16)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 13)))
+(((-408 |#1|) (-13 (-1004) (-10 -8 (-15 -2987 ((-1075) $)))) (-1075)) (T -408))
+((-2987 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-408 *3)) (-14 *3 *2))))
+(-13 (-1004) (-10 -8 (-15 -2987 ((-1075) $))))
+((-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8) (($ (-1156 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 11)))
+(((-409) (-1187)) (T -409))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-632))) (-4 *1 (-409)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-4 *1 (-409)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-1156 (-632)))) (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-300))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1110) . T))
+((-3226 (((-3 $ "failed") (-1156 (-286 (-349)))) 21) (((-3 $ "failed") (-1156 (-286 (-517)))) 19) (((-3 $ "failed") (-1156 (-875 (-349)))) 17) (((-3 $ "failed") (-1156 (-875 (-517)))) 15) (((-3 $ "failed") (-1156 (-377 (-875 (-349))))) 13) (((-3 $ "failed") (-1156 (-377 (-875 (-517))))) 11)) (-3388 (($ (-1156 (-286 (-349)))) 22) (($ (-1156 (-286 (-517)))) 20) (($ (-1156 (-875 (-349)))) 18) (($ (-1156 (-875 (-517)))) 16) (($ (-1156 (-377 (-875 (-349))))) 14) (($ (-1156 (-377 (-875 (-517))))) 12)) (-1897 (((-1161) $) 7)) (-2269 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) 23)))
+(((-410) (-1187)) (T -410))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300))))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-286 (-349)))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-286 (-349)))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-286 (-517)))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-286 (-517)))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-875 (-349)))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-875 (-349)))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-875 (-517)))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-875 (-517)))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-377 (-875 (-349))))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-377 (-875 (-349))))) (-4 *1 (-410)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1156 (-377 (-875 (-517))))) (-4 *1 (-410)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-1156 (-377 (-875 (-517))))) (-4 *1 (-410)))))
+(-13 (-365) (-10 -8 (-15 -2269 ($ (-583 (-300)))) (-15 -2269 ($ (-300))) (-15 -2269 ($ (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))) (-15 -3388 ($ (-1156 (-286 (-349))))) (-15 -3226 ((-3 $ "failed") (-1156 (-286 (-349))))) (-15 -3388 ($ (-1156 (-286 (-517))))) (-15 -3226 ((-3 $ "failed") (-1156 (-286 (-517))))) (-15 -3388 ($ (-1156 (-875 (-349))))) (-15 -3226 ((-3 $ "failed") (-1156 (-875 (-349))))) (-15 -3388 ($ (-1156 (-875 (-517))))) (-15 -3226 ((-3 $ "failed") (-1156 (-875 (-517))))) (-15 -3388 ($ (-1156 (-377 (-875 (-349)))))) (-15 -3226 ((-3 $ "failed") (-1156 (-377 (-875 (-349)))))) (-15 -3388 ($ (-1156 (-377 (-875 (-517)))))) (-15 -3226 ((-3 $ "failed") (-1156 (-377 (-875 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1110) . T))
+((-2902 (((-107)) 17)) (-3737 (((-107) (-107)) 18)) (-4112 (((-107)) 13)) (-2415 (((-107) (-107)) 14)) (-1702 (((-107)) 15)) (-2663 (((-107) (-107)) 16)) (-2836 (((-844) (-844)) 21) (((-844)) 20)) (-1848 (((-703) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517))))) 42)) (-2066 (((-844) (-844)) 23) (((-844)) 22)) (-3457 (((-2 (|:| -3267 (-517)) (|:| -1878 (-583 |#1|))) |#1|) 62)) (-3643 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517))))))) 124)) (-2952 (((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107)) 150)) (-1625 (((-388 |#1|) |#1| (-703) (-703)) 163) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 160) (((-388 |#1|) |#1| (-583 (-703))) 162) (((-388 |#1|) |#1| (-703)) 161) (((-388 |#1|) |#1|) 159)) (-3810 (((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107)) 165) (((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703)) 166) (((-3 |#1| "failed") (-844) |#1| (-583 (-703))) 168) (((-3 |#1| "failed") (-844) |#1| (-703)) 167) (((-3 |#1| "failed") (-844) |#1|) 169)) (-3866 (((-388 |#1|) |#1| (-703) (-703)) 158) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 154) (((-388 |#1|) |#1| (-583 (-703))) 156) (((-388 |#1|) |#1| (-703)) 155) (((-388 |#1|) |#1|) 153)) (-2983 (((-107) |#1|) 37)) (-2641 (((-670 (-703)) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517))))) 67)) (-2385 (((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107) (-1006 (-703)) (-703)) 152)))
+(((-411 |#1|) (-10 -7 (-15 -3643 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))))) (-15 -2641 ((-670 (-703)) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))))) (-15 -2066 ((-844))) (-15 -2066 ((-844) (-844))) (-15 -2836 ((-844))) (-15 -2836 ((-844) (-844))) (-15 -1848 ((-703) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))))) (-15 -3457 ((-2 (|:| -3267 (-517)) (|:| -1878 (-583 |#1|))) |#1|)) (-15 -2902 ((-107))) (-15 -3737 ((-107) (-107))) (-15 -4112 ((-107))) (-15 -2415 ((-107) (-107))) (-15 -2983 ((-107) |#1|)) (-15 -1702 ((-107))) (-15 -2663 ((-107) (-107))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -3866 ((-388 |#1|) |#1| (-703))) (-15 -3866 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3866 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3866 ((-388 |#1|) |#1| (-703) (-703))) (-15 -1625 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1| (-703))) (-15 -1625 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1625 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1625 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1|)) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107))) (-15 -2952 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107))) (-15 -2385 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107) (-1006 (-703)) (-703)))) (-1132 (-517))) (T -411))
+((-2385 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1006 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3810 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517))))) (-3810 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517))))) (-3810 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517))))) (-3810 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-844)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517))))) (-3810 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-844)) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517))))) (-1625 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1702 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2983 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-4112 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2902 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-3457 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3267 (-517)) (|:| -1878 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3866 *4) (|:| -2769 (-517))))) (-4 *4 (-1132 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2836 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2066 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3866 *4) (|:| -2769 (-517))))) (-4 *4 (-1132 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| *4) (|:| -2220 (-517))))))) (-4 *4 (-1132 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(-10 -7 (-15 -3643 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))))) (-15 -2641 ((-670 (-703)) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))))) (-15 -2066 ((-844))) (-15 -2066 ((-844) (-844))) (-15 -2836 ((-844))) (-15 -2836 ((-844) (-844))) (-15 -1848 ((-703) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))))) (-15 -3457 ((-2 (|:| -3267 (-517)) (|:| -1878 (-583 |#1|))) |#1|)) (-15 -2902 ((-107))) (-15 -3737 ((-107) (-107))) (-15 -4112 ((-107))) (-15 -2415 ((-107) (-107))) (-15 -2983 ((-107) |#1|)) (-15 -1702 ((-107))) (-15 -2663 ((-107) (-107))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -3866 ((-388 |#1|) |#1| (-703))) (-15 -3866 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3866 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3866 ((-388 |#1|) |#1| (-703) (-703))) (-15 -1625 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1| (-703))) (-15 -1625 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -1625 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -1625 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1|)) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703))) (-15 -3810 ((-3 |#1| "failed") (-844) |#1| (-583 (-703)) (-703) (-107))) (-15 -2952 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107))) (-15 -2385 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107) (-1006 (-703)) (-703))))
+((-2759 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1892 (((-517) |#2|) 55)) (-1203 ((|#3| |#2|) 25)) (-2754 ((|#3| |#2| (-844)) 14)) (-3680 ((|#3| |#2|) 15)) (-3637 ((|#3| |#2|) 9)) (-1807 ((|#3| |#2|) 10)) (-1590 ((|#3| |#2| (-844)) 62) ((|#3| |#2|) 30)) (-3633 (((-517) |#2|) 57)))
+(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3633 ((-517) |#2|)) (-15 -1590 (|#3| |#2|)) (-15 -1590 (|#3| |#2| (-844))) (-15 -1892 ((-517) |#2|)) (-15 -2759 ((-517) |#2| (-703))) (-15 -2759 ((-517) |#2|)) (-15 -2754 (|#3| |#2| (-844))) (-15 -1203 (|#3| |#2|)) (-15 -3637 (|#3| |#2|)) (-15 -1807 (|#3| |#2|)) (-15 -3680 (|#3| |#2|))) (-962) (-1132 |#1|) (-13 (-374) (-953 |#1|) (-333) (-1096) (-256))) (T -412))
+((-3680 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))) (-1203 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-962)) (-4 *2 (-13 (-374) (-953 *5) (-333) (-1096) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1132 *5)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1132 *4)) (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))) (-2759 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1132 *5)) (-4 *6 (-13 (-374) (-953 *5) (-333) (-1096) (-256))))) (-1892 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1132 *4)) (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-962)) (-4 *2 (-13 (-374) (-953 *5) (-333) (-1096) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1132 *5)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1132 *4)) (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))))
+(-10 -7 (-15 -3633 ((-517) |#2|)) (-15 -1590 (|#3| |#2|)) (-15 -1590 (|#3| |#2| (-844))) (-15 -1892 ((-517) |#2|)) (-15 -2759 ((-517) |#2| (-703))) (-15 -2759 ((-517) |#2|)) (-15 -2754 (|#3| |#2| (-844))) (-15 -1203 (|#3| |#2|)) (-15 -3637 (|#3| |#2|)) (-15 -1807 (|#3| |#2|)) (-15 -3680 (|#3| |#2|)))
+((-1417 ((|#2| (-1156 |#1|)) 36)) (-3854 ((|#2| |#2| |#1|) 49)) (-2377 ((|#2| |#2| |#1|) 41)) (-1905 ((|#2| |#2|) 38)) (-1728 (((-107) |#2|) 30)) (-1283 (((-583 |#2|) (-844) (-388 |#2|)) 16)) (-3810 ((|#2| (-844) (-388 |#2|)) 21)) (-2641 (((-670 (-703)) (-388 |#2|)) 25)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -1728 ((-107) |#2|)) (-15 -1417 (|#2| (-1156 |#1|))) (-15 -1905 (|#2| |#2|)) (-15 -2377 (|#2| |#2| |#1|)) (-15 -3854 (|#2| |#2| |#1|)) (-15 -2641 ((-670 (-703)) (-388 |#2|))) (-15 -3810 (|#2| (-844) (-388 |#2|))) (-15 -1283 ((-583 |#2|) (-844) (-388 |#2|)))) (-962) (-1132 |#1|)) (T -413))
+((-1283 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-388 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-962)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-388 *2)) (-4 *2 (-1132 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-962)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-962)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-3854 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3)))) (-2377 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3)))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-962)) (-4 *2 (-1132 *4)) (-5 *1 (-413 *4 *2)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -1728 ((-107) |#2|)) (-15 -1417 (|#2| (-1156 |#1|))) (-15 -1905 (|#2| |#2|)) (-15 -2377 (|#2| |#2| |#1|)) (-15 -3854 (|#2| |#2| |#1|)) (-15 -2641 ((-670 (-703)) (-388 |#2|))) (-15 -3810 (|#2| (-844) (-388 |#2|))) (-15 -1283 ((-583 |#2|) (-844) (-388 |#2|))))
+((-3631 (((-703)) 41)) (-2357 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-1710 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1447 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-1833 (((-703)) 40) (((-703) (-703)) 39)) (-4120 ((|#1| (-703) (-517)) 29)) (-3118 (((-1161)) 43)))
+(((-414 |#1|) (-10 -7 (-15 -4120 (|#1| (-703) (-517))) (-15 -1833 ((-703) (-703))) (-15 -1833 ((-703))) (-15 -3631 ((-703))) (-15 -3118 ((-1161))) (IF (|has| |#1| (-374)) (PROGN (-15 -1447 ((-517) |#1|)) (-15 -1710 ((-517) |#1|)) (-15 -2357 ((-703) (-703))) (-15 -2357 ((-703)))) |%noBranch|)) (-962)) (T -414))
+((-2357 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))) (-1710 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))) (-3118 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-414 *3)) (-4 *3 (-962)))) (-3631 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962)))) (-1833 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-962)))))
+(-10 -7 (-15 -4120 (|#1| (-703) (-517))) (-15 -1833 ((-703) (-703))) (-15 -1833 ((-703))) (-15 -3631 ((-703))) (-15 -3118 ((-1161))) (IF (|has| |#1| (-374)) (PROGN (-15 -1447 ((-517) |#1|)) (-15 -1710 ((-517) |#1|)) (-15 -2357 ((-703) (-703))) (-15 -2357 ((-703)))) |%noBranch|))
+((-2326 (((-583 (-517)) (-517)) 59)) (-2963 (((-107) (-153 (-517))) 63)) (-3866 (((-388 (-153 (-517))) (-153 (-517))) 58)))
+(((-415) (-10 -7 (-15 -3866 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2326 ((-583 (-517)) (-517))) (-15 -2963 ((-107) (-153 (-517)))))) (T -415))
+((-2963 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
+(-10 -7 (-15 -3866 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2326 ((-583 (-517)) (-517))) (-15 -2963 ((-107) (-153 (-517)))))
+((-2476 ((|#4| |#4| (-583 |#4|)) 59)) (-1387 (((-583 |#4|) (-583 |#4|) (-1058) (-1058)) 17) (((-583 |#4|) (-583 |#4|) (-1058)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2476 (|#4| |#4| (-583 |#4|))) (-15 -1387 ((-583 |#4|) (-583 |#4|))) (-15 -1387 ((-583 |#4|) (-583 |#4|) (-1058))) (-15 -1387 ((-583 |#4|) (-583 |#4|) (-1058) (-1058)))) (-278) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -416))
+((-1387 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1387 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2476 (|#4| |#4| (-583 |#4|))) (-15 -1387 ((-583 |#4|) (-583 |#4|))) (-15 -1387 ((-583 |#4|) (-583 |#4|) (-1058))) (-15 -1387 ((-583 |#4|) (-583 |#4|) (-1058) (-1058))))
+((-2503 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 71) (((-583 (-583 |#4|)) (-583 |#4|)) 70) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 64) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 65)) (-1626 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 41) (((-583 (-583 |#4|)) (-583 |#4|)) 61)))
+(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1626 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1626 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -417))
+((-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2503 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2503 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1626 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(-10 -7 (-15 -1626 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1626 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2503 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
+((-2648 (((-703) |#4|) 12)) (-1653 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|)))) 31)) (-2984 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1391 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3218 ((|#4| |#4| (-583 |#4|)) 40)) (-2968 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 69)) (-4030 (((-1161) |#4|) 42)) (-3702 (((-1161) (-583 |#4|)) 51)) (-1300 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 48)) (-3514 (((-1161) (-517)) 77)) (-1787 (((-583 |#4|) (-583 |#4|)) 75)) (-4015 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|)) |#4| (-703)) 25)) (-3125 (((-517) |#4|) 76)) (-3300 ((|#4| |#4|) 29)) (-4169 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 55)) (-3120 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 87)) (-2540 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2245 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1644 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2001 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2677 (((-107) |#2| |#2|) 56)) (-1711 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1594 (((-107) |#2| |#2| |#2| |#2|) 59)) (-1489 ((|#4| |#4| (-583 |#4|)) 70)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1489 (|#4| |#4| (-583 |#4|))) (-15 -3218 (|#4| |#4| (-583 |#4|))) (-15 -4169 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2245 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2677 ((-107) |#2| |#2|)) (-15 -1594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -1711 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2001 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1644 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2968 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3300 (|#4| |#4|)) (-15 -1653 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|))))) (-15 -1391 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2984 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1787 ((-583 |#4|) (-583 |#4|))) (-15 -3125 ((-517) |#4|)) (-15 -4030 ((-1161) |#4|)) (-15 -1300 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3120 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3702 ((-1161) (-583 |#4|))) (-15 -3514 ((-1161) (-517))) (-15 -2540 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4015 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|)) |#4| (-703))) (-15 -2648 ((-703) |#4|))) (-421) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -418))
+((-2648 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-4015 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1713 *4))) (-5 *5 (-703)) (-4 *4 (-872 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-2540 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1161)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1161)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3120 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1300 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1161)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-3125 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2984 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-872 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-1653 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 *3)))) (-5 *4 (-703)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3300 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-1644 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-872 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-2001 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1711 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-1594 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))) (-2677 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-4169 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-1489 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1489 (|#4| |#4| (-583 |#4|))) (-15 -3218 (|#4| |#4| (-583 |#4|))) (-15 -4169 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -2245 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2677 ((-107) |#2| |#2|)) (-15 -1594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -1711 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2001 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1644 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2968 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3300 (|#4| |#4|)) (-15 -1653 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|))))) (-15 -1391 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2984 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1787 ((-583 |#4|) (-583 |#4|))) (-15 -3125 ((-517) |#4|)) (-15 -4030 ((-1161) |#4|)) (-15 -1300 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -3120 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3702 ((-1161) (-583 |#4|))) (-15 -3514 ((-1161) (-517))) (-15 -2540 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4015 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1713 |#4|)) |#4| (-703))) (-15 -2648 ((-703) |#4|)))
+((-1639 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1195 (((-583 |#4|) (-583 |#4|) (-1058) (-1058)) 42) (((-583 |#4|) (-583 |#4|) (-1058)) 41) (((-583 |#4|) (-583 |#4|)) 36)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1195 ((-583 |#4|) (-583 |#4|))) (-15 -1195 ((-583 |#4|) (-583 |#4|) (-1058))) (-15 -1195 ((-583 |#4|) (-583 |#4|) (-1058) (-1058))) (IF (|has| |#1| (-333)) (-15 -1639 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-421) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -419))
+((-1639 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1195 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1195 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1195 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1195 ((-583 |#4|) (-583 |#4|))) (-15 -1195 ((-583 |#4|) (-583 |#4|) (-1058))) (-15 -1195 ((-583 |#4|) (-583 |#4|) (-1058) (-1058))) (IF (|has| |#1| (-333)) (-15 -1639 (|#4| |#4| (-583 |#4|))) |%noBranch|))
+((-2330 (($ $ $) 14) (($ (-583 $)) 21)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 41)) (-2368 (($ $ $) NIL) (($ (-583 $)) 22)))
+(((-420 |#1|) (-10 -8 (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2330 (|#1| (-583 |#1|))) (-15 -2330 (|#1| |#1| |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|))) (-421)) (T -420))
+NIL
+(-10 -8 (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2330 (|#1| (-583 |#1|))) (-15 -2330 (|#1| |#1| |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2368 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-2327 (((-3 $ "failed") $ $) 42)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-421) (-1187)) (T -421))
+((-2368 (*1 *1 *1 *1) (-4 *1 (-421))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2330 (*1 *1 *1 *1) (-4 *1 (-421))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2793 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-421)))))
+(-13 (-509) (-10 -8 (-15 -2368 ($ $ $)) (-15 -2368 ($ (-583 $))) (-15 -2330 ($ $ $)) (-15 -2330 ($ (-583 $))) (-15 -2793 ((-1071 $) (-1071 $) (-1071 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1875 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1402 (((-1156 (-623 (-377 (-875 |#1|)))) (-1156 $)) NIL) (((-1156 (-623 (-377 (-875 |#1|))))) NIL)) (-2197 (((-1156 $)) NIL)) (-1681 (($) NIL T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL)) (-1504 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-2429 (((-623 (-377 (-875 |#1|))) (-1156 $)) NIL) (((-623 (-377 (-875 |#1|)))) NIL)) (-2684 (((-377 (-875 |#1|)) $) NIL)) (-2977 (((-623 (-377 (-875 |#1|))) $ (-1156 $)) NIL) (((-623 (-377 (-875 |#1|))) $) NIL)) (-3237 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-2078 (((-1071 (-875 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-333))) (((-1071 (-377 (-875 |#1|)))) 79 (|has| |#1| (-509)))) (-1537 (($ $ (-844)) NIL)) (-1227 (((-377 (-875 |#1|)) $) NIL)) (-1499 (((-1071 (-377 (-875 |#1|))) $) 77 (|has| (-377 (-875 |#1|)) (-509)))) (-2705 (((-377 (-875 |#1|)) (-1156 $)) NIL) (((-377 (-875 |#1|))) NIL)) (-3724 (((-1071 (-377 (-875 |#1|))) $) NIL)) (-3764 (((-107)) NIL)) (-1953 (($ (-1156 (-377 (-875 |#1|))) (-1156 $)) 97) (($ (-1156 (-377 (-875 |#1|)))) NIL)) (-3163 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-3736 (((-844)) NIL)) (-2438 (((-107)) NIL)) (-3248 (($ $ (-844)) NIL)) (-4073 (((-107)) NIL)) (-1495 (((-107)) NIL)) (-2502 (((-107)) NIL)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL)) (-3331 (((-3 $ "failed")) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-2547 (((-623 (-377 (-875 |#1|))) (-1156 $)) NIL) (((-623 (-377 (-875 |#1|)))) NIL)) (-3303 (((-377 (-875 |#1|)) $) NIL)) (-2739 (((-623 (-377 (-875 |#1|))) $ (-1156 $)) NIL) (((-623 (-377 (-875 |#1|))) $) NIL)) (-1888 (((-3 $ "failed") $) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-1690 (((-1071 (-875 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-333))) (((-1071 (-377 (-875 |#1|)))) 78 (|has| |#1| (-509)))) (-2848 (($ $ (-844)) NIL)) (-3492 (((-377 (-875 |#1|)) $) NIL)) (-2328 (((-1071 (-377 (-875 |#1|))) $) 72 (|has| (-377 (-875 |#1|)) (-509)))) (-1946 (((-377 (-875 |#1|)) (-1156 $)) NIL) (((-377 (-875 |#1|))) NIL)) (-1940 (((-1071 (-377 (-875 |#1|))) $) NIL)) (-2256 (((-107)) NIL)) (-1895 (((-1058) $) NIL)) (-1952 (((-107)) NIL)) (-2388 (((-107)) NIL)) (-2631 (((-107)) NIL)) (-4123 (((-1022) $) NIL)) (-3010 (((-377 (-875 |#1|)) $ $) 66 (|has| |#1| (-509)))) (-2801 (((-377 (-875 |#1|)) $) 65 (|has| |#1| (-509)))) (-2869 (((-377 (-875 |#1|)) $) 89 (|has| |#1| (-509)))) (-3193 (((-1071 (-377 (-875 |#1|))) $) 83 (|has| |#1| (-509)))) (-1765 (((-377 (-875 |#1|))) 67 (|has| |#1| (-509)))) (-3342 (((-377 (-875 |#1|)) $ $) 54 (|has| |#1| (-509)))) (-2913 (((-377 (-875 |#1|)) $) 53 (|has| |#1| (-509)))) (-3337 (((-377 (-875 |#1|)) $) 88 (|has| |#1| (-509)))) (-1597 (((-1071 (-377 (-875 |#1|))) $) 82 (|has| |#1| (-509)))) (-2899 (((-377 (-875 |#1|))) 64 (|has| |#1| (-509)))) (-3213 (($) 95) (($ (-1075)) 101) (($ (-1156 (-1075))) 100) (($ (-1156 $)) 90) (($ (-1075) (-1156 $)) 99) (($ (-1156 (-1075)) (-1156 $)) 98)) (-1665 (((-107)) NIL)) (-2607 (((-377 (-875 |#1|)) $ (-517)) NIL)) (-3369 (((-1156 (-377 (-875 |#1|))) $ (-1156 $)) 92) (((-623 (-377 (-875 |#1|))) (-1156 $) (-1156 $)) NIL) (((-1156 (-377 (-875 |#1|))) $) 37) (((-623 (-377 (-875 |#1|))) (-1156 $)) NIL)) (-3357 (((-1156 (-377 (-875 |#1|))) $) NIL) (($ (-1156 (-377 (-875 |#1|)))) 34)) (-4070 (((-583 (-875 (-377 (-875 |#1|)))) (-1156 $)) NIL) (((-583 (-875 (-377 (-875 |#1|))))) NIL) (((-583 (-875 |#1|)) (-1156 $)) 93 (|has| |#1| (-509))) (((-583 (-875 |#1|))) 94 (|has| |#1| (-509)))) (-2609 (($ $ $) NIL)) (-3722 (((-107)) NIL)) (-2269 (((-787) $) NIL) (($ (-1156 (-377 (-875 |#1|)))) NIL)) (-2062 (((-1156 $)) 56)) (-4111 (((-583 (-1156 (-377 (-875 |#1|))))) NIL (|has| (-377 (-875 |#1|)) (-509)))) (-2516 (($ $ $ $) NIL)) (-2126 (((-107)) NIL)) (-2374 (($ (-623 (-377 (-875 |#1|))) $) NIL)) (-1263 (($ $ $) NIL)) (-1332 (((-107)) NIL)) (-2685 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-3608 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) 91)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-875 |#1|))) NIL) (($ (-377 (-875 |#1|)) $) NIL) (($ (-1042 |#2| (-377 (-875 |#1|))) $) NIL)))
+(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-875 |#1|))) (-585 (-1042 |#2| (-377 (-875 |#1|)))) (-10 -8 (-15 -2269 ($ (-1156 (-377 (-875 |#1|))))) (-15 -2556 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3616 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3213 ($)) (-15 -3213 ($ (-1075))) (-15 -3213 ($ (-1156 (-1075)))) (-15 -3213 ($ (-1156 $))) (-15 -3213 ($ (-1075) (-1156 $))) (-15 -3213 ($ (-1156 (-1075)) (-1156 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1690 ((-1071 (-377 (-875 |#1|))))) (-15 -1597 ((-1071 (-377 (-875 |#1|))) $)) (-15 -2913 ((-377 (-875 |#1|)) $)) (-15 -3337 ((-377 (-875 |#1|)) $)) (-15 -2078 ((-1071 (-377 (-875 |#1|))))) (-15 -3193 ((-1071 (-377 (-875 |#1|))) $)) (-15 -2801 ((-377 (-875 |#1|)) $)) (-15 -2869 ((-377 (-875 |#1|)) $)) (-15 -3342 ((-377 (-875 |#1|)) $ $)) (-15 -2899 ((-377 (-875 |#1|)))) (-15 -3010 ((-377 (-875 |#1|)) $ $)) (-15 -1765 ((-377 (-875 |#1|)))) (-15 -4070 ((-583 (-875 |#1|)) (-1156 $))) (-15 -4070 ((-583 (-875 |#1|))))) |%noBranch|))) (-156) (-844) (-583 (-1075)) (-1156 (-623 |#1|))) (T -422))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1156 (-377 (-875 *3)))) (-4 *3 (-156)) (-14 *6 (-1156 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))))) (-2556 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2062 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3616 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2062 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3213 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-844)) (-14 *4 (-583 (-1075))) (-14 *5 (-1156 (-623 *2))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 *2)) (-14 *6 (-1156 (-623 *3))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1156 (-1075))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-1156 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3213 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 *2)) (-14 *7 (-1156 (-623 *4))))) (-3213 (*1 *1 *2 *3) (-12 (-5 *2 (-1156 (-1075))) (-5 *3 (-1156 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 (-1075))) (-14 *7 (-1156 (-623 *4))))) (-1690 (*1 *2) (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-2078 (*1 *2) (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3342 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-2899 (*1 *2) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-3010 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-1765 (*1 *2) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-1156 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-875 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-844)) (-14 *6 (-583 (-1075))) (-14 *7 (-1156 (-623 *4))))) (-4070 (*1 *2) (-12 (-5 *2 (-583 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(-13 (-387 (-377 (-875 |#1|))) (-585 (-1042 |#2| (-377 (-875 |#1|)))) (-10 -8 (-15 -2269 ($ (-1156 (-377 (-875 |#1|))))) (-15 -2556 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3616 ((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed"))) (-15 -3213 ($)) (-15 -3213 ($ (-1075))) (-15 -3213 ($ (-1156 (-1075)))) (-15 -3213 ($ (-1156 $))) (-15 -3213 ($ (-1075) (-1156 $))) (-15 -3213 ($ (-1156 (-1075)) (-1156 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -1690 ((-1071 (-377 (-875 |#1|))))) (-15 -1597 ((-1071 (-377 (-875 |#1|))) $)) (-15 -2913 ((-377 (-875 |#1|)) $)) (-15 -3337 ((-377 (-875 |#1|)) $)) (-15 -2078 ((-1071 (-377 (-875 |#1|))))) (-15 -3193 ((-1071 (-377 (-875 |#1|))) $)) (-15 -2801 ((-377 (-875 |#1|)) $)) (-15 -2869 ((-377 (-875 |#1|)) $)) (-15 -3342 ((-377 (-875 |#1|)) $ $)) (-15 -2899 ((-377 (-875 |#1|)))) (-15 -3010 ((-377 (-875 |#1|)) $ $)) (-15 -1765 ((-377 (-875 |#1|)))) (-15 -4070 ((-583 (-875 |#1|)) (-1156 $))) (-15 -4070 ((-583 (-875 |#1|))))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 13)) (-2096 (((-583 (-789 |#1|)) $) 74)) (-1440 (((-1071 $) $ (-789 |#1|)) 46) (((-1071 |#2|) $) 116)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2729 (($ $) NIL (|has| |#2| (-509)))) (-2566 (((-107) $) NIL (|has| |#2| (-509)))) (-2629 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL (|has| |#2| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3388 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-789 |#1|) $) NIL)) (-2272 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2896 (($ $ (-583 (-517))) 79)) (-2371 (($ $) 68)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#2| (-832)))) (-2027 (($ $ |#2| |#3| $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) 58)) (-2086 (($ (-1071 |#2|) (-789 |#1|)) 121) (($ (-1071 $) (-789 |#1|)) 52)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) 59)) (-2077 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-789 |#1|)) NIL)) (-2210 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3200 (($ (-1 |#3| |#3|) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1512 (((-3 (-789 |#1|) "failed") $) 39)) (-2333 (($ $) NIL)) (-2345 ((|#2| $) 41)) (-2330 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2356 (-703))) "failed") $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) 40)) (-2319 ((|#2| $) 114)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 126 (|has| |#2| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 86) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 89) (($ $ (-789 |#1|) $) 84) (($ $ (-583 (-789 |#1|)) (-583 $)) 105)) (-4032 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2059 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2769 ((|#3| $) 67) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#2| $) 123 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2269 (((-787) $) 142) (($ (-517)) NIL) (($ |#2|) 85) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3745 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 16 T CONST)) (-3617 (($) 25 T CONST)) (-3340 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 110)) (** (($ $ (-844)) NIL) (($ $ (-703)) 108)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-423 |#1| |#2| |#3|) (-13 (-872 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517)))))) (-583 (-1075)) (-962) (-212 (-3533 |#1|) (-703))) (T -423))
+((-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1075))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-212 (-3533 *3) (-703))))))
+(-13 (-872 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517))))))
+((-1229 (((-107) |#1| (-583 |#2|)) 66)) (-2791 (((-3 (-1156 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 75)) (-2459 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1156 (-583 |#2|))) 77)) (-3334 ((|#2| |#2| |#1|) 28)) (-1805 (((-703) |#2| (-583 |#2|)) 20)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -3334 (|#2| |#2| |#1|)) (-15 -1805 ((-703) |#2| (-583 |#2|))) (-15 -2791 ((-3 (-1156 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2459 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1156 (-583 |#2|)))) (-15 -1229 ((-107) |#1| (-583 |#2|)))) (-278) (-1132 |#1|)) (T -424))
+((-1229 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1132 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-2459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1156 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1132 *4)))) (-2791 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1132 *4)) (-5 *2 (-1156 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-3334 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1132 *3)))))
+(-10 -7 (-15 -3334 (|#2| |#2| |#1|)) (-15 -1805 ((-703) |#2| (-583 |#2|))) (-15 -2791 ((-3 (-1156 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2459 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1156 (-583 |#2|)))) (-15 -1229 ((-107) |#1| (-583 |#2|))))
+((-3866 (((-388 |#5|) |#5|) 24)))
+(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3866 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075))))) (-725) (-509) (-509) (-872 |#4| |#2| |#1|)) (T -425))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-872 *7 *5 *4)))))
+(-10 -7 (-15 -3866 ((-388 |#5|) |#5|)))
+((-3746 ((|#3|) 36)) (-2793 (((-1071 |#4|) (-1071 |#4|) (-1071 |#4|)) 32)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2793 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -3746 (|#3|))) (-725) (-779) (-832) (-872 |#3| |#1| |#2|)) (T -426))
+((-3746 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-872 *2 *3 *4)))) (-2793 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-832)) (-5 *1 (-426 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2793 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -3746 (|#3|)))
+((-3866 (((-388 (-1071 |#1|)) (-1071 |#1|)) 41)))
+(((-427 |#1|) (-10 -7 (-15 -3866 ((-388 (-1071 |#1|)) (-1071 |#1|)))) (-278)) (T -427))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1071 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1071 *4)))))
+(-10 -7 (-15 -3866 ((-388 (-1071 |#1|)) (-1071 |#1|))))
+((-2144 (((-51) |#2| (-1075) (-265 |#2|) (-1123 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-703))) 41) (((-51) |#2| (-1075) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-3431 (((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517))) 77) (((-51) |#2| (-1075) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-2164 (((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517))) 64)) (-2153 (((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517))) 47)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -2144 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2144 ((-51) |#2| (-1075) (-265 |#2|))) (-15 -2144 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-703)))) (-15 -2144 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-703)))) (-15 -2153 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517)))) (-15 -2153 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517)))) (-15 -2164 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -2164 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -3431 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|))) (-15 -3431 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517)))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517)))) (-15 -3431 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -428))
+((-3431 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-3431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1123 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-3431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-517))) (-4 *7 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-2164 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1123 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2153 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-517))) (-4 *7 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2144 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-703))) (-4 *3 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-703))) (-4 *7 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
+(-10 -7 (-15 -2144 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2144 ((-51) |#2| (-1075) (-265 |#2|))) (-15 -2144 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-703)))) (-15 -2144 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-703)))) (-15 -2153 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517)))) (-15 -2153 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517)))) (-15 -2164 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -2164 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -3431 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|))) (-15 -3431 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1123 (-517)))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-517)))) (-15 -3431 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))) (-15 -3431 ((-51) |#2| (-1075) (-265 |#2|) (-1123 (-377 (-517))) (-377 (-517)))))
+((-3334 ((|#2| |#2| |#1|) 15)) (-3291 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-844)) 69)) (-1520 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844)) 60)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -1520 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844))) (-15 -3291 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-844))) (-15 -3334 (|#2| |#2| |#1|))) (-278) (-1132 |#1|)) (T -429))
+((-3334 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1132 *3)))) (-3291 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-844)) (-4 *3 (-1132 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-1520 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-844)) (-4 *5 (-278)) (-4 *3 (-1132 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(-10 -7 (-15 -1520 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-844))) (-15 -3291 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-844))) (-15 -3334 (|#2| |#2| |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 28)) (-2531 (($ |#3|) 25)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) 32)) (-4050 (($ |#2| |#4| $) 33)) (-2077 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-2333 (((-646 |#3| |#4| |#5|) $) 15)) (-2958 ((|#3| $) 19)) (-3195 ((|#4| $) 17)) (-2345 ((|#2| $) 29)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-2005 (($ |#2| |#3| |#4|) 26)) (-3608 (($) 36 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 34)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2345 (|#2| $)) (-15 -2333 ((-646 |#3| |#4| |#5|) $)) (-15 -3195 (|#4| $)) (-15 -2958 (|#3| $)) (-15 -2371 ($ $)) (-15 -2077 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2531 ($ |#3|)) (-15 -2005 ($ |#2| |#3| |#4|)) (-15 -4050 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1075)) (-156) (-779) (-212 (-3533 |#1|) (-703)) (-1 (-107) (-2 (|:| -2810 |#3|) (|:| -2356 |#4|)) (-2 (|:| -2810 |#3|) (|:| -2356 |#4|))) (-872 |#2| |#4| (-789 |#1|))) (T -430))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156)) (-4 *6 (-212 (-3533 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6)) (-2 (|:| -2810 *5) (|:| -2356 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-872 *4 *6 (-789 *3))))) (-2345 (*1 *2 *1) (-12 (-14 *3 (-583 (-1075))) (-4 *5 (-212 (-3533 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *4) (|:| -2356 *5)) (-2 (|:| -2810 *4) (|:| -2356 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-872 *2 *5 (-789 *3))))) (-2333 (*1 *2 *1) (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156)) (-4 *6 (-212 (-3533 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6)) (-2 (|:| -2810 *5) (|:| -2356 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-872 *4 *6 (-789 *3))))) (-3195 (*1 *2 *1) (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *2)) (-2 (|:| -2810 *5) (|:| -2356 *2)))) (-4 *2 (-212 (-3533 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-872 *4 *2 (-789 *3))))) (-2958 (*1 *2 *1) (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156)) (-4 *5 (-212 (-3533 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *5)) (-2 (|:| -2810 *2) (|:| -2356 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-872 *4 *5 (-789 *3))))) (-2371 (*1 *1 *1) (-12 (-14 *2 (-583 (-1075))) (-4 *3 (-156)) (-4 *5 (-212 (-3533 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *4) (|:| -2356 *5)) (-2 (|:| -2810 *4) (|:| -2356 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-872 *3 *5 (-789 *2))))) (-2077 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-3533 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6)) (-2 (|:| -2810 *5) (|:| -2356 *6)))) (-14 *4 (-583 (-1075))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-872 *2 *6 (-789 *4))))) (-2531 (*1 *1 *2) (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156)) (-4 *5 (-212 (-3533 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *5)) (-2 (|:| -2810 *2) (|:| -2356 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-872 *4 *5 (-789 *3))))) (-2005 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1075))) (-4 *2 (-156)) (-4 *4 (-212 (-3533 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *3) (|:| -2356 *4)) (-2 (|:| -2810 *3) (|:| -2356 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-872 *2 *4 (-789 *5))))) (-4050 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1075))) (-4 *2 (-156)) (-4 *3 (-212 (-3533 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *3)) (-2 (|:| -2810 *5) (|:| -2356 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-872 *2 *3 (-789 *4))))))
+(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2345 (|#2| $)) (-15 -2333 ((-646 |#3| |#4| |#5|) $)) (-15 -3195 (|#4| $)) (-15 -2958 (|#3| $)) (-15 -2371 ($ $)) (-15 -2077 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2531 ($ |#3|)) (-15 -2005 ($ |#2| |#3| |#4|)) (-15 -4050 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1795 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1795 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|) (-13 (-953 (-377 (-517))) (-333) (-10 -8 (-15 -2269 ($ |#4|)) (-15 -3824 (|#4| $)) (-15 -2097 (|#4| $))))) (T -431))
+((-1795 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-872 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-953 (-377 (-517))) (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))))
+(-10 -7 (-15 -1795 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2096 (((-583 |#3|) $) 41)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) NIL (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2259 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 47)) (-3388 (($ (-583 |#4|)) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4190)))) (-1535 (((-583 |#4|) $) 18 (|has| $ (-6 -4190)))) (-3834 ((|#3| $) 45)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#4|) $) 14 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-2744 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 21)) (-1310 (((-583 |#3|) $) NIL)) (-1234 (((-107) |#3| $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-4123 (((-1022) $) NIL)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 39)) (-1529 (($) 17)) (-4135 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) 16)) (-3357 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2286 (($ (-583 |#4|)) 13)) (-2654 (($ $ |#3|) NIL)) (-2054 (($ $ |#3|) NIL)) (-2530 (($ $ |#3|) NIL)) (-2269 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 30)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-432 |#1| |#2| |#3| |#4|) (-13 (-894 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ($ (-583 |#4|))) (-6 -4190) (-6 -4191))) (-962) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -432))
+((-3357 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
+(-13 (-894 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ($ (-583 |#4|))) (-6 -4190) (-6 -4191)))
+((-3608 (($) 11)) (-3617 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -3617 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3608 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
+NIL
+(-10 -8 (-15 -3617 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3608 (|#1|)))
+((-2118 (((-107) $ $) 7)) (-3226 (((-3 |#1| "failed") $) 26)) (-3388 ((|#1| $) 25)) (-3544 (($ $ $) 23)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2769 ((|#2| $) 19)) (-2269 (((-787) $) 11) (($ |#1|) 27)) (-3608 (($) 18 T CONST)) (-3617 (($) 24 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 15) (($ $ $) 13)) (-1677 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-434 |#1| |#2|) (-1187) (-156) (-23)) (T -434))
+((-3617 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3544 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-439 |t#1| |t#2|) (-953 |t#1|) (-10 -8 (-15 (-3617) ($) -1384) (-15 -3544 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-953 |#1|) . T) ((-1004) . T))
+((-3389 (((-1156 (-1156 (-517))) (-1156 (-1156 (-517))) (-844)) 18)) (-3197 (((-1156 (-1156 (-517))) (-844)) 16)))
+(((-435) (-10 -7 (-15 -3389 ((-1156 (-1156 (-517))) (-1156 (-1156 (-517))) (-844))) (-15 -3197 ((-1156 (-1156 (-517))) (-844))))) (T -435))
+((-3197 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1156 (-1156 (-517)))) (-5 *1 (-435)))) (-3389 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 (-1156 (-517)))) (-5 *3 (-844)) (-5 *1 (-435)))))
+(-10 -7 (-15 -3389 ((-1156 (-1156 (-517))) (-1156 (-1156 (-517))) (-844))) (-15 -3197 ((-1156 (-1156 (-517))) (-844))))
+((-3244 (((-517) (-517)) 30) (((-517)) 22)) (-3870 (((-517) (-517)) 26) (((-517)) 18)) (-3911 (((-517) (-517)) 28) (((-517)) 20)) (-1913 (((-107) (-107)) 12) (((-107)) 10)) (-3508 (((-107) (-107)) 11) (((-107)) 9)) (-2311 (((-107) (-107)) 24) (((-107)) 15)))
+(((-436) (-10 -7 (-15 -3508 ((-107))) (-15 -1913 ((-107))) (-15 -3508 ((-107) (-107))) (-15 -1913 ((-107) (-107))) (-15 -2311 ((-107))) (-15 -3911 ((-517))) (-15 -3870 ((-517))) (-15 -3244 ((-517))) (-15 -2311 ((-107) (-107))) (-15 -3911 ((-517) (-517))) (-15 -3870 ((-517) (-517))) (-15 -3244 ((-517) (-517))))) (T -436))
+((-3244 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2311 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3244 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3870 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3911 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2311 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3508 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-1913 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3508 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(-10 -7 (-15 -3508 ((-107))) (-15 -1913 ((-107))) (-15 -3508 ((-107) (-107))) (-15 -1913 ((-107) (-107))) (-15 -2311 ((-107))) (-15 -3911 ((-517))) (-15 -3870 ((-517))) (-15 -3244 ((-517))) (-15 -2311 ((-107) (-107))) (-15 -3911 ((-517) (-517))) (-15 -3870 ((-517) (-517))) (-15 -3244 ((-517) (-517))))
+((-2118 (((-107) $ $) NIL)) (-2471 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 91)) (-3082 (((-583 (-999 (-349))) $) 14) (((-583 (-999 (-349))) $ (-583 (-999 (-349)))) 88)) (-2002 (((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797))) 42)) (-3981 (((-583 (-583 (-866 (-199)))) $) 84)) (-3414 (((-1161) $ (-866 (-199)) (-797)) 104)) (-1980 (($ $) 83) (($ (-583 (-583 (-866 (-199))))) 94) (($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844))) 93) (($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236))) 95)) (-1895 (((-1058) $) NIL)) (-2581 (((-517) $) 66)) (-4123 (((-1022) $) NIL)) (-3575 (($) 92)) (-3920 (((-583 (-199)) (-583 (-583 (-866 (-199))))) 52)) (-2751 (((-1161) $ (-583 (-866 (-199))) (-797) (-797) (-844)) 98) (((-1161) $ (-866 (-199))) 100) (((-1161) $ (-866 (-199)) (-797) (-797) (-844)) 99)) (-2269 (((-787) $) 110) (($ (-583 (-583 (-866 (-199))))) 105)) (-3085 (((-1161) $ (-866 (-199))) 103)) (-1583 (((-107) $ $) NIL)))
+(((-437) (-13 (-1004) (-10 -8 (-15 -3575 ($)) (-15 -1980 ($ $)) (-15 -1980 ($ (-583 (-583 (-866 (-199)))))) (-15 -1980 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)))) (-15 -1980 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236)))) (-15 -3981 ((-583 (-583 (-866 (-199)))) $)) (-15 -2581 ((-517) $)) (-15 -3082 ((-583 (-999 (-349))) $)) (-15 -3082 ((-583 (-999 (-349))) $ (-583 (-999 (-349))))) (-15 -2471 ((-583 (-349)) $)) (-15 -2471 ((-583 (-349)) $ (-583 (-349)))) (-15 -2751 ((-1161) $ (-583 (-866 (-199))) (-797) (-797) (-844))) (-15 -2751 ((-1161) $ (-866 (-199)))) (-15 -2751 ((-1161) $ (-866 (-199)) (-797) (-797) (-844))) (-15 -3085 ((-1161) $ (-866 (-199)))) (-15 -3414 ((-1161) $ (-866 (-199)) (-797))) (-15 -2269 ($ (-583 (-583 (-866 (-199)))))) (-15 -2269 ((-787) $)) (-15 -2002 ((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797)))) (-15 -3920 ((-583 (-199)) (-583 (-583 (-866 (-199))))))))) (T -437))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-3575 (*1 *1) (-5 *1 (-437))) (-1980 (*1 *1 *1) (-5 *1 (-437))) (-1980 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-1980 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-844))) (-5 *1 (-437)))) (-1980 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-844))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-437)))) (-3082 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-437)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2471 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2751 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *2 (-1161)) (-5 *1 (-437)))) (-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1161)) (-5 *1 (-437)))) (-2751 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *2 (-1161)) (-5 *1 (-437)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1161)) (-5 *1 (-437)))) (-3414 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *2 (-1161)) (-5 *1 (-437)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))) (-2002 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(-13 (-1004) (-10 -8 (-15 -3575 ($)) (-15 -1980 ($ $)) (-15 -1980 ($ (-583 (-583 (-866 (-199)))))) (-15 -1980 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)))) (-15 -1980 ($ (-583 (-583 (-866 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-844)) (-583 (-236)))) (-15 -3981 ((-583 (-583 (-866 (-199)))) $)) (-15 -2581 ((-517) $)) (-15 -3082 ((-583 (-999 (-349))) $)) (-15 -3082 ((-583 (-999 (-349))) $ (-583 (-999 (-349))))) (-15 -2471 ((-583 (-349)) $)) (-15 -2471 ((-583 (-349)) $ (-583 (-349)))) (-15 -2751 ((-1161) $ (-583 (-866 (-199))) (-797) (-797) (-844))) (-15 -2751 ((-1161) $ (-866 (-199)))) (-15 -2751 ((-1161) $ (-866 (-199)) (-797) (-797) (-844))) (-15 -3085 ((-1161) $ (-866 (-199)))) (-15 -3414 ((-1161) $ (-866 (-199)) (-797))) (-15 -2269 ($ (-583 (-583 (-866 (-199)))))) (-15 -2269 ((-787) $)) (-15 -2002 ((-583 (-583 (-866 (-199)))) (-583 (-583 (-866 (-199)))) (-583 (-797)))) (-15 -3920 ((-583 (-199)) (-583 (-583 (-866 (-199))))))))
+((-1691 (($ $) NIL) (($ $ $) 11)))
+(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
+NIL
+(-10 -8 (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2769 ((|#2| $) 19)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 15) (($ $ $) 13)) (-1677 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-439 |#1| |#2|) (-1187) (-156) (-23)) (T -439))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-3608 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-1004) (-10 -8 (-15 -2769 (|t#2| $)) (-15 (-3608) ($) -1384) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1691 ($ $)) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-1480 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 90)) (-1734 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-1600 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -1734 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1480 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1600 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1075)) (-421) (-421)) (T -440))
+((-1600 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1075))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-1480 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-1734 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1075))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(-10 -7 (-15 -1734 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1480 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -1600 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
+((-3163 (((-3 $ "failed") $) 11)) (-3026 (($ $ $) 20)) (-2609 (($ $ $) 21)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1703 (($ $ $) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
+(((-441 |#1|) (-10 -8 (-15 -2609 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1703 (|#1| |#1| |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -2813 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-442)) (T -441))
+NIL
+(-10 -8 (-15 -2609 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1703 (|#1| |#1| |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -2813 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-1681 (($) 20 T CONST)) (-3163 (((-3 $ "failed") $) 16)) (-1865 (((-107) $) 19)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 27)) (-4123 (((-1022) $) 10)) (-3026 (($ $ $) 23)) (-2609 (($ $ $) 22)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-844)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3617 (($) 21 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 26)) (** (($ $ (-844)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-442) (-1187)) (T -442))
+((-2298 (*1 *1 *1) (-4 *1 (-442))) (-1703 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-3026 (*1 *1 *1 *1) (-4 *1 (-442))) (-2609 (*1 *1 *1 *1) (-4 *1 (-442))))
+(-13 (-659) (-10 -8 (-15 -2298 ($ $)) (-15 -1703 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2813 ($ $ (-517))) (-6 -4187) (-15 -3026 ($ $ $)) (-15 -2609 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 17)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-377 (-517))) NIL) (($ $ (-990) (-377 (-517))) NIL) (($ $ (-583 (-990)) (-583 (-377 (-517)))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) 22)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 33 (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1152 |#2|)) 15)) (-2769 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1152 |#2|)) NIL) (($ (-1141 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 18)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) 24)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-443 |#1| |#2| |#3|) (-13 (-1137 |#1|) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2269 ($ (-1141 |#1| |#2| |#3|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -443))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1137 |#1|) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2269 ($ (-1141 |#1| |#2| |#3|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) 18)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) 19)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 16)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) NIL)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-444 |#1| |#2| |#3| |#4|) (-1087 |#1| |#2|) (-1004) (-1004) (-1087 |#1| |#2|) |#2|) (T -444))
+NIL
+(-1087 |#1| |#2|)
+((-2118 (((-107) $ $) NIL)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2283 (((-583 $) (-583 |#4|)) NIL)) (-2096 (((-583 |#3|) $) NIL)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2675 ((|#4| |#4| $) NIL)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) 26 (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2259 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3388 (($ (-583 |#4|)) NIL)) (-2437 (((-3 $ "failed") $) 39)) (-1358 ((|#4| |#4| $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1808 ((|#4| |#4| $) NIL)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) NIL)) (-1535 (((-583 |#4|) $) 16 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3834 ((|#3| $) 33)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#4|) $) 17 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-2744 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 21)) (-1310 (((-583 |#3|) $) NIL)) (-1234 (((-107) |#3| $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1445 (((-3 |#4| "failed") $) 37)) (-3778 (((-583 |#4|) $) NIL)) (-3015 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4014 ((|#4| |#4| $) NIL)) (-1837 (((-107) $ $) NIL)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3422 ((|#4| |#4| $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-3 |#4| "failed") $) 35)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3760 (((-3 $ "failed") $ |#4|) 47)) (-2640 (($ $ |#4|) NIL)) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 15)) (-1529 (($) 13)) (-2769 (((-703) $) NIL)) (-4135 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) 12)) (-3357 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 20)) (-2654 (($ $ |#3|) 42)) (-2054 (($ $ |#3|) 44)) (-3345 (($ $) NIL)) (-2530 (($ $ |#3|) NIL)) (-2269 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1659 (((-703) $) NIL (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) NIL)) (-3980 (((-107) |#3| $) NIL)) (-1583 (((-107) $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-445 |#1| |#2| |#3| |#4|) (-1104 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -445))
+NIL
+(-1104 |#1| |#2| |#3| |#4|)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2115 (($) 18)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3357 (((-349) $) 22) (((-199) $) 25) (((-377 (-1071 (-517))) $) 19) (((-493) $) 53)) (-2269 (((-787) $) 51) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 36 T CONST)) (-3617 (($) 11 T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-446) (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))) (-938) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1071 (-517)))) (-558 (-493)) (-10 -8 (-15 -2115 ($))))) (T -446))
+((-2115 (*1 *1) (-5 *1 (-446))))
+(-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))) (-938) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1071 (-517)))) (-558 (-493)) (-10 -8 (-15 -2115 ($))))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) 16)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) 20)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 18)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) 13)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 19)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 11 (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) 15 (|has| $ (-6 -4190)))))
+(((-447 |#1| |#2| |#3|) (-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190))) (-1004) (-1004) (-1058)) (T -447))
+NIL
+(-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190)))
+((-3194 (((-517) (-517) (-517)) 7)) (-2929 (((-107) (-517) (-517) (-517) (-517)) 11)) (-2264 (((-1156 (-583 (-517))) (-703) (-703)) 23)))
+(((-448) (-10 -7 (-15 -3194 ((-517) (-517) (-517))) (-15 -2929 ((-107) (-517) (-517) (-517) (-517))) (-15 -2264 ((-1156 (-583 (-517))) (-703) (-703))))) (T -448))
+((-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1156 (-583 (-517)))) (-5 *1 (-448)))) (-2929 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-3194 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(-10 -7 (-15 -3194 ((-517) (-517) (-517))) (-15 -2929 ((-107) (-517) (-517) (-517) (-517))) (-15 -2264 ((-1156 (-583 (-517))) (-703) (-703))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1071 $) $ (-789 |#1|)) NIL) (((-1071 |#2|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2729 (($ $) NIL (|has| |#2| (-509)))) (-2566 (((-107) $) NIL (|has| |#2| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL (|has| |#2| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-789 |#1|) $) NIL)) (-2272 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2896 (($ $ (-583 (-517))) NIL)) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#2| (-832)))) (-2027 (($ $ |#2| (-450 (-3533 |#1|) (-703)) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#2|) (-789 |#1|)) NIL) (($ (-1071 $) (-789 |#1|)) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#2| (-450 (-3533 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-789 |#1|)) NIL)) (-2210 (((-450 (-3533 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3200 (($ (-1 (-450 (-3533 |#1|) (-703)) (-450 (-3533 |#1|) (-703))) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1512 (((-3 (-789 |#1|) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#2| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2356 (-703))) "failed") $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#2| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4032 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2059 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2769 (((-450 (-3533 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-450 (-3533 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-449 |#1| |#2|) (-13 (-872 |#2| (-450 (-3533 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517)))))) (-583 (-1075)) (-962)) (T -449))
+((-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1075))) (-4 *4 (-962)))))
+(-13 (-872 |#2| (-450 (-3533 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -2896 ($ $ (-583 (-517))))))
+((-2118 (((-107) $ $) NIL (|has| |#2| (-1004)))) (-2033 (((-107) $) NIL (|has| |#2| (-123)))) (-2531 (($ (-844)) NIL (|has| |#2| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) NIL (|has| |#2| (-725)))) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#2| (-338)))) (-1323 (((-517) $) NIL (|has| |#2| (-777)))) (-2443 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1004)))) (-3388 (((-517) $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) ((|#2| $) NIL (|has| |#2| (-1004)))) (-2306 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL (|has| |#2| (-962))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-962)))) (-3163 (((-3 $ "failed") $) NIL (|has| |#2| (-962)))) (-2200 (($) NIL (|has| |#2| (-338)))) (-2757 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ (-517)) 11)) (-3523 (((-107) $) NIL (|has| |#2| (-777)))) (-1535 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#2| (-962)))) (-1469 (((-107) $) NIL (|has| |#2| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2898 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2744 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#2| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#2| (-1004)))) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#2| (-338)))) (-4123 (((-1022) $) NIL (|has| |#2| (-1004)))) (-2427 ((|#2| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3989 ((|#2| $ $) NIL (|has| |#2| (-962)))) (-3907 (($ (-1156 |#2|)) NIL)) (-1880 (((-125)) NIL (|has| |#2| (-333)))) (-2059 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-4135 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#2|) $) NIL) (($ (-517)) NIL (-3745 (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (|has| |#2| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (($ |#2|) NIL (|has| |#2| (-1004))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-2950 (((-703)) NIL (|has| |#2| (-962)))) (-3160 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#2| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (-3608 (($) NIL (|has| |#2| (-123)) CONST)) (-3617 (($) NIL (|has| |#2| (-962)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (|has| |#2| (-1004)))) (-1629 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1607 (((-107) $ $) 15 (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $ $) NIL (|has| |#2| (-962))) (($ $) NIL (|has| |#2| (-962)))) (-1677 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (* (($ $ $) NIL (|has| |#2| (-962))) (($ (-517) $) NIL (|has| |#2| (-962))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450))
NIL
(-212 |#1| |#2|)
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2931 (($ $ $) 32)) (-1676 (($ $ $) 31)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3105 ((|#1| $) 26)) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) 27)) (-3676 (($ |#1| $) 10)) (-3424 (($ (-583 |#1|)) 12)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3773 ((|#1| $) 23)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 9)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 29)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) 21 (|has| $ (-6 -4183)))))
-(((-451 |#1|) (-13 (-886 |#1|) (-10 -8 (-15 -3424 ($ (-583 |#1|))))) (-779)) (T -451))
-((-3424 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
-(-13 (-886 |#1|) (-10 -8 (-15 -3424 ($ (-583 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1292 (($ $) 69)) (-1348 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-3395 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-3214 (((-1021) $) NIL)) (-3244 (((-3 |#4| "failed") $) 105)) (-1680 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2176 (((-2 (|:| -3429 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2254 (((-787) $) 100)) (-2398 (($) 33 T CONST)) (-1534 (((-107) $ $) 107)) (-1663 (($ $) 72) (($ $ $) NIL)) (-1645 (($ $ $) 70)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
-(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-1974 (($ $ $) 32)) (-3798 (($ $ $) 31)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-4082 ((|#1| $) 26)) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) 27)) (-2704 (($ |#1| $) 10)) (-2418 (($ (-583 |#1|)) 12)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1785 ((|#1| $) 23)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 9)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 29)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) 21 (|has| $ (-6 -4190)))))
+(((-451 |#1|) (-13 (-887 |#1|) (-10 -8 (-15 -2418 ($ (-583 |#1|))))) (-779)) (T -451))
+((-2418 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(-13 (-887 |#1|) (-10 -8 (-15 -2418 ($ (-583 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-1521 (($ $) 69)) (-3222 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-1373 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-4123 (((-1022) $) NIL)) (-1317 (((-3 |#4| "failed") $) 105)) (-3539 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2582 (((-2 (|:| -3184 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2269 (((-787) $) 100)) (-3608 (($) 33 T CONST)) (-1583 (((-107) $ $) 107)) (-1691 (($ $) 72) (($ $ $) NIL)) (-1677 (($ $ $) 70)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
+(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
NIL
(-305 |#1| |#2| |#3| |#4|)
-((-2623 (((-517) (-583 (-517))) 28)) (-1811 ((|#1| (-583 |#1|)) 54)) (-1209 (((-583 |#1|) (-583 |#1|)) 55)) (-3329 (((-583 |#1|) (-583 |#1|)) 57)) (-1387 ((|#1| (-583 |#1|)) 56)) (-4128 (((-583 (-517)) (-583 |#1|)) 31)))
-(((-453 |#1|) (-10 -7 (-15 -1387 (|#1| (-583 |#1|))) (-15 -1811 (|#1| (-583 |#1|))) (-15 -3329 ((-583 |#1|) (-583 |#1|))) (-15 -1209 ((-583 |#1|) (-583 |#1|))) (-15 -4128 ((-583 (-517)) (-583 |#1|))) (-15 -2623 ((-517) (-583 (-517))))) (-1131 (-517))) (T -453))
-((-2623 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1131 *2)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1131 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-1209 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))))
-(-10 -7 (-15 -1387 (|#1| (-583 |#1|))) (-15 -1811 (|#1| (-583 |#1|))) (-15 -3329 ((-583 |#1|) (-583 |#1|))) (-15 -1209 ((-583 |#1|) (-583 |#1|))) (-15 -4128 ((-583 (-517)) (-583 |#1|))) (-15 -2623 ((-517) (-583 (-517)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-517) $) NIL (|has| (-517) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-517) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3232 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-517) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-517) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-517) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1199 (((-107) $) NIL (|has| (-517) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-517) (-779)))) (-1939 (($ (-1 (-517) (-517)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-517) (-1050)) CONST)) (-2479 (($ (-377 (-517))) 8)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2908 (((-517) $) NIL (|has| (-517) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-517) $) NIL)) (-3667 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL) (((-920 16) $) 9)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-517) $) NIL (|has| (-517) (-502)))) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| (-517) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1678 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
-(((-454) (-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 16) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2479 ($ (-377 (-517))))))) (T -454))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2254 ((-920 16) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2479 ($ (-377 (-517))))))
-((-2332 (((-583 |#2|) $) 22)) (-1653 (((-107) |#2| $) 27)) (-3029 (((-107) (-1 (-107) |#2|) $) 20)) (-2049 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-3223 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2254 (((-787) $) 36)) (-2258 (((-107) (-1 (-107) |#2|) $) 19)) (-1534 (((-107) $ $) 30)) (-2290 (((-703) $) 16)))
-(((-455 |#1| |#2|) (-10 -8 (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1653 ((-107) |#2| |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -2332 ((-583 |#2|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|))) (-456 |#2|) (-1109)) (T -455))
-NIL
-(-10 -8 (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#2| |#2|)) (-15 -2049 (|#1| |#1| (-265 |#2|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1653 ((-107) |#2| |#1|)) (-15 -3223 ((-703) |#2| |#1|)) (-15 -2332 ((-583 |#2|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|)))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-456 |#1|) (-1185) (-1109)) (T -456))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) (-3696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) (-2258 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-3029 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-703)))) (-3240 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-2332 (*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-3223 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-1653 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4184)) (-15 -3696 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4183)) (PROGN (-15 -2258 ((-107) (-1 (-107) |t#1|) $)) (-15 -3029 ((-107) (-1 (-107) |t#1|) $)) (-15 -3223 ((-703) (-1 (-107) |t#1|) $)) (-15 -3240 ((-583 |t#1|) $)) (-15 -2332 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3223 ((-703) |t#1| $)) (-15 -1653 ((-107) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-2725 (($ $) 15)) (-2705 (($ $) 24)) (-1533 (($ $) 12)) (-1543 (($ $) 10)) (-2735 (($ $) 17)) (-2714 (($ $) 22)))
-(((-457 |#1|) (-10 -8 (-15 -2714 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|))) (-458)) (T -457))
-NIL
-(-10 -8 (-15 -2714 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)))
-((-2725 (($ $) 11)) (-2705 (($ $) 10)) (-1533 (($ $) 9)) (-1543 (($ $) 8)) (-2735 (($ $) 7)) (-2714 (($ $) 6)))
-(((-458) (-1185)) (T -458))
-((-2725 (*1 *1 *1) (-4 *1 (-458))) (-2705 (*1 *1 *1) (-4 *1 (-458))) (-1533 (*1 *1 *1) (-4 *1 (-458))) (-1543 (*1 *1 *1) (-4 *1 (-458))) (-2735 (*1 *1 *1) (-4 *1 (-458))) (-2714 (*1 *1 *1) (-4 *1 (-458))))
-(-13 (-10 -8 (-15 -2714 ($ $)) (-15 -2735 ($ $)) (-15 -1543 ($ $)) (-15 -1533 ($ $)) (-15 -2705 ($ $)) (-15 -2725 ($ $))))
-((-1376 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1131 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1131 |#3|)) (T -459))
-((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1131 *7)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2592 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3098 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-2778 (((-107) $) 36)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1983 (((-107) $ $) 62)) (-1341 (((-583 (-556 $)) $) 46)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1786 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-1488 (((-583 $) (-1070 $) (-1074)) NIL) (((-583 $) (-1070 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3249 (($ (-1070 $) (-1074)) NIL) (($ (-1070 $)) NIL) (($ (-874 $)) NIL)) (-1837 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3232 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 48)) (-2532 (($ $ $) NIL)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-377 (-517)))) (|:| |vec| (-1154 (-377 (-517))))) (-623 $) (-1154 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1292 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2870 (($ $) NIL) (($ (-583 $)) NIL)) (-2576 (((-583 (-109)) $) NIL)) (-2283 (((-109) (-109)) NIL)) (-3469 (((-107) $) 39)) (-2119 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1842 (((-1026 (-517) (-556 $)) $) 34)) (-2003 (($ $ (-517)) NIL)) (-2962 (((-1070 $) (-1070 $) (-556 $)) 77) (((-1070 $) (-1070 $) (-583 (-556 $))) 53) (($ $ (-556 $)) 66) (($ $ (-583 (-556 $))) 67)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3733 (((-1070 $) (-556 $)) 64 (|has| $ (-961)))) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 $ $) (-556 $)) NIL)) (-1337 (((-3 (-556 $) "failed") $) NIL)) (-1360 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-2362 (((-583 (-556 $)) $) NIL)) (-1893 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-2506 (((-107) $ (-109)) NIL) (((-107) $ (-1074)) NIL)) (-1639 (($ $) NIL)) (-1916 (((-703) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1074)) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2049 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1074)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1074) (-1 $ (-583 $))) NIL) (($ $ (-1074) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3196 (((-703) $) NIL)) (-1437 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1394 (($ $) NIL) (($ $ $) NIL)) (-1248 (($ $ (-703)) NIL) (($ $) 33)) (-1852 (((-1026 (-517) (-556 $)) $) 17)) (-2780 (($ $) NIL (|has| $ (-961)))) (-3667 (((-349) $) 91) (((-199) $) 99) (((-153 (-349)) $) 107)) (-2254 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) 18)) (-1217 (((-703)) NIL)) (-3137 (($ $) NIL) (($ (-583 $)) NIL)) (-2794 (((-107) (-109)) 83)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) 9 T CONST)) (-2411 (($) 19 T CONST)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 21)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1678 (($ $ $) 41)) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 44) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 24) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
-(((-460) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2254 ($ (-1026 (-517) (-556 $)))) (-15 -1842 ((-1026 (-517) (-556 $)) $)) (-15 -1852 ((-1026 (-517) (-556 $)) $)) (-15 -1292 ($ $)) (-15 -1983 ((-107) $ $)) (-15 -2962 ((-1070 $) (-1070 $) (-556 $))) (-15 -2962 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2962 ($ $ (-556 $))) (-15 -2962 ($ $ (-583 (-556 $))))))) (T -460))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1292 (*1 *1 *1) (-5 *1 (-460))) (-1983 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
-(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2254 ($ (-1026 (-517) (-556 $)))) (-15 -1842 ((-1026 (-517) (-556 $)) $)) (-15 -1852 ((-1026 (-517) (-556 $)) $)) (-15 -1292 ($ $)) (-15 -1983 ((-107) $ $)) (-15 -2962 ((-1070 $) (-1070 $) (-556 $))) (-15 -2962 ((-1070 $) (-1070 $) (-583 (-556 $)))) (-15 -2962 ($ $ (-556 $))) (-15 -2962 ($ $ (-583 (-556 $))))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 21)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 14)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 12 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) 23 (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) 10 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 13)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1122 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) 9 (|has| $ (-6 -4183)))))
-(((-461 |#1| |#2|) (-19 |#1|) (-1109) (-517)) (T -461))
+((-3109 (((-517) (-583 (-517))) 30)) (-3467 ((|#1| (-583 |#1|)) 56)) (-3429 (((-583 |#1|) (-583 |#1|)) 57)) (-4067 (((-583 |#1|) (-583 |#1|)) 59)) (-2368 ((|#1| (-583 |#1|)) 58)) (-2035 (((-583 (-517)) (-583 |#1|)) 33)))
+(((-453 |#1|) (-10 -7 (-15 -2368 (|#1| (-583 |#1|))) (-15 -3467 (|#1| (-583 |#1|))) (-15 -4067 ((-583 |#1|) (-583 |#1|))) (-15 -3429 ((-583 |#1|) (-583 |#1|))) (-15 -2035 ((-583 (-517)) (-583 |#1|))) (-15 -3109 ((-517) (-583 (-517))))) (-1132 (-517))) (T -453))
+((-3109 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1132 *2)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1132 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1132 (-517))) (-5 *1 (-453 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1132 (-517))) (-5 *1 (-453 *3)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1132 (-517))))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1132 (-517))))))
+(-10 -7 (-15 -2368 (|#1| (-583 |#1|))) (-15 -3467 (|#1| (-583 |#1|))) (-15 -4067 ((-583 |#1|) (-583 |#1|))) (-15 -3429 ((-583 |#1|) (-583 |#1|))) (-15 -2035 ((-583 (-517)) (-583 |#1|))) (-15 -3109 ((-517) (-583 (-517)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-517) $) NIL (|has| (-517) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-517) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-517) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-953 (-517))))) (-3388 (((-517) $) NIL) (((-1075) $) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-517) (-953 (-517)))) (((-517) $) NIL (|has| (-517) (-953 (-517))))) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-517) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-517) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-517) (-1051)))) (-1469 (((-107) $) NIL (|has| (-517) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-517) (-779)))) (-3308 (($ (-1 (-517) (-517)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-517) (-1051)) CONST)) (-2655 (($ (-377 (-517))) 8)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2309 (((-517) $) NIL (|has| (-517) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1075)) (-583 (-517))) NIL (|has| (-517) (-478 (-1075) (-517)))) (($ $ (-1075) (-517)) NIL (|has| (-517) (-478 (-1075) (-517))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-517) $) NIL)) (-3357 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-938))) (((-199) $) NIL (|has| (-517) (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1075)) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL) (((-921 16) $) 9)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-517) $) NIL (|has| (-517) (-502)))) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| (-517) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1703 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-454) (-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 16) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -2655 ($ (-377 (-517))))))) (T -454))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-921 16)) (-5 *1 (-454)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -2269 ((-921 16) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -2655 ($ (-377 (-517))))))
+((-2898 (((-583 |#2|) $) 22)) (-4008 (((-107) |#2| $) 27)) (-3480 (((-107) (-1 (-107) |#2|) $) 20)) (-3522 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-4135 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2269 (((-787) $) 36)) (-3160 (((-107) (-1 (-107) |#2|) $) 19)) (-1583 (((-107) $ $) 30)) (-3533 (((-703) $) 16)))
+(((-455 |#1| |#2|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -4008 ((-107) |#2| |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -2898 ((-583 |#2|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|))) (-456 |#2|) (-1110)) (T -455))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#2| |#2|)) (-15 -3522 (|#1| |#1| (-265 |#2|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -4008 ((-107) |#2| |#1|)) (-15 -4135 ((-703) |#2| |#1|)) (-15 -2898 ((-583 |#2|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-456 |#1|) (-1187) (-1110)) (T -456))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1110)))) (-2744 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4191)) (-4 *1 (-456 *3)) (-4 *3 (-1110)))) (-3160 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4)) (-4 *4 (-1110)) (-5 *2 (-107)))) (-3480 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4)) (-4 *4 (-1110)) (-5 *2 (-107)))) (-4135 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4)) (-4 *4 (-1110)) (-5 *2 (-703)))) (-1535 (*1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110)) (-5 *2 (-583 *3)))) (-2898 (*1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110)) (-5 *2 (-583 *3)))) (-4135 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-703)))) (-4008 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-107)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-1004)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4191)) (-15 -2744 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4190)) (PROGN (-15 -3160 ((-107) (-1 (-107) |t#1|) $)) (-15 -3480 ((-107) (-1 (-107) |t#1|) $)) (-15 -4135 ((-703) (-1 (-107) |t#1|) $)) (-15 -1535 ((-583 |t#1|) $)) (-15 -2898 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -4135 ((-703) |t#1| $)) (-15 -4008 ((-107) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-1646 (($ $) 15)) (-1622 (($ $) 24)) (-1669 (($ $) 12)) (-1682 (($ $) 10)) (-1656 (($ $) 17)) (-1632 (($ $) 22)))
+(((-457 |#1|) (-10 -8 (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|))) (-458)) (T -457))
+NIL
+(-10 -8 (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)))
+((-1646 (($ $) 11)) (-1622 (($ $) 10)) (-1669 (($ $) 9)) (-1682 (($ $) 8)) (-1656 (($ $) 7)) (-1632 (($ $) 6)))
+(((-458) (-1187)) (T -458))
+((-1646 (*1 *1 *1) (-4 *1 (-458))) (-1622 (*1 *1 *1) (-4 *1 (-458))) (-1669 (*1 *1 *1) (-4 *1 (-458))) (-1682 (*1 *1 *1) (-4 *1 (-458))) (-1656 (*1 *1 *1) (-4 *1 (-458))) (-1632 (*1 *1 *1) (-4 *1 (-458))))
+(-13 (-10 -8 (-15 -1632 ($ $)) (-15 -1656 ($ $)) (-15 -1682 ($ $)) (-15 -1669 ($ $)) (-15 -1622 ($ $)) (-15 -1646 ($ $))))
+((-3866 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1132 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1132 |#3|)) (T -459))
+((-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1132 *7)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
+((-2118 (((-107) $ $) NIL)) (-1464 (((-583 $) (-1071 $) (-1075)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3458 (($ (-1071 $) (-1075)) NIL) (($ (-1071 $)) NIL) (($ (-875 $)) NIL)) (-2033 (((-107) $) 37)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1601 (((-107) $ $) 63)) (-3831 (((-583 (-556 $)) $) 47)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3913 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-4054 (((-583 $) (-1071 $) (-1075)) NIL) (((-583 $) (-1071 $)) NIL) (((-583 $) (-875 $)) NIL)) (-3772 (($ (-1071 $) (-1075)) NIL) (($ (-1071 $)) NIL) (($ (-875 $)) NIL)) (-3226 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3388 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 49)) (-2378 (($ $ $) NIL)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-377 (-517)))) (|:| |vec| (-1156 (-377 (-517))))) (-623 $) (-1156 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1521 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3039 (($ $) NIL) (($ (-583 $)) NIL)) (-1976 (((-583 (-109)) $) NIL)) (-3034 (((-109) (-109)) NIL)) (-1865 (((-107) $) 40)) (-1623 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3824 (((-1027 (-517) (-556 $)) $) 35)) (-1484 (($ $ (-517)) NIL)) (-2754 (((-1071 $) (-1071 $) (-556 $)) 78) (((-1071 $) (-1071 $) (-583 (-556 $))) 54) (($ $ (-556 $)) 67) (($ $ (-583 (-556 $))) 68)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3049 (((-1071 $) (-556 $)) 65 (|has| $ (-962)))) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 $ $) (-556 $)) NIL)) (-2466 (((-3 (-556 $) "failed") $) NIL)) (-2330 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-1423 (((-583 (-556 $)) $) NIL)) (-1396 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1290 (((-107) $ (-109)) NIL) (((-107) $ (-1075)) NIL)) (-2298 (($ $) NIL)) (-1807 (((-703) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2376 (((-107) $ $) NIL) (((-107) $ (-1075)) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL (|has| $ (-953 (-517))))) (-3522 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1075)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1075) (-1 $ (-583 $))) NIL) (($ $ (-1075) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-4094 (((-703) $) NIL)) (-2607 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3618 (($ $) NIL) (($ $ $) NIL)) (-2059 (($ $ (-703)) NIL) (($ $) 34)) (-2097 (((-1027 (-517) (-556 $)) $) 18)) (-3586 (($ $) NIL (|has| $ (-962)))) (-3357 (((-349) $) 92) (((-199) $) 100) (((-153 (-349)) $) 108)) (-2269 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1027 (-517) (-556 $))) 19)) (-2950 (((-703)) NIL)) (-3438 (($ $) NIL) (($ (-583 $)) NIL)) (-1752 (((-107) (-109)) 84)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) 9 T CONST)) (-3617 (($) 20 T CONST)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 22)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1703 (($ $ $) 42)) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 45) (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 25) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-844) $) NIL)))
+(((-460) (-13 (-273) (-27) (-953 (-517)) (-953 (-377 (-517))) (-579 (-517)) (-938) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2269 ($ (-1027 (-517) (-556 $)))) (-15 -3824 ((-1027 (-517) (-556 $)) $)) (-15 -2097 ((-1027 (-517) (-556 $)) $)) (-15 -1521 ($ $)) (-15 -1601 ((-107) $ $)) (-15 -2754 ((-1071 $) (-1071 $) (-556 $))) (-15 -2754 ((-1071 $) (-1071 $) (-583 (-556 $)))) (-15 -2754 ($ $ (-556 $))) (-15 -2754 ($ $ (-583 (-556 $))))))) (T -460))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1521 (*1 *1 *1) (-5 *1 (-460))) (-1601 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-2754 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
+(-13 (-273) (-27) (-953 (-517)) (-953 (-377 (-517))) (-579 (-517)) (-938) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2269 ($ (-1027 (-517) (-556 $)))) (-15 -3824 ((-1027 (-517) (-556 $)) $)) (-15 -2097 ((-1027 (-517) (-556 $)) $)) (-15 -1521 ($ $)) (-15 -1601 ((-107) $ $)) (-15 -2754 ((-1071 $) (-1071 $) (-556 $))) (-15 -2754 ((-1071 $) (-1071 $) (-583 (-556 $)))) (-15 -2754 ($ $ (-556 $))) (-15 -2754 ($ $ (-583 (-556 $))))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 21)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 14)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 12 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) 23 (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) 10 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 13)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1123 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) 9 (|has| $ (-6 -4190)))))
+(((-461 |#1| |#2|) (-19 |#1|) (-1110) (-517)) (T -461))
NIL
(-19 |#1|)
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1616 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3742 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-2706 (($) NIL T CONST)) (-3193 (((-461 |#1| |#3|) $ (-517)) NIL)) (-3705 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3537 ((|#1| $ (-517) (-517)) NIL)) (-3240 (((-583 |#1|) $) NIL)) (-1259 (((-703) $) NIL)) (-3475 (($ (-703) (-703) |#1|) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2939 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1109) (-517) (-517)) (T -462))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3813 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3233 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-1681 (($) NIL T CONST)) (-3766 (((-461 |#1| |#3|) $ (-517)) NIL)) (-2757 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2563 ((|#1| $ (-517) (-517)) NIL)) (-1535 (((-583 |#1|) $) NIL)) (-1420 (((-703) $) NIL)) (-3211 (($ (-703) (-703) |#1|) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2708 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1110) (-517) (-517)) (T -462))
NIL
(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|))
-((-1623 (((-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-1798 (((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-3354 (((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 83)))
-(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -1798 ((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1623 ((-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3354 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1131 |#1|) (-1131 |#2|)) (T -463))
-((-3354 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2080 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1131 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -2080 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-1623 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2080 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -2080 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1131 *6)))) (-1798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1131 *3)) (-5 *2 (-583 (-1070 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1131 *5)))))
-(-10 -7 (-15 -1798 ((-583 (-1070 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1623 ((-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3354 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
-((-2728 (((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-1809 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2617 (((-703) (-703) (-703)) 30)) (-3593 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-1969 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-3999 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-2084 ((|#1| (-623 |#1|)) 18)))
-(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2084 (|#1| (-623 |#1|))) (-15 -1809 (|#1| (-623 |#1|) |#1| (-703))) (-15 -3999 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2617 ((-703) (-703) (-703))) (-15 -1969 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1969 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3593 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2728 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $)))) (-1131 |#1|) (-379 |#1| |#2|)) (T -464))
-((-2728 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3593 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1969 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1969 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2617 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3999 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1809 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1131 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
-(-10 -7 (-15 -2084 (|#1| (-623 |#1|))) (-15 -1809 (|#1| (-623 |#1|) |#1| (-703))) (-15 -3999 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2617 ((-703) (-703) (-703))) (-15 -1969 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1969 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3593 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2728 ((-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2080 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
-((-1587 (((-107) $ $) NIL)) (-1522 (($ $) NIL)) (-1790 (($ $ $) 35)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3500 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-4044 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-2412 (((-107) $ (-1122 (-517)) (-107)) NIL (|has| $ (-6 -4184))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-2050 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-1292 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3705 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4184)))) (-3537 (((-107) $ (-517)) NIL)) (-2624 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-3240 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-4024 (($ $ $) 33)) (-2650 (($ $) NIL)) (-2351 (($ $ $) NIL)) (-3475 (($ (-703) (-107)) 23)) (-2456 (($ $ $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 8 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL)) (-1676 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2332 (((-583 (-107)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL)) (-3696 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-107) $) NIL (|has| (-517) (-779)))) (-3222 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2880 (($ $ (-107)) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003))))) (-3949 (((-583 (-107)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 24)) (-1437 (($ $ (-1122 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3223 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) 25)) (-3667 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2272 (($ (-583 (-107))) NIL)) (-2455 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2254 (((-787) $) 22)) (-2258 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4183)))) (-4032 (($ $ $) 31)) (-2196 (($ $) NIL)) (-2403 (($ $ $) NIL)) (-3624 (($ $ $) 39)) (-3634 (($ $) 37)) (-3615 (($ $ $) 38)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 26)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 27)) (-2392 (($ $ $) NIL)) (-2290 (((-703) $) 10 (|has| $ (-6 -4183)))))
-(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3634 ($ $)) (-15 -3624 ($ $ $)) (-15 -3615 ($ $ $)))) (-517)) (T -465))
-((-3634 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3624 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3615 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
-(-13 (-118) (-10 -8 (-15 -3634 ($ $)) (-15 -3624 ($ $ $)) (-15 -3615 ($ $ $))))
-((-4015 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|)) 34)) (-1841 (((-1070 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1070 |#4|)) 21)) (-3287 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|))) 45)) (-1239 (((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1841 (|#2| (-1 |#1| |#4|) (-1070 |#4|))) (-15 -1841 ((-1070 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4015 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|))) (-15 -3287 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|)))) (-15 -1239 ((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1131 |#1|) (-1131 |#2|) (-961)) (T -466))
-((-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1131 *6)))) (-3287 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1070 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1131 *6)))) (-4015 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1131 *5)) (-5 *2 (-1070 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1131 *4)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))))
-(-10 -7 (-15 -1841 (|#2| (-1 |#1| |#4|) (-1070 |#4|))) (-15 -1841 ((-1070 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4015 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1070 |#4|))) (-15 -3287 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1070 |#4|)))) (-15 -1239 ((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3600 (((-1159) $) 18)) (-1437 (((-1057) $ (-1074)) 22)) (-1253 (((-1159) $) 14)) (-2254 (((-787) $) 20) (($ (-1057)) 19)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 8)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 7)))
-(((-467) (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $)) (-15 -2254 ($ (-1057)))))) (T -467))
-((-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1057)) (-5 *1 (-467)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-467)))))
-(-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $)) (-15 -2254 ($ (-1057)))))
-((-1617 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3123 ((|#1| |#4|) 10)) (-3327 ((|#3| |#4|) 17)))
-(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3123 (|#1| |#4|)) (-15 -3327 (|#3| |#4|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-909 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
-((-1617 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
-(-10 -7 (-15 -3123 (|#1| |#4|)) (-15 -3327 (|#3| |#4|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1587 (((-107) $ $) NIL)) (-3359 (((-107) $ (-583 |#3|)) 101) (((-107) $) 102)) (-2778 (((-107) $) 144)) (-3644 (($ $ |#4|) 93) (($ $ |#4| (-583 |#3|)) 97)) (-3443 (((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|)) 137 (|has| |#3| (-558 (-1074))))) (-2317 (($ $ $) 87) (($ $ |#4|) 85)) (-3469 (((-107) $) 143)) (-2237 (($ $) 105)) (-1277 (((-1057) $) NIL)) (-2375 (($ $ $) 79) (($ (-583 $)) 81)) (-2890 (((-107) |#4| $) 104)) (-2102 (((-107) $ $) 68)) (-3395 (($ (-583 |#4|)) 86)) (-3214 (((-1021) $) NIL)) (-2519 (($ (-583 |#4|)) 141)) (-2262 (((-107) $) 142)) (-3491 (($ $) 70)) (-1806 (((-583 |#4|) $) 55)) (-3200 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-3682 (((-107) |#4| $) 73)) (-2232 (((-517) $ (-583 |#3|)) 106) (((-517) $) 107)) (-2254 (((-787) $) 140) (($ (-583 |#4|)) 82)) (-2382 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1534 (((-107) $ $) 69)) (-1645 (($ $ $) 89)) (** (($ $ (-703)) 92)) (* (($ $ $) 91)))
-(((-469 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1645 ($ $ $)) (-15 -3469 ((-107) $)) (-15 -2778 ((-107) $)) (-15 -3682 ((-107) |#4| $)) (-15 -2102 ((-107) $ $)) (-15 -2890 ((-107) |#4| $)) (-15 -3359 ((-107) $ (-583 |#3|))) (-15 -3359 ((-107) $)) (-15 -2375 ($ $ $)) (-15 -2375 ($ (-583 $))) (-15 -2317 ($ $ $)) (-15 -2317 ($ $ |#4|)) (-15 -3491 ($ $)) (-15 -3200 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2382 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -2232 ((-517) $ (-583 |#3|))) (-15 -2232 ((-517) $)) (-15 -2237 ($ $)) (-15 -3395 ($ (-583 |#4|))) (-15 -2519 ($ (-583 |#4|))) (-15 -2262 ((-107) $)) (-15 -1806 ((-583 |#4|) $)) (-15 -2254 ($ (-583 |#4|))) (-15 -3644 ($ $ |#4|)) (-15 -3644 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1074))) (-15 -3443 ((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |%noBranch|))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -469))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3469 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2778 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3682 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2102 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2890 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-3359 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2375 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2317 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-2317 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-3491 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3200 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2382 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2232 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2237 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2262 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3644 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-3644 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1074))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1064 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
-(-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1645 ($ $ $)) (-15 -3469 ((-107) $)) (-15 -2778 ((-107) $)) (-15 -3682 ((-107) |#4| $)) (-15 -2102 ((-107) $ $)) (-15 -2890 ((-107) |#4| $)) (-15 -3359 ((-107) $ (-583 |#3|))) (-15 -3359 ((-107) $)) (-15 -2375 ($ $ $)) (-15 -2375 ($ (-583 $))) (-15 -2317 ($ $ $)) (-15 -2317 ($ $ |#4|)) (-15 -3491 ($ $)) (-15 -3200 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2382 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -2232 ((-517) $ (-583 |#3|))) (-15 -2232 ((-517) $)) (-15 -2237 ($ $)) (-15 -3395 ($ (-583 |#4|))) (-15 -2519 ($ (-583 |#4|))) (-15 -2262 ((-107) $)) (-15 -1806 ((-583 |#4|) $)) (-15 -2254 ($ (-583 |#4|))) (-15 -3644 ($ $ |#4|)) (-15 -3644 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1074))) (-15 -3443 ((-1064 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |%noBranch|)))
-((-2246 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 144)) (-1528 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 145)) (-3588 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 103)) (-3083 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-1530 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-1581 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 159)))
-(((-470 |#1| |#2|) (-10 -7 (-15 -2246 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1528 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3083 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3588 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1530 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1581 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1074)) (-703)) (T -470))
-((-1581 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(-10 -7 (-15 -2246 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1528 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3083 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3588 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1530 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1581 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-1336 (($ |#1| |#2|) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3495 ((|#2| $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2398 (($) 12 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) 11) (($ $ $) 23)) (-1645 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 18)))
+((-2830 (((-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-1944 (((-583 (-1071 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-3840 (((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 84)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -1944 ((-583 (-1071 |#1|)) |#1| (-703) (-703) (-703))) (-15 -2830 ((-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3840 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1132 |#1|) (-1132 |#2|)) (T -463))
+((-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2062 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1132 *7)) (-4 *7 (-1132 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -2062 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-2830 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -2062 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -2062 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1132 *6)))) (-1944 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1132 *3)) (-5 *2 (-583 (-1071 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1132 *5)))))
+(-10 -7 (-15 -1944 ((-583 (-1071 |#1|)) |#1| (-703) (-703) (-703))) (-15 -2830 ((-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -3840 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
+((-2915 (((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-1941 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-3207 (((-703) (-703) (-703)) 30)) (-3844 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2646 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-2100 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-3338 ((|#1| (-623 |#1|)) 18)))
+(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -3338 (|#1| (-623 |#1|))) (-15 -1941 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2100 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -3207 ((-703) (-703) (-703))) (-15 -2646 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2646 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3844 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2915 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))) (-1132 |#1|) (-379 |#1| |#2|)) (T -464))
+((-2915 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3844 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2646 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2646 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3207 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2100 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *5 (-1132 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1941 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-4 *5 (-1132 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1132 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
+(-10 -7 (-15 -3338 (|#1| (-623 |#1|))) (-15 -1941 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2100 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -3207 ((-703) (-703) (-703))) (-15 -2646 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2646 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3844 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2915 ((-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -2062 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
+((-2118 (((-107) $ $) NIL)) (-3621 (($ $) NIL)) (-2292 (($ $ $) 35)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3613 (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4191)))) (-2162 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2443 (((-107) $ (-1123 (-517)) (-107)) NIL (|has| $ (-6 -4191))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1422 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1521 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-2757 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4191)))) (-2563 (((-107) $ (-517)) NIL)) (-1211 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1004))) (((-517) (-107) $) NIL (|has| (-107) (-1004))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1535 (((-583 (-107)) $) NIL (|has| $ (-6 -4190)))) (-3977 (($ $ $) 33)) (-2477 (($ $) NIL)) (-3531 (($ $ $) NIL)) (-3211 (($ (-703) (-107)) 23)) (-2042 (($ $ $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 8 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL)) (-3798 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2898 (((-583 (-107)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL)) (-2744 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-107) $) NIL (|has| (-517) (-779)))) (-2999 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3191 (($ $ (-107)) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004))))) (-1831 (((-583 (-107)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 24)) (-2607 (($ $ (-1123 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-4135 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-107) (-1004)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) 25)) (-3357 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2286 (($ (-583 (-107))) NIL)) (-4108 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2269 (((-787) $) 22)) (-3160 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4190)))) (-3992 (($ $ $) 31)) (-2813 (($ $) NIL)) (-3815 (($ $ $) NIL)) (-3914 (($ $ $) 39)) (-3925 (($ $) 37)) (-3900 (($ $ $) 38)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 26)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 27)) (-3803 (($ $ $) NIL)) (-3533 (((-703) $) 10 (|has| $ (-6 -4190)))))
+(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3925 ($ $)) (-15 -3914 ($ $ $)) (-15 -3900 ($ $ $)))) (-517)) (T -465))
+((-3925 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3914 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3900 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
+(-13 (-118) (-10 -8 (-15 -3925 ($ $)) (-15 -3914 ($ $ $)) (-15 -3900 ($ $ $))))
+((-2647 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1071 |#4|)) 35)) (-3381 (((-1071 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1071 |#4|)) 22)) (-2698 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1071 |#4|))) 46)) (-3883 (((-1071 (-1071 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3381 (|#2| (-1 |#1| |#4|) (-1071 |#4|))) (-15 -3381 ((-1071 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2647 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1071 |#4|))) (-15 -2698 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1071 |#4|)))) (-15 -3883 ((-1071 (-1071 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1132 |#1|) (-1132 |#2|) (-962)) (T -466))
+((-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1132 *5)) (-5 *2 (-1071 (-1071 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1132 *6)))) (-2698 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1071 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1132 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1132 *6)))) (-2647 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1071 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1132 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1132 *2)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1132 *5)) (-5 *2 (-1071 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1132 *4)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1071 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1132 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1132 *2)))))
+(-10 -7 (-15 -3381 (|#2| (-1 |#1| |#4|) (-1071 |#4|))) (-15 -3381 ((-1071 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2647 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1071 |#4|))) (-15 -2698 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1071 |#4|)))) (-15 -3883 ((-1071 (-1071 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3177 (((-1161) $) 18)) (-2607 (((-1058) $ (-1075)) 22)) (-1756 (((-1161) $) 14)) (-2269 (((-787) $) 20) (($ (-1058)) 19)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 8)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 7)))
+(((-467) (-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $)) (-15 -2269 ($ (-1058)))))) (T -467))
+((-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1058)) (-5 *1 (-467)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-467)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-467)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-467)))))
+(-13 (-779) (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $)) (-15 -3177 ((-1161) $)) (-15 -2269 ($ (-1058)))))
+((-1383 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2222 ((|#1| |#4|) 10)) (-2158 ((|#3| |#4|) 17)))
+(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2222 (|#1| |#4|)) (-15 -2158 (|#3| |#4|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-910 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
+((-1383 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-910 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-2158 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-910 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -2222 (|#1| |#4|)) (-15 -2158 (|#3| |#4|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2118 (((-107) $ $) NIL)) (-1822 (((-107) $ (-583 |#3|)) 103) (((-107) $) 104)) (-2033 (((-107) $) 146)) (-1218 (($ $ |#4|) 95) (($ $ |#4| (-583 |#3|)) 99)) (-1780 (((-1065 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|)) 139 (|has| |#3| (-558 (-1075))))) (-2525 (($ $ $) 89) (($ $ |#4|) 87)) (-1865 (((-107) $) 145)) (-3465 (($ $) 107)) (-1895 (((-1058) $) NIL)) (-3257 (($ $ $) 81) (($ (-583 $)) 83)) (-4074 (((-107) |#4| $) 106)) (-3983 (((-107) $ $) 70)) (-1373 (($ (-583 |#4|)) 88)) (-4123 (((-1022) $) NIL)) (-1273 (($ (-583 |#4|)) 143)) (-3937 (((-107) $) 144)) (-1195 (($ $) 72)) (-1771 (((-583 |#4|) $) 56)) (-2638 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-4158 (((-107) |#4| $) 75)) (-1880 (((-517) $ (-583 |#3|)) 108) (((-517) $) 109)) (-2269 (((-787) $) 142) (($ (-583 |#4|)) 84)) (-3938 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1583 (((-107) $ $) 71)) (-1677 (($ $ $) 91)) (** (($ $ (-703)) 94)) (* (($ $ $) 93)))
+(((-469 |#1| |#2| |#3| |#4|) (-13 (-1004) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1677 ($ $ $)) (-15 -1865 ((-107) $)) (-15 -2033 ((-107) $)) (-15 -4158 ((-107) |#4| $)) (-15 -3983 ((-107) $ $)) (-15 -4074 ((-107) |#4| $)) (-15 -1822 ((-107) $ (-583 |#3|))) (-15 -1822 ((-107) $)) (-15 -3257 ($ $ $)) (-15 -3257 ($ (-583 $))) (-15 -2525 ($ $ $)) (-15 -2525 ($ $ |#4|)) (-15 -1195 ($ $)) (-15 -2638 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -3938 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1880 ((-517) $ (-583 |#3|))) (-15 -1880 ((-517) $)) (-15 -3465 ($ $)) (-15 -1373 ($ (-583 |#4|))) (-15 -1273 ($ (-583 |#4|))) (-15 -3937 ((-107) $)) (-15 -1771 ((-583 |#4|) $)) (-15 -2269 ($ (-583 |#4|))) (-15 -1218 ($ $ |#4|)) (-15 -1218 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1075))) (-15 -1780 ((-1065 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|))) |%noBranch|))) (-333) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -469))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1865 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-2033 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-4158 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-4074 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-1822 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-2525 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-2525 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-1195 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-2638 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))) (-1880 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-3465 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3937 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-1771 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-1218 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))) (-1218 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-872 *4 *5 *6)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *6 (-558 (-1075))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1065 (-583 (-875 *4)) (-583 (-265 (-875 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(-13 (-1004) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1677 ($ $ $)) (-15 -1865 ((-107) $)) (-15 -2033 ((-107) $)) (-15 -4158 ((-107) |#4| $)) (-15 -3983 ((-107) $ $)) (-15 -4074 ((-107) |#4| $)) (-15 -1822 ((-107) $ (-583 |#3|))) (-15 -1822 ((-107) $)) (-15 -3257 ($ $ $)) (-15 -3257 ($ (-583 $))) (-15 -2525 ($ $ $)) (-15 -2525 ($ $ |#4|)) (-15 -1195 ($ $)) (-15 -2638 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -3938 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1880 ((-517) $ (-583 |#3|))) (-15 -1880 ((-517) $)) (-15 -3465 ($ $)) (-15 -1373 ($ (-583 |#4|))) (-15 -1273 ($ (-583 |#4|))) (-15 -3937 ((-107) $)) (-15 -1771 ((-583 |#4|) $)) (-15 -2269 ($ (-583 |#4|))) (-15 -1218 ($ $ |#4|)) (-15 -1218 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1075))) (-15 -1780 ((-1065 (-583 (-875 |#1|)) (-583 (-265 (-875 |#1|)))) (-583 |#4|))) |%noBranch|)))
+((-2444 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 146)) (-2003 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-3121 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 105)) (-2963 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-2996 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 149)) (-3999 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 161)))
+(((-470 |#1| |#2|) (-10 -7 (-15 -2444 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2003 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2963 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3121 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2996 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3999 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1075)) (-703)) (T -470))
+((-3999 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-2996 (*1 *2 *3) (-12 (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3121 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1075))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(-10 -7 (-15 -2444 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2003 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2963 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3121 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2996 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3999 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-2077 (($ |#1| |#2|) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2040 ((|#2| $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-3608 (($) 12 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) 11) (($ $ $) 24)) (-1677 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 19)))
(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471))
NIL
(-13 (-21) (-473 |#1| |#2|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 12)) (-2706 (($) NIL T CONST)) (-1221 (($ $) 26)) (-1336 (($ |#1| |#2|) 23)) (-1939 (($ (-1 |#1| |#1|) $) 25)) (-3495 ((|#2| $) NIL)) (-1193 ((|#1| $) 27)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2398 (($) 10 T CONST)) (-1534 (((-107) $ $) NIL)) (-1645 (($ $ $) 17)) (* (($ (-843) $) NIL) (($ (-703) $) 22)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 12)) (-1681 (($) NIL T CONST)) (-2371 (($ $) 27)) (-2077 (($ |#1| |#2|) 24)) (-3308 (($ (-1 |#1| |#1|) $) 26)) (-2040 ((|#2| $) NIL)) (-2345 ((|#1| $) 28)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-3608 (($) 10 T CONST)) (-1583 (((-107) $ $) NIL)) (-1677 (($ $ $) 18)) (* (($ (-844) $) NIL) (($ (-703) $) 23)))
(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472))
NIL
(-13 (-23) (-473 |#1| |#2|))
-((-1587 (((-107) $ $) 7)) (-1221 (($ $) 13)) (-1336 (($ |#1| |#2|) 16)) (-1939 (($ (-1 |#1| |#1|) $) 17)) (-3495 ((|#2| $) 14)) (-1193 ((|#1| $) 15)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-473 |#1| |#2|) (-1185) (-1003) (-779)) (T -473))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) (-1336 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) (-1193 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))))
-(-13 (-1003) (-10 -8 (-15 -1939 ($ (-1 |t#1| |t#1|) $)) (-15 -1336 ($ |t#1| |t#2|)) (-15 -1193 (|t#1| $)) (-15 -3495 (|t#2| $)) (-15 -1221 ($ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-1336 (($ |#1| |#2|) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3495 ((|#2| $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2398 (($) NIL T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 13)) (-1645 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-2118 (((-107) $ $) 7)) (-2371 (($ $) 13)) (-2077 (($ |#1| |#2|) 16)) (-3308 (($ (-1 |#1| |#1|) $) 17)) (-2040 ((|#2| $) 14)) (-2345 ((|#1| $) 15)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-473 |#1| |#2|) (-1187) (-1004) (-779)) (T -473))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-779)))) (-2077 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-779)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1004)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-779)))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-779)))))
+(-13 (-1004) (-10 -8 (-15 -3308 ($ (-1 |t#1| |t#1|) $)) (-15 -2077 ($ |t#1| |t#2|)) (-15 -2345 (|t#1| $)) (-15 -2040 (|t#2| $)) (-15 -2371 ($ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-2077 (($ |#1| |#2|) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2040 ((|#2| $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-3608 (($) NIL T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 13)) (-1677 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474))
NIL
(-13 (-724) (-473 |#1| |#2|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3398 (($ $ $) 16)) (-2646 (((-3 $ "failed") $ $) 13)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-1336 (($ |#1| |#2|) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3495 ((|#2| $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL)) (-2398 (($) NIL T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1836 (($ $ $) 16)) (-1250 (((-3 $ "failed") $ $) 13)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-2077 (($ |#1| |#2|) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2040 ((|#2| $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL)) (-3608 (($) NIL T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475))
NIL
(-13 (-725) (-473 |#1| |#2|))
-((-1587 (((-107) $ $) NIL)) (-1221 (($ $) 24)) (-1336 (($ |#1| |#2|) 21)) (-1939 (($ (-1 |#1| |#1|) $) 23)) (-3495 ((|#2| $) 26)) (-1193 ((|#1| $) 25)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 20)) (-1534 (((-107) $ $) 13)))
-(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1003) (-779)) (T -476))
+((-2118 (((-107) $ $) NIL)) (-2371 (($ $) 25)) (-2077 (($ |#1| |#2|) 22)) (-3308 (($ (-1 |#1| |#1|) $) 24)) (-2040 ((|#2| $) 27)) (-2345 ((|#1| $) 26)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 21)) (-1583 (((-107) $ $) 14)))
+(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1004) (-779)) (T -476))
NIL
(-473 |#1| |#2|)
-((-2049 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2049 (|#1| |#1| |#2| |#3|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1003) (-1109)) (T -477))
+((-3522 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -3522 (|#1| |#1| |#2| |#3|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1004) (-1110)) (T -477))
NIL
-(-10 -8 (-15 -2049 (|#1| |#1| |#2| |#3|)) (-15 -2049 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
-((-2049 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-478 |#1| |#2|) (-1185) (-1003) (-1109)) (T -478))
-((-2049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1109)))) (-2049 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1109)))))
-(-13 (-10 -8 (-15 -2049 ($ $ |t#1| |t#2|)) (-15 -2049 ($ $ (-583 |t#1|) (-583 |t#2|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 16)) (-1378 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))) $) 18)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703) $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3380 ((|#1| $ (-517)) 23)) (-2615 ((|#2| $ (-517)) 21)) (-2654 (($ (-1 |#1| |#1|) $) 46)) (-2515 (($ (-1 |#2| |#2|) $) 43)) (-1277 (((-1057) $) NIL)) (-3539 (($ $ $) 53 (|has| |#2| (-724)))) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 42) (($ |#1|) NIL)) (-4104 ((|#2| |#1| $) 49)) (-2398 (($) 11 T CONST)) (-1534 (((-107) $ $) 29)) (-1645 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
-(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1003) (-123) |#2|) (T -479))
+(-10 -8 (-15 -3522 (|#1| |#1| |#2| |#3|)) (-15 -3522 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
+((-3522 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-478 |#1| |#2|) (-1187) (-1004) (-1110)) (T -478))
+((-3522 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1110)))) (-3522 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1110)))))
+(-13 (-10 -8 (-15 -3522 ($ $ |t#1| |t#2|)) (-15 -3522 ($ $ (-583 |t#1|) (-583 |t#2|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 16)) (-3349 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))) $) 18)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703) $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3336 ((|#1| $ (-517)) 23)) (-3371 ((|#2| $ (-517)) 21)) (-1954 (($ (-1 |#1| |#1|) $) 46)) (-1410 (($ (-1 |#2| |#2|) $) 43)) (-1895 (((-1058) $) NIL)) (-4096 (($ $ $) 53 (|has| |#2| (-724)))) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 42) (($ |#1|) NIL)) (-3952 ((|#2| |#1| $) 49)) (-3608 (($) 11 T CONST)) (-1583 (((-107) $ $) 29)) (-1677 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-844) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
+(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1004) (-123) |#2|) (T -479))
NIL
(-293 |#1| |#2|)
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2724 (((-107) (-107)) 24)) (-2412 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) 51)) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-3439 (($ $) 54 (|has| |#1| (-1003)))) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 43)) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2056 (($ $ (-517)) 13)) (-4043 (((-703) $) 11)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 22)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 20 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-2931 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) 19 (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3676 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2442 (($ (-583 |#1|)) 28)) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) 18 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 39)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 14)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1122 (-517))) NIL)) (-1415 (($ $ (-1122 (-517))) 49) (($ $ (-517)) 44)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) 40 (|has| $ (-6 -4184)))) (-2435 (($ $) 31)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-1819 (($ $ $) 41) (($ $ |#1|) 38)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) 15 (|has| $ (-6 -4183)))))
-(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2442 ($ (-583 |#1|))) (-15 -4043 ((-703) $)) (-15 -2056 ($ $ (-517))) (-15 -2724 ((-107) (-107))))) (-1109) (-517)) (T -480))
-((-2442 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))) (-2056 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 *2))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
-(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2442 ($ (-583 |#1|))) (-15 -4043 ((-703) $)) (-15 -2056 ($ $ (-517))) (-15 -2724 ((-107) (-107)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-530 |#1|) "failed") $) NIL)) (-3232 (((-530 |#1|) $) NIL)) (-4047 (($ (-1154 (-530 |#1|))) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-530 |#1|) (-338)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL (|has| (-530 |#1|) (-338)))) (-3449 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2616 (($ $ (-703)) NIL (-3782 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3782 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3083 (((-107) $) NIL)) (-3730 (((-843) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-843)) $) NIL (-3782 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| (-530 |#1|) (-338)))) (-3228 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2962 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 (-530 |#1|)) $) NIL) (((-1070 $) $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-4034 (((-843) $) NIL (|has| (-530 |#1|) (-338)))) (-4150 (((-1070 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-4111 (((-1070 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1070 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-2892 (($ $ (-1070 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-3544 (($ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL (|has| (-530 |#1|) (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-1376 (((-388 $) $) NIL)) (-4110 (((-765 (-843))) NIL) (((-843)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3782 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2232 (((-125)) NIL)) (-1248 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3625 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2780 (((-1070 (-530 |#1|))) NIL)) (-2858 (($) NIL (|has| (-530 |#1|) (-338)))) (-3551 (($) NIL (|has| (-530 |#1|) (-338)))) (-3589 (((-1154 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1154 $)) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-2486 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3782 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL) (((-1154 $) (-843)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2738 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
-(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-843) (-843)) (T -481))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2844 (((-107) (-107)) 24)) (-2443 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) 51)) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-3302 (($ $) 55 (|has| |#1| (-1004)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) NIL (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) 43)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-3242 (($ $ (-517)) 13)) (-3686 (((-703) $) 11)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 22)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 20 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-1974 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) 19 (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2704 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1587 (($ (-583 |#1|)) 28)) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) 18 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 39)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 14)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1123 (-517))) NIL)) (-2710 (($ $ (-1123 (-517))) 49) (($ $ (-517)) 44)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) 40 (|has| $ (-6 -4191)))) (-2460 (($ $) 31)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-1718 (($ $ $) 41) (($ $ |#1|) 38)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) 15 (|has| $ (-6 -4190)))))
+(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1587 ($ (-583 |#1|))) (-15 -3686 ((-703) $)) (-15 -3242 ($ $ (-517))) (-15 -2844 ((-107) (-107))))) (-1110) (-517)) (T -480))
+((-1587 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110)) (-14 *4 (-517)))) (-3242 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110)) (-14 *4 *2))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110)) (-14 *4 (-517)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1587 ($ (-583 |#1|))) (-15 -3686 ((-703) $)) (-15 -3242 ($ $ (-517))) (-15 -2844 ((-107) (-107)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (((-530 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-530 |#1|) "failed") $) NIL)) (-3388 (((-530 |#1|) $) NIL)) (-1953 (($ (-1156 (-530 |#1|))) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-530 |#1|) (-338)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL (|has| (-530 |#1|) (-338)))) (-3454 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2464 (($ $ (-703)) NIL (-3745 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3745 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2963 (((-107) $) NIL)) (-2053 (((-844) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-844)) $) NIL (-3745 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| (-530 |#1|) (-338)))) (-1798 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2754 (((-530 |#1|) $) NIL) (($ $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 (-530 |#1|)) $) NIL) (((-1071 $) $ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-2031 (((-844) $) NIL (|has| (-530 |#1|) (-338)))) (-2508 (((-1071 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-1199 (((-1071 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1071 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-1526 (($ $ (-1071 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-2810 (($ (-844)) NIL (|has| (-530 |#1|) (-338)))) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL (|has| (-530 |#1|) (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3866 (((-388 $) $) NIL)) (-2370 (((-765 (-844))) NIL) (((-844)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3745 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1880 (((-125)) NIL)) (-2059 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2769 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-3586 (((-1071 (-530 |#1|))) NIL)) (-3958 (($) NIL (|has| (-530 |#1|) (-338)))) (-3304 (($) NIL (|has| (-530 |#1|) (-338)))) (-3369 (((-1156 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1156 $)) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-2650 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3745 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL) (((-1156 $) (-844)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3340 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
+(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-844) (-844)) (T -481))
NIL
(-299 (-530 |#1|))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) 33)) (-1616 (($ $ (-517) |#4|) NIL)) (-3742 (($ $ (-517) |#5|) NIL)) (-2706 (($) NIL T CONST)) (-3193 ((|#4| $ (-517)) NIL)) (-3705 ((|#1| $ (-517) (-517) |#1|) 32)) (-3537 ((|#1| $ (-517) (-517)) 30)) (-3240 (((-583 |#1|) $) NIL)) (-1259 (((-703) $) 26)) (-3475 (($ (-703) (-703) |#1|) 23)) (-1269 (((-703) $) 28)) (-2629 (((-107) $ (-703)) NIL)) (-1234 (((-517) $) 24)) (-2493 (((-517) $) 25)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) 27)) (-3294 (((-517) $) 29)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) 36 (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 14)) (-2756 (($) 15)) (-1437 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2939 ((|#5| $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1109) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) 33)) (-3813 (($ $ (-517) |#4|) NIL)) (-3233 (($ $ (-517) |#5|) NIL)) (-1681 (($) NIL T CONST)) (-3766 ((|#4| $ (-517)) NIL)) (-2757 ((|#1| $ (-517) (-517) |#1|) 32)) (-2563 ((|#1| $ (-517) (-517)) 30)) (-1535 (((-583 |#1|) $) NIL)) (-1420 (((-703) $) 26)) (-3211 (($ (-703) (-703) |#1|) 23)) (-1434 (((-703) $) 28)) (-2361 (((-107) $ (-703)) NIL)) (-2380 (((-517) $) 24)) (-3442 (((-517) $) 25)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) 27)) (-3996 (((-517) $) 29)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) 36 (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 14)) (-1529 (($) 15)) (-2607 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2708 ((|#5| $ (-517)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1110) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
NIL
(-55 |#1| |#4| |#5|)
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) NIL)) (-3026 ((|#1| $) NIL)) (-2811 (($ $) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 57 (|has| $ (-6 -4184)))) (-3753 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3500 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4184)))) (-4044 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-1326 (($ $ $) 23 (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 21 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4184))) (($ $ "rest" $) 24 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) NIL)) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3013 ((|#1| $) NIL)) (-2706 (($) NIL T CONST)) (-3182 (($ $) 28 (|has| $ (-6 -4184)))) (-3173 (($ $) 29)) (-1761 (($ $) 18) (($ $ (-703)) 32)) (-3439 (($ $) 53 (|has| |#1| (-1003)))) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2050 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-3295 (((-107) $) NIL)) (-2624 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3240 (((-583 |#1|) $) 27 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 31 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-2931 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-1676 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1619 (($ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) 50 (|has| |#1| (-1003)))) (-2067 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3676 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) 13) (($ $ (-703)) NIL)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-1556 (((-107) $) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 12)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) 17)) (-2756 (($) 16)) (-1437 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-3792 (((-517) $ $) NIL)) (-1415 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-1985 (((-107) $) 33)) (-2849 (($ $) NIL)) (-3825 (($ $) NIL (|has| $ (-6 -4184)))) (-2077 (((-703) $) NIL)) (-2334 (($ $) 35)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) 34)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 26)) (-1819 (($ $ $) 52) (($ $ |#1|) NIL)) (-2455 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2254 (((-787) $) 45 (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 47 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) 9 (|has| $ (-6 -4183)))))
-(((-483 |#1| |#2|) (-603 |#1|) (-1109) (-517)) (T -483))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) NIL)) (-2584 ((|#1| $) NIL)) (-1540 (($ $) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 58 (|has| $ (-6 -4191)))) (-3560 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3613 (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 56 (|has| $ (-6 -4191)))) (-2162 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-3953 (($ $ $) 23 (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 21 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4191))) (($ $ "rest" $) 24 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) NIL)) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-2574 ((|#1| $) NIL)) (-1681 (($) NIL T CONST)) (-1407 (($ $) 28 (|has| $ (-6 -4191)))) (-1905 (($ $) 29)) (-2437 (($ $) 18) (($ $ (-703)) 32)) (-3302 (($ $) 54 (|has| |#1| (-1004)))) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) NIL (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) NIL)) (-1422 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1211 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004))) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1535 (((-583 |#1|) $) 27 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 31 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-1974 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 57)) (-3798 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 52 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2322 (($ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) 51 (|has| |#1| (-1004)))) (-1445 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2704 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) 13) (($ $ (-703)) NIL)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3392 (((-107) $) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 12)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) 17)) (-1529 (($) 16)) (-2607 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1123 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-2093 (((-517) $ $) NIL)) (-2710 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-1657 (((-107) $) 34)) (-3769 (($ $) NIL)) (-1457 (($ $) NIL (|has| $ (-6 -4191)))) (-3277 (((-703) $) NIL)) (-2573 (($ $) 36)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) 35)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 26)) (-1718 (($ $ $) 53) (($ $ |#1|) NIL)) (-4108 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2269 (((-787) $) 46 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 48 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) 9 (|has| $ (-6 -4190)))))
+(((-483 |#1| |#2|) (-603 |#1|) (-1110) (-517)) (T -483))
NIL
(-603 |#1|)
-((-2889 ((|#4| |#4|) 26)) (-3334 (((-703) |#4|) 31)) (-2879 (((-703) |#4|) 32)) (-1735 (((-583 |#3|) |#4|) 37 (|has| |#3| (-6 -4184)))) (-1779 (((-3 |#4| "failed") |#4|) 47)) (-2063 ((|#4| |#4|) 40)) (-1358 ((|#1| |#4|) 39)))
-(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2889 (|#4| |#4|)) (-15 -3334 ((-703) |#4|)) (-15 -2879 ((-703) |#4|)) (IF (|has| |#3| (-6 -4184)) (-15 -1735 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -1358 (|#1| |#4|)) (-15 -2063 (|#4| |#4|)) (-15 -1779 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
-((-1779 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2063 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-1735 (*1 *2 *3) (-12 (|has| *6 (-6 -4184)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2889 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -2889 (|#4| |#4|)) (-15 -3334 ((-703) |#4|)) (-15 -2879 ((-703) |#4|)) (IF (|has| |#3| (-6 -4184)) (-15 -1735 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -1358 (|#1| |#4|)) (-15 -2063 (|#4| |#4|)) (-15 -1779 ((-3 |#4| "failed") |#4|)))
-((-2889 ((|#8| |#4|) 20)) (-1735 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4184)))) (-1779 (((-3 |#8| "failed") |#4|) 23)))
-(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2889 (|#8| |#4|)) (-15 -1779 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4184)) (-15 -1735 ((-583 |#3|) |#4|)) |%noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-909 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
-((-1735 (*1 *2 *3) (-12 (|has| *9 (-6 -4184)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-1779 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
-(-10 -7 (-15 -2889 (|#8| |#4|)) (-15 -1779 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4184)) (-15 -1735 ((-583 |#3|) |#4|)) |%noBranch|))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703) (-703)) NIL)) (-4094 (($ $ $) NIL)) (-3860 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-1545 (((-107) $) NIL)) (-3128 (($ $ (-517) (-517)) 12)) (-1898 (($ $ (-517) (-517)) NIL)) (-4143 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1886 (($ $) NIL)) (-3323 (((-107) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1495 (($ $ (-517) (-517) $) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-1616 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3742 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-3511 (($ (-703) |#1|) NIL)) (-2706 (($) NIL T CONST)) (-2889 (($ $) 19 (|has| |#1| (-278)))) (-3193 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3334 (((-703) $) 22 (|has| |#1| (-509)))) (-3705 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3537 ((|#1| $ (-517) (-517)) NIL)) (-3240 (((-583 |#1|) $) NIL)) (-2879 (((-703) $) 24 (|has| |#1| (-509)))) (-1735 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1259 (((-703) $) NIL)) (-3475 (($ (-703) (-703) |#1|) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-3157 ((|#1| $) 17 (|has| |#1| (-6 (-4185 "*"))))) (-1234 (((-517) $) 10)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) 11)) (-3294 (((-517) $) NIL)) (-1884 (($ (-583 (-583 |#1|))) NIL)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3418 (((-583 (-583 |#1|)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1779 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-3885 (($ $ $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3970 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-3402 (((-107) $) NIL)) (-1358 ((|#1| $) 15 (|has| |#1| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2939 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-548 |#1| |#2|)) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-961) (-517) (-517)) (T -486))
+((-1680 ((|#4| |#4|) 26)) (-3736 (((-703) |#4|) 31)) (-3805 (((-703) |#4|) 32)) (-3794 (((-583 |#3|) |#4|) 38 (|has| |#3| (-6 -4191)))) (-1368 (((-3 |#4| "failed") |#4|) 48)) (-2873 ((|#4| |#4|) 41)) (-4126 ((|#1| |#4|) 40)))
+(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1680 (|#4| |#4|)) (-15 -3736 ((-703) |#4|)) (-15 -3805 ((-703) |#4|)) (IF (|has| |#3| (-6 -4191)) (-15 -3794 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -4126 (|#1| |#4|)) (-15 -2873 (|#4| |#4|)) (-15 -1368 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
+((-1368 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2873 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-4126 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3794 (*1 *2 *3) (-12 (|has| *6 (-6 -4191)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -1680 (|#4| |#4|)) (-15 -3736 ((-703) |#4|)) (-15 -3805 ((-703) |#4|)) (IF (|has| |#3| (-6 -4191)) (-15 -3794 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -4126 (|#1| |#4|)) (-15 -2873 (|#4| |#4|)) (-15 -1368 ((-3 |#4| "failed") |#4|)))
+((-1680 ((|#8| |#4|) 20)) (-3794 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4191)))) (-1368 (((-3 |#8| "failed") |#4|) 23)))
+(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1680 (|#8| |#4|)) (-15 -1368 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4191)) (-15 -3794 ((-583 |#3|) |#4|)) |%noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-910 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
+((-3794 (*1 *2 *3) (-12 (|has| *9 (-6 -4191)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-910 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-1368 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-910 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-910 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
+(-10 -7 (-15 -1680 (|#8| |#4|)) (-15 -1368 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4191)) (-15 -3794 ((-583 |#3|) |#4|)) |%noBranch|))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703) (-703)) NIL)) (-2219 (($ $ $) NIL)) (-1670 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-1572 (((-107) $) NIL)) (-1291 (($ $ (-517) (-517)) 12)) (-3696 (($ $ (-517) (-517)) NIL)) (-2342 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-3574 (($ $) NIL)) (-1793 (((-107) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-1565 (($ $ (-517) (-517) $) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3813 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3233 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-3583 (($ (-703) |#1|) NIL)) (-1681 (($) NIL T CONST)) (-1680 (($ $) 19 (|has| |#1| (-278)))) (-3766 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3736 (((-703) $) 22 (|has| |#1| (-509)))) (-2757 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2563 ((|#1| $ (-517) (-517)) NIL)) (-1535 (((-583 |#1|) $) NIL)) (-3805 (((-703) $) 24 (|has| |#1| (-509)))) (-3794 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1420 (((-703) $) NIL)) (-3211 (($ (-703) (-703) |#1|) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2924 ((|#1| $) 17 (|has| |#1| (-6 (-4192 "*"))))) (-2380 (((-517) $) 10)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) 11)) (-3996 (((-517) $) NIL)) (-2369 (($ (-583 (-583 |#1|))) NIL)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1548 (((-583 (-583 |#1|)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1368 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-3877 (($ $ $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3289 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-2434 (((-107) $) NIL)) (-4126 ((|#1| $) 15 (|has| |#1| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2708 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2269 (($ (-548 |#1| |#2|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-962) (-517) (-517)) (T -486))
NIL
(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|))
-((-3366 (((-1070 |#1|) (-703)) 74)) (-1462 (((-1154 |#1|) (-1154 |#1|) (-843)) 67)) (-3892 (((-1159) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) |#1|) 82)) (-3965 (((-1154 |#1|) (-1154 |#1|) (-703)) 36)) (-4100 (((-1154 |#1|) (-843)) 69)) (-3931 (((-1154 |#1|) (-1154 |#1|) (-517)) 24)) (-1465 (((-1070 |#1|) (-1154 |#1|)) 75)) (-1921 (((-1154 |#1|) (-843)) 93)) (-3228 (((-107) (-1154 |#1|)) 78)) (-2962 (((-1154 |#1|) (-1154 |#1|) (-843)) 59)) (-2956 (((-1070 |#1|) (-1154 |#1|)) 87)) (-4034 (((-843) (-1154 |#1|)) 56)) (-1639 (((-1154 |#1|) (-1154 |#1|)) 30)) (-3544 (((-1154 |#1|) (-843) (-843)) 95)) (-4053 (((-1154 |#1|) (-1154 |#1|) (-1021) (-1021)) 23)) (-3355 (((-1154 |#1|) (-1154 |#1|) (-703) (-1021)) 37)) (-2080 (((-1154 (-1154 |#1|)) (-843)) 92)) (-1678 (((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)) 79)) (** (((-1154 |#1|) (-1154 |#1|) (-517)) 43)) (* (((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)) 25)))
-(((-487 |#1|) (-10 -7 (-15 -3892 ((-1159) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) |#1|)) (-15 -4100 ((-1154 |#1|) (-843))) (-15 -3544 ((-1154 |#1|) (-843) (-843))) (-15 -1465 ((-1070 |#1|) (-1154 |#1|))) (-15 -3366 ((-1070 |#1|) (-703))) (-15 -3355 ((-1154 |#1|) (-1154 |#1|) (-703) (-1021))) (-15 -3965 ((-1154 |#1|) (-1154 |#1|) (-703))) (-15 -4053 ((-1154 |#1|) (-1154 |#1|) (-1021) (-1021))) (-15 -3931 ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 ** ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 * ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1678 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2962 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1462 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1639 ((-1154 |#1|) (-1154 |#1|))) (-15 -4034 ((-843) (-1154 |#1|))) (-15 -3228 ((-107) (-1154 |#1|))) (-15 -2080 ((-1154 (-1154 |#1|)) (-843))) (-15 -1921 ((-1154 |#1|) (-843))) (-15 -2956 ((-1070 |#1|) (-1154 |#1|)))) (-319)) (T -487))
-((-2956 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1462 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1678 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3931 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-4053 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3965 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3355 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1154 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))) (-3544 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1159)) (-5 *1 (-487 *4)))))
-(-10 -7 (-15 -3892 ((-1159) (-1154 (-583 (-2 (|:| -3207 |#1|) (|:| -3544 (-1021))))) |#1|)) (-15 -4100 ((-1154 |#1|) (-843))) (-15 -3544 ((-1154 |#1|) (-843) (-843))) (-15 -1465 ((-1070 |#1|) (-1154 |#1|))) (-15 -3366 ((-1070 |#1|) (-703))) (-15 -3355 ((-1154 |#1|) (-1154 |#1|) (-703) (-1021))) (-15 -3965 ((-1154 |#1|) (-1154 |#1|) (-703))) (-15 -4053 ((-1154 |#1|) (-1154 |#1|) (-1021) (-1021))) (-15 -3931 ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 ** ((-1154 |#1|) (-1154 |#1|) (-517))) (-15 * ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1678 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2962 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1462 ((-1154 |#1|) (-1154 |#1|) (-843))) (-15 -1639 ((-1154 |#1|) (-1154 |#1|))) (-15 -4034 ((-843) (-1154 |#1|))) (-15 -3228 ((-107) (-1154 |#1|))) (-15 -2080 ((-1154 (-1154 |#1|)) (-843))) (-15 -1921 ((-1154 |#1|) (-843))) (-15 -2956 ((-1070 |#1|) (-1154 |#1|))))
-((-3513 (((-1 |#1| |#1|) |#1|) 11)) (-2270 (((-1 |#1| |#1|)) 10)))
-(((-488 |#1|) (-10 -7 (-15 -2270 ((-1 |#1| |#1|))) (-15 -3513 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
-((-3513 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-2270 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(-10 -7 (-15 -2270 ((-1 |#1| |#1|))) (-15 -3513 ((-1 |#1| |#1|) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3398 (($ $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-1336 (($ (-703) |#1|) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 (-703) (-703)) $) NIL)) (-3495 ((|#1| $) NIL)) (-1193 (((-703) $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 20)) (-2398 (($) NIL T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+((-2244 (((-1071 |#1|) (-703)) 75)) (-2008 (((-1156 |#1|) (-1156 |#1|) (-844)) 68)) (-4017 (((-1161) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) |#1|) 83)) (-1963 (((-1156 |#1|) (-1156 |#1|) (-703)) 36)) (-2200 (((-1156 |#1|) (-844)) 70)) (-2909 (((-1156 |#1|) (-1156 |#1|) (-517)) 24)) (-1713 (((-1071 |#1|) (-1156 |#1|)) 76)) (-3040 (((-1156 |#1|) (-844)) 94)) (-1798 (((-107) (-1156 |#1|)) 79)) (-2754 (((-1156 |#1|) (-1156 |#1|) (-844)) 61)) (-2456 (((-1071 |#1|) (-1156 |#1|)) 88)) (-2031 (((-844) (-1156 |#1|)) 58)) (-2298 (((-1156 |#1|) (-1156 |#1|)) 30)) (-2810 (((-1156 |#1|) (-844) (-844)) 96)) (-3081 (((-1156 |#1|) (-1156 |#1|) (-1022) (-1022)) 23)) (-2897 (((-1156 |#1|) (-1156 |#1|) (-703) (-1022)) 37)) (-2062 (((-1156 (-1156 |#1|)) (-844)) 93)) (-1703 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 80)) (** (((-1156 |#1|) (-1156 |#1|) (-517)) 45)) (* (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 25)))
+(((-487 |#1|) (-10 -7 (-15 -4017 ((-1161) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) |#1|)) (-15 -2200 ((-1156 |#1|) (-844))) (-15 -2810 ((-1156 |#1|) (-844) (-844))) (-15 -1713 ((-1071 |#1|) (-1156 |#1|))) (-15 -2244 ((-1071 |#1|) (-703))) (-15 -2897 ((-1156 |#1|) (-1156 |#1|) (-703) (-1022))) (-15 -1963 ((-1156 |#1|) (-1156 |#1|) (-703))) (-15 -3081 ((-1156 |#1|) (-1156 |#1|) (-1022) (-1022))) (-15 -2909 ((-1156 |#1|) (-1156 |#1|) (-517))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-517))) (-15 * ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -1703 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -2754 ((-1156 |#1|) (-1156 |#1|) (-844))) (-15 -2008 ((-1156 |#1|) (-1156 |#1|) (-844))) (-15 -2298 ((-1156 |#1|) (-1156 |#1|))) (-15 -2031 ((-844) (-1156 |#1|))) (-15 -1798 ((-107) (-1156 |#1|))) (-15 -2062 ((-1156 (-1156 |#1|)) (-844))) (-15 -3040 ((-1156 |#1|) (-844))) (-15 -2456 ((-1071 |#1|) (-1156 |#1|)))) (-319)) (T -487))
+((-2456 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-1071 *4)) (-5 *1 (-487 *4)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1156 (-1156 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-844)) (-5 *1 (-487 *4)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-844)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-844)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1703 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2909 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3081 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1022)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1963 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2897 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1156 *5)) (-5 *3 (-703)) (-5 *4 (-1022)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1071 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-1071 *4)) (-5 *1 (-487 *4)))) (-2810 (*1 *2 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4017 (*1 *2 *3 *4) (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))) (-4 *4 (-319)) (-5 *2 (-1161)) (-5 *1 (-487 *4)))))
+(-10 -7 (-15 -4017 ((-1161) (-1156 (-583 (-2 (|:| -3119 |#1|) (|:| -2810 (-1022))))) |#1|)) (-15 -2200 ((-1156 |#1|) (-844))) (-15 -2810 ((-1156 |#1|) (-844) (-844))) (-15 -1713 ((-1071 |#1|) (-1156 |#1|))) (-15 -2244 ((-1071 |#1|) (-703))) (-15 -2897 ((-1156 |#1|) (-1156 |#1|) (-703) (-1022))) (-15 -1963 ((-1156 |#1|) (-1156 |#1|) (-703))) (-15 -3081 ((-1156 |#1|) (-1156 |#1|) (-1022) (-1022))) (-15 -2909 ((-1156 |#1|) (-1156 |#1|) (-517))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-517))) (-15 * ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -1703 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -2754 ((-1156 |#1|) (-1156 |#1|) (-844))) (-15 -2008 ((-1156 |#1|) (-1156 |#1|) (-844))) (-15 -2298 ((-1156 |#1|) (-1156 |#1|))) (-15 -2031 ((-844) (-1156 |#1|))) (-15 -1798 ((-107) (-1156 |#1|))) (-15 -2062 ((-1156 (-1156 |#1|)) (-844))) (-15 -3040 ((-1156 |#1|) (-844))) (-15 -2456 ((-1071 |#1|) (-1156 |#1|))))
+((-2281 (((-1 |#1| |#1|) |#1|) 11)) (-3985 (((-1 |#1| |#1|)) 10)))
+(((-488 |#1|) (-10 -7 (-15 -3985 ((-1 |#1| |#1|))) (-15 -2281 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
+((-2281 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-3985 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(-10 -7 (-15 -3985 ((-1 |#1| |#1|))) (-15 -2281 ((-1 |#1| |#1|) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1836 (($ $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-2077 (($ (-703) |#1|) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 (-703) (-703)) $) NIL)) (-2040 ((|#1| $) NIL)) (-2345 (((-703) $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 20)) (-3608 (($) NIL T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL)))
(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489))
NIL
(-13 (-725) (-473 (-703) |#1|))
-((-1399 (((-583 |#2|) (-1070 |#1|) |#3|) 83)) (-1403 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|))) 99)) (-3966 (((-1070 |#1|) (-623 |#1|)) 95)))
-(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-1070 |#1|) (-623 |#1|))) (-15 -1399 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -1403 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
-((-1403 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1070 *6)) (-1070 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1070 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
-(-10 -7 (-15 -3966 ((-1070 |#1|) (-623 |#1|))) (-15 -1399 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -1403 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1070 |#1|)) (-1070 |#1|)))))
-((-2708 (((-772 (-517))) 11)) (-2730 (((-772 (-517))) 13)) (-2693 (((-765 (-517))) 8)))
-(((-491) (-10 -7 (-15 -2693 ((-765 (-517)))) (-15 -2708 ((-772 (-517)))) (-15 -2730 ((-772 (-517)))))) (T -491))
-((-2730 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2708 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2693 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
-(-10 -7 (-15 -2693 ((-765 (-517)))) (-15 -2708 ((-772 (-517)))) (-15 -2730 ((-772 (-517)))))
-((-2265 (((-493) (-1074)) 15)) (-2713 ((|#1| (-493)) 20)))
-(((-492 |#1|) (-10 -7 (-15 -2265 ((-493) (-1074))) (-15 -2713 (|#1| (-493)))) (-1109)) (T -492))
-((-2713 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1109)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -2265 ((-493) (-1074))) (-15 -2713 (|#1| (-493))))
-((-1587 (((-107) $ $) NIL)) (-1785 (((-1057) $) 46)) (-3810 (((-107) $) 43)) (-3871 (((-1074) $) 44)) (-2776 (((-107) $) 41)) (-3881 (((-1057) $) 42)) (-3073 (((-107) $) NIL)) (-1345 (((-107) $) NIL)) (-1241 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-1949 (($ $ (-583 (-1074))) 20)) (-2713 (((-51) $) 22)) (-2413 (((-107) $) NIL)) (-3905 (((-517) $) NIL)) (-3214 (((-1021) $) NIL)) (-1245 (($ $ (-583 (-1074)) (-1074)) 58)) (-1797 (((-107) $) NIL)) (-4002 (((-199) $) NIL)) (-2208 (($ $) 38)) (-1659 (((-787) $) NIL)) (-2153 (((-107) $ $) NIL)) (-1437 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-1443 (((-583 $) $) 28)) (-1988 (((-1074) (-583 $)) 47)) (-3667 (($ (-583 $)) 51) (($ (-1057)) NIL) (($ (-1074)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1007) $) 11) (($ (-1007)) 12)) (-3635 (((-1074) (-1074) (-583 $)) 50)) (-2254 (((-787) $) NIL)) (-2111 (($ $) 49)) (-2103 (($ $) 48)) (-2100 (($ $ (-583 $)) 55)) (-3813 (((-107) $) 27)) (-2398 (($) 9 T CONST)) (-2411 (($) 10 T CONST)) (-1534 (((-107) $ $) 59)) (-1678 (($ $ $) 64)) (-1645 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-2290 (((-517) $) NIL)))
-(((-493) (-13 (-1006 (-1057) (-1074) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2713 ((-51) $)) (-15 -3667 ($ (-1007))) (-15 -2100 ($ $ (-583 $))) (-15 -1245 ($ $ (-583 (-1074)) (-1074))) (-15 -1949 ($ $ (-583 (-1074)))) (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 -1678 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -2497) (-15 1 ($) -2497) (-15 -2208 ($ $)) (-15 -1785 ((-1057) $)) (-15 -1988 ((-1074) (-583 $))) (-15 -3635 ((-1074) (-1074) (-583 $)))))) (T -493))
-((-2713 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-1245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1074)) (-5 *1 (-493)))) (-1949 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-493)))) (-1645 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1678 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-2398 (*1 *1) (-5 *1 (-493))) (-2411 (*1 *1) (-5 *1 (-493))) (-2208 (*1 *1 *1) (-5 *1 (-493))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-493)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1074)) (-5 *1 (-493)))) (-3635 (*1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
-(-13 (-1006 (-1057) (-1074) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2713 ((-51) $)) (-15 -3667 ($ (-1007))) (-15 -2100 ($ $ (-583 $))) (-15 -1245 ($ $ (-583 (-1074)) (-1074))) (-15 -1949 ($ $ (-583 (-1074)))) (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 -1678 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-2398) ($) -2497) (-15 (-2411) ($) -2497) (-15 -2208 ($ $)) (-15 -1785 ((-1057) $)) (-15 -1988 ((-1074) (-583 $))) (-15 -3635 ((-1074) (-1074) (-583 $)))))
-((-3650 ((|#2| |#2|) 17)) (-3578 ((|#2| |#2|) 13)) (-2338 ((|#2| |#2| (-517) (-517)) 20)) (-3119 ((|#2| |#2|) 15)))
-(((-494 |#1| |#2|) (-10 -7 (-15 -3578 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2338 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1146 |#1|)) (T -494))
-((-2338 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1146 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))))
-(-10 -7 (-15 -3578 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2338 (|#2| |#2| (-517) (-517))))
-((-3005 (((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074))) 32)) (-2837 (((-583 |#2|) (-874 |#1|) |#3|) 53) (((-583 |#2|) (-1070 |#1|) |#3|) 52)) (-4026 (((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|) 87)))
-(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -2837 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -2837 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -4026 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|)) (-15 -3005 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
-((-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1074))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-4026 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -2837 ((-583 |#2|) (-1070 |#1|) |#3|)) (-15 -2837 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -4026 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)) |#3|)) (-15 -3005 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1074)))))
-((-2137 ((|#2| |#2| |#1|) 17)) (-2051 ((|#2| (-583 |#2|)) 26)) (-1309 ((|#2| (-583 |#2|)) 45)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2051 (|#2| (-583 |#2|))) (-15 -1309 (|#2| (-583 |#2|))) (-15 -2137 (|#2| |#2| |#1|))) (-278) (-1131 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
-((-2137 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1131 *3)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(-10 -7 (-15 -2051 (|#2| (-583 |#2|))) (-15 -1309 (|#2| (-583 |#2|))) (-15 -2137 (|#2| |#2| |#1|)))
-((-1376 (((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|))) 164)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -497))
-((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4| (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|) (-1 (-388 (-1070 |#3|)) (-1070 |#3|)))))
-((-3650 ((|#4| |#4|) 73)) (-3578 ((|#4| |#4|) 69)) (-2338 ((|#4| |#4| (-517) (-517)) 75)) (-3119 ((|#4| |#4|) 71)))
-(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3578 (|#4| |#4|)) (-15 -3119 (|#4| |#4|)) (-15 -3650 (|#4| |#4|)) (-15 -2338 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1131 |#1|) (-657 |#1| |#2|) (-1146 |#3|)) (T -498))
-((-2338 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1131 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1146 *6)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))))
-(-10 -7 (-15 -3578 (|#4| |#4|)) (-15 -3119 (|#4| |#4|)) (-15 -3650 (|#4| |#4|)) (-15 -2338 (|#4| |#4| (-517) (-517))))
-((-3650 ((|#2| |#2|) 27)) (-3578 ((|#2| |#2|) 23)) (-2338 ((|#2| |#2| (-517) (-517)) 29)) (-3119 ((|#2| |#2|) 25)))
-(((-499 |#1| |#2|) (-10 -7 (-15 -3578 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2338 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1146 |#1|)) (T -499))
-((-2338 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1146 *4)))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))))
-(-10 -7 (-15 -3578 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2338 (|#2| |#2| (-517) (-517))))
-((-4098 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
-(((-500 |#1| |#2|) (-10 -7 (-15 -4098 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -4098 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -4098 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-961) (-1131 |#1|)) (T -500))
-((-4098 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) (-4098 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) (-4098 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1131 *5)))))
-(-10 -7 (-15 -4098 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -4098 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -4098 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
-((-2014 (($ $ $) 78)) (-2674 (((-388 $) $) 46)) (-1837 (((-3 (-517) "failed") $) 58)) (-3232 (((-517) $) 36)) (-3937 (((-3 (-377 (-517)) "failed") $) 73)) (-1541 (((-107) $) 23)) (-3320 (((-377 (-517)) $) 71)) (-3083 (((-107) $) 49)) (-4101 (($ $ $ $) 85)) (-3162 (((-107) $) 15)) (-1630 (($ $ $) 56)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 68)) (-3326 (((-3 $ "failed") $) 63)) (-1521 (($ $) 22)) (-1810 (($ $ $) 83)) (-3680 (($) 59)) (-1803 (($ $) 52)) (-1376 (((-388 $) $) 44)) (-1947 (((-107) $) 13)) (-3196 (((-703) $) 27)) (-1248 (($ $ (-703)) NIL) (($ $) 10)) (-2435 (($ $) 16)) (-3667 (((-517) $) NIL) (((-493) $) 35) (((-814 (-517)) $) 39) (((-349) $) 30) (((-199) $) 32)) (-1217 (((-703)) 8)) (-2121 (((-107) $ $) 19)) (-4033 (($ $ $) 54)))
-(((-501 |#1|) (-10 -8 (-15 -1810 (|#1| |#1| |#1|)) (-15 -4101 (|#1| |#1| |#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2121 ((-107) |#1| |#1|)) (-15 -1947 ((-107) |#1|)) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3667 ((-517) |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -3162 ((-107) |#1|)) (-15 -3196 ((-703) |#1|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -3083 ((-107) |#1|)) (-15 -1217 ((-703)))) (-502)) (T -501))
-((-1217 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
-(-10 -8 (-15 -1810 (|#1| |#1| |#1|)) (-15 -4101 (|#1| |#1| |#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2121 ((-107) |#1| |#1|)) (-15 -1947 ((-107) |#1|)) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3667 ((-517) |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -3162 ((-107) |#1|)) (-15 -3196 ((-703) |#1|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -3083 ((-107) |#1|)) (-15 -1217 ((-703))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2014 (($ $ $) 85)) (-2646 (((-3 $ "failed") $ $) 19)) (-1764 (($ $ $ $) 73)) (-2377 (($ $) 51)) (-2674 (((-388 $) $) 52)) (-2448 (((-107) $ $) 125)) (-3345 (((-517) $) 114)) (-1356 (($ $ $) 88)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 106)) (-3232 (((-517) $) 105)) (-2532 (($ $ $) 129)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3775 (((-3 $ "failed") $) 34)) (-3937 (((-3 (-377 (-517)) "failed") $) 82)) (-1541 (((-107) $) 84)) (-3320 (((-377 (-517)) $) 83)) (-4100 (($) 81) (($ $) 80)) (-2509 (($ $ $) 128)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 123)) (-3083 (((-107) $) 53)) (-4101 (($ $ $ $) 71)) (-3509 (($ $ $) 86)) (-3162 (((-107) $) 116)) (-1630 (($ $ $) 97)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 100)) (-3469 (((-107) $) 31)) (-2119 (((-107) $) 92)) (-3326 (((-3 $ "failed") $) 94)) (-1199 (((-107) $) 115)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-4102 (($ $ $ $) 72)) (-4055 (($ $ $) 117)) (-3105 (($ $ $) 118)) (-1521 (($ $) 75)) (-1631 (($ $) 89)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1810 (($ $ $) 70)) (-3680 (($) 93 T CONST)) (-3152 (($ $) 77)) (-3214 (((-1021) $) 10) (($ $) 79)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1803 (($ $) 98)) (-1376 (((-388 $) $) 50)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 130)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-1947 (((-107) $) 91)) (-3196 (((-703) $) 126)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 127)) (-1248 (($ $ (-703)) 111) (($ $) 109)) (-2142 (($ $) 76)) (-2435 (($ $) 78)) (-3667 (((-517) $) 108) (((-493) $) 102) (((-814 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-1217 (((-703)) 29)) (-2121 (((-107) $ $) 87)) (-4033 (($ $ $) 99)) (-1870 (($) 90)) (-2673 (((-107) $ $) 39)) (-2320 (($ $ $ $) 74)) (-1724 (($ $) 113)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-703)) 112) (($ $) 110)) (-1600 (((-107) $ $) 120)) (-1571 (((-107) $ $) 121)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 119)) (-1558 (((-107) $ $) 122)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-502) (-1185)) (T -502))
-((-2119 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1870 (*1 *1) (-4 *1 (-502))) (-1631 (*1 *1 *1) (-4 *1 (-502))) (-1356 (*1 *1 *1 *1) (-4 *1 (-502))) (-2121 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3509 (*1 *1 *1 *1) (-4 *1 (-502))) (-2014 (*1 *1 *1 *1) (-4 *1 (-502))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3937 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-4100 (*1 *1) (-4 *1 (-502))) (-4100 (*1 *1 *1) (-4 *1 (-502))) (-3214 (*1 *1 *1) (-4 *1 (-502))) (-2435 (*1 *1 *1) (-4 *1 (-502))) (-3152 (*1 *1 *1) (-4 *1 (-502))) (-2142 (*1 *1 *1) (-4 *1 (-502))) (-1521 (*1 *1 *1) (-4 *1 (-502))) (-2320 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1764 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-4102 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-4101 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1810 (*1 *1 *1 *1) (-4 *1 (-502))))
-(-13 (-1113) (-278) (-752) (-207) (-558 (-517)) (-952 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-814 (-517))) (-808 (-517)) (-130) (-937) (-134) (-1050) (-10 -8 (-15 -2119 ((-107) $)) (-15 -1947 ((-107) $)) (-6 -4182) (-15 -1870 ($)) (-15 -1631 ($ $)) (-15 -1356 ($ $ $)) (-15 -2121 ((-107) $ $)) (-15 -3509 ($ $ $)) (-15 -2014 ($ $ $)) (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $)) (-15 -4100 ($)) (-15 -4100 ($ $)) (-15 -3214 ($ $)) (-15 -2435 ($ $)) (-15 -3152 ($ $)) (-15 -2142 ($ $)) (-15 -1521 ($ $)) (-15 -2320 ($ $ $ $)) (-15 -1764 ($ $ $ $)) (-15 -4102 ($ $ $ $)) (-15 -4101 ($ $ $ $)) (-15 -1810 ($ $ $)) (-6 -4181)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-814 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-808 (-517)) . T) ((-842) . T) ((-937) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) . T) ((-1113) . T))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) NIL)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-503 |#1| |#2| |#3|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))) (T -503))
-NIL
-(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
-((-3567 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))) 49)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -3567 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
-((-3567 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(-10 -7 (-15 -3567 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1070 |#2|) (-1070 |#2|)))))
-((-1231 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3313 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-3186 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3186 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1231 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3313 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-952 (-517))) (-13 (-27) (-400 |#1|)) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
-((-3313 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1131 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-1231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(-10 -7 (-15 -3186 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1231 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3313 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3972 (((-107) (-517) (-517)) 10)) (-2191 (((-517) (-517)) 7)) (-2390 (((-517) (-517) (-517)) 8)))
-(((-506) (-10 -7 (-15 -2191 ((-517) (-517))) (-15 -2390 ((-517) (-517) (-517))) (-15 -3972 ((-107) (-517) (-517))))) (T -506))
-((-3972 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-2390 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(-10 -7 (-15 -2191 ((-517) (-517))) (-15 -2390 ((-517) (-517) (-517))) (-15 -3972 ((-107) (-517) (-517))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2093 ((|#1| $) 61)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2725 (($ $) 91)) (-2602 (($ $) 74)) (-3398 ((|#1| $) 62)) (-2646 (((-3 $ "failed") $ $) 19)) (-1386 (($ $) 73)) (-2705 (($ $) 90)) (-2580 (($ $) 75)) (-1533 (($ $) 89)) (-2626 (($ $) 76)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 69)) (-3232 (((-517) $) 68)) (-3775 (((-3 $ "failed") $) 34)) (-2355 (($ |#1| |#1|) 66)) (-3162 (((-107) $) 60)) (-2665 (($) 101)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 72)) (-1199 (((-107) $) 59)) (-4055 (($ $ $) 107)) (-3105 (($ $ $) 106)) (-1875 (($ $) 98)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-2732 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-2803 ((|#1| $) 63)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2483 (((-3 $ "failed") $ $) 42)) (-2643 (($ $) 99)) (-1543 (($ $) 88)) (-2638 (($ $) 77)) (-2735 (($ $) 87)) (-2614 (($ $) 78)) (-2714 (($ $) 86)) (-2590 (($ $) 79)) (-2302 (((-107) $ |#1|) 58)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-1217 (((-703)) 29)) (-1584 (($ $) 97)) (-2670 (($ $) 85)) (-2673 (((-107) $ $) 39)) (-1557 (($ $) 96)) (-2651 (($ $) 84)) (-1614 (($ $) 95)) (-2688 (($ $) 83)) (-3756 (($ $) 94)) (-2698 (($ $) 82)) (-1599 (($ $) 93)) (-2678 (($ $) 81)) (-1570 (($ $) 92)) (-2660 (($ $) 80)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 104)) (-1571 (((-107) $ $) 103)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 105)) (-1558 (((-107) $ $) 102)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-507 |#1|) (-1185) (-13 (-374) (-1095))) (T -507))
-((-2732 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2355 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2732 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) (-1199 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) (-2302 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))))
-(-13 (-421) (-779) (-1095) (-918) (-952 (-517)) (-10 -8 (-6 -3405) (-15 -2732 ($ |t#1| |t#1|)) (-15 -2355 ($ |t#1| |t#1|)) (-15 -2732 ($ |t#1|)) (-15 -2732 ($ (-377 (-517)))) (-15 -2803 (|t#1| $)) (-15 -3398 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -3162 ((-107) $)) (-15 -1199 ((-107) $)) (-15 -2302 ((-107) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-918) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) . T) ((-1098) . T))
-((-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 9)) (-2239 (($ $) 11)) (-3531 (((-107) $) 18)) (-3775 (((-3 $ "failed") $) 16)) (-2673 (((-107) $ $) 20)))
-(((-508 |#1|) (-10 -8 (-15 -3531 ((-107) |#1|)) (-15 -2673 ((-107) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
-NIL
-(-10 -8 (-15 -3531 ((-107) |#1|)) (-15 -2673 ((-107) |#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2726 ((-2 (|:| -1346 |#1|) (|:| -4170 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ $) 42)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-509) (-1185)) (T -509))
-((-2483 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1346 *1) (|:| -4170 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-2239 (*1 *1 *1) (-4 *1 (-509))) (-2673 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2483 ((-3 $ "failed") $ $)) (-15 -2726 ((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $)) (-15 -2239 ($ $)) (-15 -2673 ((-107) $ $)) (-15 -3531 ((-107) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2247 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|)) 35)) (-4039 (((-534 |#2|) |#2| (-1074)) 58)) (-2742 (((-3 |#2| "failed") |#2| (-1074)) 148)) (-3755 (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|))) 151)) (-2287 (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|) 38)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2287 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|)) (-15 -2247 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|))) (-15 -2742 ((-3 |#2| "failed") |#2| (-1074))) (-15 -4039 ((-534 |#2|) |#2| (-1074))) (-15 -3755 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -510))
-((-3755 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1074)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-2742 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2247 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-2287 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(-10 -7 (-15 -2287 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) |#2|)) (-15 -2247 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1074) (-583 |#2|))) (-15 -2742 ((-3 |#2| "failed") |#2| (-1074))) (-15 -4039 ((-534 |#2|) |#2| (-1074))) (-15 -3755 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1074) (-556 |#2|) (-583 (-556 |#2|)))))
-((-2674 (((-388 |#1|) |#1|) 18)) (-1376 (((-388 |#1|) |#1|) 33)) (-2052 (((-3 |#1| "failed") |#1|) 44)) (-3711 (((-388 |#1|) |#1|) 51)))
-(((-511 |#1|) (-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -3711 ((-388 |#1|) |#1|)) (-15 -2052 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
-((-2052 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-3711 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-2674 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -3711 ((-388 |#1|) |#1|)) (-15 -2052 ((-3 |#1| "failed") |#1|)))
-((-1227 (($) 9)) (-2526 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3666 (((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-3676 (($ (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-1601 (($ (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1338 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-3949 (((-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3740 (((-1159)) 12)))
-(((-512) (-10 -8 (-15 -1227 ($)) (-15 -3740 ((-1159))) (-15 -3666 ((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1601 ($ (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3676 ($ (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2526 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3949 ((-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1338 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
-((-1338 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2526 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-3740 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-512)))) (-1227 (*1 *1) (-5 *1 (-512))))
-(-10 -8 (-15 -1227 ($)) (-15 -3740 ((-1159))) (-15 -3666 ((-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1601 ($ (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3676 ($ (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2526 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3949 ((-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1338 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2374 (((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|)) 28)) (-3607 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|)) 106)) (-2584 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|)) 50)) (-1748 (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|))) 85) (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|)) 105)) (-3889 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|)) 107)) (-1515 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-1347 ((|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|) 48)) (-1283 (((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|)) 27)))
-(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2584 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -2584 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -1748 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|))) (-15 -1748 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3607 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|))) (-15 -3607 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3889 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|))) (-15 -3889 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2374 ((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|))) (-15 -1347 (|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|)) (-15 -1283 ((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -1515 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -1515 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))))) |%noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1095)) (-1003)) (T -513))
-((-1515 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1070 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-1515 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1070 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-1283 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1070 *6)) (-4 *7 (-1003)))) (-1347 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1070 (-377 (-1070 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) (-2374 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1070 *3)) (-4 *7 (-1003)))) (-3889 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-377 (-1070 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-3889 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-1070 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-3607 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-3607 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1070 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-1748 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-1748 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2584 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2584 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(-10 -7 (-15 -2584 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -2584 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -1748 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1070 |#2|))) (-15 -1748 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3607 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1070 |#2|))) (-15 -3607 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -3889 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) |#2| (-1070 |#2|))) (-15 -3889 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)) (-556 |#2|) |#2| (-377 (-1070 |#2|)))) (-15 -2374 ((-1070 (-377 (-1070 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1070 |#2|))) (-15 -1347 (|#2| (-1070 (-377 (-1070 |#2|))) (-556 |#2|) |#2|)) (-15 -1283 ((-1070 (-377 (-1070 |#2|))) (-1070 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -1515 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1070 |#2|))) (-15 -1515 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1070 |#2|))))) |%noBranch|))
-((-3318 (((-517) (-517) (-703)) 65)) (-4045 (((-517) (-517)) 64)) (-2529 (((-517) (-517)) 63)) (-2653 (((-517) (-517)) 68)) (-2019 (((-517) (-517) (-517)) 48)) (-2848 (((-517) (-517) (-517)) 45)) (-1799 (((-377 (-517)) (-517)) 20)) (-3125 (((-517) (-517)) 21)) (-2540 (((-517) (-517)) 57)) (-3261 (((-517) (-517)) 32)) (-2323 (((-583 (-517)) (-517)) 62)) (-3354 (((-517) (-517) (-517) (-517) (-517)) 43)) (-2938 (((-377 (-517)) (-517)) 41)))
-(((-514) (-10 -7 (-15 -2938 ((-377 (-517)) (-517))) (-15 -3354 ((-517) (-517) (-517) (-517) (-517))) (-15 -2323 ((-583 (-517)) (-517))) (-15 -3261 ((-517) (-517))) (-15 -2540 ((-517) (-517))) (-15 -3125 ((-517) (-517))) (-15 -1799 ((-377 (-517)) (-517))) (-15 -2848 ((-517) (-517) (-517))) (-15 -2019 ((-517) (-517) (-517))) (-15 -2653 ((-517) (-517))) (-15 -2529 ((-517) (-517))) (-15 -4045 ((-517) (-517))) (-15 -3318 ((-517) (-517) (-703))))) (T -514))
-((-3318 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2653 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2019 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2848 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1799 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2323 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3354 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2938 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(-10 -7 (-15 -2938 ((-377 (-517)) (-517))) (-15 -3354 ((-517) (-517) (-517) (-517) (-517))) (-15 -2323 ((-583 (-517)) (-517))) (-15 -3261 ((-517) (-517))) (-15 -2540 ((-517) (-517))) (-15 -3125 ((-517) (-517))) (-15 -1799 ((-377 (-517)) (-517))) (-15 -2848 ((-517) (-517) (-517))) (-15 -2019 ((-517) (-517) (-517))) (-15 -2653 ((-517) (-517))) (-15 -2529 ((-517) (-517))) (-15 -4045 ((-517) (-517))) (-15 -3318 ((-517) (-517) (-703))))
-((-2136 (((-2 (|:| |answer| |#4|) (|:| -1657 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2136 ((-2 (|:| |answer| |#4|) (|:| -1657 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
-((-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1657 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
-(-10 -7 (-15 -2136 ((-2 (|:| |answer| |#4|) (|:| -1657 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2136 (((-2 (|:| |answer| (-377 |#2|)) (|:| -1657 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
-(((-516 |#1| |#2|) (-10 -7 (-15 -2136 ((-2 (|:| |answer| (-377 |#2|)) (|:| -1657 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -516))
-((-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -1657 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -2136 ((-2 (|:| |answer| (-377 |#2|)) (|:| -1657 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 25)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 86)) (-2239 (($ $) 87)) (-3531 (((-107) $) NIL)) (-2014 (($ $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1764 (($ $ $ $) 42)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL)) (-1356 (($ $ $) 80)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL)) (-3232 (((-517) $) NIL)) (-2532 (($ $ $) 79)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3775 (((-3 $ "failed") $) 83)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL)) (-1541 (((-107) $) NIL)) (-3320 (((-377 (-517)) $) NIL)) (-4100 (($) 62) (($ $) 63)) (-2509 (($ $ $) 78)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-4101 (($ $ $ $) NIL)) (-3509 (($ $ $) 54)) (-3162 (((-107) $) NIL)) (-1630 (($ $ $) NIL)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3469 (((-107) $) 26)) (-2119 (((-107) $) 73)) (-3326 (((-3 $ "failed") $) NIL)) (-1199 (((-107) $) 34)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4102 (($ $ $ $) 43)) (-4055 (($ $ $) 75)) (-3105 (($ $ $) 74)) (-1521 (($ $) NIL)) (-1631 (($ $) 40)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) 53)) (-1810 (($ $ $) NIL)) (-3680 (($) NIL T CONST)) (-3152 (($ $) 31)) (-3214 (((-1021) $) NIL) (($ $) 33)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 117)) (-1387 (($ $ $) 84) (($ (-583 $)) NIL)) (-1803 (($ $) NIL)) (-1376 (((-388 $) $) 103)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) 82)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 77)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-2142 (($ $) 32)) (-2435 (($ $) 30)) (-3667 (((-517) $) 39) (((-493) $) 51) (((-814 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1057) $) 52)) (-2254 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-1217 (((-703)) NIL)) (-2121 (((-107) $ $) NIL)) (-4033 (($ $ $) NIL)) (-1870 (($) 29)) (-2673 (((-107) $ $) NIL)) (-2320 (($ $ $ $) 41)) (-1724 (($ $) 61)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 27 T CONST)) (-2411 (($) 28 T CONST)) (-2822 (((-1057) $) 20) (((-1057) $ (-107)) 22) (((-1159) (-754) $) 23) (((-1159) (-754) $ (-107)) 24)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 64)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 65)) (-1663 (($ $) 66) (($ $ $) 68)) (-1645 (($ $ $) 67)) (** (($ $ (-843)) NIL) (($ $ (-703)) 72)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
-(((-517) (-13 (-502) (-558 (-1057)) (-760) (-10 -8 (-15 -4100 ($ $)) (-6 -4170) (-6 -4175) (-6 -4171) (-6 -4165)))) (T -517))
-((-4100 (*1 *1 *1) (-5 *1 (-517))))
-(-13 (-502) (-558 (-1057)) (-760) (-10 -8 (-15 -4100 ($ $)) (-6 -4170) (-6 -4175) (-6 -4171) (-6 -4165)))
-((-3226 (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973)) 103) (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701)) 105)) (-3563 (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074)) 168) (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057)) 167) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973)) 173) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349)) 174) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349)) 175) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349))))) 176) (((-950) (-286 (-349)) (-998 (-772 (-349)))) 163) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349)) 162) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349)) 158) (((-950) (-701)) 150) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973)) 157)))
-(((-518) (-10 -7 (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -3563 ((-950) (-701))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973))) (-15 -3563 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057))) (-15 -3563 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074))))) (T -518))
-((-3563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1074)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1057)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) (-3563 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))))
-(-10 -7 (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -3563 ((-950) (-701))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -3563 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950))) (-701) (-973))) (-15 -3563 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1057))) (-15 -3563 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1074))))
-((-3257 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 180)) (-2222 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 98)) (-1867 (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 176)) (-2066 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074))) 185)) (-3618 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074)) 193 (|has| |#3| (-593 |#2|)))))
-(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -2222 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1867 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -3257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3618 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074))) |%noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1095)) (-1003)) (T -519))
-((-3618 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1074)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2066 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))) (-3257 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))) (-1867 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))) (-2222 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(-10 -7 (-15 -2222 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1867 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -3257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1074)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3618 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2080 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1074))) |%noBranch|))
-((-3535 (((-2 (|:| -2175 |#2|) (|:| |nconst| |#2|)) |#2| (-1074)) 62)) (-3333 (((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|)) 160 (-12 (|has| |#2| (-1038)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))) (-2891 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)) 143 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))))
-(((-520 |#1| |#2|) (-10 -7 (-15 -3535 ((-2 (|:| -2175 |#2|) (|:| |nconst| |#2|)) |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2891 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) (-15 -3333 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |%noBranch|) (IF (|has| |#2| (-1038)) (-15 -3333 ((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-779) (-952 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -520))
-((-3333 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1074)) (-5 *4 (-772 *2)) (-4 *2 (-1038)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-3333 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-2891 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -2175 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(-10 -7 (-15 -3535 ((-2 (|:| -2175 |#2|) (|:| |nconst| |#2|)) |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2891 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) (-15 -3333 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |%noBranch|) (IF (|has| |#2| (-1038)) (-15 -3333 ((-3 |#2| "failed") |#2| (-1074) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2523 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-3563 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-1201 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-2824 (((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -3563 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -1201 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2824 ((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2523 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -521))
-((-2523 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-2824 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -4124 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-1201 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -3563 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -1201 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -2824 ((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2523 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
-((-1950 (((-3 (-517) "failed") |#1|) 14)) (-2413 (((-107) |#1|) 13)) (-3905 (((-517) |#1|) 9)))
-(((-522 |#1|) (-10 -7 (-15 -3905 ((-517) |#1|)) (-15 -2413 ((-107) |#1|)) (-15 -1950 ((-3 (-517) "failed") |#1|))) (-952 (-517))) (T -522))
-((-1950 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) (-2413 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) (-3905 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
-(-10 -7 (-15 -3905 ((-517) |#1|)) (-15 -2413 ((-107) |#1|)) (-15 -1950 ((-3 (-517) "failed") |#1|)))
-((-1188 (((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|)))) 43)) (-1322 (((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074)) 25)) (-1466 (((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074)) 20)) (-2692 (((-3 (-2 (|:| -4124 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))) 32)))
-(((-523 |#1|) (-10 -7 (-15 -1322 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1466 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074))) (-15 -1188 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|))))) (-15 -2692 ((-3 (-2 (|:| -4124 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))))) (-13 (-509) (-952 (-517)) (-134))) (T -523))
-((-2692 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -4124 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))) (-1188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))) (-1322 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(-10 -7 (-15 -1322 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -1466 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1074))) (-15 -1188 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1074) (-583 (-377 (-874 |#1|))))) (-15 -2692 ((-3 (-2 (|:| -4124 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))))
-((-1587 (((-107) $ $) 59)) (-2778 (((-107) $) 36)) (-2093 ((|#1| $) 30)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) 63)) (-2725 (($ $) 123)) (-2602 (($ $) 103)) (-3398 ((|#1| $) 28)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $) NIL)) (-2705 (($ $) 125)) (-2580 (($ $) 99)) (-1533 (($ $) 127)) (-2626 (($ $) 107)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) 78)) (-3232 (((-517) $) 80)) (-3775 (((-3 $ "failed") $) 62)) (-2355 (($ |#1| |#1|) 26)) (-3162 (((-107) $) 33)) (-2665 (($) 89)) (-3469 (((-107) $) 43)) (-2003 (($ $ (-517)) NIL)) (-1199 (((-107) $) 34)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1875 (($ $) 91)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-2732 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-2803 ((|#1| $) 27)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) 65) (($ (-583 $)) NIL)) (-2483 (((-3 $ "failed") $ $) 64)) (-2643 (($ $) 93)) (-1543 (($ $) 131)) (-2638 (($ $) 105)) (-2735 (($ $) 133)) (-2614 (($ $) 109)) (-2714 (($ $) 129)) (-2590 (($ $) 101)) (-2302 (((-107) $ |#1|) 31)) (-2254 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-1217 (((-703)) 87)) (-1584 (($ $) 145)) (-2670 (($ $) 115)) (-2673 (((-107) $ $) NIL)) (-1557 (($ $) 143)) (-2651 (($ $) 111)) (-1614 (($ $) 141)) (-2688 (($ $) 121)) (-3756 (($ $) 139)) (-2698 (($ $) 119)) (-1599 (($ $) 137)) (-2678 (($ $) 117)) (-1570 (($ $) 135)) (-2660 (($ $) 113)) (-2196 (($ $ (-843)) 55) (($ $ (-703)) NIL)) (-2398 (($) 21 T CONST)) (-2411 (($) 10 T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 37)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 35)) (-1663 (($ $) 41) (($ $ $) 42)) (-1645 (($ $ $) 40)) (** (($ $ (-843)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-843) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
-(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1095))) (T -524))
+((-2835 (((-583 |#2|) (-1071 |#1|) |#3|) 83)) (-2284 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1071 |#1|)) (-1071 |#1|))) 99)) (-2723 (((-1071 |#1|) (-623 |#1|)) 95)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -2723 ((-1071 |#1|) (-623 |#1|))) (-15 -2835 ((-583 |#2|) (-1071 |#1|) |#3|)) (-15 -2284 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1071 |#1|)) (-1071 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
+((-2284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1071 *6)) (-1071 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1071 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(-10 -7 (-15 -2723 ((-1071 |#1|) (-623 |#1|))) (-15 -2835 ((-583 |#2|) (-1071 |#1|) |#3|)) (-15 -2284 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1071 |#1|)) (-1071 |#1|)))))
+((-3141 (((-772 (-517))) 11)) (-3152 (((-772 (-517))) 13)) (-2124 (((-765 (-517))) 8)))
+(((-491) (-10 -7 (-15 -2124 ((-765 (-517)))) (-15 -3141 ((-772 (-517)))) (-15 -3152 ((-772 (-517)))))) (T -491))
+((-3152 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-3141 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2124 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
+(-10 -7 (-15 -2124 ((-765 (-517)))) (-15 -3141 ((-772 (-517)))) (-15 -3152 ((-772 (-517)))))
+((-1436 (((-493) (-1075)) 15)) (-2346 ((|#1| (-493)) 20)))
+(((-492 |#1|) (-10 -7 (-15 -1436 ((-493) (-1075))) (-15 -2346 (|#1| (-493)))) (-1110)) (T -492))
+((-2346 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1110)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1110)))))
+(-10 -7 (-15 -1436 ((-493) (-1075))) (-15 -2346 (|#1| (-493))))
+((-2118 (((-107) $ $) NIL)) (-4021 (((-1058) $) 46)) (-4093 (((-107) $) 43)) (-2250 (((-1075) $) 44)) (-3476 (((-107) $) 41)) (-1517 (((-1058) $) 42)) (-3555 (((-107) $) NIL)) (-1268 (((-107) $) NIL)) (-2768 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-1950 (($ $ (-583 (-1075))) 20)) (-2346 (((-51) $) 22)) (-2828 (((-107) $) NIL)) (-2265 (((-517) $) NIL)) (-4123 (((-1022) $) NIL)) (-2225 (($ $ (-583 (-1075)) (-1075)) 58)) (-2931 (((-107) $) NIL)) (-3209 (((-199) $) NIL)) (-2612 (($ $) 38)) (-3711 (((-787) $) NIL)) (-3779 (((-107) $ $) NIL)) (-2607 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3940 (((-583 $) $) 28)) (-1911 (((-1075) (-583 $)) 47)) (-3357 (($ (-583 $)) 51) (($ (-1058)) NIL) (($ (-1075)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1008) $) 11) (($ (-1008)) 12)) (-2517 (((-1075) (-1075) (-583 $)) 50)) (-2269 (((-787) $) NIL)) (-3307 (($ $) 49)) (-3293 (($ $) 48)) (-3312 (($ $ (-583 $)) 55)) (-3401 (((-107) $) 27)) (-3608 (($) 9 T CONST)) (-3617 (($) 10 T CONST)) (-1583 (((-107) $ $) 59)) (-1703 (($ $ $) 64)) (-1677 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-3533 (((-517) $) NIL)))
+(((-493) (-13 (-1007 (-1058) (-1075) (-517) (-199) (-787)) (-558 (-1008)) (-10 -8 (-15 -2346 ((-51) $)) (-15 -3357 ($ (-1008))) (-15 -3312 ($ $ (-583 $))) (-15 -2225 ($ $ (-583 (-1075)) (-1075))) (-15 -1950 ($ $ (-583 (-1075)))) (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 -1703 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1384) (-15 1 ($) -1384) (-15 -2612 ($ $)) (-15 -4021 ((-1058) $)) (-15 -1911 ((-1075) (-583 $))) (-15 -2517 ((-1075) (-1075) (-583 $)))))) (T -493))
+((-2346 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-493)))) (-3312 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-2225 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-1075)) (-5 *1 (-493)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-493)))) (-1677 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1703 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-3608 (*1 *1) (-5 *1 (-493))) (-3617 (*1 *1) (-5 *1 (-493))) (-2612 (*1 *1 *1) (-5 *1 (-493))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-493)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1075)) (-5 *1 (-493)))) (-2517 (*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(-13 (-1007 (-1058) (-1075) (-517) (-199) (-787)) (-558 (-1008)) (-10 -8 (-15 -2346 ((-51) $)) (-15 -3357 ($ (-1008))) (-15 -3312 ($ $ (-583 $))) (-15 -2225 ($ $ (-583 (-1075)) (-1075))) (-15 -1950 ($ $ (-583 (-1075)))) (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 -1703 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-3608) ($) -1384) (-15 (-3617) ($) -1384) (-15 -2612 ($ $)) (-15 -4021 ((-1058) $)) (-15 -1911 ((-1075) (-583 $))) (-15 -2517 ((-1075) (-1075) (-583 $)))))
+((-3858 ((|#2| |#2|) 17)) (-1847 ((|#2| |#2|) 13)) (-3579 ((|#2| |#2| (-517) (-517)) 20)) (-2852 ((|#2| |#2|) 15)))
+(((-494 |#1| |#2|) (-10 -7 (-15 -1847 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3579 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1147 |#1|)) (T -494))
+((-3579 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1147 *4)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1147 *3)))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1147 *3)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1147 *3)))))
+(-10 -7 (-15 -1847 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3579 (|#2| |#2| (-517) (-517))))
+((-2562 (((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1075))) 32)) (-1543 (((-583 |#2|) (-875 |#1|) |#3|) 53) (((-583 |#2|) (-1071 |#1|) |#3|) 52)) (-4149 (((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)) |#3|) 87)))
+(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -1543 ((-583 |#2|) (-1071 |#1|) |#3|)) (-15 -1543 ((-583 |#2|) (-875 |#1|) |#3|)) (-15 -4149 ((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)) |#3|)) (-15 -2562 ((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1075))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
+((-2562 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1075))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-875 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-4149 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1543 ((-583 |#2|) (-1071 |#1|) |#3|)) (-15 -1543 ((-583 |#2|) (-875 |#1|) |#3|)) (-15 -4149 ((-583 (-583 |#2|)) (-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)) |#3|)) (-15 -2562 ((-583 (-265 (-875 |#2|))) (-583 |#2|) (-583 (-1075)))))
+((-3334 ((|#2| |#2| |#1|) 17)) (-2980 ((|#2| (-583 |#2|)) 27)) (-3945 ((|#2| (-583 |#2|)) 46)))
+(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2980 (|#2| (-583 |#2|))) (-15 -3945 (|#2| (-583 |#2|))) (-15 -3334 (|#2| |#2| |#1|))) (-278) (-1132 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
+((-3334 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1132 *3)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(-10 -7 (-15 -2980 (|#2| (-583 |#2|))) (-15 -3945 (|#2| (-583 |#2|))) (-15 -3334 (|#2| |#2| |#1|)))
+((-3866 (((-388 (-1071 |#4|)) (-1071 |#4|) (-1 (-388 (-1071 |#3|)) (-1071 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1071 |#3|)) (-1071 |#3|))) 166)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4| (-1 (-388 (-1071 |#3|)) (-1071 |#3|)))) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|) (-1 (-388 (-1071 |#3|)) (-1071 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-872 |#3| |#2| |#1|)) (T -497))
+((-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1071 *7)) (-1071 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-872 *7 *6 *5)) (-5 *2 (-388 (-1071 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1071 *8)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1071 *7)) (-1071 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-872 *7 *6 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4| (-1 (-388 (-1071 |#3|)) (-1071 |#3|)))) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|) (-1 (-388 (-1071 |#3|)) (-1071 |#3|)))))
+((-3858 ((|#4| |#4|) 74)) (-1847 ((|#4| |#4|) 70)) (-3579 ((|#4| |#4| (-517) (-517)) 76)) (-2852 ((|#4| |#4|) 72)))
+(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1847 (|#4| |#4|)) (-15 -2852 (|#4| |#4|)) (-15 -3858 (|#4| |#4|)) (-15 -3579 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1132 |#1|) (-657 |#1| |#2|) (-1147 |#3|)) (T -498))
+((-3579 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1132 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1147 *6)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5)))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5)))))
+(-10 -7 (-15 -1847 (|#4| |#4|)) (-15 -2852 (|#4| |#4|)) (-15 -3858 (|#4| |#4|)) (-15 -3579 (|#4| |#4| (-517) (-517))))
+((-3858 ((|#2| |#2|) 27)) (-1847 ((|#2| |#2|) 23)) (-3579 ((|#2| |#2| (-517) (-517)) 29)) (-2852 ((|#2| |#2|) 25)))
+(((-499 |#1| |#2|) (-10 -7 (-15 -1847 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3579 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1147 |#1|)) (T -499))
+((-3579 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1147 *4)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1147 *3)))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1147 *3)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1147 *3)))))
+(-10 -7 (-15 -1847 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3858 (|#2| |#2|)) (-15 -3579 (|#2| |#2| (-517) (-517))))
+((-1539 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
+(((-500 |#1| |#2|) (-10 -7 (-15 -1539 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1539 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1539 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-962) (-1132 |#1|)) (T -500))
+((-1539 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1132 *4)))) (-1539 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1132 *4)))) (-1539 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-962)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1132 *5)))))
+(-10 -7 (-15 -1539 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1539 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -1539 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
+((-1732 (($ $ $) 79)) (-1581 (((-388 $) $) 47)) (-3226 (((-3 (-517) "failed") $) 59)) (-3388 (((-517) $) 37)) (-2253 (((-3 (-377 (-517)) "failed") $) 74)) (-1654 (((-107) $) 24)) (-3652 (((-377 (-517)) $) 72)) (-2963 (((-107) $) 50)) (-2171 (($ $ $ $) 86)) (-3523 (((-107) $) 16)) (-1298 (($ $ $) 57)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 69)) (-3572 (((-3 $ "failed") $) 64)) (-2634 (($ $) 23)) (-2825 (($ $ $) 84)) (-2585 (($) 60)) (-3012 (($ $) 53)) (-3866 (((-388 $) $) 45)) (-2085 (((-107) $) 14)) (-4094 (((-703) $) 28)) (-2059 (($ $ (-703)) NIL) (($ $) 10)) (-2460 (($ $) 17)) (-3357 (((-517) $) NIL) (((-493) $) 36) (((-815 (-517)) $) 40) (((-349) $) 31) (((-199) $) 33)) (-2950 (((-703)) 8)) (-4012 (((-107) $ $) 20)) (-3972 (($ $ $) 55)))
+(((-501 |#1|) (-10 -8 (-15 -2825 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#1|)) (-15 -2634 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -1732 (|#1| |#1| |#1|)) (-15 -4012 ((-107) |#1| |#1|)) (-15 -2085 ((-107) |#1|)) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3357 ((-517) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -3523 ((-107) |#1|)) (-15 -4094 ((-703) |#1|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -2963 ((-107) |#1|)) (-15 -2950 ((-703)))) (-502)) (T -501))
+((-2950 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
+(-10 -8 (-15 -2825 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#1|)) (-15 -2634 (|#1| |#1|)) (-15 -2460 (|#1| |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -1732 (|#1| |#1| |#1|)) (-15 -4012 ((-107) |#1| |#1|)) (-15 -2085 ((-107) |#1|)) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3357 ((-517) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -3523 ((-107) |#1|)) (-15 -4094 ((-703) |#1|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -2963 ((-107) |#1|)) (-15 -2950 ((-703))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1732 (($ $ $) 85)) (-1250 (((-3 $ "failed") $ $) 19)) (-1448 (($ $ $ $) 73)) (-3088 (($ $) 51)) (-1581 (((-388 $) $) 52)) (-3998 (((-107) $ $) 125)) (-1323 (((-517) $) 114)) (-2140 (($ $ $) 88)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 106)) (-3388 (((-517) $) 105)) (-2378 (($ $ $) 129)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3163 (((-3 $ "failed") $) 34)) (-2253 (((-3 (-377 (-517)) "failed") $) 82)) (-1654 (((-107) $) 84)) (-3652 (((-377 (-517)) $) 83)) (-2200 (($) 81) (($ $) 80)) (-2354 (($ $ $) 128)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 123)) (-2963 (((-107) $) 53)) (-2171 (($ $ $ $) 71)) (-3101 (($ $ $) 86)) (-3523 (((-107) $) 116)) (-1298 (($ $ $) 97)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 100)) (-1865 (((-107) $) 31)) (-1623 (((-107) $) 92)) (-3572 (((-3 $ "failed") $) 94)) (-1469 (((-107) $) 115)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-1431 (($ $ $ $) 72)) (-3456 (($ $ $) 117)) (-4082 (($ $ $) 118)) (-2634 (($ $) 75)) (-3680 (($ $) 89)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2825 (($ $ $) 70)) (-2585 (($) 93 T CONST)) (-4004 (($ $) 77)) (-4123 (((-1022) $) 10) (($ $) 79)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3012 (($ $) 98)) (-3866 (((-388 $) $) 50)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 130)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-2085 (((-107) $) 91)) (-4094 (((-703) $) 126)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 127)) (-2059 (($ $ (-703)) 111) (($ $) 109)) (-2916 (($ $) 76)) (-2460 (($ $) 78)) (-3357 (((-517) $) 108) (((-493) $) 102) (((-815 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-2950 (((-703)) 29)) (-4012 (((-107) $ $) 87)) (-3972 (($ $ $) 99)) (-3984 (($) 90)) (-2914 (((-107) $ $) 39)) (-3359 (($ $ $ $) 74)) (-2339 (($ $) 113)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-703)) 112) (($ $) 110)) (-1641 (((-107) $ $) 120)) (-1617 (((-107) $ $) 121)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 119)) (-1607 (((-107) $ $) 122)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-502) (-1187)) (T -502))
+((-1623 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3984 (*1 *1) (-4 *1 (-502))) (-3680 (*1 *1 *1) (-4 *1 (-502))) (-2140 (*1 *1 *1 *1) (-4 *1 (-502))) (-4012 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3101 (*1 *1 *1 *1) (-4 *1 (-502))) (-1732 (*1 *1 *1 *1) (-4 *1 (-502))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2253 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2200 (*1 *1) (-4 *1 (-502))) (-2200 (*1 *1 *1) (-4 *1 (-502))) (-4123 (*1 *1 *1) (-4 *1 (-502))) (-2460 (*1 *1 *1) (-4 *1 (-502))) (-4004 (*1 *1 *1) (-4 *1 (-502))) (-2916 (*1 *1 *1) (-4 *1 (-502))) (-2634 (*1 *1 *1) (-4 *1 (-502))) (-3359 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1448 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1431 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2171 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2825 (*1 *1 *1 *1) (-4 *1 (-502))))
+(-13 (-1114) (-278) (-752) (-207) (-558 (-517)) (-953 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-815 (-517))) (-809 (-517)) (-130) (-938) (-134) (-1051) (-10 -8 (-15 -1623 ((-107) $)) (-15 -2085 ((-107) $)) (-6 -4189) (-15 -3984 ($)) (-15 -3680 ($ $)) (-15 -2140 ($ $ $)) (-15 -4012 ((-107) $ $)) (-15 -3101 ($ $ $)) (-15 -1732 ($ $ $)) (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $)) (-15 -2200 ($)) (-15 -2200 ($ $)) (-15 -4123 ($ $)) (-15 -2460 ($ $)) (-15 -4004 ($ $)) (-15 -2916 ($ $)) (-15 -2634 ($ $)) (-15 -3359 ($ $ $ $)) (-15 -1448 ($ $ $ $)) (-15 -1431 ($ $ $ $)) (-15 -2171 ($ $ $ $)) (-15 -2825 ($ $ $)) (-6 -4188)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-815 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-809 (-517)) . T) ((-843) . T) ((-938) . T) ((-953 (-517)) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) . T) ((-1114) . T))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) NIL)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-503 |#1| |#2| |#3|) (-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190))) (-1004) (-1004) (-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190)))) (T -503))
+NIL
+(-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190)))
+((-3641 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1071 |#2|) (-1071 |#2|))) 49)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -3641 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1071 |#2|) (-1071 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
+((-3641 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1071 *3) (-1071 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(-10 -7 (-15 -3641 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1071 |#2|) (-1071 |#2|)))))
+((-2855 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2518 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1282 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1282 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2855 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2518 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-953 (-517))) (-13 (-27) (-400 |#1|)) (-1132 |#2|) (-1132 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
+((-2518 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-4 *7 (-1132 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1132 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-953 (-517)))) (-4 *8 (-1132 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-1282 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1132 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-953 (-517)))) (-4 *8 (-1132 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(-10 -7 (-15 -1282 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2855 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2518 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3037 (((-107) (-517) (-517)) 10)) (-2467 (((-517) (-517)) 7)) (-3214 (((-517) (-517) (-517)) 8)))
+(((-506) (-10 -7 (-15 -2467 ((-517) (-517))) (-15 -3214 ((-517) (-517) (-517))) (-15 -3037 ((-107) (-517) (-517))))) (T -506))
+((-3037 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-3214 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(-10 -7 (-15 -2467 ((-517) (-517))) (-15 -3214 ((-517) (-517) (-517))) (-15 -3037 ((-107) (-517) (-517))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3417 ((|#1| $) 61)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1646 (($ $) 91)) (-1493 (($ $) 74)) (-1836 ((|#1| $) 62)) (-1250 (((-3 $ "failed") $ $) 19)) (-3879 (($ $) 73)) (-1622 (($ $) 90)) (-1470 (($ $) 75)) (-1669 (($ $) 89)) (-1519 (($ $) 76)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 69)) (-3388 (((-517) $) 68)) (-3163 (((-3 $ "failed") $) 34)) (-3644 (($ |#1| |#1|) 66)) (-3523 (((-107) $) 60)) (-2115 (($) 101)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 72)) (-1469 (((-107) $) 59)) (-3456 (($ $ $) 107)) (-4082 (($ $ $) 106)) (-1225 (($ $) 98)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2925 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-1443 ((|#1| $) 63)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-2327 (((-3 $ "failed") $ $) 42)) (-3868 (($ $) 99)) (-1682 (($ $) 88)) (-1532 (($ $) 77)) (-1656 (($ $) 87)) (-1506 (($ $) 78)) (-1632 (($ $) 86)) (-1482 (($ $) 79)) (-1573 (((-107) $ |#1|) 58)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-2950 (((-703)) 29)) (-1721 (($ $) 97)) (-1575 (($ $) 85)) (-2914 (((-107) $ $) 39)) (-1695 (($ $) 96)) (-1547 (($ $) 84)) (-3487 (($ $) 95)) (-1599 (($ $) 83)) (-2822 (($ $) 94)) (-1612 (($ $) 82)) (-1735 (($ $) 93)) (-1588 (($ $) 81)) (-1708 (($ $) 92)) (-1561 (($ $) 80)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 104)) (-1617 (((-107) $ $) 103)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 105)) (-1607 (((-107) $ $) 102)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-507 |#1|) (-1187) (-13 (-374) (-1096))) (T -507))
+((-2925 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-3644 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-2925 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107)))) (-1573 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107)))))
+(-13 (-421) (-779) (-1096) (-919) (-953 (-517)) (-10 -8 (-6 -2202) (-15 -2925 ($ |t#1| |t#1|)) (-15 -3644 ($ |t#1| |t#1|)) (-15 -2925 ($ |t#1|)) (-15 -2925 ($ (-377 (-517)))) (-15 -1443 (|t#1| $)) (-15 -1836 (|t#1| $)) (-15 -3417 (|t#1| $)) (-15 -3523 ((-107) $)) (-15 -1469 ((-107) $)) (-15 -1573 ((-107) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-919) . T) ((-953 (-517)) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) . T) ((-1099) . T))
+((-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 9)) (-2729 (($ $) 11)) (-2566 (((-107) $) 18)) (-3163 (((-3 $ "failed") $) 16)) (-2914 (((-107) $ $) 20)))
+(((-508 |#1|) (-10 -8 (-15 -2566 ((-107) |#1|)) (-15 -2914 ((-107) |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
+NIL
+(-10 -8 (-15 -2566 ((-107) |#1|)) (-15 -2914 ((-107) |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -1799 ((-2 (|:| -1875 |#1|) (|:| -4177 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ $) 42)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-509) (-1187)) (T -509))
+((-2327 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1875 *1) (|:| -4177 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-2729 (*1 *1 *1) (-4 *1 (-509))) (-2914 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2327 ((-3 $ "failed") $ $)) (-15 -1799 ((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $)) (-15 -2729 ($ $)) (-15 -2914 ((-107) $ $)) (-15 -2566 ((-107) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3395 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1075) (-583 |#2|)) 35)) (-1355 (((-534 |#2|) |#2| (-1075)) 58)) (-3604 (((-3 |#2| "failed") |#2| (-1075)) 149)) (-1392 (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) (-556 |#2|) (-583 (-556 |#2|))) 152)) (-1630 (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) |#2|) 38)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -1630 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) |#2|)) (-15 -3395 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1075) (-583 |#2|))) (-15 -3604 ((-3 |#2| "failed") |#2| (-1075))) (-15 -1355 ((-534 |#2|) |#2| (-1075))) (-15 -1392 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -510))
+((-1392 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1075)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-3604 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-3395 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-1630 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(-10 -7 (-15 -1630 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) |#2|)) (-15 -3395 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1075) (-583 |#2|))) (-15 -3604 ((-3 |#2| "failed") |#2| (-1075))) (-15 -1355 ((-534 |#2|) |#2| (-1075))) (-15 -1392 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1075) (-556 |#2|) (-583 (-556 |#2|)))))
+((-1581 (((-388 |#1|) |#1|) 18)) (-3866 (((-388 |#1|) |#1|) 33)) (-1928 (((-3 |#1| "failed") |#1|) 44)) (-3549 (((-388 |#1|) |#1|) 51)))
+(((-511 |#1|) (-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3549 ((-388 |#1|) |#1|)) (-15 -1928 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
+((-1928 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-3549 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-1581 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3549 ((-388 |#1|) |#1|)) (-15 -1928 ((-3 |#1| "failed") |#1|)))
+((-3876 (($) 9)) (-1284 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1881 (((-583 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-2704 (($ (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-3561 (($ (-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1860 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-1831 (((-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-4130 (((-1161)) 12)))
+(((-512) (-10 -8 (-15 -3876 ($)) (-15 -4130 ((-1161))) (-15 -1881 ((-583 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -3561 ($ (-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2704 ($ (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1284 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1831 ((-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1860 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
+((-1860 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1284 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-4130 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-512)))) (-3876 (*1 *1) (-5 *1 (-512))))
+(-10 -8 (-15 -3876 ($)) (-15 -4130 ((-1161))) (-15 -1881 ((-583 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -3561 ($ (-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2704 ($ (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1284 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1831 ((-583 (-2 (|:| -2581 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1860 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1056 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-1440 (((-1071 (-377 (-1071 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1071 |#2|)) 28)) (-3216 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1071 |#2|)) 106)) (-1733 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|)) 50)) (-1525 (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1071 |#2|))) 85) (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1071 |#2|)) 105)) (-2845 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) (-556 |#2|) |#2| (-377 (-1071 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) |#2| (-1071 |#2|)) 107)) (-1261 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-2086 ((|#2| (-1071 (-377 (-1071 |#2|))) (-556 |#2|) |#2|) 48)) (-1508 (((-1071 (-377 (-1071 |#2|))) (-1071 |#2|) (-556 |#2|)) 27)))
+(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -1733 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|))) (-15 -1733 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -1525 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1071 |#2|))) (-15 -1525 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1071 |#2|))) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) |#2| (-1071 |#2|))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -1440 ((-1071 (-377 (-1071 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1071 |#2|))) (-15 -2086 (|#2| (-1071 (-377 (-1071 |#2|))) (-556 |#2|) |#2|)) (-15 -1508 ((-1071 (-377 (-1071 |#2|))) (-1071 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -1261 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|))) (-15 -1261 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|))))) |%noBranch|)) (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1096)) (-1004)) (T -513))
+((-1261 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1071 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1096))) (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004)))) (-1261 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1071 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1096))) (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1096))) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1071 (-377 (-1071 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1071 *6)) (-4 *7 (-1004)))) (-2086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1071 (-377 (-1071 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1096))) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1004)))) (-1440 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1071 (-377 (-1071 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1071 *3)) (-4 *7 (-1004)))) (-2845 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075))) (-5 *5 (-377 (-1071 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1004)))) (-2845 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075))) (-5 *5 (-1071 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1004)))) (-3216 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1071 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1096))) (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1004)))) (-3216 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1071 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1096))) (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1004)))) (-1525 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1071 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))) (-1525 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1071 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))) (-1733 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1071 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))) (-1733 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1071 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))))
+(-10 -7 (-15 -1733 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|))) (-15 -1733 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -1525 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1071 |#2|))) (-15 -1525 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1071 |#2|))) (-15 -3216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) |#2| (-1071 |#2|))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)) (-556 |#2|) |#2| (-377 (-1071 |#2|)))) (-15 -1440 ((-1071 (-377 (-1071 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1071 |#2|))) (-15 -2086 (|#2| (-1071 (-377 (-1071 |#2|))) (-556 |#2|) |#2|)) (-15 -1508 ((-1071 (-377 (-1071 |#2|))) (-1071 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -1261 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1071 |#2|))) (-15 -1261 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1071 |#2|))))) |%noBranch|))
+((-1294 (((-517) (-517) (-703)) 66)) (-2155 (((-517) (-517)) 65)) (-2021 (((-517) (-517)) 64)) (-2396 (((-517) (-517)) 69)) (-2639 (((-517) (-517) (-517)) 49)) (-2262 (((-517) (-517) (-517)) 46)) (-3638 (((-377 (-517)) (-517)) 20)) (-3469 (((-517) (-517)) 21)) (-3144 (((-517) (-517)) 58)) (-3138 (((-517) (-517)) 32)) (-1608 (((-583 (-517)) (-517)) 63)) (-3840 (((-517) (-517) (-517) (-517) (-517)) 44)) (-2676 (((-377 (-517)) (-517)) 41)))
+(((-514) (-10 -7 (-15 -2676 ((-377 (-517)) (-517))) (-15 -3840 ((-517) (-517) (-517) (-517) (-517))) (-15 -1608 ((-583 (-517)) (-517))) (-15 -3138 ((-517) (-517))) (-15 -3144 ((-517) (-517))) (-15 -3469 ((-517) (-517))) (-15 -3638 ((-377 (-517)) (-517))) (-15 -2262 ((-517) (-517) (-517))) (-15 -2639 ((-517) (-517) (-517))) (-15 -2396 ((-517) (-517))) (-15 -2021 ((-517) (-517))) (-15 -2155 ((-517) (-517))) (-15 -1294 ((-517) (-517) (-703))))) (T -514))
+((-1294 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2639 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2262 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3638 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3138 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1608 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3840 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2676 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2676 ((-377 (-517)) (-517))) (-15 -3840 ((-517) (-517) (-517) (-517) (-517))) (-15 -1608 ((-583 (-517)) (-517))) (-15 -3138 ((-517) (-517))) (-15 -3144 ((-517) (-517))) (-15 -3469 ((-517) (-517))) (-15 -3638 ((-377 (-517)) (-517))) (-15 -2262 ((-517) (-517) (-517))) (-15 -2639 ((-517) (-517) (-517))) (-15 -2396 ((-517) (-517))) (-15 -2021 ((-517) (-517))) (-15 -2155 ((-517) (-517))) (-15 -1294 ((-517) (-517) (-703))))
+((-1827 (((-2 (|:| |answer| |#4|) (|:| -3832 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1827 ((-2 (|:| |answer| |#4|) (|:| -3832 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
+((-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-4 *7 (-1132 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3832 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
+(-10 -7 (-15 -1827 ((-2 (|:| |answer| |#4|) (|:| -3832 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1827 (((-2 (|:| |answer| (-377 |#2|)) (|:| -3832 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
+(((-516 |#1| |#2|) (-10 -7 (-15 -1827 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3832 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1132 |#1|)) (T -516))
+((-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3832 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -1827 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3832 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 25)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 86)) (-2729 (($ $) 87)) (-2566 (((-107) $) NIL)) (-1732 (($ $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1448 (($ $ $ $) 42)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL)) (-2140 (($ $ $) 80)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL)) (-3388 (((-517) $) NIL)) (-2378 (($ $ $) 79)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3163 (((-3 $ "failed") $) 83)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL)) (-1654 (((-107) $) NIL)) (-3652 (((-377 (-517)) $) NIL)) (-2200 (($) 62) (($ $) 63)) (-2354 (($ $ $) 78)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2171 (($ $ $ $) NIL)) (-3101 (($ $ $) 54)) (-3523 (((-107) $) NIL)) (-1298 (($ $ $) NIL)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1865 (((-107) $) 26)) (-1623 (((-107) $) 73)) (-3572 (((-3 $ "failed") $) NIL)) (-1469 (((-107) $) 34)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1431 (($ $ $ $) 43)) (-3456 (($ $ $) 75)) (-4082 (($ $ $) 74)) (-2634 (($ $) NIL)) (-3680 (($ $) 40)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) 53)) (-2825 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-4004 (($ $) 31)) (-4123 (((-1022) $) NIL) (($ $) 33)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 117)) (-2368 (($ $ $) 84) (($ (-583 $)) NIL)) (-3012 (($ $) NIL)) (-3866 (((-388 $) $) 103)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) 82)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 77)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2916 (($ $) 32)) (-2460 (($ $) 30)) (-3357 (((-517) $) 39) (((-493) $) 51) (((-815 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1058) $) 52)) (-2269 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-2950 (((-703)) NIL)) (-4012 (((-107) $ $) NIL)) (-3972 (($ $ $) NIL)) (-3984 (($) 29)) (-2914 (((-107) $ $) NIL)) (-3359 (($ $ $ $) 41)) (-2339 (($ $) 61)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 27 T CONST)) (-3617 (($) 28 T CONST)) (-1964 (((-1058) $) 20) (((-1058) $ (-107)) 22) (((-1161) (-754) $) 23) (((-1161) (-754) $ (-107)) 24)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 64)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 65)) (-1691 (($ $) 66) (($ $ $) 68)) (-1677 (($ $ $) 67)) (** (($ $ (-844)) NIL) (($ $ (-703)) 72)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
+(((-517) (-13 (-502) (-558 (-1058)) (-760) (-10 -8 (-15 -2200 ($ $)) (-6 -4177) (-6 -4182) (-6 -4178) (-6 -4172)))) (T -517))
+((-2200 (*1 *1 *1) (-5 *1 (-517))))
+(-13 (-502) (-558 (-1058)) (-760) (-10 -8 (-15 -2200 ($ $)) (-6 -4177) (-6 -4182) (-6 -4178) (-6 -4172)))
+((-3615 (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701) (-974)) 103) (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701)) 105)) (-1518 (((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1075)) 168) (((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1058)) 167) (((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349) (-974)) 173) (((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349)) 174) (((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349)) 175) (((-951) (-286 (-349)) (-583 (-999 (-772 (-349))))) 176) (((-951) (-286 (-349)) (-999 (-772 (-349)))) 163) (((-951) (-286 (-349)) (-999 (-772 (-349))) (-349)) 162) (((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349)) 158) (((-951) (-701)) 150) (((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349) (-974)) 157)))
+(((-518) (-10 -7 (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349) (-974))) (-15 -1518 ((-951) (-701))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349) (-974))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701) (-974))) (-15 -1518 ((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1058))) (-15 -1518 ((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1075))))) (T -518))
+((-1518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-997 (-772 (-349)))) (-5 *5 (-1075)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-997 (-772 (-349)))) (-5 *5 (-1058)) (-5 *2 (-951)) (-5 *1 (-518)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-974)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951)))) (-5 *1 (-518)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951)))) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-974)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349))))) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-951)) (-5 *1 (-518)))) (-1518 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-974)) (-5 *2 (-951)) (-5 *1 (-518)))))
+(-10 -7 (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349) (-974))) (-15 -1518 ((-951) (-701))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-999 (-772 (-349))))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349))) (-15 -1518 ((-951) (-286 (-349)) (-583 (-999 (-772 (-349)))) (-349) (-349) (-974))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))) (-701) (-974))) (-15 -1518 ((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1058))) (-15 -1518 ((-3 (-951) "failed") (-286 (-349)) (-997 (-772 (-349))) (-1075))))
+((-3075 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 181)) (-3315 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 99)) (-2755 (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 177)) (-3283 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075))) 186)) (-3660 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1075)) 194 (|has| |#3| (-593 |#2|)))))
+(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -3315 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2755 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -3075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -3283 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1075))) |%noBranch|)) (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1096)) (-1004)) (T -519))
+((-3660 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1075)) (-4 *4 (-13 (-400 *7) (-27) (-1096))) (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004)))) (-3283 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075))) (-4 *2 (-13 (-400 *5) (-27) (-1096))) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1004)))) (-3075 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1096))) (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1004)))) (-2755 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1096))) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1004)))) (-3315 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1096))) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1004)))))
+(-10 -7 (-15 -3315 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2755 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -3075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -3283 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1075)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2062 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1075))) |%noBranch|))
+((-1555 (((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1075)) 62)) (-3052 (((-3 |#2| "failed") |#2| (-1075) (-772 |#2|) (-772 |#2|)) 159 (-12 (|has| |#2| (-1039)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)) 133 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517)))))) (-2109 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-809 (-517)))))))
+(((-520 |#1| |#2|) (-10 -7 (-15 -1555 ((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1075))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2109 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075))) (-15 -3052 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)))) |%noBranch|) (IF (|has| |#2| (-1039)) (-15 -3052 ((-3 |#2| "failed") |#2| (-1075) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-779) (-953 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -520))
+((-3052 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1075)) (-5 *4 (-772 *2)) (-4 *2 (-1039)) (-4 *2 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-3052 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-2109 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517))) (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-1555 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3725 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(-10 -7 (-15 -1555 ((-2 (|:| -3725 |#2|) (|:| |nconst| |#2|)) |#2| (-1075))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2109 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075))) (-15 -3052 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)))) |%noBranch|) (IF (|has| |#2| (-1039)) (-15 -3052 ((-3 |#2| "failed") |#2| (-1075) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2592 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-1518 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-3348 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-3521 (((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -1518 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -3348 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3521 ((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2592 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-953 (-517))) (-1132 |#1|)) (T -521))
+((-2592 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-3521 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| -1306 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-3348 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-13 (-333) (-134) (-953 (-517)))) (-5 *1 (-521 *3 *4)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -1518 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -3348 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3521 ((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -2592 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
+((-2792 (((-3 (-517) "failed") |#1|) 14)) (-2828 (((-107) |#1|) 13)) (-2265 (((-517) |#1|) 9)))
+(((-522 |#1|) (-10 -7 (-15 -2265 ((-517) |#1|)) (-15 -2828 ((-107) |#1|)) (-15 -2792 ((-3 (-517) "failed") |#1|))) (-953 (-517))) (T -522))
+((-2792 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-953 *2)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-953 (-517))))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-953 *2)))))
+(-10 -7 (-15 -2265 ((-517) |#1|)) (-15 -2828 ((-107) |#1|)) (-15 -2792 ((-3 (-517) "failed") |#1|)))
+((-4059 (((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1075) (-583 (-377 (-875 |#1|)))) 43)) (-2794 (((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1075)) 25)) (-3405 (((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1075)) 20)) (-2405 (((-3 (-2 (|:| -1306 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|))) 32)))
+(((-523 |#1|) (-10 -7 (-15 -2794 ((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3405 ((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1075))) (-15 -4059 ((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1075) (-583 (-377 (-875 |#1|))))) (-15 -2405 ((-3 (-2 (|:| -1306 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|))))) (-13 (-509) (-953 (-517)) (-134))) (T -523))
+((-2405 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-953 (-517)) (-134))) (-5 *2 (-2 (|:| -1306 (-377 (-875 *5))) (|:| |coeff| (-377 (-875 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))) (-4059 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 (-377 (-875 *6)))) (-5 *3 (-377 (-875 *6))) (-4 *6 (-13 (-509) (-953 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-3405 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-953 (-517)) (-134))) (-5 *1 (-523 *4)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-953 (-517)) (-134))) (-5 *2 (-534 (-377 (-875 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))))
+(-10 -7 (-15 -2794 ((-534 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3405 ((-3 (-377 (-875 |#1|)) "failed") (-377 (-875 |#1|)) (-1075))) (-15 -4059 ((-3 (-2 (|:| |mainpart| (-377 (-875 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-875 |#1|))) (|:| |logand| (-377 (-875 |#1|))))))) "failed") (-377 (-875 |#1|)) (-1075) (-583 (-377 (-875 |#1|))))) (-15 -2405 ((-3 (-2 (|:| -1306 (-377 (-875 |#1|))) (|:| |coeff| (-377 (-875 |#1|)))) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)))))
+((-2118 (((-107) $ $) 59)) (-2033 (((-107) $) 36)) (-3417 ((|#1| $) 30)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) 63)) (-1646 (($ $) 123)) (-1493 (($ $) 103)) (-1836 ((|#1| $) 28)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $) NIL)) (-1622 (($ $) 125)) (-1470 (($ $) 99)) (-1669 (($ $) 127)) (-1519 (($ $) 107)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) 78)) (-3388 (((-517) $) 80)) (-3163 (((-3 $ "failed") $) 62)) (-3644 (($ |#1| |#1|) 26)) (-3523 (((-107) $) 33)) (-2115 (($) 89)) (-1865 (((-107) $) 43)) (-1484 (($ $ (-517)) NIL)) (-1469 (((-107) $) 34)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1225 (($ $) 91)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2925 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-1443 ((|#1| $) 27)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) 65) (($ (-583 $)) NIL)) (-2327 (((-3 $ "failed") $ $) 64)) (-3868 (($ $) 93)) (-1682 (($ $) 131)) (-1532 (($ $) 105)) (-1656 (($ $) 133)) (-1506 (($ $) 109)) (-1632 (($ $) 129)) (-1482 (($ $) 101)) (-1573 (((-107) $ |#1|) 31)) (-2269 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-2950 (((-703)) 87)) (-1721 (($ $) 145)) (-1575 (($ $) 115)) (-2914 (((-107) $ $) NIL)) (-1695 (($ $) 143)) (-1547 (($ $) 111)) (-3487 (($ $) 141)) (-1599 (($ $) 121)) (-2822 (($ $) 139)) (-1612 (($ $) 119)) (-1735 (($ $) 137)) (-1588 (($ $) 117)) (-1708 (($ $) 135)) (-1561 (($ $) 113)) (-2813 (($ $ (-844)) 55) (($ $ (-703)) NIL)) (-3608 (($) 21 T CONST)) (-3617 (($) 10 T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 37)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 35)) (-1691 (($ $) 41) (($ $ $) 42)) (-1677 (($ $ $) 40)) (** (($ $ (-844)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-844) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
+(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1096))) (T -524))
NIL
(-507 |#1|)
-((-2899 (((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517))) 24)))
-(((-525) (-10 -7 (-15 -2899 ((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517)))))) (T -525))
-((-2899 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 (-517)))) (-5 *3 (-1070 (-517))) (-5 *1 (-525)))))
-(-10 -7 (-15 -2899 ((-3 (-583 (-1070 (-517))) "failed") (-583 (-1070 (-517))) (-1070 (-517)))))
-((-2527 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074)) 18)) (-3425 (((-583 (-556 |#2|)) (-583 |#2|) (-1074)) 23)) (-1400 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-4080 ((|#2| |#2| (-1074)) 51 (|has| |#1| (-509)))) (-3079 ((|#2| |#2| (-1074)) 76 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-2945 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074)) 25)) (-3580 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-1361 (((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074))) 100 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-952 (-1074))) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-808 (-517)))))))
-(((-526 |#1| |#2|) (-10 -7 (-15 -2527 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074))) (-15 -3580 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -2945 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074))) (-15 -1400 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3425 ((-583 (-556 |#2|)) (-583 |#2|) (-1074))) (IF (|has| |#1| (-509)) (-15 -4080 (|#2| |#2| (-1074))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -3079 (|#2| |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1074))) (-15 -1361 ((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-779) (-400 |#1|)) (T -526))
-((-1361 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1074))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1074))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1074)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1074)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-1400 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-2945 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1074)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1074)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(-10 -7 (-15 -2527 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1074))) (-15 -3580 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -2945 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1074))) (-15 -1400 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3425 ((-583 (-556 |#2|)) (-583 |#2|) (-1074))) (IF (|has| |#1| (-509)) (-15 -4080 (|#2| |#2| (-1074))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -3079 (|#2| |#2| (-1074))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1074))) (-15 -1361 ((-534 |#2|) |#2| (-1074) (-1 (-534 |#2|) |#2| (-1074)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1074)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3752 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 167)) (-1216 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 143)) (-2000 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 140)) (-3722 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-2999 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2490 (((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 170)) (-3202 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 173)) (-1552 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 81)) (-1574 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3315 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 147)) (-1608 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 133)) (-3906 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 157)) (-3516 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 178)))
-(((-527 |#1| |#2|) (-10 -7 (-15 -2999 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3906 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3752 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3202 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3516 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1216 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3315 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2490 ((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2000 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3722 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1608 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -1552 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1574 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -527))
-((-1574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1608 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3633 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *1 (-527 *4 *5)))) (-3722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1131 *4)))) (-2000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1131 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2490 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -4124 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3315 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3633 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-1216 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-3516 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3633 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -4124 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3202 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -4124 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3752 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3633 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2999 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(-10 -7 (-15 -2999 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3906 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3752 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3202 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3516 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1216 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3315 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2490 ((-3 (-2 (|:| -4124 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2000 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3722 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1608 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3633 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -1552 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1574 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1800 (((-3 |#2| "failed") |#2| (-1074) (-1074)) 10)))
-(((-528 |#1| |#2|) (-10 -7 (-15 -1800 ((-3 |#2| "failed") |#2| (-1074) (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-1038) (-29 |#1|))) (T -528))
-((-1800 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-1038) (-29 *4))))))
-(-10 -7 (-15 -1800 ((-3 |#2| "failed") |#2| (-1074) (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $ (-517)) 65)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3522 (($ (-1070 (-517)) (-517)) 71)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) 57)) (-3571 (($ $) 33)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3730 (((-703) $) 15)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3668 (((-517)) 27)) (-2741 (((-517) $) 31)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2204 (($ $ (-517)) 21)) (-2483 (((-3 $ "failed") $ $) 58)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) 16)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 60)) (-2405 (((-1055 (-517)) $) 18)) (-1486 (($ $) 23)) (-2254 (((-787) $) 85) (($ (-517)) 51) (($ $) NIL)) (-1217 (((-703)) 14)) (-2673 (((-107) $ $) NIL)) (-3405 (((-517) $ (-517)) 35)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 34 T CONST)) (-2411 (($) 19 T CONST)) (-1534 (((-107) $ $) 38)) (-1663 (($ $) 50) (($ $ $) 36)) (-1645 (($ $ $) 49)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
+((-2387 (((-3 (-583 (-1071 (-517))) "failed") (-583 (-1071 (-517))) (-1071 (-517))) 24)))
+(((-525) (-10 -7 (-15 -2387 ((-3 (-583 (-1071 (-517))) "failed") (-583 (-1071 (-517))) (-1071 (-517)))))) (T -525))
+((-2387 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 (-517)))) (-5 *3 (-1071 (-517))) (-5 *1 (-525)))))
+(-10 -7 (-15 -2387 ((-3 (-583 (-1071 (-517))) "failed") (-583 (-1071 (-517))) (-1071 (-517)))))
+((-1816 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1075)) 18)) (-1872 (((-583 (-556 |#2|)) (-583 |#2|) (-1075)) 23)) (-2382 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-4034 ((|#2| |#2| (-1075)) 52 (|has| |#1| (-509)))) (-3663 ((|#2| |#2| (-1075)) 77 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-1394 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1075)) 25)) (-3398 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-2512 (((-534 |#2|) |#2| (-1075) (-1 (-534 |#2|) |#2| (-1075)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075))) 101 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-953 (-1075))) (|has| |#1| (-558 (-815 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-809 (-517)))))))
+(((-526 |#1| |#2|) (-10 -7 (-15 -1816 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1075))) (-15 -3398 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1394 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1075))) (-15 -2382 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1872 ((-583 (-556 |#2|)) (-583 |#2|) (-1075))) (IF (|has| |#1| (-509)) (-15 -4034 (|#2| |#2| (-1075))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -3663 (|#2| |#2| (-1075))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-953 (-1075))) (-15 -2512 ((-534 |#2|) |#2| (-1075) (-1 (-534 |#2|) |#2| (-1075)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-779) (-400 |#1|)) (T -526))
+((-2512 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1075))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1075))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-953 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1075)) (-4 *7 (-558 (-815 (-517)))) (-4 *7 (-421)) (-4 *7 (-809 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-3663 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-4034 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1075)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-1394 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1075)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-1816 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1075)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(-10 -7 (-15 -1816 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1075))) (-15 -3398 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1394 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1075))) (-15 -2382 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1872 ((-583 (-556 |#2|)) (-583 |#2|) (-1075))) (IF (|has| |#1| (-509)) (-15 -4034 (|#2| |#2| (-1075))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -3663 (|#2| |#2| (-1075))) (IF (|has| |#1| (-558 (-815 (-517)))) (IF (|has| |#1| (-809 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-953 (-1075))) (-15 -2512 ((-534 |#2|) |#2| (-1075) (-1 (-534 |#2|) |#2| (-1075)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3882 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 168)) (-3814 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 144)) (-2998 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 141)) (-3391 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-1990 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-1430 (((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 171)) (-3156 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 174)) (-3035 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 82)) (-3011 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1758 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 148)) (-3409 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 134)) (-2740 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 158)) (-2120 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 179)))
+(((-527 |#1| |#2|) (-10 -7 (-15 -1990 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2740 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3882 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3156 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2120 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -3814 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -1430 ((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2998 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3391 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3409 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3035 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3011 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1132 |#1|)) (T -527))
+((-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3409 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3298 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1132 *4)) (-5 *1 (-527 *4 *5)))) (-3391 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1132 *4)))) (-2998 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1132 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-1430 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1306 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1758 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3298 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1132 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-3814 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1306 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1132 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3298 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -1306 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3156 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1306 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -1306 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2740 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3298 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1990 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1306 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(-10 -7 (-15 -1990 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2740 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3882 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3156 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2120 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -3814 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -1430 ((-3 (-2 (|:| -1306 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2998 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3391 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3409 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3298 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3035 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3011 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3466 (((-3 |#2| "failed") |#2| (-1075) (-1075)) 10)))
+(((-528 |#1| |#2|) (-10 -7 (-15 -3466 ((-3 |#2| "failed") |#2| (-1075) (-1075)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-881) (-1039) (-29 |#1|))) (T -528))
+((-3466 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1096) (-881) (-1039) (-29 *4))))))
+(-10 -7 (-15 -3466 ((-3 |#2| "failed") |#2| (-1075) (-1075))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $ (-517)) 65)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2986 (($ (-1071 (-517)) (-517)) 71)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) 57)) (-3626 (($ $) 33)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2053 (((-703) $) 15)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3326 (((-517)) 27)) (-2625 (((-517) $) 31)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2640 (($ $ (-517)) 21)) (-2327 (((-3 $ "failed") $ $) 58)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) 16)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 60)) (-2207 (((-1056 (-517)) $) 18)) (-3478 (($ $) 23)) (-2269 (((-787) $) 86) (($ (-517)) 51) (($ $) NIL)) (-2950 (((-703)) 14)) (-2914 (((-107) $ $) NIL)) (-2202 (((-517) $ (-517)) 35)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 34 T CONST)) (-3617 (($) 19 T CONST)) (-1583 (((-107) $ $) 38)) (-1691 (($ $) 50) (($ $ $) 36)) (-1677 (($ $ $) 49)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529))
NIL
(-793 |#1|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 18)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-2577 (((-1083 (-843) (-703)) (-517)) 47)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 $ "failed") $) 75)) (-3232 (($ $) 74)) (-4047 (($ (-1154 $)) 73)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) 30)) (-4100 (($) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) 49)) (-3449 (((-107) $) NIL)) (-2616 (($ $) NIL) (($ $ (-703)) NIL)) (-3083 (((-107) $) NIL)) (-3730 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3469 (((-107) $) NIL)) (-1921 (($) 35 (|has| $ (-338)))) (-3228 (((-107) $) NIL (|has| $ (-338)))) (-2962 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-3326 (((-3 $ "failed") $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 $) $ (-843)) NIL (|has| $ (-338))) (((-1070 $) $) 83)) (-4034 (((-843) $) 55)) (-4150 (((-1070 $) $) NIL (|has| $ (-338)))) (-4111 (((-3 (-1070 $) "failed") $ $) NIL (|has| $ (-338))) (((-1070 $) $) NIL (|has| $ (-338)))) (-2892 (($ $ (-1070 $)) NIL (|has| $ (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL T CONST)) (-3544 (($ (-843)) 48)) (-2368 (((-107) $) 67)) (-3214 (((-1021) $) NIL)) (-3244 (($) 16 (|has| $ (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 40)) (-1376 (((-388 $) $) NIL)) (-4110 (((-843)) 66) (((-765 (-843))) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-2232 (((-125)) NIL)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-3625 (((-843) $) 65) (((-765 (-843)) $) NIL)) (-2780 (((-1070 $)) 82)) (-2858 (($) 54)) (-3551 (($) 36 (|has| $ (-338)))) (-3589 (((-623 $) (-1154 $)) NIL) (((-1154 $) $) 71)) (-3667 (((-517) $) 26)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-2486 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1217 (((-703)) 37)) (-2080 (((-1154 $) (-843)) 77) (((-1154 $)) 76)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 19 T CONST)) (-2411 (($) 15 T CONST)) (-2415 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -530))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 18)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-2886 (((-1084 (-844) (-703)) (-517)) 47)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 $ "failed") $) 75)) (-3388 (($ $) 74)) (-1953 (($ (-1156 $)) 73)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) 30)) (-2200 (($) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) 49)) (-3454 (((-107) $) NIL)) (-2464 (($ $) NIL) (($ $ (-703)) NIL)) (-2963 (((-107) $) NIL)) (-2053 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-1865 (((-107) $) NIL)) (-3040 (($) 35 (|has| $ (-338)))) (-1798 (((-107) $) NIL (|has| $ (-338)))) (-2754 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-3572 (((-3 $ "failed") $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 $) $ (-844)) NIL (|has| $ (-338))) (((-1071 $) $) 83)) (-2031 (((-844) $) 55)) (-2508 (((-1071 $) $) NIL (|has| $ (-338)))) (-1199 (((-3 (-1071 $) "failed") $ $) NIL (|has| $ (-338))) (((-1071 $) $) NIL (|has| $ (-338)))) (-1526 (($ $ (-1071 $)) NIL (|has| $ (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-2810 (($ (-844)) 48)) (-1214 (((-107) $) 67)) (-4123 (((-1022) $) NIL)) (-1317 (($) 16 (|has| $ (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 40)) (-3866 (((-388 $) $) NIL)) (-2370 (((-844)) 66) (((-765 (-844))) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1880 (((-125)) NIL)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2769 (((-844) $) 65) (((-765 (-844)) $) NIL)) (-3586 (((-1071 $)) 82)) (-3958 (($) 54)) (-3304 (($) 36 (|has| $ (-338)))) (-3369 (((-623 $) (-1156 $)) NIL) (((-1156 $) $) 71)) (-3357 (((-517) $) 26)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-2650 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2950 (((-703)) 37)) (-2062 (((-1156 $) (-844)) 77) (((-1156 $)) 76)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 19 T CONST)) (-3617 (($) 15 T CONST)) (-1739 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-844)) (T -530))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-3833 (((-1159) (-1057)) 10)))
-(((-531) (-10 -7 (-15 -3833 ((-1159) (-1057))))) (T -531))
-((-3833 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-531)))))
-(-10 -7 (-15 -3833 ((-1159) (-1057))))
-((-3447 (((-534 |#2|) (-534 |#2|)) 37)) (-3523 (((-583 |#2|) (-534 |#2|)) 39)) (-2770 ((|#2| (-534 |#2|)) 46)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -3447 ((-534 |#2|) (-534 |#2|))) (-15 -3523 ((-583 |#2|) (-534 |#2|))) (-15 -2770 (|#2| (-534 |#2|)))) (-13 (-421) (-952 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1095))) (T -532))
-((-2770 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1095))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1095))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1095))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
-(-10 -7 (-15 -3447 ((-534 |#2|) (-534 |#2|))) (-15 -3523 ((-583 |#2|) (-534 |#2|))) (-15 -2770 (|#2| (-534 |#2|))))
-((-1939 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
-(((-533 |#1| |#2|) (-10 -7 (-15 -1939 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1939 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1939 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1939 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
-((-1939 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-1939 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-1939 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4124 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -4124 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
-(-10 -7 (-15 -1939 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1939 ((-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4124 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1939 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1939 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 68)) (-3232 ((|#1| $) NIL)) (-4124 ((|#1| $) 24)) (-1350 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2447 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-1657 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $) 25)) (-1277 (((-1057) $) NIL)) (-1721 (($ |#1| |#1|) 32) (($ |#1| (-1074)) 43 (|has| |#1| (-952 (-1074))))) (-3214 (((-1021) $) NIL)) (-1586 (((-107) $) 28)) (-1248 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1074)) 81 (|has| |#1| (-822 (-1074))))) (-2254 (((-787) $) 95) (($ |#1|) 23)) (-2398 (($) 16 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) 15) (($ $ $) NIL)) (-1645 (($ $ $) 77)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
-(((-534 |#1|) (-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -2447 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4124 (|#1| $)) (-15 -1657 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $)) (-15 -1350 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1586 ((-107) $)) (-15 -1721 ($ |#1| |#1|)) (-15 -1248 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1074))) (-15 -1248 (|#1| $ (-1074))) |%noBranch|) (IF (|has| |#1| (-952 (-1074))) (-15 -1721 ($ |#1| (-1074))) |%noBranch|))) (-333)) (T -534))
-((-2447 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *2)) (|:| |logand| (-1070 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-4124 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *3)) (|:| |logand| (-1070 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1721 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-1248 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-1248 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1074)))) (-1721 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))))
-(-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -2447 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4124 (|#1| $)) (-15 -1657 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $)) (-15 -1350 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1586 ((-107) $)) (-15 -1721 ($ |#1| |#1|)) (-15 -1248 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1074))) (-15 -1248 (|#1| $ (-1074))) |%noBranch|) (IF (|has| |#1| (-952 (-1074))) (-15 -1721 ($ |#1| (-1074))) |%noBranch|)))
-((-3172 (((-107) |#1|) 16)) (-1324 (((-3 |#1| "failed") |#1|) 14)) (-2023 (((-2 (|:| -1870 |#1|) (|:| -3010 (-703))) |#1|) 30) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3456 (((-107) |#1| (-703)) 19)) (-3006 ((|#1| |#1|) 31)) (-3923 ((|#1| |#1| (-703)) 33)))
-(((-535 |#1|) (-10 -7 (-15 -3456 ((-107) |#1| (-703))) (-15 -2023 ((-3 |#1| "failed") |#1| (-703))) (-15 -2023 ((-2 (|:| -1870 |#1|) (|:| -3010 (-703))) |#1|)) (-15 -3923 (|#1| |#1| (-703))) (-15 -3172 ((-107) |#1|)) (-15 -1324 ((-3 |#1| "failed") |#1|)) (-15 -3006 (|#1| |#1|))) (-502)) (T -535))
-((-3006 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1324 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3923 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2023 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1870 *3) (|:| -3010 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-2023 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3456 ((-107) |#1| (-703))) (-15 -2023 ((-3 |#1| "failed") |#1| (-703))) (-15 -2023 ((-2 (|:| -1870 |#1|) (|:| -3010 (-703))) |#1|)) (-15 -3923 (|#1| |#1| (-703))) (-15 -3172 ((-107) |#1|)) (-15 -1324 ((-3 |#1| "failed") |#1|)) (-15 -3006 (|#1| |#1|)))
-((-2380 (((-1070 |#1|) (-843)) 26)))
-(((-536 |#1|) (-10 -7 (-15 -2380 ((-1070 |#1|) (-843)))) (-319)) (T -536))
-((-2380 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
-(-10 -7 (-15 -2380 ((-1070 |#1|) (-843))))
-((-3447 (((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|)))) 26)) (-3563 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074)) 33 (|has| |#1| (-134)))) (-3523 (((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|)))) 18)) (-2192 (((-286 |#1|) (-377 (-874 |#1|)) (-1074)) 31 (|has| |#1| (-134)))) (-2770 (((-286 |#1|) (-534 (-377 (-874 |#1|)))) 20)))
-(((-537 |#1|) (-10 -7 (-15 -3447 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3523 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2770 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3563 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -2192 ((-286 |#1|) (-377 (-874 |#1|)) (-1074)))) |%noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (T -537))
-((-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
-(-10 -7 (-15 -3447 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3523 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2770 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3563 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -2192 ((-286 |#1|) (-377 (-874 |#1|)) (-1074)))) |%noBranch|))
-((-3094 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))) 45) (((-583 (-623 (-517))) (-583 (-517))) 46) (((-623 (-517)) (-583 (-517)) (-827 (-517))) 41)) (-2745 (((-703) (-583 (-517))) 39)))
-(((-538) (-10 -7 (-15 -2745 ((-703) (-583 (-517)))) (-15 -3094 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3094 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3094 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))) (T -538))
-((-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
-(-10 -7 (-15 -2745 ((-703) (-583 (-517)))) (-15 -3094 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3094 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3094 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))
-((-3778 (((-583 |#5|) |#5| (-107)) 72)) (-3890 (((-107) |#5| (-583 |#5|)) 30)))
-(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3778 ((-583 |#5|) |#5| (-107))) (-15 -3890 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -539))
-((-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3778 ((-583 |#5|) |#5| (-107))) (-15 -3890 ((-107) |#5| (-583 |#5|))))
-((-1587 (((-107) $ $) NIL (|has| (-131) (-1003)))) (-2462 (($ $) 34)) (-1420 (($ $) NIL)) (-2174 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1434 (((-107) $ $) 51)) (-1416 (((-107) $ $ (-517)) 46)) (-3447 (((-583 $) $ (-131)) 59) (((-583 $) $ (-128)) 60)) (-3753 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-3500 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-131) (-779))))) (-4044 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3365 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1818 (($ $ (-1122 (-517)) $) 44)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2050 (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3705 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184)))) (-3537 (((-131) $ (-517)) NIL)) (-1455 (((-107) $ $) 70)) (-2624 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-3240 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) (-131)) 9)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 28 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| (-131) (-779)))) (-1676 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2332 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3920 (((-517) $) 42 (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-131) (-779)))) (-1320 (((-107) $ $ (-131)) 71)) (-2263 (((-703) $ $ (-131)) 69)) (-3696 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3557 (($ $) 37)) (-2115 (($ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3379 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-1277 (((-1057) $) 38 (|has| (-131) (-1003)))) (-2636 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-517) $) 68) (((-1021) $) NIL (|has| (-131) (-1003)))) (-1750 (((-131) $) NIL (|has| (-517) (-779)))) (-3222 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2880 (($ $ (-131)) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3949 (((-583 (-131)) $) NIL)) (-1596 (((-107) $) 12)) (-2756 (($) 10)) (-1437 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1122 (-517))) 21) (($ $ $) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2878 (($ $ $ (-517)) 65 (|has| $ (-6 -4184)))) (-2435 (($ $) 17)) (-3667 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2272 (($ (-583 (-131))) NIL)) (-2455 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 66)) (-2254 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-2258 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1534 (((-107) $ $) 14 (|has| (-131) (-1003)))) (-1585 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1558 (((-107) $ $) 15 (|has| (-131) (-779)))) (-2290 (((-703) $) 13 (|has| $ (-6 -4183)))))
-(((-540 |#1|) (-13 (-1043) (-10 -8 (-15 -3214 ((-517) $)))) (-517)) (T -540))
-((-3214 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
-(-13 (-1043) (-10 -8 (-15 -3214 ((-517) $))))
-((-3411 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|)) 32)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3411 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -3411 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|)) (T -541))
-((-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-3411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3411 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -3411 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 63)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2635 (($ $) 99)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3277 (((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517))) 223)) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2761 (((-107) $) NIL)) (-3730 (((-517) $) 58) (((-517) $ (-517)) 59)) (-3469 (((-107) $) NIL)) (-3699 (($ $ (-843)) 76)) (-3766 (($ (-1 |#1| (-517)) $) 73)) (-2029 (((-107) $) 25)) (-1336 (($ |#1| (-517)) 22) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) 67)) (-2640 (($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3563 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1271 (((-3 $ "failed") $ $ (-107)) 98)) (-3274 (($ $ $) 107)) (-3214 (((-1021) $) NIL)) (-1662 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-2820 (((-941 (-772 (-517))) $) 12)) (-2204 (($ $ (-517)) 45)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-1437 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1015)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3625 (((-517) $) NIL)) (-1486 (($ $) 46)) (-2254 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-4104 ((|#1| $ (-517)) 56)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) 37)) (-2984 ((|#1| $) NIL)) (-3419 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2657 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1475 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-2677 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2503 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1560 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-4018 (($ $ (-377 (-517))) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2002 (($ $ |#1|) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2634 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-3677 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-4046 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-2001 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1327 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2568 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-2832 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2138 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-3724 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3020 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-3303 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2556 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1642 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3914 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2954 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3278 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1896 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2541 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3405 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 29 T CONST)) (-2411 (($) 38 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1534 (((-107) $ $) 65)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) 84) (($ $ $) 64)) (-1645 (($ $ $) 81)) (** (($ $ (-843)) NIL) (($ $ (-703)) 102)) (* (($ (-843) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-542 |#1|) (-13 (-1133 |#1| (-517)) (-10 -8 (-15 -2640 ($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -2820 ((-941 (-772 (-517))) $)) (-15 -1662 ((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -4016 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -2029 ((-107) $)) (-15 -3766 ($ (-1 |#1| (-517)) $)) (-15 -1271 ((-3 $ "failed") $ $ (-107))) (-15 -2635 ($ $)) (-15 -3274 ($ $ $)) (-15 -3277 ((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $)) (-15 -2002 ($ $ |#1|)) (-15 -4018 ($ $ (-377 (-517)))) (-15 -3677 ($ $)) (-15 -2634 ($ $)) (-15 -2677 ($ $)) (-15 -2832 ($ $)) (-15 -2657 ($ $)) (-15 -2568 ($ $)) (-15 -1560 ($ $)) (-15 -2001 ($ $)) (-15 -3303 ($ $)) (-15 -1536 ($ $)) (-15 -3724 ($ $)) (-15 -1896 ($ $)) (-15 -1642 ($ $)) (-15 -2954 ($ $)) (-15 -1475 ($ $)) (-15 -1547 ($ $)) (-15 -3419 ($ $)) (-15 -1327 ($ $)) (-15 -2503 ($ $)) (-15 -4046 ($ $)) (-15 -3020 ($ $)) (-15 -2541 ($ $)) (-15 -2138 ($ $)) (-15 -3278 ($ $)) (-15 -2556 ($ $)) (-15 -3914 ($ $))) |%noBranch|))) (-961)) (T -542))
-((-2029 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2640 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-1271 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2635 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-3274 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-3277 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1074)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2002 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))) (-3677 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2634 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2832 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2657 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2568 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2001 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3303 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1536 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1896 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1642 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2954 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1475 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1327 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2503 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4046 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3020 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2541 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2138 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2556 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(-13 (-1133 |#1| (-517)) (-10 -8 (-15 -2640 ($ (-941 (-772 (-517))) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -2820 ((-941 (-772 (-517))) $)) (-15 -1662 ((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -4016 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -2029 ((-107) $)) (-15 -3766 ($ (-1 |#1| (-517)) $)) (-15 -1271 ((-3 $ "failed") $ $ (-107))) (-15 -2635 ($ $)) (-15 -3274 ($ $ $)) (-15 -3277 ((-787) (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1074) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $)) (-15 -2002 ($ $ |#1|)) (-15 -4018 ($ $ (-377 (-517)))) (-15 -3677 ($ $)) (-15 -2634 ($ $)) (-15 -2677 ($ $)) (-15 -2832 ($ $)) (-15 -2657 ($ $)) (-15 -2568 ($ $)) (-15 -1560 ($ $)) (-15 -2001 ($ $)) (-15 -3303 ($ $)) (-15 -1536 ($ $)) (-15 -3724 ($ $)) (-15 -1896 ($ $)) (-15 -1642 ($ $)) (-15 -2954 ($ $)) (-15 -1475 ($ $)) (-15 -1547 ($ $)) (-15 -3419 ($ $)) (-15 -1327 ($ $)) (-15 -2503 ($ $)) (-15 -4046 ($ $)) (-15 -3020 ($ $)) (-15 -2541 ($ $)) (-15 -2138 ($ $)) (-15 -3278 ($ $)) (-15 -2556 ($ $)) (-15 -3914 ($ $))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-4016 (($ (-1055 |#1|)) 9)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) 42)) (-2761 (((-107) $) 52)) (-3730 (((-703) $) 55) (((-703) $ (-703)) 54)) (-3469 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-1055 |#1|) $) 23)) (-1217 (((-703)) 51)) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 10 T CONST)) (-2411 (($) 14 T CONST)) (-1534 (((-107) $ $) 22)) (-1663 (($ $) 30) (($ $ $) 16)) (-1645 (($ $ $) 25)) (** (($ $ (-843)) NIL) (($ $ (-703)) 49)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
-(((-543 |#1|) (-13 (-961) (-10 -8 (-15 -3165 ((-1055 |#1|) $)) (-15 -4016 ($ (-1055 |#1|))) (-15 -2761 ((-107) $)) (-15 -3730 ((-703) $)) (-15 -3730 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) (-961)) (T -543))
-((-3165 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3730 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))))
-(-13 (-961) (-10 -8 (-15 -3165 ((-1055 |#1|) $)) (-15 -4016 ($ (-1055 |#1|))) (-15 -2761 ((-107) $)) (-15 -3730 ((-703) $)) (-15 -3730 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|)))
-((-1939 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
-(((-544 |#1| |#2|) (-10 -7 (-15 -1939 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1109) (-1109)) (T -544))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
-(-10 -7 (-15 -1939 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
-((-1939 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|)) 20) (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
-(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|))) (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|)))) (-1109) (-1109) (-1109)) (T -545))
-((-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
-(-10 -7 (-15 -1939 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-547 |#2|))) (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1055 |#2|))))
-((-3370 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074))) 55)) (-2280 (((-153 |#2|) |#3|) 116)) (-2686 ((|#3| (-153 |#2|)) 43)) (-2547 ((|#2| |#3|) 19)) (-1850 ((|#3| |#2|) 32)))
-(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2686 (|#3| (-153 |#2|))) (-15 -2547 (|#2| |#3|)) (-15 -1850 (|#3| |#2|)) (-15 -2280 ((-153 |#2|) |#3|)) (-15 -3370 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-918) (-1095)) (-13 (-400 (-153 |#1|)) (-918) (-1095))) (T -546))
-((-3370 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1074))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1095))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1095))))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1095))))) (-2547 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *5 *2)))))
-(-10 -7 (-15 -2686 (|#3| (-153 |#2|))) (-15 -2547 (|#2| |#3|)) (-15 -1850 (|#3| |#2|)) (-15 -2280 ((-153 |#2|) |#3|)) (-15 -3370 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1074)))))
-((-3555 (($ (-1 (-107) |#1|) $) 16)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3493 (($ (-1 |#1| |#1|) |#1|) 9)) (-3533 (($ (-1 (-107) |#1|) $) 12)) (-3545 (($ (-1 (-107) |#1|) $) 14)) (-2272 (((-1055 |#1|) $) 17)) (-2254 (((-787) $) NIL)))
-(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -1939 ($ (-1 |#1| |#1|) $)) (-15 -3533 ($ (-1 (-107) |#1|) $)) (-15 -3545 ($ (-1 (-107) |#1|) $)) (-15 -3555 ($ (-1 (-107) |#1|) $)) (-15 -3493 ($ (-1 |#1| |#1|) |#1|)) (-15 -2272 ((-1055 |#1|) $)))) (-1109)) (T -547))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-3493 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1109)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -1939 ($ (-1 |#1| |#1|) $)) (-15 -3533 ($ (-1 (-107) |#1|) $)) (-15 -3545 ($ (-1 (-107) |#1|) $)) (-15 -3555 ($ (-1 (-107) |#1|) $)) (-15 -3493 ($ (-1 |#1| |#1|) |#1|)) (-15 -2272 ((-1055 |#1|) $))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703)) NIL (|has| |#1| (-23)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2719 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2140 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2026 (((-107) $ (-703)) NIL)) (-1631 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1369 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1843 (($ $ $) NIL (|has| |#1| (-961)))) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1663 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1645 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-548 |#1| |#2|) (-1152 |#1|) (-1109) (-517)) (T -548))
-NIL
-(-1152 |#1|)
-((-2787 (((-1159) $ |#2| |#2|) 36)) (-1739 ((|#2| $) 23)) (-3920 ((|#2| $) 21)) (-3696 (($ (-1 |#3| |#3|) $) 32)) (-1939 (($ (-1 |#3| |#3|) $) 30)) (-1750 ((|#3| $) 26)) (-2880 (($ $ |#3|) 33)) (-3865 (((-107) |#3| $) 17)) (-3949 (((-583 |#3|) $) 15)) (-1437 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -2787 ((-1159) |#1| |#2| |#2|)) (-15 -2880 (|#1| |#1| |#3|)) (-15 -1750 (|#3| |#1|)) (-15 -1739 (|#2| |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -3865 ((-107) |#3| |#1|)) (-15 -3949 ((-583 |#3|) |#1|)) (-15 -1437 (|#3| |#1| |#2|)) (-15 -1437 (|#3| |#1| |#2| |#3|)) (-15 -3696 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1939 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1003) (-1109)) (T -549))
-NIL
-(-10 -8 (-15 -2787 ((-1159) |#1| |#2| |#2|)) (-15 -2880 (|#1| |#1| |#3|)) (-15 -1750 (|#3| |#1|)) (-15 -1739 (|#2| |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -3865 ((-107) |#3| |#1|)) (-15 -3949 ((-583 |#3|) |#1|)) (-15 -1437 (|#3| |#1| |#2|)) (-15 -1437 (|#3| |#1| |#2| |#3|)) (-15 -3696 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1939 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2787 (((-1159) $ |#1| |#1|) 40 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-3705 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) 51)) (-3240 (((-583 |#2|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-1739 ((|#1| $) 43 (|has| |#1| (-779)))) (-2332 (((-583 |#2|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-3920 ((|#1| $) 44 (|has| |#1| (-779)))) (-3696 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#2| (-1003)))) (-2950 (((-583 |#1|) $) 46)) (-4093 (((-107) |#1| $) 47)) (-3214 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1750 ((|#2| $) 42 (|has| |#1| (-779)))) (-2880 (($ $ |#2|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3223 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4183))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#2| (-1003)))) (-2258 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-550 |#1| |#2|) (-1185) (-1003) (-1109)) (T -550))
-((-3949 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *4)))) (-4093 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *3)))) (-3865 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1109)))) (-2880 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) (-2787 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-1159)))))
-(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -3949 ((-583 |t#2|) $)) (-15 -4093 ((-107) |t#1| $)) (-15 -2950 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -4183)) (-15 -3865 ((-107) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3920 (|t#1| $)) (-15 -1739 (|t#1| $)) (-15 -1750 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2880 ($ $ |t#2|)) (-15 -2787 ((-1159) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1003)) ((-557 (-787)) -3782 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1346 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2507 (((-1154 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1154 (-623 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3118 (((-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2706 (($) NIL T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2588 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2318 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2571 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3981 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1930 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1559 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3132 (($ $ (-843)) NIL)) (-2831 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2775 (((-1070 |#1|) $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1618 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2961 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2622 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4047 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1154 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3775 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3334 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3241 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3363 (($ $ (-843)) NIL)) (-3762 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2765 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4079 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1202 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1968 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1385 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2790 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3174 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1638 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2184 (($ $ (-843)) NIL)) (-3368 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3018 (((-1070 |#1|) $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2478 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-4020 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1816 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1277 (((-1057) $) NIL)) (-3499 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2220 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2268 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3214 (((-1021) $) NIL)) (-2836 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1437 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3589 (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $) (-1154 $)) NIL (|has| |#2| (-337 |#1|))) (((-1154 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3667 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3346 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2901 (($ $ $) NIL)) (-3484 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2254 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2080 (((-1154 $)) NIL (|has| |#2| (-387 |#1|)))) (-2360 (((-583 (-1154 |#1|))) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3950 (($ $ $ $) NIL)) (-2534 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1695 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2145 (($ $ $) NIL)) (-1669 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3610 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3558 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2398 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2254 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -551))
-((-2254 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2254 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2528 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) 32)) (-3448 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL) (($) NIL)) (-2787 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-1057) |#1|) 42)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#1| "failed") (-1057) $) 45)) (-2706 (($) NIL T CONST)) (-3909 (($ $ (-1057)) 24)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-1835 (((-3 |#1| "failed") (-1057) $) 46) (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (|has| $ (-6 -4183)))) (-2050 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-1292 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-1256 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) 31)) (-3705 ((|#1| $ (-1057) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-1057)) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2401 (($ $) 47)) (-1602 (($ (-358)) 22) (($ (-358) (-1057)) 21)) (-1214 (((-358) $) 33)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-1057) $) NIL (|has| (-1057) (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183))) (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-3920 (((-1057) $) NIL (|has| (-1057) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-3666 (((-583 (-1057)) $) 38)) (-2550 (((-107) (-1057) $) NIL)) (-2639 (((-1057) $) 34)) (-3074 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-2950 (((-583 (-1057)) $) NIL)) (-4093 (((-107) (-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 ((|#1| $) NIL (|has| (-1057) (-779)))) (-3222 (((-3 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) "failed") (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 36)) (-1437 ((|#1| $ (-1057) |#1|) NIL) ((|#1| $ (-1057)) 41)) (-3230 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL) (($) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-703) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-2254 (((-787) $) 20)) (-2666 (($ $) 25)) (-2882 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19)) (-2290 (((-703) $) 40 (|has| $ (-6 -4183)))))
-(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) (-1086 (-1057) |#1|) (-10 -8 (-6 -4183) (-15 -2401 ($ $)))) (-1003)) (T -552))
-((-2401 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))))
-(-13 (-334 (-358) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) (-1086 (-1057) |#1|) (-10 -8 (-6 -4183) (-15 -2401 ($ $))))
-((-1653 (((-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) 15)) (-3666 (((-583 |#2|) $) 19)) (-2550 (((-107) |#2| $) 12)))
-(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -3666 ((-583 |#2|) |#1|)) (-15 -2550 ((-107) |#2| |#1|)) (-15 -1653 ((-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|))) (-554 |#2| |#3|) (-1003) (-1003)) (T -553))
-NIL
-(-10 -8 (-15 -3666 ((-583 |#2|) |#1|)) (-15 -2550 ((-107) |#2| |#1|)) (-15 -1653 ((-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 55 (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) 61)) (-2706 (($) 7 T CONST)) (-1783 (($ $) 58 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 54 (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 56 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3666 (((-583 |#1|) $) 63)) (-2550 (((-107) |#1| $) 64)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 39)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 40)) (-3214 (((-1021) $) 21 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 51)) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 41)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) 26 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 25 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 24 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 23 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3230 (($) 49) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 48)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 50)) (-2254 (((-787) $) 20 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 42)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-554 |#1| |#2|) (-1185) (-1003) (-1003)) (T -554))
-((-2550 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-1835 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3263 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(-13 (-203 (-2 (|:| -3458 |t#1|) (|:| -1338 |t#2|))) (-10 -8 (-15 -2550 ((-107) |t#1| $)) (-15 -3666 ((-583 |t#1|) $)) (-15 -1835 ((-3 |t#2| "failed") |t#1| $)) (-15 -3263 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-97) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) ((-557 (-787)) -3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-209 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-456 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-478 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) ((-1109) . T))
-((-3338 (((-556 |#2|) |#1|) 15)) (-3176 (((-3 |#1| "failed") (-556 |#2|)) 19)))
-(((-555 |#1| |#2|) (-10 -7 (-15 -3338 ((-556 |#2|) |#1|)) (-15 -3176 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
-((-3176 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-3338 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
-(-10 -7 (-15 -3338 ((-556 |#2|) |#1|)) (-15 -3176 ((-3 |#1| "failed") (-556 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-3388 (((-3 (-1074) "failed") $) 36)) (-1628 (((-1159) $ (-703)) 26)) (-2624 (((-703) $) 25)) (-2283 (((-109) $) 12)) (-1214 (((-1074) $) 20)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-1893 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1074)) 31)) (-2506 (((-107) $ (-109)) 18) (((-107) $ (-1074)) 16)) (-1916 (((-703) $) 22)) (-3214 (((-1021) $) NIL)) (-3667 (((-814 (-517)) $) 69 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 75 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2254 (((-787) $) 51)) (-4142 (((-583 |#1|) $) 24)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 39)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 40)))
-(((-556 |#1|) (-13 (-124) (-806 |#1|) (-10 -8 (-15 -1214 ((-1074) $)) (-15 -2283 ((-109) $)) (-15 -4142 ((-583 |#1|) $)) (-15 -1916 ((-703) $)) (-15 -1893 ($ (-109) (-583 |#1|) (-703))) (-15 -1893 ($ (-1074))) (-15 -3388 ((-3 (-1074) "failed") $)) (-15 -2506 ((-107) $ (-109))) (-15 -2506 ((-107) $ (-1074))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-779)) (T -556))
-((-1214 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3388 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2506 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-2506 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
-(-13 (-124) (-806 |#1|) (-10 -8 (-15 -1214 ((-1074) $)) (-15 -2283 ((-109) $)) (-15 -4142 ((-583 |#1|) $)) (-15 -1916 ((-703) $)) (-15 -1893 ($ (-109) (-583 |#1|) (-703))) (-15 -1893 ($ (-1074))) (-15 -3388 ((-3 (-1074) "failed") $)) (-15 -2506 ((-107) $ (-109))) (-15 -2506 ((-107) $ (-1074))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-((-2254 ((|#1| $) 6)))
-(((-557 |#1|) (-1185) (-1109)) (T -557))
-((-2254 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1109)))))
-(-13 (-10 -8 (-15 -2254 (|t#1| $))))
-((-3667 ((|#1| $) 6)))
-(((-558 |#1|) (-1185) (-1109)) (T -558))
-((-3667 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1109)))))
-(-13 (-10 -8 (-15 -3667 (|t#1| $))))
-((-2785 (((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -2785 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2785 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -559))
-((-2785 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1070 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2785 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-1070 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
-(-10 -7 (-15 -2785 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2785 ((-3 (-1070 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
-((-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
-(((-560 |#1| |#2|) (-10 -8 (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-561 |#2|) (-961)) (T -560))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-561 |#1|) (-1185) (-961)) (T -561))
-((-2254 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-585 |t#1|) (-10 -8 (-15 -2254 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3345 (((-517) $) NIL (|has| |#1| (-777)))) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3162 (((-107) $) NIL (|has| |#1| (-777)))) (-3469 (((-107) $) NIL)) (-1842 ((|#1| $) 13)) (-1199 (((-107) $) NIL (|has| |#1| (-777)))) (-4055 (($ $ $) NIL (|has| |#1| (-777)))) (-3105 (($ $ $) NIL (|has| |#1| (-777)))) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1852 ((|#3| $) 15)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-1217 (((-703)) 20)) (-1724 (($ $) NIL (|has| |#1| (-777)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) 12 T CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1678 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1678 ($ $ |#3|)) (-15 -1678 ($ |#1| |#3|)) (-15 -1842 (|#1| $)) (-15 -1852 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
-((-1678 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1678 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1842 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1852 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1678 ($ $ |#3|)) (-15 -1678 ($ |#1| |#3|)) (-15 -1842 (|#1| $)) (-15 -1852 (|#3| $))))
-((-1718 ((|#2| |#2| (-1074) (-1074)) 18)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -1718 (|#2| |#2| (-1074) (-1074)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-880) (-29 |#1|))) (T -563))
-((-1718 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-29 *4))))))
-(-10 -7 (-15 -1718 (|#2| |#2| (-1074) (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 52)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2833 ((|#1| $) 49)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1781 (((-2 (|:| -2866 $) (|:| -3408 (-377 |#2|))) (-377 |#2|)) 95 (|has| |#1| (-333)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) 24)) (-3775 (((-3 $ "failed") $) 74)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3730 (((-517) $) 19)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) 36)) (-1336 (($ |#1| (-517)) 21)) (-1193 ((|#1| $) 51)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 85 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ $) 78)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3196 (((-703) $) 97 (|has| |#1| (-333)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 96 (|has| |#1| (-333)))) (-1248 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3625 (((-517) $) 34)) (-3667 (((-377 |#2|) $) 42)) (-2254 (((-787) $) 61) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-4104 ((|#1| $ (-517)) 62)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 9 T CONST)) (-2411 (($) 12 T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1534 (((-107) $ $) 17)) (-1663 (($ $) 46) (($ $ $) NIL)) (-1645 (($ $ $) 75)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
-(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -2029 ((-107) $)) (-15 -3625 ((-517) $)) (-15 -3730 ((-517) $)) (-15 -1221 ($ $)) (-15 -1193 (|#1| $)) (-15 -2833 (|#1| $)) (-15 -4104 (|#1| $ (-517))) (-15 -1336 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1781 ((-2 (|:| -2866 $) (|:| -3408 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) (-509) (-1131 |#1|)) (T -564))
-((-2029 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-3625 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) (-1221 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-1193 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-2833 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) (-1781 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2866 (-564 *4 *5)) (|:| -3408 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
-(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -2029 ((-107) $)) (-15 -3625 ((-517) $)) (-15 -3730 ((-517) $)) (-15 -1221 ($ $)) (-15 -1193 (|#1| $)) (-15 -2833 (|#1| $)) (-15 -4104 (|#1| $ (-517))) (-15 -1336 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1781 ((-2 (|:| -2866 $) (|:| -3408 (-377 |#2|))) (-377 |#2|)))) |%noBranch|)))
-((-3258 (((-583 |#6|) (-583 |#4|) (-107)) 46)) (-1553 ((|#6| |#6|) 39)))
-(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1553 (|#6| |#6|)) (-15 -3258 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -565))
-((-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1553 (|#6| |#6|)) (-15 -3258 ((-583 |#6|) (-583 |#4|) (-107))))
-((-3649 (((-107) |#3| (-703) (-583 |#3|)) 22)) (-3630 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1343 (-583 (-2 (|:| |irr| |#4|) (|:| -1436 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 51)))
-(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3649 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3630 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1343 (-583 (-2 (|:| |irr| |#4|) (|:| -1436 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-871 |#3| |#2| |#1|)) (T -566))
-((-3630 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1343 (-583 (-2 (|:| |irr| *10) (|:| -1436 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1070 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1070 *3))))) (-3649 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
-(-10 -7 (-15 -3649 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3630 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1070 |#3|)))) "failed") |#3| (-583 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1343 (-583 (-2 (|:| |irr| |#4|) (|:| -1436 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
-((-1587 (((-107) $ $) NIL)) (-3556 (((-583 |#1|) $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-3372 (($ $) 67)) (-1875 (((-601 |#1| |#2|) $) 52)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 70)) (-3763 (((-583 (-265 |#2|)) $ $) 33)) (-3214 (((-1021) $) NIL)) (-2643 (($ (-601 |#1| |#2|)) 48)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) 58) (((-1167 |#1| |#2|) $) NIL) (((-1172 |#1| |#2|) $) 66)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 53 T CONST)) (-3243 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-2010 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-1503 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) 36)) (-1534 (((-107) $ $) 54)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
-(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2643 ($ (-601 |#1| |#2|))) (-15 -1875 ((-601 |#1| |#2|) $)) (-15 -1503 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2254 ((-1167 |#1| |#2|) $)) (-15 -2254 ((-1172 |#1| |#2|) $)) (-15 -3372 ($ $)) (-15 -3556 ((-583 |#1|) $)) (-15 -2010 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -3243 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -3763 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-843)) (T -567))
-((-2643 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(-13 (-442) (-10 -8 (-15 -2643 ($ (-601 |#1| |#2|))) (-15 -1875 ((-601 |#1| |#2|) $)) (-15 -1503 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2254 ((-1167 |#1| |#2|) $)) (-15 -2254 ((-1172 |#1| |#2|) $)) (-15 -3372 ($ $)) (-15 -3556 ((-583 |#1|) $)) (-15 -2010 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -3243 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -3763 ((-583 (-265 |#2|)) $ $))))
-((-3258 (((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70) (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1368 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-3030 (((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 69)) (-2193 (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 55)) (-3491 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-1230 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -1368 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1230 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -3491 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2193 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3030 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3258 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3258 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1074))) (T -568))
-((-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))) (-1230 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1074))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(-10 -7 (-15 -1368 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1230 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -3491 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2193 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3030 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3258 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3258 ((-583 (-1045 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
-((-2725 (($ $) 38)) (-2602 (($ $) 21)) (-2705 (($ $) 37)) (-2580 (($ $) 22)) (-1533 (($ $) 36)) (-2626 (($ $) 23)) (-2665 (($) 48)) (-1875 (($ $) 45)) (-3159 (($ $) 17)) (-1721 (($ $ (-996 $)) 7) (($ $ (-1074)) 6)) (-2643 (($ $) 46)) (-2530 (($ $) 15)) (-2569 (($ $) 16)) (-1543 (($ $) 35)) (-2638 (($ $) 24)) (-2735 (($ $) 34)) (-2614 (($ $) 25)) (-2714 (($ $) 33)) (-2590 (($ $) 26)) (-1584 (($ $) 44)) (-2670 (($ $) 32)) (-1557 (($ $) 43)) (-2651 (($ $) 31)) (-1614 (($ $) 42)) (-2688 (($ $) 30)) (-3756 (($ $) 41)) (-2698 (($ $) 29)) (-1599 (($ $) 40)) (-2678 (($ $) 28)) (-1570 (($ $) 39)) (-2660 (($ $) 27)) (-3168 (($ $) 19)) (-2333 (($ $) 20)) (-2800 (($ $) 18)) (** (($ $ $) 47)))
-(((-569) (-1185)) (T -569))
-((-2333 (*1 *1 *1) (-4 *1 (-569))) (-3168 (*1 *1 *1) (-4 *1 (-569))) (-2800 (*1 *1 *1) (-4 *1 (-569))) (-3159 (*1 *1 *1) (-4 *1 (-569))) (-2569 (*1 *1 *1) (-4 *1 (-569))) (-2530 (*1 *1 *1) (-4 *1 (-569))))
-(-13 (-880) (-1095) (-10 -8 (-15 -2333 ($ $)) (-15 -3168 ($ $)) (-15 -2800 ($ $)) (-15 -3159 ($ $)) (-15 -2569 ($ $)) (-15 -2530 ($ $))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-880) . T) ((-1095) . T) ((-1098) . T))
-((-2283 (((-109) (-109)) 83)) (-3159 ((|#2| |#2|) 30)) (-1721 ((|#2| |#2| (-996 |#2|)) 79) ((|#2| |#2| (-1074)) 52)) (-2530 ((|#2| |#2|) 29)) (-2569 ((|#2| |#2|) 31)) (-2794 (((-107) (-109)) 34)) (-3168 ((|#2| |#2|) 26)) (-2333 ((|#2| |#2|) 28)) (-2800 ((|#2| |#2|) 27)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2333 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -1721 (|#2| |#2| (-1074))) (-15 -1721 (|#2| |#2| (-996 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918) (-1095))) (T -570))
-((-1721 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-1721 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))))) (-2569 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-2530 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-3159 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1095))))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))))))
-(-10 -7 (-15 -2794 ((-107) (-109))) (-15 -2283 ((-109) (-109))) (-15 -2333 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -3159 (|#2| |#2|)) (-15 -2530 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -1721 (|#2| |#2| (-1074))) (-15 -1721 (|#2| |#2| (-996 |#2|))))
-((-4061 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 52)) (-3910 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 67)) (-1622 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 68)) (-1569 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 105)) (-2105 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 82)) (-3409 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 116)) (-2553 (((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 57)) (-4076 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3546 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-3581 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 89)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -1569 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -3409 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3910 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1622 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1622 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -4076 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2553 ((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3581 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2105 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3546 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -4061 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1074)) (-421)) (T -571))
-((-4061 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3546 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2105 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-3581 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1074))) (-5 *1 (-571 *5 *6)))) (-2553 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-1154 *6)) (-5 *1 (-571 *5 *6)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-1622 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-3409 (*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
-(-10 -7 (-15 -1569 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -3409 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3910 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1622 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1622 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -4076 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2553 ((-1154 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3581 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2105 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3546 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -4061 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL)) (-2787 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 (((-51) $ (-1057) (-51)) 16) (((-51) $ (-1074) (-51)) 17)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 (-51) "failed") (-1057) $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-1835 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1057) $) NIL)) (-2050 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3705 (((-51) $ (-1057) (-51)) NIL (|has| $ (-6 -4184)))) (-3537 (((-51) $ (-1057)) NIL)) (-3240 (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2401 (($ $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-1057) $) NIL (|has| (-1057) (-779)))) (-2332 (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3920 (((-1057) $) NIL (|has| (-1057) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1305 (($ (-358)) 9)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-3666 (((-583 (-1057)) $) NIL)) (-2550 (((-107) (-1057) $) NIL)) (-3074 (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL)) (-3676 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL)) (-2950 (((-583 (-1057)) $) NIL)) (-4093 (((-107) (-1057) $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-1750 (((-51) $) NIL (|has| (-1057) (-779)))) (-3222 (((-3 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) "failed") (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL)) (-2880 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (($ $ (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3949 (((-583 (-51)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 (((-51) $ (-1057)) 14) (((-51) $ (-1057) (-51)) NIL) (((-51) $ (-1074)) 15)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 (-51))) (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-572) (-13 (-1086 (-1057) (-51)) (-10 -8 (-15 -1305 ($ (-358))) (-15 -2401 ($ $)) (-15 -1437 ((-51) $ (-1074))) (-15 -2412 ((-51) $ (-1074) (-51)))))) (T -572))
-((-1305 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-2401 (*1 *1 *1) (-5 *1 (-572))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2412 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1074)) (-5 *1 (-572)))))
-(-13 (-1086 (-1057) (-51)) (-10 -8 (-15 -1305 ($ (-358))) (-15 -2401 ($ $)) (-15 -1437 ((-51) $ (-1074))) (-15 -2412 ((-51) $ (-1074) (-51)))))
-((-1678 (($ $ |#2|) 10)))
-(((-573 |#1| |#2|) (-10 -8 (-15 -1678 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
-NIL
-(-10 -8 (-15 -1678 (|#1| |#1| |#2|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2272 (($ $ $) 29)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-574 |#1|) (-1185) (-156)) (T -574))
-((-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2272 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1678 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1346 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2507 (((-1154 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1154 (-623 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3118 (((-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2706 (($) NIL T CONST)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2588 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2318 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2571 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3981 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1930 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1559 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3132 (($ $ (-843)) NIL)) (-2831 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2775 (((-1070 |#1|) $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1618 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2961 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2622 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4047 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1154 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3775 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3334 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3241 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3363 (($ $ (-843)) NIL)) (-3762 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2765 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4079 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1202 (((-3 $ "failed")) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1968 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-1385 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2790 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3174 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1638 (((-1070 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2184 (($ $ (-843)) NIL)) (-3368 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3018 (((-1070 |#1|) $) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2478 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-4020 (((-1070 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1816 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1277 (((-1057) $) NIL)) (-3499 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2220 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2268 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3214 (((-1021) $) NIL)) (-2836 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1437 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3589 (((-623 |#1|) (-1154 $)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1154 $) (-1154 $)) NIL (|has| |#2| (-337 |#1|))) (((-1154 |#1|) $ (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-3667 (($ (-1154 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1154 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3346 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1154 $)) NIL (|has| |#2| (-337 |#1|)))) (-2901 (($ $ $) NIL)) (-3484 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2254 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2080 (((-1154 $)) NIL (|has| |#2| (-387 |#1|)))) (-2360 (((-583 (-1154 |#1|))) NIL (-3782 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3950 (($ $ $ $) NIL)) (-2534 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1695 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2145 (($ $ $) NIL)) (-1669 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3610 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3558 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2398 (($) 15 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) 17)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2254 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -575))
-((-2254 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
-(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2254 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
-((-2165 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057)) 77) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 99)) (-2335 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 104)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2335 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2165 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -576))
-((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1057)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-2335 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
-(-10 -7 (-15 -2165 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2335 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2165 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1057))))
-((-2165 (((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057)) 79) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 18) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|)))) 34)) (-2335 (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 21) (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|)))) 42)))
-(((-577 |#1|) (-10 -7 (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2335 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -2335 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057)))) (-421)) (T -577))
-((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))))
-(-10 -7 (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2335 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -2335 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2165 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1057))))
-((-3622 (((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|) 57 (-2650 (|has| |#1| (-333)))) (((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-1624 (((-107) (-1154 |#2|)) 30)) (-2267 (((-3 (-1154 |#1|) "failed") (-1154 |#2|)) 33)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -1624 ((-107) (-1154 |#2|))) (-15 -2267 ((-3 (-1154 |#1|) "failed") (-1154 |#2|))) (IF (|has| |#1| (-333)) (-15 -3622 ((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|)) (-15 -3622 ((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
-((-3622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-2650 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1154 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-3622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1154 *5)) (-5 *1 (-578 *5 *4)))) (-2267 (*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1154 *4)) (-5 *1 (-578 *4 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
-(-10 -7 (-15 -1624 ((-107) (-1154 |#2|))) (-15 -2267 ((-3 (-1154 |#1|) "failed") (-1154 |#2|))) (IF (|has| |#1| (-333)) (-15 -3622 ((-3 (-1154 |#1|) "failed") (-1154 |#2|) |#2|)) (-15 -3622 ((-3 (-1154 (-377 |#1|)) "failed") (-1154 |#2|) |#2|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-2749 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 35)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-579 |#1|) (-1185) (-961)) (T -579))
-((-2749 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1154 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3534 (-623 *5)) (|:| |vec| (-1154 *5)))))))
-(-13 (-961) (-10 -8 (-15 -2749 ((-623 |t#1|) (-623 $))) (-15 -2749 ((-2 (|:| -3534 (-623 |t#1|)) (|:| |vec| (-1154 |t#1|))) (-623 $) (-1154 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2263 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1109)) (T -580))
-((-2263 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2263 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-580 *5 *6)))) (-2263 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2263 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-2263 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
-(-10 -7 (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2263 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2263 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
-((-3014 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-1292 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-1939 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -3014 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1939 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1109) (-1109)) (T -581))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-581 *5 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
-(-10 -7 (-15 -3014 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1939 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
-((-1939 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
-(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1109) (-1109) (-1109)) (T -582))
-((-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
-(-10 -7 (-15 -1939 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) NIL)) (-3026 ((|#1| $) NIL)) (-2811 (($ $) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3500 (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-4044 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-1326 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "rest" $) NIL (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-1682 (($ $ $) 31 (|has| |#1| (-1003)))) (-1666 (($ $ $) 33 (|has| |#1| (-1003)))) (-1650 (($ $ $) 36 (|has| |#1| (-1003)))) (-2975 (($ (-1 (-107) |#1|) $) NIL)) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3013 ((|#1| $) NIL)) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1761 (($ $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $) NIL (|has| |#1| (-1003)))) (-1783 (($ $) 30 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2050 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-3295 (((-107) $) NIL)) (-2624 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2667 (((-107) $) 9)) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3371 (($) 7)) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-2931 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-1676 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1619 (($ |#1|) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2067 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3676 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-1556 (((-107) $) NIL)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) 35) ((|#1| $ (-517) |#1|) NIL)) (-3792 (((-517) $ $) NIL)) (-1415 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-1985 (((-107) $) NIL)) (-2849 (($ $) NIL)) (-3825 (($ $) NIL (|has| $ (-6 -4184)))) (-2077 (((-703) $) NIL)) (-2334 (($ $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) 44 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-1635 (($ |#1| $) 10)) (-1819 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2455 (($ $ $) 29) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3712 (($ $ $) 11)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2822 (((-1057) $) 25 (|has| |#1| (-760))) (((-1057) $ (-107)) 26 (|has| |#1| (-760))) (((-1159) (-754) $) 27 (|has| |#1| (-760))) (((-1159) (-754) $ (-107)) 28 (|has| |#1| (-760)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -3371 ($)) (-15 -2667 ((-107) $)) (-15 -1635 ($ |#1| $)) (-15 -3712 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1682 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1650 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1109)) (T -583))
-((-3371 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1109)))) (-1635 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-3712 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) (-1682 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))) (-1666 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))) (-1650 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
-(-13 (-603 |#1|) (-10 -8 (-15 -3371 ($)) (-15 -2667 ((-107) $)) (-15 -1635 ($ |#1| $)) (-15 -3712 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1682 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1650 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1770 (($ |#1| |#1| $) 43)) (-3552 (((-107) $ (-703)) NIL)) (-2975 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3439 (($ $) 45)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) 51 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 9 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 37)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) 46)) (-3676 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3773 ((|#1| $) 48)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 21)) (-2756 (($) 25)) (-2511 (((-107) $) 49)) (-2271 (((-583 (-2 (|:| -1338 |#1|) (|:| -3223 (-703)))) $) 60)) (-3230 (($) 23) (($ (-583 |#1|)) 18)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) 57 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 19)) (-3667 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-2254 (((-787) $) 14 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 22)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 62 (|has| |#1| (-1003)))) (-2290 (((-703) $) 16 (|has| $ (-6 -4183)))))
-(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4183) (-15 -2511 ((-107) $)) (-15 -1770 ($ |#1| |#1| $)))) (-1003)) (T -584))
-((-2511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-1770 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
-(-13 (-628 |#1|) (-10 -8 (-6 -4183) (-15 -2511 ((-107) $)) (-15 -1770 ($ |#1| |#1| $))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
-(((-585 |#1|) (-1185) (-968)) (T -585))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))))
+((-1999 (((-1161) (-1058)) 10)))
+(((-531) (-10 -7 (-15 -1999 ((-1161) (-1058))))) (T -531))
+((-1999 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-531)))))
+(-10 -7 (-15 -1999 ((-1161) (-1058))))
+((-2975 (((-534 |#2|) (-534 |#2|)) 38)) (-2294 (((-583 |#2|) (-534 |#2|)) 40)) (-1239 ((|#2| (-534 |#2|)) 47)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -2975 ((-534 |#2|) (-534 |#2|))) (-15 -2294 ((-583 |#2|) (-534 |#2|))) (-15 -1239 (|#2| (-534 |#2|)))) (-13 (-421) (-953 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1096))) (T -532))
+((-1239 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1096))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1096))) (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-2975 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1096))) (-4 *3 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
+(-10 -7 (-15 -2975 ((-534 |#2|) (-534 |#2|))) (-15 -2294 ((-583 |#2|) (-534 |#2|))) (-15 -1239 (|#2| (-534 |#2|))))
+((-3308 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
+(((-533 |#1| |#2|) (-10 -7 (-15 -3308 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3308 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3308 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3308 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
+((-3308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-3308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-3308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1306 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -1306 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
+(-10 -7 (-15 -3308 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3308 ((-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1306 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3308 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3308 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 69)) (-3388 ((|#1| $) NIL)) (-1306 ((|#1| $) 24)) (-1437 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-1377 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3832 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) $) 25)) (-1895 (((-1058) $) NIL)) (-1217 (($ |#1| |#1|) 32) (($ |#1| (-1075)) 43 (|has| |#1| (-953 (-1075))))) (-4123 (((-1022) $) NIL)) (-2774 (((-107) $) 28)) (-2059 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1075)) 82 (|has| |#1| (-823 (-1075))))) (-2269 (((-787) $) 96) (($ |#1|) 23)) (-3608 (($) 16 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) 15) (($ $ $) NIL)) (-1677 (($ $ $) 78)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
+(((-534 |#1|) (-13 (-650 (-377 (-517))) (-953 |#1|) (-10 -8 (-15 -1377 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1306 (|#1| $)) (-15 -3832 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) $)) (-15 -1437 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2774 ((-107) $)) (-15 -1217 ($ |#1| |#1|)) (-15 -2059 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-823 (-1075))) (-15 -2059 (|#1| $ (-1075))) |%noBranch|) (IF (|has| |#1| (-953 (-1075))) (-15 -1217 ($ |#1| (-1075))) |%noBranch|))) (-333)) (T -534))
+((-1377 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 *2)) (|:| |logand| (-1071 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-1306 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 *3)) (|:| |logand| (-1071 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1217 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2059 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-823 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1075)))) (-1217 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *1 (-534 *2)) (-4 *2 (-953 *3)) (-4 *2 (-333)))))
+(-13 (-650 (-377 (-517))) (-953 |#1|) (-10 -8 (-15 -1377 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1306 (|#1| $)) (-15 -3832 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 |#1|)) (|:| |logand| (-1071 |#1|)))) $)) (-15 -1437 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2774 ((-107) $)) (-15 -1217 ($ |#1| |#1|)) (-15 -2059 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-823 (-1075))) (-15 -2059 (|#1| $ (-1075))) |%noBranch|) (IF (|has| |#1| (-953 (-1075))) (-15 -1217 ($ |#1| (-1075))) |%noBranch|)))
+((-3086 (((-107) |#1|) 16)) (-1955 (((-3 |#1| "failed") |#1|) 14)) (-2123 (((-2 (|:| -3984 |#1|) (|:| -2356 (-703))) |#1|) 31) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3773 (((-107) |#1| (-703)) 19)) (-1466 ((|#1| |#1|) 32)) (-2539 ((|#1| |#1| (-703)) 34)))
+(((-535 |#1|) (-10 -7 (-15 -3773 ((-107) |#1| (-703))) (-15 -2123 ((-3 |#1| "failed") |#1| (-703))) (-15 -2123 ((-2 (|:| -3984 |#1|) (|:| -2356 (-703))) |#1|)) (-15 -2539 (|#1| |#1| (-703))) (-15 -3086 ((-107) |#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -1466 (|#1| |#1|))) (-502)) (T -535))
+((-1466 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1955 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-2539 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2123 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -2356 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-2123 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3773 ((-107) |#1| (-703))) (-15 -2123 ((-3 |#1| "failed") |#1| (-703))) (-15 -2123 ((-2 (|:| -3984 |#1|) (|:| -2356 (-703))) |#1|)) (-15 -2539 (|#1| |#1| (-703))) (-15 -3086 ((-107) |#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -1466 (|#1| |#1|)))
+((-3093 (((-1071 |#1|) (-844)) 27)))
+(((-536 |#1|) (-10 -7 (-15 -3093 ((-1071 |#1|) (-844)))) (-319)) (T -536))
+((-3093 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(-10 -7 (-15 -3093 ((-1071 |#1|) (-844))))
+((-2975 (((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|)))) 26)) (-1518 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1075)) 32 (|has| |#1| (-134)))) (-2294 (((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|)))) 18)) (-3816 (((-286 |#1|) (-377 (-875 |#1|)) (-1075)) 30 (|has| |#1| (-134)))) (-1239 (((-286 |#1|) (-534 (-377 (-875 |#1|)))) 20)))
+(((-537 |#1|) (-10 -7 (-15 -2975 ((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|))))) (-15 -2294 ((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|))))) (-15 -1239 ((-286 |#1|) (-534 (-377 (-875 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -1518 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3816 ((-286 |#1|) (-377 (-875 |#1|)) (-1075)))) |%noBranch|)) (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (T -537))
+((-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-875 *4)))) (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-875 *4)))) (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-2975 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-875 *3)))) (-4 *3 (-13 (-421) (-953 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
+(-10 -7 (-15 -2975 ((-534 (-377 (-875 |#1|))) (-534 (-377 (-875 |#1|))))) (-15 -2294 ((-583 (-286 |#1|)) (-534 (-377 (-875 |#1|))))) (-15 -1239 ((-286 |#1|) (-534 (-377 (-875 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -1518 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3816 ((-286 |#1|) (-377 (-875 |#1|)) (-1075)))) |%noBranch|))
+((-1313 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517)))) 46) (((-583 (-623 (-517))) (-583 (-517))) 47) (((-623 (-517)) (-583 (-517)) (-828 (-517))) 42)) (-3728 (((-703) (-583 (-517))) 40)))
+(((-538) (-10 -7 (-15 -3728 ((-703) (-583 (-517)))) (-15 -1313 ((-623 (-517)) (-583 (-517)) (-828 (-517)))) (-15 -1313 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1313 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517))))))) (T -538))
+((-1313 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-828 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-828 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(-10 -7 (-15 -3728 ((-703) (-583 (-517)))) (-15 -1313 ((-623 (-517)) (-583 (-517)) (-828 (-517)))) (-15 -1313 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1313 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-828 (-517))))))
+((-3505 (((-583 |#5|) |#5| (-107)) 73)) (-2526 (((-107) |#5| (-583 |#5|)) 30)))
+(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3505 ((-583 |#5|) |#5| (-107))) (-15 -2526 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-976 |#1| |#2| |#3|) (-1013 |#1| |#2| |#3| |#4|)) (T -539))
+((-2526 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1013 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1013 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3505 ((-583 |#5|) |#5| (-107))) (-15 -2526 ((-107) |#5| (-583 |#5|))))
+((-2118 (((-107) $ $) NIL (|has| (-131) (-1004)))) (-2212 (($ $) 34)) (-1611 (($ $) NIL)) (-2859 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-2549 (((-107) $ $) 51)) (-3139 (((-107) $ $ (-517)) 46)) (-2975 (((-583 $) $ (-131)) 60) (((-583 $) $ (-128)) 61)) (-3560 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-3613 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| (-131) (-779))))) (-2162 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4191))) (((-131) $ (-1123 (-517)) (-131)) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-2905 (($ $ (-131)) 64) (($ $ (-128)) 65)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-3230 (($ $ (-1123 (-517)) $) 44)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1422 (($ (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4190)))) (-2757 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4191)))) (-2563 (((-131) $ (-517)) NIL)) (-2568 (((-107) $ $) 71)) (-1211 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1004))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1004))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1535 (((-583 (-131)) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) (-131)) 9)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 28 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| (-131) (-779)))) (-3798 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2898 (((-583 (-131)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-3979 (((-517) $) 42 (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-131) (-779)))) (-1449 (((-107) $ $ (-131)) 72)) (-1935 (((-703) $ $ (-131)) 70)) (-2744 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1637 (($ $) 37)) (-1929 (($ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-2918 (($ $ (-131)) 62) (($ $ (-128)) 63)) (-1895 (((-1058) $) 38 (|has| (-131) (-1004)))) (-1745 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-517) $) 69) (((-1022) $) NIL (|has| (-131) (-1004)))) (-2427 (((-131) $) NIL (|has| (-517) (-779)))) (-2999 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3191 (($ $ (-131)) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1831 (((-583 (-131)) $) NIL)) (-3270 (((-107) $) 12)) (-1529 (($) 10)) (-2607 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1123 (-517))) 21) (($ $ $) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-2790 (($ $ $ (-517)) 66 (|has| $ (-6 -4191)))) (-2460 (($ $) 17)) (-3357 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2286 (($ (-583 (-131))) NIL)) (-4108 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 67)) (-2269 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3160 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) 14 (|has| (-131) (-1004)))) (-1629 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1607 (((-107) $ $) 15 (|has| (-131) (-779)))) (-3533 (((-703) $) 13 (|has| $ (-6 -4190)))))
+(((-540 |#1|) (-13 (-1044) (-10 -8 (-15 -4123 ((-517) $)))) (-517)) (T -540))
+((-4123 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
+(-13 (-1044) (-10 -8 (-15 -4123 ((-517) $))))
+((-3452 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-999 |#4|)) 32)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-999 |#4|))) (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|)) (T -541))
+((-3452 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-999 *3)) (-4 *3 (-872 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-999 |#4|))) (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 63)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-3245 (($ $) 100)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1855 (((-787) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-942 (-772 (-517))) (-1075) |#1| (-377 (-517))) 215)) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2098 (((-107) $) NIL)) (-2053 (((-517) $) 58) (((-517) $ (-517)) 59)) (-1865 (((-107) $) NIL)) (-2588 (($ $ (-844)) 76)) (-3843 (($ (-1 |#1| (-517)) $) 73)) (-1960 (((-107) $) 25)) (-2077 (($ |#1| (-517)) 22) (($ $ (-990) (-517)) NIL) (($ $ (-583 (-990)) (-583 (-517))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) 67)) (-1502 (($ (-942 (-772 (-517))) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-1518 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-3717 (((-3 $ "failed") $ $ (-107)) 99)) (-3104 (($ $ $) 108)) (-4123 (((-1022) $) NIL)) (-2747 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3762 (((-942 (-772 (-517))) $) 12)) (-2640 (($ $ (-517)) 45)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-2607 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1016)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-2769 (((-517) $) NIL)) (-3478 (($ $) 46)) (-2269 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-3952 ((|#1| $ (-517)) 56)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) 37)) (-3567 ((|#1| $) NIL)) (-1751 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2485 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-2798 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-3647 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3241 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1676 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-2694 (($ $ (-377 (-517))) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1222 (($ $ |#1|) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3387 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-2161 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-2493 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1933 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3161 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-2391 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-2557 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2320 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-3074 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-2570 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2079 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-3894 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3394 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1204 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3672 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-2386 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-3625 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-4115 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3363 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-2990 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2202 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 29 T CONST)) (-3617 (($) 38 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1583 (((-107) $ $) 65)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) 84) (($ $ $) 64)) (-1677 (($ $ $) 81)) (** (($ $ (-844)) NIL) (($ $ (-703)) 103)) (* (($ (-844) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-542 |#1|) (-13 (-1134 |#1| (-517)) (-10 -8 (-15 -1502 ($ (-942 (-772 (-517))) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3762 ((-942 (-772 (-517))) $)) (-15 -2747 ((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3431 ($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1960 ((-107) $)) (-15 -3843 ($ (-1 |#1| (-517)) $)) (-15 -3717 ((-3 $ "failed") $ $ (-107))) (-15 -3245 ($ $)) (-15 -3104 ($ $ $)) (-15 -1855 ((-787) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-942 (-772 (-517))) (-1075) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $)) (-15 -1222 ($ $ |#1|)) (-15 -2694 ($ $ (-377 (-517)))) (-15 -2161 ($ $)) (-15 -3387 ($ $)) (-15 -3647 ($ $)) (-15 -2320 ($ $)) (-15 -2485 ($ $)) (-15 -2391 ($ $)) (-15 -1676 ($ $)) (-15 -1933 ($ $)) (-15 -3894 ($ $)) (-15 -2990 ($ $)) (-15 -2570 ($ $)) (-15 -4115 ($ $)) (-15 -1204 ($ $)) (-15 -2386 ($ $)) (-15 -2798 ($ $)) (-15 -2557 ($ $)) (-15 -1751 ($ $)) (-15 -3161 ($ $)) (-15 -3241 ($ $)) (-15 -2493 ($ $)) (-15 -2079 ($ $)) (-15 -3363 ($ $)) (-15 -3074 ($ $)) (-15 -3625 ($ $)) (-15 -3394 ($ $)) (-15 -3672 ($ $))) |%noBranch|))) (-962)) (T -542))
+((-1960 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-962)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-942 (-772 (-517)))) (-5 *3 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-542 *4)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-942 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-962)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-962)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-542 *3)))) (-3843 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-962)) (-5 *1 (-542 *3)))) (-3717 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-962)))) (-3245 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-962)))) (-3104 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-962)))) (-1855 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-942 (-772 (-517)))) (-5 *5 (-1075)) (-5 *7 (-377 (-517))) (-4 *6 (-962)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-1518 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-1222 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2694 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3387 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3647 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-1676 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-1933 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3894 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2990 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-4115 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-1204 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2798 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2557 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3161 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2493 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-2079 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3363 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3074 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))) (-3672 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(-13 (-1134 |#1| (-517)) (-10 -8 (-15 -1502 ($ (-942 (-772 (-517))) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3762 ((-942 (-772 (-517))) $)) (-15 -2747 ((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3431 ($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -1960 ((-107) $)) (-15 -3843 ($ (-1 |#1| (-517)) $)) (-15 -3717 ((-3 $ "failed") $ $ (-107))) (-15 -3245 ($ $)) (-15 -3104 ($ $ $)) (-15 -1855 ((-787) (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-942 (-772 (-517))) (-1075) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $)) (-15 -1222 ($ $ |#1|)) (-15 -2694 ($ $ (-377 (-517)))) (-15 -2161 ($ $)) (-15 -3387 ($ $)) (-15 -3647 ($ $)) (-15 -2320 ($ $)) (-15 -2485 ($ $)) (-15 -2391 ($ $)) (-15 -1676 ($ $)) (-15 -1933 ($ $)) (-15 -3894 ($ $)) (-15 -2990 ($ $)) (-15 -2570 ($ $)) (-15 -4115 ($ $)) (-15 -1204 ($ $)) (-15 -2386 ($ $)) (-15 -2798 ($ $)) (-15 -2557 ($ $)) (-15 -1751 ($ $)) (-15 -3161 ($ $)) (-15 -3241 ($ $)) (-15 -2493 ($ $)) (-15 -2079 ($ $)) (-15 -3363 ($ $)) (-15 -3074 ($ $)) (-15 -3625 ($ $)) (-15 -3394 ($ $)) (-15 -3672 ($ $))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3431 (($ (-1056 |#1|)) 9)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) 42)) (-2098 (((-107) $) 52)) (-2053 (((-703) $) 55) (((-703) $ (-703)) 54)) (-1865 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-1056 |#1|) $) 23)) (-2950 (((-703)) 51)) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 10 T CONST)) (-3617 (($) 14 T CONST)) (-1583 (((-107) $ $) 22)) (-1691 (($ $) 30) (($ $ $) 16)) (-1677 (($ $ $) 25)) (** (($ $ (-844)) NIL) (($ $ (-703)) 49)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
+(((-543 |#1|) (-13 (-962) (-10 -8 (-15 -2907 ((-1056 |#1|) $)) (-15 -3431 ($ (-1056 |#1|))) (-15 -2098 ((-107) $)) (-15 -2053 ((-703) $)) (-15 -2053 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) (-962)) (T -543))
+((-2907 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-543 *3)) (-4 *3 (-962)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-543 *3)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-962)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-962)))) (-2053 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-962)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-962)))))
+(-13 (-962) (-10 -8 (-15 -2907 ((-1056 |#1|) $)) (-15 -3431 ($ (-1056 |#1|))) (-15 -2098 ((-107) $)) (-15 -2053 ((-703) $)) (-15 -2053 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|)))
+((-3308 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
+(((-544 |#1| |#2|) (-10 -7 (-15 -3308 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1110) (-1110)) (T -544))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
+(-10 -7 (-15 -3308 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
+((-3308 (((-1056 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1056 |#2|)) 20) (((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
+(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-547 |#2|))) (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1056 |#2|)))) (-1110) (-1110) (-1110)) (T -545))
+((-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1056 *7)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1056 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
+(-10 -7 (-15 -3308 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-547 |#2|))) (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1056 |#2|))))
+((-1692 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1075))) 55)) (-3541 (((-153 |#2|) |#3|) 116)) (-1783 ((|#3| (-153 |#2|)) 43)) (-3500 ((|#2| |#3|) 19)) (-3565 ((|#3| |#2|) 32)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -1783 (|#3| (-153 |#2|))) (-15 -3500 (|#2| |#3|)) (-15 -3565 (|#3| |#2|)) (-15 -3541 ((-153 |#2|) |#3|)) (-15 -1692 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1075))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-919) (-1096)) (-13 (-400 (-153 |#1|)) (-919) (-1096))) (T -546))
+((-1692 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1075))) (-4 *2 (-13 (-400 (-153 *5)) (-919) (-1096))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-919) (-1096))))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-919) (-1096))) (-4 *3 (-13 (-400 (-153 *4)) (-919) (-1096))))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-919) (-1096))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-919) (-1096))))) (-3500 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-919) (-1096))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-919) (-1096))))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-919) (-1096))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-919) (-1096))) (-5 *1 (-546 *4 *5 *2)))))
+(-10 -7 (-15 -1783 (|#3| (-153 |#2|))) (-15 -3500 (|#2| |#3|)) (-15 -3565 (|#3| |#2|)) (-15 -3541 ((-153 |#2|) |#3|)) (-15 -1692 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1075)))))
+((-2324 (($ (-1 (-107) |#1|) $) 16)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2264 (($ (-1 |#1| |#1|) |#1|) 9)) (-2304 (($ (-1 (-107) |#1|) $) 12)) (-2313 (($ (-1 (-107) |#1|) $) 14)) (-2286 (((-1056 |#1|) $) 17)) (-2269 (((-787) $) NIL)))
+(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -3308 ($ (-1 |#1| |#1|) $)) (-15 -2304 ($ (-1 (-107) |#1|) $)) (-15 -2313 ($ (-1 (-107) |#1|) $)) (-15 -2324 ($ (-1 (-107) |#1|) $)) (-15 -2264 ($ (-1 |#1| |#1|) |#1|)) (-15 -2286 ((-1056 |#1|) $)))) (-1110)) (T -547))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3)))) (-2304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3)))) (-2324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3)))) (-2264 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1110)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3308 ($ (-1 |#1| |#1|) $)) (-15 -2304 ($ (-1 (-107) |#1|) $)) (-15 -2313 ($ (-1 (-107) |#1|) $)) (-15 -2324 ($ (-1 (-107) |#1|) $)) (-15 -2264 ($ (-1 |#1| |#1|) |#1|)) (-15 -2286 ((-1056 |#1|) $))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703)) NIL (|has| |#1| (-23)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2688 (((-623 |#1|) $ $) NIL (|has| |#1| (-962)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2961 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-4043 (((-107) $ (-703)) NIL)) (-3680 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-3989 ((|#1| $ $) NIL (|has| |#1| (-962)))) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-2579 (($ $ $) NIL (|has| |#1| (-962)))) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1691 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1677 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-548 |#1| |#2|) (-1154 |#1|) (-1110) (-517)) (T -548))
+NIL
+(-1154 |#1|)
+((-1478 (((-1161) $ |#2| |#2|) 36)) (-3735 ((|#2| $) 23)) (-3979 ((|#2| $) 21)) (-2744 (($ (-1 |#3| |#3|) $) 32)) (-3308 (($ (-1 |#3| |#3|) $) 30)) (-2427 ((|#3| $) 26)) (-3191 (($ $ |#3|) 33)) (-3669 (((-107) |#3| $) 17)) (-1831 (((-583 |#3|) $) 15)) (-2607 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -1478 ((-1161) |#1| |#2| |#2|)) (-15 -3191 (|#1| |#1| |#3|)) (-15 -2427 (|#3| |#1|)) (-15 -3735 (|#2| |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3669 ((-107) |#3| |#1|)) (-15 -1831 ((-583 |#3|) |#1|)) (-15 -2607 (|#3| |#1| |#2|)) (-15 -2607 (|#3| |#1| |#2| |#3|)) (-15 -2744 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3308 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1004) (-1110)) (T -549))
+NIL
+(-10 -8 (-15 -1478 ((-1161) |#1| |#2| |#2|)) (-15 -3191 (|#1| |#1| |#3|)) (-15 -2427 (|#3| |#1|)) (-15 -3735 (|#2| |#1|)) (-15 -3979 (|#2| |#1|)) (-15 -3669 ((-107) |#3| |#1|)) (-15 -1831 ((-583 |#3|) |#1|)) (-15 -2607 (|#3| |#1| |#2|)) (-15 -2607 (|#3| |#1| |#2| |#3|)) (-15 -2744 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3308 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#2| (-1004)))) (-1478 (((-1161) $ |#1| |#1|) 40 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-2757 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) 51)) (-1535 (((-583 |#2|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-3735 ((|#1| $) 43 (|has| |#1| (-779)))) (-2898 (((-583 |#2|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-3979 ((|#1| $) 44 (|has| |#1| (-779)))) (-2744 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#2| (-1004)))) (-4121 (((-583 |#1|) $) 46)) (-3536 (((-107) |#1| $) 47)) (-4123 (((-1022) $) 21 (|has| |#2| (-1004)))) (-2427 ((|#2| $) 42 (|has| |#1| (-779)))) (-3191 (($ $ |#2|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4135 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4190))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#2| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-550 |#1| |#2|) (-1187) (-1004) (-1110)) (T -550))
+((-1831 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110)) (-5 *2 (-583 *4)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110)) (-5 *2 (-107)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110)) (-5 *2 (-583 *3)))) (-3669 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-107)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1110)) (-4 *2 (-1004)) (-4 *2 (-779)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1110)) (-4 *2 (-1004)) (-4 *2 (-779)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1004)) (-4 *3 (-779)) (-4 *2 (-1110)))) (-3191 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110)))) (-1478 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110)) (-5 *2 (-1161)))))
+(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -1831 ((-583 |t#2|) $)) (-15 -3536 ((-107) |t#1| $)) (-15 -4121 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1004)) (IF (|has| $ (-6 -4190)) (-15 -3669 ((-107) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3979 (|t#1| $)) (-15 -3735 (|t#1| $)) (-15 -2427 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4191)) (PROGN (-15 -3191 ($ $ |t#2|)) (-15 -1478 ((-1161) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1004)) ((-557 (-787)) -3745 (|has| |#2| (-1004)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-1004) |has| |#2| (-1004)) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1875 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1402 (((-1156 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1156 (-623 |#1|)) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2197 (((-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1681 (($) NIL T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1504 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2429 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2684 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2977 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3237 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2078 (((-1071 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1537 (($ $ (-844)) NIL)) (-1227 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1499 (((-1071 |#1|) $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2705 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3724 (((-1071 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3764 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1953 (($ (-1156 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1156 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3163 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3736 (((-844)) NIL (|has| |#2| (-337 |#1|)))) (-2438 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3248 (($ $ (-844)) NIL)) (-4073 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1495 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2502 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3331 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2547 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3303 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2739 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1888 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1690 (((-1071 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2848 (($ $ (-844)) NIL)) (-3492 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2328 (((-1071 |#1|) $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1946 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1940 (((-1071 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1895 (((-1058) $) NIL)) (-1952 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2388 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2631 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4123 (((-1022) $) NIL)) (-1665 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2607 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3369 (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-387 |#1|))) (((-1156 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $) (-1156 $)) NIL (|has| |#2| (-337 |#1|))) (((-1156 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3357 (($ (-1156 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1156 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-4070 (((-583 (-875 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-875 |#1|)) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2609 (($ $ $) NIL)) (-3722 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2269 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2062 (((-1156 $)) NIL (|has| |#2| (-387 |#1|)))) (-4111 (((-583 (-1156 |#1|))) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2516 (($ $ $ $) NIL)) (-2126 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2374 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1263 (($ $ $) NIL)) (-1332 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2685 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3608 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) 24)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2269 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -551))
+((-2269 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2269 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-3252 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) 32)) (-3201 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL) (($) NIL)) (-1478 (((-1161) $ (-1058) (-1058)) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-1058) |#1|) 42)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#1| "failed") (-1058) $) 45)) (-1681 (($) NIL T CONST)) (-2150 (($ $ (-1058)) 24)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-3593 (((-3 |#1| "failed") (-1058) $) 46) (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (|has| $ (-6 -4190)))) (-1422 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-1521 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-2608 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) 31)) (-2757 ((|#1| $ (-1058) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-1058)) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-1981 (($ $) 47)) (-3674 (($ (-358)) 22) (($ (-358) (-1058)) 21)) (-2987 (((-358) $) 33)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190))) (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (((-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-3979 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1881 (((-583 (-1058)) $) 38)) (-3472 (((-107) (-1058) $) NIL)) (-2023 (((-1058) $) 34)) (-2431 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-4121 (((-583 (-1058)) $) NIL)) (-3536 (((-107) (-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 ((|#1| $) NIL (|has| (-1058) (-779)))) (-2999 (((-3 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) "failed") (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-583 (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 36)) (-2607 ((|#1| $ (-1058) |#1|) NIL) ((|#1| $ (-1058)) 41)) (-1494 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL) (($) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (((-703) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (((-703) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-2269 (((-787) $) 20)) (-1513 (($ $) 25)) (-4155 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 19)) (-3533 (((-703) $) 40 (|has| $ (-6 -4190)))))
+(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) (-1087 (-1058) |#1|) (-10 -8 (-6 -4190) (-15 -1981 ($ $)))) (-1004)) (T -552))
+((-1981 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1004)))))
+(-13 (-334 (-358) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) (-1087 (-1058) |#1|) (-10 -8 (-6 -4190) (-15 -1981 ($ $))))
+((-4008 (((-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) 15)) (-1881 (((-583 |#2|) $) 19)) (-3472 (((-107) |#2| $) 12)))
+(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -1881 ((-583 |#2|) |#1|)) (-15 -3472 ((-107) |#2| |#1|)) (-15 -4008 ((-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|))) (-554 |#2| |#3|) (-1004) (-1004)) (T -553))
+NIL
+(-10 -8 (-15 -1881 ((-583 |#2|) |#1|)) (-15 -3472 ((-107) |#2| |#1|)) (-15 -4008 ((-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 55 (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) 61)) (-1681 (($) 7 T CONST)) (-2453 (($ $) 58 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 46 (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 62)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 54 (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 56 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 53 (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-1881 (((-583 |#1|) $) 63)) (-3472 (((-107) |#1| $) 64)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 39)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 40)) (-4123 (((-1022) $) 21 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 51)) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 41)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) 26 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 25 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 24 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 23 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-1494 (($) 49) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 48)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 31 (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 50)) (-2269 (((-787) $) 18 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 42)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-554 |#1| |#2|) (-1187) (-1004) (-1004)) (T -554))
+((-3472 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-5 *2 (-107)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-5 *2 (-583 *3)))) (-3593 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))) (-3562 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(-13 (-203 (-2 (|:| -2581 |t#1|) (|:| -1860 |t#2|))) (-10 -8 (-15 -3472 ((-107) |t#1| $)) (-15 -1881 ((-583 |t#1|) $)) (-15 -3593 ((-3 |t#2| "failed") |t#1| $)) (-15 -3562 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((-97) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) ((-557 (-787)) -3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-456 #0#) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-1004) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) ((-1110) . T))
+((-2854 (((-556 |#2|) |#1|) 15)) (-2481 (((-3 |#1| "failed") (-556 |#2|)) 19)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2854 ((-556 |#2|) |#1|)) (-15 -2481 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
+((-2481 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-2854 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(-10 -7 (-15 -2854 ((-556 |#2|) |#1|)) (-15 -2481 ((-3 |#1| "failed") (-556 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2865 (((-3 (-1075) "failed") $) 36)) (-3145 (((-1161) $ (-703)) 26)) (-1211 (((-703) $) 25)) (-3034 (((-109) $) 12)) (-2987 (((-1075) $) 20)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-1396 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1075)) 31)) (-1290 (((-107) $ (-109)) 18) (((-107) $ (-1075)) 16)) (-1807 (((-703) $) 22)) (-4123 (((-1022) $) NIL)) (-3357 (((-815 (-517)) $) 69 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 75 (|has| |#1| (-558 (-815 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2269 (((-787) $) 51)) (-3418 (((-583 |#1|) $) 24)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 39)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 40)))
+(((-556 |#1|) (-13 (-124) (-807 |#1|) (-10 -8 (-15 -2987 ((-1075) $)) (-15 -3034 ((-109) $)) (-15 -3418 ((-583 |#1|) $)) (-15 -1807 ((-703) $)) (-15 -1396 ($ (-109) (-583 |#1|) (-703))) (-15 -1396 ($ (-1075))) (-15 -2865 ((-3 (-1075) "failed") $)) (-15 -1290 ((-107) $ (-109))) (-15 -1290 ((-107) $ (-1075))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-779)) (T -556))
+((-2987 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1396 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2865 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1290 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-1290 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
+(-13 (-124) (-807 |#1|) (-10 -8 (-15 -2987 ((-1075) $)) (-15 -3034 ((-109) $)) (-15 -3418 ((-583 |#1|) $)) (-15 -1807 ((-703) $)) (-15 -1396 ($ (-109) (-583 |#1|) (-703))) (-15 -1396 ($ (-1075))) (-15 -2865 ((-3 (-1075) "failed") $)) (-15 -1290 ((-107) $ (-109))) (-15 -1290 ((-107) $ (-1075))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+((-2269 ((|#1| $) 6)))
+(((-557 |#1|) (-1187) (-1110)) (T -557))
+((-2269 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1110)))))
+(-13 (-10 -8 (-15 -2269 (|t#1| $))))
+((-3357 ((|#1| $) 6)))
+(((-558 |#1|) (-1187) (-1110)) (T -558))
+((-3357 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1110)))))
+(-13 (-10 -8 (-15 -3357 (|t#1| $))))
+((-3690 (((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -3690 ((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -3690 ((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-953 (-517)) (-953 (-377 (-517)))) (-1132 |#1|)) (T -559))
+((-3690 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-134) (-27) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-1071 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-3690 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-953 (-517)) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-1071 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -3690 ((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -3690 ((-3 (-1071 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
+((-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-560 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-561 |#2|) (-962)) (T -560))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-561 |#1|) (-1187) (-962)) (T -561))
+((-2269 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-585 |t#1|) (-10 -8 (-15 -2269 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1323 (((-517) $) NIL (|has| |#1| (-777)))) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-3523 (((-107) $) NIL (|has| |#1| (-777)))) (-1865 (((-107) $) NIL)) (-3824 ((|#1| $) 13)) (-1469 (((-107) $) NIL (|has| |#1| (-777)))) (-3456 (($ $ $) NIL (|has| |#1| (-777)))) (-4082 (($ $ $) NIL (|has| |#1| (-777)))) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2097 ((|#3| $) 15)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-2950 (((-703)) 20)) (-2339 (($ $) NIL (|has| |#1| (-777)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) 12 T CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1703 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1703 ($ $ |#3|)) (-15 -1703 ($ |#1| |#3|)) (-15 -3824 (|#1| $)) (-15 -2097 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
+((-1703 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1703 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3824 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2097 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1703 ($ $ |#3|)) (-15 -1703 ($ |#1| |#3|)) (-15 -3824 (|#1| $)) (-15 -2097 (|#3| $))))
+((-1988 ((|#2| |#2| (-1075) (-1075)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -1988 (|#2| |#2| (-1075) (-1075)))) (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-881) (-29 |#1|))) (T -563))
+((-1988 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1096) (-881) (-29 *4))))))
+(-10 -7 (-15 -1988 (|#2| |#2| (-1075) (-1075))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 52)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3867 ((|#1| $) 49)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1862 (((-2 (|:| -4156 $) (|:| -2305 (-377 |#2|))) (-377 |#2|)) 97 (|has| |#1| (-333)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) 24)) (-3163 (((-3 $ "failed") $) 76)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2053 (((-517) $) 19)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) 36)) (-2077 (($ |#1| (-517)) 21)) (-2345 ((|#1| $) 51)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 87 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ $) 80)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-703) $) 99 (|has| |#1| (-333)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 98 (|has| |#1| (-333)))) (-2059 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2769 (((-517) $) 34)) (-3357 (((-377 |#2|) $) 42)) (-2269 (((-787) $) 63) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-3952 ((|#1| $ (-517)) 64)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 9 T CONST)) (-3617 (($) 12 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1583 (((-107) $ $) 17)) (-1691 (($ $) 46) (($ $ $) NIL)) (-1677 (($ $ $) 77)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
+(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-953 |#2|) (-10 -8 (-15 -1960 ((-107) $)) (-15 -2769 ((-517) $)) (-15 -2053 ((-517) $)) (-15 -2371 ($ $)) (-15 -2345 (|#1| $)) (-15 -3867 (|#1| $)) (-15 -3952 (|#1| $ (-517))) (-15 -2077 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1862 ((-2 (|:| -4156 $) (|:| -2305 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) (-509) (-1132 |#1|)) (T -564))
+((-1960 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1132 *3)))) (-2769 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1132 *3)))) (-2053 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1132 *3)))) (-2371 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2)))) (-2345 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2)))) (-3867 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2)))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1132 *2)))) (-2077 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1132 *2)))) (-1862 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| -4156 (-564 *4 *5)) (|:| -2305 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
+(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-953 |#2|) (-10 -8 (-15 -1960 ((-107) $)) (-15 -2769 ((-517) $)) (-15 -2053 ((-517) $)) (-15 -2371 ($ $)) (-15 -2345 (|#1| $)) (-15 -3867 (|#1| $)) (-15 -3952 (|#1| $ (-517))) (-15 -2077 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1862 ((-2 (|:| -4156 $) (|:| -2305 (-377 |#2|))) (-377 |#2|)))) |%noBranch|)))
+((-2283 (((-583 |#6|) (-583 |#4|) (-107)) 47)) (-3827 ((|#6| |#6|) 40)))
+(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3827 (|#6| |#6|)) (-15 -2283 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|) (-1013 |#1| |#2| |#3| |#4|)) (T -565))
+((-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *10 (-1013 *5 *6 *7 *8)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *2 (-1013 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3827 (|#6| |#6|)) (-15 -2283 ((-583 |#6|) (-583 |#4|) (-107))))
+((-1730 (((-107) |#3| (-703) (-583 |#3|)) 23)) (-4085 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1071 |#3|)))) "failed") |#3| (-583 (-1071 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1878 (-583 (-2 (|:| |irr| |#4|) (|:| -2220 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 52)))
+(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1730 ((-107) |#3| (-703) (-583 |#3|))) (-15 -4085 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1071 |#3|)))) "failed") |#3| (-583 (-1071 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1878 (-583 (-2 (|:| |irr| |#4|) (|:| -2220 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-872 |#3| |#2| |#1|)) (T -566))
+((-4085 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1878 (-583 (-2 (|:| |irr| *10) (|:| -2220 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-872 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1071 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1071 *3))))) (-1730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-872 *3 *7 *6)))))
+(-10 -7 (-15 -1730 ((-107) |#3| (-703) (-583 |#3|))) (-15 -4085 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1071 |#3|)))) "failed") |#3| (-583 (-1071 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1878 (-583 (-2 (|:| |irr| |#4|) (|:| -2220 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
+((-2118 (((-107) $ $) NIL)) (-3365 (((-583 |#1|) $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-1213 (($ $) 67)) (-1225 (((-601 |#1| |#2|) $) 52)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 70)) (-3030 (((-583 (-265 |#2|)) $ $) 33)) (-4123 (((-1022) $) NIL)) (-3868 (($ (-601 |#1| |#2|)) 48)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) 58) (((-1169 |#1| |#2|) $) NIL) (((-1174 |#1| |#2|) $) 66)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 53 T CONST)) (-2420 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-2521 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-2858 (((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) 36)) (-1583 (((-107) $ $) 54)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
+(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -3868 ($ (-601 |#1| |#2|))) (-15 -1225 ((-601 |#1| |#2|) $)) (-15 -2858 ((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $)) (-15 -2269 ((-1169 |#1| |#2|) $)) (-15 -2269 ((-1174 |#1| |#2|) $)) (-15 -1213 ($ $)) (-15 -3365 ((-583 |#1|) $)) (-15 -2521 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2420 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -3030 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-844)) (T -567))
+((-3868 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-844)))) (-1225 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-816 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1174 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-1213 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-844)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-844)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))) (-3030 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
+(-13 (-442) (-10 -8 (-15 -3868 ($ (-601 |#1| |#2|))) (-15 -1225 ((-601 |#1| |#2|) $)) (-15 -2858 ((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $)) (-15 -2269 ((-1169 |#1| |#2|) $)) (-15 -2269 ((-1174 |#1| |#2|) $)) (-15 -1213 ($ $)) (-15 -3365 ((-583 |#1|) $)) (-15 -2521 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2420 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -3030 ((-583 (-265 |#2|)) $ $))))
+((-2283 (((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 71) (((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 57)) (-2300 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-2246 (((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70)) (-2903 (((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1195 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-3718 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -2300 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3718 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1195 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2903 ((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2246 ((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2283 ((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2283 ((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1075))) (T -568))
+((-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-1046 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-1046 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1195 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1075))) (-5 *1 (-568 *3 *4)))) (-3718 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1075))) (-5 *1 (-568 *3 *4)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1075))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(-10 -7 (-15 -2300 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3718 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1195 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2903 ((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2246 ((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2283 ((-583 (-959 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2283 ((-583 (-1046 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
+((-1646 (($ $) 38)) (-1493 (($ $) 21)) (-1622 (($ $) 37)) (-1470 (($ $) 22)) (-1669 (($ $) 36)) (-1519 (($ $) 23)) (-2115 (($) 48)) (-1225 (($ $) 45)) (-2179 (($ $) 17)) (-1217 (($ $ (-997 $)) 7) (($ $ (-1075)) 6)) (-3868 (($ $) 46)) (-1421 (($ $) 15)) (-1459 (($ $) 16)) (-1682 (($ $) 35)) (-1532 (($ $) 24)) (-1656 (($ $) 34)) (-1506 (($ $) 25)) (-1632 (($ $) 33)) (-1482 (($ $) 26)) (-1721 (($ $) 44)) (-1575 (($ $) 32)) (-1695 (($ $) 43)) (-1547 (($ $) 31)) (-3487 (($ $) 42)) (-1599 (($ $) 30)) (-2822 (($ $) 41)) (-1612 (($ $) 29)) (-1735 (($ $) 40)) (-1588 (($ $) 28)) (-1708 (($ $) 39)) (-1561 (($ $) 27)) (-2067 (($ $) 19)) (-2168 (($ $) 20)) (-2243 (($ $) 18)) (** (($ $ $) 47)))
+(((-569) (-1187)) (T -569))
+((-2168 (*1 *1 *1) (-4 *1 (-569))) (-2067 (*1 *1 *1) (-4 *1 (-569))) (-2243 (*1 *1 *1) (-4 *1 (-569))) (-2179 (*1 *1 *1) (-4 *1 (-569))) (-1459 (*1 *1 *1) (-4 *1 (-569))) (-1421 (*1 *1 *1) (-4 *1 (-569))))
+(-13 (-881) (-1096) (-10 -8 (-15 -2168 ($ $)) (-15 -2067 ($ $)) (-15 -2243 ($ $)) (-15 -2179 ($ $)) (-15 -1459 ($ $)) (-15 -1421 ($ $))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-881) . T) ((-1096) . T) ((-1099) . T))
+((-3034 (((-109) (-109)) 83)) (-2179 ((|#2| |#2|) 30)) (-1217 ((|#2| |#2| (-997 |#2|)) 79) ((|#2| |#2| (-1075)) 52)) (-1421 ((|#2| |#2|) 29)) (-1459 ((|#2| |#2|) 31)) (-1752 (((-107) (-109)) 34)) (-2067 ((|#2| |#2|) 26)) (-2168 ((|#2| |#2|) 28)) (-2243 ((|#2| |#2|) 27)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2168 (|#2| |#2|)) (-15 -2067 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1217 (|#2| |#2| (-1075))) (-15 -1217 (|#2| |#2| (-997 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-919) (-1096))) (T -570))
+((-1217 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-400 *4) (-919) (-1096))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-1217 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-919) (-1096))))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-2067 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-919) (-1096))))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-919) (-1096))))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-919) (-1096))))))
+(-10 -7 (-15 -1752 ((-107) (-109))) (-15 -3034 ((-109) (-109))) (-15 -2168 (|#2| |#2|)) (-15 -2067 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1217 (|#2| |#2| (-1075))) (-15 -1217 (|#2| |#2| (-997 |#2|))))
+((-1760 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 53)) (-3713 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 68)) (-2136 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 70) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69)) (-3408 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 106)) (-2451 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 83)) (-2709 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 117)) (-3484 (((-1156 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 58)) (-2226 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-2083 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-2187 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 90)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -3408 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2709 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3713 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2136 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2136 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2226 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3484 ((-1156 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2187 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2451 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2083 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1760 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1075)) (-421)) (T -571))
+((-1760 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2083 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2451 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2187 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1075))) (-5 *1 (-571 *5 *6)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1075))) (-4 *6 (-421)) (-5 *2 (-1156 *6)) (-5 *1 (-571 *5 *6)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1075))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1075))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2136 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1075))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2709 (*1 *2 *3) (-12 (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(-10 -7 (-15 -3408 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2709 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -3713 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2136 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2136 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2226 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3484 ((-1156 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2187 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2451 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2083 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1760 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL)) (-1478 (((-1161) $ (-1058) (-1058)) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 (((-51) $ (-1058) (-51)) 16) (((-51) $ (-1075) (-51)) 17)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 (-51) "failed") (-1058) $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004))))) (-3593 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-3 (-51) "failed") (-1058) $) NIL)) (-1422 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (((-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2757 (((-51) $ (-1058) (-51)) NIL (|has| $ (-6 -4191)))) (-2563 (((-51) $ (-1058)) NIL)) (-1535 (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-1981 (($ $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2898 (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-3979 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4191))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1821 (($ (-358)) 9)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004))))) (-1881 (((-583 (-1058)) $) NIL)) (-3472 (((-107) (-1058) $) NIL)) (-2431 (((-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL)) (-2704 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL)) (-4121 (((-583 (-1058)) $) NIL)) (-3536 (((-107) (-1058) $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004))))) (-2427 (((-51) $) NIL (|has| (-1058) (-779)))) (-2999 (((-3 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) "failed") (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL)) (-3191 (($ $ (-51)) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (($ $ (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (($ $ (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-1831 (((-583 (-51)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 (((-51) $ (-1058)) 14) (((-51) $ (-1058) (-51)) NIL) (((-51) $ (-1075)) 15)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 (-51))) (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-572) (-13 (-1087 (-1058) (-51)) (-10 -8 (-15 -1821 ($ (-358))) (-15 -1981 ($ $)) (-15 -2607 ((-51) $ (-1075))) (-15 -2443 ((-51) $ (-1075) (-51)))))) (T -572))
+((-1821 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-1981 (*1 *1 *1) (-5 *1 (-572))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2443 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1075)) (-5 *1 (-572)))))
+(-13 (-1087 (-1058) (-51)) (-10 -8 (-15 -1821 ($ (-358))) (-15 -1981 ($ $)) (-15 -2607 ((-51) $ (-1075))) (-15 -2443 ((-51) $ (-1075) (-51)))))
+((-1703 (($ $ |#2|) 10)))
+(((-573 |#1| |#2|) (-10 -8 (-15 -1703 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
+NIL
+(-10 -8 (-15 -1703 (|#1| |#1| |#2|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2286 (($ $ $) 29)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-574 |#1|) (-1187) (-156)) (T -574))
+((-2286 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1703 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2286 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1703 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1875 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1402 (((-1156 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1156 (-623 |#1|)) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2197 (((-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1681 (($) NIL T CONST)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1504 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2429 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2684 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2977 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3237 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2078 (((-1071 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-1537 (($ $ (-844)) NIL)) (-1227 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1499 (((-1071 |#1|) $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2705 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3724 (((-1071 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3764 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1953 (($ (-1156 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1156 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3163 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3736 (((-844)) NIL (|has| |#2| (-337 |#1|)))) (-2438 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3248 (($ $ (-844)) NIL)) (-4073 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1495 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2502 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3331 (((-3 $ "failed")) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2547 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3303 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2739 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1888 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1690 (((-1071 (-875 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2848 (($ $ (-844)) NIL)) (-3492 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2328 (((-1071 |#1|) $) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1946 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-1940 (((-1071 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1895 (((-1058) $) NIL)) (-1952 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2388 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2631 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4123 (((-1022) $) NIL)) (-1665 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2607 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-3369 (((-623 |#1|) (-1156 $)) NIL (|has| |#2| (-387 |#1|))) (((-1156 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1156 $) (-1156 $)) NIL (|has| |#2| (-337 |#1|))) (((-1156 |#1|) $ (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-3357 (($ (-1156 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1156 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-4070 (((-583 (-875 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-875 |#1|)) (-1156 $)) NIL (|has| |#2| (-337 |#1|)))) (-2609 (($ $ $) NIL)) (-3722 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2269 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2062 (((-1156 $)) NIL (|has| |#2| (-387 |#1|)))) (-4111 (((-583 (-1156 |#1|))) NIL (-3745 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2516 (($ $ $ $) NIL)) (-2126 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2374 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1263 (($ $ $) NIL)) (-1332 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2685 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3608 (($) 15 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) 17)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2269 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -575))
+((-2269 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2269 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|)))
+((-1503 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1058)) 78) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 100)) (-3055 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 105)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -1503 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3055 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -1503 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1058)))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -576))
+((-1503 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1058)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-3055 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1096) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
+(-10 -7 (-15 -1503 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -3055 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -1503 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1058))))
+((-1503 (((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1058)) 79) (((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 18) (((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|)))) 34)) (-3055 (((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 21) (((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|)))) 42)))
+(((-577 |#1|) (-10 -7 (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|))))) (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3055 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|))))) (-15 -3055 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1058)))) (-421)) (T -577))
+((-1503 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-875 *6)))) (-5 *5 (-1058)) (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-875 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5))))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-875 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-875 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5))))))
+(-10 -7 (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-772 (-875 |#1|))))) (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-875 |#1|))) "failed"))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3055 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-765 (-875 |#1|))))) (-15 -3055 ((-765 (-377 (-875 |#1|))) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -1503 ((-3 (-772 (-377 (-875 |#1|))) "failed") (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))) (-1058))))
+((-1411 (((-3 (-1156 (-377 |#1|)) "failed") (-1156 |#2|) |#2|) 57 (-2477 (|has| |#1| (-333)))) (((-3 (-1156 |#1|) "failed") (-1156 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-3612 (((-107) (-1156 |#2|)) 30)) (-2230 (((-3 (-1156 |#1|) "failed") (-1156 |#2|)) 33)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3612 ((-107) (-1156 |#2|))) (-15 -2230 ((-3 (-1156 |#1|) "failed") (-1156 |#2|))) (IF (|has| |#1| (-333)) (-15 -1411 ((-3 (-1156 |#1|) "failed") (-1156 |#2|) |#2|)) (-15 -1411 ((-3 (-1156 (-377 |#1|)) "failed") (-1156 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
+((-1411 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 *5)) (-2477 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1156 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-1411 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1156 *5)) (-5 *1 (-578 *5 *4)))) (-2230 (*1 *2 *3) (|partial| -12 (-5 *3 (-1156 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1156 *4)) (-5 *1 (-578 *4 *5)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1156 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -3612 ((-107) (-1156 |#2|))) (-15 -2230 ((-3 (-1156 |#1|) "failed") (-1156 |#2|))) (IF (|has| |#1| (-333)) (-15 -1411 ((-3 (-1156 |#1|) "failed") (-1156 |#2|) |#2|)) (-15 -1411 ((-3 (-1156 (-377 |#1|)) "failed") (-1156 |#2|) |#2|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2306 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 35)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-579 |#1|) (-1187) (-962)) (T -579))
+((-2306 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-962)) (-5 *2 (-623 *4)))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1156 *1)) (-4 *1 (-579 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -2831 (-623 *5)) (|:| |vec| (-1156 *5)))))))
+(-13 (-962) (-10 -8 (-15 -2306 ((-623 |t#1|) (-623 $))) (-15 -2306 ((-2 (|:| -2831 (-623 |t#1|)) (|:| |vec| (-1156 |t#1|))) (-623 $) (-1156 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-1935 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1004) (-1110)) (T -580))
+((-1935 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1004)) (-4 *2 (-1110)) (-5 *1 (-580 *5 *2)))) (-1935 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1004)) (-4 *6 (-1110)) (-5 *1 (-580 *5 *6)))) (-1935 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1004)) (-4 *2 (-1110)) (-5 *1 (-580 *5 *2)))) (-1935 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1004)) (-4 *5 (-1110)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-1935 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1004)) (-4 *2 (-1110)) (-5 *1 (-580 *5 *2)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1004)) (-4 *6 (-1110)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
+(-10 -7 (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1935 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1935 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
+((-2499 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-1521 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-3308 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -2499 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3308 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1110) (-1110)) (T -581))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-581 *5 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1110)) (-4 *5 (-1110)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
+(-10 -7 (-15 -2499 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3308 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
+((-3308 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
+(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1110) (-1110) (-1110)) (T -582))
+((-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
+(-10 -7 (-15 -3308 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) NIL)) (-2584 ((|#1| $) NIL)) (-1540 (($ $) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3613 (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-2162 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-3953 (($ $ $) NIL (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "rest" $) NIL (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-2360 (($ $ $) 32 (|has| |#1| (-1004)))) (-2347 (($ $ $) 34 (|has| |#1| (-1004)))) (-2334 (($ $ $) 37 (|has| |#1| (-1004)))) (-3042 (($ (-1 (-107) |#1|) $) NIL)) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-2574 ((|#1| $) NIL)) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2437 (($ $) NIL) (($ $ (-703)) NIL)) (-3302 (($ $) NIL (|has| |#1| (-1004)))) (-2453 (($ $) 31 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) NIL (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) NIL)) (-1422 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1211 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004))) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-3889 (((-107) $) 9)) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2180 (($) 7)) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-1974 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3798 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 33 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2322 (($ |#1|) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1445 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2704 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3392 (((-107) $) NIL)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1123 (-517))) NIL) ((|#1| $ (-517)) 36) ((|#1| $ (-517) |#1|) NIL)) (-2093 (((-517) $ $) NIL)) (-2710 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-1657 (((-107) $) NIL)) (-3769 (($ $) NIL)) (-1457 (($ $) NIL (|has| $ (-6 -4191)))) (-3277 (((-703) $) NIL)) (-2573 (($ $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) 45 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-2993 (($ |#1| $) 10)) (-1718 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4108 (($ $ $) 30) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3719 (($ $ $) 11)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1964 (((-1058) $) 26 (|has| |#1| (-760))) (((-1058) $ (-107)) 27 (|has| |#1| (-760))) (((-1161) (-754) $) 28 (|has| |#1| (-760))) (((-1161) (-754) $ (-107)) 29 (|has| |#1| (-760)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2180 ($)) (-15 -3889 ((-107) $)) (-15 -2993 ($ |#1| $)) (-15 -3719 ($ $ $)) (IF (|has| |#1| (-1004)) (PROGN (-15 -2360 ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2334 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1110)) (T -583))
+((-2180 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1110)))) (-2993 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110)))) (-2360 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))) (-2347 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))) (-2334 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2180 ($)) (-15 -3889 ((-107) $)) (-15 -2993 ($ |#1| $)) (-15 -3719 ($ $ $)) (IF (|has| |#1| (-1004)) (PROGN (-15 -2360 ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2334 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|)))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2446 (($ |#1| |#1| $) 43)) (-2670 (((-107) $ (-703)) NIL)) (-3042 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-3302 (($ $) 45)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) 52 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 9 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 37)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) 46)) (-2704 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1785 ((|#1| $) 48)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 21)) (-1529 (($) 25)) (-1348 (((-107) $) 50)) (-2804 (((-583 (-2 (|:| -1860 |#1|) (|:| -4135 (-703)))) $) 59)) (-1494 (($) 23) (($ (-583 |#1|)) 18)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) 56 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 19)) (-3357 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-2269 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 22)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 61 (|has| |#1| (-1004)))) (-3533 (((-703) $) 16 (|has| $ (-6 -4190)))))
+(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4190) (-15 -1348 ((-107) $)) (-15 -2446 ($ |#1| |#1| $)))) (-1004)) (T -584))
+((-1348 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1004)))) (-2446 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1004)))))
+(-13 (-628 |#1|) (-10 -8 (-6 -4190) (-15 -1348 ((-107) $)) (-15 -2446 ($ |#1| |#1| $))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
+(((-585 |#1|) (-1187) (-969)) (T -585))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-969)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-1719 (((-703) $) 15)) (-3928 (($ $ |#1|) 55)) (-3182 (($ $) 32)) (-3173 (($ $) 31)) (-1837 (((-3 |#1| "failed") $) 47)) (-3232 ((|#1| $) NIL)) (-2752 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3158 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-3380 ((|#1| $ (-517)) 30)) (-1773 ((|#2| $ (-517)) 29)) (-2654 (($ (-1 |#1| |#1|) $) 34)) (-3034 (($ (-1 |#2| |#2|) $) 38)) (-1268 (($) 10)) (-3654 (($ |#1| |#2|) 22)) (-2467 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|)))) 23)) (-2089 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))) $) 13)) (-1749 (($ |#1| $) 56)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2843 (((-107) $ $) 58)) (-2254 (((-787) $) 19) (($ |#1|) 16)) (-1534 (((-107) $ $) 25)))
-(((-586 |#1| |#2| |#3|) (-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2089 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))) $)) (-15 -3654 ($ |#1| |#2|)) (-15 -2467 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))))) (-15 -1773 (|#2| $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3173 ($ $)) (-15 -3182 ($ $)) (-15 -1719 ((-703) $)) (-15 -1268 ($)) (-15 -3928 ($ $ |#1|)) (-15 -1749 ($ |#1| $)) (-15 -2752 ($ |#1| |#2| $)) (-15 -2752 ($ $ $)) (-15 -2843 ((-107) $ $)) (-15 -3034 ($ (-1 |#2| |#2|) $)) (-15 -2654 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586))
-((-3158 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-3654 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3173 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3182 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-1268 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3928 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1749 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2752 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2752 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2843 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-3034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-2654 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2089 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))) $)) (-15 -3654 ($ |#1| |#2|)) (-15 -2467 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2643 |#2|))))) (-15 -1773 (|#2| $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -3173 ($ $)) (-15 -3182 ($ $)) (-15 -1719 ((-703) $)) (-15 -1268 ($)) (-15 -3928 ($ $ |#1|)) (-15 -1749 ($ |#1| $)) (-15 -2752 ($ |#1| |#2| $)) (-15 -2752 ($ $ $)) (-15 -2843 ((-107) $ $)) (-15 -3034 ($ (-1 |#2| |#2|) $)) (-15 -2654 ($ (-1 |#1| |#1|) $))))
-((-3920 (((-517) $) 23)) (-2636 (($ |#2| $ (-517)) 21) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) 12)) (-4093 (((-107) (-517) $) 14)) (-2455 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-583 $)) NIL)))
-(((-587 |#1| |#2|) (-10 -8 (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -3920 ((-517) |#1|)) (-15 -2950 ((-583 (-517)) |#1|)) (-15 -4093 ((-107) (-517) |#1|))) (-588 |#2|) (-1109)) (T -587))
-NIL
-(-10 -8 (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -2455 (|#1| (-583 |#1|))) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -3920 ((-517) |#1|)) (-15 -2950 ((-583 (-517)) |#1|)) (-15 -4093 ((-107) (-517) |#1|)))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 70)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-588 |#1|) (-1185) (-1109)) (T -588))
-((-3475 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2455 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-1939 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))) (-2636 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) (-2412 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1122 (-517))) (|has| *1 (-6 -4184)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))))
-(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3475 ($ (-703) |t#1|)) (-15 -2455 ($ $ |t#1|)) (-15 -2455 ($ |t#1| $)) (-15 -2455 ($ $ $)) (-15 -2455 ($ (-583 $))) (-15 -1939 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1437 ($ $ (-1122 (-517)))) (-15 -3726 ($ $ (-517))) (-15 -3726 ($ $ (-1122 (-517)))) (-15 -2636 ($ |t#1| $ (-517))) (-15 -2636 ($ $ $ (-517))) (IF (|has| $ (-6 -4184)) (-15 -2412 (|t#1| $ (-1122 (-517)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1955 (((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) "failed") |#3| |#2| (-1074)) 43)))
-(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) "failed") |#3| |#2| (-1074))) (-15 -1955 ((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880)) (-593 |#2|)) (T -589))
-((-1955 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2080 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) "failed") |#3| |#2| (-1074))) (-15 -1955 ((-3 |#2| "failed") |#3| |#2| (-1074) |#2| (-583 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2859 (($ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ $) NIL (|has| |#1| (-333)))) (-3526 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-333)))) (-2094 (($ $ $) NIL (|has| |#1| (-333)))) (-2805 (($ $ $) NIL (|has| |#1| (-333)))) (-4008 (($ $ $) NIL (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-3469 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) NIL)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-3876 (((-703) $) NIL)) (-1917 (($ $ $) NIL (|has| |#1| (-333)))) (-3512 (($ $ $) NIL (|has| |#1| (-333)))) (-2819 (($ $ $) NIL (|has| |#1| (-333)))) (-1873 (($ $ $) NIL (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1437 ((|#1| $ |#1|) NIL)) (-3367 (($ $ $) NIL (|has| |#1| (-333)))) (-3625 (((-703) $) NIL)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-1695 ((|#1| $ |#1| |#1|) NIL)) (-3613 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($) NIL)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2397 (((-703) $) 15)) (-4104 (($ $ |#1|) 55)) (-1407 (($ $) 32)) (-1905 (($ $) 31)) (-3226 (((-3 |#1| "failed") $) 47)) (-3388 ((|#1| $) NIL)) (-2331 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-1927 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-3336 ((|#1| $ (-517)) 30)) (-3655 ((|#2| $ (-517)) 29)) (-1954 (($ (-1 |#1| |#1|) $) 34)) (-2849 (($ (-1 |#2| |#2|) $) 38)) (-2927 (($) 10)) (-2947 (($ |#1| |#2|) 22)) (-2891 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|)))) 23)) (-3087 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))) $) 13)) (-1287 (($ |#1| $) 56)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2143 (((-107) $ $) 58)) (-2269 (((-787) $) 19) (($ |#1|) 16)) (-1583 (((-107) $ $) 25)))
+(((-586 |#1| |#2| |#3|) (-13 (-1004) (-953 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3087 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))) $)) (-15 -2947 ($ |#1| |#2|)) (-15 -2891 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))))) (-15 -3655 (|#2| $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -1905 ($ $)) (-15 -1407 ($ $)) (-15 -2397 ((-703) $)) (-15 -2927 ($)) (-15 -4104 ($ $ |#1|)) (-15 -1287 ($ |#1| $)) (-15 -2331 ($ |#1| |#2| $)) (-15 -2331 ($ $ $)) (-15 -2143 ((-107) $ $)) (-15 -2849 ($ (-1 |#2| |#2|) $)) (-15 -1954 ($ (-1 |#1| |#1|) $)))) (-1004) (-23) |#2|) (T -586))
+((-1927 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-23)) (-14 *7 *6))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4))) (-2947 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4)))) (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-3655 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1004)) (-14 *5 *2))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1004)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1905 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-1407 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4))) (-2927 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-4104 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-1287 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-2331 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-2331 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23)) (-14 *4 *3))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1004) (-953 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3087 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))) $)) (-15 -2947 ($ |#1| |#2|)) (-15 -2891 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3868 |#2|))))) (-15 -3655 (|#2| $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -1905 ($ $)) (-15 -1407 ($ $)) (-15 -2397 ((-703) $)) (-15 -2927 ($)) (-15 -4104 ($ $ |#1|)) (-15 -1287 ($ |#1| $)) (-15 -2331 ($ |#1| |#2| $)) (-15 -2331 ($ $ $)) (-15 -2143 ((-107) $ $)) (-15 -2849 ($ (-1 |#2| |#2|) $)) (-15 -1954 ($ (-1 |#1| |#1|) $))))
+((-3979 (((-517) $) 24)) (-1745 (($ |#2| $ (-517)) 22) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) 12)) (-3536 (((-107) (-517) $) 15)) (-4108 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-583 $)) NIL)))
+(((-587 |#1| |#2|) (-10 -8 (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -3979 ((-517) |#1|)) (-15 -4121 ((-583 (-517)) |#1|)) (-15 -3536 ((-107) (-517) |#1|))) (-588 |#2|) (-1110)) (T -587))
+NIL
+(-10 -8 (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -4108 (|#1| (-583 |#1|))) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -3979 ((-517) |#1|)) (-15 -4121 ((-583 (-517)) |#1|)) (-15 -3536 ((-107) (-517) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 70)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-588 |#1|) (-1187) (-1110)) (T -588))
+((-3211 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-4108 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110)))) (-4108 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110)))) (-4108 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110)))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-3308 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-1745 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1110)))) (-1745 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))) (-2443 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1123 (-517))) (|has| *1 (-6 -4191)) (-4 *1 (-588 *2)) (-4 *2 (-1110)))))
+(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3211 ($ (-703) |t#1|)) (-15 -4108 ($ $ |t#1|)) (-15 -4108 ($ |t#1| $)) (-15 -4108 ($ $ $)) (-15 -4108 ($ (-583 $))) (-15 -3308 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2607 ($ $ (-1123 (-517)))) (-15 -3726 ($ $ (-517))) (-15 -3726 ($ $ (-1123 (-517)))) (-15 -1745 ($ |t#1| $ (-517))) (-15 -1745 ($ $ $ (-517))) (IF (|has| $ (-6 -4191)) (-15 -2443 (|t#1| $ (-1123 (-517)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2064 (((-3 |#2| "failed") |#3| |#2| (-1075) |#2| (-583 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) "failed") |#3| |#2| (-1075)) 43)))
+(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) "failed") |#3| |#2| (-1075))) (-15 -2064 ((-3 |#2| "failed") |#3| |#2| (-1075) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1096) (-881)) (-593 |#2|)) (T -589))
+((-2064 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1075)) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1096) (-881))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2062 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) "failed") |#3| |#2| (-1075))) (-15 -2064 ((-3 |#2| "failed") |#3| |#2| (-1075) |#2| (-583 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3535 (($ $) NIL (|has| |#1| (-333)))) (-2565 (($ $ $) NIL (|has| |#1| (-333)))) (-2009 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3344 (($ $ $) NIL (|has| |#1| (-333)))) (-4089 (($ $ $) NIL (|has| |#1| (-333)))) (-3170 (($ $ $) NIL (|has| |#1| (-333)))) (-1293 (($ $ $) NIL (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-1865 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) NIL)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-2210 (((-703) $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-333)))) (-1523 (($ $ $) NIL (|has| |#1| (-333)))) (-3064 (($ $ $) NIL (|has| |#1| (-333)))) (-3897 (($ $ $) NIL (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2607 ((|#1| $ |#1|) NIL)) (-2024 (($ $ $) NIL (|has| |#1| (-333)))) (-2769 (((-703) $) NIL)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) NIL)) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2374 ((|#1| $ |#1| |#1|) NIL)) (-1683 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($) NIL)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-590 |#1|) (-593 |#1|) (-207)) (T -590))
NIL
(-593 |#1|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2859 (($ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ $) NIL (|has| |#1| (-333)))) (-3526 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-333)))) (-2094 (($ $ $) NIL (|has| |#1| (-333)))) (-2805 (($ $ $) NIL (|has| |#1| (-333)))) (-4008 (($ $ $) NIL (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-3469 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) NIL)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-3876 (((-703) $) NIL)) (-1917 (($ $ $) NIL (|has| |#1| (-333)))) (-3512 (($ $ $) NIL (|has| |#1| (-333)))) (-2819 (($ $ $) NIL (|has| |#1| (-333)))) (-1873 (($ $ $) NIL (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1437 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3367 (($ $ $) NIL (|has| |#1| (-333)))) (-3625 (((-703) $) NIL)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-1695 ((|#1| $ |#1| |#1|) NIL)) (-3613 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($) NIL)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -1248 ($ $))))) (T -591))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3535 (($ $) NIL (|has| |#1| (-333)))) (-2565 (($ $ $) NIL (|has| |#1| (-333)))) (-2009 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3344 (($ $ $) NIL (|has| |#1| (-333)))) (-4089 (($ $ $) NIL (|has| |#1| (-333)))) (-3170 (($ $ $) NIL (|has| |#1| (-333)))) (-1293 (($ $ $) NIL (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-1865 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) NIL)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-2210 (((-703) $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-333)))) (-1523 (($ $ $) NIL (|has| |#1| (-333)))) (-3064 (($ $ $) NIL (|has| |#1| (-333)))) (-3897 (($ $ $) NIL (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2607 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2024 (($ $ $) NIL (|has| |#1| (-333)))) (-2769 (((-703) $) NIL)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) NIL)) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2374 ((|#1| $ |#1| |#1|) NIL)) (-1683 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($) NIL)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -2059 ($ $))))) (T -591))
NIL
(-13 (-593 |#1|) (-258 |#2| |#2|))
-((-2859 (($ $) 26)) (-3613 (($ $) 24)) (-2738 (($) 12)))
-(((-592 |#1| |#2|) (-10 -8 (-15 -2859 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -2738 (|#1|))) (-593 |#2|) (-961)) (T -592))
-NIL
-(-10 -8 (-15 -2859 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -2738 (|#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2859 (($ $) 82 (|has| |#1| (-333)))) (-3467 (($ $ $) 84 (|has| |#1| (-333)))) (-3526 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-2537 (($ $ $) 45 (|has| |#1| (-333)))) (-2094 (($ $ $) 46 (|has| |#1| (-333)))) (-2805 (($ $ $) 48 (|has| |#1| (-333)))) (-4008 (($ $ $) 43 (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 42 (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 47 (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3232 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1221 (($ $) 64)) (-3775 (((-3 $ "failed") $) 34)) (-2038 (($ $) 55 (|has| |#1| (-421)))) (-3469 (((-107) $) 31)) (-1336 (($ |#1| (-703)) 62)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57 (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 58 (|has| |#1| (-509)))) (-3876 (((-703) $) 66)) (-1917 (($ $ $) 52 (|has| |#1| (-333)))) (-3512 (($ $ $) 53 (|has| |#1| (-333)))) (-2819 (($ $ $) 41 (|has| |#1| (-333)))) (-1873 (($ $ $) 50 (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 49 (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 54 (|has| |#1| (-333)))) (-1193 ((|#1| $) 65)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1437 ((|#1| $ |#1|) 87)) (-3367 (($ $ $) 81 (|has| |#1| (-333)))) (-3625 (((-703) $) 67)) (-4128 ((|#1| $) 56 (|has| |#1| (-421)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-3165 (((-583 |#1|) $) 61)) (-4104 ((|#1| $ (-703)) 63)) (-1217 (((-703)) 29)) (-1695 ((|#1| $ |#1| |#1|) 60)) (-3613 (($ $) 85)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($) 86)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-593 |#1|) (-1185) (-961)) (T -593))
-((-2738 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-3613 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-3467 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) (-2859 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3367 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -2738 ($)) (-15 -3613 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3467 ($ $ $)) (-15 -3526 ($ $ (-703))) (-15 -2859 ($ $)) (-15 -3367 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-781 |#1|) . T))
-((-4006 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27)))) (-1376 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 71 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -1376 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1376 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -4006 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -594))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
-(-10 -7 (-15 -1376 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1376 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -4006 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2859 (($ $) NIL (|has| |#1| (-333)))) (-3467 (($ $ $) 28 (|has| |#1| (-333)))) (-3526 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-333)))) (-2094 (($ $ $) NIL (|has| |#1| (-333)))) (-2805 (($ $ $) NIL (|has| |#1| (-333)))) (-4008 (($ $ $) NIL (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-3469 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) NIL)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-3876 (((-703) $) NIL)) (-1917 (($ $ $) NIL (|has| |#1| (-333)))) (-3512 (($ $ $) NIL (|has| |#1| (-333)))) (-2819 (($ $ $) NIL (|has| |#1| (-333)))) (-1873 (($ $ $) NIL (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1437 ((|#1| $ |#1|) 24)) (-3367 (($ $ $) 33 (|has| |#1| (-333)))) (-3625 (((-703) $) NIL)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-1695 ((|#1| $ |#1| |#1|) 23)) (-3613 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 21 T CONST)) (-2411 (($) 8 T CONST)) (-2738 (($) NIL)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-595 |#1| |#2|) (-593 |#1|) (-961) (-1 |#1| |#1|)) (T -595))
+((-3535 (($ $) 27)) (-1683 (($ $) 25)) (-3340 (($) 12)))
+(((-592 |#1| |#2|) (-10 -8 (-15 -3535 (|#1| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 -3340 (|#1|))) (-593 |#2|) (-962)) (T -592))
+NIL
+(-10 -8 (-15 -3535 (|#1| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 -3340 (|#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3535 (($ $) 82 (|has| |#1| (-333)))) (-2565 (($ $ $) 84 (|has| |#1| (-333)))) (-2009 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3344 (($ $ $) 45 (|has| |#1| (-333)))) (-4089 (($ $ $) 46 (|has| |#1| (-333)))) (-3170 (($ $ $) 48 (|has| |#1| (-333)))) (-1293 (($ $ $) 43 (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 42 (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 47 (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) 74 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3388 (((-517) $) 75 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 68)) (-2371 (($ $) 64)) (-3163 (((-3 $ "failed") $) 34)) (-2186 (($ $) 55 (|has| |#1| (-421)))) (-1865 (((-107) $) 31)) (-2077 (($ |#1| (-703)) 62)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57 (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 58 (|has| |#1| (-509)))) (-2210 (((-703) $) 66)) (-2995 (($ $ $) 52 (|has| |#1| (-333)))) (-1523 (($ $ $) 53 (|has| |#1| (-333)))) (-3064 (($ $ $) 41 (|has| |#1| (-333)))) (-3897 (($ $ $) 50 (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 49 (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 54 (|has| |#1| (-333)))) (-2345 ((|#1| $) 65)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-2607 ((|#1| $ |#1|) 87)) (-2024 (($ $ $) 81 (|has| |#1| (-333)))) (-2769 (((-703) $) 67)) (-2035 ((|#1| $) 56 (|has| |#1| (-421)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) 70)) (-2907 (((-583 |#1|) $) 61)) (-3952 ((|#1| $ (-703)) 63)) (-2950 (((-703)) 29)) (-2374 ((|#1| $ |#1| |#1|) 60)) (-1683 (($ $) 85)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($) 86)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-593 |#1|) (-1187) (-962)) (T -593))
+((-3340 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)))) (-1683 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)))) (-2565 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-962)) (-4 *3 (-333)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-2024 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -3340 ($)) (-15 -1683 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -2565 ($ $ $)) (-15 -2009 ($ $ (-703))) (-15 -3535 ($ $)) (-15 -2024 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-781 |#1|) . T))
+((-3530 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 73 (|has| |#1| (-27)))) (-3866 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -3866 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3866 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3530 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))) (-1132 |#1|)) (T -594))
+((-3530 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
+(-10 -7 (-15 -3866 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3866 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -3530 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3535 (($ $) NIL (|has| |#1| (-333)))) (-2565 (($ $ $) 28 (|has| |#1| (-333)))) (-2009 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3344 (($ $ $) NIL (|has| |#1| (-333)))) (-4089 (($ $ $) NIL (|has| |#1| (-333)))) (-3170 (($ $ $) NIL (|has| |#1| (-333)))) (-1293 (($ $ $) NIL (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-1865 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) NIL)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-2210 (((-703) $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-333)))) (-1523 (($ $ $) NIL (|has| |#1| (-333)))) (-3064 (($ $ $) NIL (|has| |#1| (-333)))) (-3897 (($ $ $) NIL (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2607 ((|#1| $ |#1|) 24)) (-2024 (($ $ $) 33 (|has| |#1| (-333)))) (-2769 (((-703) $) NIL)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) NIL)) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2374 ((|#1| $ |#1| |#1|) 23)) (-1683 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 21 T CONST)) (-3617 (($) 8 T CONST)) (-3340 (($) NIL)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-595 |#1| |#2|) (-593 |#1|) (-962) (-1 |#1| |#1|)) (T -595))
NIL
(-593 |#1|)
-((-3467 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3526 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 42)) (-3367 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -3467 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3526 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -3367 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
-((-3367 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3526 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-3467 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(-10 -7 (-15 -3467 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3526 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -3367 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2403 (($ $ $) 9)))
-(((-597 |#1|) (-10 -8 (-15 -2403 (|#1| |#1| |#1|))) (-598)) (T -597))
-NIL
-(-10 -8 (-15 -2403 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1522 (($ $) 10)) (-2403 (($ $ $) 8)) (-1534 (((-107) $ $) 6)) (-2392 (($ $ $) 9)))
-(((-598) (-1185)) (T -598))
-((-1522 (*1 *1 *1) (-4 *1 (-598))) (-2392 (*1 *1 *1 *1) (-4 *1 (-598))) (-2403 (*1 *1 *1 *1) (-4 *1 (-598))))
-(-13 (-97) (-10 -8 (-15 -1522 ($ $)) (-15 -2392 ($ $ $)) (-15 -2403 ($ $ $))))
+((-2565 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-2009 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 41)) (-2024 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -2565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2009 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2024 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
+((-2024 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-2009 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-2565 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(-10 -7 (-15 -2565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2009 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2024 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3815 (($ $ $) 9)))
+(((-597 |#1|) (-10 -8 (-15 -3815 (|#1| |#1| |#1|))) (-598)) (T -597))
+NIL
+(-10 -8 (-15 -3815 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-3621 (($ $) 10)) (-3815 (($ $ $) 8)) (-1583 (((-107) $ $) 6)) (-3803 (($ $ $) 9)))
+(((-598) (-1187)) (T -598))
+((-3621 (*1 *1 *1) (-4 *1 (-598))) (-3803 (*1 *1 *1 *1) (-4 *1 (-598))) (-3815 (*1 *1 *1 *1) (-4 *1 (-598))))
+(-13 (-97) (-10 -8 (-15 -3621 ($ $)) (-15 -3803 ($ $ $)) (-15 -3815 ($ $ $))))
(((-97) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 15)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1842 ((|#1| $) 21)) (-4055 (($ $ $) NIL (|has| |#1| (-723)))) (-3105 (($ $ $) NIL (|has| |#1| (-723)))) (-1277 (((-1057) $) 46)) (-3214 (((-1021) $) NIL)) (-1852 ((|#3| $) 22)) (-2254 (((-787) $) 42)) (-2398 (($) 10 T CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1534 (((-107) $ $) 20)) (-1585 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1558 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1678 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1663 (($ $) 17) (($ $ $) NIL)) (-1645 (($ $ $) 27)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1678 ($ $ |#3|)) (-15 -1678 ($ |#1| |#3|)) (-15 -1842 (|#1| $)) (-15 -1852 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
-((-1678 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1678 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1842 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1852 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
-(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1678 ($ $ |#3|)) (-15 -1678 ($ |#1| |#3|)) (-15 -1842 (|#1| $)) (-15 -1852 (|#3| $))))
-((-3917 (((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|)) 33)))
-(((-600 |#1|) (-10 -7 (-15 -3917 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|)))) (-831)) (T -600))
-((-3917 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
-(-10 -7 (-15 -3917 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3556 (((-583 |#1|) $) 82)) (-3985 (($ $ (-703)) 90)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2760 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 48)) (-1837 (((-3 (-608 |#1|) "failed") $) NIL)) (-3232 (((-608 |#1|) $) NIL)) (-1221 (($ $) 89)) (-3604 (((-703) $) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ (-608 |#1|) |#2|) 68)) (-3372 (($ $) 86)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-4091 (((-1176 |#1| |#2|) (-1176 |#1| |#2|) $) 47)) (-1802 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1687 (((-608 |#1|) $) NIL)) (-1193 ((|#2| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2049 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-3625 (((-703) $) 88)) (-2272 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 77) (($ (-608 |#1|) $) 75) (($ $ (-608 |#1|)) 76)) (-2254 (((-787) $) NIL) (($ |#1|) 74) (((-1167 |#1| |#2|) $) 58) (((-1176 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-608 |#1|)) NIL)) (-1965 ((|#2| (-1176 |#1| |#2|) $) 43)) (-2398 (($) 23 T CONST)) (-1503 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3942 (((-3 $ "failed") (-1167 |#1| |#2|)) 60)) (-2582 (($ (-608 |#1|)) 14)) (-1534 (((-107) $ $) 44)) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) 66) (($ $ $) NIL)) (-1645 (($ $ $) 29)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
-(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -3942 ((-3 $ "failed") (-1167 |#1| |#2|))) (-15 -2272 ($ (-608 |#1|) (-608 |#1|))) (-15 -2272 ($ (-608 |#1|) $)) (-15 -2272 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
-((-3942 (*1 *1 *2) (|partial| -12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2272 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
-(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -3942 ((-3 $ "failed") (-1167 |#1| |#2|))) (-15 -2272 ($ (-608 |#1|) (-608 |#1|))) (-15 -2272 ($ (-608 |#1|) $)) (-15 -2272 ($ $ (-608 |#1|)))))
-((-3753 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-3500 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2975 (($ (-1 (-107) |#2|) $) 27)) (-3182 (($ $) 55)) (-3439 (($ $) 62)) (-1835 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-1292 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2624 (((-517) |#2| $ (-517)) 60) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 46)) (-3475 (($ (-703) |#2|) 53)) (-2931 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-1676 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1939 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-1619 (($ |#2|) 14)) (-3676 (($ $ $ (-517)) 35) (($ |#2| $ (-517)) 33)) (-3222 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-1415 (($ $ (-1122 (-517))) 43) (($ $ (-517)) 37)) (-2878 (($ $ $ (-517)) 59)) (-2435 (($ $) 57)) (-1558 (((-107) $ $) 64)))
-(((-602 |#1| |#2|) (-10 -8 (-15 -1619 (|#1| |#2|)) (-15 -1415 (|#1| |#1| (-517))) (-15 -1415 (|#1| |#1| (-1122 (-517)))) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3676 (|#1| |#2| |#1| (-517))) (-15 -3676 (|#1| |#1| |#1| (-517))) (-15 -2931 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2975 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -1676 (|#1| |#1| |#1|)) (-15 -3753 ((-107) |#1|)) (-15 -2878 (|#1| |#1| |#1| (-517))) (-15 -3182 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3475 (|#1| (-703) |#2|)) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|))) (-603 |#2|) (-1109)) (T -602))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#2|)) (-15 -1415 (|#1| |#1| (-517))) (-15 -1415 (|#1| |#1| (-1122 (-517)))) (-15 -1835 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3676 (|#1| |#2| |#1| (-517))) (-15 -3676 (|#1| |#1| |#1| (-517))) (-15 -2931 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2975 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1835 (|#1| |#2| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|)) (-15 -1676 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3753 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2624 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2624 ((-517) |#2| |#1|)) (-15 -2624 ((-517) |#2| |#1| (-517))) (-15 -1676 (|#1| |#1| |#1|)) (-15 -3753 ((-107) |#1|)) (-15 -2878 (|#1| |#1| |#1| (-517))) (-15 -3182 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1292 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3222 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3475 (|#1| (-703) |#2|)) (-15 -1939 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 (|#1| |#1|)))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3026 ((|#1| $) 65)) (-2811 (($ $) 67)) (-2787 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-3753 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-3500 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4184)))) (-4044 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-1326 (($ $ $) 56 (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2975 (($ (-1 (-107) |#1|) $) 129)) (-3555 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4183)))) (-3013 ((|#1| $) 66)) (-2706 (($) 7 T CONST)) (-3182 (($ $) 144 (|has| $ (-6 -4184)))) (-3173 (($ $) 134)) (-1761 (($ $) 73) (($ $ (-703)) 71)) (-3439 (($ $) 131 (|has| |#1| (-1003)))) (-1783 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 130 (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 125)) (-2050 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4183))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3705 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 87)) (-3295 (((-107) $) 83)) (-2624 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1003))) (((-517) |#1| $) 138 (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) 137)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) 108)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 95 (|has| (-517) (-779)))) (-4055 (($ $ $) 147 (|has| |#1| (-779)))) (-2931 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-1676 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 94 (|has| (-517) (-779)))) (-3105 (($ $ $) 148 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1619 (($ |#1|) 122)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2067 ((|#1| $) 70) (($ $ (-703)) 68)) (-3676 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-2636 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2950 (((-583 (-517)) $) 92)) (-4093 (((-107) (-517) $) 91)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 76) (($ $ (-703)) 74)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2880 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-1556 (((-107) $) 84)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 90)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3792 (((-517) $ $) 44)) (-1415 (($ $ (-1122 (-517))) 124) (($ $ (-517)) 123)) (-3726 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-1985 (((-107) $) 46)) (-2849 (($ $) 62)) (-3825 (($ $) 59 (|has| $ (-6 -4184)))) (-2077 (((-703) $) 63)) (-2334 (($ $) 64)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 143 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 107)) (-1819 (($ $ $) 61) (($ $ |#1|) 60)) (-2455 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 152 (|has| |#1| (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-603 |#1|) (-1185) (-1109)) (T -603))
-((-1619 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1109)))))
-(-13 (-1048 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -1619 ($ |t#1|))))
-(((-33) . T) ((-97) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-926 |#1|) . T) ((-1003) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1048 |#1|) . T) ((-1109) . T) ((-1143 |#1|) . T))
-((-1955 (((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)) 13)) (-3334 (((-703) (-623 |#1|) (-1154 |#1|)) 29)) (-3238 (((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|)) 23)) (-3698 (((-107) (-623 |#1|) (-1154 |#1|)) 26)))
-(((-604 |#1|) (-10 -7 (-15 -1955 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))) (-15 -1955 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|))) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|)))) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|)))) (-15 -3238 ((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|))) (-15 -3698 ((-107) (-623 |#1|) (-1154 |#1|))) (-15 -3334 ((-703) (-623 |#1|) (-1154 |#1|)))) (-333)) (T -604))
-((-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-3238 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1154 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))))
-(-10 -7 (-15 -1955 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))) (-15 -1955 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-583 (-583 |#1|)) (-1154 |#1|))) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-623 |#1|) (-583 (-1154 |#1|)))) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|))))) (-583 (-583 |#1|)) (-583 (-1154 |#1|)))) (-15 -3238 ((-3 (-1154 |#1|) "failed") (-623 |#1|) (-1154 |#1|))) (-15 -3698 ((-107) (-623 |#1|) (-1154 |#1|))) (-15 -3334 ((-703) (-623 |#1|) (-1154 |#1|))))
-((-1955 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|) 45)) (-3334 (((-703) |#4| |#3|) 17)) (-3238 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3698 (((-107) |#4| |#3|) 13)))
-(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1955 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|)) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3238 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3698 ((-107) |#4| |#3|)) (-15 -3334 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4184))) (-13 (-343 |#1|) (-10 -7 (-6 -4184))) (-621 |#1| |#2| |#3|)) (T -605))
-((-3334 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3238 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1955 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2080 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1955 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(-10 -7 (-15 -1955 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|)) (-15 -1955 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3238 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3698 ((-107) |#4| |#3|)) (-15 -3334 ((-703) |#4| |#3|)))
-((-2234 (((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -2080 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 44)))
-(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2234 ((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -2080 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -606))
-((-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 (-377 *8)) "failed")) (|:| -2080 (-583 (-1154 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2234 ((-2 (|:| |particular| (-3 (-1154 (-377 |#4|)) "failed")) (|:| -2080 (-583 (-1154 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1346 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1462 ((|#2| $) NIL)) (-1545 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2507 (((-1154 (-623 |#2|))) NIL) (((-1154 (-623 |#2|)) (-1154 $)) NIL)) (-3323 (((-107) $) NIL)) (-3118 (((-1154 $)) 37)) (-3552 (((-107) $ (-703)) NIL)) (-3511 (($ |#2|) NIL)) (-2706 (($) NIL T CONST)) (-2889 (($ $) NIL (|has| |#2| (-278)))) (-3193 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2342 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-2588 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2318 (((-623 |#2|)) NIL) (((-623 |#2|) (-1154 $)) NIL)) (-2571 ((|#2| $) NIL)) (-3981 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1154 $)) NIL)) (-1930 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-1559 (((-1070 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-3132 (($ $ (-843)) NIL)) (-2831 ((|#2| $) NIL)) (-2775 (((-1070 |#2|) $) NIL (|has| |#2| (-509)))) (-1618 ((|#2|) NIL) ((|#2| (-1154 $)) NIL)) (-2961 (((-1070 |#2|) $) NIL)) (-2622 (((-107)) NIL)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-4047 (($ (-1154 |#2|)) NIL) (($ (-1154 |#2|) (-1154 $)) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3334 (((-703) $) NIL (|has| |#2| (-509))) (((-843)) 38)) (-3537 ((|#2| $ (-517) (-517)) NIL)) (-3241 (((-107)) NIL)) (-3363 (($ $ (-843)) NIL)) (-3240 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL)) (-2879 (((-703) $) NIL (|has| |#2| (-509)))) (-1735 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1259 (((-703) $) NIL)) (-3762 (((-107)) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-3157 ((|#2| $) NIL (|has| |#2| (-6 (-4185 "*"))))) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-1884 (($ (-583 (-583 |#2|))) NIL)) (-3696 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-583 (-583 |#2|)) $) NIL)) (-2765 (((-107)) NIL)) (-4079 (((-107)) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3658 (((-3 (-2 (|:| |particular| $) (|:| -2080 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1202 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1968 (((-623 |#2|)) NIL) (((-623 |#2|) (-1154 $)) NIL)) (-1385 ((|#2| $) NIL)) (-2790 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1154 $)) NIL)) (-3174 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-1638 (((-1070 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-2184 (($ $ (-843)) NIL)) (-3368 ((|#2| $) NIL)) (-3018 (((-1070 |#2|) $) NIL (|has| |#2| (-509)))) (-2478 ((|#2|) NIL) ((|#2| (-1154 $)) NIL)) (-4020 (((-1070 |#2|) $) NIL)) (-1816 (((-107)) NIL)) (-1277 (((-1057) $) NIL)) (-3499 (((-107)) NIL)) (-2220 (((-107)) NIL)) (-2268 (((-107)) NIL)) (-1779 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-3214 (((-1021) $) NIL)) (-2836 (((-107)) NIL)) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3029 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-1248 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2084 ((|#2| $) NIL)) (-3970 (($ (-583 |#2|)) NIL)) (-3402 (((-107) $) NIL)) (-2025 (((-214 |#1| |#2|) $) NIL)) (-1358 ((|#2| $) NIL (|has| |#2| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2435 (($ $) NIL)) (-3589 (((-623 |#2|) (-1154 $)) NIL) (((-1154 |#2|) $) NIL) (((-623 |#2|) (-1154 $) (-1154 $)) NIL) (((-1154 |#2|) $ (-1154 $)) 25)) (-3667 (($ (-1154 |#2|)) NIL) (((-1154 |#2|) $) NIL)) (-3346 (((-583 (-874 |#2|))) NIL) (((-583 (-874 |#2|)) (-1154 $)) NIL)) (-2901 (($ $ $) NIL)) (-3484 (((-107)) NIL)) (-2939 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) 36)) (-2360 (((-583 (-1154 |#2|))) NIL (|has| |#2| (-509)))) (-3950 (($ $ $ $) NIL)) (-2534 (((-107)) NIL)) (-1695 (($ (-623 |#2|) $) NIL)) (-2258 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-2145 (($ $ $) NIL)) (-1669 (((-107)) NIL)) (-3610 (((-107)) NIL)) (-3558 (((-107)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-607 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-843) (-156)) (T -607))
-NIL
-(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
-((-1587 (((-107) $ $) NIL)) (-3556 (((-583 |#1|) $) NIL)) (-3633 (($ $) 50)) (-2874 (((-107) $) NIL)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-3266 (((-3 $ "failed") (-751 |#1|)) 22)) (-3784 (((-107) (-751 |#1|)) 14)) (-1901 (($ (-751 |#1|)) 23)) (-1223 (((-107) $ $) 28)) (-1631 (((-843) $) 35)) (-3623 (($ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1376 (((-583 $) (-751 |#1|)) 16)) (-2254 (((-787) $) 41) (($ |#1|) 32) (((-751 |#1|) $) 37) (((-612 |#1|) $) 42)) (-1891 (((-57 (-583 $)) (-583 |#1|) (-843)) 55)) (-2573 (((-583 $) (-583 |#1|) (-843)) 57)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 51)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 36)))
-(((-608 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 -2874 ((-107) $)) (-15 -3623 ($ $)) (-15 -3633 ($ $)) (-15 -1631 ((-843) $)) (-15 -1223 ((-107) $ $)) (-15 -2254 ((-751 |#1|) $)) (-15 -2254 ((-612 |#1|) $)) (-15 -1376 ((-583 $) (-751 |#1|))) (-15 -3784 ((-107) (-751 |#1|))) (-15 -1901 ($ (-751 |#1|))) (-15 -3266 ((-3 $ "failed") (-751 |#1|))) (-15 -3556 ((-583 |#1|) $)) (-15 -1891 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2573 ((-583 $) (-583 |#1|) (-843))))) (-779)) (T -608))
-((-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3623 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-1223 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3266 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(-13 (-779) (-952 |#1|) (-10 -8 (-15 -2874 ((-107) $)) (-15 -3623 ($ $)) (-15 -3633 ($ $)) (-15 -1631 ((-843) $)) (-15 -1223 ((-107) $ $)) (-15 -2254 ((-751 |#1|) $)) (-15 -2254 ((-612 |#1|) $)) (-15 -1376 ((-583 $) (-751 |#1|))) (-15 -3784 ((-107) (-751 |#1|))) (-15 -1901 ($ (-751 |#1|))) (-15 -3266 ((-3 $ "failed") (-751 |#1|))) (-15 -3556 ((-583 |#1|) $)) (-15 -1891 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2573 ((-583 $) (-583 |#1|) (-843)))))
-((-3207 ((|#2| $) 76)) (-2811 (($ $) 96)) (-3552 (((-107) $ (-703)) 26)) (-1761 (($ $) 85) (($ $ (-703)) 88)) (-3295 (((-107) $) 97)) (-3883 (((-583 $) $) 72)) (-4082 (((-107) $ $) 71)) (-2629 (((-107) $ (-703)) 24)) (-1739 (((-517) $) 46)) (-3920 (((-517) $) 45)) (-2026 (((-107) $ (-703)) 22)) (-2284 (((-107) $) 74)) (-2067 ((|#2| $) 89) (($ $ (-703)) 92)) (-2636 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-2950 (((-583 (-517)) $) 44)) (-4093 (((-107) (-517) $) 42)) (-1750 ((|#2| $) NIL) (($ $ (-703)) 84)) (-2204 (($ $ (-517)) 99)) (-1556 (((-107) $) 98)) (-3029 (((-107) (-1 (-107) |#2|) $) 32)) (-3949 (((-583 |#2|) $) 33)) (-1437 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1122 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-3792 (((-517) $ $) 70)) (-3726 (($ $ (-1122 (-517))) 57) (($ $ (-517)) 51)) (-1985 (((-107) $) 66)) (-2849 (($ $) 81)) (-2077 (((-703) $) 80)) (-2334 (($ $) 79)) (-2272 (($ (-583 |#2|)) 37)) (-1486 (($ $) 100)) (-2125 (((-583 $) $) 69)) (-2432 (((-107) $ $) 68)) (-2258 (((-107) (-1 (-107) |#2|) $) 31)) (-1534 (((-107) $ $) 18)) (-2290 (((-703) $) 29)))
-(((-609 |#1| |#2|) (-10 -8 (-15 -1486 (|#1| |#1|)) (-15 -2204 (|#1| |#1| (-517))) (-15 -3295 ((-107) |#1|)) (-15 -1556 ((-107) |#1|)) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -3949 ((-583 |#2|) |#1|)) (-15 -4093 ((-107) (-517) |#1|)) (-15 -2950 ((-583 (-517)) |#1|)) (-15 -3920 ((-517) |#1|)) (-15 -1739 ((-517) |#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2849 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2067 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "last")) (-15 -2067 (|#2| |#1|)) (-15 -1761 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| "rest")) (-15 -1761 (|#1| |#1|)) (-15 -1750 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "first")) (-15 -1750 (|#2| |#1|)) (-15 -4082 ((-107) |#1| |#1|)) (-15 -2432 ((-107) |#1| |#1|)) (-15 -3792 ((-517) |#1| |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3207 (|#2| |#1|)) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703)))) (-610 |#2|) (-1109)) (T -609))
-NIL
-(-10 -8 (-15 -1486 (|#1| |#1|)) (-15 -2204 (|#1| |#1| (-517))) (-15 -3295 ((-107) |#1|)) (-15 -1556 ((-107) |#1|)) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -3949 ((-583 |#2|) |#1|)) (-15 -4093 ((-107) (-517) |#1|)) (-15 -2950 ((-583 (-517)) |#1|)) (-15 -3920 ((-517) |#1|)) (-15 -1739 ((-517) |#1|)) (-15 -2272 (|#1| (-583 |#2|))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1122 (-517)))) (-15 -2636 (|#1| |#2| |#1| (-517))) (-15 -2636 (|#1| |#1| |#1| (-517))) (-15 -2849 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2067 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "last")) (-15 -2067 (|#2| |#1|)) (-15 -1761 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| "rest")) (-15 -1761 (|#1| |#1|)) (-15 -1750 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "first")) (-15 -1750 (|#2| |#1|)) (-15 -4082 ((-107) |#1| |#1|)) (-15 -2432 ((-107) |#1| |#1|)) (-15 -3792 ((-517) |#1| |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3207 (|#2| |#1|)) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -3029 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3026 ((|#1| $) 65)) (-2811 (($ $) 67)) (-2787 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-1326 (($ $ $) 56 (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 102)) (-3013 ((|#1| $) 66)) (-2706 (($) 7 T CONST)) (-1332 (($ $) 124)) (-1761 (($ $) 73) (($ $ (-703)) 71)) (-1783 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 103)) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3705 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 87)) (-3295 (((-107) $) 83)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-1339 (((-703) $) 123)) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) 108)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 95 (|has| (-517) (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 94 (|has| (-517) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1712 (($ $) 126)) (-2927 (((-107) $) 127)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2067 ((|#1| $) 70) (($ $ (-703)) 68)) (-2636 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2950 (((-583 (-517)) $) 92)) (-4093 (((-107) (-517) $) 91)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3095 ((|#1| $) 125)) (-1750 ((|#1| $) 76) (($ $ (-703)) 74)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2880 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-2204 (($ $ (-517)) 122)) (-1556 (((-107) $) 84)) (-2733 (((-107) $) 128)) (-3339 (((-107) $) 129)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 90)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3792 (((-517) $ $) 44)) (-3726 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-1985 (((-107) $) 46)) (-2849 (($ $) 62)) (-3825 (($ $) 59 (|has| $ (-6 -4184)))) (-2077 (((-703) $) 63)) (-2334 (($ $) 64)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 107)) (-1819 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2455 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-1486 (($ $) 121)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-610 |#1|) (-1185) (-1109)) (T -610))
-((-2050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-3555 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-1712 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) (-1339 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
-(-13 (-1048 |t#1|) (-10 -8 (-15 -2050 ($ (-1 (-107) |t#1|) $)) (-15 -3555 ($ (-1 (-107) |t#1|) $)) (-15 -3339 ((-107) $)) (-15 -2733 ((-107) $)) (-15 -2927 ((-107) $)) (-15 -1712 ($ $)) (-15 -3095 (|t#1| $)) (-15 -1332 ($ $)) (-15 -1339 ((-703) $)) (-15 -2204 ($ $ (-517))) (-15 -1486 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1048 |#1|) . T) ((-1109) . T) ((-1143 |#1|) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3959 (($ (-703) (-703) (-703)) 33 (|has| |#1| (-961)))) (-3552 (((-107) $ (-703)) NIL)) (-1504 ((|#1| $ (-703) (-703) (-703) |#1|) 27)) (-2706 (($) NIL T CONST)) (-2752 (($ $ $) 37 (|has| |#1| (-961)))) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3598 (((-1154 (-703)) $) 8)) (-1240 (($ (-1074) $ $) 22)) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-4074 (($ (-703)) 35 (|has| |#1| (-961)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-703) (-703) (-703)) 25)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2272 (($ (-583 (-583 (-583 |#1|)))) 44)) (-2254 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-879 (-879 (-879 |#1|)))) 15) (((-879 (-879 (-879 |#1|))) $) 12)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3959 ($ (-703) (-703) (-703))) (-15 -4074 ($ (-703))) (-15 -2752 ($ $ $))) |%noBranch|) (-15 -2272 ($ (-583 (-583 (-583 |#1|))))) (-15 -1437 (|#1| $ (-703) (-703) (-703))) (-15 -1504 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2254 ($ (-879 (-879 (-879 |#1|))))) (-15 -2254 ((-879 (-879 (-879 |#1|))) $)) (-15 -1240 ($ (-1074) $ $)) (-15 -3598 ((-1154 (-703)) $)))) (-1003)) (T -611))
-((-3959 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-4074 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-2752 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-1437 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-1504 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-1240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1154 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3959 ($ (-703) (-703) (-703))) (-15 -4074 ($ (-703))) (-15 -2752 ($ $ $))) |%noBranch|) (-15 -2272 ($ (-583 (-583 (-583 |#1|))))) (-15 -1437 (|#1| $ (-703) (-703) (-703))) (-15 -1504 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2254 ($ (-879 (-879 (-879 |#1|))))) (-15 -2254 ((-879 (-879 (-879 |#1|))) $)) (-15 -1240 ($ (-1074) $ $)) (-15 -3598 ((-1154 (-703)) $))))
-((-1587 (((-107) $ $) NIL)) (-3556 (((-583 |#1|) $) 14)) (-3633 (($ $) 18)) (-2874 (((-107) $) 19)) (-1837 (((-3 |#1| "failed") $) 22)) (-3232 ((|#1| $) 20)) (-1761 (($ $) 36)) (-3372 (($ $) 24)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1223 (((-107) $ $) 41)) (-1631 (((-843) $) 38)) (-3623 (($ $) 17)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 ((|#1| $) 35)) (-2254 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 12)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 40)) (* (($ $ $) 34)))
-(((-612 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2254 ((-751 |#1|) $)) (-15 -1750 (|#1| $)) (-15 -3623 ($ $)) (-15 -1631 ((-843) $)) (-15 -1223 ((-107) $ $)) (-15 -3372 ($ $)) (-15 -1761 ($ $)) (-15 -2874 ((-107) $)) (-15 -3633 ($ $)) (-15 -3556 ((-583 |#1|) $)))) (-779)) (T -612))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1750 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3623 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1223 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1761 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2254 ((-751 |#1|) $)) (-15 -1750 (|#1| $)) (-15 -3623 ($ $)) (-15 -1631 ((-843) $)) (-15 -1223 ((-107) $ $)) (-15 -3372 ($ $)) (-15 -1761 ($ $)) (-15 -2874 ((-107) $)) (-15 -3633 ($ $)) (-15 -3556 ((-583 |#1|) $))))
-((-1700 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-2163 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
-(((-613 |#1|) (-10 -7 (-15 -2163 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -1700 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1003)) (T -613))
-((-1700 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
-(-10 -7 (-15 -2163 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -1700 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
-((-2235 ((|#2| |#1| |#2|) 9)) (-2224 ((|#1| |#1| |#2|) 8)))
-(((-614 |#1| |#2|) (-10 -7 (-15 -2224 (|#1| |#1| |#2|)) (-15 -2235 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -614))
-((-2235 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2224 (|#1| |#1| |#2|)) (-15 -2235 (|#2| |#1| |#2|)))
-((-2034 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -2034 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -615))
-((-2034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
-(-10 -7 (-15 -2034 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1700 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3774 (((-1 |#1|) |#1|) 8)) (-3429 ((|#1| |#1|) 16)) (-3948 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2254 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
-(((-616 |#1|) (-10 -7 (-15 -3774 ((-1 |#1|) |#1|)) (-15 -2254 ((-1 |#1|) |#1|)) (-15 -3948 (|#1| (-1 |#1| |#1|))) (-15 -3948 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3429 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -1700 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1003)) (T -616))
-((-1700 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) (-3429 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) (-3774 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -3774 ((-1 |#1|) |#1|)) (-15 -2254 ((-1 |#1|) |#1|)) (-15 -3948 (|#1| (-1 |#1| |#1|))) (-15 -3948 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3429 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -1700 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
-((-3485 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1759 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2497 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2175 (((-1 |#2| |#1|) |#2|) 11)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -2175 ((-1 |#2| |#1|) |#2|)) (-15 -1759 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3485 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -617))
-((-3485 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-2175 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2175 ((-1 |#2| |#1|) |#2|)) (-15 -1759 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3485 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2971 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3616 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1573 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2064 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3616 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1573 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2064 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2971 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -618))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))) (-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(-10 -7 (-15 -3616 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1573 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2064 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2971 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-1292 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1939 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1939 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1939 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1292 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-961) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
-((-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-1939 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
-(-10 -7 (-15 -1939 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1939 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1292 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3597 (($ (-703) (-703)) 31)) (-4094 (($ $ $) 54)) (-3860 (($ |#3|) 50) (($ $) 51)) (-1545 (((-107) $) 26)) (-3128 (($ $ (-517) (-517)) 56)) (-1898 (($ $ (-517) (-517)) 57)) (-4143 (($ $ (-517) (-517) (-517) (-517)) 61)) (-1886 (($ $) 52)) (-3323 (((-107) $) 14)) (-1495 (($ $ (-517) (-517) $) 62)) (-2412 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 60)) (-3511 (($ (-703) |#2|) 36)) (-1884 (($ (-583 (-583 |#2|))) 34)) (-3418 (((-583 (-583 |#2|)) $) 55)) (-3885 (($ $ $) 53)) (-2483 (((-3 $ "failed") $ |#2|) 89)) (-1437 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 59)) (-3970 (($ (-583 |#2|)) 38) (($ (-583 $)) 40)) (-3402 (((-107) $) 23)) (-2254 (((-787) $) NIL) (($ |#4|) 45)) (-3053 (((-107) $) 28)) (-1678 (($ $ |#2|) 91)) (-1663 (($ $ $) 66) (($ $) 69)) (-1645 (($ $ $) 64)) (** (($ $ (-703)) 78) (($ $ (-517)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-517) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1678 (|#1| |#1| |#2|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1495 (|#1| |#1| (-517) (-517) |#1|)) (-15 -4143 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -1898 (|#1| |#1| (-517) (-517))) (-15 -3128 (|#1| |#1| (-517) (-517))) (-15 -2412 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1437 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3418 ((-583 (-583 |#2|)) |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3885 (|#1| |#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3860 (|#1| |#1|)) (-15 -3860 (|#1| |#3|)) (-15 -2254 (|#1| |#4|)) (-15 -3970 (|#1| (-583 |#1|))) (-15 -3970 (|#1| (-583 |#2|))) (-15 -3511 (|#1| (-703) |#2|)) (-15 -1884 (|#1| (-583 (-583 |#2|)))) (-15 -3597 (|#1| (-703) (-703))) (-15 -3053 ((-107) |#1|)) (-15 -1545 ((-107) |#1|)) (-15 -3402 ((-107) |#1|)) (-15 -3323 ((-107) |#1|)) (-15 -2412 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517))) (-15 -2254 ((-787) |#1|))) (-621 |#2| |#3| |#4|) (-961) (-343 |#2|) (-343 |#2|)) (T -620))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1678 (|#1| |#1| |#2|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -1495 (|#1| |#1| (-517) (-517) |#1|)) (-15 -4143 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -1898 (|#1| |#1| (-517) (-517))) (-15 -3128 (|#1| |#1| (-517) (-517))) (-15 -2412 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1437 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3418 ((-583 (-583 |#2|)) |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3885 (|#1| |#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3860 (|#1| |#1|)) (-15 -3860 (|#1| |#3|)) (-15 -2254 (|#1| |#4|)) (-15 -3970 (|#1| (-583 |#1|))) (-15 -3970 (|#1| (-583 |#2|))) (-15 -3511 (|#1| (-703) |#2|)) (-15 -1884 (|#1| (-583 (-583 |#2|)))) (-15 -3597 (|#1| (-703) (-703))) (-15 -3053 ((-107) |#1|)) (-15 -1545 ((-107) |#1|)) (-15 -3402 ((-107) |#1|)) (-15 -3323 ((-107) |#1|)) (-15 -2412 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3597 (($ (-703) (-703)) 97)) (-4094 (($ $ $) 87)) (-3860 (($ |#2|) 91) (($ $) 90)) (-1545 (((-107) $) 99)) (-3128 (($ $ (-517) (-517)) 83)) (-1898 (($ $ (-517) (-517)) 82)) (-4143 (($ $ (-517) (-517) (-517) (-517)) 81)) (-1886 (($ $) 89)) (-3323 (((-107) $) 101)) (-3552 (((-107) $ (-703)) 8)) (-1495 (($ $ (-517) (-517) $) 80)) (-2412 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-1616 (($ $ (-517) |#2|) 42)) (-3742 (($ $ (-517) |#3|) 41)) (-3511 (($ (-703) |#1|) 95)) (-2706 (($) 7 T CONST)) (-2889 (($ $) 67 (|has| |#1| (-278)))) (-3193 ((|#2| $ (-517)) 46)) (-3334 (((-703) $) 66 (|has| |#1| (-509)))) (-3705 ((|#1| $ (-517) (-517) |#1|) 43)) (-3537 ((|#1| $ (-517) (-517)) 48)) (-3240 (((-583 |#1|) $) 30)) (-2879 (((-703) $) 65 (|has| |#1| (-509)))) (-1735 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1259 (((-703) $) 51)) (-3475 (($ (-703) (-703) |#1|) 57)) (-1269 (((-703) $) 50)) (-2629 (((-107) $ (-703)) 9)) (-3157 ((|#1| $) 62 (|has| |#1| (-6 (-4185 "*"))))) (-1234 (((-517) $) 55)) (-2493 (((-517) $) 53)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2189 (((-517) $) 54)) (-3294 (((-517) $) 52)) (-1884 (($ (-583 (-583 |#1|))) 96)) (-3696 (($ (-1 |#1| |#1|) $) 34)) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3418 (((-583 (-583 |#1|)) $) 86)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-1779 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-3885 (($ $ $) 88)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) 56)) (-2483 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-3970 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-3402 (((-107) $) 100)) (-1358 ((|#1| $) 63 (|has| |#1| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2939 ((|#3| $ (-517)) 45)) (-2254 (((-787) $) 20 (|has| |#1| (-1003))) (($ |#3|) 92)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-3053 (((-107) $) 98)) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1678 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1663 (($ $ $) 78) (($ $) 77)) (-1645 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-621 |#1| |#2| |#3|) (-1185) (-961) (-343 |t#1|) (-343 |t#1|)) (T -621))
-((-3323 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3597 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-3860 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-3860 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1886 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3885 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-1437 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2412 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3128 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1898 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-4143 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1495 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1663 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1663 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2483 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-1779 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4184) (-6 -4183) (-15 -3323 ((-107) $)) (-15 -3402 ((-107) $)) (-15 -1545 ((-107) $)) (-15 -3053 ((-107) $)) (-15 -3597 ($ (-703) (-703))) (-15 -1884 ($ (-583 (-583 |t#1|)))) (-15 -3511 ($ (-703) |t#1|)) (-15 -3970 ($ (-583 |t#1|))) (-15 -3970 ($ (-583 $))) (-15 -2254 ($ |t#3|)) (-15 -3860 ($ |t#2|)) (-15 -3860 ($ $)) (-15 -1886 ($ $)) (-15 -3885 ($ $ $)) (-15 -4094 ($ $ $)) (-15 -3418 ((-583 (-583 |t#1|)) $)) (-15 -1437 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2412 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -3128 ($ $ (-517) (-517))) (-15 -1898 ($ $ (-517) (-517))) (-15 -4143 ($ $ (-517) (-517) (-517) (-517))) (-15 -1495 ($ $ (-517) (-517) $)) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -1663 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2483 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1678 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-278)) (-15 -2889 ($ $)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3334 ((-703) $)) (-15 -2879 ((-703) $)) (-15 -1735 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4185 "*"))) (PROGN (-15 -1358 (|t#1| $)) (-15 -3157 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -1779 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-55 |#1| |#2| |#3|) . T) ((-1109) . T))
-((-2889 ((|#4| |#4|) 69 (|has| |#1| (-278)))) (-3334 (((-703) |#4|) 93 (|has| |#1| (-509)))) (-2879 (((-703) |#4|) 73 (|has| |#1| (-509)))) (-1735 (((-583 |#3|) |#4|) 80 (|has| |#1| (-509)))) (-2512 (((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|) 105 (|has| |#1| (-278)))) (-3157 ((|#1| |#4|) 33)) (-1704 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-509)))) (-1779 (((-3 |#4| "failed") |#4|) 77 (|has| |#1| (-333)))) (-1862 ((|#4| |#4|) 65 (|has| |#1| (-509)))) (-4081 ((|#4| |#4| |#1| (-517) (-517)) 41)) (-2009 ((|#4| |#4| (-517) (-517)) 36)) (-2264 ((|#4| |#4| |#1| (-517) (-517)) 46)) (-1358 ((|#1| |#4|) 75)) (-3613 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 66 (|has| |#1| (-509)))))
-(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1358 (|#1| |#4|)) (-15 -3157 (|#1| |#4|)) (-15 -2009 (|#4| |#4| (-517) (-517))) (-15 -4081 (|#4| |#4| |#1| (-517) (-517))) (-15 -2264 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3334 ((-703) |#4|)) (-15 -2879 ((-703) |#4|)) (-15 -1735 ((-583 |#3|) |#4|)) (-15 -1862 (|#4| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#4|)) (-15 -3613 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2889 (|#4| |#4|)) (-15 -2512 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1779 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
-((-1779 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2512 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-2889 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1704 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2264 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-4081 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-2009 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-3157 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
-(-10 -7 (-15 -1358 (|#1| |#4|)) (-15 -3157 (|#1| |#4|)) (-15 -2009 (|#4| |#4| (-517) (-517))) (-15 -4081 (|#4| |#4| |#1| (-517) (-517))) (-15 -2264 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3334 ((-703) |#4|)) (-15 -2879 ((-703) |#4|)) (-15 -1735 ((-583 |#3|) |#4|)) (-15 -1862 (|#4| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#4|)) (-15 -3613 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2889 (|#4| |#4|)) (-15 -2512 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1779 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703) (-703)) 46)) (-4094 (($ $ $) NIL)) (-3860 (($ (-1154 |#1|)) NIL) (($ $) NIL)) (-1545 (((-107) $) NIL)) (-3128 (($ $ (-517) (-517)) 12)) (-1898 (($ $ (-517) (-517)) NIL)) (-4143 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1886 (($ $) NIL)) (-3323 (((-107) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-1495 (($ $ (-517) (-517) $) NIL)) (-2412 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-1616 (($ $ (-517) (-1154 |#1|)) NIL)) (-3742 (($ $ (-517) (-1154 |#1|)) NIL)) (-3511 (($ (-703) |#1|) 22)) (-2706 (($) NIL T CONST)) (-2889 (($ $) 30 (|has| |#1| (-278)))) (-3193 (((-1154 |#1|) $ (-517)) NIL)) (-3334 (((-703) $) 32 (|has| |#1| (-509)))) (-3705 ((|#1| $ (-517) (-517) |#1|) 51)) (-3537 ((|#1| $ (-517) (-517)) NIL)) (-3240 (((-583 |#1|) $) NIL)) (-2879 (((-703) $) 34 (|has| |#1| (-509)))) (-1735 (((-583 (-1154 |#1|)) $) 37 (|has| |#1| (-509)))) (-1259 (((-703) $) 20)) (-3475 (($ (-703) (-703) |#1|) NIL)) (-1269 (((-703) $) 21)) (-2629 (((-107) $ (-703)) NIL)) (-3157 ((|#1| $) 28 (|has| |#1| (-6 (-4185 "*"))))) (-1234 (((-517) $) 9)) (-2493 (((-517) $) 10)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2189 (((-517) $) 11)) (-3294 (((-517) $) 47)) (-1884 (($ (-583 (-583 |#1|))) NIL)) (-3696 (($ (-1 |#1| |#1|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3418 (((-583 (-583 |#1|)) $) 59)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-1779 (((-3 $ "failed") $) 44 (|has| |#1| (-333)))) (-3885 (($ $ $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2880 (($ $ |#1|) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3970 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1154 |#1|)) 52)) (-3402 (((-107) $) NIL)) (-1358 ((|#1| $) 26 (|has| |#1| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-3667 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-2939 (((-1154 |#1|) $ (-517)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1154 |#1|)) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $ $) NIL) (($ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 45 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1154 |#1|) $ (-1154 |#1|)) NIL) (((-1154 |#1|) (-1154 |#1|) $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-623 |#1|) (-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 -3970 ($ (-1154 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1779 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -623))
-((-1779 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))))
-(-13 (-621 |#1| (-1154 |#1|) (-1154 |#1|)) (-10 -8 (-15 -3970 ($ (-1154 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1779 ((-3 $ "failed") $)) |%noBranch|)))
-((-1508 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-3129 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-3022 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-2771 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-3798 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-3670 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-3393 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
-(((-624 |#1|) (-10 -7 (-15 -3393 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2771 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3798 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3798 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3670 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3129 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1508 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3022 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-961)) (T -624))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-3022 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-1508 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3129 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3670 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3798 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3798 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-2771 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(-10 -7 (-15 -3393 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2771 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3798 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3798 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3670 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3129 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1508 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3022 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
-((-1805 ((|#2| |#2| |#4|) 25)) (-3324 (((-623 |#2|) |#3| |#4|) 31)) (-3348 (((-623 |#2|) |#2| |#4|) 30)) (-3709 (((-1154 |#2|) |#2| |#4|) 16)) (-1588 ((|#2| |#3| |#4|) 24)) (-3850 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-2446 (((-623 |#2|) |#2| |#4| (-703)) 37)))
-(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3709 ((-1154 |#2|) |#2| |#4|)) (-15 -1588 (|#2| |#3| |#4|)) (-15 -1805 (|#2| |#2| |#4|)) (-15 -3348 ((-623 |#2|) |#2| |#4|)) (-15 -2446 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3324 ((-623 |#2|) |#3| |#4|)) (-15 -3850 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1003) (-822 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4183)))) (T -625))
-((-3850 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))) (-3324 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))) (-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-1805 (*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4183)))))) (-1588 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))) (-3709 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1154 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
-(-10 -7 (-15 -3709 ((-1154 |#2|) |#2| |#4|)) (-15 -1588 (|#2| |#3| |#4|)) (-15 -1805 (|#2| |#2| |#4|)) (-15 -3348 ((-623 |#2|) |#2| |#4|)) (-15 -2446 ((-623 |#2|) |#2| |#4| (-703))) (-15 -3324 ((-623 |#2|) |#3| |#4|)) (-15 -3850 ((-623 |#2|) |#3| |#4| (-703) (-703))))
-((-1617 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-3123 ((|#1| (-623 |#2|)) 9)) (-3327 (((-623 |#1|) (-623 |#2|)) 16)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3123 (|#1| (-623 |#2|))) (-15 -3327 ((-623 |#1|) (-623 |#2|))) (-15 -1617 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-909 |#1|)) (T -626))
-((-1617 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
-(-10 -7 (-15 -3123 (|#1| (-623 |#2|))) (-15 -3327 ((-623 |#1|) (-623 |#2|))) (-15 -1617 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1205 (((-623 (-632))) NIL) (((-623 (-632)) (-1154 $)) NIL)) (-1462 (((-632) $) NIL)) (-2725 (($ $) NIL (|has| (-632) (-1095)))) (-2602 (($ $) NIL (|has| (-632) (-1095)))) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2377 (($ $) NIL (-3782 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2674 (((-388 $) $) NIL (-3782 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-1386 (($ $) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2448 (((-107) $ $) NIL (|has| (-632) (-278)))) (-1719 (((-703)) NIL (|has| (-632) (-338)))) (-2705 (($ $) NIL (|has| (-632) (-1095)))) (-2580 (($ $) NIL (|has| (-632) (-1095)))) (-1533 (($ $) NIL (|has| (-632) (-1095)))) (-2626 (($ $) NIL (|has| (-632) (-1095)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3232 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-4047 (($ (-1154 (-632))) NIL) (($ (-1154 (-632)) (-1154 $)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2532 (($ $ $) NIL (|has| (-632) (-278)))) (-2739 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1154 $)) NIL)) (-2749 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-632))) (|:| |vec| (-1154 (-632)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-1292 (((-3 $ "failed") (-377 (-1070 (-632)))) NIL (|has| (-632) (-333))) (($ (-1070 (-632))) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1398 (((-632) $) 29)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-1541 (((-107) $) NIL (|has| (-632) (-502)))) (-3320 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3334 (((-843)) NIL)) (-4100 (($) NIL (|has| (-632) (-338)))) (-2509 (($ $ $) NIL (|has| (-632) (-278)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-2170 (($) NIL (|has| (-632) (-319)))) (-3449 (((-107) $) NIL (|has| (-632) (-319)))) (-2616 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-3083 (((-107) $) NIL (-3782 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2305 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-970)) (|has| (-632) (-1095))))) (-2665 (($) NIL (|has| (-632) (-1095)))) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-632) (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-632) (-808 (-517))))) (-3730 (((-765 (-843)) $) NIL (|has| (-632) (-319))) (((-843) $) NIL (|has| (-632) (-319)))) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095))))) (-2962 (((-632) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2956 (((-1070 (-632)) $) NIL (|has| (-632) (-333)))) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1939 (($ (-1 (-632) (-632)) $) NIL)) (-4034 (((-843) $) NIL (|has| (-632) (-338)))) (-1875 (($ $) NIL (|has| (-632) (-1095)))) (-1283 (((-1070 (-632)) $) NIL)) (-1360 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| (-632) (-333)))) (-3680 (($) NIL (|has| (-632) (-319)) CONST)) (-3544 (($ (-843)) NIL (|has| (-632) (-338)))) (-1392 (($) NIL)) (-1410 (((-632) $) 31)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-632) (-278)))) (-1387 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-632) (-319)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-1376 (((-388 $) $) NIL (-3782 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| (-632) (-278)))) (-2483 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2643 (($ $) NIL (|has| (-632) (-1095)))) (-2049 (($ $ (-1074) (-632)) NIL (|has| (-632) (-478 (-1074) (-632)))) (($ $ (-583 (-1074)) (-583 (-632))) NIL (|has| (-632) (-478 (-1074) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3196 (((-703) $) NIL (|has| (-632) (-278)))) (-1437 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| (-632) (-278)))) (-3383 (((-632)) NIL) (((-632) (-1154 $)) NIL)) (-3459 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-1248 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-2072 (((-623 (-632)) (-1154 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2780 (((-1070 (-632))) NIL)) (-1543 (($ $) NIL (|has| (-632) (-1095)))) (-2638 (($ $) NIL (|has| (-632) (-1095)))) (-2858 (($) NIL (|has| (-632) (-319)))) (-2735 (($ $) NIL (|has| (-632) (-1095)))) (-2614 (($ $) NIL (|has| (-632) (-1095)))) (-2714 (($ $) NIL (|has| (-632) (-1095)))) (-2590 (($ $) NIL (|has| (-632) (-1095)))) (-3589 (((-623 (-632)) (-1154 $)) NIL) (((-1154 (-632)) $) NIL) (((-623 (-632)) (-1154 $) (-1154 $)) NIL) (((-1154 (-632)) $ (-1154 $)) NIL)) (-3667 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-937))) (((-153 (-349)) $) NIL (|has| (-632) (-937))) (((-814 (-349)) $) NIL (|has| (-632) (-558 (-814 (-349))))) (((-814 (-517)) $) NIL (|has| (-632) (-558 (-814 (-517))))) (($ (-1070 (-632))) NIL) (((-1070 (-632)) $) NIL) (($ (-1154 (-632))) NIL) (((-1154 (-632)) $) NIL)) (-1757 (($ $) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-319))))) (-3417 (($ (-632) (-632)) 12)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3782 (|has| (-632) (-952 (-377 (-517)))) (|has| (-632) (-333))))) (-2486 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-132))))) (-1924 (((-1070 (-632)) $) NIL)) (-1217 (((-703)) NIL)) (-2080 (((-1154 $)) NIL)) (-1584 (($ $) NIL (|has| (-632) (-1095)))) (-2670 (($ $) NIL (|has| (-632) (-1095)))) (-2673 (((-107) $ $) NIL)) (-1557 (($ $) NIL (|has| (-632) (-1095)))) (-2651 (($ $) NIL (|has| (-632) (-1095)))) (-1614 (($ $) NIL (|has| (-632) (-1095)))) (-2688 (($ $) NIL (|has| (-632) (-1095)))) (-4142 (((-632) $) NIL (|has| (-632) (-1095)))) (-3756 (($ $) NIL (|has| (-632) (-1095)))) (-2698 (($ $) NIL (|has| (-632) (-1095)))) (-1599 (($ $) NIL (|has| (-632) (-1095)))) (-2678 (($ $) NIL (|has| (-632) (-1095)))) (-1570 (($ $) NIL (|has| (-632) (-1095)))) (-2660 (($ $) NIL (|has| (-632) (-1095)))) (-1724 (($ $) NIL (|has| (-632) (-970)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-1074)) NIL (|has| (-632) (-822 (-1074)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL (|has| (-632) (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1095))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1095)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
-(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2254 ($ (-153 (-349)))) (-15 -2254 ($ (-153 (-517)))) (-15 -2254 ($ (-153 (-632)))) (-15 -2254 ($ (-153 (-634)))) (-15 -2254 ((-153 (-349)) $))))) (T -627))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
-(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2254 ($ (-153 (-349)))) (-15 -2254 ($ (-153 (-517)))) (-15 -2254 ($ (-153 (-632)))) (-15 -2254 ($ (-153 (-634)))) (-15 -2254 ((-153 (-349)) $))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3439 (($ $) 62)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-2271 (((-583 (-2 (|:| -1338 |#1|) (|:| -3223 (-703)))) $) 61)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-628 |#1|) (-1185) (-1003)) (T -628))
-((-3676 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3439 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1338 *3) (|:| -3223 (-703))))))))
-(-13 (-209 |t#1|) (-10 -8 (-15 -3676 ($ |t#1| $ (-703))) (-15 -3439 ($ $)) (-15 -2271 ((-583 (-2 (|:| -1338 |t#1|) (|:| -3223 (-703)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-3344 (((-583 |#1|) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) (-517)) 46)) (-1854 ((|#1| |#1| (-517)) 45)) (-1387 ((|#1| |#1| |#1| (-517)) 35)) (-1376 (((-583 |#1|) |#1| (-517)) 38)) (-2851 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-3438 (((-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) |#1| (-517)) 44)))
-(((-629 |#1|) (-10 -7 (-15 -1387 (|#1| |#1| |#1| (-517))) (-15 -1854 (|#1| |#1| (-517))) (-15 -1376 ((-583 |#1|) |#1| (-517))) (-15 -3438 ((-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) |#1| (-517))) (-15 -3344 ((-583 |#1|) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) (-517))) (-15 -2851 (|#1| |#1| (-517) |#1| (-517)))) (-1131 (-517))) (T -629))
-((-2851 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -1376 *5) (|:| -3625 (-517))))) (-5 *4 (-517)) (-4 *5 (-1131 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -1376 *3) (|:| -3625 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) (-1854 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) (-1387 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
-(-10 -7 (-15 -1387 (|#1| |#1| |#1| (-517))) (-15 -1854 (|#1| |#1| (-517))) (-15 -1376 ((-583 |#1|) |#1| (-517))) (-15 -3438 ((-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) |#1| (-517))) (-15 -3344 ((-583 |#1|) (-583 (-2 (|:| -1376 |#1|) (|:| -3625 (-517)))) (-517))) (-15 -2851 (|#1| |#1| (-517) |#1| (-517))))
-((-2910 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-3902 (((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 38) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 40) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 42)) (-1915 (((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236))) NIL)) (-1555 (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 43)))
-(((-630) (-10 -7 (-15 -3902 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3902 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3902 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1555 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1915 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2910 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
-((-2910 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-1915 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-1555 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-3902 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-3902 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-3902 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(-10 -7 (-15 -3902 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3902 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3902 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1555 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -1915 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2910 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-1376 (((-388 (-1070 |#4|)) (-1070 |#4|)) 73) (((-388 |#4|) |#4|) 215)))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4|)) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|)))) (-779) (-725) (-319) (-871 |#3| |#2| |#1|)) (T -631))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4|)) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 84)) (-2065 (((-517) $) 30)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-1935 (($ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL)) (-2706 (($) NIL T CONST)) (-3434 (($ $) NIL)) (-1837 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3232 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2532 (($ $ $) 96)) (-3775 (((-3 $ "failed") $) 87)) (-2509 (($ $ $) 95)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-2987 (((-843)) 77) (((-843) (-843)) 76)) (-3162 (((-107) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3730 (((-517) $) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL)) (-2962 (($ $) NIL)) (-1199 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3864 (((-517) (-517)) 81) (((-517)) 82)) (-4055 (($ $ $) NIL) (($) NIL (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-1960 (((-517) (-517)) 79) (((-517)) 80)) (-3105 (($ $ $) NIL) (($) NIL (-12 (-2650 (|has| $ (-6 -4166))) (-2650 (|has| $ (-6 -4174)))))) (-4038 (((-517) $) 16)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 91)) (-1397 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL)) (-2908 (($ $) NIL)) (-4002 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) 92)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3010 (((-517) $) 22)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 94)) (-2405 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-3953 (((-843) (-517)) NIL (|has| $ (-6 -4174)))) (-3667 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) NIL)) (-2254 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-1217 (((-703)) 103)) (-2128 (($ (-517) (-517) (-843)) 44)) (-2434 (($ $) NIL)) (-2399 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4174)))) (-1870 (((-843)) 35) (((-843) (-843)) 78)) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 32 T CONST)) (-2411 (($) 17 T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 83)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 101)) (-1678 (($ $ $) 65)) (-1663 (($ $) 99) (($ $ $) 100)) (-1645 (($ $ $) 98)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-632) (-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -2987 ((-843) (-843))) (-15 -2987 ((-843))) (-15 -1870 ((-843) (-843))) (-15 -1870 ((-843))) (-15 -1960 ((-517) (-517))) (-15 -1960 ((-517))) (-15 -3864 ((-517) (-517))) (-15 -3864 ((-517))) (-15 -2254 ((-349) $)) (-15 -2254 ($ (-634))) (-15 -4038 ((-517) $)) (-15 -3010 ((-517) $)) (-15 -2128 ($ (-517) (-517) (-843)))))) (T -632))
-((-1870 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2987 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-1960 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-1960 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3864 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-2128 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))))
-(-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -2987 ((-843) (-843))) (-15 -2987 ((-843))) (-15 -1870 ((-843) (-843))) (-15 -1870 ((-843))) (-15 -1960 ((-517) (-517))) (-15 -1960 ((-517))) (-15 -3864 ((-517) (-517))) (-15 -3864 ((-517))) (-15 -2254 ((-349) $)) (-15 -2254 ($ (-634))) (-15 -4038 ((-517) $)) (-15 -3010 ((-517) $)) (-15 -2128 ($ (-517) (-517) (-843)))))
-((-3794 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 66)) (-2889 (((-623 |#1|) (-623 |#1|) |#1|) 49)) (-2250 (((-623 |#1|) (-623 |#1|) |#1|) 67)) (-1864 (((-623 |#1|) (-623 |#1|)) 50)) (-2512 (((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|) 65)))
-(((-633 |#1|) (-10 -7 (-15 -1864 ((-623 |#1|) (-623 |#1|))) (-15 -2889 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2250 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3794 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2512 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|))) (-278)) (T -633))
-((-2512 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-3794 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2889 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(-10 -7 (-15 -1864 ((-623 |#1|) (-623 |#1|))) (-15 -2889 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2250 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3794 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2512 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2014 (($ $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1764 (($ $ $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL)) (-1356 (($ $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) 27)) (-3232 (((-517) $) 25)) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL)) (-1541 (((-107) $) NIL)) (-3320 (((-377 (-517)) $) NIL)) (-4100 (($ $) NIL) (($) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-4101 (($ $ $ $) NIL)) (-3509 (($ $ $) NIL)) (-3162 (((-107) $) NIL)) (-1630 (($ $ $) NIL)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3469 (((-107) $) NIL)) (-2119 (((-107) $) NIL)) (-3326 (((-3 $ "failed") $) NIL)) (-1199 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4102 (($ $ $ $) NIL)) (-4055 (($ $ $) NIL)) (-3208 (((-843) (-843)) 10) (((-843)) 9)) (-3105 (($ $ $) NIL)) (-1521 (($ $) NIL)) (-1631 (($ $) NIL)) (-1360 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-1810 (($ $ $) NIL)) (-3680 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-3214 (((-1021) $) NIL) (($ $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1803 (($ $) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL) (($ $ (-703)) NIL)) (-2142 (($ $) NIL)) (-2435 (($ $) NIL)) (-3667 (((-199) $) NIL) (((-349) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-1217 (((-703)) NIL)) (-2121 (((-107) $ $) NIL)) (-4033 (($ $ $) NIL)) (-1870 (($) NIL)) (-2673 (((-107) $ $) NIL)) (-2320 (($ $ $ $) NIL)) (-1724 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL) (($ $ (-703)) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-634) (-13 (-357) (-502) (-10 -8 (-15 -3208 ((-843) (-843))) (-15 -3208 ((-843))) (-15 -2254 ((-286 $) (-286 (-517))))))) (T -634))
-((-3208 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-3208 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
-(-13 (-357) (-502) (-10 -8 (-15 -3208 ((-843) (-843))) (-15 -3208 ((-843))) (-15 -2254 ((-286 $) (-286 (-517))))))
-((-3619 (((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074)) 19)) (-1895 (((-1 |#4| |#2| |#3|) (-1074)) 12)))
-(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1895 ((-1 |#4| |#2| |#3|) (-1074))) (-15 -3619 ((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074)))) (-558 (-493)) (-1109) (-1109) (-1109)) (T -635))
-((-3619 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))))
-(-10 -7 (-15 -1895 ((-1 |#4| |#2| |#3|) (-1074))) (-15 -3619 ((-1 |#4| |#2| |#3|) |#1| (-1074) (-1074))))
-((-1587 (((-107) $ $) NIL)) (-1628 (((-1159) $ (-703)) 14)) (-2624 (((-703) $) 12)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 25)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 24)))
-(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2254 ($ |#1|)))) (-1003)) (T -636))
-((-2254 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))))
-(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2254 ($ |#1|))))
-((-2364 (((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074)) 33) (((-1 (-199) (-199)) |#1| (-1074)) 38)))
-(((-637 |#1|) (-10 -7 (-15 -2364 ((-1 (-199) (-199)) |#1| (-1074))) (-15 -2364 ((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074)))) (-558 (-493))) (T -637))
-((-2364 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2364 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -2364 ((-1 (-199) (-199)) |#1| (-1074))) (-15 -2364 ((-1 (-199) (-199) (-199)) |#1| (-1074) (-1074))))
-((-1245 (((-1074) |#1| (-1074) (-583 (-1074))) 9) (((-1074) |#1| (-1074) (-1074) (-1074)) 12) (((-1074) |#1| (-1074) (-1074)) 11) (((-1074) |#1| (-1074)) 10)))
-(((-638 |#1|) (-10 -7 (-15 -1245 ((-1074) |#1| (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-1074) (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-583 (-1074))))) (-558 (-493))) (T -638))
-((-1245 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1245 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1245 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1245 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -1245 ((-1074) |#1| (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-1074) (-1074))) (-15 -1245 ((-1074) |#1| (-1074) (-583 (-1074)))))
-((-3605 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -3605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1109) (-1109)) (T -639))
-((-3605 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -3605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-3862 (((-1 |#3| |#2|) (-1074)) 11)) (-3619 (((-1 |#3| |#2|) |#1| (-1074)) 21)))
-(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3862 ((-1 |#3| |#2|) (-1074))) (-15 -3619 ((-1 |#3| |#2|) |#1| (-1074)))) (-558 (-493)) (-1109) (-1109)) (T -640))
-((-3619 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
-(-10 -7 (-15 -3862 ((-1 |#3| |#2|) (-1074))) (-15 -3619 ((-1 |#3| |#2|) |#1| (-1074))))
-((-2807 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|) 58)) (-3989 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 71)) (-2566 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|) 32)))
-(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2566 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|)) (-15 -3989 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -2807 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -641))
-((-2807 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1070 *13))) (-5 *3 (-1070 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1154 (-583 (-1070 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3989 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1070 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1070 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1070 *12)))) (-2566 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1070 *11))) (-5 *3 (-1070 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1154 (-583 (-1070 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2566 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1070 |#4|)) (-1154 (-583 (-1070 |#3|))) |#3|)) (-15 -3989 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -2807 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-583 |#2|) (-583 (-1070 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1154 (-583 (-1070 |#3|))) |#3|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1221 (($ $) 41)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1336 (($ |#1| (-703)) 39)) (-3876 (((-703) $) 43)) (-1193 ((|#1| $) 42)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3625 (((-703) $) 44)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-4104 ((|#1| $ (-703)) 40)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-642 |#1|) (-1185) (-961)) (T -642))
-((-3625 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1193 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -3625 ((-703) $)) (-15 -3876 ((-703) $)) (-15 -1193 (|t#1| $)) (-15 -1221 ($ $)) (-15 -4104 (|t#1| $ (-703))) (-15 -1336 ($ |t#1| (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1939 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1939 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1131 |#1|) (-1131 (-377 |#2|)) (-509) (-1131 |#4|) (-1131 (-377 |#5|))) (T -643))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1131 *5)) (-4 *2 (-1131 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1131 (-377 *6))) (-4 *8 (-1131 *7)))))
-(-10 -7 (-15 -1939 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL)) (-1292 (($ |#1| |#2|) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3668 ((|#2| $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1944 (((-3 $ "failed") $ $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -3668 (|#2| $)) (-15 -2254 (|#1| $)) (-15 -1292 ($ |#1| |#2|)) (-15 -1944 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
-((-3668 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2254 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1292 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1944 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-333) (-10 -8 (-15 -3668 (|#2| $)) (-15 -2254 (|#1| $)) (-15 -1292 ($ |#1| |#2|)) (-15 -1944 ((-3 $ "failed") $ $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 30)) (-1364 (((-1154 |#1|) $ (-703)) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-1255 (($ (-1070 |#1|)) NIL)) (-2374 (((-1070 $) $ (-989)) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) NIL (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-703)) 46 (|has| |#1| (-338)))) (-3983 (($ $ (-703)) NIL)) (-2958 (($ $ (-703)) NIL)) (-2211 ((|#2| |#2|) 43)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3167 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) 33)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1292 (($ |#2|) 41)) (-3775 (((-3 $ "failed") $) 84)) (-4100 (($) 50 (|has| |#1| (-338)))) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1414 (($ $ $) NIL)) (-3466 (($ $ $) NIL (|has| |#1| (-509)))) (-3064 (((-2 (|:| -1965 |#1|) (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (((-879 $)) 78)) (-2083 (($ $ |#1| (-703) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1347 (($ (-1070 |#1|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3699 (($ $ (-703)) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) 76) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-989)) NIL) (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3668 ((|#2|) 44)) (-3876 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-703) (-703)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3145 (((-1070 |#1|) $) NIL)) (-3382 (((-3 (-989) "failed") $) NIL)) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-1283 ((|#2| $) 40)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) 28)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-989)) (|:| -3010 (-703))) "failed") $) NIL)) (-3563 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) NIL (|has| |#1| (-1050)) CONST)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2485 (($ $) 77 (|has| |#1| (-319)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1730 (((-3 $ "failed") $ (-703)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 85 (|has| |#1| (-333)))) (-3383 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-1248 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3625 (((-703) $) 31) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-1908 (((-879 $)) 35)) (-2472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2254 (((-787) $) 60) (($ (-517)) NIL) (($ |#1|) 57) (($ (-989)) NIL) (($ |#2|) 67) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) 62) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 20 T CONST)) (-3080 (((-1154 |#1|) $) 74)) (-1684 (($ (-1154 |#1|)) 49)) (-2411 (($) 8 T CONST)) (-2738 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3714 (((-1154 |#1|) $) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 68)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) 71) (($ $ $) NIL)) (-1645 (($ $ $) 32)) (** (($ $ (-843)) NIL) (($ $ (-703)) 79)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 56) (($ $ $) 73) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-645 |#1| |#2|) (-13 (-1131 |#1|) (-10 -8 (-15 -2211 (|#2| |#2|)) (-15 -3668 (|#2|)) (-15 -1292 ($ |#2|)) (-15 -1283 (|#2| $)) (-15 -2254 ($ |#2|)) (-15 -3080 ((-1154 |#1|) $)) (-15 -1684 ($ (-1154 |#1|))) (-15 -3714 ((-1154 |#1|) $)) (-15 -1436 ((-879 $))) (-15 -1908 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) (-961) (-1131 |#1|)) (T -645))
-((-2211 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-3668 (*1 *2) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-1292 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-1283 (*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-1436 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-1908 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1131 *2)))))
-(-13 (-1131 |#1|) (-10 -8 (-15 -2211 (|#2| |#2|)) (-15 -3668 (|#2|)) (-15 -1292 ($ |#2|)) (-15 -1283 (|#2| $)) (-15 -2254 ($ |#2|)) (-15 -3080 ((-1154 |#1|) $)) (-15 -1684 ($ (-1154 |#1|))) (-15 -3714 ((-1154 |#1|) $)) (-15 -1436 ((-879 $))) (-15 -1908 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3544 ((|#1| $) 13)) (-3214 (((-1021) $) NIL)) (-3010 ((|#2| $) 12)) (-2272 (($ |#1| |#2|) 16)) (-2254 (((-787) $) NIL) (($ (-2 (|:| -3544 |#1|) (|:| -3010 |#2|))) 15) (((-2 (|:| -3544 |#1|) (|:| -3010 |#2|)) $) 14)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 11)))
-(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -3010 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -2254 ($ (-2 (|:| -3544 |#1|) (|:| -3010 |#2|)))) (-15 -2254 ((-2 (|:| -3544 |#1|) (|:| -3010 |#2|)) $)) (-15 -2272 ($ |#1| |#2|)))) (-779) (-1003) (-1 (-107) (-2 (|:| -3544 |#1|) (|:| -3010 |#2|)) (-2 (|:| -3544 |#1|) (|:| -3010 |#2|)))) (T -646))
-((-3010 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *3) (|:| -3010 *2)) (-2 (|:| -3544 *3) (|:| -3010 *2)))))) (-3544 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *3)) (-2 (|:| -3544 *2) (|:| -3010 *3)))))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3544 *3) (|:| -3010 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3544 *3) (|:| -3010 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *3)) (-2 (|:| -3544 *2) (|:| -3010 *3)))))))
-(-13 (-779) (-10 -8 (-15 -3010 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -2254 ($ (-2 (|:| -3544 |#1|) (|:| -3010 |#2|)))) (-15 -2254 ((-2 (|:| -3544 |#1|) (|:| -3010 |#2|)) $)) (-15 -2272 ($ |#1| |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 59)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3232 ((|#1| $) NIL) (((-109) $) 39)) (-3775 (((-3 $ "failed") $) 90)) (-1501 ((|#2| (-109) |#2|) 82)) (-3469 (((-107) $) NIL)) (-1890 (($ |#1| (-331 (-109))) 13)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2885 (($ $ (-1 |#2| |#2|)) 58)) (-3820 (($ $ (-1 |#2| |#2|)) 44)) (-1437 ((|#2| $ |#2|) 32)) (-2109 ((|#1| |#1|) 105 (|has| |#1| (-156)))) (-2254 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) 36)) (-3613 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 20 T CONST)) (-2411 (($) 9 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) 48) (($ $ $) NIL)) (-1645 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
-(((-647 |#1| |#2|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3613 ($ $)) (-15 -3613 ($ $ $)) (-15 -2109 (|#1| |#1|))) |%noBranch|) (-15 -3820 ($ $ (-1 |#2| |#2|))) (-15 -2885 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1501 (|#2| (-109) |#2|)) (-15 -1890 ($ |#1| (-331 (-109)))))) (-961) (-585 |#1|)) (T -647))
-((-3613 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3613 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-2109 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-1501 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
-(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3613 ($ $)) (-15 -3613 ($ $ $)) (-15 -2109 (|#1| |#1|))) |%noBranch|) (-15 -3820 ($ $ (-1 |#2| |#2|))) (-15 -2885 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1501 (|#2| (-109) |#2|)) (-15 -1890 ($ |#1| (-331 (-109))))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 33)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1292 (($ |#1| |#2|) 25)) (-3775 (((-3 $ "failed") $) 47)) (-3469 (((-107) $) 35)) (-3668 ((|#2| $) 12)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 48)) (-3214 (((-1021) $) NIL)) (-1944 (((-3 $ "failed") $ $) 46)) (-2254 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-1217 (((-703)) 28)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 16 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 38)) (-1663 (($ $) 43) (($ $ $) 37)) (-1645 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -3668 (|#2| $)) (-15 -2254 (|#1| $)) (-15 -1292 ($ |#1| |#2|)) (-15 -1944 ((-3 $ "failed") $ $)) (-15 -3775 ((-3 $ "failed") $)) (-15 -1639 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
-((-3775 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3668 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2254 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1292 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1944 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1639 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-961) (-10 -8 (-15 -3668 (|#2| $)) (-15 -2254 (|#1| $)) (-15 -1292 ($ |#1| |#2|)) (-15 -1944 ((-3 $ "failed") $ $)) (-15 -3775 ((-3 $ "failed") $)) (-15 -1639 ($ $))))
-((* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-650 |#2|) (-156)) (T -649))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-650 |#1|) (-1185) (-156)) (T -650))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 15)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3824 ((|#1| $) 21)) (-3456 (($ $ $) NIL (|has| |#1| (-723)))) (-4082 (($ $ $) NIL (|has| |#1| (-723)))) (-1895 (((-1058) $) 46)) (-4123 (((-1022) $) NIL)) (-2097 ((|#3| $) 22)) (-2269 (((-787) $) 42)) (-3608 (($) 10 T CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1583 (((-107) $ $) 20)) (-1629 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1607 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1703 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1691 (($ $) 17) (($ $ $) NIL)) (-1677 (($ $ $) 27)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1703 ($ $ |#3|)) (-15 -1703 ($ |#1| |#3|)) (-15 -3824 (|#1| $)) (-15 -2097 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
+((-1703 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1703 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3824 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2097 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
+(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1703 ($ $ |#3|)) (-15 -1703 ($ |#1| |#3|)) (-15 -3824 (|#1| $)) (-15 -2097 (|#3| $))))
+((-3080 (((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|)) 33)))
+(((-600 |#1|) (-10 -7 (-15 -3080 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|)))) (-832)) (T -600))
+((-3080 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 *4))) (-5 *3 (-1071 *4)) (-4 *4 (-832)) (-5 *1 (-600 *4)))))
+(-10 -7 (-15 -3080 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3365 (((-583 |#1|) $) 83)) (-1843 (($ $ (-703)) 91)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3397 (((-1178 |#1| |#2|) (-1178 |#1| |#2|) $) 48)) (-3226 (((-3 (-608 |#1|) "failed") $) NIL)) (-3388 (((-608 |#1|) $) NIL)) (-2371 (($ $) 90)) (-1942 (((-703) $) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ (-608 |#1|) |#2|) 69)) (-1213 (($ $) 87)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1896 (((-1178 |#1| |#2|) (-1178 |#1| |#2|) $) 47)) (-1296 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2333 (((-608 |#1|) $) NIL)) (-2345 ((|#2| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3522 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-2769 (((-703) $) 89)) (-2286 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 78) (($ (-608 |#1|) $) 76) (($ $ (-608 |#1|)) 77)) (-2269 (((-787) $) NIL) (($ |#1|) 75) (((-1169 |#1| |#2|) $) 59) (((-1178 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-608 |#1|)) NIL)) (-1580 ((|#2| (-1178 |#1| |#2|) $) 43)) (-3608 (($) 23 T CONST)) (-2858 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1796 (((-3 $ "failed") (-1169 |#1| |#2|)) 61)) (-4119 (($ (-608 |#1|)) 14)) (-1583 (((-107) $ $) 44)) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) 67) (($ $ $) NIL)) (-1677 (($ $ $) 29)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
+(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1796 ((-3 $ "failed") (-1169 |#1| |#2|))) (-15 -2286 ($ (-608 |#1|) (-608 |#1|))) (-15 -2286 ($ (-608 |#1|) $)) (-15 -2286 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
+((-1796 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2286 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
+(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1796 ((-3 $ "failed") (-1169 |#1| |#2|))) (-15 -2286 ($ (-608 |#1|) (-608 |#1|))) (-15 -2286 ($ (-608 |#1|) $)) (-15 -2286 ($ $ (-608 |#1|)))))
+((-3560 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 50)) (-3613 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-3042 (($ (-1 (-107) |#2|) $) 28)) (-1407 (($ $) 56)) (-3302 (($ $) 63)) (-3593 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 37)) (-1521 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1211 (((-517) |#2| $ (-517)) 61) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 47)) (-3211 (($ (-703) |#2|) 54)) (-1974 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 30)) (-3798 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-3308 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2322 (($ |#2|) 14)) (-2704 (($ $ $ (-517)) 36) (($ |#2| $ (-517)) 34)) (-2999 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 46)) (-2710 (($ $ (-1123 (-517))) 44) (($ $ (-517)) 38)) (-2790 (($ $ $ (-517)) 60)) (-2460 (($ $) 58)) (-1607 (((-107) $ $) 65)))
+(((-602 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2710 (|#1| |#1| (-517))) (-15 -2710 (|#1| |#1| (-1123 (-517)))) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2704 (|#1| |#2| |#1| (-517))) (-15 -2704 (|#1| |#1| |#1| (-517))) (-15 -1974 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3042 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -1974 (|#1| |#1| |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3560 ((-107) |#1|)) (-15 -2790 (|#1| |#1| |#1| (-517))) (-15 -1407 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3211 (|#1| (-703) |#2|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|))) (-603 |#2|) (-1110)) (T -602))
+NIL
+(-10 -8 (-15 -2322 (|#1| |#2|)) (-15 -2710 (|#1| |#1| (-517))) (-15 -2710 (|#1| |#1| (-1123 (-517)))) (-15 -3593 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2704 (|#1| |#2| |#1| (-517))) (-15 -2704 (|#1| |#1| |#1| (-517))) (-15 -1974 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3042 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3593 (|#1| |#2| |#1|)) (-15 -3302 (|#1| |#1|)) (-15 -1974 (|#1| |#1| |#1|)) (-15 -3798 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3560 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1211 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1211 ((-517) |#2| |#1|)) (-15 -1211 ((-517) |#2| |#1| (-517))) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3560 ((-107) |#1|)) (-15 -2790 (|#1| |#1| |#1| (-517))) (-15 -1407 (|#1| |#1|)) (-15 -3613 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2999 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3211 (|#1| (-703) |#2|)) (-15 -3308 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2460 (|#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2584 ((|#1| $) 65)) (-1540 (($ $) 67)) (-1478 (((-1161) $ (-517) (-517)) 97 (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 52 (|has| $ (-6 -4191)))) (-3560 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-3613 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4191)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4191)))) (-2162 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-3953 (($ $ $) 56 (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) 54 (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 58 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4191))) (($ $ "rest" $) 55 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 117 (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-3042 (($ (-1 (-107) |#1|) $) 129)) (-2324 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4190)))) (-2574 ((|#1| $) 66)) (-1681 (($) 7 T CONST)) (-1407 (($ $) 144 (|has| $ (-6 -4191)))) (-1905 (($ $) 134)) (-2437 (($ $) 73) (($ $ (-703)) 71)) (-3302 (($ $) 131 (|has| |#1| (-1004)))) (-2453 (($ $) 99 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 130 (|has| |#1| (-1004))) (($ (-1 (-107) |#1|) $) 125)) (-1422 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4190))) (($ |#1| $) 100 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2757 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1211 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1004))) (((-517) |#1| $) 138 (|has| |#1| (-1004))) (((-517) (-1 (-107) |#1|) $) 137)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) 108)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 95 (|has| (-517) (-779)))) (-3456 (($ $ $) 147 (|has| |#1| (-779)))) (-1974 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3798 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 94 (|has| (-517) (-779)))) (-4082 (($ $ $) 148 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2322 (($ |#1|) 122)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1445 ((|#1| $) 70) (($ $ (-703)) 68)) (-2704 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-1745 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4121 (((-583 (-517)) $) 92)) (-3536 (((-107) (-517) $) 91)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 76) (($ $ (-703)) 74)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3191 (($ $ |#1|) 96 (|has| $ (-6 -4191)))) (-3392 (((-107) $) 84)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 90)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1123 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2093 (((-517) $ $) 44)) (-2710 (($ $ (-1123 (-517))) 124) (($ $ (-517)) 123)) (-3726 (($ $ (-1123 (-517))) 114) (($ $ (-517)) 113)) (-1657 (((-107) $) 46)) (-3769 (($ $) 62)) (-1457 (($ $) 59 (|has| $ (-6 -4191)))) (-3277 (((-703) $) 63)) (-2573 (($ $) 64)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 143 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 107)) (-1718 (($ $ $) 61) (($ $ |#1|) 60)) (-4108 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 152 (|has| |#1| (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-603 |#1|) (-1187) (-1110)) (T -603))
+((-2322 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1110)))))
+(-13 (-1049 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -2322 ($ |t#1|))))
+(((-33) . T) ((-97) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-927 |#1|) . T) ((-1004) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-1049 |#1|) . T) ((-1110) . T) ((-1144 |#1|) . T))
+((-2064 (((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-583 (-583 |#1|)) (-583 (-1156 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-623 |#1|) (-583 (-1156 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-583 (-583 |#1|)) (-1156 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|)) 13)) (-3736 (((-703) (-623 |#1|) (-1156 |#1|)) 29)) (-2101 (((-3 (-1156 |#1|) "failed") (-623 |#1|) (-1156 |#1|)) 23)) (-3845 (((-107) (-623 |#1|) (-1156 |#1|)) 26)))
+(((-604 |#1|) (-10 -7 (-15 -2064 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|))) (-15 -2064 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-583 (-583 |#1|)) (-1156 |#1|))) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-623 |#1|) (-583 (-1156 |#1|)))) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-583 (-583 |#1|)) (-583 (-1156 |#1|)))) (-15 -2101 ((-3 (-1156 |#1|) "failed") (-623 |#1|) (-1156 |#1|))) (-15 -3845 ((-107) (-623 |#1|) (-1156 |#1|))) (-15 -3736 ((-703) (-623 |#1|) (-1156 |#1|)))) (-333)) (T -604))
+((-3736 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-2101 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1156 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1156 *5) "failed")) (|:| -2062 (-583 (-1156 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1156 *5))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1156 *5) "failed")) (|:| -2062 (-583 (-1156 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1156 *5))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1156 *5) "failed")) (|:| -2062 (-583 (-1156 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1156 *5)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1156 *5) "failed")) (|:| -2062 (-583 (-1156 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1156 *5)))))
+(-10 -7 (-15 -2064 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|))) (-15 -2064 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-583 (-583 |#1|)) (-1156 |#1|))) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-623 |#1|) (-583 (-1156 |#1|)))) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|))))) (-583 (-583 |#1|)) (-583 (-1156 |#1|)))) (-15 -2101 ((-3 (-1156 |#1|) "failed") (-623 |#1|) (-1156 |#1|))) (-15 -3845 ((-107) (-623 |#1|) (-1156 |#1|))) (-15 -3736 ((-703) (-623 |#1|) (-1156 |#1|))))
+((-2064 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|) 45)) (-3736 (((-703) |#4| |#3|) 17)) (-2101 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3845 (((-107) |#4| |#3|) 13)))
+(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|)) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2101 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3845 ((-107) |#4| |#3|)) (-15 -3736 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4191))) (-13 (-343 |#1|) (-10 -7 (-6 -4191))) (-621 |#1| |#2| |#3|)) (T -605))
+((-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3845 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2101 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4191)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-2064 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2062 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-2064 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(-10 -7 (-15 -2064 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|)) (-15 -2064 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2101 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3845 ((-107) |#4| |#3|)) (-15 -3736 ((-703) |#4| |#3|)))
+((-1743 (((-2 (|:| |particular| (-3 (-1156 (-377 |#4|)) "failed")) (|:| -2062 (-583 (-1156 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 45)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1743 ((-2 (|:| |particular| (-3 (-1156 (-377 |#4|)) "failed")) (|:| -2062 (-583 (-1156 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -606))
+((-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1156 (-377 *8)) "failed")) (|:| -2062 (-583 (-1156 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1743 ((-2 (|:| |particular| (-3 (-1156 (-377 |#4|)) "failed")) (|:| -2062 (-583 (-1156 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1875 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2008 ((|#2| $) NIL)) (-1572 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1402 (((-1156 (-623 |#2|))) NIL) (((-1156 (-623 |#2|)) (-1156 $)) NIL)) (-1793 (((-107) $) NIL)) (-2197 (((-1156 $)) 37)) (-2670 (((-107) $ (-703)) NIL)) (-3583 (($ |#2|) NIL)) (-1681 (($) NIL T CONST)) (-1680 (($ $) NIL (|has| |#2| (-278)))) (-3766 (((-214 |#1| |#2|) $ (-517)) NIL)) (-3616 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1504 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2429 (((-623 |#2|)) NIL) (((-623 |#2|) (-1156 $)) NIL)) (-2684 ((|#2| $) NIL)) (-2977 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1156 $)) NIL)) (-3237 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2078 (((-1071 (-875 |#2|))) NIL (|has| |#2| (-333)))) (-1537 (($ $ (-844)) NIL)) (-1227 ((|#2| $) NIL)) (-1499 (((-1071 |#2|) $) NIL (|has| |#2| (-509)))) (-2705 ((|#2|) NIL) ((|#2| (-1156 $)) NIL)) (-3724 (((-1071 |#2|) $) NIL)) (-3764 (((-107)) NIL)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) ((|#2| $) NIL)) (-1953 (($ (-1156 |#2|)) NIL) (($ (-1156 |#2|) (-1156 $)) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3736 (((-703) $) NIL (|has| |#2| (-509))) (((-844)) 38)) (-2563 ((|#2| $ (-517) (-517)) NIL)) (-2438 (((-107)) NIL)) (-3248 (($ $ (-844)) NIL)) (-1535 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL)) (-3805 (((-703) $) NIL (|has| |#2| (-509)))) (-3794 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1420 (((-703) $) NIL)) (-4073 (((-107)) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2924 ((|#2| $) NIL (|has| |#2| (-6 (-4192 "*"))))) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2369 (($ (-583 (-583 |#2|))) NIL)) (-2744 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1548 (((-583 (-583 |#2|)) $) NIL)) (-1495 (((-107)) NIL)) (-2502 (((-107)) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-2556 (((-3 (-2 (|:| |particular| $) (|:| -2062 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-3331 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2547 (((-623 |#2|)) NIL) (((-623 |#2|) (-1156 $)) NIL)) (-3303 ((|#2| $) NIL)) (-2739 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1156 $)) NIL)) (-1888 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-1690 (((-1071 (-875 |#2|))) NIL (|has| |#2| (-333)))) (-2848 (($ $ (-844)) NIL)) (-3492 ((|#2| $) NIL)) (-2328 (((-1071 |#2|) $) NIL (|has| |#2| (-509)))) (-1946 ((|#2|) NIL) ((|#2| (-1156 $)) NIL)) (-1940 (((-1071 |#2|) $) NIL)) (-2256 (((-107)) NIL)) (-1895 (((-1058) $) NIL)) (-1952 (((-107)) NIL)) (-2388 (((-107)) NIL)) (-2631 (((-107)) NIL)) (-1368 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-4123 (((-1022) $) NIL)) (-1665 (((-107)) NIL)) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3480 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-2059 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3338 ((|#2| $) NIL)) (-3289 (($ (-583 |#2|)) NIL)) (-2434 (((-107) $) NIL)) (-3146 (((-214 |#1| |#2|) $) NIL)) (-4126 ((|#2| $) NIL (|has| |#2| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-2460 (($ $) NIL)) (-3369 (((-623 |#2|) (-1156 $)) NIL) (((-1156 |#2|) $) NIL) (((-623 |#2|) (-1156 $) (-1156 $)) NIL) (((-1156 |#2|) $ (-1156 $)) 25)) (-3357 (($ (-1156 |#2|)) NIL) (((-1156 |#2|) $) NIL)) (-4070 (((-583 (-875 |#2|))) NIL) (((-583 (-875 |#2|)) (-1156 $)) NIL)) (-2609 (($ $ $) NIL)) (-3722 (((-107)) NIL)) (-2708 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-953 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) 36)) (-4111 (((-583 (-1156 |#2|))) NIL (|has| |#2| (-509)))) (-2516 (($ $ $ $) NIL)) (-2126 (((-107)) NIL)) (-2374 (($ (-623 |#2|) $) NIL)) (-3160 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-1263 (($ $ $) NIL)) (-1332 (((-107)) NIL)) (-2685 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-607 |#1| |#2|) (-13 (-1025 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-844) (-156)) (T -607))
+NIL
+(-13 (-1025 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
+((-2118 (((-107) $ $) NIL)) (-3365 (((-583 |#1|) $) NIL)) (-3298 (($ $) 51)) (-2236 (((-107) $) NIL)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1678 (((-3 $ "failed") (-751 |#1|)) 23)) (-3943 (((-107) (-751 |#1|)) 15)) (-3935 (($ (-751 |#1|)) 24)) (-2880 (((-107) $ $) 29)) (-3680 (((-844) $) 36)) (-3286 (($ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3866 (((-583 $) (-751 |#1|)) 17)) (-2269 (((-787) $) 42) (($ |#1|) 33) (((-751 |#1|) $) 38) (((-612 |#1|) $) 43)) (-2160 (((-57 (-583 $)) (-583 |#1|) (-844)) 56)) (-2878 (((-583 $) (-583 |#1|) (-844)) 58)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 52)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 37)))
+(((-608 |#1|) (-13 (-779) (-953 |#1|) (-10 -8 (-15 -2236 ((-107) $)) (-15 -3286 ($ $)) (-15 -3298 ($ $)) (-15 -3680 ((-844) $)) (-15 -2880 ((-107) $ $)) (-15 -2269 ((-751 |#1|) $)) (-15 -2269 ((-612 |#1|) $)) (-15 -3866 ((-583 $) (-751 |#1|))) (-15 -3943 ((-107) (-751 |#1|))) (-15 -3935 ($ (-751 |#1|))) (-15 -1678 ((-3 $ "failed") (-751 |#1|))) (-15 -3365 ((-583 |#1|) $)) (-15 -2160 ((-57 (-583 $)) (-583 |#1|) (-844))) (-15 -2878 ((-583 $) (-583 |#1|) (-844))))) (-779)) (T -608))
+((-2236 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3286 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-1678 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(-13 (-779) (-953 |#1|) (-10 -8 (-15 -2236 ((-107) $)) (-15 -3286 ($ $)) (-15 -3298 ($ $)) (-15 -3680 ((-844) $)) (-15 -2880 ((-107) $ $)) (-15 -2269 ((-751 |#1|) $)) (-15 -2269 ((-612 |#1|) $)) (-15 -3866 ((-583 $) (-751 |#1|))) (-15 -3943 ((-107) (-751 |#1|))) (-15 -3935 ($ (-751 |#1|))) (-15 -1678 ((-3 $ "failed") (-751 |#1|))) (-15 -3365 ((-583 |#1|) $)) (-15 -2160 ((-57 (-583 $)) (-583 |#1|) (-844))) (-15 -2878 ((-583 $) (-583 |#1|) (-844)))))
+((-3119 ((|#2| $) 76)) (-1540 (($ $) 96)) (-2670 (((-107) $ (-703)) 26)) (-2437 (($ $) 85) (($ $ (-703)) 88)) (-1655 (((-107) $) 97)) (-1345 (((-583 $) $) 72)) (-1528 (((-107) $ $) 71)) (-2361 (((-107) $ (-703)) 24)) (-3735 (((-517) $) 46)) (-3979 (((-517) $) 45)) (-4043 (((-107) $ (-703)) 22)) (-4141 (((-107) $) 74)) (-1445 ((|#2| $) 89) (($ $ (-703)) 92)) (-1745 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-4121 (((-583 (-517)) $) 44)) (-3536 (((-107) (-517) $) 42)) (-2427 ((|#2| $) NIL) (($ $ (-703)) 84)) (-2640 (($ $ (-517)) 100)) (-3392 (((-107) $) 99)) (-3480 (((-107) (-1 (-107) |#2|) $) 32)) (-1831 (((-583 |#2|) $) 33)) (-2607 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1123 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-2093 (((-517) $ $) 70)) (-3726 (($ $ (-1123 (-517))) 57) (($ $ (-517)) 51)) (-1657 (((-107) $) 66)) (-3769 (($ $) 81)) (-3277 (((-703) $) 80)) (-2573 (($ $) 79)) (-2286 (($ (-583 |#2|)) 37)) (-3478 (($ $) 101)) (-1497 (((-583 $) $) 69)) (-2198 (((-107) $ $) 68)) (-3160 (((-107) (-1 (-107) |#2|) $) 31)) (-1583 (((-107) $ $) 18)) (-3533 (((-703) $) 29)))
+(((-609 |#1| |#2|) (-10 -8 (-15 -3478 (|#1| |#1|)) (-15 -2640 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -3392 ((-107) |#1|)) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -1831 ((-583 |#2|) |#1|)) (-15 -3536 ((-107) (-517) |#1|)) (-15 -4121 ((-583 (-517)) |#1|)) (-15 -3979 ((-517) |#1|)) (-15 -3735 ((-517) |#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -3769 (|#1| |#1|)) (-15 -3277 ((-703) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "last")) (-15 -1445 (|#2| |#1|)) (-15 -2437 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| "rest")) (-15 -2437 (|#1| |#1|)) (-15 -2427 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "first")) (-15 -2427 (|#2| |#1|)) (-15 -1528 ((-107) |#1| |#1|)) (-15 -2198 ((-107) |#1| |#1|)) (-15 -2093 ((-517) |#1| |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -3119 (|#2| |#1|)) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703)))) (-610 |#2|) (-1110)) (T -609))
+NIL
+(-10 -8 (-15 -3478 (|#1| |#1|)) (-15 -2640 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -3392 ((-107) |#1|)) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -1831 ((-583 |#2|) |#1|)) (-15 -3536 ((-107) (-517) |#1|)) (-15 -4121 ((-583 (-517)) |#1|)) (-15 -3979 ((-517) |#1|)) (-15 -3735 ((-517) |#1|)) (-15 -2286 (|#1| (-583 |#2|))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -3726 (|#1| |#1| (-517))) (-15 -3726 (|#1| |#1| (-1123 (-517)))) (-15 -1745 (|#1| |#2| |#1| (-517))) (-15 -1745 (|#1| |#1| |#1| (-517))) (-15 -3769 (|#1| |#1|)) (-15 -3277 ((-703) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "last")) (-15 -1445 (|#2| |#1|)) (-15 -2437 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| "rest")) (-15 -2437 (|#1| |#1|)) (-15 -2427 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "first")) (-15 -2427 (|#2| |#1|)) (-15 -1528 ((-107) |#1| |#1|)) (-15 -2198 ((-107) |#1| |#1|)) (-15 -2093 ((-517) |#1| |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -3119 (|#2| |#1|)) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3480 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2584 ((|#1| $) 65)) (-1540 (($ $) 67)) (-1478 (((-1161) $ (-517) (-517)) 97 (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 52 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-3953 (($ $ $) 56 (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) 54 (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 58 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4191))) (($ $ "rest" $) 55 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 117 (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 102)) (-2574 ((|#1| $) 66)) (-1681 (($) 7 T CONST)) (-4076 (($ $) 124)) (-2437 (($ $) 73) (($ $ (-703)) 71)) (-2453 (($ $) 99 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 100 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 103)) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2757 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-4080 (((-703) $) 123)) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) 108)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 95 (|has| (-517) (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 94 (|has| (-517) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-2234 (($ $) 126)) (-1930 (((-107) $) 127)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1445 ((|#1| $) 70) (($ $ (-703)) 68)) (-1745 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4121 (((-583 (-517)) $) 92)) (-3536 (((-107) (-517) $) 91)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3016 ((|#1| $) 125)) (-2427 ((|#1| $) 76) (($ $ (-703)) 74)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3191 (($ $ |#1|) 96 (|has| $ (-6 -4191)))) (-2640 (($ $ (-517)) 122)) (-3392 (((-107) $) 84)) (-2479 (((-107) $) 128)) (-2900 (((-107) $) 129)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 90)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1123 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2093 (((-517) $ $) 44)) (-3726 (($ $ (-1123 (-517))) 114) (($ $ (-517)) 113)) (-1657 (((-107) $) 46)) (-3769 (($ $) 62)) (-1457 (($ $) 59 (|has| $ (-6 -4191)))) (-3277 (((-703) $) 63)) (-2573 (($ $) 64)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 107)) (-1718 (($ $ $) 61 (|has| $ (-6 -4191))) (($ $ |#1|) 60 (|has| $ (-6 -4191)))) (-4108 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-3478 (($ $) 121)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-610 |#1|) (-1187) (-1110)) (T -610))
+((-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1110)))) (-2324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1110)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-2234 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))) (-4076 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))) (-2640 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1110)))) (-3478 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))))
+(-13 (-1049 |t#1|) (-10 -8 (-15 -1422 ($ (-1 (-107) |t#1|) $)) (-15 -2324 ($ (-1 (-107) |t#1|) $)) (-15 -2900 ((-107) $)) (-15 -2479 ((-107) $)) (-15 -1930 ((-107) $)) (-15 -2234 ($ $)) (-15 -3016 (|t#1| $)) (-15 -4076 ($ $)) (-15 -4080 ((-703) $)) (-15 -2640 ($ $ (-517))) (-15 -3478 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1049 |#1|) . T) ((-1110) . T) ((-1144 |#1|) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3231 (($ (-703) (-703) (-703)) 34 (|has| |#1| (-962)))) (-2670 (((-107) $ (-703)) NIL)) (-1427 ((|#1| $ (-703) (-703) (-703) |#1|) 29)) (-1681 (($) NIL T CONST)) (-2331 (($ $ $) 38 (|has| |#1| (-962)))) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1360 (((-1156 (-703)) $) 10)) (-1444 (($ (-1075) $ $) 24)) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-3276 (($ (-703)) 36 (|has| |#1| (-962)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-703) (-703) (-703)) 27)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2286 (($ (-583 (-583 (-583 |#1|)))) 45)) (-2269 (($ (-880 (-880 (-880 |#1|)))) 17) (((-880 (-880 (-880 |#1|))) $) 14) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-962)) (PROGN (-15 -3231 ($ (-703) (-703) (-703))) (-15 -3276 ($ (-703))) (-15 -2331 ($ $ $))) |%noBranch|) (-15 -2286 ($ (-583 (-583 (-583 |#1|))))) (-15 -2607 (|#1| $ (-703) (-703) (-703))) (-15 -1427 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2269 ($ (-880 (-880 (-880 |#1|))))) (-15 -2269 ((-880 (-880 (-880 |#1|))) $)) (-15 -1444 ($ (-1075) $ $)) (-15 -1360 ((-1156 (-703)) $)))) (-1004)) (T -611))
+((-3231 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-962)) (-4 *3 (-1004)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-962)) (-4 *3 (-1004)))) (-2331 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-962)) (-4 *2 (-1004)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1004)) (-5 *1 (-611 *3)))) (-2607 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1004)))) (-1427 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1004)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-4 *3 (-1004)) (-5 *1 (-611 *3)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1004)))) (-1444 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-611 *3)) (-4 *3 (-1004)))) (-1360 (*1 *2 *1) (-12 (-5 *2 (-1156 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1004)))))
+(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-962)) (PROGN (-15 -3231 ($ (-703) (-703) (-703))) (-15 -3276 ($ (-703))) (-15 -2331 ($ $ $))) |%noBranch|) (-15 -2286 ($ (-583 (-583 (-583 |#1|))))) (-15 -2607 (|#1| $ (-703) (-703) (-703))) (-15 -1427 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2269 ($ (-880 (-880 (-880 |#1|))))) (-15 -2269 ((-880 (-880 (-880 |#1|))) $)) (-15 -1444 ($ (-1075) $ $)) (-15 -1360 ((-1156 (-703)) $))))
+((-2118 (((-107) $ $) NIL)) (-3365 (((-583 |#1|) $) 14)) (-3298 (($ $) 18)) (-2236 (((-107) $) 19)) (-3226 (((-3 |#1| "failed") $) 22)) (-3388 ((|#1| $) 20)) (-2437 (($ $) 36)) (-1213 (($ $) 24)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-2880 (((-107) $ $) 42)) (-3680 (((-844) $) 38)) (-3286 (($ $) 17)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 ((|#1| $) 35)) (-2269 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 12)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 40)) (* (($ $ $) 34)))
+(((-612 |#1|) (-13 (-779) (-953 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2269 ((-751 |#1|) $)) (-15 -2427 (|#1| $)) (-15 -3286 ($ $)) (-15 -3680 ((-844) $)) (-15 -2880 ((-107) $ $)) (-15 -1213 ($ $)) (-15 -2437 ($ $)) (-15 -2236 ((-107) $)) (-15 -3298 ($ $)) (-15 -3365 ((-583 |#1|) $)))) (-779)) (T -612))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2427 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3286 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1213 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2437 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-953 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2269 ((-751 |#1|) $)) (-15 -2427 (|#1| $)) (-15 -3286 ($ $)) (-15 -3680 ((-844) $)) (-15 -2880 ((-107) $ $)) (-15 -1213 ($ $)) (-15 -2437 ($ $)) (-15 -2236 ((-107) $)) (-15 -3298 ($ $)) (-15 -3365 ((-583 |#1|) $))))
+((-3836 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-3790 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
+(((-613 |#1|) (-10 -7 (-15 -3790 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -3836 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1004)) (T -613))
+((-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1004)) (-5 *1 (-613 *2)))) (-3790 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1004)) (-5 *1 (-613 *2)))))
+(-10 -7 (-15 -3790 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -3836 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
+((-1893 ((|#2| |#1| |#2|) 9)) (-1876 ((|#1| |#1| |#2|) 8)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -1876 (|#1| |#1| |#2|)) (-15 -1893 (|#2| |#1| |#2|))) (-1004) (-1004)) (T -614))
+((-1893 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))) (-1876 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(-10 -7 (-15 -1876 (|#1| |#1| |#2|)) (-15 -1893 (|#2| |#1| |#2|)))
+((-3498 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -3498 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1004) (-1004) (-1004)) (T -615))
+((-3498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)) (-5 *1 (-615 *5 *6 *2)))))
+(-10 -7 (-15 -3498 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3836 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3862 (((-1 |#1|) |#1|) 8)) (-3184 ((|#1| |#1|) 16)) (-1906 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2269 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
+(((-616 |#1|) (-10 -7 (-15 -3862 ((-1 |#1|) |#1|)) (-15 -2269 ((-1 |#1|) |#1|)) (-15 -1906 (|#1| (-1 |#1| |#1|))) (-15 -1906 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3184 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -3836 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1004)) (T -616))
+((-3836 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1004)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1004)) (-5 *1 (-616 *4)))) (-3184 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1004)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1004)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1004)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1004)))) (-3862 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1004)))))
+(-10 -7 (-15 -3862 ((-1 |#1|) |#1|)) (-15 -2269 ((-1 |#1|) |#1|)) (-15 -1906 (|#1| (-1 |#1| |#1|))) (-15 -1906 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3184 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -3836 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
+((-1817 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2956 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1384 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3725 (((-1 |#2| |#1|) |#2|) 11)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -3725 ((-1 |#2| |#1|) |#2|)) (-15 -2956 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1817 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1004) (-1004)) (T -617))
+((-1817 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1004)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1004)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3725 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1004)) (-4 *3 (-1004)))))
+(-10 -7 (-15 -3725 ((-1 |#2| |#1|) |#2|)) (-15 -2956 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1817 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-1262 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2293 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2937 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3412 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1338 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2293 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2937 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3412 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1338 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1262 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1004) (-1004) (-1004)) (T -618))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1004)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1004)))) (-2937 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1004)) (-4 *4 (-1004)) (-4 *6 (-1004)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(-10 -7 (-15 -2293 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2937 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3412 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1338 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1262 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-1521 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3308 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3308 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3308 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-962) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
+((-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-3308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
+(-10 -7 (-15 -3308 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3308 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3875 (($ (-703) (-703)) 32)) (-2219 (($ $ $) 55)) (-1670 (($ |#3|) 51) (($ $) 52)) (-1572 (((-107) $) 27)) (-1291 (($ $ (-517) (-517)) 57)) (-3696 (($ $ (-517) (-517)) 58)) (-2342 (($ $ (-517) (-517) (-517) (-517)) 62)) (-3574 (($ $) 53)) (-1793 (((-107) $) 14)) (-1565 (($ $ (-517) (-517) $) 63)) (-2443 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 61)) (-3583 (($ (-703) |#2|) 37)) (-2369 (($ (-583 (-583 |#2|))) 35)) (-1548 (((-583 (-583 |#2|)) $) 56)) (-3877 (($ $ $) 54)) (-2327 (((-3 $ "failed") $ |#2|) 90)) (-2607 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 60)) (-3289 (($ (-583 |#2|)) 39) (($ (-583 $)) 41)) (-2434 (((-107) $) 24)) (-2269 (($ |#4|) 46) (((-787) $) NIL)) (-3515 (((-107) $) 29)) (-1703 (($ $ |#2|) 92)) (-1691 (($ $ $) 67) (($ $) 70)) (-1677 (($ $ $) 65)) (** (($ $ (-703)) 79) (($ $ (-517)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-517) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1703 (|#1| |#1| |#2|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -2342 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3696 (|#1| |#1| (-517) (-517))) (-15 -1291 (|#1| |#1| (-517) (-517))) (-15 -2443 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2607 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -1548 ((-583 (-583 |#2|)) |#1|)) (-15 -2219 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1670 (|#1| |#3|)) (-15 -2269 (|#1| |#4|)) (-15 -3289 (|#1| (-583 |#1|))) (-15 -3289 (|#1| (-583 |#2|))) (-15 -3583 (|#1| (-703) |#2|)) (-15 -2369 (|#1| (-583 (-583 |#2|)))) (-15 -3875 (|#1| (-703) (-703))) (-15 -3515 ((-107) |#1|)) (-15 -1572 ((-107) |#1|)) (-15 -2434 ((-107) |#1|)) (-15 -1793 ((-107) |#1|)) (-15 -2443 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517)))) (-621 |#2| |#3| |#4|) (-962) (-343 |#2|) (-343 |#2|)) (T -620))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1703 (|#1| |#1| |#2|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -2342 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3696 (|#1| |#1| (-517) (-517))) (-15 -1291 (|#1| |#1| (-517) (-517))) (-15 -2443 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2607 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -1548 ((-583 (-583 |#2|)) |#1|)) (-15 -2219 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1670 (|#1| |#3|)) (-15 -2269 (|#1| |#4|)) (-15 -3289 (|#1| (-583 |#1|))) (-15 -3289 (|#1| (-583 |#2|))) (-15 -3583 (|#1| (-703) |#2|)) (-15 -2369 (|#1| (-583 (-583 |#2|)))) (-15 -3875 (|#1| (-703) (-703))) (-15 -3515 ((-107) |#1|)) (-15 -1572 ((-107) |#1|)) (-15 -2434 ((-107) |#1|)) (-15 -1793 ((-107) |#1|)) (-15 -2443 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) (-517))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3875 (($ (-703) (-703)) 97)) (-2219 (($ $ $) 87)) (-1670 (($ |#2|) 91) (($ $) 90)) (-1572 (((-107) $) 99)) (-1291 (($ $ (-517) (-517)) 83)) (-3696 (($ $ (-517) (-517)) 82)) (-2342 (($ $ (-517) (-517) (-517) (-517)) 81)) (-3574 (($ $) 89)) (-1793 (((-107) $) 101)) (-2670 (((-107) $ (-703)) 8)) (-1565 (($ $ (-517) (-517) $) 80)) (-2443 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-3813 (($ $ (-517) |#2|) 42)) (-3233 (($ $ (-517) |#3|) 41)) (-3583 (($ (-703) |#1|) 95)) (-1681 (($) 7 T CONST)) (-1680 (($ $) 67 (|has| |#1| (-278)))) (-3766 ((|#2| $ (-517)) 46)) (-3736 (((-703) $) 66 (|has| |#1| (-509)))) (-2757 ((|#1| $ (-517) (-517) |#1|) 43)) (-2563 ((|#1| $ (-517) (-517)) 48)) (-1535 (((-583 |#1|) $) 30)) (-3805 (((-703) $) 65 (|has| |#1| (-509)))) (-3794 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1420 (((-703) $) 51)) (-3211 (($ (-703) (-703) |#1|) 57)) (-1434 (((-703) $) 50)) (-2361 (((-107) $ (-703)) 9)) (-2924 ((|#1| $) 62 (|has| |#1| (-6 (-4192 "*"))))) (-2380 (((-517) $) 55)) (-3442 (((-517) $) 53)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1977 (((-517) $) 54)) (-3996 (((-517) $) 52)) (-2369 (($ (-583 (-583 |#1|))) 96)) (-2744 (($ (-1 |#1| |#1|) $) 34)) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1548 (((-583 (-583 |#1|)) $) 86)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1368 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-3877 (($ $ $) 88)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) 56)) (-2327 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-3289 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-2434 (((-107) $) 100)) (-4126 ((|#1| $) 63 (|has| |#1| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2708 ((|#3| $ (-517)) 45)) (-2269 (($ |#3|) 92) (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-3515 (((-107) $) 98)) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1703 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1691 (($ $ $) 78) (($ $) 77)) (-1677 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-621 |#1| |#2| |#3|) (-1187) (-962) (-343 |t#1|) (-343 |t#1|)) (T -621))
+((-1793 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3875 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3583 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-1670 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-1670 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3877 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2219 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-2607 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2443 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1291 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3696 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2342 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1565 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2327 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1703 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))) (-1368 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4191) (-6 -4190) (-15 -1793 ((-107) $)) (-15 -2434 ((-107) $)) (-15 -1572 ((-107) $)) (-15 -3515 ((-107) $)) (-15 -3875 ($ (-703) (-703))) (-15 -2369 ($ (-583 (-583 |t#1|)))) (-15 -3583 ($ (-703) |t#1|)) (-15 -3289 ($ (-583 |t#1|))) (-15 -3289 ($ (-583 $))) (-15 -2269 ($ |t#3|)) (-15 -1670 ($ |t#2|)) (-15 -1670 ($ $)) (-15 -3574 ($ $)) (-15 -3877 ($ $ $)) (-15 -2219 ($ $ $)) (-15 -1548 ((-583 (-583 |t#1|)) $)) (-15 -2607 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2443 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -1291 ($ $ (-517) (-517))) (-15 -3696 ($ $ (-517) (-517))) (-15 -2342 ($ $ (-517) (-517) (-517) (-517))) (-15 -1565 ($ $ (-517) (-517) $)) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -1691 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2327 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1703 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-278)) (-15 -1680 ($ $)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3736 ((-703) $)) (-15 -3805 ((-703) $)) (-15 -3794 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4192 "*"))) (PROGN (-15 -4126 (|t#1| $)) (-15 -2924 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -1368 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-55 |#1| |#2| |#3|) . T) ((-1110) . T))
+((-1680 ((|#4| |#4|) 68 (|has| |#1| (-278)))) (-3736 (((-703) |#4|) 70 (|has| |#1| (-509)))) (-3805 (((-703) |#4|) 72 (|has| |#1| (-509)))) (-3794 (((-583 |#3|) |#4|) 79 (|has| |#1| (-509)))) (-2193 (((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|) 96 (|has| |#1| (-278)))) (-2924 ((|#1| |#4|) 34)) (-3551 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-509)))) (-1368 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-333)))) (-2251 ((|#4| |#4|) 55 (|has| |#1| (-509)))) (-1553 ((|#4| |#4| |#1| (-517) (-517)) 42)) (-2863 ((|#4| |#4| (-517) (-517)) 37)) (-2587 ((|#4| |#4| |#1| (-517) (-517)) 47)) (-4126 ((|#1| |#4|) 74)) (-1683 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-509)))))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 (|#1| |#4|)) (-15 -2924 (|#1| |#4|)) (-15 -2863 (|#4| |#4| (-517) (-517))) (-15 -1553 (|#4| |#4| |#1| (-517) (-517))) (-15 -2587 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3736 ((-703) |#4|)) (-15 -3805 ((-703) |#4|)) (-15 -3794 ((-583 |#3|) |#4|)) (-15 -2251 (|#4| |#4|)) (-15 -3551 ((-3 |#4| "failed") |#4|)) (-15 -1683 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1680 (|#4| |#4|)) (-15 -2193 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1368 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
+((-1368 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2193 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3551 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2587 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-1553 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-2863 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-4126 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
+(-10 -7 (-15 -4126 (|#1| |#4|)) (-15 -2924 (|#1| |#4|)) (-15 -2863 (|#4| |#4| (-517) (-517))) (-15 -1553 (|#4| |#4| |#1| (-517) (-517))) (-15 -2587 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3736 ((-703) |#4|)) (-15 -3805 ((-703) |#4|)) (-15 -3794 ((-583 |#3|) |#4|)) (-15 -2251 (|#4| |#4|)) (-15 -3551 ((-3 |#4| "failed") |#4|)) (-15 -1683 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1680 (|#4| |#4|)) (-15 -2193 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1368 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703) (-703)) 45)) (-2219 (($ $ $) NIL)) (-1670 (($ (-1156 |#1|)) NIL) (($ $) NIL)) (-1572 (((-107) $) NIL)) (-1291 (($ $ (-517) (-517)) 12)) (-3696 (($ $ (-517) (-517)) NIL)) (-2342 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-3574 (($ $) NIL)) (-1793 (((-107) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-1565 (($ $ (-517) (-517) $) NIL)) (-2443 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3813 (($ $ (-517) (-1156 |#1|)) NIL)) (-3233 (($ $ (-517) (-1156 |#1|)) NIL)) (-3583 (($ (-703) |#1|) 22)) (-1681 (($) NIL T CONST)) (-1680 (($ $) 30 (|has| |#1| (-278)))) (-3766 (((-1156 |#1|) $ (-517)) NIL)) (-3736 (((-703) $) 32 (|has| |#1| (-509)))) (-2757 ((|#1| $ (-517) (-517) |#1|) 50)) (-2563 ((|#1| $ (-517) (-517)) NIL)) (-1535 (((-583 |#1|) $) NIL)) (-3805 (((-703) $) 34 (|has| |#1| (-509)))) (-3794 (((-583 (-1156 |#1|)) $) 37 (|has| |#1| (-509)))) (-1420 (((-703) $) 20)) (-3211 (($ (-703) (-703) |#1|) NIL)) (-1434 (((-703) $) 21)) (-2361 (((-107) $ (-703)) NIL)) (-2924 ((|#1| $) 28 (|has| |#1| (-6 (-4192 "*"))))) (-2380 (((-517) $) 9)) (-3442 (((-517) $) 10)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1977 (((-517) $) 11)) (-3996 (((-517) $) 46)) (-2369 (($ (-583 (-583 |#1|))) NIL)) (-2744 (($ (-1 |#1| |#1|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1548 (((-583 (-583 |#1|)) $) 58)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1368 (((-3 $ "failed") $) 41 (|has| |#1| (-333)))) (-3877 (($ $ $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3191 (($ $ |#1|) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-3289 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1156 |#1|)) 51)) (-2434 (((-107) $) NIL)) (-4126 ((|#1| $) 26 (|has| |#1| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-3357 (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2708 (((-1156 |#1|) $ (-517)) NIL)) (-2269 (($ (-1156 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $ $) NIL) (($ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 44 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1156 |#1|) $ (-1156 |#1|)) NIL) (((-1156 |#1|) (-1156 |#1|) $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-623 |#1|) (-13 (-621 |#1| (-1156 |#1|) (-1156 |#1|)) (-10 -8 (-15 -3289 ($ (-1156 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1368 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -623))
+((-1368 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-962)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-962)) (-5 *1 (-623 *3)))))
+(-13 (-621 |#1| (-1156 |#1|) (-1156 |#1|)) (-10 -8 (-15 -3289 ($ (-1156 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -1368 ((-3 $ "failed") $)) |%noBranch|)))
+((-1468 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-1972 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-3317 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-1536 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-1367 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-2932 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-3667 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
+(((-624 |#1|) (-10 -7 (-15 -3667 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1536 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1367 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1367 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2932 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1972 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1468 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3317 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-962)) (T -624))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-962)) (-5 *1 (-624 *4)))) (-3317 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-962)) (-5 *1 (-624 *4)))) (-1468 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-1972 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-2932 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-1367 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-1536 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))) (-3667 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(-10 -7 (-15 -3667 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1536 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1367 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1367 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2932 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1972 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1468 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3317 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
+((-3306 ((|#2| |#2| |#4|) 25)) (-1545 (((-623 |#2|) |#3| |#4|) 31)) (-2070 (((-623 |#2|) |#2| |#4|) 30)) (-3741 (((-1156 |#2|) |#2| |#4|) 16)) (-2076 ((|#2| |#3| |#4|) 24)) (-2567 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-4022 (((-623 |#2|) |#2| |#4| (-703)) 37)))
+(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 ((-1156 |#2|) |#2| |#4|)) (-15 -2076 (|#2| |#3| |#4|)) (-15 -3306 (|#2| |#2| |#4|)) (-15 -2070 ((-623 |#2|) |#2| |#4|)) (-15 -4022 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1545 ((-623 |#2|) |#3| |#4|)) (-15 -2567 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1004) (-823 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4190)))) (T -625))
+((-2567 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1004)) (-4 *7 (-823 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4190)))))) (-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-4 *6 (-823 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1004)) (-4 *3 (-823 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4190)))))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-4 *3 (-823 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))) (-3306 (*1 *2 *2 *3) (-12 (-4 *4 (-1004)) (-4 *2 (-823 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4190)))))) (-2076 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-4 *2 (-823 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))) (-3741 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-4 *3 (-823 *5)) (-5 *2 (-1156 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))))
+(-10 -7 (-15 -3741 ((-1156 |#2|) |#2| |#4|)) (-15 -2076 (|#2| |#3| |#4|)) (-15 -3306 (|#2| |#2| |#4|)) (-15 -2070 ((-623 |#2|) |#2| |#4|)) (-15 -4022 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1545 ((-623 |#2|) |#3| |#4|)) (-15 -2567 ((-623 |#2|) |#3| |#4| (-703) (-703))))
+((-1383 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-2222 ((|#1| (-623 |#2|)) 9)) (-2158 (((-623 |#1|) (-623 |#2|)) 16)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2222 (|#1| (-623 |#2|))) (-15 -2158 ((-623 |#1|) (-623 |#2|))) (-15 -1383 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-910 |#1|)) (T -626))
+((-1383 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-910 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-910 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
+(-10 -7 (-15 -2222 (|#1| (-623 |#2|))) (-15 -2158 ((-623 |#1|) (-623 |#2|))) (-15 -1383 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3861 (((-623 (-632))) NIL) (((-623 (-632)) (-1156 $)) NIL)) (-2008 (((-632) $) NIL)) (-1646 (($ $) NIL (|has| (-632) (-1096)))) (-1493 (($ $) NIL (|has| (-632) (-1096)))) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3088 (($ $) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-1581 (((-388 $) $) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-3879 (($ $) NIL (-12 (|has| (-632) (-919)) (|has| (-632) (-1096))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3998 (((-107) $ $) NIL (|has| (-632) (-278)))) (-2397 (((-703)) NIL (|has| (-632) (-338)))) (-1622 (($ $) NIL (|has| (-632) (-1096)))) (-1470 (($ $) NIL (|has| (-632) (-1096)))) (-1669 (($ $) NIL (|has| (-632) (-1096)))) (-1519 (($ $) NIL (|has| (-632) (-1096)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-953 (-377 (-517)))))) (-3388 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-953 (-377 (-517)))))) (-1953 (($ (-1156 (-632))) NIL) (($ (-1156 (-632)) (-1156 $)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2378 (($ $ $) NIL (|has| (-632) (-278)))) (-1416 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1156 $)) NIL)) (-2306 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-632))) (|:| |vec| (-1156 (-632)))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-1521 (((-3 $ "failed") (-377 (-1071 (-632)))) NIL (|has| (-632) (-333))) (($ (-1071 (-632))) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3891 (((-632) $) 29)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-1654 (((-107) $) NIL (|has| (-632) (-502)))) (-3652 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3736 (((-844)) NIL)) (-2200 (($) NIL (|has| (-632) (-338)))) (-2354 (($ $ $) NIL (|has| (-632) (-278)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-1672 (($) NIL (|has| (-632) (-319)))) (-3454 (((-107) $) NIL (|has| (-632) (-319)))) (-2464 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-2963 (((-107) $) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-1640 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-971)) (|has| (-632) (-1096))))) (-2115 (($) NIL (|has| (-632) (-1096)))) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-632) (-809 (-349)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-632) (-809 (-517))))) (-2053 (((-765 (-844)) $) NIL (|has| (-632) (-319))) (((-844) $) NIL (|has| (-632) (-319)))) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (-12 (|has| (-632) (-919)) (|has| (-632) (-1096))))) (-2754 (((-632) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2456 (((-1071 (-632)) $) NIL (|has| (-632) (-333)))) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3308 (($ (-1 (-632) (-632)) $) NIL)) (-2031 (((-844) $) NIL (|has| (-632) (-338)))) (-1225 (($ $) NIL (|has| (-632) (-1096)))) (-1508 (((-1071 (-632)) $) NIL)) (-2330 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| (-632) (-333)))) (-2585 (($) NIL (|has| (-632) (-319)) CONST)) (-2810 (($ (-844)) NIL (|has| (-632) (-338)))) (-1919 (($) NIL)) (-3904 (((-632) $) 31)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| (-632) (-278)))) (-2368 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-632) (-319)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-832))))) (-3866 (((-388 $) $) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| (-632) (-832))) (|has| (-632) (-333))))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| (-632) (-278)))) (-2327 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3868 (($ $) NIL (|has| (-632) (-1096)))) (-3522 (($ $ (-1075) (-632)) NIL (|has| (-632) (-478 (-1075) (-632)))) (($ $ (-583 (-1075)) (-583 (-632))) NIL (|has| (-632) (-478 (-1075) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-4094 (((-703) $) NIL (|has| (-632) (-278)))) (-2607 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| (-632) (-278)))) (-4032 (((-632)) NIL) (((-632) (-1156 $)) NIL)) (-1496 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-2059 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-1075)) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-2678 (((-623 (-632)) (-1156 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-3586 (((-1071 (-632))) NIL)) (-1682 (($ $) NIL (|has| (-632) (-1096)))) (-1532 (($ $) NIL (|has| (-632) (-1096)))) (-3958 (($) NIL (|has| (-632) (-319)))) (-1656 (($ $) NIL (|has| (-632) (-1096)))) (-1506 (($ $) NIL (|has| (-632) (-1096)))) (-1632 (($ $) NIL (|has| (-632) (-1096)))) (-1482 (($ $) NIL (|has| (-632) (-1096)))) (-3369 (((-623 (-632)) (-1156 $)) NIL) (((-1156 (-632)) $) NIL) (((-623 (-632)) (-1156 $) (-1156 $)) NIL) (((-1156 (-632)) $ (-1156 $)) NIL)) (-3357 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-938))) (((-153 (-349)) $) NIL (|has| (-632) (-938))) (((-815 (-349)) $) NIL (|has| (-632) (-558 (-815 (-349))))) (((-815 (-517)) $) NIL (|has| (-632) (-558 (-815 (-517))))) (($ (-1071 (-632))) NIL) (((-1071 (-632)) $) NIL) (($ (-1156 (-632))) NIL) (((-1156 (-632)) $) NIL)) (-3026 (($ $) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-832))) (|has| (-632) (-319))))) (-3887 (($ (-632) (-632)) 12)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3745 (|has| (-632) (-953 (-377 (-517)))) (|has| (-632) (-333))))) (-2650 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3745 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-832))) (|has| (-632) (-132))))) (-1900 (((-1071 (-632)) $) NIL)) (-2950 (((-703)) NIL)) (-2062 (((-1156 $)) NIL)) (-1721 (($ $) NIL (|has| (-632) (-1096)))) (-1575 (($ $) NIL (|has| (-632) (-1096)))) (-2914 (((-107) $ $) NIL)) (-1695 (($ $) NIL (|has| (-632) (-1096)))) (-1547 (($ $) NIL (|has| (-632) (-1096)))) (-3487 (($ $) NIL (|has| (-632) (-1096)))) (-1599 (($ $) NIL (|has| (-632) (-1096)))) (-3418 (((-632) $) NIL (|has| (-632) (-1096)))) (-2822 (($ $) NIL (|has| (-632) (-1096)))) (-1612 (($ $) NIL (|has| (-632) (-1096)))) (-1735 (($ $) NIL (|has| (-632) (-1096)))) (-1588 (($ $) NIL (|has| (-632) (-1096)))) (-1708 (($ $) NIL (|has| (-632) (-1096)))) (-1561 (($ $) NIL (|has| (-632) (-1096)))) (-2339 (($ $) NIL (|has| (-632) (-971)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-1075)) NIL (|has| (-632) (-823 (-1075)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL (|has| (-632) (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1096))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-919)) (|has| (-632) (-1096)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
+(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2269 ($ (-153 (-349)))) (-15 -2269 ($ (-153 (-517)))) (-15 -2269 ($ (-153 (-632)))) (-15 -2269 ($ (-153 (-634)))) (-15 -2269 ((-153 (-349)) $))))) (T -627))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
+(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2269 ($ (-153 (-349)))) (-15 -2269 ($ (-153 (-517)))) (-15 -2269 ($ (-153 (-632)))) (-15 -2269 ($ (-153 (-634)))) (-15 -2269 ((-153 (-349)) $))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-3302 (($ $) 62)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2804 (((-583 (-2 (|:| -1860 |#1|) (|:| -4135 (-703)))) $) 61)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-628 |#1|) (-1187) (-1004)) (T -628))
+((-2704 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1004)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1004)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1004)) (-5 *2 (-583 (-2 (|:| -1860 *3) (|:| -4135 (-703))))))))
+(-13 (-209 |t#1|) (-10 -8 (-15 -2704 ($ |t#1| $ (-703))) (-15 -3302 ($ $)) (-15 -2804 ((-583 (-2 (|:| -1860 |t#1|) (|:| -4135 (-703)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-1874 (((-583 |#1|) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) (-517)) 46)) (-2365 ((|#1| |#1| (-517)) 45)) (-2368 ((|#1| |#1| |#1| (-517)) 35)) (-3866 (((-583 |#1|) |#1| (-517)) 38)) (-1694 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-3675 (((-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) |#1| (-517)) 44)))
+(((-629 |#1|) (-10 -7 (-15 -2368 (|#1| |#1| |#1| (-517))) (-15 -2365 (|#1| |#1| (-517))) (-15 -3866 ((-583 |#1|) |#1| (-517))) (-15 -3675 ((-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) |#1| (-517))) (-15 -1874 ((-583 |#1|) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) (-517))) (-15 -1694 (|#1| |#1| (-517) |#1| (-517)))) (-1132 (-517))) (T -629))
+((-1694 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3866 *5) (|:| -2769 (-517))))) (-5 *4 (-517)) (-4 *5 (-1132 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3866 *3) (|:| -2769 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1132 *4)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1132 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3)))) (-2368 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3)))))
+(-10 -7 (-15 -2368 (|#1| |#1| |#1| (-517))) (-15 -2365 (|#1| |#1| (-517))) (-15 -3866 ((-583 |#1|) |#1| (-517))) (-15 -3675 ((-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) |#1| (-517))) (-15 -1874 ((-583 |#1|) (-583 (-2 (|:| -3866 |#1|) (|:| -2769 (-517)))) (-517))) (-15 -1694 (|#1| |#1| (-517) |#1| (-517))))
+((-2060 (((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2249 (((-1035 (-199)) (-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236))) 38) (((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236))) 40) (((-1035 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236))) 42)) (-1660 (((-1035 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-583 (-236))) NIL)) (-2938 (((-1035 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236))) 43)))
+(((-630) (-10 -7 (-15 -2249 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2249 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2249 ((-1035 (-199)) (-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2938 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -1660 ((-1035 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2060 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
+((-2060 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-1660 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-630)))) (-2938 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-630)))) (-2249 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2249 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-630)))) (-2249 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-630)))))
+(-10 -7 (-15 -2249 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2249 ((-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2249 ((-1035 (-199)) (-1035 (-199)) (-1 (-866 (-199)) (-199) (-199)) (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2938 ((-1035 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-999 (-199)) (-999 (-199)) (-583 (-236)))) (-15 -1660 ((-1035 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-999 (-199)) (-583 (-236)))) (-15 -2060 ((-1 (-866 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-3866 (((-388 (-1071 |#4|)) (-1071 |#4|)) 73) (((-388 |#4|) |#4|) 217)))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4|)) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|)))) (-779) (-725) (-319) (-872 |#3| |#2| |#1|)) (T -631))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4|)) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 84)) (-3297 (((-517) $) 30)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3509 (($ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL)) (-1681 (($) NIL T CONST)) (-4013 (($ $) NIL)) (-3226 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3388 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2378 (($ $ $) 96)) (-3163 (((-3 $ "failed") $) 87)) (-2354 (($ $ $) 95)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3434 (((-844)) 77) (((-844) (-844)) 76)) (-3523 (((-107) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL)) (-2053 (((-517) $) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL)) (-2754 (($ $) NIL)) (-1469 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4103 (((-517) (-517)) 81) (((-517)) 82)) (-3456 (($ $ $) NIL) (($) NIL (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-3948 (((-517) (-517)) 79) (((-517)) 80)) (-4082 (($ $ $) NIL) (($) NIL (-12 (-2477 (|has| $ (-6 -4173))) (-2477 (|has| $ (-6 -4181)))))) (-3697 (((-517) $) 16)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 91)) (-2787 (((-844) (-517)) NIL (|has| $ (-6 -4181)))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL)) (-2309 (($ $) NIL)) (-3209 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-844)) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) 92)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2356 (((-517) $) 22)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 94)) (-2207 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4181)))) (-2229 (((-844) (-517)) NIL (|has| $ (-6 -4181)))) (-3357 (((-349) $) NIL) (((-199) $) NIL) (((-815 (-349)) $) NIL)) (-2269 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-2950 (((-703)) 103)) (-1738 (($ (-517) (-517) (-844)) 44)) (-3475 (($ $) NIL)) (-2013 (((-844)) NIL) (((-844) (-844)) NIL (|has| $ (-6 -4181)))) (-3984 (((-844)) 35) (((-844) (-844)) 78)) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 32 T CONST)) (-3617 (($) 17 T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 83)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 101)) (-1703 (($ $ $) 65)) (-1691 (($ $) 99) (($ $ $) 100)) (-1677 (($ $ $) 98)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-632) (-13 (-374) (-357) (-333) (-953 (-349)) (-953 (-377 (-517))) (-134) (-10 -8 (-15 -3434 ((-844) (-844))) (-15 -3434 ((-844))) (-15 -3984 ((-844) (-844))) (-15 -3984 ((-844))) (-15 -3948 ((-517) (-517))) (-15 -3948 ((-517))) (-15 -4103 ((-517) (-517))) (-15 -4103 ((-517))) (-15 -2269 ((-349) $)) (-15 -2269 ($ (-634))) (-15 -3697 ((-517) $)) (-15 -2356 ((-517) $)) (-15 -1738 ($ (-517) (-517) (-844)))))) (T -632))
+((-3984 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3434 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3948 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-4103 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-1738 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-5 *1 (-632)))))
+(-13 (-374) (-357) (-333) (-953 (-349)) (-953 (-377 (-517))) (-134) (-10 -8 (-15 -3434 ((-844) (-844))) (-15 -3434 ((-844))) (-15 -3984 ((-844) (-844))) (-15 -3984 ((-844))) (-15 -3948 ((-517) (-517))) (-15 -3948 ((-517))) (-15 -4103 ((-517) (-517))) (-15 -4103 ((-517))) (-15 -2269 ((-349) $)) (-15 -2269 ($ (-634))) (-15 -3697 ((-517) $)) (-15 -2356 ((-517) $)) (-15 -1738 ($ (-517) (-517) (-844)))))
+((-1336 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 65)) (-1680 (((-623 |#1|) (-623 |#1|) |#1|) 48)) (-3859 (((-623 |#1|) (-623 |#1|) |#1|) 66)) (-2145 (((-623 |#1|) (-623 |#1|)) 49)) (-2193 (((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|) 64)))
+(((-633 |#1|) (-10 -7 (-15 -2145 ((-623 |#1|) (-623 |#1|))) (-15 -1680 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3859 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1336 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2193 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|))) (-278)) (T -633))
+((-2193 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-1336 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-3859 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1680 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -2145 ((-623 |#1|) (-623 |#1|))) (-15 -1680 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3859 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1336 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -2193 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1732 (($ $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1448 (($ $ $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL)) (-2140 (($ $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) 27)) (-3388 (((-517) $) 25)) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL)) (-1654 (((-107) $) NIL)) (-3652 (((-377 (-517)) $) NIL)) (-2200 (($ $) NIL) (($) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2171 (($ $ $ $) NIL)) (-3101 (($ $ $) NIL)) (-3523 (((-107) $) NIL)) (-1298 (($ $ $) NIL)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1865 (((-107) $) NIL)) (-1623 (((-107) $) NIL)) (-3572 (((-3 $ "failed") $) NIL)) (-1469 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1431 (($ $ $ $) NIL)) (-3456 (($ $ $) NIL)) (-2882 (((-844) (-844)) 10) (((-844)) 9)) (-4082 (($ $ $) NIL)) (-2634 (($ $) NIL)) (-3680 (($ $) NIL)) (-2330 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-2825 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-4004 (($ $) NIL)) (-4123 (((-1022) $) NIL) (($ $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3012 (($ $) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL) (($ $ (-703)) NIL)) (-2916 (($ $) NIL)) (-2460 (($ $) NIL)) (-3357 (((-199) $) NIL) (((-349) $) NIL) (((-815 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-2950 (((-703)) NIL)) (-4012 (((-107) $ $) NIL)) (-3972 (($ $ $) NIL)) (-3984 (($) NIL)) (-2914 (((-107) $ $) NIL)) (-3359 (($ $ $ $) NIL)) (-2339 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL) (($ $ (-703)) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-634) (-13 (-357) (-502) (-10 -8 (-15 -2882 ((-844) (-844))) (-15 -2882 ((-844))) (-15 -2269 ((-286 $) (-286 (-517))))))) (T -634))
+((-2882 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))) (-2882 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
+(-13 (-357) (-502) (-10 -8 (-15 -2882 ((-844) (-844))) (-15 -2882 ((-844))) (-15 -2269 ((-286 $) (-286 (-517))))))
+((-2721 (((-1 |#4| |#2| |#3|) |#1| (-1075) (-1075)) 19)) (-2335 (((-1 |#4| |#2| |#3|) (-1075)) 12)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2335 ((-1 |#4| |#2| |#3|) (-1075))) (-15 -2721 ((-1 |#4| |#2| |#3|) |#1| (-1075) (-1075)))) (-558 (-493)) (-1110) (-1110) (-1110)) (T -635))
+((-2721 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)) (-4 *7 (-1110)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)) (-4 *7 (-1110)))))
+(-10 -7 (-15 -2335 ((-1 |#4| |#2| |#3|) (-1075))) (-15 -2721 ((-1 |#4| |#2| |#3|) |#1| (-1075) (-1075))))
+((-2118 (((-107) $ $) NIL)) (-3145 (((-1161) $ (-703)) 14)) (-1211 (((-703) $) 12)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 25)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 24)))
+(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2269 ($ |#1|)))) (-1004)) (T -636))
+((-2269 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1004)))))
+(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2269 ($ |#1|))))
+((-3563 (((-1 (-199) (-199) (-199)) |#1| (-1075) (-1075)) 33) (((-1 (-199) (-199)) |#1| (-1075)) 38)))
+(((-637 |#1|) (-10 -7 (-15 -3563 ((-1 (-199) (-199)) |#1| (-1075))) (-15 -3563 ((-1 (-199) (-199) (-199)) |#1| (-1075) (-1075)))) (-558 (-493))) (T -637))
+((-3563 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -3563 ((-1 (-199) (-199)) |#1| (-1075))) (-15 -3563 ((-1 (-199) (-199) (-199)) |#1| (-1075) (-1075))))
+((-2225 (((-1075) |#1| (-1075) (-583 (-1075))) 9) (((-1075) |#1| (-1075) (-1075) (-1075)) 12) (((-1075) |#1| (-1075) (-1075)) 11) (((-1075) |#1| (-1075)) 10)))
+(((-638 |#1|) (-10 -7 (-15 -2225 ((-1075) |#1| (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-1075) (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-583 (-1075))))) (-558 (-493))) (T -638))
+((-2225 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1075))) (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2225 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2225 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2225 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -2225 ((-1075) |#1| (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-1075) (-1075))) (-15 -2225 ((-1075) |#1| (-1075) (-583 (-1075)))))
+((-2398 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -2398 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1110) (-1110)) (T -639))
+((-2398 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1110)) (-4 *4 (-1110)))))
+(-10 -7 (-15 -2398 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2351 (((-1 |#3| |#2|) (-1075)) 11)) (-2721 (((-1 |#3| |#2|) |#1| (-1075)) 21)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2351 ((-1 |#3| |#2|) (-1075))) (-15 -2721 ((-1 |#3| |#2|) |#1| (-1075)))) (-558 (-493)) (-1110) (-1110)) (T -640))
+((-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)))))
+(-10 -7 (-15 -2351 ((-1 |#3| |#2|) (-1075))) (-15 -2721 ((-1 |#3| |#2|) |#1| (-1075))))
+((-3594 (((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1156 (-583 (-1071 |#3|))) |#3|) 59)) (-3765 (((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 72)) (-2447 (((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1071 |#4|)) (-1156 (-583 (-1071 |#3|))) |#3|) 32)))
+(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2447 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1071 |#4|)) (-1156 (-583 (-1071 |#3|))) |#3|)) (-15 -3765 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -3594 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1156 (-583 (-1071 |#3|))) |#3|))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -641))
+((-3594 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1071 *13))) (-5 *3 (-1071 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1156 (-583 (-1071 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-872 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3765 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1071 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-872 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1071 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1071 *12)))) (-2447 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1071 *11))) (-5 *3 (-1071 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1156 (-583 (-1071 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-872 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2447 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1071 |#4|)) (-1156 (-583 (-1071 |#3|))) |#3|)) (-15 -3765 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -3594 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-583 |#2|) (-583 (-1071 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1156 (-583 (-1071 |#3|))) |#3|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2371 (($ $) 41)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-2077 (($ |#1| (-703)) 39)) (-2210 (((-703) $) 43)) (-2345 ((|#1| $) 42)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2769 (((-703) $) 44)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-3952 ((|#1| $ (-703)) 40)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-642 |#1|) (-1187) (-962)) (T -642))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-962)))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-962)))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-962)))) (-2077 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2769 ((-703) $)) (-15 -2210 ((-703) $)) (-15 -2345 (|t#1| $)) (-15 -2371 ($ $)) (-15 -3952 (|t#1| $ (-703))) (-15 -2077 ($ |t#1| (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3308 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3308 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1132 |#1|) (-1132 (-377 |#2|)) (-509) (-1132 |#4|) (-1132 (-377 |#5|))) (T -643))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1132 *5)) (-4 *2 (-1132 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1132 (-377 *6))) (-4 *8 (-1132 *7)))))
+(-10 -7 (-15 -3308 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL)) (-1521 (($ |#1| |#2|) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3326 ((|#2| $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -3326 (|#2| $)) (-15 -2269 (|#1| $)) (-15 -1521 ($ |#1| |#2|)) (-15 -3167 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
+((-3326 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2269 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1521 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3167 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-333) (-10 -8 (-15 -3326 (|#2| $)) (-15 -2269 (|#1| $)) (-15 -1521 ($ |#1| |#2|)) (-15 -3167 ((-3 $ "failed") $ $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 30)) (-2099 (((-1156 |#1|) $ (-703)) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3673 (($ (-1071 |#1|)) NIL)) (-1440 (((-1071 $) $ (-990)) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-990))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1784 (($ $ $) NIL (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2397 (((-703)) 47 (|has| |#1| (-338)))) (-3753 (($ $ (-703)) NIL)) (-2046 (($ $ (-703)) NIL)) (-2665 ((|#2| |#2|) 44)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-990) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-990) $) NIL)) (-2272 (($ $ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) 34)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1521 (($ |#2|) 42)) (-3163 (((-3 $ "failed") $) 85)) (-2200 (($) 51 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1352 (($ $ $) NIL)) (-3443 (($ $ $) NIL (|has| |#1| (-509)))) (-2165 (((-2 (|:| -1580 |#1|) (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2220 (((-880 $)) 79)) (-2027 (($ $ |#1| (-703) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-990) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-990) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-1051)))) (-2086 (($ (-1071 |#1|) (-990)) NIL) (($ (-1071 $) (-990)) NIL)) (-2588 (($ $ (-703)) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) 77) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-990)) NIL) (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3326 ((|#2|) 45)) (-2210 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-703) (-703)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1998 (((-1071 |#1|) $) NIL)) (-1512 (((-3 (-990) "failed") $) NIL)) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-1508 ((|#2| $) 41)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) 28)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-990)) (|:| -2356 (-703))) "failed") $) NIL)) (-1518 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) NIL (|has| |#1| (-1051)) CONST)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3350 (($ $) 78 (|has| |#1| (-319)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-990) |#1|) NIL) (($ $ (-583 (-990)) (-583 |#1|)) NIL) (($ $ (-990) $) NIL) (($ $ (-583 (-990)) (-583 $)) NIL)) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1596 (((-3 $ "failed") $ (-703)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 86 (|has| |#1| (-333)))) (-4032 (($ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2059 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2769 (((-703) $) 32) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-990) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-3352 (((-880 $)) 36)) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2269 (((-787) $) 61) (($ (-517)) NIL) (($ |#1|) 58) (($ (-990)) NIL) (($ |#2|) 68) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) 63) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 20 T CONST)) (-3102 (((-1156 |#1|) $) 75)) (-3247 (($ (-1156 |#1|)) 50)) (-3617 (($) 8 T CONST)) (-3340 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3483 (((-1156 |#1|) $) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 69)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) 72) (($ $ $) NIL)) (-1677 (($ $ $) 33)) (** (($ $ (-844)) NIL) (($ $ (-703)) 80)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 57) (($ $ $) 74) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-645 |#1| |#2|) (-13 (-1132 |#1|) (-10 -8 (-15 -2665 (|#2| |#2|)) (-15 -3326 (|#2|)) (-15 -1521 ($ |#2|)) (-15 -1508 (|#2| $)) (-15 -2269 ($ |#2|)) (-15 -3102 ((-1156 |#1|) $)) (-15 -3247 ($ (-1156 |#1|))) (-15 -3483 ((-1156 |#1|) $)) (-15 -2220 ((-880 $))) (-15 -3352 ((-880 $))) (IF (|has| |#1| (-319)) (-15 -3350 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) (-962) (-1132 |#1|)) (T -645))
+((-2665 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3)))) (-3326 (*1 *2) (-12 (-4 *2 (-1132 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-962)))) (-1521 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3)))) (-1508 (*1 *2 *1) (-12 (-4 *2 (-1132 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-962)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3)))) (-3102 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1156 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1132 *3)))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-962)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1132 *3)))) (-3483 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1156 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1132 *3)))) (-2220 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1132 *3)))) (-3352 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1132 *3)))) (-3350 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-962)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1132 *2)))))
+(-13 (-1132 |#1|) (-10 -8 (-15 -2665 (|#2| |#2|)) (-15 -3326 (|#2|)) (-15 -1521 ($ |#2|)) (-15 -1508 (|#2| $)) (-15 -2269 ($ |#2|)) (-15 -3102 ((-1156 |#1|) $)) (-15 -3247 ($ (-1156 |#1|))) (-15 -3483 ((-1156 |#1|) $)) (-15 -2220 ((-880 $))) (-15 -3352 ((-880 $))) (IF (|has| |#1| (-319)) (-15 -3350 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-2810 ((|#1| $) 13)) (-4123 (((-1022) $) NIL)) (-2356 ((|#2| $) 12)) (-2286 (($ |#1| |#2|) 16)) (-2269 (((-787) $) NIL) (($ (-2 (|:| -2810 |#1|) (|:| -2356 |#2|))) 15) (((-2 (|:| -2810 |#1|) (|:| -2356 |#2|)) $) 14)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 11)))
+(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2356 (|#2| $)) (-15 -2810 (|#1| $)) (-15 -2269 ($ (-2 (|:| -2810 |#1|) (|:| -2356 |#2|)))) (-15 -2269 ((-2 (|:| -2810 |#1|) (|:| -2356 |#2|)) $)) (-15 -2286 ($ |#1| |#2|)))) (-779) (-1004) (-1 (-107) (-2 (|:| -2810 |#1|) (|:| -2356 |#2|)) (-2 (|:| -2810 |#1|) (|:| -2356 |#2|)))) (T -646))
+((-2356 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -2810 *3) (|:| -2356 *2)) (-2 (|:| -2810 *3) (|:| -2356 *2)))))) (-2810 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1004)) (-14 *4 (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *3)) (-2 (|:| -2810 *2) (|:| -2356 *3)))))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2810 *3) (|:| -2356 *4))) (-4 *3 (-779)) (-4 *4 (-1004)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2810 *3) (|:| -2356 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1004)) (-14 *5 (-1 (-107) *2 *2)))) (-2286 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1004)) (-14 *4 (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *3)) (-2 (|:| -2810 *2) (|:| -2356 *3)))))))
+(-13 (-779) (-10 -8 (-15 -2356 (|#2| $)) (-15 -2810 (|#1| $)) (-15 -2269 ($ (-2 (|:| -2810 |#1|) (|:| -2356 |#2|)))) (-15 -2269 ((-2 (|:| -2810 |#1|) (|:| -2356 |#2|)) $)) (-15 -2286 ($ |#1| |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 59)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3388 ((|#1| $) NIL) (((-109) $) 39)) (-3163 (((-3 $ "failed") $) 90)) (-3654 ((|#2| (-109) |#2|) 82)) (-1865 (((-107) $) NIL)) (-3186 (($ |#1| (-331 (-109))) 13)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3856 (($ $ (-1 |#2| |#2|)) 58)) (-3592 (($ $ (-1 |#2| |#2|)) 44)) (-2607 ((|#2| $ |#2|) 32)) (-3951 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-2269 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) 36)) (-1683 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 20 T CONST)) (-3617 (($) 9 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) 48) (($ $ $) NIL)) (-1677 (($ $ $) 73)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
+(((-647 |#1| |#2|) (-13 (-962) (-953 |#1|) (-953 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1683 ($ $)) (-15 -1683 ($ $ $)) (-15 -3951 (|#1| |#1|))) |%noBranch|) (-15 -3592 ($ $ (-1 |#2| |#2|))) (-15 -3856 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3654 (|#2| (-109) |#2|)) (-15 -3186 ($ |#1| (-331 (-109)))))) (-962) (-585 |#1|)) (T -647))
+((-1683 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1683 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3951 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-962)) (-5 *1 (-647 *3 *4)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-962)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-962)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-962)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-962)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-962)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
+(-13 (-962) (-953 |#1|) (-953 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1683 ($ $)) (-15 -1683 ($ $ $)) (-15 -3951 (|#1| |#1|))) |%noBranch|) (-15 -3592 ($ $ (-1 |#2| |#2|))) (-15 -3856 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3654 (|#2| (-109) |#2|)) (-15 -3186 ($ |#1| (-331 (-109))))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 33)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-1521 (($ |#1| |#2|) 25)) (-3163 (((-3 $ "failed") $) 47)) (-1865 (((-107) $) 35)) (-3326 ((|#2| $) 12)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 48)) (-4123 (((-1022) $) NIL)) (-3167 (((-3 $ "failed") $ $) 46)) (-2269 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-2950 (((-703)) 28)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 16 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 38)) (-1691 (($ $) 43) (($ $ $) 37)) (-1677 (($ $ $) 40)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -3326 (|#2| $)) (-15 -2269 (|#1| $)) (-15 -1521 ($ |#1| |#2|)) (-15 -3167 ((-3 $ "failed") $ $)) (-15 -3163 ((-3 $ "failed") $)) (-15 -2298 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
+((-3163 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3326 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2269 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1521 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3167 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-962) (-10 -8 (-15 -3326 (|#2| $)) (-15 -2269 (|#1| $)) (-15 -1521 ($ |#1| |#2|)) (-15 -3167 ((-3 $ "failed") $ $)) (-15 -3163 ((-3 $ "failed") $)) (-15 -2298 ($ $))))
+((* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-650 |#2|) (-156)) (T -649))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-650 |#1|) (-1187) (-156)) (T -650))
NIL
(-13 (-106 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-1356 (($ |#1|) 17) (($ $ |#1|) 20)) (-2221 (($ |#1|) 18) (($ $ |#1|) 21)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3469 (((-107) $) NIL)) (-1212 (($ |#1| |#1| |#1| |#1|) 8)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 16)) (-3214 (((-1021) $) NIL)) (-2049 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2254 (((-787) $) 39)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 9 T CONST)) (-1534 (((-107) $ $) 44)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
-(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -1212 ($ |#1| |#1| |#1| |#1|)) (-15 -1356 ($ |#1|)) (-15 -2221 ($ |#1|)) (-15 -3775 ($)) (-15 -1356 ($ $ |#1|)) (-15 -2221 ($ $ |#1|)) (-15 -3775 ($ $)) (-15 -2049 (|#1| $ |#1|)) (-15 -2049 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
-((-1212 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1356 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2221 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3775 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2049 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2049 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
-(-13 (-442) (-10 -8 (-15 -1212 ($ |#1| |#1| |#1| |#1|)) (-15 -1356 ($ |#1|)) (-15 -2221 ($ |#1|)) (-15 -3775 ($)) (-15 -1356 ($ $ |#1|)) (-15 -2221 ($ $ |#1|)) (-15 -3775 ($ $)) (-15 -2049 (|#1| $ |#1|)) (-15 -2049 ((-765 |#1|) $ (-765 |#1|)))))
-((-3132 (($ $ (-843)) 12)) (-2184 (($ $ (-843)) 13)) (** (($ $ (-843)) 10)))
-(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2184 (|#1| |#1| (-843))) (-15 -3132 (|#1| |#1| (-843)))) (-653)) (T -652))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2184 (|#1| |#1| (-843))) (-15 -3132 (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-3132 (($ $ (-843)) 15)) (-2184 (($ $ (-843)) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)) (** (($ $ (-843)) 13)) (* (($ $ $) 16)))
-(((-653) (-1185)) (T -653))
-((* (*1 *1 *1 *1) (-4 *1 (-653))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (-2184 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -3132 ($ $ (-843))) (-15 -2184 ($ $ (-843))) (-15 ** ($ $ (-843)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3132 (($ $ (-843)) NIL) (($ $ (-703)) 17)) (-3469 (((-107) $) 10)) (-2184 (($ $ (-843)) NIL) (($ $ (-703)) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15)))
-(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2184 (|#1| |#1| (-703))) (-15 -3132 (|#1| |#1| (-703))) (-15 -3469 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2184 (|#1| |#1| (-843))) (-15 -3132 (|#1| |#1| (-843)))) (-655)) (T -654))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2184 (|#1| |#1| (-703))) (-15 -3132 (|#1| |#1| (-703))) (-15 -3469 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2184 (|#1| |#1| (-843))) (-15 -3132 (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-1930 (((-3 $ "failed") $) 17)) (-3132 (($ $ (-843)) 15) (($ $ (-703)) 22)) (-3775 (((-3 $ "failed") $) 19)) (-3469 (((-107) $) 23)) (-3174 (((-3 $ "failed") $) 18)) (-2184 (($ $ (-843)) 14) (($ $ (-703)) 21)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2411 (($) 24 T CONST)) (-1534 (((-107) $ $) 6)) (** (($ $ (-843)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
-(((-655) (-1185)) (T -655))
-((-2411 (*1 *1) (-4 *1 (-655))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-3132 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2184 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3775 (*1 *1 *1) (|partial| -4 *1 (-655))) (-3174 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1930 (*1 *1 *1) (|partial| -4 *1 (-655))))
-(-13 (-653) (-10 -8 (-15 (-2411) ($) -2497) (-15 -3469 ((-107) $)) (-15 -3132 ($ $ (-703))) (-15 -2184 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3775 ((-3 $ "failed") $)) (-15 -3174 ((-3 $ "failed") $)) (-15 -1930 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
-((-1719 (((-703)) 35)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-1292 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3775 (((-3 $ "failed") $) 65)) (-4100 (($) 39)) (-2962 ((|#2| $) 20)) (-3244 (($) 17)) (-1248 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2072 (((-623 |#2|) (-1154 $) (-1 |#2| |#2|)) 60)) (-3667 (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1924 ((|#3| $) 32)) (-2080 (((-1154 $)) 29)))
-(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -4100 (|#1|)) (-15 -1719 ((-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2072 ((-623 |#2|) (-1154 |#1|) (-1 |#2| |#2|))) (-15 -1292 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3667 (|#1| |#3|)) (-15 -1292 (|#1| |#3|)) (-15 -3244 (|#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 (|#3| |#1|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -2080 ((-1154 |#1|))) (-15 -1924 (|#3| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1131 |#2|)) (T -656))
-((-1719 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
-(-10 -8 (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -4100 (|#1|)) (-15 -1719 ((-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2072 ((-623 |#2|) (-1154 |#1|) (-1 |#2| |#2|))) (-15 -1292 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3667 (|#1| |#3|)) (-15 -1292 (|#1| |#3|)) (-15 -3244 (|#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -3667 (|#3| |#1|)) (-15 -3667 (|#1| (-1154 |#2|))) (-15 -3667 ((-1154 |#2|) |#1|)) (-15 -2080 ((-1154 |#1|))) (-15 -1924 (|#3| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -3775 ((-3 |#1| "failed") |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-2239 (($ $) 94 (|has| |#1| (-333)))) (-3531 (((-107) $) 96 (|has| |#1| (-333)))) (-1205 (((-623 |#1|) (-1154 $)) 46) (((-623 |#1|)) 61)) (-1462 ((|#1| $) 52)) (-2577 (((-1083 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 113 (|has| |#1| (-333)))) (-2674 (((-388 $) $) 114 (|has| |#1| (-333)))) (-2448 (((-107) $ $) 104 (|has| |#1| (-333)))) (-1719 (((-703)) 87 (|has| |#1| (-338)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3232 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-4047 (($ (-1154 |#1|) (-1154 $)) 48) (($ (-1154 |#1|)) 64)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2532 (($ $ $) 108 (|has| |#1| (-333)))) (-2739 (((-623 |#1|) $ (-1154 $)) 53) (((-623 |#1|) $) 59)) (-2749 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1292 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3775 (((-3 $ "failed") $) 34)) (-3334 (((-843)) 54)) (-4100 (($) 90 (|has| |#1| (-338)))) (-2509 (($ $ $) 107 (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-2170 (($) 149 (|has| |#1| (-319)))) (-3449 (((-107) $) 150 (|has| |#1| (-319)))) (-2616 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3083 (((-107) $) 115 (|has| |#1| (-333)))) (-3730 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3469 (((-107) $) 31)) (-2962 ((|#1| $) 51)) (-3326 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-2956 ((|#2| $) 44 (|has| |#1| (-333)))) (-4034 (((-843) $) 89 (|has| |#1| (-338)))) (-1283 ((|#2| $) 156)) (-1360 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 116 (|has| |#1| (-333)))) (-3680 (($) 143 (|has| |#1| (-319)) CONST)) (-3544 (($ (-843)) 88 (|has| |#1| (-338)))) (-3214 (((-1021) $) 10)) (-3244 (($) 160)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 101 (|has| |#1| (-333)))) (-1387 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) 146 (|has| |#1| (-319)))) (-1376 (((-388 $) $) 112 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 109 (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3196 (((-703) $) 105 (|has| |#1| (-333)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 106 (|has| |#1| (-333)))) (-3383 ((|#1| (-1154 $)) 47) ((|#1|) 60)) (-3459 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-1248 (($ $) 137 (-3782 (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3782 (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) 133 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074))) 132 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1074) (-703)) 131 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-703))) 130 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-2072 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2780 ((|#2|) 159)) (-2858 (($) 148 (|has| |#1| (-319)))) (-3589 (((-1154 |#1|) $ (-1154 $)) 50) (((-623 |#1|) (-1154 $) (-1154 $)) 49) (((-1154 |#1|) $) 66) (((-623 |#1|) (-1154 $)) 65)) (-3667 (((-1154 |#1|) $) 63) (($ (-1154 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-2486 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1924 ((|#2| $) 45)) (-1217 (((-703)) 29)) (-2080 (((-1154 $)) 67)) (-2673 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $) 136 (-3782 (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3782 (-4032 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) 129 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074))) 128 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1074) (-703)) 127 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-703))) 126 (-4032 (|has| |#1| (-822 (-1074))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 121 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
-(((-657 |#1| |#2|) (-1185) (-156) (-1131 |t#1|)) (T -657))
-((-3244 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1131 *2)))) (-2780 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-1292 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) (-3667 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) (-1283 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) (-1292 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *5)))))
-(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3244 ($)) (-15 -2780 (|t#2|)) (-15 -1292 ($ |t#2|)) (-15 -3667 ($ |t#2|)) (-15 -1283 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -1292 ((-3 $ "failed") (-377 |t#2|))) (-15 -2072 ((-623 |t#1|) (-1154 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3782 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3782 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3782 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074)))) ((-842) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-319)) ((-1113) -3782 (|has| |#1| (-319)) (|has| |#1| (-333))))
-((-2706 (($) 14)) (-3775 (((-3 $ "failed") $) 16)) (-3469 (((-107) $) 13)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) 20)))
-(((-658 |#1|) (-10 -8 (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3469 ((-107) |#1|)) (-15 -2706 (|#1|)) (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-659)) (T -658))
-NIL
-(-10 -8 (-15 -3775 ((-3 |#1| "failed") |#1|)) (-15 -2196 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3469 ((-107) |#1|)) (-15 -2706 (|#1|)) (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-2706 (($) 20 T CONST)) (-3775 (((-3 $ "failed") $) 16)) (-3469 (((-107) $) 19)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-843)) 13) (($ $ (-703)) 17)) (-2411 (($) 21 T CONST)) (-1534 (((-107) $ $) 6)) (** (($ $ (-843)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
-(((-659) (-1185)) (T -659))
-((-2411 (*1 *1) (-4 *1 (-659))) (-2706 (*1 *1) (-4 *1 (-659))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2196 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3775 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-1015) (-10 -8 (-15 (-2411) ($) -2497) (-15 -2706 ($) -2497) (-15 -3469 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2196 ($ $ (-703))) (-15 -3775 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
-((-2130 (((-2 (|:| -2565 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3447 (((-2 (|:| -2565 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2595 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2176 (((-2 (|:| |poly| |#2|) (|:| -2565 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
-(((-660 |#1| |#2|) (-10 -7 (-15 -3447 ((-2 (|:| -2565 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2130 ((-2 (|:| -2565 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2595 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2176 ((-2 (|:| |poly| |#2|) (|:| -2565 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1131 |#1|)) (T -660))
-((-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2565 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-2130 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2565 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2565 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
-(-10 -7 (-15 -3447 ((-2 (|:| -2565 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2130 ((-2 (|:| -2565 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2595 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2176 ((-2 (|:| |poly| |#2|) (|:| -2565 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
-((-2480 ((|#7| (-583 |#5|) |#6|) NIL)) (-1939 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1939 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2480 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-961) (-961) (-871 |#4| |#2| |#1|) (-871 |#5| |#3| |#1|)) (T -661))
-((-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
-(-10 -7 (-15 -1939 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2480 (|#7| (-583 |#5|) |#6|)))
-((-1939 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1939 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-961) (-871 |#5| |#3| |#1|) (-871 |#5| |#4| |#2|)) (T -662))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))))
-(-10 -7 (-15 -1939 (|#7| (-1 |#2| |#1|) |#6|)))
-((-1376 (((-388 |#4|) |#4|) 39)))
-(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074))))) (-278) (-871 (-874 |#3|) |#1| |#2|)) (T -663))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-789 |#1|)) $) NIL)) (-2374 (((-1070 $) $ (-789 |#1|)) NIL) (((-1070 |#2|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2239 (($ $) NIL (|has| |#2| (-509)))) (-3531 (((-107) $) NIL (|has| |#2| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL (|has| |#2| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3167 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#2| (-831)))) (-2083 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#2|) (-789 |#1|)) NIL) (($ (-1070 $) (-789 |#1|)) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-789 |#1|)) NIL)) (-3876 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-3602 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-3382 (((-3 (-789 |#1|) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#2| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -3010 (-703))) "failed") $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#2| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3383 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1248 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3625 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3782 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517))))))) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-664 |#1| |#2|) (-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1074)) (-961)) (T -664))
-NIL
-(-871 |#2| (-489 (-789 |#1|)) (-789 |#1|))
-((-1377 (((-2 (|:| -3398 (-874 |#3|)) (|:| -2803 (-874 |#3|))) |#4|) 13)) (-2241 ((|#4| |#4| |#2|) 30)) (-1729 ((|#4| (-377 (-874 |#3|)) |#2|) 63)) (-3718 ((|#4| (-1070 (-874 |#3|)) |#2|) 76)) (-2586 ((|#4| (-1070 |#4|) |#2|) 49)) (-1301 ((|#4| |#4| |#2|) 52)) (-1376 (((-388 |#4|) |#4|) 38)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1377 ((-2 (|:| -3398 (-874 |#3|)) (|:| -2803 (-874 |#3|))) |#4|)) (-15 -1301 (|#4| |#4| |#2|)) (-15 -2586 (|#4| (-1070 |#4|) |#2|)) (-15 -2241 (|#4| |#4| |#2|)) (-15 -3718 (|#4| (-1070 (-874 |#3|)) |#2|)) (-15 -1729 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -1376 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)))) (-509) (-871 (-377 (-874 |#3|)) |#1| |#2|)) (T -665))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) (-1729 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))))) (-2241 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)))) (-1301 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-1377 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -3398 (-874 *6)) (|:| -2803 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
-(-10 -7 (-15 -1377 ((-2 (|:| -3398 (-874 |#3|)) (|:| -2803 (-874 |#3|))) |#4|)) (-15 -1301 (|#4| |#4| |#2|)) (-15 -2586 (|#4| (-1070 |#4|) |#2|)) (-15 -2241 (|#4| |#4| |#2|)) (-15 -3718 (|#4| (-1070 (-874 |#3|)) |#2|)) (-15 -1729 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -1376 ((-388 |#4|) |#4|)))
-((-1376 (((-388 |#4|) |#4|) 51)))
-(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-871 (-377 |#3|) |#1| |#2|)) (T -666))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4|)))
-((-1939 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
-(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-961) (-961) (-659)) (T -667))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
-(-10 -7 (-15 -1939 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 26)) (-1378 (((-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|))) $) 27)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3232 ((|#2| $) NIL) ((|#1| $) NIL)) (-1221 (($ $) 75 (|has| |#2| (-779)))) (-3775 (((-3 $ "failed") $) 62)) (-4100 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) 53)) (-3284 (((-583 $) $) 37)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| |#2|) 16)) (-1939 (($ (-1 |#1| |#1|) $) 52)) (-4034 (((-843) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1687 ((|#2| $) 74 (|has| |#2| (-779)))) (-1193 ((|#1| $) 73 (|has| |#2| (-779)))) (-1277 (((-1057) $) NIL)) (-3544 (($ (-843)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 72) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|)))) 11)) (-3165 (((-583 |#1|) $) 39)) (-4104 ((|#1| $ |#2|) 83)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 12 T CONST)) (-2411 (($) 31 T CONST)) (-1534 (((-107) $ $) 76)) (-1663 (($ $) 46) (($ $ $) NIL)) (-1645 (($ $ $) 24)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-668 |#1| |#2|) (-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1336 ($ |#1| |#2|)) (-15 -4104 (|#1| $ |#2|)) (-15 -2254 ($ (-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|))))) (-15 -1378 ((-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|))) $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (-15 -2029 ((-107) $)) (-15 -3165 ((-583 |#1|) $)) (-15 -3284 ((-583 $) $)) (-15 -3604 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -1687 (|#2| $)) (-15 -1193 (|#1| $)) (-15 -1221 ($ $))) |%noBranch|))) (-961) (-659)) (T -668))
-((-1336 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) (-4104 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1965 *3) (|:| -3838 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1965 *3) (|:| -3838 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1687 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) (-1193 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-1221 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))))
-(-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1336 ($ |#1| |#2|)) (-15 -4104 (|#1| $ |#2|)) (-15 -2254 ($ (-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|))))) (-15 -1378 ((-583 (-2 (|:| -1965 |#1|) (|:| -3838 |#2|))) $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (-15 -2029 ((-107) $)) (-15 -3165 ((-583 |#1|) $)) (-15 -3284 ((-583 $) $)) (-15 -3604 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -1687 (|#2| $)) (-15 -1193 (|#1| $)) (-15 -1221 ($ $))) |%noBranch|)))
-((-1587 (((-107) $ $) 18)) (-1400 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3867 (($ $ $) 72)) (-3994 (((-107) $ $) 73)) (-3552 (((-107) $ (-703)) 8)) (-1353 (($ (-583 |#1|)) 68) (($) 67)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3439 (($ $) 62)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22)) (-2375 (($ $ $) 69)) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3214 (((-1021) $) 21)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-2271 (((-583 (-2 (|:| -1338 |#1|) (|:| -3223 (-703)))) $) 61)) (-1853 (($ $ |#1|) 71) (($ $ $) 70)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-2254 (((-787) $) 20)) (-3171 (($ (-583 |#1|)) 66) (($) 65)) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19)) (-1558 (((-107) $ $) 64)) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-669 |#1|) (-1185) (-1003)) (T -669))
-NIL
-(-13 (-628 |t#1|) (-1001 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-1400 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3867 (($ $ $) 80)) (-3994 (((-107) $ $) 83)) (-3552 (((-107) $ (-703)) NIL)) (-1353 (($ (-583 |#1|)) 24) (($) 15)) (-2975 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3439 (($ $) 72)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) 61 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4183))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 32 (|has| $ (-6 -4183)))) (-4075 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) 38)) (-1653 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 76)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2375 (($ $ $) 78)) (-3074 ((|#1| $) 54)) (-3676 (($ |#1| $) 55) (($ |#1| $ (-703)) 73)) (-3214 (((-1021) $) NIL)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3773 ((|#1| $) 53)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 49)) (-2756 (($) 12)) (-2271 (((-583 (-2 (|:| -1338 |#1|) (|:| -3223 (-703)))) $) 47)) (-1853 (($ $ |#1|) NIL) (($ $ $) 79)) (-3230 (($) 14) (($ (-583 |#1|)) 23)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 66)) (-3667 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 20)) (-2254 (((-787) $) 44)) (-3171 (($ (-583 |#1|)) 25) (($) 16)) (-2882 (($ (-583 |#1|)) 22)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 81)) (-1558 (((-107) $ $) 82)) (-2290 (((-703) $) 59 (|has| $ (-6 -4183)))))
-(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -4075 ($)) (-15 -4075 ($ |#1|)) (-15 -4075 ($ (-583 |#1|))) (-15 -2332 ((-583 |#1|) $)) (-15 -2050 ($ |#1| $ (-517))) (-15 -2050 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1835 ($ |#1| $ (-517))) (-15 -1835 ($ (-1 (-107) |#1|) $ (-517))))) (-1003)) (T -670))
-((-4075 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-4075 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-4075 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))) (-2050 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2050 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) (-1835 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-1835 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))))
-(-13 (-669 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -4075 ($)) (-15 -4075 ($ |#1|)) (-15 -4075 ($ (-583 |#1|))) (-15 -2332 ((-583 |#1|) $)) (-15 -2050 ($ |#1| $ (-517))) (-15 -2050 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1835 ($ |#1| $ (-517))) (-15 -1835 ($ (-1 (-107) |#1|) $ (-517)))))
-((-2542 (((-1159) (-1057)) 8)))
-(((-671) (-10 -7 (-15 -2542 ((-1159) (-1057))))) (T -671))
-((-2542 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-671)))))
-(-10 -7 (-15 -2542 ((-1159) (-1057))))
-((-1792 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
-(((-672 |#1|) (-10 -7 (-15 -1792 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
-((-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
-(-10 -7 (-15 -1792 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 |#2|) $) 136)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-2239 (($ $) 128 (|has| |#1| (-509)))) (-3531 (((-107) $) 126 (|has| |#1| (-509)))) (-2725 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-1386 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-1221 (($ $) 120)) (-3775 (((-3 $ "failed") $) 34)) (-1523 (((-874 |#1|) $ (-703)) 98) (((-874 |#1|) $ (-703) (-703)) 97)) (-2761 (((-107) $) 137)) (-2665 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-2029 (((-107) $) 118)) (-1336 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-1939 (($ (-1 |#1| |#1|) $) 117)) (-1875 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 115)) (-1193 ((|#1| $) 114)) (-1277 (((-1057) $) 9)) (-3563 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) 10)) (-2204 (($ $ (-703)) 103)) (-2483 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-2643 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-1248 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-3625 (((-489 |#2|) $) 116)) (-1543 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 138)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-4104 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-2486 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-1584 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 127 (|has| |#1| (-509)))) (-1557 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-3756 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-673 |#1| |#2|) (-1185) (-961) (-779)) (T -673))
-((-4104 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-4104 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-3730 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3730 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) (-1523 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-1523 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-3563 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
-(-13 (-822 |t#2|) (-890 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -4104 ($ $ |t#2| (-703))) (-15 -4104 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -2204 ($ $ (-703))) (-15 -1336 ($ $ |t#2| (-703))) (-15 -1336 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3730 ((-703) $ |t#2|)) (-15 -3730 ((-703) $ |t#2| (-703))) (-15 -1523 ((-874 |t#1|) $ (-703))) (-15 -1523 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $ |t#2|)) (-6 (-918)) (-6 (-1095))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-489 |#2|)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 |#2|) . T) ((-890 |#1| (-489 |#2|) |#2|) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))))
-((-1376 (((-388 (-1070 |#4|)) (-1070 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 |#4|) |#4|)) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -674))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -1376 ((-388 |#4|) |#4|)) (-15 -1376 ((-388 (-1070 |#4|)) (-1070 |#4|))))
-((-1647 (((-388 |#4|) |#4| |#2|) 116)) (-1667 (((-388 |#4|) |#4|) NIL)) (-2674 (((-388 (-1070 |#4|)) (-1070 |#4|)) 107) (((-388 |#4|) |#4|) 38)) (-2696 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -1376 (-1070 |#4|)) (|:| -3010 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 65)) (-3440 (((-1070 |#3|) (-1070 |#3|) (-517)) 133)) (-3907 (((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703)) 58)) (-1283 (((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 62)) (-2603 (((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-2750 (((-2 (|:| -1465 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517)) 54)) (-2451 (((-517) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517))))) 130)) (-2144 ((|#4| (-517) (-388 |#4|)) 55)) (-2252 (((-107) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517))))) NIL)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2674 ((-388 |#4|) |#4|)) (-15 -2674 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1667 ((-388 |#4|) |#4|)) (-15 -2451 ((-517) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))))) (-15 -1647 ((-388 |#4|) |#4| |#2|)) (-15 -2750 ((-2 (|:| -1465 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517))) (-15 -2696 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -1376 (-1070 |#4|)) (|:| -3010 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2603 ((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2144 (|#4| (-517) (-388 |#4|))) (-15 -2252 ((-107) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))))) (-15 -1283 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3907 ((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703))) (-15 -3440 ((-1070 |#3|) (-1070 |#3|) (-517)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -675))
-((-3440 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-1283 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1070 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) (-2252 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 (-1070 *6)) (|:| -3010 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-2603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -1376 (-1070 *8)) (|:| -3010 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-2696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -1376 (-1070 *9)) (|:| -3010 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)))) (-2750 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1465 (-1070 *9)) (|:| |polval| (-1070 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8)))) (-1647 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 (-1070 *6)) (|:| -3010 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1667 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) (-2674 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-2674 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
-(-10 -7 (-15 -2674 ((-388 |#4|) |#4|)) (-15 -2674 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -1667 ((-388 |#4|) |#4|)) (-15 -2451 ((-517) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))))) (-15 -1647 ((-388 |#4|) |#4| |#2|)) (-15 -2750 ((-2 (|:| -1465 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-517))) (-15 -2696 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -1376 (-1070 |#4|)) (|:| -3010 (-517)))))) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2603 ((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2144 (|#4| (-517) (-388 |#4|))) (-15 -2252 ((-107) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))) (-583 (-2 (|:| -1376 (-1070 |#3|)) (|:| -3010 (-517)))))) (-15 -1283 ((-3 (-583 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3907 ((-583 (-703)) (-1070 |#4|) (-583 |#2|) (-703))) (-15 -3440 ((-1070 |#3|) (-1070 |#3|) (-517))))
-((-3363 (($ $ (-843)) 12)))
-(((-676 |#1| |#2|) (-10 -8 (-15 -3363 (|#1| |#1| (-843)))) (-677 |#2|) (-156)) (T -676))
-NIL
-(-10 -8 (-15 -3363 (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3132 (($ $ (-843)) 28)) (-3363 (($ $ (-843)) 33)) (-2184 (($ $ (-843)) 29)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2901 (($ $ $) 25)) (-2254 (((-787) $) 11)) (-3950 (($ $ $ $) 26)) (-2145 (($ $ $) 24)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-677 |#1|) (-1185) (-156)) (T -677))
-((-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3363 ($ $ (-843)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-2835 (((-950) (-623 (-199)) (-517) (-107) (-517)) 24)) (-2826 (((-950) (-623 (-199)) (-517) (-107) (-517)) 23)))
-(((-678) (-10 -7 (-15 -2826 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2835 ((-950) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
-((-2835 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))) (-2826 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(-10 -7 (-15 -2826 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2835 ((-950) (-623 (-199)) (-517) (-107) (-517))))
-((-2865 (((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-2854 (((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-2845 (((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) 32)))
-(((-679) (-10 -7 (-15 -2845 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -2854 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2865 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
-((-2865 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2854 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2845 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(-10 -7 (-15 -2845 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -2854 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2865 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
-((-2974 (((-950) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2965 (((-950) (-517) (-517) (-623 (-199)) (-517)) 32)) (-2955 (((-950) (-517) (-623 (-199)) (-517)) 31)) (-2946 (((-950) (-517) (-623 (-199)) (-517)) 30)) (-2937 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2928 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2920 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-2911 (((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2903 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2894 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2884 (((-950) (-517) (-623 (-199)) (-517)) 21)) (-2873 (((-950) (-517) (-623 (-199)) (-517)) 20)))
-(((-680) (-10 -7 (-15 -2873 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2884 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2894 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2903 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2920 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2928 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2946 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2955 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2965 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2974 ((-950) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
-((-2974 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2965 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2955 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2946 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2937 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2928 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2920 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2911 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2903 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2894 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2884 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2873 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(-10 -7 (-15 -2873 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2884 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2894 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2903 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2920 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2928 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1057) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2946 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2955 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2965 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2974 ((-950) (-517) (-517) (-623 (-199)) (-517))))
-((-1272 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1260 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-1249 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3077 (((-950) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3066 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-3054 (((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3043 (((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3032 (((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3021 (((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) 38)) (-3008 (((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) 37)) (-2998 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) 33)) (-2988 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) 32)))
-(((-681) (-10 -7 (-15 -2988 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -2998 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3008 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3021 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3032 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3066 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3077 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1249 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1260 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1272 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
-((-1272 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-1260 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-1249 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3077 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3066 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3054 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3043 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3032 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3021 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3008 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))) (-2998 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-2988 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(-10 -7 (-15 -2988 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -2998 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3008 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3021 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709))))) (-15 -3032 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3066 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3077 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1249 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1260 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1272 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
-((-1344 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1333 (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1325 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1314 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-1307 (((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1299 (((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1288 (((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1279 (((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-682) (-10 -7 (-15 -1279 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1288 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1299 ((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1307 ((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1314 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1325 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1333 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1333 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1344 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
-((-1344 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1333 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1333 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1325 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1314 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1307 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1299 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1288 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1279 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(-10 -7 (-15 -1279 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1288 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1299 ((-950) (-199) (-517) (-517) (-199) (-1057) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1307 ((-950) (-199) (-517) (-517) (-1057) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1314 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1325 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1333 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1333 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1344 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-1373 (((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-1366 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-1351 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
-(((-683) (-10 -7 (-15 -1351 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1366 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1373 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
-((-1373 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))) (-1366 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))) (-1351 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(-10 -7 (-15 -1351 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1366 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1057) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1373 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
-((-1210 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1469 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1459 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1450 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-1440 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1429 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-1418 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1407 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1396 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1383 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
-(((-684) (-10 -7 (-15 -1383 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1396 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1407 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1418 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1429 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1440 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1450 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1459 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1469 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -1210 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
-((-1210 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1469 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1459 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1450 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1440 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1429 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1418 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1407 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1396 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1383 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(-10 -7 (-15 -1383 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1396 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1407 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1418 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1429 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1440 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1450 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1459 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1469 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -1210 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
-((-1697 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-1685 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1670 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1655 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1637 (((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1620 (((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1606 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1591 (((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1576 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1563 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-1550 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-1538 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-1527 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-1517 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1506 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1497 (((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1489 (((-950) (-517) (-623 (-199)) (-199) (-517)) 24)) (-1480 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
-(((-685) (-10 -7 (-15 -1480 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1489 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1497 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1506 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1517 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1527 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1538 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1550 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1563 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1576 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1591 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1606 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1620 ((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1637 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1655 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1670 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1685 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1697 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
-((-1697 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1685 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1670 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1655 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1637 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1620 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1606 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1591 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1576 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1563 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1550 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1538 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1527 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1517 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1506 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1497 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1489 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1480 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(-10 -7 (-15 -1480 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1489 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1497 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1506 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1517 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1527 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1538 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1550 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1563 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1576 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1591 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1606 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1620 ((-950) (-1057) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1637 ((-950) (-1057) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1655 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1670 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1685 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1697 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
-((-1788 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1774 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1763 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-1751 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-1742 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1731 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1720 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1707 (((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-686) (-10 -7 (-15 -1707 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1720 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1731 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1742 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1751 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1763 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1774 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1788 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
-((-1788 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1774 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1763 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1751 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1742 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1731 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1720 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1707 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(-10 -7 (-15 -1707 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1720 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1731 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1742 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1751 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1763 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1774 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1788 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
-((-3000 (((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-2991 (((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2976 (((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1869 (((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-1855 (((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1848 (((-950) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1834 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1825 (((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1812 (((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1801 (((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
-(((-687) (-10 -7 (-15 -1801 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1812 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1825 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1834 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1848 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1855 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1869 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2976 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2991 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3000 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
-((-3000 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2991 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2976 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1869 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1855 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1848 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1834 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1825 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1812 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1801 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1801 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1812 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1825 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1834 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1848 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1855 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1869 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2976 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2991 ((-950) (-1057) (-1057) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3000 ((-950) (-1057) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-3163 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3154 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-3144 (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3133 (((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3122 (((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3110 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3099 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3089 (((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3081 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3067 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3057 (((-950) (-517) (-517) (-623 (-199)) (-517)) 24)) (-3045 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3035 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3023 (((-950) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3011 (((-950) (-517) (-517) (-623 (-199)) (-517)) 20)))
-(((-688) (-10 -7 (-15 -3011 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3023 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3035 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3057 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3067 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3081 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3089 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3099 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3110 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3122 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3133 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3144 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3144 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3154 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3163 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
-((-3163 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3154 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3144 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3144 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3133 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3122 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3110 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3099 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3089 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3081 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3067 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3057 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3045 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3035 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3023 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3011 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(-10 -7 (-15 -3011 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3023 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3035 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3057 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3067 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3081 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3089 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3099 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3110 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3122 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3133 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3144 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3144 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3154 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3163 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
-((-3264 (((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-3255 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3246 (((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3236 (((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-3227 (((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3218 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-3209 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-3201 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3191 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3183 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3175 (((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
-(((-689) (-10 -7 (-15 -3175 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3183 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3191 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3201 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3209 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3218 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3227 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3236 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3255 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3264 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
-((-3264 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3255 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3246 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3236 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3227 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3218 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3209 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3201 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3191 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3183 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3175 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(-10 -7 (-15 -3175 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3183 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3191 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3201 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3209 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3218 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3227 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3236 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3255 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3264 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
-((-3306 (((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3296 (((-950) (-1057) (-517) (-517) (-623 (-199))) 27)) (-3285 (((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3275 (((-950) (-517) (-517) (-517) (-623 (-199))) 20)))
-(((-690) (-10 -7 (-15 -3275 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3285 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3296 ((-950) (-1057) (-517) (-517) (-623 (-199)))) (-15 -3306 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
-((-3306 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3296 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3285 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))) (-3275 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(-10 -7 (-15 -3275 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3285 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3296 ((-950) (-1057) (-517) (-517) (-623 (-199)))) (-15 -3306 ((-950) (-1057) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
-((-1284 (((-950) (-199) (-199) (-199) (-199) (-517)) 62)) (-1275 (((-950) (-199) (-199) (-199) (-517)) 61)) (-1265 (((-950) (-199) (-199) (-199) (-517)) 60)) (-1254 (((-950) (-199) (-199) (-517)) 59)) (-1243 (((-950) (-199) (-517)) 58)) (-1233 (((-950) (-199) (-517)) 57)) (-1222 (((-950) (-199) (-517)) 56)) (-1207 (((-950) (-199) (-517)) 55)) (-1196 (((-950) (-199) (-517)) 54)) (-4159 (((-950) (-199) (-517)) 53)) (-4148 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 52)) (-4138 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 51)) (-4129 (((-950) (-199) (-517)) 50)) (-4118 (((-950) (-199) (-517)) 49)) (-4108 (((-950) (-199) (-517)) 48)) (-3548 (((-950) (-199) (-517)) 47)) (-3536 (((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517)) 46)) (-3527 (((-950) (-1057) (-153 (-199)) (-1057) (-517)) 45)) (-3517 (((-950) (-1057) (-153 (-199)) (-1057) (-517)) 44)) (-3505 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 43)) (-3496 (((-950) (-199) (-153 (-199)) (-517) (-1057) (-517)) 42)) (-3486 (((-950) (-199) (-517)) 39)) (-3476 (((-950) (-199) (-517)) 38)) (-3470 (((-950) (-199) (-517)) 37)) (-3461 (((-950) (-199) (-517)) 36)) (-3451 (((-950) (-199) (-517)) 35)) (-3441 (((-950) (-199) (-517)) 34)) (-3432 (((-950) (-199) (-517)) 33)) (-3421 (((-950) (-199) (-517)) 32)) (-3410 (((-950) (-199) (-517)) 31)) (-3396 (((-950) (-199) (-517)) 30)) (-3389 (((-950) (-199) (-199) (-199) (-517)) 29)) (-3376 (((-950) (-199) (-517)) 28)) (-3364 (((-950) (-199) (-517)) 27)) (-3352 (((-950) (-199) (-517)) 26)) (-3340 (((-950) (-199) (-517)) 25)) (-3331 (((-950) (-199) (-517)) 24)) (-3319 (((-950) (-153 (-199)) (-517)) 20)))
-(((-691) (-10 -7 (-15 -3319 ((-950) (-153 (-199)) (-517))) (-15 -3331 ((-950) (-199) (-517))) (-15 -3340 ((-950) (-199) (-517))) (-15 -3352 ((-950) (-199) (-517))) (-15 -3364 ((-950) (-199) (-517))) (-15 -3376 ((-950) (-199) (-517))) (-15 -3389 ((-950) (-199) (-199) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3410 ((-950) (-199) (-517))) (-15 -3421 ((-950) (-199) (-517))) (-15 -3432 ((-950) (-199) (-517))) (-15 -3441 ((-950) (-199) (-517))) (-15 -3451 ((-950) (-199) (-517))) (-15 -3461 ((-950) (-199) (-517))) (-15 -3470 ((-950) (-199) (-517))) (-15 -3476 ((-950) (-199) (-517))) (-15 -3486 ((-950) (-199) (-517))) (-15 -3496 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3517 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3527 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3536 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3548 ((-950) (-199) (-517))) (-15 -4108 ((-950) (-199) (-517))) (-15 -4118 ((-950) (-199) (-517))) (-15 -4129 ((-950) (-199) (-517))) (-15 -4138 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -4148 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -4159 ((-950) (-199) (-517))) (-15 -1196 ((-950) (-199) (-517))) (-15 -1207 ((-950) (-199) (-517))) (-15 -1222 ((-950) (-199) (-517))) (-15 -1233 ((-950) (-199) (-517))) (-15 -1243 ((-950) (-199) (-517))) (-15 -1254 ((-950) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-517))) (-15 -1284 ((-950) (-199) (-199) (-199) (-199) (-517))))) (T -691))
-((-1284 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1275 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1265 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1254 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1233 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1222 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1207 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1196 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4148 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4138 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3536 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1057)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3527 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3517 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3505 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3496 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3389 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(-10 -7 (-15 -3319 ((-950) (-153 (-199)) (-517))) (-15 -3331 ((-950) (-199) (-517))) (-15 -3340 ((-950) (-199) (-517))) (-15 -3352 ((-950) (-199) (-517))) (-15 -3364 ((-950) (-199) (-517))) (-15 -3376 ((-950) (-199) (-517))) (-15 -3389 ((-950) (-199) (-199) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3410 ((-950) (-199) (-517))) (-15 -3421 ((-950) (-199) (-517))) (-15 -3432 ((-950) (-199) (-517))) (-15 -3441 ((-950) (-199) (-517))) (-15 -3451 ((-950) (-199) (-517))) (-15 -3461 ((-950) (-199) (-517))) (-15 -3470 ((-950) (-199) (-517))) (-15 -3476 ((-950) (-199) (-517))) (-15 -3486 ((-950) (-199) (-517))) (-15 -3496 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3517 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3527 ((-950) (-1057) (-153 (-199)) (-1057) (-517))) (-15 -3536 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -3548 ((-950) (-199) (-517))) (-15 -4108 ((-950) (-199) (-517))) (-15 -4118 ((-950) (-199) (-517))) (-15 -4129 ((-950) (-199) (-517))) (-15 -4138 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -4148 ((-950) (-199) (-153 (-199)) (-517) (-1057) (-517))) (-15 -4159 ((-950) (-199) (-517))) (-15 -1196 ((-950) (-199) (-517))) (-15 -1207 ((-950) (-199) (-517))) (-15 -1222 ((-950) (-199) (-517))) (-15 -1233 ((-950) (-199) (-517))) (-15 -1243 ((-950) (-199) (-517))) (-15 -1254 ((-950) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-517))) (-15 -1284 ((-950) (-199) (-199) (-199) (-199) (-517))))
-((-3795 (((-1159)) 18)) (-2606 (((-1057)) 22)) (-2088 (((-1057)) 21)) (-2796 (((-1007) (-1074) (-623 (-517))) 35) (((-1007) (-1074) (-623 (-199))) 31)) (-3574 (((-107)) 16)) (-3210 (((-1057) (-1057)) 25)))
-(((-692) (-10 -7 (-15 -2088 ((-1057))) (-15 -2606 ((-1057))) (-15 -3210 ((-1057) (-1057))) (-15 -2796 ((-1007) (-1074) (-623 (-199)))) (-15 -2796 ((-1007) (-1074) (-623 (-517)))) (-15 -3574 ((-107))) (-15 -3795 ((-1159))))) (T -692))
-((-3795 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-692)))) (-3574 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))) (-2606 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))) (-2088 (*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
-(-10 -7 (-15 -2088 ((-1057))) (-15 -2606 ((-1057))) (-15 -3210 ((-1057) (-1057))) (-15 -2796 ((-1007) (-1074) (-623 (-199)))) (-15 -2796 ((-1007) (-1074) (-623 (-517)))) (-15 -3574 ((-107))) (-15 -3795 ((-1159))))
-((-2901 (($ $ $) 10)) (-3950 (($ $ $ $) 9)) (-2145 (($ $ $) 12)))
-(((-693 |#1|) (-10 -8 (-15 -2145 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3950 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
-NIL
-(-10 -8 (-15 -2145 (|#1| |#1| |#1|)) (-15 -2901 (|#1| |#1| |#1|)) (-15 -3950 (|#1| |#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3132 (($ $ (-843)) 28)) (-2184 (($ $ (-843)) 29)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2901 (($ $ $) 25)) (-2254 (((-787) $) 11)) (-3950 (($ $ $ $) 26)) (-2145 (($ $ $) 24)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-694) (-1185)) (T -694))
-((-3950 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-2901 (*1 *1 *1 *1) (-4 *1 (-694))) (-2145 (*1 *1 *1 *1) (-4 *1 (-694))))
-(-13 (-21) (-653) (-10 -8 (-15 -3950 ($ $ $ $)) (-15 -2901 ($ $ $)) (-15 -2145 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
-((-2254 (((-787) $) NIL) (($ (-517)) 10)))
-(((-695 |#1|) (-10 -8 (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-696)) (T -695))
-NIL
-(-10 -8 (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1930 (((-3 $ "failed") $) 40)) (-3132 (($ $ (-843)) 28) (($ $ (-703)) 35)) (-3775 (((-3 $ "failed") $) 38)) (-3469 (((-107) $) 34)) (-3174 (((-3 $ "failed") $) 39)) (-2184 (($ $ (-843)) 29) (($ $ (-703)) 36)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2901 (($ $ $) 25)) (-2254 (((-787) $) 11) (($ (-517)) 31)) (-1217 (((-703)) 32)) (-3950 (($ $ $ $) 26)) (-2145 (($ $ $) 24)) (-2398 (($) 18 T CONST)) (-2411 (($) 33 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 30) (($ $ (-703)) 37)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
-(((-696) (-1185)) (T -696))
-((-1217 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
-(-13 (-694) (-655) (-10 -8 (-15 -1217 ((-703))) (-15 -2254 ($ (-517)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1003) . T))
-((-2069 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-2379 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-1924 (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074)) 16) (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
-(((-697 |#1|) (-10 -7 (-15 -1924 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1924 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074))) (-15 -2379 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2069 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
-((-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1074)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1924 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1924 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1074))) (-15 -2379 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2069 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
-((-2552 (((-157 (-517)) |#1|) 25)))
-(((-698 |#1|) (-10 -7 (-15 -2552 ((-157 (-517)) |#1|))) (-374)) (T -698))
-((-2552 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
-(-10 -7 (-15 -2552 ((-157 (-517)) |#1|)))
-((-1917 ((|#1| |#1| |#1|) 24)) (-3512 ((|#1| |#1| |#1|) 23)) (-2819 ((|#1| |#1| |#1|) 31)) (-1873 ((|#1| |#1| |#1|) 27)) (-1702 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3487 (((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|) 22)))
-(((-699 |#1| |#2|) (-10 -7 (-15 -3487 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -1702 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1873 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
-((-2819 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1873 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1702 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1917 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3512 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3487 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
-(-10 -7 (-15 -3487 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -1702 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1873 (|#1| |#1| |#1|)) (-15 -2819 (|#1| |#1| |#1|)))
-((-2591 (((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-1866 (((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3383 (((-517)) 68)))
-(((-700 |#1| |#2|) (-10 -7 (-15 -3383 ((-517))) (-15 -1866 ((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -2591 ((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1131 (-517)) (-379 (-517) |#1|)) (T -700))
-((-2591 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1866 (*1 *2) (-12 (-4 *3 (-1131 (-517))) (-5 *2 (-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3383 (*1 *2) (-12 (-4 *3 (-1131 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
-(-10 -7 (-15 -3383 ((-517))) (-15 -1866 ((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -2591 ((-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
-((-1587 (((-107) $ $) NIL)) (-3232 (((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 14) (($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1534 (((-107) $ $) NIL)))
-(((-701) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
-((-1778 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 14) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074))) 13)) (-1955 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 16) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074))) 15)))
-(((-702 |#1|) (-10 -7 (-15 -1778 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1778 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) (-509)) (T -702))
-((-1955 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))))
-(-10 -7 (-15 -1778 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1778 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3398 (($ $ $) 6)) (-2646 (((-3 $ "failed") $ $) 9)) (-1356 (($ $ (-517)) 7)) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($ $) NIL)) (-2509 (($ $ $) NIL)) (-3469 (((-107) $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1387 (($ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2254 (((-787) $) NIL)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ $) NIL)))
-(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2509 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2816 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -2483 ((-3 $ "failed") $ $)) (-15 -1356 ($ $ (-517))) (-15 -4100 ($ $)) (-6 (-4185 "*"))))) (T -703))
-((-2509 (*1 *1 *1 *1) (-5 *1 (-703))) (-2532 (*1 *1 *1 *1) (-5 *1 (-703))) (-1387 (*1 *1 *1 *1) (-5 *1 (-703))) (-2816 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2317 (-703)) (|:| -2240 (-703)))) (-5 *1 (-703)))) (-2483 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-4100 (*1 *1 *1) (-5 *1 (-703))))
-(-13 (-725) (-659) (-10 -8 (-15 -2509 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2816 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -2483 ((-3 $ "failed") $ $)) (-15 -1356 ($ $ (-517))) (-15 -4100 ($ $)) (-6 (-4185 "*"))))
-((-1955 (((-3 |#2| "failed") |#2| |#2| (-109) (-1074)) 35)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -1955 ((-3 |#2| "failed") |#2| |#2| (-109) (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -704))
-((-1955 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1095) (-880))))))
-(-10 -7 (-15 -1955 ((-3 |#2| "failed") |#2| |#2| (-109) (-1074))))
-((-2254 (((-706) |#1|) 8)))
-(((-705 |#1|) (-10 -7 (-15 -2254 ((-706) |#1|))) (-1109)) (T -705))
-((-2254 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2254 ((-706) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 7)) (-1534 (((-107) $ $) 9)))
-(((-706) (-1003)) (T -706))
-NIL
-(-1003)
-((-2962 ((|#2| |#4|) 35)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2962 (|#2| |#4|))) (-421) (-1131 |#1|) (-657 |#1| |#2|) (-1131 |#3|)) (T -707))
-((-2962 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1131 *5)))))
-(-10 -7 (-15 -2962 (|#2| |#4|)))
-((-3775 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3769 (((-1159) (-1057) (-1057) |#4| |#5|) 33)) (-1247 ((|#4| |#4| |#5|) 72)) (-4163 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|) 76)) (-3304 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|) 15)))
-(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3775 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1247 (|#4| |#4| |#5|)) (-15 -4163 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -3769 ((-1159) (-1057) (-1057) |#4| |#5|)) (-15 -3304 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -708))
-((-3304 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3769 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1057)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1159)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))) (-4163 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1247 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))) (-3775 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3775 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1247 (|#4| |#4| |#5|)) (-15 -4163 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -3769 ((-1159) (-1057) (-1057) |#4| |#5|)) (-15 -3304 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)))
-((-1837 (((-3 (-1070 (-1070 |#1|)) "failed") |#4|) 43)) (-2152 (((-583 |#4|) |#4|) 15)) (-2415 ((|#4| |#4|) 11)))
-(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2152 ((-583 |#4|) |#4|)) (-15 -1837 ((-3 (-1070 (-1070 |#1|)) "failed") |#4|)) (-15 -2415 (|#4| |#4|))) (-319) (-299 |#1|) (-1131 |#2|) (-1131 |#3|) (-843)) (T -709))
-((-2415 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1131 *5)) (-14 *6 (-843)))) (-1837 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))) (-2152 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))))
-(-10 -7 (-15 -2152 ((-583 |#4|) |#4|)) (-15 -1837 ((-3 (-1070 (-1070 |#1|)) "failed") |#4|)) (-15 -2415 (|#4| |#4|)))
-((-3830 (((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|)) 51)) (-1592 (((-583 (-703)) |#1|) 12)))
-(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3830 ((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1592 ((-583 (-703)) |#1|))) (-1131 |#4|) (-725) (-779) (-278) (-871 |#4| |#2| |#3|)) (T -710))
-((-1592 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *6)) (-4 *7 (-871 *6 *4 *5)))) (-3830 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1131 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1070 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-(-10 -7 (-15 -3830 ((-2 (|:| |deter| (-583 (-1070 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1070 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1592 ((-583 (-703)) |#1|)))
-((-2631 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-2535 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-1924 (((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074)) 16) (((-874 (-377 (-517))) (-623 (-377 (-517)))) 15)))
-(((-711 |#1|) (-10 -7 (-15 -1924 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1924 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074))) (-15 -2535 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2631 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
-((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-2535 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1074)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(-10 -7 (-15 -1924 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1924 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1074))) (-15 -2535 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2631 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 34)) (-1357 (((-583 |#2|) $) NIL)) (-2374 (((-1070 $) $ |#2|) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-2811 (($ $) 28)) (-1925 (((-107) $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) 92 (|has| |#1| (-509)))) (-4009 (((-583 $) $ $) 105 (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (((-3 $ "failed") (-874 (-517))) NIL (-3782 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (((-3 $ "failed") (-874 |#1|)) NIL (-3782 (-12 (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-909 (-517))))))) (((-3 (-1026 |#1| |#2|) "failed") $) 18)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (($ (-874 (-517))) NIL (-3782 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (($ (-874 |#1|)) NIL (-3782 (-12 (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-909 (-517))))))) (((-1026 |#1| |#2|) $) NIL)) (-3167 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-509)))) (-1221 (($ $) NIL) (($ $ |#2|) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-2169 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2427 (((-107) $) NIL)) (-3064 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 69)) (-3256 (($ $) 118 (|has| |#1| (-421)))) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-3480 (($ $) NIL (|has| |#1| (-509)))) (-3091 (($ $) NIL (|has| |#1| (-509)))) (-3291 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-3407 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-2083 (($ $ |#1| (-489 |#2|) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-2919 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-4131 (($ $ $ $ $) 89 (|has| |#1| (-509)))) (-2877 ((|#2| $) 19)) (-1347 (($ (-1070 |#1|) |#2|) NIL) (($ (-1070 $) |#2|) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3987 (($ $ $) 60)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#2|) NIL)) (-3973 (((-107) $) NIL)) (-3876 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1982 (((-703) $) 20)) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3382 (((-3 |#2| "failed") $) NIL)) (-4136 (($ $) NIL (|has| |#1| (-421)))) (-1539 (($ $) NIL (|has| |#1| (-421)))) (-4144 (((-583 $) $) NIL)) (-1532 (($ $) 37)) (-3652 (($ $) NIL (|has| |#1| (-421)))) (-1722 (((-583 $) $) 41)) (-2703 (($ $) 39)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1419 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2993 (-703))) $ $) 81)) (-3835 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $) 66) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $ |#2|) NIL)) (-3019 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $) NIL) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $ |#2|) NIL)) (-4063 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-1726 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1277 (((-1057) $) NIL)) (-1516 (($ $ $) 107 (|has| |#1| (-509)))) (-1910 (((-583 $) $) 30)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| |#2|) (|:| -3010 (-703))) "failed") $) NIL)) (-1966 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-4083 (($ $ $) NIL)) (-3680 (($ $) 21)) (-3706 (((-107) $ $) NIL)) (-2844 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-1382 (($ $ $) NIL)) (-3671 (($ $) 23)) (-3214 (((-1021) $) NIL)) (-3391 (((-2 (|:| -1387 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-509)))) (-3898 (((-2 (|:| -1387 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-509)))) (-1656 (((-107) $) 52)) (-1671 ((|#1| $) 55)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 ((|#1| |#1| $) 115 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-3840 (((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-509)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-3490 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-1244 (($ $ |#1|) 110 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3383 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-1248 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3625 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-3113 (($ $) NIL)) (-3796 (($ $) 33)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074))))) (($ (-874 (-517))) NIL (-3782 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1074))) (-2650 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1074)))))) (($ (-874 |#1|)) NIL (|has| |#2| (-558 (-1074)))) (((-1057) $) NIL (-12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1074))))) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1074))))) (-4128 ((|#1| $) 114 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1074)))) (((-1026 |#1| |#2|) $) 15) (($ (-1026 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 13 T CONST)) (-3195 (((-3 (-107) "failed") $ $) NIL)) (-2411 (($) 35 T CONST)) (-2834 (($ $ $ $ (-703)) 87 (|has| |#1| (-509)))) (-2969 (($ $ $ (-703)) 86 (|has| |#1| (-509)))) (-2738 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 54)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) 63)) (-1645 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) 61)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-712 |#1| |#2|) (-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|))) (-961) (-779)) (T -712))
-NIL
-(-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|)))
-((-1939 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
-(((-713 |#1| |#2|) (-10 -7 (-15 -1939 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-961) (-961)) (T -713))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
-(-10 -7 (-15 -1939 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 12)) (-1364 (((-1154 |#1|) $ (-703)) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-1255 (($ (-1070 |#1|)) NIL)) (-2374 (((-1070 $) $ (-989)) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3641 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-1844 (($ $ $) 35 (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3983 (($ $ (-703)) NIL)) (-2958 (($ $ (-703)) NIL)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL) (((-3 (-1070 |#1|) "failed") $) 10)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL) (((-1070 |#1|) $) NIL)) (-3167 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1414 (($ $ $) NIL)) (-3466 (($ $ $) 71 (|has| |#1| (-509)))) (-3064 (((-2 (|:| -1965 |#1|) (|:| -2317 $) (|:| -2240 $)) $ $) 70 (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-703) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1347 (($ (-1070 |#1|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3699 (($ $ (-703)) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3987 (($ $ $) 20)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-989)) NIL) (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3876 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-703) (-703)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3145 (((-1070 |#1|) $) NIL)) (-3382 (((-3 (-989) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1419 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2993 (-703))) $ $) 26)) (-3655 (($ $ $) 29)) (-1918 (($ $ $) 32)) (-3835 (((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $) 31)) (-1277 (((-1057) $) NIL)) (-1516 (($ $ $) 41 (|has| |#1| (-509)))) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-989)) (|:| -3010 (-703))) "failed") $) NIL)) (-3563 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) NIL (|has| |#1| (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3391 (((-2 (|:| -1387 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-3898 (((-2 (|:| -1387 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3915 (((-2 (|:| -3167 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-2668 (((-2 (|:| -3167 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-1656 (((-107) $) 13)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1776 (($ $ (-703) |#1| $) 19)) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-3840 (((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-3929 (((-2 (|:| -3167 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1730 (((-3 $ "failed") $ (-703)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-3383 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-1248 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3625 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-989)) NIL) (((-1070 |#1|) $) 7) (($ (-1070 |#1|)) 8) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 21 T CONST)) (-2411 (($) 24 T CONST)) (-2738 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) 28) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-714 |#1|) (-13 (-1131 |#1|) (-557 (-1070 |#1|)) (-952 (-1070 |#1|)) (-10 -8 (-15 -1776 ($ $ (-703) |#1| $)) (-15 -3987 ($ $ $)) (-15 -1419 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2993 (-703))) $ $)) (-15 -3655 ($ $ $)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -1918 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3641 ((-583 $) $ $)) (-15 -1516 ($ $ $)) (-15 -3840 ((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3898 ((-2 (|:| -1387 $) (|:| |coef1| $)) $ $)) (-15 -3391 ((-2 (|:| -1387 $) (|:| |coef2| $)) $ $)) (-15 -3929 ((-2 (|:| -3167 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2668 ((-2 (|:| -3167 |#1|) (|:| |coef1| $)) $ $)) (-15 -3915 ((-2 (|:| -3167 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -714))
-((-1776 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3987 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-1419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -2993 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3655 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-3835 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| |gap| (-703)) (|:| -2317 (-714 *3)) (|:| -2240 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-1918 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-3641 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1516 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3898 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3391 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3929 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-2668 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3915 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(-13 (-1131 |#1|) (-557 (-1070 |#1|)) (-952 (-1070 |#1|)) (-10 -8 (-15 -1776 ($ $ (-703) |#1| $)) (-15 -3987 ($ $ $)) (-15 -1419 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2993 (-703))) $ $)) (-15 -3655 ($ $ $)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -1918 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3641 ((-583 $) $ $)) (-15 -1516 ($ $ $)) (-15 -3840 ((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3898 ((-2 (|:| -1387 $) (|:| |coef1| $)) $ $)) (-15 -3391 ((-2 (|:| -1387 $) (|:| |coef2| $)) $ $)) (-15 -3929 ((-2 (|:| -3167 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2668 ((-2 (|:| -3167 |#1|) (|:| |coef1| $)) $ $)) (-15 -3915 ((-2 (|:| -3167 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1633 ((|#1| (-703) |#1|) 32 (|has| |#1| (-37 (-377 (-517)))))) (-2964 ((|#1| (-703) |#1|) 22)) (-2214 ((|#1| (-703) |#1|) 34 (|has| |#1| (-37 (-377 (-517)))))))
-(((-715 |#1|) (-10 -7 (-15 -2964 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2214 (|#1| (-703) |#1|)) (-15 -1633 (|#1| (-703) |#1|))) |%noBranch|)) (-156)) (T -715))
-((-1633 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2214 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2964 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -2964 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2214 (|#1| (-703) |#1|)) (-15 -1633 (|#1| (-703) |#1|))) |%noBranch|))
-((-1587 (((-107) $ $) 7)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) 85)) (-3258 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) 101) (((-107) $) 97)) (-2802 ((|#4| |#4| $) 92)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 126)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1761 (((-3 $ "failed") $) 82)) (-3896 ((|#4| |#4| $) 89)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3797 ((|#4| |#4| $) 87)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) 105)) (-1262 (((-107) |#4| $) 136)) (-4030 (((-107) |#4| $) 133)) (-2031 (((-107) |#4| $) 137) (((-107) $) 134)) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) 104) (((-107) $) 103)) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 127)) (-2067 (((-3 |#4| "failed") $) 83)) (-3805 (((-583 $) |#4| $) 129)) (-1956 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2375 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3912 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2825 (((-583 |#4|) $) 107)) (-1966 (((-107) |#4| $) 99) (((-107) $) 95)) (-4083 ((|#4| |#4| $) 90)) (-3706 (((-107) $ $) 110)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) 100) (((-107) $) 96)) (-1382 ((|#4| |#4| $) 91)) (-3214 (((-1021) $) 10)) (-1750 (((-3 |#4| "failed") $) 84)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2463 (((-3 $ "failed") $ |#4|) 78)) (-2204 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3625 (((-703) $) 106)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-2202 (($ $) 88)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1444 (((-703) $) 76 (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1597 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) 81)) (-2710 (((-107) |#4| $) 135)) (-1892 (((-107) |#3| $) 80)) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-716 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -716))
-NIL
-(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
-((-3092 (((-3 (-349) "failed") (-286 |#1|) (-843)) 62 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 54 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-874 |#1|)) (-843)) 41 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-874 |#1|))) 40 (|has| |#1| (-509))) (((-3 (-349) "failed") (-874 |#1|) (-843)) 31 (|has| |#1| (-961))) (((-3 (-349) "failed") (-874 |#1|)) 30 (|has| |#1| (-961)))) (-3579 (((-349) (-286 |#1|) (-843)) 99 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-874 |#1|)) (-843)) 91 (|has| |#1| (-509))) (((-349) (-377 (-874 |#1|))) 90 (|has| |#1| (-509))) (((-349) (-874 |#1|) (-843)) 86 (|has| |#1| (-961))) (((-349) (-874 |#1|)) 85 (|has| |#1| (-961))) (((-349) |#1| (-843)) 76) (((-349) |#1|) 22)) (-1625 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)) 71 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 70 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-843)) 63 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843)) 46 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|)))) 45 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843)) 39 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|))) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)) 28 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 |#1|)) 26 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-2340 (((-153 (-349)) (-286 (-153 |#1|)) (-843)) 102 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 101 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-843)) 100 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 98 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843)) 93 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 (-153 |#1|)))) 92 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|)) (-843)) 89 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|))) 88 (|has| |#1| (-509))) (((-153 (-349)) (-874 |#1|) (-843)) 84 (|has| |#1| (-961))) (((-153 (-349)) (-874 |#1|)) 83 (|has| |#1| (-961))) (((-153 (-349)) (-874 (-153 |#1|)) (-843)) 78 (|has| |#1| (-156))) (((-153 (-349)) (-874 (-153 |#1|))) 77 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-843)) 80 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 79 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-843)) 27) (((-153 (-349)) |#1|) 25)))
-(((-717 |#1|) (-10 -7 (-15 -3579 ((-349) |#1|)) (-15 -3579 ((-349) |#1| (-843))) (-15 -2340 ((-153 (-349)) |#1|)) (-15 -2340 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2340 ((-153 (-349)) (-153 |#1|))) (-15 -2340 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2340 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3579 ((-349) (-874 |#1|))) (-15 -3579 ((-349) (-874 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-874 |#1|))) (-15 -2340 ((-153 (-349)) (-874 |#1|) (-843)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3579 ((-349) (-377 (-874 |#1|)))) (-15 -3579 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2340 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2340 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2340 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2340 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3579 ((-349) (-286 |#1|))) (-15 -3579 ((-349) (-286 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-286 |#1|))) (-15 -2340 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2340 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3092 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3092 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3092 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |%noBranch|)) |%noBranch|)) (-558 (-349))) (T -717))
-((-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3092 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3092 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3092 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1625 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1625 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
-(-10 -7 (-15 -3579 ((-349) |#1|)) (-15 -3579 ((-349) |#1| (-843))) (-15 -2340 ((-153 (-349)) |#1|)) (-15 -2340 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2340 ((-153 (-349)) (-153 |#1|))) (-15 -2340 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2340 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3579 ((-349) (-874 |#1|))) (-15 -3579 ((-349) (-874 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-874 |#1|))) (-15 -2340 ((-153 (-349)) (-874 |#1|) (-843)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3579 ((-349) (-377 (-874 |#1|)))) (-15 -3579 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2340 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2340 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2340 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2340 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3579 ((-349) (-286 |#1|))) (-15 -3579 ((-349) (-286 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-286 |#1|))) (-15 -2340 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2340 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2340 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3092 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3092 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3092 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3092 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -1625 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |%noBranch|)) |%noBranch|))
-((-2499 (((-843) (-1057)) 63)) (-3416 (((-3 (-349) "failed") (-1057)) 32)) (-4090 (((-349) (-1057)) 30)) (-2230 (((-843) (-1057)) 53)) (-3962 (((-1057) (-843)) 54)) (-3665 (((-1057) (-843)) 52)))
-(((-718) (-10 -7 (-15 -3665 ((-1057) (-843))) (-15 -2230 ((-843) (-1057))) (-15 -3962 ((-1057) (-843))) (-15 -2499 ((-843) (-1057))) (-15 -4090 ((-349) (-1057))) (-15 -3416 ((-3 (-349) "failed") (-1057))))) (T -718))
-((-3416 (*1 *2 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
-(-10 -7 (-15 -3665 ((-1057) (-843))) (-15 -2230 ((-843) (-1057))) (-15 -3962 ((-1057) (-843))) (-15 -2499 ((-843) (-1057))) (-15 -4090 ((-349) (-1057))) (-15 -3416 ((-3 (-349) "failed") (-1057))))
-((-1587 (((-107) $ $) 7)) (-3807 (((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 15) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 13)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-719) (-1185)) (T -719))
-((-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) (-3807 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) (-3807 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(-13 (-1003) (-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3807 ((-950) (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3807 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3842 (((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349))) 44) (((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 43)) (-2097 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 50)) (-2572 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 41)) (-3341 (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349))) 52) (((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349))) 51)))
-(((-720) (-10 -7 (-15 -3341 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3341 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -2572 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3842 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3842 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -2097 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))))) (T -720))
-((-2097 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-3842 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-3842 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-2572 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-3341 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) (-3341 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
-(-10 -7 (-15 -3341 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3341 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -2572 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3842 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))) (-15 -3842 ((-1159) (-1154 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349))) (-349) (-1154 (-349)) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)) (-1154 (-349)))) (-15 -2097 ((-1159) (-1154 (-349)) (-517) (-349) (-349) (-517) (-1 (-1159) (-1154 (-349)) (-1154 (-349)) (-349)))))
-((-2983 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-1208 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2059 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-3307 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-1936 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-4000 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-2942 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-1664 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-3312 (((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
-(((-721) (-10 -7 (-15 -3312 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1664 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2942 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -4000 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3307 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1208 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1936 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2059 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2983 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
-((-2983 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2059 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1936 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1208 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3307 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-4000 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2942 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1664 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3312 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(-10 -7 (-15 -3312 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1664 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2942 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -4000 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3307 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1208 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1936 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2059 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2983 ((-2 (|:| -3207 (-349)) (|:| -2099 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
-((-2711 (((-1105 |#1|) |#1| (-199) (-517)) 45)))
-(((-722 |#1|) (-10 -7 (-15 -2711 ((-1105 |#1|) |#1| (-199) (-517)))) (-891)) (T -722))
-((-2711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1105 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))))
-(-10 -7 (-15 -2711 ((-1105 |#1|) |#1| (-199) (-517))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-2646 (((-3 $ "failed") $ $) 26)) (-2706 (($) 23 T CONST)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 22 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1663 (($ $ $) 28) (($ $) 27)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29)))
-(((-723) (-1185)) (T -723))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2140 (($ |#1|) 17) (($ $ |#1|) 20)) (-3383 (($ |#1|) 18) (($ $ |#1|) 21)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1865 (((-107) $) NIL)) (-4168 (($ |#1| |#1| |#1| |#1|) 8)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 16)) (-4123 (((-1022) $) NIL)) (-3522 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-2269 (((-787) $) 39)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 9 T CONST)) (-1583 (((-107) $ $) 44)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
+(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -4168 ($ |#1| |#1| |#1| |#1|)) (-15 -2140 ($ |#1|)) (-15 -3383 ($ |#1|)) (-15 -3163 ($)) (-15 -2140 ($ $ |#1|)) (-15 -3383 ($ $ |#1|)) (-15 -3163 ($ $)) (-15 -3522 (|#1| $ |#1|)) (-15 -3522 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
+((-4168 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2140 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3383 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3163 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3383 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3163 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3522 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3522 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
+(-13 (-442) (-10 -8 (-15 -4168 ($ |#1| |#1| |#1| |#1|)) (-15 -2140 ($ |#1|)) (-15 -3383 ($ |#1|)) (-15 -3163 ($)) (-15 -2140 ($ $ |#1|)) (-15 -3383 ($ $ |#1|)) (-15 -3163 ($ $)) (-15 -3522 (|#1| $ |#1|)) (-15 -3522 ((-765 |#1|) $ (-765 |#1|)))))
+((-1537 (($ $ (-844)) 12)) (-2848 (($ $ (-844)) 13)) (** (($ $ (-844)) 10)))
+(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-844))) (-15 -2848 (|#1| |#1| (-844))) (-15 -1537 (|#1| |#1| (-844)))) (-653)) (T -652))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-844))) (-15 -2848 (|#1| |#1| (-844))) (-15 -1537 (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-1537 (($ $ (-844)) 15)) (-2848 (($ $ (-844)) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)) (** (($ $ (-844)) 13)) (* (($ $ $) 16)))
+(((-653) (-1187)) (T -653))
+((* (*1 *1 *1 *1) (-4 *1 (-653))) (-1537 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))) (-2848 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844)))))
+(-13 (-1004) (-10 -8 (-15 * ($ $ $)) (-15 -1537 ($ $ (-844))) (-15 -2848 ($ $ (-844))) (-15 ** ($ $ (-844)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-1537 (($ $ (-844)) NIL) (($ $ (-703)) 17)) (-1865 (((-107) $) 10)) (-2848 (($ $ (-844)) NIL) (($ $ (-703)) 18)) (** (($ $ (-844)) NIL) (($ $ (-703)) 15)))
+(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2848 (|#1| |#1| (-703))) (-15 -1537 (|#1| |#1| (-703))) (-15 -1865 ((-107) |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2848 (|#1| |#1| (-844))) (-15 -1537 (|#1| |#1| (-844)))) (-655)) (T -654))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2848 (|#1| |#1| (-703))) (-15 -1537 (|#1| |#1| (-703))) (-15 -1865 ((-107) |#1|)) (-15 ** (|#1| |#1| (-844))) (-15 -2848 (|#1| |#1| (-844))) (-15 -1537 (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-3237 (((-3 $ "failed") $) 17)) (-1537 (($ $ (-844)) 15) (($ $ (-703)) 22)) (-3163 (((-3 $ "failed") $) 19)) (-1865 (((-107) $) 23)) (-1888 (((-3 $ "failed") $) 18)) (-2848 (($ $ (-844)) 14) (($ $ (-703)) 21)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3617 (($) 24 T CONST)) (-1583 (((-107) $ $) 6)) (** (($ $ (-844)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
+(((-655) (-1187)) (T -655))
+((-3617 (*1 *1) (-4 *1 (-655))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-1537 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2848 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3163 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1888 (*1 *1 *1) (|partial| -4 *1 (-655))) (-3237 (*1 *1 *1) (|partial| -4 *1 (-655))))
+(-13 (-653) (-10 -8 (-15 (-3617) ($) -1384) (-15 -1865 ((-107) $)) (-15 -1537 ($ $ (-703))) (-15 -2848 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3163 ((-3 $ "failed") $)) (-15 -1888 ((-3 $ "failed") $)) (-15 -3237 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1004) . T))
+((-2397 (((-703)) 35)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-1521 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3163 (((-3 $ "failed") $) 65)) (-2200 (($) 39)) (-2754 ((|#2| $) 20)) (-1317 (($) 17)) (-2059 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2678 (((-623 |#2|) (-1156 $) (-1 |#2| |#2|)) 60)) (-3357 (((-1156 |#2|) $) NIL) (($ (-1156 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1900 ((|#3| $) 32)) (-2062 (((-1156 $)) 29)))
+(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2200 (|#1|)) (-15 -2397 ((-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2678 ((-623 |#2|) (-1156 |#1|) (-1 |#2| |#2|))) (-15 -1521 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3357 (|#1| |#3|)) (-15 -1521 (|#1| |#3|)) (-15 -1317 (|#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 (|#3| |#1|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -2062 ((-1156 |#1|))) (-15 -1900 (|#3| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1132 |#2|)) (T -656))
+((-2397 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
+(-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2200 (|#1|)) (-15 -2397 ((-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2678 ((-623 |#2|) (-1156 |#1|) (-1 |#2| |#2|))) (-15 -1521 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3357 (|#1| |#3|)) (-15 -1521 (|#1| |#3|)) (-15 -1317 (|#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3357 (|#3| |#1|)) (-15 -3357 (|#1| (-1156 |#2|))) (-15 -3357 ((-1156 |#2|) |#1|)) (-15 -2062 ((-1156 |#1|))) (-15 -1900 (|#3| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3163 ((-3 |#1| "failed") |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-2729 (($ $) 94 (|has| |#1| (-333)))) (-2566 (((-107) $) 96 (|has| |#1| (-333)))) (-3861 (((-623 |#1|) (-1156 $)) 46) (((-623 |#1|)) 61)) (-2008 ((|#1| $) 52)) (-2886 (((-1084 (-844) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 113 (|has| |#1| (-333)))) (-1581 (((-388 $) $) 114 (|has| |#1| (-333)))) (-3998 (((-107) $ $) 104 (|has| |#1| (-333)))) (-2397 (((-703)) 87 (|has| |#1| (-338)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 169 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3388 (((-517) $) 170 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 165)) (-1953 (($ (-1156 |#1|) (-1156 $)) 48) (($ (-1156 |#1|)) 64)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2378 (($ $ $) 108 (|has| |#1| (-333)))) (-1416 (((-623 |#1|) $ (-1156 $)) 53) (((-623 |#1|) $) 59)) (-2306 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1521 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3163 (((-3 $ "failed") $) 34)) (-3736 (((-844)) 54)) (-2200 (($) 90 (|has| |#1| (-338)))) (-2354 (($ $ $) 107 (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-1672 (($) 149 (|has| |#1| (-319)))) (-3454 (((-107) $) 150 (|has| |#1| (-319)))) (-2464 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2963 (((-107) $) 115 (|has| |#1| (-333)))) (-2053 (((-844) $) 152 (|has| |#1| (-319))) (((-765 (-844)) $) 138 (|has| |#1| (-319)))) (-1865 (((-107) $) 31)) (-2754 ((|#1| $) 51)) (-3572 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-2456 ((|#2| $) 44 (|has| |#1| (-333)))) (-2031 (((-844) $) 89 (|has| |#1| (-338)))) (-1508 ((|#2| $) 156)) (-2330 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 116 (|has| |#1| (-333)))) (-2585 (($) 143 (|has| |#1| (-319)) CONST)) (-2810 (($ (-844)) 88 (|has| |#1| (-338)))) (-4123 (((-1022) $) 10)) (-1317 (($) 160)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 101 (|has| |#1| (-333)))) (-2368 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) 146 (|has| |#1| (-319)))) (-3866 (((-388 $) $) 112 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 109 (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-4094 (((-703) $) 105 (|has| |#1| (-333)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 106 (|has| |#1| (-333)))) (-4032 ((|#1| (-1156 $)) 47) ((|#1|) 60)) (-1496 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2059 (($ $) 137 (-3745 (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3745 (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1075)) 133 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-583 (-1075))) 132 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-1075) (-703)) 131 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 (-703))) 130 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-2678 (((-623 |#1|) (-1156 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-3586 ((|#2|) 159)) (-3958 (($) 148 (|has| |#1| (-319)))) (-3369 (((-1156 |#1|) $ (-1156 $)) 50) (((-623 |#1|) (-1156 $) (-1156 $)) 49) (((-1156 |#1|) $) 66) (((-623 |#1|) (-1156 $)) 65)) (-3357 (((-1156 |#1|) $) 63) (($ (-1156 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517))))))) (-2650 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-1900 ((|#2| $) 45)) (-2950 (((-703)) 29)) (-2062 (((-1156 $)) 67)) (-2914 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $) 136 (-3745 (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3745 (-3992 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1075)) 129 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-583 (-1075))) 128 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-1075) (-703)) 127 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 (-703))) 126 (-3992 (|has| |#1| (-823 (-1075))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 121 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-657 |#1| |#2|) (-1187) (-156) (-1132 |t#1|)) (T -657))
+((-1317 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1132 *2)))) (-3586 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3)))) (-1521 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1132 *3)))) (-3357 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1132 *3)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3)))) (-1521 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-1156 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1132 *5)) (-5 *2 (-623 *5)))))
+(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1317 ($)) (-15 -3586 (|t#2|)) (-15 -1521 ($ |t#2|)) (-15 -3357 ($ |t#2|)) (-15 -1508 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -1521 ((-3 $ "failed") (-377 |t#2|))) (-15 -2678 ((-623 |t#1|) (-1156 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 #0# #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3745 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3745 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3745 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075)))) ((-843) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 #0#) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-968 |#1|) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| |#1| (-319)) ((-1114) -3745 (|has| |#1| (-319)) (|has| |#1| (-333))))
+((-1681 (($) 14)) (-3163 (((-3 $ "failed") $) 16)) (-1865 (((-107) $) 13)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) 9)) (** (($ $ (-844)) NIL) (($ $ (-703)) 20)))
+(((-658 |#1|) (-10 -8 (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -2813 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1865 ((-107) |#1|)) (-15 -1681 (|#1|)) (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 -3163 ((-3 |#1| "failed") |#1|)) (-15 -2813 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1865 ((-107) |#1|)) (-15 -1681 (|#1|)) (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-1681 (($) 20 T CONST)) (-3163 (((-3 $ "failed") $) 16)) (-1865 (((-107) $) 19)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-844)) 13) (($ $ (-703)) 17)) (-3617 (($) 21 T CONST)) (-1583 (((-107) $ $) 6)) (** (($ $ (-844)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
+(((-659) (-1187)) (T -659))
+((-3617 (*1 *1) (-4 *1 (-659))) (-1681 (*1 *1) (-4 *1 (-659))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3163 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-1016) (-10 -8 (-15 (-3617) ($) -1384) (-15 -1681 ($) -1384) (-15 -1865 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2813 ($ $ (-703))) (-15 -3163 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1016) . T) ((-1004) . T))
+((-2542 (((-2 (|:| -1386 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2975 (((-2 (|:| -1386 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4170 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2582 (((-2 (|:| |poly| |#2|) (|:| -1386 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -2975 ((-2 (|:| -1386 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2542 ((-2 (|:| -1386 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4170 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2582 ((-2 (|:| |poly| |#2|) (|:| -1386 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1132 |#1|)) (T -660))
+((-2582 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1386 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-4170 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1132 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1386 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-2975 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1386 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
+(-10 -7 (-15 -2975 ((-2 (|:| -1386 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2542 ((-2 (|:| -1386 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4170 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2582 ((-2 (|:| |poly| |#2|) (|:| -1386 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
+((-2496 ((|#7| (-583 |#5|) |#6|) NIL)) (-3308 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3308 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-962) (-962) (-872 |#4| |#2| |#1|) (-872 |#5| |#3| |#1|)) (T -661))
+((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-962)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-962)) (-4 *2 (-872 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-872 *8 *6 *5)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-872 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-872 *8 *6 *5)))))
+(-10 -7 (-15 -3308 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2496 (|#7| (-583 |#5|) |#6|)))
+((-3308 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
+(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3308 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-962) (-872 |#5| |#3| |#1|) (-872 |#5| |#4| |#2|)) (T -662))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-962)) (-4 *2 (-872 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-872 *9 *7 *5)))))
+(-10 -7 (-15 -3308 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3866 (((-388 |#4|) |#4|) 39)))
+(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075))))) (-278) (-872 (-875 |#3|) |#1| |#2|)) (T -663))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-872 (-875 *6) *4 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-789 |#1|)) $) NIL)) (-1440 (((-1071 $) $ (-789 |#1|)) NIL) (((-1071 |#2|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2729 (($ $) NIL (|has| |#2| (-509)))) (-2566 (((-107) $) NIL (|has| |#2| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL (|has| |#2| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-789 |#1|) $) NIL)) (-2272 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#2| (-832)))) (-2027 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#2|) (-789 |#1|)) NIL) (($ (-1071 $) (-789 |#1|)) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-789 |#1|)) NIL)) (-2210 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3200 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1512 (((-3 (-789 |#1|) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#2| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2356 (-703))) "failed") $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#2| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-832)))) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-4032 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2059 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2769 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3745 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-953 (-377 (-517))))))) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-664 |#1| |#2|) (-872 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1075)) (-962)) (T -664))
+NIL
+(-872 |#2| (-489 (-789 |#1|)) (-789 |#1|))
+((-3403 (((-2 (|:| -1836 (-875 |#3|)) (|:| -1443 (-875 |#3|))) |#4|) 13)) (-3321 ((|#4| |#4| |#2|) 30)) (-2642 ((|#4| (-377 (-875 |#3|)) |#2|) 64)) (-2746 ((|#4| (-1071 (-875 |#3|)) |#2|) 77)) (-2962 ((|#4| (-1071 |#4|) |#2|) 50)) (-1610 ((|#4| |#4| |#2|) 53)) (-3866 (((-388 |#4|) |#4|) 38)))
+(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3403 ((-2 (|:| -1836 (-875 |#3|)) (|:| -1443 (-875 |#3|))) |#4|)) (-15 -1610 (|#4| |#4| |#2|)) (-15 -2962 (|#4| (-1071 |#4|) |#2|)) (-15 -3321 (|#4| |#4| |#2|)) (-15 -2746 (|#4| (-1071 (-875 |#3|)) |#2|)) (-15 -2642 (|#4| (-377 (-875 |#3|)) |#2|)) (-15 -3866 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)))) (-509) (-872 (-377 (-875 |#3|)) |#1| |#2|)) (T -665))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))) (-2642 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-875 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 (-875 *6))) (-4 *6 (-509)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))))) (-3321 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *6 (-509)))) (-1610 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3)))) (-3403 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1836 (-875 *6)) (|:| -1443 (-875 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))))
+(-10 -7 (-15 -3403 ((-2 (|:| -1836 (-875 |#3|)) (|:| -1443 (-875 |#3|))) |#4|)) (-15 -1610 (|#4| |#4| |#2|)) (-15 -2962 (|#4| (-1071 |#4|) |#2|)) (-15 -3321 (|#4| |#4| |#2|)) (-15 -2746 (|#4| (-1071 (-875 |#3|)) |#2|)) (-15 -2642 (|#4| (-377 (-875 |#3|)) |#2|)) (-15 -3866 ((-388 |#4|) |#4|)))
+((-3866 (((-388 |#4|) |#4|) 51)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-872 (-377 |#3|) |#1| |#2|)) (T -666))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-872 (-377 *6) *4 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4|)))
+((-3308 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
+(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-962) (-962) (-659)) (T -667))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
+(-10 -7 (-15 -3308 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 26)) (-3349 (((-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|))) $) 27)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3388 ((|#2| $) NIL) ((|#1| $) NIL)) (-2371 (($ $) 76 (|has| |#2| (-779)))) (-3163 (((-3 $ "failed") $) 63)) (-2200 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) 54)) (-3370 (((-583 $) $) 37)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| |#2|) 16)) (-3308 (($ (-1 |#1| |#1|) $) 53)) (-2031 (((-844) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2333 ((|#2| $) 75 (|has| |#2| (-779)))) (-2345 ((|#1| $) 74 (|has| |#2| (-779)))) (-1895 (((-1058) $) NIL)) (-2810 (($ (-844)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 73) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|)))) 11)) (-2907 (((-583 |#1|) $) 39)) (-3952 ((|#1| $ |#2|) 84)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 12 T CONST)) (-3617 (($) 31 T CONST)) (-1583 (((-107) $ $) 77)) (-1691 (($ $) 46) (($ $ $) NIL)) (-1677 (($ $ $) 24)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-668 |#1| |#2|) (-13 (-962) (-953 |#2|) (-953 |#1|) (-10 -8 (-15 -2077 ($ |#1| |#2|)) (-15 -3952 (|#1| $ |#2|)) (-15 -2269 ($ (-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|))))) (-15 -3349 ((-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|))) $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (-15 -1960 ((-107) $)) (-15 -2907 ((-583 |#1|) $)) (-15 -3370 ((-583 $) $)) (-15 -1942 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2333 (|#2| $)) (-15 -2345 (|#1| $)) (-15 -2371 ($ $))) |%noBranch|))) (-962) (-659)) (T -668))
+((-2077 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-962)) (-4 *3 (-659)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1580 *3) (|:| -2423 *4)))) (-4 *3 (-962)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1580 *3) (|:| -2423 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659)))) (-2333 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-962)))) (-2345 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-962)) (-4 *3 (-659)))))
+(-13 (-962) (-953 |#2|) (-953 |#1|) (-10 -8 (-15 -2077 ($ |#1| |#2|)) (-15 -3952 (|#1| $ |#2|)) (-15 -2269 ($ (-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|))))) (-15 -3349 ((-583 (-2 (|:| -1580 |#1|) (|:| -2423 |#2|))) $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (-15 -1960 ((-107) $)) (-15 -2907 ((-583 |#1|) $)) (-15 -3370 ((-583 $) $)) (-15 -1942 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2333 (|#2| $)) (-15 -2345 (|#1| $)) (-15 -2371 ($ $))) |%noBranch|)))
+((-2118 (((-107) $ $) 19)) (-2382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1826 (($ $ $) 72)) (-2104 (((-107) $ $) 73)) (-2670 (((-107) $ (-703)) 8)) (-1883 (($ (-583 |#1|)) 68) (($) 67)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-3302 (($ $) 62)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22)) (-3257 (($ $ $) 69)) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4123 (((-1022) $) 21)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2804 (((-583 (-2 (|:| -1860 |#1|) (|:| -4135 (-703)))) $) 61)) (-1598 (($ $ |#1|) 71) (($ $ $) 70)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2269 (((-787) $) 18)) (-3073 (($ (-583 |#1|)) 66) (($) 65)) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20)) (-1607 (((-107) $ $) 64)) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-669 |#1|) (-1187) (-1004)) (T -669))
+NIL
+(-13 (-628 |t#1|) (-1002 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-628 |#1|) . T) ((-1002 |#1|) . T) ((-1004) . T) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1826 (($ $ $) 79)) (-2104 (((-107) $ $) 82)) (-2670 (((-107) $ (-703)) NIL)) (-1883 (($ (-583 |#1|)) 24) (($) 15)) (-3042 (($ (-1 (-107) |#1|) $) 70 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-3302 (($ $) 71)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) 61 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4190))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 32 (|has| $ (-6 -4190)))) (-2469 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) 38)) (-4008 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 75)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-3257 (($ $ $) 77)) (-2431 ((|#1| $) 54)) (-2704 (($ |#1| $) 55) (($ |#1| $ (-703)) 72)) (-4123 (((-1022) $) NIL)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1785 ((|#1| $) 53)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 49)) (-1529 (($) 12)) (-2804 (((-583 (-2 (|:| -1860 |#1|) (|:| -4135 (-703)))) $) 47)) (-1598 (($ $ |#1|) NIL) (($ $ $) 78)) (-1494 (($) 14) (($ (-583 |#1|)) 23)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 66)) (-3357 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 20)) (-2269 (((-787) $) 44)) (-3073 (($ (-583 |#1|)) 25) (($) 16)) (-4155 (($ (-583 |#1|)) 22)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 80)) (-1607 (((-107) $ $) 81)) (-3533 (((-703) $) 59 (|has| $ (-6 -4190)))))
+(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -2469 ($)) (-15 -2469 ($ |#1|)) (-15 -2469 ($ (-583 |#1|))) (-15 -2898 ((-583 |#1|) $)) (-15 -1422 ($ |#1| $ (-517))) (-15 -1422 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3593 ($ |#1| $ (-517))) (-15 -3593 ($ (-1 (-107) |#1|) $ (-517))))) (-1004)) (T -670))
+((-2469 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1004)))) (-2469 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1004)))) (-2469 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-670 *3)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1004)))) (-1422 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1004)))) (-1422 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1004)) (-5 *1 (-670 *4)))) (-3593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1004)))) (-3593 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1004)) (-5 *1 (-670 *4)))))
+(-13 (-669 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -2469 ($)) (-15 -2469 ($ |#1|)) (-15 -2469 ($ (-583 |#1|))) (-15 -2898 ((-583 |#1|) $)) (-15 -1422 ($ |#1| $ (-517))) (-15 -1422 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3593 ($ |#1| $ (-517))) (-15 -3593 ($ (-1 (-107) |#1|) $ (-517)))))
+((-1361 (((-1161) (-1058)) 8)))
+(((-671) (-10 -7 (-15 -1361 ((-1161) (-1058))))) (T -671))
+((-1361 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-671)))))
+(-10 -7 (-15 -1361 ((-1161) (-1058))))
+((-3710 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
+(((-672 |#1|) (-10 -7 (-15 -3710 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
+((-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(-10 -7 (-15 -3710 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 |#2|) $) 136)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-2729 (($ $) 128 (|has| |#1| (-509)))) (-2566 (((-107) $) 126 (|has| |#1| (-509)))) (-1646 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-3879 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1669 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-2371 (($ $) 120)) (-3163 (((-3 $ "failed") $) 34)) (-2912 (((-875 |#1|) $ (-703)) 98) (((-875 |#1|) $ (-703) (-703)) 97)) (-2098 (((-107) $) 137)) (-2115 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-1960 (((-107) $) 118)) (-2077 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-3308 (($ (-1 |#1| |#1|) $) 117)) (-1225 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 115)) (-2345 ((|#1| $) 114)) (-1895 (((-1058) $) 9)) (-1518 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) 10)) (-2640 (($ $ (-703)) 103)) (-2327 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-3868 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-2059 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-2769 (((-489 |#2|) $) 116)) (-1682 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 138)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3952 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-2650 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-1721 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 127 (|has| |#1| (-509)))) (-1695 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-2822 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-673 |#1| |#2|) (-1187) (-962) (-779)) (T -673))
+((-3952 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-962)) (-4 *2 (-779)))) (-3952 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-962)) (-4 *5 (-779)))) (-2640 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-962)) (-4 *4 (-779)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-962)) (-4 *2 (-779)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-962)) (-4 *5 (-779)))) (-2053 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-962)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2053 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-962)) (-4 *3 (-779)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-962)) (-4 *5 (-779)) (-5 *2 (-875 *4)))) (-2912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-962)) (-4 *5 (-779)) (-5 *2 (-875 *4)))) (-1518 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-962)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
+(-13 (-823 |t#2|) (-891 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -3952 ($ $ |t#2| (-703))) (-15 -3952 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -2640 ($ $ (-703))) (-15 -2077 ($ $ |t#2| (-703))) (-15 -2077 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -2053 ((-703) $ |t#2|)) (-15 -2053 ((-703) $ |t#2| (-703))) (-15 -2912 ((-875 |t#1|) $ (-703))) (-15 -2912 ((-875 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $ |t#2|)) (-6 (-919)) (-6 (-1096))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-489 |#2|)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 |#2|) . T) ((-891 |#1| #0# |#2|) . T) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-968 #1#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))))
+((-3866 (((-388 (-1071 |#4|)) (-1071 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 |#4|) |#4|)) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-872 |#3| |#2| |#1|)) (T -674))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
+(-10 -7 (-15 -3866 ((-388 |#4|) |#4|)) (-15 -3866 ((-388 (-1071 |#4|)) (-1071 |#4|))))
+((-2303 (((-388 |#4|) |#4| |#2|) 117)) (-3265 (((-388 |#4|) |#4|) NIL)) (-1581 (((-388 (-1071 |#4|)) (-1071 |#4|)) 108) (((-388 |#4|) |#4|) 38)) (-2921 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3866 (-1071 |#4|)) (|:| -2356 (-517)))))) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 66)) (-3251 (((-1071 |#3|) (-1071 |#3|) (-517)) 134)) (-3700 (((-583 (-703)) (-1071 |#4|) (-583 |#2|) (-703)) 59)) (-1508 (((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-1071 |#3|) (-1071 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 63)) (-3982 (((-2 (|:| |upol| (-1071 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517))))) (|:| |ctpol| |#3|)) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-3240 (((-2 (|:| -1713 (-1071 |#4|)) (|:| |polval| (-1071 |#3|))) (-1071 |#4|) (-1071 |#3|) (-517)) 55)) (-2944 (((-517) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517))))) 131)) (-1571 ((|#4| (-517) (-388 |#4|)) 56)) (-1492 (((-107) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517))))) NIL)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1581 ((-388 |#4|) |#4|)) (-15 -1581 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3265 ((-388 |#4|) |#4|)) (-15 -2944 ((-517) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))))) (-15 -2303 ((-388 |#4|) |#4| |#2|)) (-15 -3240 ((-2 (|:| -1713 (-1071 |#4|)) (|:| |polval| (-1071 |#3|))) (-1071 |#4|) (-1071 |#3|) (-517))) (-15 -2921 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3866 (-1071 |#4|)) (|:| -2356 (-517)))))) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3982 ((-2 (|:| |upol| (-1071 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517))))) (|:| |ctpol| |#3|)) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1571 (|#4| (-517) (-388 |#4|))) (-15 -1492 ((-107) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))))) (-15 -1508 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-1071 |#3|) (-1071 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3700 ((-583 (-703)) (-1071 |#4|) (-583 |#2|) (-703))) (-15 -3251 ((-1071 |#3|) (-1071 |#3|) (-517)))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -675))
+((-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-3700 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-1508 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1071 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-872 *11 *9 *10)) (-5 *2 (-583 (-1071 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1071 *5)))) (-1492 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3866 (-1071 *6)) (|:| -2356 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-872 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1071 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3866 (-1071 *8)) (|:| -2356 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-2921 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-872 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3866 (-1071 *9)) (|:| -2356 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1071 *9)))) (-3240 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-5 *2 (-2 (|:| -1713 (-1071 *9)) (|:| |polval| (-1071 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1071 *9)) (-5 *4 (-1071 *8)))) (-2303 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3866 (-1071 *6)) (|:| -2356 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-3265 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))) (-1581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-1581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))))
+(-10 -7 (-15 -1581 ((-388 |#4|) |#4|)) (-15 -1581 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3265 ((-388 |#4|) |#4|)) (-15 -2944 ((-517) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))))) (-15 -2303 ((-388 |#4|) |#4| |#2|)) (-15 -3240 ((-2 (|:| -1713 (-1071 |#4|)) (|:| |polval| (-1071 |#3|))) (-1071 |#4|) (-1071 |#3|) (-517))) (-15 -2921 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3866 (-1071 |#4|)) (|:| -2356 (-517)))))) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -3982 ((-2 (|:| |upol| (-1071 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517))))) (|:| |ctpol| |#3|)) (-1071 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1571 (|#4| (-517) (-388 |#4|))) (-15 -1492 ((-107) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))) (-583 (-2 (|:| -3866 (-1071 |#3|)) (|:| -2356 (-517)))))) (-15 -1508 ((-3 (-583 (-1071 |#4|)) "failed") (-1071 |#4|) (-1071 |#3|) (-1071 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3700 ((-583 (-703)) (-1071 |#4|) (-583 |#2|) (-703))) (-15 -3251 ((-1071 |#3|) (-1071 |#3|) (-517))))
+((-3248 (($ $ (-844)) 12)))
+(((-676 |#1| |#2|) (-10 -8 (-15 -3248 (|#1| |#1| (-844)))) (-677 |#2|) (-156)) (T -676))
+NIL
+(-10 -8 (-15 -3248 (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1537 (($ $ (-844)) 28)) (-3248 (($ $ (-844)) 33)) (-2848 (($ $ (-844)) 29)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2609 (($ $ $) 25)) (-2269 (((-787) $) 11)) (-2516 (($ $ $ $) 26)) (-1263 (($ $ $) 24)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-677 |#1|) (-1187) (-156)) (T -677))
+((-3248 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3248 ($ $ (-844)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-3489 (((-951) (-623 (-199)) (-517) (-107) (-517)) 24)) (-2316 (((-951) (-623 (-199)) (-517) (-107) (-517)) 23)))
+(((-678) (-10 -7 (-15 -2316 ((-951) (-623 (-199)) (-517) (-107) (-517))) (-15 -3489 ((-951) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
+((-3489 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-951)) (-5 *1 (-678)))) (-2316 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-951)) (-5 *1 (-678)))))
+(-10 -7 (-15 -2316 ((-951) (-623 (-199)) (-517) (-107) (-517))) (-15 -3489 ((-951) (-623 (-199)) (-517) (-107) (-517))))
+((-1566 (((-951) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-3564 (((-951) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-2727 (((-951) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) 32)))
+(((-679) (-10 -7 (-15 -2727 ((-951) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -3564 ((-951) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -1566 ((-951) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
+((-1566 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-951)) (-5 *1 (-679)))) (-3564 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-951)) (-5 *1 (-679)))) (-2727 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951)) (-5 *1 (-679)))))
+(-10 -7 (-15 -2727 ((-951) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -3564 ((-951) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -1566 ((-951) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
+((-4105 (((-951) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2208 (((-951) (-517) (-517) (-623 (-199)) (-517)) 32)) (-4150 (((-951) (-517) (-623 (-199)) (-517)) 31)) (-4060 (((-951) (-517) (-623 (-199)) (-517)) 30)) (-3871 (((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-3205 (((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1652 (((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3742 (((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2576 (((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-4044 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2152 (((-951) (-517) (-623 (-199)) (-517)) 21)) (-2657 (((-951) (-517) (-623 (-199)) (-517)) 20)))
+(((-680) (-10 -7 (-15 -2657 ((-951) (-517) (-623 (-199)) (-517))) (-15 -2152 ((-951) (-517) (-623 (-199)) (-517))) (-15 -4044 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2576 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3742 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1652 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3205 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3871 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4060 ((-951) (-517) (-623 (-199)) (-517))) (-15 -4150 ((-951) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -4105 ((-951) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
+((-4105 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-2208 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-4150 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-4060 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-3871 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-3205 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-1652 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-3742 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-2576 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-4044 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-2152 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))) (-2657 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-680)))))
+(-10 -7 (-15 -2657 ((-951) (-517) (-623 (-199)) (-517))) (-15 -2152 ((-951) (-517) (-623 (-199)) (-517))) (-15 -4044 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2576 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3742 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1652 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3205 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3871 ((-951) (-517) (-517) (-1058) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4060 ((-951) (-517) (-623 (-199)) (-517))) (-15 -4150 ((-951) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -4105 ((-951) (-517) (-517) (-623 (-199)) (-517))))
+((-2624 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2052 (((-951) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-3885 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1343 (((-951) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3595 (((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-1279 (((-951) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3619 (((-951) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-1271 (((-951) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-1866 (((-951) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) 38)) (-2991 (((-951) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) 37)) (-1754 (((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) 33)) (-3373 (((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) 32)))
+(((-681) (-10 -7 (-15 -3373 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1754 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -2991 ((-951) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1866 ((-951) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1271 ((-951) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3619 ((-951) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1279 ((-951) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3595 ((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1343 ((-951) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -3885 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -2052 ((-951) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -2624 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
+((-2624 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-2052 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-681)))) (-3885 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-1343 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-681)))) (-3595 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-1279 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-3619 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-1271 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-1866 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-2991 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-681)))) (-1754 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951)) (-5 *1 (-681)))) (-3373 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951)) (-5 *1 (-681)))))
+(-10 -7 (-15 -3373 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1754 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -2991 ((-951) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1866 ((-951) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724))))) (-15 -1271 ((-951) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3619 ((-951) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1279 ((-951) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3595 ((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1343 ((-951) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -3885 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -2052 ((-951) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -2624 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
+((-3969 (((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2332 (((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1397 (((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-3009 (((-951) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-3135 (((-951) (-199) (-517) (-517) (-1058) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3993 (((-951) (-199) (-517) (-517) (-199) (-1058) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3020 (((-951) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1819 (((-951) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-682) (-10 -7 (-15 -1819 ((-951) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3020 ((-951) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -3993 ((-951) (-199) (-517) (-517) (-199) (-1058) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3135 ((-951) (-199) (-517) (-517) (-1058) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3009 ((-951) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1397 ((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -2332 ((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -2332 ((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -3969 ((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
+((-3969 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))) (-2332 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-951)) (-5 *1 (-682)))) (-2332 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-951)) (-5 *1 (-682)))) (-1397 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))) (-3009 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-951)) (-5 *1 (-682)))) (-3135 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1058)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))) (-3993 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1058)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))) (-3020 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))) (-1819 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(-10 -7 (-15 -1819 ((-951) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3020 ((-951) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -3993 ((-951) (-199) (-517) (-517) (-199) (-1058) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3135 ((-951) (-199) (-517) (-517) (-1058) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3009 ((-951) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1397 ((-951) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -2332 ((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -2332 ((-951) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -3969 ((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-1716 (((-951) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-3202 (((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1058) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-4153 (((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
+(((-683) (-10 -7 (-15 -4153 ((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3202 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1058) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1716 ((-951) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
+((-1716 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-683)))) (-3202 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1058)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-951)) (-5 *1 (-683)))) (-4153 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-683)))))
+(-10 -7 (-15 -4153 ((-951) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3202 ((-951) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1058) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1716 ((-951) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
+((-2146 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-3279 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-3473 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1509 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2015 (((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1210 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-3273 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-3249 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-3995 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1460 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
+(((-684) (-10 -7 (-15 -1460 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3995 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3249 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3273 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1210 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2015 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1509 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3473 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3279 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2146 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
+((-2146 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-684)))) (-3279 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-684)))) (-3473 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-684)))) (-1509 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))) (-2015 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))) (-1210 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-684)))) (-3273 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))) (-3249 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))) (-3995 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))) (-1460 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-684)))))
+(-10 -7 (-15 -1460 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3995 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3249 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3273 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1210 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -2015 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1509 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3473 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3279 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2146 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
+((-1887 (((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-2156 (((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-3503 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1968 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-3027 (((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-2416 (((-951) (-1058) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-2667 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1577 (((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-2129 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1419 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-3763 (((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-3780 (((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-2772 (((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-4051 (((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1257 (((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-2348 (((-951) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-2985 (((-951) (-517) (-623 (-199)) (-199) (-517)) 24)) (-2113 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
+(((-685) (-10 -7 (-15 -2113 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2985 ((-951) (-517) (-623 (-199)) (-199) (-517))) (-15 -2348 ((-951) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1257 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -4051 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -2772 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -3780 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3763 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1419 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -2129 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1577 ((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -2667 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -2416 ((-951) (-1058) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3027 ((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1968 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3503 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -2156 ((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1887 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
+((-1887 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))) (-2156 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-3503 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))) (-1968 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))) (-3027 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2416 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2667 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))) (-1577 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2129 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))) (-1419 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-3763 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-3780 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))) (-2772 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-4051 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-1257 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2348 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2985 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))) (-2113 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-685)))))
+(-10 -7 (-15 -2113 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2985 ((-951) (-517) (-623 (-199)) (-199) (-517))) (-15 -2348 ((-951) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1257 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -4051 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -2772 ((-951) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -3780 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3763 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1419 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -2129 ((-951) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1577 ((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -2667 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -2416 ((-951) (-1058) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3027 ((-951) (-1058) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1968 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3503 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -2156 ((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1887 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
+((-2257 (((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1806 (((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3416 (((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-2748 (((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-3921 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-4001 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1249 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3382 (((-951) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-686) (-10 -7 (-15 -3382 ((-951) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1249 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -4001 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -3921 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -2748 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3416 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1806 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2257 ((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
+((-2257 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-686)))) (-1806 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-686)))) (-3416 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-686)))) (-2748 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-951)) (-5 *1 (-686)))) (-3921 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-951)) (-5 *1 (-686)))) (-4001 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-951)) (-5 *1 (-686)))) (-1249 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-951)) (-5 *1 (-686)))) (-3382 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-686)))))
+(-10 -7 (-15 -3382 ((-951) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1249 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -4001 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -3921 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -2748 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3416 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1806 ((-951) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2257 ((-951) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
+((-2061 (((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-4035 (((-951) (-1058) (-1058) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-1706 (((-951) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1197 (((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-3038 (((-951) (-1058) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1514 (((-951) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-3318 (((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-2393 (((-951) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-2087 (((-951) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-2534 (((-951) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
+(((-687) (-10 -7 (-15 -2534 ((-951) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -2087 ((-951) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -2393 ((-951) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3318 ((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1514 ((-951) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3038 ((-951) (-1058) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1197 ((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1706 ((-951) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -4035 ((-951) (-1058) (-1058) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2061 ((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
+((-2061 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-951)) (-5 *1 (-687)))) (-4035 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-951)) (-5 *1 (-687)))) (-1706 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-951)) (-5 *1 (-687)))) (-1197 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-687)))) (-3038 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-687)))) (-1514 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-687)))) (-3318 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-687)))) (-2393 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-687)))) (-2087 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-951)) (-5 *1 (-687)))) (-2534 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-951)) (-5 *1 (-687)))))
+(-10 -7 (-15 -2534 ((-951) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -2087 ((-951) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -2393 ((-951) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3318 ((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1514 ((-951) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3038 ((-951) (-1058) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1197 ((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1706 ((-951) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -4035 ((-951) (-1058) (-1058) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2061 ((-951) (-1058) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-2436 (((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3260 (((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-1515 (((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-2814 (((-951) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-1568 (((-951) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-1479 (((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3809 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2353 (((-951) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-1915 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2742 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3546 (((-951) (-517) (-517) (-623 (-199)) (-517)) 24)) (-4128 (((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3787 (((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3320 (((-951) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-2037 (((-951) (-517) (-517) (-623 (-199)) (-517)) 20)))
+(((-688) (-10 -7 (-15 -2037 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -3320 ((-951) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3787 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4128 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3546 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -2742 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1915 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2353 ((-951) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3809 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1479 ((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1568 ((-951) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -2814 ((-951) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1515 ((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -1515 ((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3260 ((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2436 ((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
+((-2436 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-951)) (-5 *1 (-688)))) (-3260 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-1515 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))) (-1515 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))) (-2814 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))) (-1568 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))) (-1479 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-688)))) (-3809 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-2353 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-1915 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-2742 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-3546 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-4128 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-3787 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))) (-3320 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-688)))) (-2037 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-688)))))
+(-10 -7 (-15 -2037 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -3320 ((-951) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3787 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4128 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3546 ((-951) (-517) (-517) (-623 (-199)) (-517))) (-15 -2742 ((-951) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1915 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2353 ((-951) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3809 ((-951) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1479 ((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1568 ((-951) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -2814 ((-951) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1515 ((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -1515 ((-951) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3260 ((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2436 ((-951) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3796 (((-951) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-2095 (((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-2132 (((-951) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3629 (((-951) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-2090 (((-951) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3670 (((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-2595 (((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-2071 (((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3464 (((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-2851 (((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3569 (((-951) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
+(((-689) (-10 -7 (-15 -3569 ((-951) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2851 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3464 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2071 ((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -2595 ((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3670 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2090 ((-951) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3629 ((-951) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2132 ((-951) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2095 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3796 ((-951) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
+((-3796 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-689)))) (-2095 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-689)))) (-2132 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-951)) (-5 *1 (-689)))) (-3629 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-689)))) (-2090 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-689)))) (-3670 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-689)))) (-2595 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-689)))) (-2071 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-689)))) (-3464 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-689)))) (-2851 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-689)))) (-3569 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-951)) (-5 *1 (-689)))))
+(-10 -7 (-15 -3569 ((-951) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2851 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3464 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2071 ((-951) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -2595 ((-951) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3670 ((-951) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2090 ((-951) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3629 ((-951) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2132 ((-951) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2095 ((-951) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3796 ((-951) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
+((-2597 (((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3013 (((-951) (-1058) (-517) (-517) (-623 (-199))) 27)) (-2267 (((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3460 (((-951) (-517) (-517) (-517) (-623 (-199))) 20)))
+(((-690) (-10 -7 (-15 -3460 ((-951) (-517) (-517) (-517) (-623 (-199)))) (-15 -2267 ((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3013 ((-951) (-1058) (-517) (-517) (-623 (-199)))) (-15 -2597 ((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
+((-2597 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-690)))) (-3013 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-690)))) (-2267 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-690)))) (-3460 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951)) (-5 *1 (-690)))))
+(-10 -7 (-15 -3460 ((-951) (-517) (-517) (-517) (-623 (-199)))) (-15 -2267 ((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3013 ((-951) (-1058) (-517) (-517) (-623 (-199)))) (-15 -2597 ((-951) (-1058) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
+((-3399 (((-951) (-199) (-199) (-199) (-199) (-517)) 62)) (-2554 (((-951) (-199) (-199) (-199) (-517)) 61)) (-2224 (((-951) (-199) (-199) (-199) (-517)) 60)) (-2689 (((-951) (-199) (-199) (-517)) 59)) (-1948 (((-951) (-199) (-517)) 58)) (-3585 (((-951) (-199) (-517)) 57)) (-1779 (((-951) (-199) (-517)) 56)) (-1441 (((-951) (-199) (-517)) 55)) (-2366 (((-951) (-199) (-517)) 54)) (-3123 (((-951) (-199) (-517)) 53)) (-3140 (((-951) (-199) (-153 (-199)) (-517) (-1058) (-517)) 52)) (-2050 (((-951) (-199) (-153 (-199)) (-517) (-1058) (-517)) 51)) (-3730 (((-951) (-199) (-517)) 50)) (-2016 (((-951) (-199) (-517)) 49)) (-3259 (((-951) (-199) (-517)) 48)) (-2195 (((-951) (-199) (-517)) 47)) (-3182 (((-951) (-517) (-199) (-153 (-199)) (-517) (-1058) (-517)) 46)) (-2764 (((-951) (-1058) (-153 (-199)) (-1058) (-517)) 45)) (-3685 (((-951) (-1058) (-153 (-199)) (-1058) (-517)) 44)) (-3437 (((-951) (-199) (-153 (-199)) (-517) (-1058) (-517)) 43)) (-4025 (((-951) (-199) (-153 (-199)) (-517) (-1058) (-517)) 42)) (-2501 (((-951) (-199) (-517)) 39)) (-2442 (((-951) (-199) (-517)) 38)) (-1978 (((-951) (-199) (-517)) 37)) (-2025 (((-951) (-199) (-517)) 36)) (-1483 (((-951) (-199) (-517)) 35)) (-1991 (((-951) (-199) (-517)) 34)) (-2973 (((-951) (-199) (-517)) 33)) (-2032 (((-951) (-199) (-517)) 32)) (-1369 (((-951) (-199) (-517)) 31)) (-3681 (((-951) (-199) (-517)) 30)) (-2213 (((-951) (-199) (-199) (-199) (-517)) 29)) (-3491 (((-951) (-199) (-517)) 28)) (-3372 (((-951) (-199) (-517)) 27)) (-1741 (((-951) (-199) (-517)) 26)) (-1834 (((-951) (-199) (-517)) 25)) (-4138 (((-951) (-199) (-517)) 24)) (-2068 (((-951) (-153 (-199)) (-517)) 20)))
+(((-691) (-10 -7 (-15 -2068 ((-951) (-153 (-199)) (-517))) (-15 -4138 ((-951) (-199) (-517))) (-15 -1834 ((-951) (-199) (-517))) (-15 -1741 ((-951) (-199) (-517))) (-15 -3372 ((-951) (-199) (-517))) (-15 -3491 ((-951) (-199) (-517))) (-15 -2213 ((-951) (-199) (-199) (-199) (-517))) (-15 -3681 ((-951) (-199) (-517))) (-15 -1369 ((-951) (-199) (-517))) (-15 -2032 ((-951) (-199) (-517))) (-15 -2973 ((-951) (-199) (-517))) (-15 -1991 ((-951) (-199) (-517))) (-15 -1483 ((-951) (-199) (-517))) (-15 -2025 ((-951) (-199) (-517))) (-15 -1978 ((-951) (-199) (-517))) (-15 -2442 ((-951) (-199) (-517))) (-15 -2501 ((-951) (-199) (-517))) (-15 -4025 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3437 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3685 ((-951) (-1058) (-153 (-199)) (-1058) (-517))) (-15 -2764 ((-951) (-1058) (-153 (-199)) (-1058) (-517))) (-15 -3182 ((-951) (-517) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -2195 ((-951) (-199) (-517))) (-15 -3259 ((-951) (-199) (-517))) (-15 -2016 ((-951) (-199) (-517))) (-15 -3730 ((-951) (-199) (-517))) (-15 -2050 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3140 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3123 ((-951) (-199) (-517))) (-15 -2366 ((-951) (-199) (-517))) (-15 -1441 ((-951) (-199) (-517))) (-15 -1779 ((-951) (-199) (-517))) (-15 -3585 ((-951) (-199) (-517))) (-15 -1948 ((-951) (-199) (-517))) (-15 -2689 ((-951) (-199) (-199) (-517))) (-15 -2224 ((-951) (-199) (-199) (-199) (-517))) (-15 -2554 ((-951) (-199) (-199) (-199) (-517))) (-15 -3399 ((-951) (-199) (-199) (-199) (-199) (-517))))) (T -691))
+((-3399 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2224 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2689 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1441 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3140 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058)) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2050 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058)) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3182 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1058)) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2764 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1058)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3685 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1058)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3437 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058)) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))) (-4025 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058)) (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2213 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(-10 -7 (-15 -2068 ((-951) (-153 (-199)) (-517))) (-15 -4138 ((-951) (-199) (-517))) (-15 -1834 ((-951) (-199) (-517))) (-15 -1741 ((-951) (-199) (-517))) (-15 -3372 ((-951) (-199) (-517))) (-15 -3491 ((-951) (-199) (-517))) (-15 -2213 ((-951) (-199) (-199) (-199) (-517))) (-15 -3681 ((-951) (-199) (-517))) (-15 -1369 ((-951) (-199) (-517))) (-15 -2032 ((-951) (-199) (-517))) (-15 -2973 ((-951) (-199) (-517))) (-15 -1991 ((-951) (-199) (-517))) (-15 -1483 ((-951) (-199) (-517))) (-15 -2025 ((-951) (-199) (-517))) (-15 -1978 ((-951) (-199) (-517))) (-15 -2442 ((-951) (-199) (-517))) (-15 -2501 ((-951) (-199) (-517))) (-15 -4025 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3437 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3685 ((-951) (-1058) (-153 (-199)) (-1058) (-517))) (-15 -2764 ((-951) (-1058) (-153 (-199)) (-1058) (-517))) (-15 -3182 ((-951) (-517) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -2195 ((-951) (-199) (-517))) (-15 -3259 ((-951) (-199) (-517))) (-15 -2016 ((-951) (-199) (-517))) (-15 -3730 ((-951) (-199) (-517))) (-15 -2050 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3140 ((-951) (-199) (-153 (-199)) (-517) (-1058) (-517))) (-15 -3123 ((-951) (-199) (-517))) (-15 -2366 ((-951) (-199) (-517))) (-15 -1441 ((-951) (-199) (-517))) (-15 -1779 ((-951) (-199) (-517))) (-15 -3585 ((-951) (-199) (-517))) (-15 -1948 ((-951) (-199) (-517))) (-15 -2689 ((-951) (-199) (-199) (-517))) (-15 -2224 ((-951) (-199) (-199) (-199) (-517))) (-15 -2554 ((-951) (-199) (-199) (-199) (-517))) (-15 -3399 ((-951) (-199) (-199) (-199) (-199) (-517))))
+((-2940 (((-1161)) 18)) (-2862 (((-1058)) 22)) (-1962 (((-1058)) 21)) (-3566 (((-1008) (-1075) (-623 (-517))) 35) (((-1008) (-1075) (-623 (-199))) 31)) (-3485 (((-107)) 16)) (-3571 (((-1058) (-1058)) 25)))
+(((-692) (-10 -7 (-15 -1962 ((-1058))) (-15 -2862 ((-1058))) (-15 -3571 ((-1058) (-1058))) (-15 -3566 ((-1008) (-1075) (-623 (-199)))) (-15 -3566 ((-1008) (-1075) (-623 (-517)))) (-15 -3485 ((-107))) (-15 -2940 ((-1161))))) (T -692))
+((-2940 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-692)))) (-3485 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-623 (-517))) (-5 *2 (-1008)) (-5 *1 (-692)))) (-3566 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-623 (-199))) (-5 *2 (-1008)) (-5 *1 (-692)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))) (-2862 (*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))) (-1962 (*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))))
+(-10 -7 (-15 -1962 ((-1058))) (-15 -2862 ((-1058))) (-15 -3571 ((-1058) (-1058))) (-15 -3566 ((-1008) (-1075) (-623 (-199)))) (-15 -3566 ((-1008) (-1075) (-623 (-517)))) (-15 -3485 ((-107))) (-15 -2940 ((-1161))))
+((-2609 (($ $ $) 10)) (-2516 (($ $ $ $) 9)) (-1263 (($ $ $) 12)))
+(((-693 |#1|) (-10 -8 (-15 -1263 (|#1| |#1| |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
+NIL
+(-10 -8 (-15 -1263 (|#1| |#1| |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1537 (($ $ (-844)) 28)) (-2848 (($ $ (-844)) 29)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2609 (($ $ $) 25)) (-2269 (((-787) $) 11)) (-2516 (($ $ $ $) 26)) (-1263 (($ $ $) 24)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 30)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-694) (-1187)) (T -694))
+((-2516 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-2609 (*1 *1 *1 *1) (-4 *1 (-694))) (-1263 (*1 *1 *1 *1) (-4 *1 (-694))))
+(-13 (-21) (-653) (-10 -8 (-15 -2516 ($ $ $ $)) (-15 -2609 ($ $ $)) (-15 -1263 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1004) . T))
+((-2269 (((-787) $) NIL) (($ (-517)) 10)))
+(((-695 |#1|) (-10 -8 (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-696)) (T -695))
+NIL
+(-10 -8 (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3237 (((-3 $ "failed") $) 40)) (-1537 (($ $ (-844)) 28) (($ $ (-703)) 35)) (-3163 (((-3 $ "failed") $) 38)) (-1865 (((-107) $) 34)) (-1888 (((-3 $ "failed") $) 39)) (-2848 (($ $ (-844)) 29) (($ $ (-703)) 36)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2609 (($ $ $) 25)) (-2269 (((-787) $) 11) (($ (-517)) 31)) (-2950 (((-703)) 32)) (-2516 (($ $ $ $) 26)) (-1263 (($ $ $) 24)) (-3608 (($) 18 T CONST)) (-3617 (($) 33 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 30) (($ $ (-703)) 37)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-696) (-1187)) (T -696))
+((-2950 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
+(-13 (-694) (-655) (-10 -8 (-15 -2950 ((-703))) (-15 -2269 ($ (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1004) . T))
+((-1260 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-3683 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-1900 (((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1075)) 16) (((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
+(((-697 |#1|) (-10 -7 (-15 -1900 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1900 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1075))) (-15 -3683 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -1260 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
+((-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1075)) (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1900 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -1900 ((-875 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1075))) (-15 -3683 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -1260 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
+((-3089 (((-157 (-517)) |#1|) 25)))
+(((-698 |#1|) (-10 -7 (-15 -3089 ((-157 (-517)) |#1|))) (-374)) (T -698))
+((-3089 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
+(-10 -7 (-15 -3089 ((-157 (-517)) |#1|)))
+((-2995 ((|#1| |#1| |#1|) 25)) (-1523 ((|#1| |#1| |#1|) 24)) (-3064 ((|#1| |#1| |#1|) 32)) (-3897 ((|#1| |#1| |#1|) 28)) (-1982 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1696 (((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|) 23)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -1696 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1982 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
+((-3064 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1982 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2995 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1523 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1696 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
+(-10 -7 (-15 -1696 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1982 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)))
+((-4146 (((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-3057 (((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-4032 (((-517)) 68)))
+(((-700 |#1| |#2|) (-10 -7 (-15 -4032 ((-517))) (-15 -3057 ((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4146 ((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1132 (-517)) (-379 (-517) |#1|)) (T -700))
+((-4146 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1132 *3)) (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3057 (*1 *2) (-12 (-4 *3 (-1132 (-517))) (-5 *2 (-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-4032 (*1 *2) (-12 (-4 *3 (-1132 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
+(-10 -7 (-15 -4032 ((-517))) (-15 -3057 ((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4146 ((-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
+((-2118 (((-107) $ $) NIL)) (-3388 (((-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 14) (($ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1583 (((-107) $ $) NIL)))
+(((-701) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-3 (|:| |nia| (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
+((-3432 (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))) 14) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075))) 13)) (-2064 (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))) 16) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075))) 15)))
+(((-702 |#1|) (-10 -7 (-15 -3432 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -3432 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|))))) (-509)) (T -702))
+((-2064 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5)))))
+(-10 -7 (-15 -3432 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -3432 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-875 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1836 (($ $ $) 8)) (-1250 (((-3 $ "failed") $ $) 11)) (-2140 (($ $ (-517)) 9)) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-1865 (((-107) $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2368 (($ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2269 (((-787) $) NIL)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-703) $) NIL) (($ (-844) $) NIL) (($ $ $) NIL)))
+(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2354 ($ $ $)) (-15 -2378 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2928 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -2327 ((-3 $ "failed") $ $)) (-15 -2140 ($ $ (-517))) (-15 -2200 ($ $)) (-6 (-4192 "*"))))) (T -703))
+((-2354 (*1 *1 *1 *1) (-5 *1 (-703))) (-2378 (*1 *1 *1 *1) (-5 *1 (-703))) (-2368 (*1 *1 *1 *1) (-5 *1 (-703))) (-2928 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2525 (-703)) (|:| -1451 (-703)))) (-5 *1 (-703)))) (-2327 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-2200 (*1 *1 *1) (-5 *1 (-703))))
+(-13 (-725) (-659) (-10 -8 (-15 -2354 ($ $ $)) (-15 -2378 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2928 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -2327 ((-3 $ "failed") $ $)) (-15 -2140 ($ $ (-517))) (-15 -2200 ($ $)) (-6 (-4192 "*"))))
+((-2064 (((-3 |#2| "failed") |#2| |#2| (-109) (-1075)) 35)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 |#2| "failed") |#2| |#2| (-109) (-1075)))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1096) (-881))) (T -704))
+((-2064 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1075)) (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1096) (-881))))))
+(-10 -7 (-15 -2064 ((-3 |#2| "failed") |#2| |#2| (-109) (-1075))))
+((-2269 (((-706) |#1|) 8)))
+(((-705 |#1|) (-10 -7 (-15 -2269 ((-706) |#1|))) (-1110)) (T -705))
+((-2269 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1110)))))
+(-10 -7 (-15 -2269 ((-706) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 7)) (-1583 (((-107) $ $) 9)))
+(((-706) (-1004)) (T -706))
+NIL
+(-1004)
+((-2754 ((|#2| |#4|) 35)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2754 (|#2| |#4|))) (-421) (-1132 |#1|) (-657 |#1| |#2|) (-1132 |#3|)) (T -707))
+((-2754 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1132 *5)))))
+(-10 -7 (-15 -2754 (|#2| |#4|)))
+((-3163 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2048 (((-1161) (-1058) (-1058) |#4| |#5|) 33)) (-2252 ((|#4| |#4| |#5|) 73)) (-2006 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|) 77)) (-3069 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|) 15)))
+(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3163 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2252 (|#4| |#4| |#5|)) (-15 -2006 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -2048 ((-1161) (-1058) (-1058) |#4| |#5|)) (-15 -3069 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -708))
+((-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2048 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1058)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1161)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-981 *6 *7 *8 *4)))) (-2006 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2252 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-976 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-981 *4 *5 *6 *2)))) (-3163 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3163 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2252 (|#4| |#4| |#5|)) (-15 -2006 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -2048 ((-1161) (-1058) (-1058) |#4| |#5|)) (-15 -3069 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)))
+((-3226 (((-3 (-1071 (-1071 |#1|)) "failed") |#4|) 44)) (-1937 (((-583 |#4|) |#4|) 15)) (-1739 ((|#4| |#4|) 11)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1937 ((-583 |#4|) |#4|)) (-15 -3226 ((-3 (-1071 (-1071 |#1|)) "failed") |#4|)) (-15 -1739 (|#4| |#4|))) (-319) (-299 |#1|) (-1132 |#2|) (-1132 |#3|) (-844)) (T -709))
+((-1739 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1132 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1132 *5)) (-14 *6 (-844)))) (-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1132 *5)) (-5 *2 (-1071 (-1071 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1132 *6)) (-14 *7 (-844)))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1132 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1132 *6)) (-14 *7 (-844)))))
+(-10 -7 (-15 -1937 ((-583 |#4|) |#4|)) (-15 -3226 ((-3 (-1071 (-1071 |#1|)) "failed") |#4|)) (-15 -1739 (|#4| |#4|)))
+((-2199 (((-2 (|:| |deter| (-583 (-1071 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1071 |#5|) (-583 |#1|) (-583 |#5|)) 53)) (-3463 (((-583 (-703)) |#1|) 12)))
+(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2199 ((-2 (|:| |deter| (-583 (-1071 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1071 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3463 ((-583 (-703)) |#1|))) (-1132 |#4|) (-725) (-779) (-278) (-872 |#4| |#2| |#3|)) (T -710))
+((-3463 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1132 *6)) (-4 *7 (-872 *6 *4 *5)))) (-2199 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1132 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-872 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1071 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1071 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(-10 -7 (-15 -2199 ((-2 (|:| |deter| (-583 (-1071 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1071 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3463 ((-583 (-703)) |#1|)))
+((-1190 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-1649 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-1900 (((-875 (-377 (-517))) (-623 (-377 (-517))) (-1075)) 16) (((-875 (-377 (-517))) (-623 (-377 (-517)))) 15)))
+(((-711 |#1|) (-10 -7 (-15 -1900 ((-875 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1900 ((-875 (-377 (-517))) (-623 (-377 (-517))) (-1075))) (-15 -1649 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1190 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
+((-1190 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1075)) (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -1900 ((-875 (-377 (-517))) (-623 (-377 (-517))))) (-15 -1900 ((-875 (-377 (-517))) (-623 (-377 (-517))) (-1075))) (-15 -1649 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -1190 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 34)) (-2096 (((-583 |#2|) $) NIL)) (-1440 (((-1071 $) $ |#2|) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-1540 (($ $) 28)) (-3605 (((-107) $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1784 (($ $ $) 93 (|has| |#1| (-509)))) (-2007 (((-583 $) $ $) 106 (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075))))) (((-3 $ "failed") (-875 (-517))) NIL (-3745 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075)))))) (((-3 $ "failed") (-875 |#1|)) NIL (-3745 (-12 (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-910 (-517))))))) (((-3 (-1027 |#1| |#2|) "failed") $) 18)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) ((|#2| $) NIL) (($ (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075))))) (($ (-875 (-517))) NIL (-3745 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075)))))) (($ (-875 |#1|)) NIL (-3745 (-12 (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-910 (-517))))))) (((-1027 |#1| |#2|) $) NIL)) (-2272 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 104 (|has| |#1| (-509)))) (-2371 (($ $) NIL) (($ $ |#2|) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3100 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2777 (((-107) $) NIL)) (-2165 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 70)) (-4063 (($ $) 119 (|has| |#1| (-421)))) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-4090 (($ $) NIL (|has| |#1| (-509)))) (-1631 (($ $) NIL (|has| |#1| (-509)))) (-1791 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3098 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2027 (($ $ |#1| (-489 |#2|) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3091 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-1820 (($ $ $ $ $) 90 (|has| |#1| (-509)))) (-3834 ((|#2| $) 19)) (-2086 (($ (-1071 |#1|) |#2|) NIL) (($ (-1071 $) |#2|) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3550 (($ $ $) 60)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#2|) NIL)) (-1728 (((-107) $) NIL)) (-2210 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-2979 (((-703) $) 20)) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1512 (((-3 |#2| "failed") $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-421)))) (-2553 (($ $) NIL (|has| |#1| (-421)))) (-3932 (((-583 $) $) NIL)) (-1957 (($ $) 37)) (-3959 (($ $) NIL (|has| |#1| (-421)))) (-1879 (((-583 $) $) 41)) (-1603 (($ $) 39)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2400 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3664 (-703))) $ $) 82)) (-2879 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $) 67) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $ |#2|) NIL)) (-4069 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $) NIL) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $ |#2|) NIL)) (-1363 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2428 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1895 (((-1058) $) NIL)) (-2337 (($ $ $) 108 (|has| |#1| (-509)))) (-2175 (((-583 $) $) 30)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| |#2|) (|:| -2356 (-703))) "failed") $) NIL)) (-3015 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-4014 (($ $ $) NIL)) (-2585 (($ $) 21)) (-1837 (((-107) $ $) NIL)) (-3974 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3422 (($ $ $) NIL)) (-2868 (($ $) 23)) (-4123 (((-1022) $) NIL)) (-3761 (((-2 (|:| -2368 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-509)))) (-2205 (((-2 (|:| -2368 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-509)))) (-2308 (((-107) $) 52)) (-2319 ((|#1| $) 55)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 ((|#1| |#1| $) 116 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2004 (((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-509)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-2404 (($ $ |#1|) 112 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2173 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-4032 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2059 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2769 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2778 (($ $) NIL)) (-2449 (($ $) 33)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-875 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075))))) (($ (-875 (-517))) NIL (-3745 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1075))) (-2477 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1075)))))) (($ (-875 |#1|)) NIL (|has| |#2| (-558 (-1075)))) (((-1058) $) NIL (-12 (|has| |#1| (-953 (-517))) (|has| |#2| (-558 (-1075))))) (((-875 |#1|) $) NIL (|has| |#2| (-558 (-1075))))) (-2035 ((|#1| $) 115 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-875 |#1|) $) NIL (|has| |#2| (-558 (-1075)))) (((-1027 |#1| |#2|) $) 15) (($ (-1027 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 13 T CONST)) (-2392 (((-3 (-107) "failed") $ $) NIL)) (-3617 (($) 35 T CONST)) (-3187 (($ $ $ $ (-703)) 88 (|has| |#1| (-509)))) (-2630 (($ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3340 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 54)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) 64)) (-1677 (($ $ $) 74)) (** (($ $ (-844)) NIL) (($ $ (-703)) 61)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-712 |#1| |#2|) (-13 (-976 |#1| (-489 |#2|) |#2|) (-557 (-1027 |#1| |#2|)) (-953 (-1027 |#1| |#2|))) (-962) (-779)) (T -712))
+NIL
+(-13 (-976 |#1| (-489 |#2|) |#2|) (-557 (-1027 |#1| |#2|)) (-953 (-1027 |#1| |#2|)))
+((-3308 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
+(((-713 |#1| |#2|) (-10 -7 (-15 -3308 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-962) (-962)) (T -713))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
+(-10 -7 (-15 -3308 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 12)) (-2099 (((-1156 |#1|) $ (-703)) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3673 (($ (-1071 |#1|)) NIL)) (-1440 (((-1071 $) $ (-990)) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-990))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3687 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-1784 (($ $ $) 35 (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3753 (($ $ (-703)) NIL)) (-2046 (($ $ (-703)) NIL)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-990) "failed") $) NIL) (((-3 (-1071 |#1|) "failed") $) 10)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-990) $) NIL) (((-1071 |#1|) $) NIL)) (-2272 (($ $ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1352 (($ $ $) NIL)) (-3443 (($ $ $) 71 (|has| |#1| (-509)))) (-2165 (((-2 (|:| -1580 |#1|) (|:| -2525 $) (|:| -1451 $)) $ $) 70 (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-703) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-990) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-990) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-1051)))) (-2086 (($ (-1071 |#1|) (-990)) NIL) (($ (-1071 $) (-990)) NIL)) (-2588 (($ $ (-703)) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-3550 (($ $ $) 20)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-990)) NIL) (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2210 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-703) (-703)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1998 (((-1071 |#1|) $) NIL)) (-1512 (((-3 (-990) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2400 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3664 (-703))) $ $) 26)) (-1638 (($ $ $) 29)) (-1439 (($ $ $) 32)) (-2879 (((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $) 31)) (-1895 (((-1058) $) NIL)) (-2337 (($ $ $) 41 (|has| |#1| (-509)))) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-990)) (|:| -2356 (-703))) "failed") $) NIL)) (-1518 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) NIL (|has| |#1| (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-3761 (((-2 (|:| -2368 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-2205 (((-2 (|:| -2368 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3043 (((-2 (|:| -2272 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-3812 (((-2 (|:| -2272 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-2308 (((-107) $) 13)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2714 (($ $ (-703) |#1| $) 19)) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2004 (((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-1381 (((-2 (|:| -2272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-990) |#1|) NIL) (($ $ (-583 (-990)) (-583 |#1|)) NIL) (($ $ (-990) $) NIL) (($ $ (-583 (-990)) (-583 $)) NIL)) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1596 (((-3 $ "failed") $ (-703)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-4032 (($ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2059 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2769 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-990) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-990)) NIL) (((-1071 |#1|) $) 7) (($ (-1071 |#1|)) 8) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 21 T CONST)) (-3617 (($) 24 T CONST)) (-3340 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) 28) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-714 |#1|) (-13 (-1132 |#1|) (-557 (-1071 |#1|)) (-953 (-1071 |#1|)) (-10 -8 (-15 -2714 ($ $ (-703) |#1| $)) (-15 -3550 ($ $ $)) (-15 -2400 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3664 (-703))) $ $)) (-15 -1638 ($ $ $)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -1439 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3687 ((-583 $) $ $)) (-15 -2337 ($ $ $)) (-15 -2004 ((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2205 ((-2 (|:| -2368 $) (|:| |coef1| $)) $ $)) (-15 -3761 ((-2 (|:| -2368 $) (|:| |coef2| $)) $ $)) (-15 -1381 ((-2 (|:| -2272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3812 ((-2 (|:| -2272 |#1|) (|:| |coef1| $)) $ $)) (-15 -3043 ((-2 (|:| -2272 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -714))
+((-2714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-962)))) (-3550 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962)))) (-2400 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -3664 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-962)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962)))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1580 *3) (|:| |gap| (-703)) (|:| -2525 (-714 *3)) (|:| -1451 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-962)))) (-1439 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962)))) (-3687 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-2337 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-962)))) (-2004 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2368 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-2205 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2368 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-3761 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2368 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-1381 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2272 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-3812 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2272 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))) (-3043 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2272 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))))
+(-13 (-1132 |#1|) (-557 (-1071 |#1|)) (-953 (-1071 |#1|)) (-10 -8 (-15 -2714 ($ $ (-703) |#1| $)) (-15 -3550 ($ $ $)) (-15 -2400 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3664 (-703))) $ $)) (-15 -1638 ($ $ $)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -1439 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -3687 ((-583 $) $ $)) (-15 -2337 ($ $ $)) (-15 -2004 ((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2205 ((-2 (|:| -2368 $) (|:| |coef1| $)) $ $)) (-15 -3761 ((-2 (|:| -2368 $) (|:| |coef2| $)) $ $)) (-15 -1381 ((-2 (|:| -2272 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3812 ((-2 (|:| -2272 |#1|) (|:| |coef1| $)) $ $)) (-15 -3043 ((-2 (|:| -2272 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2613 ((|#1| (-703) |#1|) 33 (|has| |#1| (-37 (-377 (-517)))))) (-2806 ((|#1| (-703) |#1|) 23)) (-3547 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))))
+(((-715 |#1|) (-10 -7 (-15 -2806 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3547 (|#1| (-703) |#1|)) (-15 -2613 (|#1| (-703) |#1|))) |%noBranch|)) (-156)) (T -715))
+((-2613 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3547 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2806 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -2806 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3547 (|#1| (-703) |#1|)) (-15 -2613 (|#1| (-703) |#1|))) |%noBranch|))
+((-2118 (((-107) $ $) 7)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) 85)) (-2283 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) 101) (((-107) $) 97)) (-2675 ((|#4| |#4| $) 92)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 126)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 79)) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2437 (((-3 $ "failed") $) 82)) (-1358 ((|#4| |#4| $) 89)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1808 ((|#4| |#4| $) 87)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) 105)) (-3554 (((-107) |#4| $) 136)) (-3203 (((-107) |#4| $) 133)) (-1867 (((-107) |#4| $) 137) (((-107) $) 134)) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) 104) (((-107) $) 103)) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 127)) (-1445 (((-3 |#4| "failed") $) 83)) (-2577 (((-583 $) |#4| $) 129)) (-3115 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3257 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3622 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3778 (((-583 |#4|) $) 107)) (-3015 (((-107) |#4| $) 99) (((-107) $) 95)) (-4014 ((|#4| |#4| $) 90)) (-1837 (((-107) $ $) 110)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) 100) (((-107) $) 96)) (-3422 ((|#4| |#4| $) 91)) (-4123 (((-1022) $) 10)) (-2427 (((-3 |#4| "failed") $) 84)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3760 (((-3 $ "failed") $ |#4|) 78)) (-2640 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-2769 (((-703) $) 106)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-3345 (($ $) 88)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1659 (((-703) $) 76 (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2094 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) 81)) (-3427 (((-107) |#4| $) 135)) (-3980 (((-107) |#3| $) 80)) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-716 |#1| |#2| |#3| |#4|) (-1187) (-421) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -716))
+NIL
+(-13 (-981 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-894 |#1| |#2| |#3| |#4|) . T) ((-981 |#1| |#2| |#3| |#4|) . T) ((-1004) . T) ((-1104 |#1| |#2| |#3| |#4|) . T) ((-1110) . T))
+((-3855 (((-3 (-349) "failed") (-286 |#1|) (-844)) 60 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 52 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-875 |#1|)) (-844)) 39 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-875 |#1|))) 35 (|has| |#1| (-509))) (((-3 (-349) "failed") (-875 |#1|) (-844)) 30 (|has| |#1| (-962))) (((-3 (-349) "failed") (-875 |#1|)) 24 (|has| |#1| (-962)))) (-3111 (((-349) (-286 |#1|) (-844)) 92 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 87 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-875 |#1|)) (-844)) 84 (|has| |#1| (-509))) (((-349) (-377 (-875 |#1|))) 81 (|has| |#1| (-509))) (((-349) (-875 |#1|) (-844)) 80 (|has| |#1| (-962))) (((-349) (-875 |#1|)) 77 (|has| |#1| (-962))) (((-349) |#1| (-844)) 73) (((-349) |#1|) 22)) (-2917 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)) 68 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 58 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-844)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 59 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844)) 44 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|)))) 43 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844)) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-875 |#1|))) 37 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)) 28 (|has| |#1| (-962))) (((-3 (-153 (-349)) "failed") (-875 |#1|)) 26 (|has| |#1| (-962))) (((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-875 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-1400 (((-153 (-349)) (-286 (-153 |#1|)) (-844)) 95 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-844)) 93 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 91 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844)) 86 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 (-153 |#1|)))) 85 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 |#1|)) (-844)) 83 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-875 |#1|))) 82 (|has| |#1| (-509))) (((-153 (-349)) (-875 |#1|) (-844)) 79 (|has| |#1| (-962))) (((-153 (-349)) (-875 |#1|)) 78 (|has| |#1| (-962))) (((-153 (-349)) (-875 (-153 |#1|)) (-844)) 75 (|has| |#1| (-156))) (((-153 (-349)) (-875 (-153 |#1|))) 74 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-844)) 16 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 12 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-844)) 27) (((-153 (-349)) |#1|) 25)))
+(((-717 |#1|) (-10 -7 (-15 -3111 ((-349) |#1|)) (-15 -3111 ((-349) |#1| (-844))) (-15 -1400 ((-153 (-349)) |#1|)) (-15 -1400 ((-153 (-349)) |#1| (-844))) (IF (|has| |#1| (-156)) (PROGN (-15 -1400 ((-153 (-349)) (-153 |#1|))) (-15 -1400 ((-153 (-349)) (-153 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-875 (-153 |#1|)))) (-15 -1400 ((-153 (-349)) (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -3111 ((-349) (-875 |#1|))) (-15 -3111 ((-349) (-875 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-875 |#1|))) (-15 -1400 ((-153 (-349)) (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3111 ((-349) (-377 (-875 |#1|)))) (-15 -3111 ((-349) (-377 (-875 |#1|)) (-844))) (-15 -1400 ((-153 (-349)) (-377 (-875 |#1|)))) (-15 -1400 ((-153 (-349)) (-377 (-875 |#1|)) (-844))) (-15 -1400 ((-153 (-349)) (-377 (-875 (-153 |#1|))))) (-15 -1400 ((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3111 ((-349) (-286 |#1|))) (-15 -3111 ((-349) (-286 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-286 |#1|))) (-15 -1400 ((-153 (-349)) (-286 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1400 ((-153 (-349)) (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-875 |#1|))) (-15 -3855 ((-3 (-349) "failed") (-875 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 |#1|))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-377 (-875 |#1|)))) (-15 -3855 ((-3 (-349) "failed") (-377 (-875 |#1|)) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3855 ((-3 (-349) "failed") (-286 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|)) (-558 (-349))) (T -717))
+((-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3855 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3855 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3855 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-844)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3111 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
+(-10 -7 (-15 -3111 ((-349) |#1|)) (-15 -3111 ((-349) |#1| (-844))) (-15 -1400 ((-153 (-349)) |#1|)) (-15 -1400 ((-153 (-349)) |#1| (-844))) (IF (|has| |#1| (-156)) (PROGN (-15 -1400 ((-153 (-349)) (-153 |#1|))) (-15 -1400 ((-153 (-349)) (-153 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-875 (-153 |#1|)))) (-15 -1400 ((-153 (-349)) (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -3111 ((-349) (-875 |#1|))) (-15 -3111 ((-349) (-875 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-875 |#1|))) (-15 -1400 ((-153 (-349)) (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3111 ((-349) (-377 (-875 |#1|)))) (-15 -3111 ((-349) (-377 (-875 |#1|)) (-844))) (-15 -1400 ((-153 (-349)) (-377 (-875 |#1|)))) (-15 -1400 ((-153 (-349)) (-377 (-875 |#1|)) (-844))) (-15 -1400 ((-153 (-349)) (-377 (-875 (-153 |#1|))))) (-15 -1400 ((-153 (-349)) (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3111 ((-349) (-286 |#1|))) (-15 -3111 ((-349) (-286 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-286 |#1|))) (-15 -1400 ((-153 (-349)) (-286 |#1|) (-844))) (-15 -1400 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1400 ((-153 (-349)) (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 (-153 |#1|)) (-844)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-875 |#1|))) (-15 -3855 ((-3 (-349) "failed") (-875 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 |#1|))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-875 |#1|) (-844)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-377 (-875 |#1|)))) (-15 -3855 ((-3 (-349) "failed") (-377 (-875 |#1|)) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 |#1|)) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-377 (-875 (-153 |#1|))) (-844))) (IF (|has| |#1| (-779)) (PROGN (-15 -3855 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3855 ((-3 (-349) "failed") (-286 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-844))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -2917 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-844)))) |%noBranch|)) |%noBranch|))
+((-1835 (((-844) (-1058)) 64)) (-4088 (((-3 (-349) "failed") (-1058)) 33)) (-3162 (((-349) (-1058)) 31)) (-3886 (((-844) (-1058)) 54)) (-2201 (((-1058) (-844)) 55)) (-3413 (((-1058) (-844)) 53)))
+(((-718) (-10 -7 (-15 -3413 ((-1058) (-844))) (-15 -3886 ((-844) (-1058))) (-15 -2201 ((-1058) (-844))) (-15 -1835 ((-844) (-1058))) (-15 -3162 ((-349) (-1058))) (-15 -4088 ((-3 (-349) "failed") (-1058))))) (T -718))
+((-4088 (*1 *2 *3) (|partial| -12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-718)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-844)) (-5 *1 (-718)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1058)) (-5 *1 (-718)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-844)) (-5 *1 (-718)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1058)) (-5 *1 (-718)))))
+(-10 -7 (-15 -3413 ((-1058) (-844))) (-15 -3886 ((-844) (-1058))) (-15 -2201 ((-1058) (-844))) (-15 -1835 ((-844) (-1058))) (-15 -3162 ((-349) (-1058))) (-15 -4088 ((-3 (-349) "failed") (-1058))))
+((-2118 (((-107) $ $) 7)) (-3582 (((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 15) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)) 13)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-719) (-1187)) (T -719))
+((-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951)))))) (-3582 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-951)) (-5 *3 (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951)))))) (-3582 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-951)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(-13 (-1004) (-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3582 ((-951) (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199))) (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)) (|:| |extra| (-951))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3582 ((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-951)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-1839 (((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349))) 44) (((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349))) 43)) (-2541 (((-1161) (-1156 (-349)) (-517) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349))) 50)) (-3677 (((-1161) (-1156 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349))) 41)) (-3552 (((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349))) 52) (((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349))) 51)))
+(((-720) (-10 -7 (-15 -3552 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -3552 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)))) (-15 -3677 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -1839 ((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -1839 ((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)))) (-15 -2541 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))))) (T -720))
+((-2541 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))) (-1839 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349)))) (-5 *7 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))) (-1839 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349)))) (-5 *7 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))) (-3677 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))) (-3552 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))) (-3552 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349))) (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161)) (-5 *1 (-720)))))
+(-10 -7 (-15 -3552 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -3552 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)))) (-15 -3677 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -1839 ((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))) (-15 -1839 ((-1161) (-1156 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))) (-349) (-1156 (-349)) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)) (-1156 (-349)))) (-15 -2541 ((-1161) (-1156 (-349)) (-517) (-349) (-349) (-517) (-1 (-1161) (-1156 (-349)) (-1156 (-349)) (-349)))))
+((-2766 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-3178 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-3597 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-1901 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-1344 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-4031 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3133 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-3749 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-2014 (((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
+(((-721) (-10 -7 (-15 -2014 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3749 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3133 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -4031 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1901 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3178 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1344 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3597 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2766 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
+((-2766 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3597 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1344 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3178 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1901 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-4031 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3133 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3749 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2014 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(-10 -7 (-15 -2014 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3749 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3133 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -4031 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1901 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3178 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1344 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3597 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2766 ((-2 (|:| -3119 (-349)) (|:| -3108 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
+((-2683 (((-1106 |#1|) |#1| (-199) (-517)) 45)))
+(((-722 |#1|) (-10 -7 (-15 -2683 ((-1106 |#1|) |#1| (-199) (-517)))) (-892)) (T -722))
+((-2683 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1106 *3)) (-5 *1 (-722 *3)) (-4 *3 (-892)))))
+(-10 -7 (-15 -2683 ((-1106 |#1|) |#1| (-199) (-517))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1250 (((-3 $ "failed") $ $) 26)) (-1681 (($) 23 T CONST)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 22 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1691 (($ $ $) 28) (($ $) 27)) (-1677 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21) (($ (-517) $) 29)))
+(((-723) (-1187)) (T -723))
NIL
(-13 (-727) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-2706 (($) 23 T CONST)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 22 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-724) (-1185)) (T -724))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1681 (($) 23 T CONST)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 22 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1677 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
+(((-724) (-1187)) (T -724))
NIL
(-13 (-726) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-3398 (($ $ $) 27)) (-2646 (((-3 $ "failed") $ $) 26)) (-2706 (($) 23 T CONST)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 22 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-725) (-1185)) (T -725))
-((-3398 (*1 *1 *1 *1) (-4 *1 (-725))))
-(-13 (-727) (-10 -8 (-15 -3398 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-2706 (($) 23 T CONST)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 22 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-726) (-1185)) (T -726))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1836 (($ $ $) 27)) (-1250 (((-3 $ "failed") $ $) 26)) (-1681 (($) 23 T CONST)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 22 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1677 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
+(((-725) (-1187)) (T -725))
+((-1836 (*1 *1 *1 *1) (-4 *1 (-725))))
+(-13 (-727) (-10 -8 (-15 -1836 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1681 (($) 23 T CONST)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 22 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1677 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
+(((-726) (-1187)) (T -726))
NIL
(-13 (-779) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-2646 (((-3 $ "failed") $ $) 26)) (-2706 (($) 23 T CONST)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 22 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
-(((-727) (-1185)) (T -727))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1250 (((-3 $ "failed") $ $) 26)) (-1681 (($) 23 T CONST)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 22 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1677 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-844) $) 21)))
+(((-727) (-1187)) (T -727))
NIL
(-13 (-724) (-123))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
-((-2778 (((-107) $) 41)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-3937 (((-3 (-377 (-517)) "failed") $) 78)) (-1541 (((-107) $) 72)) (-3320 (((-377 (-517)) $) 76)) (-2962 ((|#2| $) 26)) (-1939 (($ (-1 |#2| |#2|) $) 23)) (-1639 (($ $) 61)) (-3667 (((-493) $) 67)) (-1757 (($ $) 21)) (-2254 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-1217 (((-703)) 10)) (-1724 ((|#2| $) 71)) (-1534 (((-107) $ $) 29)) (-1558 (((-107) $ $) 69)) (-1663 (($ $) 31) (($ $ $) NIL)) (-1645 (($ $ $) 30)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-728 |#1| |#2|) (-10 -8 (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
-((-1217 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
-(-10 -8 (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-1719 (((-703)) 53 (|has| |#1| (-338)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 94 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3232 (((-517) $) 95 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 89)) (-3775 (((-3 $ "failed") $) 34)) (-1398 ((|#1| $) 79)) (-3937 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-1541 (((-107) $) 68 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-4100 (($) 56 (|has| |#1| (-338)))) (-3469 (((-107) $) 31)) (-4112 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2962 ((|#1| $) 71)) (-4055 (($ $ $) 62 (|has| |#1| (-779)))) (-3105 (($ $ $) 61 (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) 81)) (-4034 (((-843) $) 55 (|has| |#1| (-338)))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 65 (|has| |#1| (-333)))) (-3544 (($ (-843)) 54 (|has| |#1| (-338)))) (-1991 ((|#1| $) 76)) (-2847 ((|#1| $) 77)) (-2205 ((|#1| $) 78)) (-3204 ((|#1| $) 72)) (-2960 ((|#1| $) 73)) (-1213 ((|#1| $) 74)) (-2461 ((|#1| $) 75)) (-3214 (((-1021) $) 10)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 82 (|has| |#1| (-478 (-1074) |#1|)))) (-1437 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3667 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1757 (($ $) 80)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-952 (-377 (-517)))))) (-2486 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-1724 ((|#1| $) 69 (|has| |#1| (-970)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-729 |#1|) (-1185) (-156)) (T -729))
-((-1757 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1213 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-4112 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3937 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1639 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1757 ($ $)) (-15 -1398 (|t#1| $)) (-15 -2205 (|t#1| $)) (-15 -2847 (|t#1| $)) (-15 -1991 (|t#1| $)) (-15 -2461 (|t#1| $)) (-15 -1213 (|t#1| $)) (-15 -2960 (|t#1| $)) (-15 -3204 (|t#1| $)) (-15 -2962 (|t#1| $)) (-15 -4112 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-970)) (-15 -1724 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1639 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1939 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
-(-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-915 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3782 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3782 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3232 ((|#1| $) NIL) (((-915 |#1|) $) 33) (((-517) $) NIL (-3782 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-377 (-517)) $) NIL (-3782 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3775 (((-3 $ "failed") $) NIL)) (-1398 ((|#1| $) 16)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1541 (((-107) $) NIL (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-4100 (($) NIL (|has| |#1| (-338)))) (-3469 (((-107) $) NIL)) (-4112 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-915 |#1|) (-915 |#1|)) 29)) (-2962 ((|#1| $) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-1991 ((|#1| $) 22)) (-2847 ((|#1| $) 20)) (-2205 ((|#1| $) 18)) (-3204 ((|#1| $) 26)) (-2960 ((|#1| $) 25)) (-1213 ((|#1| $) 24)) (-2461 ((|#1| $) 23)) (-3214 (((-1021) $) NIL)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-1437 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1757 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-915 |#1|)) 30) (($ (-377 (-517))) NIL (-3782 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-1724 ((|#1| $) NIL (|has| |#1| (-970)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 8 T CONST)) (-2411 (($) 12 T CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-731 |#1|) (-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -4112 ($ (-915 |#1|) (-915 |#1|))))) (-156)) (T -731))
-((-4112 (*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -4112 ($ (-915 |#1|) (-915 |#1|)))))
-((-1587 (((-107) $ $) 7)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1457 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1534 (((-107) $ $) 6)))
-(((-732) (-1185)) (T -732))
-((-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) (-1457 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1457 ((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3638 (((-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#3| |#2| (-1074)) 19)))
-(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3638 ((-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#3| |#2| (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880)) (-593 |#2|)) (T -733))
-((-3638 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2080 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -3638 ((-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#3| |#2| (-1074))))
-((-1955 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074)) 17) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074)) 22) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074)) 24) (((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074)) 36) (((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074)) 34)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074))) (-15 -1955 ((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074))) (-15 -1955 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1955 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -734))
-((-1955 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1955 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) (-1955 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2080 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1095) (-880))))) (-1955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2080 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) (-1955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1074)) (-4 *6 (-13 (-29 *5) (-1095) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1154 *6))) (-5 *1 (-734 *5 *6)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1154 *7)))))
-(-10 -7 (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-623 |#2|) (-1154 |#2|) (-1074))) (-15 -1955 ((-3 (-583 (-1154 |#2|)) "failed") (-623 |#2|) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#2|)) (|:| -2080 (-583 (-1154 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1074))) (-15 -1955 ((-3 (-2 (|:| |particular| |#2|) (|:| -2080 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1074))) (-15 -1955 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1955 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
-((-2057 (($) 9)) (-2453 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-3666 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-3676 (($ (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-1258 (($ (-583 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-1683 (((-1159)) 12)))
-(((-735) (-10 -8 (-15 -2057 ($)) (-15 -1683 ((-1159))) (-15 -3666 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1258 ($ (-583 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3676 ($ (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2453 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
-((-2453 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-1683 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-735)))) (-2057 (*1 *1) (-5 *1 (-735))))
-(-10 -8 (-15 -2057 ($)) (-15 -1683 ((-1159))) (-15 -3666 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1258 ($ (-583 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3676 ($ (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2453 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-3594 ((|#2| |#2| (-1074)) 15)) (-1772 ((|#2| |#2| (-1074)) 47)) (-2994 (((-1 |#2| |#2|) (-1074)) 11)))
-(((-736 |#1| |#2|) (-10 -7 (-15 -3594 (|#2| |#2| (-1074))) (-15 -1772 (|#2| |#2| (-1074))) (-15 -2994 ((-1 |#2| |#2|) (-1074)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1095) (-880))) (T -736))
-((-2994 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1095) (-880))))) (-1772 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))) (-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))))
-(-10 -7 (-15 -3594 (|#2| |#2| (-1074))) (-15 -1772 (|#2| |#2| (-1074))) (-15 -2994 ((-1 |#2| |#2|) (-1074))))
-((-1955 (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-950) (-740) (-973)) 105) (((-950) (-740)) 106)) (-3226 (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973)) 71) (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740)) 73)))
-(((-737) (-10 -7 (-15 -1955 ((-950) (-740))) (-15 -1955 ((-950) (-740) (-973))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973))))) (T -737))
-((-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))))
-(-10 -7 (-15 -1955 ((-950) (-740))) (-15 -1955 ((-950) (-740) (-973))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1955 ((-950) (-1154 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-740) (-973))))
-((-2838 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2080 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2838 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2080 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
-((-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2838 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2080 (-583 |#4|))) (-590 |#4|) |#4|)))
-((-1617 (((-2 (|:| -2153 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 51)) (-1335 (((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4| |#2|) 59) (((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4|) 58) (((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3|) 21)) (-2689 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-4152 ((|#2| |#3| (-583 (-377 |#2|))) 93) (((-3 |#2| "failed") |#3| (-377 |#2|)) 90)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -4152 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3| |#2|)) (-15 -2689 (|#2| |#3| |#1|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4| |#2|)) (-15 -2689 (|#2| |#4| |#1|)) (-15 -1617 ((-2 (|:| -2153 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1131 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
-((-1617 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2153 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-2689 (*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-1335 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2984 *4) (|:| -2769 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2984 *5) (|:| -2769 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-2689 (*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-1335 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2984 *4) (|:| -2769 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2984 *5) (|:| -2769 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-4152 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
-(-10 -7 (-15 -4152 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -4152 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#3| |#2|)) (-15 -2689 (|#2| |#3| |#1|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4|)) (-15 -1335 ((-583 (-2 (|:| -2984 |#2|) (|:| -2769 |#2|))) |#4| |#2|)) (-15 -2689 (|#2| |#4| |#1|)) (-15 -1617 ((-2 (|:| -2153 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
-((-1587 (((-107) $ $) NIL)) (-3232 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1534 (((-107) $ $) NIL)))
-(((-740) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
-((-2008 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|)) 118)) (-3693 (((-583 (-2 (|:| |poly| |#2|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-1978 (((-583 (-2 (|:| |deg| (-703)) (|:| -2153 |#2|))) |#3|) 95)) (-3576 ((|#2| |#3|) 37)) (-2508 (((-583 (-2 (|:| -2497 |#1|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 82)) (-2310 ((|#3| |#3| (-377 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3576 (|#2| |#3|)) (-15 -1978 ((-583 (-2 (|:| |deg| (-703)) (|:| -2153 |#2|))) |#3|)) (-15 -2508 ((-583 (-2 (|:| -2497 |#1|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3693 ((-583 (-2 (|:| |poly| |#2|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2008 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2310 (|#3| |#3| |#2|)) (-15 -2310 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1131 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
-((-2310 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2310 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1131 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1070 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2153 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2153 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2497 *5) (|:| -2153 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2153 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-3576 (*1 *2 *3) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
-(-10 -7 (-15 -3576 (|#2| |#3|)) (-15 -1978 ((-583 (-2 (|:| |deg| (-703)) (|:| -2153 |#2|))) |#3|)) (-15 -2508 ((-583 (-2 (|:| -2497 |#1|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -3693 ((-583 (-2 (|:| |poly| |#2|) (|:| -2153 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2008 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1070 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2310 (|#3| |#3| |#2|)) (-15 -2310 (|#3| |#3| (-377 |#2|))))
-((-2601 (((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 117) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 116) (((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 111) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 109)) (-1713 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
-(((-742 |#1| |#2|) (-10 -7 (-15 -2601 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -2601 ((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2601 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -2601 ((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1713 (|#2| (-590 (-377 |#2|)))) (-15 -1713 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -742))
-((-1713 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -2080 (-583 (-377 *6))) (|:| -3534 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -2080 (-583 (-377 *6))) (|:| -3534 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
-(-10 -7 (-15 -2601 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -2601 ((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2601 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2080 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -2601 ((-2 (|:| -2080 (-583 (-377 |#2|))) (|:| -3534 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1713 (|#2| (-590 (-377 |#2|)))) (-15 -1713 (|#2| (-591 |#2| (-377 |#2|)))))
-((-4007 (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|) 47)))
-(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4007 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1131 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
-((-4007 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1131 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -3534 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -4007 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) |#5| |#4|)))
-((-2008 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-2017 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 138 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-3693 (((-583 (-2 (|:| |poly| |#2|) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 80)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2008 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3693 ((-583 (-2 (|:| |poly| |#2|) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1131 |#1|)) (T -744))
-((-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2153 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2153 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-2017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
-(-10 -7 (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2008 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3693 ((-583 (-2 (|:| |poly| |#2|) (|:| -2153 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -2017 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -2017 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|))
-((-3562 (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|)) 86) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2153 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|)) 14)) (-1778 (((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2080 (-583 |#1|))) |#2| |#1|)) 92)) (-1955 (((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -2080 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed") |#2| |#1|)) 45)))
-(((-745 |#1| |#2|) (-10 -7 (-15 -3562 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2153 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|))) (-15 -3562 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -2080 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -1778 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2080 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
-((-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2080 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *6) "failed")) (|:| -2080 (-583 (-1154 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1154 *6)))) (-1955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2080 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1154 *6)) (|:| -2080 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *6)))) (-3562 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -3534 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *5)))) (-3562 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5)) (|:| -2153 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *6 (-593 *5)))))
-(-10 -7 (-15 -3562 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)) (|:| -2153 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1154 |#1|))) (-15 -3562 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#1|))) (-623 |#2|) (-1154 |#1|))) (-15 -1955 ((-3 (-2 (|:| |particular| (-1154 |#1|)) (|:| -2080 (-623 |#1|))) "failed") (-623 |#1|) (-1154 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2080 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -1778 ((-2 (|:| |particular| (-3 (-1154 |#1|) "failed")) (|:| -2080 (-583 (-1154 |#1|)))) (-623 |#2|) (-1154 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2080 (-583 |#1|))) |#2| |#1|))))
-((-3060 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-3130 (((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-3238 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -3060 ((-623 |#1|) (-583 |#1|))) (-15 -3060 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3130 ((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3238 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
-((-3238 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-3130 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1154 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
-(-10 -7 (-15 -3060 ((-623 |#1|) (-583 |#1|))) (-15 -3060 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3130 ((-3 (-1154 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3238 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2778 (((-107) $) NIL (|has| |#2| (-123)))) (-1441 (($ (-843)) NIL (|has| |#2| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) NIL (|has| |#2| (-725)))) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#2| (-338)))) (-3345 (((-517) $) NIL (|has| |#2| (-777)))) (-2412 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3232 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-2749 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3775 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-4100 (($) NIL (|has| |#2| (-338)))) (-3705 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ (-517)) NIL)) (-3162 (((-107) $) NIL (|has| |#2| (-777)))) (-3240 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#2| (-961)))) (-1199 (((-107) $) NIL (|has| |#2| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2332 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3696 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#2| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#2| (-1003)))) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#2| (-338)))) (-3214 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1750 ((|#2| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-1369 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-1421 (($ (-1154 |#2|)) NIL)) (-2232 (((-125)) NIL (|has| |#2| (-333)))) (-1248 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3223 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-1217 (((-703)) NIL (|has| |#2| (-961)))) (-2258 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#2| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2398 (($) NIL (|has| |#2| (-123)) CONST)) (-2411 (($) NIL (|has| |#2| (-961)) CONST)) (-2738 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1074))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1534 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1585 (((-107) $ $) NIL (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1558 (((-107) $ $) 11 (-3782 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1645 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1154 |#2|) (-1154 |#2|))) (T -747))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1004) . T))
+((-2033 (((-107) $) 41)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-2253 (((-3 (-377 (-517)) "failed") $) 78)) (-1654 (((-107) $) 72)) (-3652 (((-377 (-517)) $) 76)) (-2754 ((|#2| $) 26)) (-3308 (($ (-1 |#2| |#2|) $) 23)) (-2298 (($ $) 61)) (-3357 (((-493) $) 67)) (-3026 (($ $) 21)) (-2269 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-2950 (((-703)) 10)) (-2339 ((|#2| $) 71)) (-1583 (((-107) $ $) 29)) (-1607 (((-107) $ $) 69)) (-1691 (($ $) 31) (($ $ $) NIL)) (-1677 (($ $ $) 30)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-728 |#1| |#2|) (-10 -8 (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
+((-2950 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
+(-10 -8 (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-2397 (((-703)) 53 (|has| |#1| (-338)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 94 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3388 (((-517) $) 95 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 89)) (-3163 (((-3 $ "failed") $) 34)) (-3891 ((|#1| $) 79)) (-2253 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-1654 (((-107) $) 68 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-2200 (($) 56 (|has| |#1| (-338)))) (-1865 (((-107) $) 31)) (-2092 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2754 ((|#1| $) 71)) (-3456 (($ $ $) 62 (|has| |#1| (-779)))) (-4082 (($ $ $) 61 (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) 81)) (-2031 (((-844) $) 55 (|has| |#1| (-338)))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 65 (|has| |#1| (-333)))) (-2810 (($ (-844)) 54 (|has| |#1| (-338)))) (-3956 ((|#1| $) 76)) (-3426 ((|#1| $) 77)) (-1634 ((|#1| $) 78)) (-2268 ((|#1| $) 72)) (-3103 ((|#1| $) 73)) (-2430 ((|#1| $) 74)) (-1205 ((|#1| $) 75)) (-4123 (((-1022) $) 10)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) 82 (|has| |#1| (-478 (-1075) |#1|)))) (-2607 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3357 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-3026 (($ $) 80)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-953 (-377 (-517)))))) (-2650 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-2339 ((|#1| $) 69 (|has| |#1| (-971)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-729 |#1|) (-1187) (-156)) (T -729))
+((-3026 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1205 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2092 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-971)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2253 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -3026 ($ $)) (-15 -3891 (|t#1| $)) (-15 -1634 (|t#1| $)) (-15 -3426 (|t#1| $)) (-15 -3956 (|t#1| $)) (-15 -1205 (|t#1| $)) (-15 -2430 (|t#1| $)) (-15 -3103 (|t#1| $)) (-15 -2268 (|t#1| $)) (-15 -2754 (|t#1| $)) (-15 -2092 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-971)) (-15 -2339 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -2298 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3308 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
+(-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-916 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3745 (|has| (-916 |#1|) (-953 (-517))) (|has| |#1| (-953 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3745 (|has| (-916 |#1|) (-953 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-3388 ((|#1| $) NIL) (((-916 |#1|) $) 33) (((-517) $) NIL (-3745 (|has| (-916 |#1|) (-953 (-517))) (|has| |#1| (-953 (-517))))) (((-377 (-517)) $) NIL (-3745 (|has| (-916 |#1|) (-953 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-3163 (((-3 $ "failed") $) NIL)) (-3891 ((|#1| $) 16)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1654 (((-107) $) NIL (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2200 (($) NIL (|has| |#1| (-338)))) (-1865 (((-107) $) NIL)) (-2092 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-916 |#1|) (-916 |#1|)) 29)) (-2754 ((|#1| $) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-3956 ((|#1| $) 22)) (-3426 ((|#1| $) 20)) (-1634 ((|#1| $) 18)) (-2268 ((|#1| $) 26)) (-3103 ((|#1| $) 25)) (-2430 ((|#1| $) 24)) (-1205 ((|#1| $) 23)) (-4123 (((-1022) $) NIL)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-478 (-1075) |#1|)))) (-2607 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-3026 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-916 |#1|)) 30) (($ (-377 (-517))) NIL (-3745 (|has| (-916 |#1|) (-953 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-2339 ((|#1| $) NIL (|has| |#1| (-971)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 8 T CONST)) (-3617 (($) 12 T CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-731 |#1|) (-13 (-729 |#1|) (-381 (-916 |#1|)) (-10 -8 (-15 -2092 ($ (-916 |#1|) (-916 |#1|))))) (-156)) (T -731))
+((-2092 (*1 *1 *2 *2) (-12 (-5 *2 (-916 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(-13 (-729 |#1|) (-381 (-916 |#1|)) (-10 -8 (-15 -2092 ($ (-916 |#1|) (-916 |#1|)))))
+((-2118 (((-107) $ $) 7)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2611 (((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1583 (((-107) $ $) 6)))
+(((-732) (-1187)) (T -732))
+((-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)))))) (-2611 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-951)))))
+(-13 (-1004) (-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2611 ((-951) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-3846 (((-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#3| |#2| (-1075)) 19)))
+(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#3| |#2| (-1075)))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1096) (-881)) (-593 |#2|)) (T -733))
+((-3846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1075)) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1096) (-881))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2062 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -3846 ((-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#3| |#2| (-1075))))
+((-2064 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1075)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1075)) 17) (((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1075)) 22) (((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1075)) 24) (((-3 (-583 (-1156 |#2|)) "failed") (-623 |#2|) (-1075)) 36) (((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-623 |#2|) (-1156 |#2|) (-1075)) 34)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-623 |#2|) (-1156 |#2|) (-1075))) (-15 -2064 ((-3 (-583 (-1156 |#2|)) "failed") (-623 |#2|) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1075))) (-15 -2064 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -2064 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1096) (-881))) (T -734))
+((-2064 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-2064 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1096) (-881))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))))) (-2064 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1075)) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2062 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1096) (-881))))) (-2064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2062 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7))))) (-5 *1 (-734 *6 *7)))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7))))) (-5 *1 (-734 *6 *7)))) (-2064 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1075)) (-4 *6 (-13 (-29 *5) (-1096) (-881))) (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1156 *6))) (-5 *1 (-734 *5 *6)))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881))) (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1156 *7)))))
+(-10 -7 (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-623 |#2|) (-1156 |#2|) (-1075))) (-15 -2064 ((-3 (-583 (-1156 |#2|)) "failed") (-623 |#2|) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#2|)) (|:| -2062 (-583 (-1156 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1075))) (-15 -2064 ((-3 (-2 (|:| |particular| |#2|) (|:| -2062 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1075))) (-15 -2064 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -2064 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-2231 (($) 9)) (-2724 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1881 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-2704 (($ (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-1371 (($ (-583 (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-4095 (((-1161)) 12)))
+(((-735) (-10 -8 (-15 -2231 ($)) (-15 -4095 ((-1161))) (-15 -1881 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1371 ($ (-583 (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -2704 ($ (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2724 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
+((-2724 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-1371 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-4095 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-735)))) (-2231 (*1 *1) (-5 *1 (-735))))
+(-10 -8 (-15 -2231 ($)) (-15 -4095 ((-1161))) (-15 -1881 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1371 ($ (-583 (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -2704 ($ (-2 (|:| -2581 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1860 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2724 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-1418 ((|#2| |#2| (-1075)) 15)) (-2204 ((|#2| |#2| (-1075)) 47)) (-3175 (((-1 |#2| |#2|) (-1075)) 11)))
+(((-736 |#1| |#2|) (-10 -7 (-15 -1418 (|#2| |#2| (-1075))) (-15 -2204 (|#2| |#2| (-1075))) (-15 -3175 ((-1 |#2| |#2|) (-1075)))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1096) (-881))) (T -736))
+((-3175 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1096) (-881))))) (-2204 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1096) (-881))))) (-1418 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1096) (-881))))))
+(-10 -7 (-15 -1418 (|#2| |#2| (-1075))) (-15 -2204 (|#2| |#2| (-1075))) (-15 -3175 ((-1 |#2| |#2|) (-1075))))
+((-2064 (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-951) (-740) (-974)) 105) (((-951) (-740)) 106)) (-3615 (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740) (-974)) 71) (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740)) 73)))
+(((-737) (-10 -7 (-15 -2064 ((-951) (-740))) (-15 -2064 ((-951) (-740) (-974))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740) (-974))))) (T -737))
+((-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-974)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-737)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-737)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-951)) (-5 *1 (-737)))))
+(-10 -7 (-15 -2064 ((-951) (-740))) (-15 -2064 ((-951) (-740) (-974))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -2064 ((-951) (-1156 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-740) (-974))))
+((-3557 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2062 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3557 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2062 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
+((-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3557 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2062 (-583 |#4|))) (-590 |#4|) |#4|)))
+((-1383 (((-2 (|:| -3779 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 52)) (-2069 (((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4| |#2|) 60) (((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4|) 59) (((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3|) 21)) (-3558 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3986 ((|#2| |#3| (-583 (-377 |#2|))) 94) (((-3 |#2| "failed") |#3| (-377 |#2|)) 91)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3986 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -3986 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3| |#2|)) (-15 -3558 (|#2| |#3| |#1|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4| |#2|)) (-15 -3558 (|#2| |#4| |#1|)) (-15 -1383 ((-2 (|:| -3779 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-953 (-377 (-517)))) (-1132 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
+((-1383 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-2 (|:| -3779 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-3558 (*1 *2 *3 *4) (-12 (-4 *2 (-1132 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-2069 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *4 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -3567 *4) (|:| -2966 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-2 (|:| -3567 *5) (|:| -2966 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-3558 (*1 *2 *3 *4) (-12 (-4 *2 (-1132 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-2069 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *4 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -3567 *4) (|:| -2966 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-2 (|:| -3567 *5) (|:| -2966 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-3986 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1132 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-3986 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1132 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
+(-10 -7 (-15 -3986 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -3986 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#3| |#2|)) (-15 -3558 (|#2| |#3| |#1|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4|)) (-15 -2069 ((-583 (-2 (|:| -3567 |#2|) (|:| -2966 |#2|))) |#4| |#2|)) (-15 -3558 (|#2| |#4| |#1|)) (-15 -1383 ((-2 (|:| -3779 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
+((-2118 (((-107) $ $) NIL)) (-3388 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1583 (((-107) $ $) NIL)))
+(((-740) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
+((-1331 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1071 |#2|)) (-1 (-388 |#2|) |#2|)) 117)) (-1554 (((-583 (-2 (|:| |poly| |#2|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-3653 (((-583 (-2 (|:| |deg| (-703)) (|:| -3779 |#2|))) |#3|) 94)) (-3400 ((|#2| |#3|) 37)) (-2051 (((-583 (-2 (|:| -1384 |#1|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 81)) (-3657 ((|#3| |#3| (-377 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3400 (|#2| |#3|)) (-15 -3653 ((-583 (-2 (|:| |deg| (-703)) (|:| -3779 |#2|))) |#3|)) (-15 -2051 ((-583 (-2 (|:| -1384 |#1|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1554 ((-583 (-2 (|:| |poly| |#2|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1331 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1071 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3657 (|#3| |#3| |#2|)) (-15 -3657 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-953 (-377 (-517)))) (-1132 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
+((-3657 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-3657 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-1132 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-1331 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1071 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1132 *6)) (-4 *6 (-13 (-333) (-134) (-953 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3779 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3779 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -1384 *5) (|:| -3779 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3779 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-3400 (*1 *2 *3) (-12 (-4 *2 (-1132 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(-10 -7 (-15 -3400 (|#2| |#3|)) (-15 -3653 ((-583 (-2 (|:| |deg| (-703)) (|:| -3779 |#2|))) |#3|)) (-15 -2051 ((-583 (-2 (|:| -1384 |#1|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1554 ((-583 (-2 (|:| |poly| |#2|) (|:| -3779 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1331 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1071 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -3657 (|#3| |#3| |#2|)) (-15 -3657 (|#3| |#3| (-377 |#2|))))
+((-2651 (((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 118) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 117) (((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 112) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 110)) (-1949 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
+(((-742 |#1| |#2|) (-10 -7 (-15 -2651 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -2651 ((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2651 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -2651 ((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1949 (|#2| (-590 (-377 |#2|)))) (-15 -1949 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))) (-1132 |#1|)) (T -742))
+((-1949 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1132 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1132 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-2 (|:| -2062 (-583 (-377 *6))) (|:| -2831 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-2 (|:| -2062 (-583 (-377 *6))) (|:| -2831 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
+(-10 -7 (-15 -2651 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -2651 ((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2651 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -2062 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -2651 ((-2 (|:| -2062 (-583 (-377 |#2|))) (|:| -2831 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1949 (|#2| (-590 (-377 |#2|)))) (-15 -1949 (|#2| (-591 |#2| (-377 |#2|)))))
+((-2111 (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) |#5| |#4|) 47)))
+(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2111 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1132 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
+((-2111 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1132 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2831 (-623 *6)) (|:| |vec| (-1156 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -2111 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) |#5| |#4|)))
+((-1331 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-4087 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 135 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-1554 (((-583 (-2 (|:| |poly| |#2|) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 81)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1331 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1554 ((-583 (-2 (|:| |poly| |#2|) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))) (-1132 |#1|)) (T -744))
+((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1132 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1132 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3779 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3779 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *7 (-1132 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *7 (-1132 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))) (-4 *6 (-1132 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(-10 -7 (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1331 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1554 ((-583 (-2 (|:| |poly| |#2|) (|:| -3779 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -4087 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -4087 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|))
+((-2056 (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) (-623 |#2|) (-1156 |#1|)) 85) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)) (|:| -3779 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1156 |#1|)) 14)) (-3432 (((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#2|) (-1156 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2062 (-583 |#1|))) |#2| |#1|)) 91)) (-2064 (((-3 (-2 (|:| |particular| (-1156 |#1|)) (|:| -2062 (-623 |#1|))) "failed") (-623 |#1|) (-1156 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed") |#2| |#1|)) 44)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -2056 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)) (|:| -3779 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1156 |#1|))) (-15 -2056 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) (-623 |#2|) (-1156 |#1|))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#1|)) (|:| -2062 (-623 |#1|))) "failed") (-623 |#1|) (-1156 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3432 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#2|) (-1156 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2062 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
+((-3432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2062 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1156 *6) "failed")) (|:| -2062 (-583 (-1156 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1156 *6)))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2062 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1156 *6)) (|:| -2062 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1156 *6)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2831 (-623 *6)) (|:| |vec| (-1156 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1156 *5)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1156 *5)) (|:| -3779 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)) (-4 *6 (-593 *5)))))
+(-10 -7 (-15 -2056 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)) (|:| -3779 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1156 |#1|))) (-15 -2056 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#1|))) (-623 |#2|) (-1156 |#1|))) (-15 -2064 ((-3 (-2 (|:| |particular| (-1156 |#1|)) (|:| -2062 (-623 |#1|))) "failed") (-623 |#1|) (-1156 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2062 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3432 ((-2 (|:| |particular| (-3 (-1156 |#1|) "failed")) (|:| -2062 (-583 (-1156 |#1|)))) (-623 |#2|) (-1156 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2062 (-583 |#1|))) |#2| |#1|))))
+((-3447 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-4160 (((-3 (-1156 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-2101 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -3447 ((-623 |#1|) (-583 |#1|))) (-15 -3447 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -4160 ((-3 (-1156 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2101 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
+((-2101 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-4160 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1156 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
+(-10 -7 (-15 -3447 ((-623 |#1|) (-583 |#1|))) (-15 -3447 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -4160 ((-3 (-1156 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2101 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#2| (-1004)))) (-2033 (((-107) $) NIL (|has| |#2| (-123)))) (-2531 (($ (-844)) NIL (|has| |#2| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) NIL (|has| |#2| (-725)))) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#2| (-338)))) (-1323 (((-517) $) NIL (|has| |#2| (-777)))) (-2443 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1004)))) (-3388 (((-517) $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) ((|#2| $) NIL (|has| |#2| (-1004)))) (-2306 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-962)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL (|has| |#2| (-962))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-962)))) (-3163 (((-3 $ "failed") $) NIL (|has| |#2| (-962)))) (-2200 (($) NIL (|has| |#2| (-338)))) (-2757 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ (-517)) NIL)) (-3523 (((-107) $) NIL (|has| |#2| (-777)))) (-1535 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#2| (-962)))) (-1469 (((-107) $) NIL (|has| |#2| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2898 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2744 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#2| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#2| (-1004)))) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#2| (-338)))) (-4123 (((-1022) $) NIL (|has| |#2| (-1004)))) (-2427 ((|#2| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3989 ((|#2| $ $) NIL (|has| |#2| (-962)))) (-3907 (($ (-1156 |#2|)) NIL)) (-1880 (((-125)) NIL (|has| |#2| (-333)))) (-2059 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-4135 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#2|) $) NIL) (($ (-517)) NIL (-3745 (-12 (|has| |#2| (-953 (-517))) (|has| |#2| (-1004))) (|has| |#2| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-953 (-377 (-517)))) (|has| |#2| (-1004)))) (($ |#2|) NIL (|has| |#2| (-1004))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-2950 (((-703)) NIL (|has| |#2| (-962)))) (-3160 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#2| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (-3608 (($) NIL (|has| |#2| (-123)) CONST)) (-3617 (($) NIL (|has| |#2| (-962)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#2| (-823 (-1075))) (|has| |#2| (-962)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-962))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (|has| |#2| (-1004)))) (-1629 (((-107) $ $) NIL (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1607 (((-107) $ $) 11 (-3745 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $ $) NIL (|has| |#2| (-962))) (($ $) NIL (|has| |#2| (-962)))) (-1677 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-962))) (($ $ (-844)) NIL (|has| |#2| (-962)))) (* (($ $ $) NIL (|has| |#2| (-962))) (($ (-517) $) NIL (|has| |#2| (-962))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-844) $) NIL (|has| |#2| (-25)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1156 |#2|) (-1156 |#2|))) (T -747))
NIL
(-212 |#1| |#2|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1195 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1074)) NIL)) (-2388 (((-703) $) NIL) (((-703) $ (-1074)) NIL)) (-1357 (((-583 (-750 (-1074))) $) NIL)) (-2374 (((-1070 $) $ (-750 (-1074))) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1074)))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1445 (($ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-750 (-1074)) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL) (((-3 (-1026 |#1| (-1074)) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-750 (-1074)) $) NIL) (((-1074) $) NIL) (((-1026 |#1| (-1074)) $) NIL)) (-3167 (($ $ $ (-750 (-1074))) NIL (|has| |#1| (-156)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1074))) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-489 (-750 (-1074))) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-750 (-1074)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-750 (-1074)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ (-1074)) NIL) (((-703) $) NIL)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#1|) (-750 (-1074))) NIL) (($ (-1070 $) (-750 (-1074))) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-489 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-750 (-1074))) NIL)) (-3876 (((-489 (-750 (-1074))) $) NIL) (((-703) $ (-750 (-1074))) NIL) (((-583 (-703)) $ (-583 (-750 (-1074)))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 (-750 (-1074))) (-489 (-750 (-1074)))) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (((-1 $ (-703)) (-1074)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-3382 (((-3 (-750 (-1074)) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-2141 (((-750 (-1074)) $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-1836 (((-107) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-750 (-1074))) (|:| -3010 (-703))) "failed") $) NIL)) (-2645 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1074)) |#1|) NIL) (($ $ (-583 (-750 (-1074))) (-583 |#1|)) NIL) (($ $ (-750 (-1074)) $) NIL) (($ $ (-583 (-750 (-1074))) (-583 $)) NIL) (($ $ (-1074) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3383 (($ $ (-750 (-1074))) NIL (|has| |#1| (-156)))) (-1248 (($ $ (-750 (-1074))) NIL) (($ $ (-583 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1849 (((-583 (-1074)) $) NIL)) (-3625 (((-489 (-750 (-1074))) $) NIL) (((-703) $ (-750 (-1074))) NIL) (((-583 (-703)) $ (-583 (-750 (-1074)))) NIL) (((-703) $ (-1074)) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1074)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1074))) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1074))) NIL) (($ (-1074)) NIL) (($ (-1026 |#1| (-1074))) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-489 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-750 (-1074))) NIL) (($ $ (-583 (-750 (-1074)))) NIL) (($ $ (-750 (-1074)) (-703)) NIL) (($ $ (-583 (-750 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-748 |#1|) (-13 (-226 |#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) (-952 (-1026 |#1| (-1074)))) (-961)) (T -748))
-NIL
-(-13 (-226 |#1| (-1074) (-750 (-1074)) (-489 (-750 (-1074)))) (-952 (-1026 |#1| (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-2239 (($ $) NIL (|has| |#2| (-333)))) (-3531 (((-107) $) NIL (|has| |#2| (-333)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#2| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2448 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#2| (-333)))) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#2| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3083 (((-107) $) NIL (|has| |#2| (-333)))) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1360 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 20 (|has| |#2| (-333)))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#2| (-333)))) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3196 (((-703) $) NIL (|has| |#2| (-333)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-333)))) (-1248 (($ $ (-703)) NIL) (($ $) 13)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) 15 (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
-(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2254 ($ |#2|)) (-15 -2254 (|#2| $)))) (-1003) (-822 |#1|) |#1|) (T -749))
-((-2254 (*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) (-2254 (*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))))
-(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2254 ($ |#2|)) (-15 -2254 (|#2| $))))
-((-1587 (((-107) $ $) NIL)) (-2388 (((-703) $) NIL)) (-3518 ((|#1| $) 10)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3730 (((-703) $) 11)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1393 (($ |#1| (-703)) 9)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1248 (($ $) NIL) (($ $ (-703)) NIL)) (-2254 (((-787) $) NIL) (($ |#1|) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3502 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1075)) NIL)) (-1463 (((-703) $) NIL) (((-703) $ (-1075)) NIL)) (-2096 (((-583 (-750 (-1075))) $) NIL)) (-1440 (((-1071 $) $ (-750 (-1075))) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1075)))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1527 (($ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-750 (-1075)) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL) (((-3 (-1027 |#1| (-1075)) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-750 (-1075)) $) NIL) (((-1075) $) NIL) (((-1027 |#1| (-1075)) $) NIL)) (-2272 (($ $ $ (-750 (-1075))) NIL (|has| |#1| (-156)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1075))) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-489 (-750 (-1075))) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-750 (-1075)) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-750 (-1075)) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ (-1075)) NIL) (((-703) $) NIL)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#1|) (-750 (-1075))) NIL) (($ (-1071 $) (-750 (-1075))) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-489 (-750 (-1075)))) NIL) (($ $ (-750 (-1075)) (-703)) NIL) (($ $ (-583 (-750 (-1075))) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-750 (-1075))) NIL)) (-2210 (((-489 (-750 (-1075))) $) NIL) (((-703) $ (-750 (-1075))) NIL) (((-583 (-703)) $ (-583 (-750 (-1075)))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 (-750 (-1075))) (-489 (-750 (-1075)))) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-3528 (((-1 $ (-703)) (-1075)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1512 (((-3 (-750 (-1075)) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-3301 (((-750 (-1075)) $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-3033 (((-107) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-750 (-1075))) (|:| -2356 (-703))) "failed") $) NIL)) (-2623 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1075)) |#1|) NIL) (($ $ (-583 (-750 (-1075))) (-583 |#1|)) NIL) (($ $ (-750 (-1075)) $) NIL) (($ $ (-583 (-750 (-1075))) (-583 $)) NIL) (($ $ (-1075) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1075)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4032 (($ $ (-750 (-1075))) NIL (|has| |#1| (-156)))) (-2059 (($ $ (-750 (-1075))) NIL) (($ $ (-583 (-750 (-1075)))) NIL) (($ $ (-750 (-1075)) (-703)) NIL) (($ $ (-583 (-750 (-1075))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1255 (((-583 (-1075)) $) NIL)) (-2769 (((-489 (-750 (-1075))) $) NIL) (((-703) $ (-750 (-1075))) NIL) (((-583 (-703)) $ (-583 (-750 (-1075)))) NIL) (((-703) $ (-1075)) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-750 (-1075)) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-750 (-1075)) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1075)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1075))) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1075))) NIL) (($ (-1075)) NIL) (($ (-1027 |#1| (-1075))) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-489 (-750 (-1075)))) NIL) (($ $ (-750 (-1075)) (-703)) NIL) (($ $ (-583 (-750 (-1075))) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-750 (-1075))) NIL) (($ $ (-583 (-750 (-1075)))) NIL) (($ $ (-750 (-1075)) (-703)) NIL) (($ $ (-583 (-750 (-1075))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-748 |#1|) (-13 (-226 |#1| (-1075) (-750 (-1075)) (-489 (-750 (-1075)))) (-953 (-1027 |#1| (-1075)))) (-962)) (T -748))
+NIL
+(-13 (-226 |#1| (-1075) (-750 (-1075)) (-489 (-750 (-1075)))) (-953 (-1027 |#1| (-1075))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-2729 (($ $) NIL (|has| |#2| (-333)))) (-2566 (((-107) $) NIL (|has| |#2| (-333)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#2| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-333)))) (-3998 (((-107) $ $) NIL (|has| |#2| (-333)))) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL (|has| |#2| (-333)))) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#2| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2963 (((-107) $) NIL (|has| |#2| (-333)))) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2330 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 20 (|has| |#2| (-333)))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#2| (-333)))) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-4094 (((-703) $) NIL (|has| |#2| (-333)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-333)))) (-2059 (($ $ (-703)) NIL) (($ $) 13)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) 15 (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
+(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2269 ($ |#2|)) (-15 -2269 (|#2| $)))) (-1004) (-823 |#1|) |#1|) (T -749))
+((-2269 (*1 *1 *2) (-12 (-4 *3 (-1004)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-823 *3)))) (-2269 (*1 *2 *1) (-12 (-4 *2 (-823 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1004)) (-14 *4 *3))))
+(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2269 ($ |#2|)) (-15 -2269 (|#2| $))))
+((-2118 (((-107) $ $) NIL)) (-1463 (((-703) $) NIL)) (-3750 ((|#1| $) 10)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-2053 (((-703) $) 11)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3528 (($ |#1| (-703)) 9)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2059 (($ $) NIL) (($ $ (-703)) NIL)) (-2269 (((-787) $) NIL) (($ |#1|) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)))
(((-750 |#1|) (-239 |#1|) (-779)) (T -750))
NIL
(-239 |#1|)
-((-1587 (((-107) $ $) NIL)) (-3556 (((-583 |#1|) $) 29)) (-1719 (((-703) $) NIL)) (-2706 (($) NIL T CONST)) (-2760 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-1761 (($ $) 31)) (-3775 (((-3 $ "failed") $) NIL)) (-2886 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3469 (((-107) $) NIL)) (-3380 ((|#1| $ (-517)) NIL)) (-1773 (((-703) $ (-517)) NIL)) (-3372 (($ $) 35)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-4091 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-1223 (((-107) $ $) 33)) (-1631 (((-703) $) 25)) (-1277 (((-1057) $) NIL)) (-4119 (($ $ $) NIL)) (-3471 (($ $ $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 ((|#1| $) 30)) (-1343 (((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $) NIL)) (-2494 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2254 (((-787) $) NIL) (($ |#1|) NIL)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2411 (($) 14 T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 34)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-751 |#1|) (-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1750 (|#1| $)) (-15 -1761 ($ $)) (-15 -3372 ($ $)) (-15 -1223 ((-107) $ $)) (-15 -3471 ($ $ $)) (-15 -4119 ($ $ $)) (-15 -4091 ((-3 $ "failed") $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -4091 ((-3 $ "failed") $ |#1|)) (-15 -2760 ((-3 $ "failed") $ |#1|)) (-15 -2494 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2886 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1719 ((-703) $)) (-15 -1773 ((-703) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $)) (-15 -1631 ((-703) $)) (-15 -3556 ((-583 |#1|) $)))) (-779)) (T -751))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1750 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1761 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1223 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3471 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4119 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4091 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2760 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4091 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2760 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2494 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2886 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1750 (|#1| $)) (-15 -1761 ($ $)) (-15 -3372 ($ $)) (-15 -1223 ((-107) $ $)) (-15 -3471 ($ $ $)) (-15 -4119 ($ $ $)) (-15 -4091 ((-3 $ "failed") $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -4091 ((-3 $ "failed") $ |#1|)) (-15 -2760 ((-3 $ "failed") $ |#1|)) (-15 -2494 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2886 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1719 ((-703) $)) (-15 -1773 ((-703) $ (-517))) (-15 -3380 (|#1| $ (-517))) (-15 -1343 ((-583 (-2 (|:| |gen| |#1|) (|:| -2643 (-703)))) $)) (-15 -1631 ((-703) $)) (-15 -3556 ((-583 |#1|) $))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-3345 (((-517) $) 53)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3162 (((-107) $) 51)) (-3469 (((-107) $) 31)) (-1199 (((-107) $) 52)) (-4055 (($ $ $) 50)) (-3105 (($ $ $) 49)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ $) 42)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-1724 (($ $) 54)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 47)) (-1571 (((-107) $ $) 46)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 48)) (-1558 (((-107) $ $) 45)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-752) (-1185)) (T -752))
+((-2118 (((-107) $ $) NIL)) (-3365 (((-583 |#1|) $) 29)) (-2397 (((-703) $) NIL)) (-1681 (($) NIL T CONST)) (-3397 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-2437 (($ $) 31)) (-3163 (((-3 $ "failed") $) NIL)) (-3036 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1865 (((-107) $) NIL)) (-3336 ((|#1| $ (-517)) NIL)) (-3655 (((-703) $ (-517)) NIL)) (-1213 (($ $) 36)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1896 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2880 (((-107) $ $) 34)) (-3680 (((-703) $) 25)) (-1895 (((-1058) $) NIL)) (-2465 (($ $ $) NIL)) (-2301 (($ $ $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 ((|#1| $) 30)) (-1878 (((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $) NIL)) (-2340 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2269 (((-787) $) NIL) (($ |#1|) NIL)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3617 (($) 14 T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 35)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-751 |#1|) (-13 (-775) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2427 (|#1| $)) (-15 -2437 ($ $)) (-15 -1213 ($ $)) (-15 -2880 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -1896 ((-3 $ "failed") $ $)) (-15 -3397 ((-3 $ "failed") $ $)) (-15 -1896 ((-3 $ "failed") $ |#1|)) (-15 -3397 ((-3 $ "failed") $ |#1|)) (-15 -2340 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3036 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2397 ((-703) $)) (-15 -3655 ((-703) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $)) (-15 -3680 ((-703) $)) (-15 -3365 ((-583 |#1|) $)))) (-779)) (T -751))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2427 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2437 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1213 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2465 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3397 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1896 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3397 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2340 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3036 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3655 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-3336 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(-13 (-775) (-953 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2427 (|#1| $)) (-15 -2437 ($ $)) (-15 -1213 ($ $)) (-15 -2880 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2465 ($ $ $)) (-15 -1896 ((-3 $ "failed") $ $)) (-15 -3397 ((-3 $ "failed") $ $)) (-15 -1896 ((-3 $ "failed") $ |#1|)) (-15 -3397 ((-3 $ "failed") $ |#1|)) (-15 -2340 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3036 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2397 ((-703) $)) (-15 -3655 ((-703) $ (-517))) (-15 -3336 (|#1| $ (-517))) (-15 -1878 ((-583 (-2 (|:| |gen| |#1|) (|:| -3868 (-703)))) $)) (-15 -3680 ((-703) $)) (-15 -3365 ((-583 |#1|) $))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-1323 (((-517) $) 53)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-3523 (((-107) $) 51)) (-1865 (((-107) $) 31)) (-1469 (((-107) $) 52)) (-3456 (($ $ $) 50)) (-4082 (($ $ $) 49)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ $) 42)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2339 (($ $) 54)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 47)) (-1617 (((-107) $ $) 46)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 48)) (-1607 (((-107) $ $) 45)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-752) (-1187)) (T -752))
NIL
(-13 (-509) (-777))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-4051 (($ (-1021)) 7)) (-1736 (((-107) $ (-1057) (-1021)) 15)) (-1813 (((-754) $) 12)) (-1451 (((-754) $) 11)) (-4162 (((-1159) $) 9)) (-3134 (((-107) $ (-1021)) 16)))
-(((-753) (-10 -8 (-15 -4051 ($ (-1021))) (-15 -4162 ((-1159) $)) (-15 -1451 ((-754) $)) (-15 -1813 ((-754) $)) (-15 -1736 ((-107) $ (-1057) (-1021))) (-15 -3134 ((-107) $ (-1021))))) (T -753))
-((-3134 (*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-1736 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-753)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
-(-10 -8 (-15 -4051 ($ (-1021))) (-15 -4162 ((-1159) $)) (-15 -1451 ((-754) $)) (-15 -1813 ((-754) $)) (-15 -1736 ((-107) $ (-1057) (-1021))) (-15 -3134 ((-107) $ (-1021))))
-((-2012 (((-1159) $ (-755)) 12)) (-3519 (((-1159) $ (-1074)) 32)) (-2217 (((-1159) $ (-1057) (-1057)) 34)) (-2178 (((-1159) $ (-1057)) 33)) (-1499 (((-1159) $) 19)) (-2704 (((-1159) $ (-517)) 28)) (-4126 (((-1159) $ (-199)) 30)) (-2641 (((-1159) $) 18)) (-1430 (((-1159) $) 26)) (-3351 (((-1159) $) 25)) (-2488 (((-1159) $) 23)) (-2161 (((-1159) $) 24)) (-2684 (((-1159) $) 22)) (-1470 (((-1159) $) 21)) (-3252 (((-1159) $) 20)) (-2767 (((-1159) $) 16)) (-4028 (((-1159) $) 17)) (-3384 (((-1159) $) 15)) (-2536 (((-1159) $) 14)) (-2408 (((-1159) $) 13)) (-2925 (($ (-1057) (-755)) 9)) (-2804 (($ (-1057) (-1057) (-755)) 8)) (-1933 (((-1074) $) 51)) (-1477 (((-1074) $) 55)) (-2460 (((-2 (|:| |cd| (-1057)) (|:| -1214 (-1057))) $) 54)) (-1974 (((-1057) $) 52)) (-2345 (((-1159) $) 41)) (-2358 (((-517) $) 49)) (-3488 (((-199) $) 50)) (-1452 (((-1159) $) 40)) (-4057 (((-1159) $) 48)) (-2303 (((-1159) $) 47)) (-2011 (((-1159) $) 45)) (-3024 (((-1159) $) 46)) (-2753 (((-1159) $) 44)) (-3601 (((-1159) $) 43)) (-1582 (((-1159) $) 42)) (-2563 (((-1159) $) 38)) (-3102 (((-1159) $) 39)) (-3960 (((-1159) $) 37)) (-1962 (((-1159) $) 36)) (-2869 (((-1159) $) 35)) (-3728 (((-1159) $) 11)))
-(((-754) (-10 -8 (-15 -2804 ($ (-1057) (-1057) (-755))) (-15 -2925 ($ (-1057) (-755))) (-15 -3728 ((-1159) $)) (-15 -2012 ((-1159) $ (-755))) (-15 -2408 ((-1159) $)) (-15 -2536 ((-1159) $)) (-15 -3384 ((-1159) $)) (-15 -2767 ((-1159) $)) (-15 -4028 ((-1159) $)) (-15 -2641 ((-1159) $)) (-15 -1499 ((-1159) $)) (-15 -3252 ((-1159) $)) (-15 -1470 ((-1159) $)) (-15 -2684 ((-1159) $)) (-15 -2488 ((-1159) $)) (-15 -2161 ((-1159) $)) (-15 -3351 ((-1159) $)) (-15 -1430 ((-1159) $)) (-15 -2704 ((-1159) $ (-517))) (-15 -4126 ((-1159) $ (-199))) (-15 -3519 ((-1159) $ (-1074))) (-15 -2178 ((-1159) $ (-1057))) (-15 -2217 ((-1159) $ (-1057) (-1057))) (-15 -2869 ((-1159) $)) (-15 -1962 ((-1159) $)) (-15 -3960 ((-1159) $)) (-15 -2563 ((-1159) $)) (-15 -3102 ((-1159) $)) (-15 -1452 ((-1159) $)) (-15 -2345 ((-1159) $)) (-15 -1582 ((-1159) $)) (-15 -3601 ((-1159) $)) (-15 -2753 ((-1159) $)) (-15 -2011 ((-1159) $)) (-15 -3024 ((-1159) $)) (-15 -2303 ((-1159) $)) (-15 -4057 ((-1159) $)) (-15 -2358 ((-517) $)) (-15 -3488 ((-199) $)) (-15 -1933 ((-1074) $)) (-15 -1974 ((-1057) $)) (-15 -2460 ((-2 (|:| |cd| (-1057)) (|:| -1214 (-1057))) $)) (-15 -1477 ((-1074) $)))) (T -754))
-((-1477 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1057)) (|:| -1214 (-1057)))) (-5 *1 (-754)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-754)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2217 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1159)) (-5 *1 (-754)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))) (-2804 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(-10 -8 (-15 -2804 ($ (-1057) (-1057) (-755))) (-15 -2925 ($ (-1057) (-755))) (-15 -3728 ((-1159) $)) (-15 -2012 ((-1159) $ (-755))) (-15 -2408 ((-1159) $)) (-15 -2536 ((-1159) $)) (-15 -3384 ((-1159) $)) (-15 -2767 ((-1159) $)) (-15 -4028 ((-1159) $)) (-15 -2641 ((-1159) $)) (-15 -1499 ((-1159) $)) (-15 -3252 ((-1159) $)) (-15 -1470 ((-1159) $)) (-15 -2684 ((-1159) $)) (-15 -2488 ((-1159) $)) (-15 -2161 ((-1159) $)) (-15 -3351 ((-1159) $)) (-15 -1430 ((-1159) $)) (-15 -2704 ((-1159) $ (-517))) (-15 -4126 ((-1159) $ (-199))) (-15 -3519 ((-1159) $ (-1074))) (-15 -2178 ((-1159) $ (-1057))) (-15 -2217 ((-1159) $ (-1057) (-1057))) (-15 -2869 ((-1159) $)) (-15 -1962 ((-1159) $)) (-15 -3960 ((-1159) $)) (-15 -2563 ((-1159) $)) (-15 -3102 ((-1159) $)) (-15 -1452 ((-1159) $)) (-15 -2345 ((-1159) $)) (-15 -1582 ((-1159) $)) (-15 -3601 ((-1159) $)) (-15 -2753 ((-1159) $)) (-15 -2011 ((-1159) $)) (-15 -3024 ((-1159) $)) (-15 -2303 ((-1159) $)) (-15 -4057 ((-1159) $)) (-15 -2358 ((-517) $)) (-15 -3488 ((-199) $)) (-15 -1933 ((-1074) $)) (-15 -1974 ((-1057) $)) (-15 -2460 ((-2 (|:| |cd| (-1057)) (|:| -1214 (-1057))) $)) (-15 -1477 ((-1074) $)))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 12)) (-3330 (($) 15)) (-2618 (($) 13)) (-2341 (($) 16)) (-3564 (($) 14)) (-1534 (((-107) $ $) 8)))
-(((-755) (-13 (-1003) (-10 -8 (-15 -2618 ($)) (-15 -3330 ($)) (-15 -2341 ($)) (-15 -3564 ($))))) (T -755))
-((-2618 (*1 *1) (-5 *1 (-755))) (-3330 (*1 *1) (-5 *1 (-755))) (-2341 (*1 *1) (-5 *1 (-755))) (-3564 (*1 *1) (-5 *1 (-755))))
-(-13 (-1003) (-10 -8 (-15 -2618 ($)) (-15 -3330 ($)) (-15 -2341 ($)) (-15 -3564 ($))))
-((-1587 (((-107) $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 21) (($ (-1074)) 17)) (-3725 (((-107) $) 10)) (-3271 (((-107) $) 9)) (-1814 (((-107) $) 11)) (-2354 (((-107) $) 8)) (-1534 (((-107) $ $) 19)))
-(((-756) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-1074))) (-15 -2354 ((-107) $)) (-15 -3271 ((-107) $)) (-15 -3725 ((-107) $)) (-15 -1814 ((-107) $))))) (T -756))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-756)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-1074))) (-15 -2354 ((-107) $)) (-15 -3271 ((-107) $)) (-15 -3725 ((-107) $)) (-15 -1814 ((-107) $))))
-((-1587 (((-107) $ $) NIL)) (-3961 (($ (-756) (-583 (-1074))) 24)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1276 (((-756) $) 25)) (-2042 (((-583 (-1074)) $) 26)) (-2254 (((-787) $) 23)) (-1534 (((-107) $ $) NIL)))
-(((-757) (-13 (-1003) (-10 -8 (-15 -1276 ((-756) $)) (-15 -2042 ((-583 (-1074)) $)) (-15 -3961 ($ (-756) (-583 (-1074))))))) (T -757))
-((-1276 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-757)))) (-3961 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1074))) (-5 *1 (-757)))))
-(-13 (-1003) (-10 -8 (-15 -1276 ((-756) $)) (-15 -2042 ((-583 (-1074)) $)) (-15 -3961 ($ (-756) (-583 (-1074))))))
-((-2822 (((-1159) (-754) (-286 |#1|) (-107)) 22) (((-1159) (-754) (-286 |#1|)) 76) (((-1057) (-286 |#1|) (-107)) 75) (((-1057) (-286 |#1|)) 74)))
-(((-758 |#1|) (-10 -7 (-15 -2822 ((-1057) (-286 |#1|))) (-15 -2822 ((-1057) (-286 |#1|) (-107))) (-15 -2822 ((-1159) (-754) (-286 |#1|))) (-15 -2822 ((-1159) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-961))) (T -758))
-((-2822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *6)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *5)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *5)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *4)))))
-(-10 -7 (-15 -2822 ((-1057) (-286 |#1|))) (-15 -2822 ((-1057) (-286 |#1|) (-107))) (-15 -2822 ((-1159) (-754) (-286 |#1|))) (-15 -2822 ((-1159) (-754) (-286 |#1|) (-107))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2758 ((|#1| $) 10)) (-3819 (($ |#1|) 9)) (-3469 (((-107) $) NIL)) (-1336 (($ |#2| (-703)) NIL)) (-3876 (((-703) $) NIL)) (-1193 ((|#2| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1248 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3625 (((-703) $) NIL)) (-2254 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-4104 ((|#2| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -3819 ($ |#1|)) (-15 -2758 (|#1| $)))) (-642 |#2|) (-961)) (T -759))
-((-3819 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2758 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
-(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -3819 ($ |#1|)) (-15 -2758 (|#1| $))))
-((-2822 (((-1159) (-754) $ (-107)) 9) (((-1159) (-754) $) 8) (((-1057) $ (-107)) 7) (((-1057) $) 6)))
-(((-760) (-1185)) (T -760))
-((-2822 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1159)))) (-2822 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1159)))) (-2822 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1057)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1057)))))
-(-13 (-10 -8 (-15 -2822 ((-1057) $)) (-15 -2822 ((-1057) $ (-107))) (-15 -2822 ((-1159) (-754) $)) (-15 -2822 ((-1159) (-754) $ (-107)))))
-((-3482 (((-282) (-1057) (-1057)) 12)) (-3377 (((-107) (-1057) (-1057)) 33)) (-3738 (((-107) (-1057)) 32)) (-1804 (((-51) (-1057)) 25)) (-3253 (((-51) (-1057)) 23)) (-3242 (((-51) (-754)) 17)) (-2559 (((-583 (-1057)) (-1057)) 28)) (-3037 (((-583 (-1057))) 27)))
-(((-761) (-10 -7 (-15 -3242 ((-51) (-754))) (-15 -3253 ((-51) (-1057))) (-15 -1804 ((-51) (-1057))) (-15 -3037 ((-583 (-1057)))) (-15 -2559 ((-583 (-1057)) (-1057))) (-15 -3738 ((-107) (-1057))) (-15 -3377 ((-107) (-1057) (-1057))) (-15 -3482 ((-282) (-1057) (-1057))))) (T -761))
-((-3482 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-761)))) (-3377 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2559 (*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)) (-5 *3 (-1057)))) (-3037 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(-10 -7 (-15 -3242 ((-51) (-754))) (-15 -3253 ((-51) (-1057))) (-15 -1804 ((-51) (-1057))) (-15 -3037 ((-583 (-1057)))) (-15 -2559 ((-583 (-1057)) (-1057))) (-15 -3738 ((-107) (-1057))) (-15 -3377 ((-107) (-1057) (-1057))) (-15 -3482 ((-282) (-1057) (-1057))))
-((-1587 (((-107) $ $) 18)) (-1400 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3867 (($ $ $) 72)) (-3994 (((-107) $ $) 73)) (-3552 (((-107) $ (-703)) 8)) (-1353 (($ (-583 |#1|)) 68) (($) 67)) (-2975 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3439 (($ $) 62)) (-1783 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ |#1| $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-4055 ((|#1| $) 78)) (-2931 (($ $ $) 81)) (-1676 (($ $ $) 80)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3105 ((|#1| $) 79)) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22)) (-2375 (($ $ $) 69)) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3214 (((-1021) $) 21)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-2271 (((-583 (-2 (|:| -1338 |#1|) (|:| -3223 (-703)))) $) 61)) (-1853 (($ $ |#1|) 71) (($ $ $) 70)) (-3230 (($) 49) (($ (-583 |#1|)) 48)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 50)) (-2254 (((-787) $) 20)) (-3171 (($ (-583 |#1|)) 66) (($) 65)) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19)) (-1558 (((-107) $ $) 64)) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-762 |#1|) (-1185) (-779)) (T -762))
-((-4055 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
-(-13 (-669 |t#1|) (-886 |t#1|) (-10 -8 (-15 -4055 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-886 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1109) . T))
-((-3356 (((-1159) (-1021) (-1021)) 47)) (-1481 (((-1159) (-753) (-51)) 44)) (-2325 (((-51) (-753)) 16)))
-(((-763) (-10 -7 (-15 -2325 ((-51) (-753))) (-15 -1481 ((-1159) (-753) (-51))) (-15 -3356 ((-1159) (-1021) (-1021))))) (T -763))
-((-3356 (*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1159)) (-5 *1 (-763)))) (-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1159)) (-5 *1 (-763)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
-(-10 -7 (-15 -2325 ((-51) (-753))) (-15 -1481 ((-1159) (-753) (-51))) (-15 -3356 ((-1159) (-1021) (-1021))))
-((-1939 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
-(((-764 |#1| |#2|) (-10 -7 (-15 -1939 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1939 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1003) (-1003)) (T -764))
-((-1939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
-(-10 -7 (-15 -1939 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1939 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL (|has| |#1| (-21)))) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3345 (((-517) $) NIL (|has| |#1| (-777)))) (-2706 (($) NIL (|has| |#1| (-21)) CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3775 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-3937 (((-3 (-377 (-517)) "failed") $) 49 (|has| |#1| (-502)))) (-1541 (((-107) $) 43 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 46 (|has| |#1| (-502)))) (-3162 (((-107) $) NIL (|has| |#1| (-777)))) (-3469 (((-107) $) NIL (|has| |#1| (-777)))) (-1199 (((-107) $) NIL (|has| |#1| (-777)))) (-4055 (($ $ $) NIL (|has| |#1| (-777)))) (-3105 (($ $ $) NIL (|has| |#1| (-777)))) (-1277 (((-1057) $) NIL)) (-2693 (($) 13)) (-3720 (((-107) $) 12)) (-3214 (((-1021) $) NIL)) (-1945 (((-107) $) 11)) (-2254 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3782 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-1217 (((-703)) 34 (|has| |#1| (-777)))) (-1724 (($ $) NIL (|has| |#1| (-777)))) (-2196 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2398 (($) 22 (|has| |#1| (-21)) CONST)) (-2411 (($) 31 (|has| |#1| (-777)) CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1534 (((-107) $ $) 20)) (-1585 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1558 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1663 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1645 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
-(((-765 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2693 ($)) (-15 -1945 ((-107) $)) (-15 -3720 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1003)) (T -765))
-((-2693 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
-(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2693 ($)) (-15 -1945 ((-107) $)) (-15 -3720 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-109) $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1501 ((|#1| (-109) |#1|) NIL)) (-3469 (((-107) $) NIL)) (-1890 (($ |#1| (-331 (-109))) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2885 (($ $ (-1 |#1| |#1|)) NIL)) (-3820 (($ $ (-1 |#1| |#1|)) NIL)) (-1437 ((|#1| $ |#1|) NIL)) (-2109 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-3613 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-766 |#1|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3613 ($ $)) (-15 -3613 ($ $ $)) (-15 -2109 (|#1| |#1|))) |%noBranch|) (-15 -3820 ($ $ (-1 |#1| |#1|))) (-15 -2885 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1501 (|#1| (-109) |#1|)) (-15 -1890 ($ |#1| (-331 (-109)))))) (-961)) (T -766))
-((-3613 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3613 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-2109 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) (-1501 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3613 ($ $)) (-15 -3613 ($ $ $)) (-15 -2109 (|#1| |#1|))) |%noBranch|) (-15 -3820 ($ $ (-1 |#1| |#1|))) (-15 -2885 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -1501 (|#1| (-109) |#1|)) (-15 -1890 ($ |#1| (-331 (-109))))))
-((-3817 (((-189 (-467)) (-1057)) 8)))
-(((-767) (-10 -7 (-15 -3817 ((-189 (-467)) (-1057))))) (T -767))
-((-3817 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(-10 -7 (-15 -3817 ((-189 (-467)) (-1057))))
-((-1587 (((-107) $ $) 7)) (-3628 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 14) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 15)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-768) (-1185)) (T -768))
-((-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) (-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) (-3628 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-950)))) (-3628 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3628 ((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -3628 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2611 (((-950) (-583 (-286 (-349))) (-583 (-349))) 143) (((-950) (-286 (-349)) (-583 (-349))) 141) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-950) (-770)) 112) (((-950) (-770) (-973)) 111)) (-3226 (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973)) 76) (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770)) 78)) (-3826 (((-950) (-583 (-286 (-349))) (-583 (-349))) 144) (((-950) (-770)) 128)))
-(((-769) (-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973))) (-15 -2611 ((-950) (-770) (-973))) (-15 -2611 ((-950) (-770))) (-15 -3826 ((-950) (-770))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2611 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -3826 ((-950) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
-((-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))))
-(-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-770) (-973))) (-15 -2611 ((-950) (-770) (-973))) (-15 -2611 ((-950) (-770))) (-15 -3826 ((-950) (-770))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2611 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2611 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -3826 ((-950) (-583 (-286 (-349))) (-583 (-349)))))
-((-1587 (((-107) $ $) NIL)) (-3232 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) $) 15)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) 12)) (-1534 (((-107) $ $) NIL)))
-(((-770) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2254 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -2254 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) $))))) (T -770))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *1 (-770)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *1 (-770)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *1 (-770)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2254 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) (-15 -2254 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199)))))) $))))
-((-1939 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
-(((-771 |#1| |#2|) (-10 -7 (-15 -1939 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1939 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1003) (-1003)) (T -771))
-((-1939 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
-(-10 -7 (-15 -1939 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1939 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL (|has| |#1| (-21)))) (-4035 (((-1021) $) 24)) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3345 (((-517) $) NIL (|has| |#1| (-777)))) (-2706 (($) NIL (|has| |#1| (-21)) CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3775 (((-3 $ "failed") $) 46 (|has| |#1| (-777)))) (-3937 (((-3 (-377 (-517)) "failed") $) 53 (|has| |#1| (-502)))) (-1541 (((-107) $) 48 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 51 (|has| |#1| (-502)))) (-3162 (((-107) $) NIL (|has| |#1| (-777)))) (-2708 (($) 13)) (-3469 (((-107) $) NIL (|has| |#1| (-777)))) (-1199 (((-107) $) NIL (|has| |#1| (-777)))) (-2730 (($) 14)) (-4055 (($ $ $) NIL (|has| |#1| (-777)))) (-3105 (($ $ $) NIL (|has| |#1| (-777)))) (-1277 (((-1057) $) NIL)) (-3720 (((-107) $) 12)) (-3214 (((-1021) $) NIL)) (-1945 (((-107) $) 11)) (-2254 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3782 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-1217 (((-703)) 40 (|has| |#1| (-777)))) (-1724 (($ $) NIL (|has| |#1| (-777)))) (-2196 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2398 (($) 28 (|has| |#1| (-21)) CONST)) (-2411 (($) 37 (|has| |#1| (-777)) CONST)) (-1600 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1534 (((-107) $ $) 26)) (-1585 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1558 (((-107) $ $) 47 (|has| |#1| (-777)))) (-1663 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1645 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 43 (|has| |#1| (-777))) (($ (-517) $) 31 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
-(((-772 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2708 ($)) (-15 -2730 ($)) (-15 -1945 ((-107) $)) (-15 -3720 ((-107) $)) (-15 -4035 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1003)) (T -772))
-((-2708 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2730 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
-(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2708 ($)) (-15 -2730 ($)) (-15 -1945 ((-107) $)) (-15 -3720 ((-107) $)) (-15 -4035 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-((-1587 (((-107) $ $) 7)) (-1719 (((-703)) 20)) (-4100 (($) 23)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-4034 (((-843) $) 22)) (-1277 (((-1057) $) 9)) (-3544 (($ (-843)) 21)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)))
-(((-773) (-1185)) (T -773))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3393 (($ (-1022)) 7)) (-3576 (((-107) $ (-1058) (-1022)) 15)) (-3548 (((-754) $) 12)) (-1595 (((-754) $) 11)) (-1699 (((-1161) $) 9)) (-1916 (((-107) $ (-1022)) 16)))
+(((-753) (-10 -8 (-15 -3393 ($ (-1022))) (-15 -1699 ((-1161) $)) (-15 -1595 ((-754) $)) (-15 -3548 ((-754) $)) (-15 -3576 ((-107) $ (-1058) (-1022))) (-15 -1916 ((-107) $ (-1022))))) (T -753))
+((-1916 (*1 *2 *1 *3) (-12 (-5 *3 (-1022)) (-5 *2 (-107)) (-5 *1 (-753)))) (-3576 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-1022)) (-5 *2 (-107)) (-5 *1 (-753)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-753)))) (-3393 (*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-753)))))
+(-10 -8 (-15 -3393 ($ (-1022))) (-15 -1699 ((-1161) $)) (-15 -1595 ((-754) $)) (-15 -3548 ((-754) $)) (-15 -3576 ((-107) $ (-1058) (-1022))) (-15 -1916 ((-107) $ (-1022))))
+((-3917 (((-1161) $ (-755)) 12)) (-2632 (((-1161) $ (-1075)) 32)) (-1645 (((-1161) $ (-1058) (-1058)) 34)) (-2176 (((-1161) $ (-1058)) 33)) (-3455 (((-1161) $) 19)) (-4154 (((-1161) $ (-517)) 28)) (-2270 (((-1161) $ (-199)) 30)) (-1408 (((-1161) $) 18)) (-1742 (((-1161) $) 26)) (-1354 (((-1161) $) 25)) (-2363 (((-1161) $) 23)) (-1266 (((-1161) $) 24)) (-3076 (((-1161) $) 22)) (-2169 (((-1161) $) 21)) (-3799 (((-1161) $) 20)) (-3908 (((-1161) $) 16)) (-2510 (((-1161) $) 17)) (-4042 (((-1161) $) 15)) (-2664 (((-1161) $) 14)) (-1877 (((-1161) $) 13)) (-1207 (($ (-1058) (-755)) 9)) (-3781 (($ (-1058) (-1058) (-755)) 8)) (-1707 (((-1075) $) 51)) (-2321 (((-1075) $) 55)) (-3791 (((-2 (|:| |cd| (-1058)) (|:| -2987 (-1058))) $) 54)) (-3355 (((-1058) $) 52)) (-3227 (((-1161) $) 41)) (-2103 (((-517) $) 49)) (-2221 (((-199) $) 50)) (-3323 (((-1161) $) 40)) (-4077 (((-1161) $) 48)) (-2743 (((-1161) $) 47)) (-2277 (((-1161) $) 45)) (-2948 (((-1161) $) 46)) (-2379 (((-1161) $) 44)) (-3701 (((-1161) $) 43)) (-2232 (((-1161) $) 42)) (-2884 (((-1161) $) 38)) (-2112 (((-1161) $) 39)) (-4084 (((-1161) $) 37)) (-1828 (((-1161) $) 36)) (-2649 (((-1161) $) 35)) (-3220 (((-1161) $) 11)))
+(((-754) (-10 -8 (-15 -3781 ($ (-1058) (-1058) (-755))) (-15 -1207 ($ (-1058) (-755))) (-15 -3220 ((-1161) $)) (-15 -3917 ((-1161) $ (-755))) (-15 -1877 ((-1161) $)) (-15 -2664 ((-1161) $)) (-15 -4042 ((-1161) $)) (-15 -3908 ((-1161) $)) (-15 -2510 ((-1161) $)) (-15 -1408 ((-1161) $)) (-15 -3455 ((-1161) $)) (-15 -3799 ((-1161) $)) (-15 -2169 ((-1161) $)) (-15 -3076 ((-1161) $)) (-15 -2363 ((-1161) $)) (-15 -1266 ((-1161) $)) (-15 -1354 ((-1161) $)) (-15 -1742 ((-1161) $)) (-15 -4154 ((-1161) $ (-517))) (-15 -2270 ((-1161) $ (-199))) (-15 -2632 ((-1161) $ (-1075))) (-15 -2176 ((-1161) $ (-1058))) (-15 -1645 ((-1161) $ (-1058) (-1058))) (-15 -2649 ((-1161) $)) (-15 -1828 ((-1161) $)) (-15 -4084 ((-1161) $)) (-15 -2884 ((-1161) $)) (-15 -2112 ((-1161) $)) (-15 -3323 ((-1161) $)) (-15 -3227 ((-1161) $)) (-15 -2232 ((-1161) $)) (-15 -3701 ((-1161) $)) (-15 -2379 ((-1161) $)) (-15 -2277 ((-1161) $)) (-15 -2948 ((-1161) $)) (-15 -2743 ((-1161) $)) (-15 -4077 ((-1161) $)) (-15 -2103 ((-517) $)) (-15 -2221 ((-199) $)) (-15 -1707 ((-1075) $)) (-15 -3355 ((-1058) $)) (-15 -3791 ((-2 (|:| |cd| (-1058)) (|:| -2987 (-1058))) $)) (-15 -2321 ((-1075) $)))) (T -754))
+((-2321 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-754)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1058)) (|:| -2987 (-1058)))) (-5 *1 (-754)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-754)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-754)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1645 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-2270 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1266 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1161)) (-5 *1 (-754)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))) (-1207 (*1 *1 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-755)) (-5 *1 (-754)))) (-3781 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(-10 -8 (-15 -3781 ($ (-1058) (-1058) (-755))) (-15 -1207 ($ (-1058) (-755))) (-15 -3220 ((-1161) $)) (-15 -3917 ((-1161) $ (-755))) (-15 -1877 ((-1161) $)) (-15 -2664 ((-1161) $)) (-15 -4042 ((-1161) $)) (-15 -3908 ((-1161) $)) (-15 -2510 ((-1161) $)) (-15 -1408 ((-1161) $)) (-15 -3455 ((-1161) $)) (-15 -3799 ((-1161) $)) (-15 -2169 ((-1161) $)) (-15 -3076 ((-1161) $)) (-15 -2363 ((-1161) $)) (-15 -1266 ((-1161) $)) (-15 -1354 ((-1161) $)) (-15 -1742 ((-1161) $)) (-15 -4154 ((-1161) $ (-517))) (-15 -2270 ((-1161) $ (-199))) (-15 -2632 ((-1161) $ (-1075))) (-15 -2176 ((-1161) $ (-1058))) (-15 -1645 ((-1161) $ (-1058) (-1058))) (-15 -2649 ((-1161) $)) (-15 -1828 ((-1161) $)) (-15 -4084 ((-1161) $)) (-15 -2884 ((-1161) $)) (-15 -2112 ((-1161) $)) (-15 -3323 ((-1161) $)) (-15 -3227 ((-1161) $)) (-15 -2232 ((-1161) $)) (-15 -3701 ((-1161) $)) (-15 -2379 ((-1161) $)) (-15 -2277 ((-1161) $)) (-15 -2948 ((-1161) $)) (-15 -2743 ((-1161) $)) (-15 -4077 ((-1161) $)) (-15 -2103 ((-517) $)) (-15 -2221 ((-199) $)) (-15 -1707 ((-1075) $)) (-15 -3355 ((-1058) $)) (-15 -3791 ((-2 (|:| |cd| (-1058)) (|:| -2987 (-1058))) $)) (-15 -2321 ((-1075) $)))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 12)) (-1642 (($) 15)) (-1240 (($) 13)) (-2590 (($) 16)) (-3584 (($) 14)) (-1583 (((-107) $ $) 8)))
+(((-755) (-13 (-1004) (-10 -8 (-15 -1240 ($)) (-15 -1642 ($)) (-15 -2590 ($)) (-15 -3584 ($))))) (T -755))
+((-1240 (*1 *1) (-5 *1 (-755))) (-1642 (*1 *1) (-5 *1 (-755))) (-2590 (*1 *1) (-5 *1 (-755))) (-3584 (*1 *1) (-5 *1 (-755))))
+(-13 (-1004) (-10 -8 (-15 -1240 ($)) (-15 -1642 ($)) (-15 -2590 ($)) (-15 -3584 ($))))
+((-2118 (((-107) $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 21) (($ (-1075)) 17)) (-3946 (((-107) $) 10)) (-2785 (((-107) $) 9)) (-3377 (((-107) $) 11)) (-2989 (((-107) $) 8)) (-1583 (((-107) $ $) 19)))
+(((-756) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-1075))) (-15 -2989 ((-107) $)) (-15 -2785 ((-107) $)) (-15 -3946 ((-107) $)) (-15 -3377 ((-107) $))))) (T -756))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-756)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-1075))) (-15 -2989 ((-107) $)) (-15 -2785 ((-107) $)) (-15 -3946 ((-107) $)) (-15 -3377 ((-107) $))))
+((-2118 (((-107) $ $) NIL)) (-3228 (($ (-756) (-583 (-1075))) 24)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3994 (((-756) $) 25)) (-2711 (((-583 (-1075)) $) 26)) (-2269 (((-787) $) 23)) (-1583 (((-107) $ $) NIL)))
+(((-757) (-13 (-1004) (-10 -8 (-15 -3994 ((-756) $)) (-15 -2711 ((-583 (-1075)) $)) (-15 -3228 ($ (-756) (-583 (-1075))))))) (T -757))
+((-3994 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-757)))) (-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1075))) (-5 *1 (-757)))))
+(-13 (-1004) (-10 -8 (-15 -3994 ((-756) $)) (-15 -2711 ((-583 (-1075)) $)) (-15 -3228 ($ (-756) (-583 (-1075))))))
+((-1964 (((-1161) (-754) (-286 |#1|) (-107)) 22) (((-1161) (-754) (-286 |#1|)) 76) (((-1058) (-286 |#1|) (-107)) 75) (((-1058) (-286 |#1|)) 74)))
+(((-758 |#1|) (-10 -7 (-15 -1964 ((-1058) (-286 |#1|))) (-15 -1964 ((-1058) (-286 |#1|) (-107))) (-15 -1964 ((-1161) (-754) (-286 |#1|))) (-15 -1964 ((-1161) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-962))) (T -758))
+((-1964 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-962))) (-5 *2 (-1161)) (-5 *1 (-758 *6)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-962))) (-5 *2 (-1161)) (-5 *1 (-758 *5)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-962))) (-5 *2 (-1058)) (-5 *1 (-758 *5)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-962))) (-5 *2 (-1058)) (-5 *1 (-758 *4)))))
+(-10 -7 (-15 -1964 ((-1058) (-286 |#1|))) (-15 -1964 ((-1058) (-286 |#1|) (-107))) (-15 -1964 ((-1161) (-754) (-286 |#1|))) (-15 -1964 ((-1161) (-754) (-286 |#1|) (-107))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2279 ((|#1| $) 10)) (-1406 (($ |#1|) 9)) (-1865 (((-107) $) NIL)) (-2077 (($ |#2| (-703)) NIL)) (-2210 (((-703) $) NIL)) (-2345 ((|#2| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2059 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2769 (((-703) $) NIL)) (-2269 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-3952 ((|#2| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1406 ($ |#1|)) (-15 -2279 (|#1| $)))) (-642 |#2|) (-962)) (T -759))
+((-1406 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2279 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-962)))))
+(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1406 ($ |#1|)) (-15 -2279 (|#1| $))))
+((-1964 (((-1161) (-754) $ (-107)) 9) (((-1161) (-754) $) 8) (((-1058) $ (-107)) 7) (((-1058) $) 6)))
+(((-760) (-1187)) (T -760))
+((-1964 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1161)))) (-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1161)))) (-1964 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1058)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1058)))))
+(-13 (-10 -8 (-15 -1964 ((-1058) $)) (-15 -1964 ((-1058) $ (-107))) (-15 -1964 ((-1161) (-754) $)) (-15 -1964 ((-1161) (-754) $ (-107)))))
+((-3909 (((-282) (-1058) (-1058)) 12)) (-1530 (((-107) (-1058) (-1058)) 34)) (-3820 (((-107) (-1058)) 33)) (-2691 (((-51) (-1058)) 25)) (-2289 (((-51) (-1058)) 23)) (-3902 (((-51) (-754)) 17)) (-1223 (((-583 (-1058)) (-1058)) 28)) (-4164 (((-583 (-1058))) 27)))
+(((-761) (-10 -7 (-15 -3902 ((-51) (-754))) (-15 -2289 ((-51) (-1058))) (-15 -2691 ((-51) (-1058))) (-15 -4164 ((-583 (-1058)))) (-15 -1223 ((-583 (-1058)) (-1058))) (-15 -3820 ((-107) (-1058))) (-15 -1530 ((-107) (-1058) (-1058))) (-15 -3909 ((-282) (-1058) (-1058))))) (T -761))
+((-3909 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-761)))) (-1530 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-761)))) (-1223 (*1 *2 *3) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-761)) (-5 *3 (-1058)))) (-4164 (*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-761)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-761)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(-10 -7 (-15 -3902 ((-51) (-754))) (-15 -2289 ((-51) (-1058))) (-15 -2691 ((-51) (-1058))) (-15 -4164 ((-583 (-1058)))) (-15 -1223 ((-583 (-1058)) (-1058))) (-15 -3820 ((-107) (-1058))) (-15 -1530 ((-107) (-1058) (-1058))) (-15 -3909 ((-282) (-1058) (-1058))))
+((-2118 (((-107) $ $) 19)) (-2382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1826 (($ $ $) 72)) (-2104 (((-107) $ $) 73)) (-2670 (((-107) $ (-703)) 8)) (-1883 (($ (-583 |#1|)) 68) (($) 67)) (-3042 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-3302 (($ $) 62)) (-2453 (($ $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ |#1| $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-3456 ((|#1| $) 78)) (-1974 (($ $ $) 81)) (-3798 (($ $ $) 80)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-4082 ((|#1| $) 79)) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22)) (-3257 (($ $ $) 69)) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4123 (((-1022) $) 21)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2804 (((-583 (-2 (|:| -1860 |#1|) (|:| -4135 (-703)))) $) 61)) (-1598 (($ $ |#1|) 71) (($ $ $) 70)) (-1494 (($) 49) (($ (-583 |#1|)) 48)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 50)) (-2269 (((-787) $) 18)) (-3073 (($ (-583 |#1|)) 66) (($) 65)) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20)) (-1607 (((-107) $ $) 64)) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-762 |#1|) (-1187) (-779)) (T -762))
+((-3456 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
+(-13 (-669 |t#1|) (-887 |t#1|) (-10 -8 (-15 -3456 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-887 |#1|) . T) ((-1002 |#1|) . T) ((-1004) . T) ((-1110) . T))
+((-2299 (((-1161) (-1022) (-1022)) 47)) (-3783 (((-1161) (-753) (-51)) 44)) (-3823 (((-51) (-753)) 16)))
+(((-763) (-10 -7 (-15 -3823 ((-51) (-753))) (-15 -3783 ((-1161) (-753) (-51))) (-15 -2299 ((-1161) (-1022) (-1022))))) (T -763))
+((-2299 (*1 *2 *3 *3) (-12 (-5 *3 (-1022)) (-5 *2 (-1161)) (-5 *1 (-763)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1161)) (-5 *1 (-763)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(-10 -7 (-15 -3823 ((-51) (-753))) (-15 -3783 ((-1161) (-753) (-51))) (-15 -2299 ((-1161) (-1022) (-1022))))
+((-3308 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -3308 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3308 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1004) (-1004)) (T -764))
+((-3308 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *1 (-764 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
+(-10 -7 (-15 -3308 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3308 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL (|has| |#1| (-21)))) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1323 (((-517) $) NIL (|has| |#1| (-777)))) (-1681 (($) NIL (|has| |#1| (-21)) CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 9)) (-3163 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-2253 (((-3 (-377 (-517)) "failed") $) 48 (|has| |#1| (-502)))) (-1654 (((-107) $) 43 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 45 (|has| |#1| (-502)))) (-3523 (((-107) $) NIL (|has| |#1| (-777)))) (-1865 (((-107) $) NIL (|has| |#1| (-777)))) (-1469 (((-107) $) NIL (|has| |#1| (-777)))) (-3456 (($ $ $) NIL (|has| |#1| (-777)))) (-4082 (($ $ $) NIL (|has| |#1| (-777)))) (-1895 (((-1058) $) NIL)) (-2124 (($) 13)) (-4037 (((-107) $) 12)) (-4123 (((-1022) $) NIL)) (-3733 (((-107) $) 11)) (-2269 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3745 (|has| |#1| (-777)) (|has| |#1| (-953 (-517)))))) (-2950 (((-703)) 34 (|has| |#1| (-777)))) (-2339 (($ $) NIL (|has| |#1| (-777)))) (-2813 (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3608 (($) 22 (|has| |#1| (-21)) CONST)) (-3617 (($) 31 (|has| |#1| (-777)) CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) 20)) (-1629 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1607 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1691 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1677 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-21)))))
+(((-765 |#1|) (-13 (-1004) (-381 |#1|) (-10 -8 (-15 -2124 ($)) (-15 -3733 ((-107) $)) (-15 -4037 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1004)) (T -765))
+((-2124 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1004)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1004)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1004)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))))
+(-13 (-1004) (-381 |#1|) (-10 -8 (-15 -2124 ($)) (-15 -3733 ((-107) $)) (-15 -4037 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-109) $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3654 ((|#1| (-109) |#1|) NIL)) (-1865 (((-107) $) NIL)) (-3186 (($ |#1| (-331 (-109))) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3856 (($ $ (-1 |#1| |#1|)) NIL)) (-3592 (($ $ (-1 |#1| |#1|)) NIL)) (-2607 ((|#1| $ |#1|) NIL)) (-3951 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-1683 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-766 |#1|) (-13 (-962) (-953 |#1|) (-953 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1683 ($ $)) (-15 -1683 ($ $ $)) (-15 -3951 (|#1| |#1|))) |%noBranch|) (-15 -3592 ($ $ (-1 |#1| |#1|))) (-15 -3856 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3654 (|#1| (-109) |#1|)) (-15 -3186 ($ |#1| (-331 (-109)))))) (-962)) (T -766))
+((-1683 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962)))) (-1683 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962)))) (-3951 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-766 *3)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-962)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-962)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-953 |#1|) (-953 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1683 ($ $)) (-15 -1683 ($ $ $)) (-15 -3951 (|#1| |#1|))) |%noBranch|) (-15 -3592 ($ $ (-1 |#1| |#1|))) (-15 -3856 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3654 (|#1| (-109) |#1|)) (-15 -3186 ($ |#1| (-331 (-109))))))
+((-2783 (((-189 (-467)) (-1058)) 8)))
+(((-767) (-10 -7 (-15 -2783 ((-189 (-467)) (-1058))))) (T -767))
+((-2783 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(-10 -7 (-15 -2783 ((-189 (-467)) (-1058))))
+((-2118 (((-107) $ $) 7)) (-2699 (((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 14) (((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 15)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-768) (-1187)) (T -768))
+((-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)))))) (-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)))))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) (-5 *2 (-951)))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-951)))))
+(-13 (-1004) (-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -2699 ((-951) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -2699 ((-951) (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2789 (((-951) (-583 (-286 (-349))) (-583 (-349))) 143) (((-951) (-286 (-349)) (-583 (-349))) 141) (((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-951) (-770)) 112) (((-951) (-770) (-974)) 111)) (-3615 (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770) (-974)) 76) (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770)) 78)) (-2000 (((-951) (-583 (-286 (-349))) (-583 (-349))) 144) (((-951) (-770)) 128)))
+(((-769) (-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770) (-974))) (-15 -2789 ((-951) (-770) (-974))) (-15 -2789 ((-951) (-770))) (-15 -2000 ((-951) (-770))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)))) (-15 -2789 ((-951) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2000 ((-951) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
+((-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-951)) (-5 *1 (-769)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-951)) (-5 *1 (-769)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-769)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-974)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-769)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-769)))))
+(-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-770) (-974))) (-15 -2789 ((-951) (-770) (-974))) (-15 -2789 ((-951) (-770))) (-15 -2000 ((-951) (-770))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2789 ((-951) (-286 (-349)) (-583 (-349)))) (-15 -2789 ((-951) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2000 ((-951) (-583 (-286 (-349))) (-583 (-349)))))
+((-2118 (((-107) $ $) NIL)) (-3388 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) $) 15)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))))) 12)) (-1583 (((-107) $ $) NIL)))
+(((-770) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2269 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -2269 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) $))))) (T -770))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))) (-5 *1 (-770)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))))) (-5 *1 (-770)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199))))))) (-5 *1 (-770)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2269 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) (-15 -2269 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))) $))))
+((-3308 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -3308 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3308 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1004) (-1004)) (T -771))
+((-3308 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *1 (-771 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
+(-10 -7 (-15 -3308 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3308 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL (|has| |#1| (-21)))) (-4016 (((-1022) $) 24)) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1323 (((-517) $) NIL (|has| |#1| (-777)))) (-1681 (($) NIL (|has| |#1| (-21)) CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 9)) (-3163 (((-3 $ "failed") $) 47 (|has| |#1| (-777)))) (-2253 (((-3 (-377 (-517)) "failed") $) 54 (|has| |#1| (-502)))) (-1654 (((-107) $) 49 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 52 (|has| |#1| (-502)))) (-3523 (((-107) $) NIL (|has| |#1| (-777)))) (-3141 (($) 13)) (-1865 (((-107) $) NIL (|has| |#1| (-777)))) (-1469 (((-107) $) NIL (|has| |#1| (-777)))) (-3152 (($) 14)) (-3456 (($ $ $) NIL (|has| |#1| (-777)))) (-4082 (($ $ $) NIL (|has| |#1| (-777)))) (-1895 (((-1058) $) NIL)) (-4037 (((-107) $) 12)) (-4123 (((-1022) $) NIL)) (-3733 (((-107) $) 11)) (-2269 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3745 (|has| |#1| (-777)) (|has| |#1| (-953 (-517)))))) (-2950 (((-703)) 41 (|has| |#1| (-777)))) (-2339 (($ $) NIL (|has| |#1| (-777)))) (-2813 (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3608 (($) 29 (|has| |#1| (-21)) CONST)) (-3617 (($) 38 (|has| |#1| (-777)) CONST)) (-1641 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) 27)) (-1629 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1607 (((-107) $ $) 48 (|has| |#1| (-777)))) (-1691 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1677 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-844)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 44 (|has| |#1| (-777))) (($ (-517) $) 32 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-844) $) NIL (|has| |#1| (-21)))))
+(((-772 |#1|) (-13 (-1004) (-381 |#1|) (-10 -8 (-15 -3141 ($)) (-15 -3152 ($)) (-15 -3733 ((-107) $)) (-15 -4037 ((-107) $)) (-15 -4016 ((-1022) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1004)) (T -772))
+((-3141 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1004)))) (-3152 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1004)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1004)))))
+(-13 (-1004) (-381 |#1|) (-10 -8 (-15 -3141 ($)) (-15 -3152 ($)) (-15 -3733 ((-107) $)) (-15 -4037 ((-107) $)) (-15 -4016 ((-1022) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+((-2118 (((-107) $ $) 7)) (-2397 (((-703)) 20)) (-2200 (($) 23)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-2031 (((-844) $) 22)) (-1895 (((-1058) $) 9)) (-2810 (($ (-844)) 21)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)))
+(((-773) (-1187)) (T -773))
NIL
(-13 (-779) (-338))
-(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1003) . T))
-((-3273 (((-107) (-1154 |#2|) (-1154 |#2|)) 17)) (-1871 (((-107) (-1154 |#2|) (-1154 |#2|)) 18)) (-1238 (((-107) (-1154 |#2|) (-1154 |#2|)) 14)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -1238 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -3273 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -1871 ((-107) (-1154 |#2|) (-1154 |#2|)))) (-703) (-724)) (T -774))
-((-1871 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-1238 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(-10 -7 (-15 -1238 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -3273 ((-107) (-1154 |#2|) (-1154 |#2|))) (-15 -1871 ((-107) (-1154 |#2|) (-1154 |#2|))))
-((-1587 (((-107) $ $) 7)) (-2706 (($) 24 T CONST)) (-3775 (((-3 $ "failed") $) 28)) (-3469 (((-107) $) 25)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-703)) 27) (($ $ (-843)) 22)) (-2411 (($) 23 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-843)) 21)) (* (($ $ $) 20)))
-(((-775) (-1185)) (T -775))
+(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1004) . T))
+((-3910 (((-107) (-1156 |#2|) (-1156 |#2|)) 17)) (-2668 (((-107) (-1156 |#2|) (-1156 |#2|)) 18)) (-1574 (((-107) (-1156 |#2|) (-1156 |#2|)) 14)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -1574 ((-107) (-1156 |#2|) (-1156 |#2|))) (-15 -3910 ((-107) (-1156 |#2|) (-1156 |#2|))) (-15 -2668 ((-107) (-1156 |#2|) (-1156 |#2|)))) (-703) (-724)) (T -774))
+((-2668 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-3910 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-1574 (*1 *2 *3 *3) (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(-10 -7 (-15 -1574 ((-107) (-1156 |#2|) (-1156 |#2|))) (-15 -3910 ((-107) (-1156 |#2|) (-1156 |#2|))) (-15 -2668 ((-107) (-1156 |#2|) (-1156 |#2|))))
+((-2118 (((-107) $ $) 7)) (-1681 (($) 24 T CONST)) (-3163 (((-3 $ "failed") $) 28)) (-1865 (((-107) $) 25)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-703)) 27) (($ $ (-844)) 22)) (-3617 (($) 23 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-844)) 21)) (* (($ $ $) 20)))
+(((-775) (-1187)) (T -775))
NIL
(-13 (-779) (-659))
-(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1015) . T) ((-1003) . T))
-((-3345 (((-517) $) 17)) (-3162 (((-107) $) 10)) (-1199 (((-107) $) 11)) (-1724 (($ $) 19)))
-(((-776 |#1|) (-10 -8 (-15 -1724 (|#1| |#1|)) (-15 -3345 ((-517) |#1|)) (-15 -1199 ((-107) |#1|)) (-15 -3162 ((-107) |#1|))) (-777)) (T -776))
-NIL
-(-10 -8 (-15 -1724 (|#1| |#1|)) (-15 -3345 ((-517) |#1|)) (-15 -1199 ((-107) |#1|)) (-15 -3162 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 24)) (-2646 (((-3 $ "failed") $ $) 26)) (-3345 (((-517) $) 33)) (-2706 (($) 23 T CONST)) (-3775 (((-3 $ "failed") $) 39)) (-3162 (((-107) $) 35)) (-3469 (((-107) $) 42)) (-1199 (((-107) $) 34)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 45)) (-1217 (((-703)) 44)) (-1724 (($ $) 32)) (-2196 (($ $ (-703)) 40) (($ $ (-843)) 36)) (-2398 (($) 22 T CONST)) (-2411 (($) 43 T CONST)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)) (-1663 (($ $ $) 28) (($ $) 27)) (-1645 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-843)) 37)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
-(((-777) (-1185)) (T -777))
-((-3162 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1199 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-1724 (*1 *1 *1) (-4 *1 (-777))))
-(-13 (-723) (-961) (-659) (-10 -8 (-15 -3162 ((-107) $)) (-15 -1199 ((-107) $)) (-15 -3345 ((-517) $)) (-15 -1724 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-4055 (($ $ $) 10)) (-3105 (($ $ $) 9)) (-1600 (((-107) $ $) 12)) (-1571 (((-107) $ $) 11)) (-1585 (((-107) $ $) 13)))
-(((-778 |#1|) (-10 -8 (-15 -4055 (|#1| |#1| |#1|)) (-15 -3105 (|#1| |#1| |#1|)) (-15 -1585 ((-107) |#1| |#1|)) (-15 -1600 ((-107) |#1| |#1|)) (-15 -1571 ((-107) |#1| |#1|))) (-779)) (T -778))
-NIL
-(-10 -8 (-15 -4055 (|#1| |#1| |#1|)) (-15 -3105 (|#1| |#1| |#1|)) (-15 -1585 ((-107) |#1| |#1|)) (-15 -1600 ((-107) |#1| |#1|)) (-15 -1571 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-4055 (($ $ $) 13)) (-3105 (($ $ $) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1600 (((-107) $ $) 16)) (-1571 (((-107) $ $) 17)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 15)) (-1558 (((-107) $ $) 18)))
-(((-779) (-1185)) (T -779))
-((-1558 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1571 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1600 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1585 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-3105 (*1 *1 *1 *1) (-4 *1 (-779))) (-4055 (*1 *1 *1 *1) (-4 *1 (-779))))
-(-13 (-1003) (-10 -8 (-15 -1558 ((-107) $ $)) (-15 -1571 ((-107) $ $)) (-15 -1600 ((-107) $ $)) (-15 -1585 ((-107) $ $)) (-15 -3105 ($ $ $)) (-15 -4055 ($ $ $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2537 (($ $ $) 45)) (-2094 (($ $ $) 44)) (-2805 (($ $ $) 42)) (-4008 (($ $ $) 51)) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 46)) (-3501 (((-3 $ "failed") $ $) 49)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2038 (($ $) 35)) (-1917 (($ $ $) 39)) (-3512 (($ $ $) 38)) (-2819 (($ $ $) 47)) (-1873 (($ $ $) 53)) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 41)) (-1702 (((-3 $ "failed") $ $) 48)) (-2483 (((-3 $ "failed") $ |#2|) 28)) (-4128 ((|#2| $) 32)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-3165 (((-583 |#2|) $) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-780 |#1| |#2|) (-10 -8 (-15 -2819 (|#1| |#1| |#1|)) (-15 -2970 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -3501 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2658 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -1873 (|#1| |#1| |#1|)) (-15 -1702 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3165 ((-583 |#2|) |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2254 ((-787) |#1|))) (-781 |#2|) (-961)) (T -780))
-NIL
-(-10 -8 (-15 -2819 (|#1| |#1| |#1|)) (-15 -2970 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -3501 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2658 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3244 |#1|)) |#1| |#1|)) (-15 -1873 (|#1| |#1| |#1|)) (-15 -1702 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1917 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2483 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3165 ((-583 |#2|) |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-2537 (($ $ $) 45 (|has| |#1| (-333)))) (-2094 (($ $ $) 46 (|has| |#1| (-333)))) (-2805 (($ $ $) 48 (|has| |#1| (-333)))) (-4008 (($ $ $) 43 (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 42 (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 47 (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3232 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1221 (($ $) 64)) (-3775 (((-3 $ "failed") $) 34)) (-2038 (($ $) 55 (|has| |#1| (-421)))) (-3469 (((-107) $) 31)) (-1336 (($ |#1| (-703)) 62)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57 (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 58 (|has| |#1| (-509)))) (-3876 (((-703) $) 66)) (-1917 (($ $ $) 52 (|has| |#1| (-333)))) (-3512 (($ $ $) 53 (|has| |#1| (-333)))) (-2819 (($ $ $) 41 (|has| |#1| (-333)))) (-1873 (($ $ $) 50 (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 49 (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 54 (|has| |#1| (-333)))) (-1193 ((|#1| $) 65)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-3625 (((-703) $) 67)) (-4128 ((|#1| $) 56 (|has| |#1| (-421)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-3165 (((-583 |#1|) $) 61)) (-4104 ((|#1| $ (-703)) 63)) (-1217 (((-703)) 29)) (-1695 ((|#1| $ |#1| |#1|) 60)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-781 |#1|) (-1185) (-961)) (T -781))
-((-3625 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1193 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1221 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-1695 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2483 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2154 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) (-3184 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-2038 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3487 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1917 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1702 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1873 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-781 *3)))) (-2805 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2231 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) (-2094 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3501 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4008 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2970 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-781 *3)))) (-2819 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3625 ((-703) $)) (-15 -3876 ((-703) $)) (-15 -1193 (|t#1| $)) (-15 -1221 ($ $)) (-15 -4104 (|t#1| $ (-703))) (-15 -1336 ($ |t#1| (-703))) (-15 -3165 ((-583 |t#1|) $)) (-15 -1695 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2483 ((-3 $ "failed") $ |t#1|)) (-15 -2154 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -3184 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4128 (|t#1| $)) (-15 -2038 ($ $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -3487 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -3512 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -1702 ((-3 $ "failed") $ $)) (-15 -1873 ($ $ $)) (-15 -2658 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $)) (-15 -2805 ($ $ $)) (-15 -2231 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -2094 ($ $ $)) (-15 -2537 ($ $ $)) (-15 -3501 ((-3 $ "failed") $ $)) (-15 -4008 ($ $ $)) (-15 -2970 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $)) (-15 -2819 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2786 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2231 (((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-3184 (((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-509)))) (-3487 (((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-333)))) (-1695 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -2786 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1695 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2154 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3184 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3487 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2231 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-961) (-781 |#1|)) (T -782))
-((-2231 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3487 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3184 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2154 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1695 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2786 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(-10 -7 (-15 -2786 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1695 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2154 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3184 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3487 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2231 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-333)))) (-2094 (($ $ $) NIL (|has| |#1| (-333)))) (-2805 (($ $ $) NIL (|has| |#1| (-333)))) (-4008 (($ $ $) NIL (|has| |#1| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-3501 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 25 (|has| |#1| (-333)))) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-3158 (((-787) $ (-787)) NIL)) (-3469 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) NIL)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 21 (|has| |#1| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 19 (|has| |#1| (-509)))) (-3876 (((-703) $) NIL)) (-1917 (($ $ $) NIL (|has| |#1| (-333)))) (-3512 (($ $ $) NIL (|has| |#1| (-333)))) (-2819 (($ $ $) NIL (|has| |#1| (-333)))) (-1873 (($ $ $) NIL (|has| |#1| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-1702 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 23 (|has| |#1| (-333)))) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3625 (((-703) $) NIL)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-1695 ((|#1| $ |#1| |#1|) 15)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-787))))) (-961) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
-((-3158 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-781 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-787)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#2| (-333)))) (-2094 (($ $ $) NIL (|has| |#2| (-333)))) (-2805 (($ $ $) NIL (|has| |#2| (-333)))) (-4008 (($ $ $) NIL (|has| |#2| (-333)))) (-2970 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#2| (-333)))) (-3501 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2231 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-333)))) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#2| (-421)))) (-3469 (((-107) $) NIL)) (-1336 (($ |#2| (-703)) 16)) (-3184 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-509)))) (-2154 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-509)))) (-3876 (((-703) $) NIL)) (-1917 (($ $ $) NIL (|has| |#2| (-333)))) (-3512 (($ $ $) NIL (|has| |#2| (-333)))) (-2819 (($ $ $) NIL (|has| |#2| (-333)))) (-1873 (($ $ $) NIL (|has| |#2| (-333)))) (-2658 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#2| (-333)))) (-1702 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3487 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-333)))) (-1193 ((|#2| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3625 (((-703) $) NIL)) (-4128 ((|#2| $) NIL (|has| |#2| (-421)))) (-2254 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (($ (-1150 |#1|)) 18)) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-703)) NIL)) (-1217 (((-703)) NIL)) (-1695 ((|#2| $ |#2| |#2|) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) 13 T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2254 ($ (-1150 |#1|))))) (-1074) (-961) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-781 |#2|) (-10 -8 (-15 -2254 ($ (-1150 |#1|)))))
-((-3991 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-4113 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-3918 ((|#1| (-703) |#1|) 31)) (-2449 ((|#1| (-703) |#1|) 29)) (-3721 ((|#1| (-703) |#1|) 28)))
-(((-785 |#1|) (-10 -7 (-15 -3721 (|#1| (-703) |#1|)) (-15 -2449 (|#1| (-703) |#1|)) (-15 -3918 (|#1| (-703) |#1|)) (-15 -4113 (|#1| (-703) |#1|)) (-15 -4113 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3991 (|#1| (-703) |#1|)) |%noBranch|)) (-156)) (T -785))
-((-3991 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-4113 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-4113 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3918 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2449 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3721 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -3721 (|#1| (-703) |#1|)) (-15 -2449 (|#1| (-703) |#1|)) (-15 -3918 (|#1| (-703) |#1|)) (-15 -4113 (|#1| (-703) |#1|)) (-15 -4113 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3991 (|#1| (-703) |#1|)) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-3207 (((-517) $) 12)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 18) (($ (-517)) 11)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 8)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 9)))
-(((-786) (-13 (-779) (-10 -8 (-15 -2254 ($ (-517))) (-15 -3207 ((-517) $))))) (T -786))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
-(-13 (-779) (-10 -8 (-15 -2254 ($ (-517))) (-15 -3207 ((-517) $))))
-((-1587 (((-107) $ $) NIL)) (-3749 (($ $ $) 115)) (-2093 (((-517) $) 30) (((-517)) 35)) (-1546 (($ (-517)) 44)) (-3736 (($ $ $) 45) (($ (-583 $)) 76)) (-1483 (($ $ (-583 $)) 74)) (-3873 (((-517) $) 33)) (-3974 (($ $ $) 63)) (-3411 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2139 (((-517) $) 32)) (-2791 (($ $ $) 62)) (-3881 (($ $) 105)) (-3570 (($ $ $) 119)) (-2418 (($ (-583 $)) 52)) (-1649 (($ $ (-583 $)) 69)) (-2487 (($ (-517) (-517)) 46)) (-3522 (($ $) 116) (($ $ $) 117)) (-3633 (($ $ (-517)) 40) (($ $) 43)) (-2532 (($ $ $) 89)) (-2888 (($ $ $) 122)) (-1431 (($ $) 106)) (-2509 (($ $ $) 90)) (-2533 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2813 (((-1159) $) 8)) (-2628 (($ $) 109) (($ $ (-703)) 112)) (-3897 (($ $ $) 65)) (-1690 (($ $ $) 64)) (-1651 (($ $ (-583 $)) 100)) (-3924 (($ $ $) 104)) (-1362 (($ (-583 $)) 50)) (-2870 (($ $) 60) (($ (-583 $)) 61)) (-2452 (($ $ $) 113)) (-1610 (($ $) 107)) (-2112 (($ $ $) 118)) (-3158 (($ (-517)) 20) (($ (-1074)) 22) (($ (-1057)) 29) (($ (-199)) 24)) (-4024 (($ $ $) 93)) (-2650 (($ $) 94)) (-2292 (((-1159) (-1057)) 14)) (-3911 (($ (-1057)) 13)) (-1884 (($ (-583 (-583 $))) 48)) (-3623 (($ $ (-517)) 39) (($ $) 42)) (-1277 (((-1057) $) NIL)) (-1328 (($ $ $) 121)) (-3594 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1511 (((-107) $) 98)) (-2915 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-1281 (($ (-517)) 36)) (-1916 (((-517) $) 31) (((-517)) 34)) (-1831 (($ $ $) 37) (($ (-583 $)) 75)) (-3214 (((-1021) $) NIL)) (-2483 (($ $ $) 91)) (-2756 (($) 12)) (-1437 (($ $ (-583 $)) 99)) (-1369 (($ $) 108) (($ $ (-703)) 111)) (-2494 (($ $ $) 88)) (-1248 (($ $ (-703)) 127)) (-1769 (($ (-583 $)) 51)) (-2254 (((-787) $) 18)) (-2984 (($ $ (-517)) 38) (($ $) 41)) (-1953 (($ $) 58) (($ (-583 $)) 59)) (-3171 (($ $) 56) (($ (-583 $)) 57)) (-3137 (($ $) 114)) (-2763 (($ (-583 $)) 55)) (-4033 (($ $ $) 97)) (-1906 (($ $ $) 120)) (-4032 (($ $ $) 92)) (-2459 (($ $ $) 77)) (-2957 (($ $ $) 95) (($ $) 96)) (-1600 (($ $ $) 81)) (-1571 (($ $ $) 79)) (-1534 (((-107) $ $) 15) (($ $ $) 16)) (-1585 (($ $ $) 80)) (-1558 (($ $ $) 78)) (-1678 (($ $ $) 86)) (-1663 (($ $ $) 83) (($ $) 84)) (-1645 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-787) (-13 (-1003) (-10 -8 (-15 -2813 ((-1159) $)) (-15 -3911 ($ (-1057))) (-15 -2292 ((-1159) (-1057))) (-15 -3158 ($ (-517))) (-15 -3158 ($ (-1074))) (-15 -3158 ($ (-1057))) (-15 -3158 ($ (-199))) (-15 -2756 ($)) (-15 -2093 ((-517) $)) (-15 -1916 ((-517) $)) (-15 -2093 ((-517))) (-15 -1916 ((-517))) (-15 -2139 ((-517) $)) (-15 -3873 ((-517) $)) (-15 -1281 ($ (-517))) (-15 -1546 ($ (-517))) (-15 -2487 ($ (-517) (-517))) (-15 -3623 ($ $ (-517))) (-15 -3633 ($ $ (-517))) (-15 -2984 ($ $ (-517))) (-15 -3623 ($ $)) (-15 -3633 ($ $)) (-15 -2984 ($ $)) (-15 -1831 ($ $ $)) (-15 -3736 ($ $ $)) (-15 -1831 ($ (-583 $))) (-15 -3736 ($ (-583 $))) (-15 -1651 ($ $ (-583 $))) (-15 -2915 ($ $ (-583 $))) (-15 -2915 ($ $ $ $)) (-15 -3924 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1437 ($ $ (-583 $))) (-15 -3881 ($ $)) (-15 -1328 ($ $ $)) (-15 -3137 ($ $)) (-15 -1884 ($ (-583 (-583 $)))) (-15 -3749 ($ $ $)) (-15 -3522 ($ $)) (-15 -3522 ($ $ $)) (-15 -2112 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -1906 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -1248 ($ $ (-703))) (-15 -4033 ($ $ $)) (-15 -2791 ($ $ $)) (-15 -3974 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -1649 ($ $ (-583 $))) (-15 -1483 ($ $ (-583 $))) (-15 -1431 ($ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ (-703))) (-15 -2628 ($ $)) (-15 -2628 ($ $ (-703))) (-15 -1610 ($ $)) (-15 -2452 ($ $ $)) (-15 -3411 ($ $)) (-15 -3411 ($ $ $)) (-15 -3411 ($ $ $ $)) (-15 -2533 ($ $)) (-15 -2533 ($ $ $)) (-15 -2533 ($ $ $ $)) (-15 -3594 ($ $)) (-15 -3594 ($ $ $)) (-15 -3594 ($ $ $ $)) (-15 -3171 ($ $)) (-15 -3171 ($ (-583 $))) (-15 -1953 ($ $)) (-15 -1953 ($ (-583 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-583 $))) (-15 -1362 ($ (-583 $))) (-15 -1769 ($ (-583 $))) (-15 -2418 ($ (-583 $))) (-15 -2763 ($ (-583 $))) (-15 -1534 ($ $ $)) (-15 -2459 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1571 ($ $ $)) (-15 -1585 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -1663 ($ $)) (-15 * ($ $ $)) (-15 -1678 ($ $ $)) (-15 ** ($ $ $)) (-15 -2494 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -2509 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -2650 ($ $)) (-15 -2957 ($ $ $)) (-15 -2957 ($ $))))) (T -787))
-((-2813 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-787)))) (-3911 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-787)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-787)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-2756 (*1 *1) (-5 *1 (-787))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2093 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1916 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1281 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2487 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3623 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3633 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2984 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3623 (*1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1) (-5 *1 (-787))) (-2984 (*1 *1 *1) (-5 *1 (-787))) (-1831 (*1 *1 *1 *1) (-5 *1 (-787))) (-3736 (*1 *1 *1 *1) (-5 *1 (-787))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1651 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2915 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2915 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3924 (*1 *1 *1 *1) (-5 *1 (-787))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3881 (*1 *1 *1) (-5 *1 (-787))) (-1328 (*1 *1 *1 *1) (-5 *1 (-787))) (-3137 (*1 *1 *1) (-5 *1 (-787))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-3749 (*1 *1 *1 *1) (-5 *1 (-787))) (-3522 (*1 *1 *1) (-5 *1 (-787))) (-3522 (*1 *1 *1 *1) (-5 *1 (-787))) (-2112 (*1 *1 *1 *1) (-5 *1 (-787))) (-3570 (*1 *1 *1 *1) (-5 *1 (-787))) (-1906 (*1 *1 *1 *1) (-5 *1 (-787))) (-2888 (*1 *1 *1 *1) (-5 *1 (-787))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-4033 (*1 *1 *1 *1) (-5 *1 (-787))) (-2791 (*1 *1 *1 *1) (-5 *1 (-787))) (-3974 (*1 *1 *1 *1) (-5 *1 (-787))) (-1690 (*1 *1 *1 *1) (-5 *1 (-787))) (-3897 (*1 *1 *1 *1) (-5 *1 (-787))) (-1649 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1431 (*1 *1 *1) (-5 *1 (-787))) (-1369 (*1 *1 *1) (-5 *1 (-787))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2628 (*1 *1 *1) (-5 *1 (-787))) (-2628 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1610 (*1 *1 *1) (-5 *1 (-787))) (-2452 (*1 *1 *1 *1) (-5 *1 (-787))) (-3411 (*1 *1 *1) (-5 *1 (-787))) (-3411 (*1 *1 *1 *1) (-5 *1 (-787))) (-3411 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2533 (*1 *1 *1) (-5 *1 (-787))) (-2533 (*1 *1 *1 *1) (-5 *1 (-787))) (-2533 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3594 (*1 *1 *1) (-5 *1 (-787))) (-3594 (*1 *1 *1 *1) (-5 *1 (-787))) (-3594 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3171 (*1 *1 *1) (-5 *1 (-787))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1953 (*1 *1 *1) (-5 *1 (-787))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2870 (*1 *1 *1) (-5 *1 (-787))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2763 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1534 (*1 *1 *1 *1) (-5 *1 (-787))) (-2459 (*1 *1 *1 *1) (-5 *1 (-787))) (-1558 (*1 *1 *1 *1) (-5 *1 (-787))) (-1571 (*1 *1 *1 *1) (-5 *1 (-787))) (-1585 (*1 *1 *1 *1) (-5 *1 (-787))) (-1600 (*1 *1 *1 *1) (-5 *1 (-787))) (-1645 (*1 *1 *1 *1) (-5 *1 (-787))) (-1663 (*1 *1 *1 *1) (-5 *1 (-787))) (-1663 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1678 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2494 (*1 *1 *1 *1) (-5 *1 (-787))) (-2532 (*1 *1 *1 *1) (-5 *1 (-787))) (-2509 (*1 *1 *1 *1) (-5 *1 (-787))) (-2483 (*1 *1 *1 *1) (-5 *1 (-787))) (-4032 (*1 *1 *1 *1) (-5 *1 (-787))) (-4024 (*1 *1 *1 *1) (-5 *1 (-787))) (-2650 (*1 *1 *1) (-5 *1 (-787))) (-2957 (*1 *1 *1 *1) (-5 *1 (-787))) (-2957 (*1 *1 *1) (-5 *1 (-787))))
-(-13 (-1003) (-10 -8 (-15 -2813 ((-1159) $)) (-15 -3911 ($ (-1057))) (-15 -2292 ((-1159) (-1057))) (-15 -3158 ($ (-517))) (-15 -3158 ($ (-1074))) (-15 -3158 ($ (-1057))) (-15 -3158 ($ (-199))) (-15 -2756 ($)) (-15 -2093 ((-517) $)) (-15 -1916 ((-517) $)) (-15 -2093 ((-517))) (-15 -1916 ((-517))) (-15 -2139 ((-517) $)) (-15 -3873 ((-517) $)) (-15 -1281 ($ (-517))) (-15 -1546 ($ (-517))) (-15 -2487 ($ (-517) (-517))) (-15 -3623 ($ $ (-517))) (-15 -3633 ($ $ (-517))) (-15 -2984 ($ $ (-517))) (-15 -3623 ($ $)) (-15 -3633 ($ $)) (-15 -2984 ($ $)) (-15 -1831 ($ $ $)) (-15 -3736 ($ $ $)) (-15 -1831 ($ (-583 $))) (-15 -3736 ($ (-583 $))) (-15 -1651 ($ $ (-583 $))) (-15 -2915 ($ $ (-583 $))) (-15 -2915 ($ $ $ $)) (-15 -3924 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1437 ($ $ (-583 $))) (-15 -3881 ($ $)) (-15 -1328 ($ $ $)) (-15 -3137 ($ $)) (-15 -1884 ($ (-583 (-583 $)))) (-15 -3749 ($ $ $)) (-15 -3522 ($ $)) (-15 -3522 ($ $ $)) (-15 -2112 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -1906 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -1248 ($ $ (-703))) (-15 -4033 ($ $ $)) (-15 -2791 ($ $ $)) (-15 -3974 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -1649 ($ $ (-583 $))) (-15 -1483 ($ $ (-583 $))) (-15 -1431 ($ $)) (-15 -1369 ($ $)) (-15 -1369 ($ $ (-703))) (-15 -2628 ($ $)) (-15 -2628 ($ $ (-703))) (-15 -1610 ($ $)) (-15 -2452 ($ $ $)) (-15 -3411 ($ $)) (-15 -3411 ($ $ $)) (-15 -3411 ($ $ $ $)) (-15 -2533 ($ $)) (-15 -2533 ($ $ $)) (-15 -2533 ($ $ $ $)) (-15 -3594 ($ $)) (-15 -3594 ($ $ $)) (-15 -3594 ($ $ $ $)) (-15 -3171 ($ $)) (-15 -3171 ($ (-583 $))) (-15 -1953 ($ $)) (-15 -1953 ($ (-583 $))) (-15 -2870 ($ $)) (-15 -2870 ($ (-583 $))) (-15 -1362 ($ (-583 $))) (-15 -1769 ($ (-583 $))) (-15 -2418 ($ (-583 $))) (-15 -2763 ($ (-583 $))) (-15 -1534 ($ $ $)) (-15 -2459 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1571 ($ $ $)) (-15 -1585 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -1645 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -1663 ($ $)) (-15 * ($ $ $)) (-15 -1678 ($ $ $)) (-15 ** ($ $ $)) (-15 -2494 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -2509 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -2650 ($ $)) (-15 -2957 ($ $ $)) (-15 -2957 ($ $))))
-((-1458 (((-1159) (-583 (-51))) 24)) (-2113 (((-1159) (-1057) (-787)) 14) (((-1159) (-787)) 9) (((-1159) (-1057)) 11)))
-(((-788) (-10 -7 (-15 -2113 ((-1159) (-1057))) (-15 -2113 ((-1159) (-787))) (-15 -2113 ((-1159) (-1057) (-787))) (-15 -1458 ((-1159) (-583 (-51)))))) (T -788))
-((-1458 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-788)))))
-(-10 -7 (-15 -2113 ((-1159) (-1057))) (-15 -2113 ((-1159) (-787))) (-15 -2113 ((-1159) (-1057) (-787))) (-15 -1458 ((-1159) (-583 (-51)))))
-((-1587 (((-107) $ $) NIL)) (-3518 (((-3 $ "failed") (-1074)) 32)) (-1719 (((-703)) 30)) (-4100 (($) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-4034 (((-843) $) 28)) (-1277 (((-1057) $) 38)) (-3544 (($ (-843)) 27)) (-3214 (((-1021) $) NIL)) (-3667 (((-1074) $) 13) (((-493) $) 19) (((-814 (-349)) $) 25) (((-814 (-517)) $) 22)) (-2254 (((-787) $) 16)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 35)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 34)))
-(((-789 |#1|) (-13 (-773) (-558 (-1074)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -3518 ((-3 $ "failed") (-1074))))) (-583 (-1074))) (T -789))
-((-3518 (*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
-(-13 (-773) (-558 (-1074)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -3518 ((-3 $ "failed") (-1074)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (((-874 |#1|) $) NIL) (($ (-874 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-1217 (((-703)) NIL)) (-1732 (((-1159) (-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-790 |#1| |#2| |#3| |#4|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2254 ((-874 |#1|) $)) (-15 -2254 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1678 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1732 ((-1159) (-703))))) (-961) (-583 (-1074)) (-583 (-703)) (-703)) (T -790))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1678 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 *3)) (-14 *7 *3))))
-(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2254 ((-874 |#1|) $)) (-15 -2254 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1678 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1732 ((-1159) (-703)))))
-((-3169 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-2146 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
-(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -2146 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3169 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1146 |#1|) (-1131 |#1|)) (T -791))
-((-3169 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))) (-2146 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))))
-(-10 -7 (-15 -2146 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3169 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
-((-2146 (((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 26)))
-(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -2146 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (-15 -2146 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|)))) (-333) (-1074) |#1|) (T -792))
-((-2146 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-2146 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
-(-10 -7 (-15 -2146 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (-15 -2146 ((-3 (-377 (-1128 |#2| |#1|)) "failed") (-703) (-703) (-1147 |#1| |#2| |#3|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-1386 (($ $ (-517)) 62)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-3522 (($ (-1070 (-517)) (-517)) 61)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-3571 (($ $) 64)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3730 (((-703) $) 69)) (-3469 (((-107) $) 31)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3668 (((-517)) 66)) (-2741 (((-517) $) 65)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2204 (($ $ (-517)) 68)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-2405 (((-1055 (-517)) $) 70)) (-1486 (($ $) 67)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-3405 (((-517) $ (-517)) 63)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-793 |#1|) (-1185) (-517)) (T -793))
-((-2405 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1055 (-517))))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1486 (*1 *1 *1) (-4 *1 (-793 *2))) (-3668 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3571 (*1 *1 *1) (-4 *1 (-793 *2))) (-3405 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1386 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3522 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(-13 (-278) (-134) (-10 -8 (-15 -2405 ((-1055 (-517)) $)) (-15 -3730 ((-703) $)) (-15 -2204 ($ $ (-517))) (-15 -1486 ($ $)) (-15 -3668 ((-517))) (-15 -2741 ((-517) $)) (-15 -3571 ($ $)) (-15 -3405 ((-517) $ (-517))) (-15 -1386 ($ $ (-517))) (-15 -3522 ($ (-1070 (-517)) (-517)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $ (-517)) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3522 (($ (-1070 (-517)) (-517)) NIL)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3571 (($ $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3730 (((-703) $) NIL)) (-3469 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3668 (((-517)) NIL)) (-2741 (((-517) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2204 (($ $ (-517)) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2405 (((-1055 (-517)) $) NIL)) (-1486 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-3405 (((-517) $ (-517)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1016) . T) ((-1004) . T))
+((-1323 (((-517) $) 17)) (-3523 (((-107) $) 10)) (-1469 (((-107) $) 11)) (-2339 (($ $) 19)))
+(((-776 |#1|) (-10 -8 (-15 -2339 (|#1| |#1|)) (-15 -1323 ((-517) |#1|)) (-15 -1469 ((-107) |#1|)) (-15 -3523 ((-107) |#1|))) (-777)) (T -776))
+NIL
+(-10 -8 (-15 -2339 (|#1| |#1|)) (-15 -1323 ((-517) |#1|)) (-15 -1469 ((-107) |#1|)) (-15 -3523 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 24)) (-1250 (((-3 $ "failed") $ $) 26)) (-1323 (((-517) $) 33)) (-1681 (($) 23 T CONST)) (-3163 (((-3 $ "failed") $) 39)) (-3523 (((-107) $) 35)) (-1865 (((-107) $) 42)) (-1469 (((-107) $) 34)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 45)) (-2950 (((-703)) 44)) (-2339 (($ $) 32)) (-2813 (($ $ (-703)) 40) (($ $ (-844)) 36)) (-3608 (($) 22 T CONST)) (-3617 (($) 43 T CONST)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)) (-1691 (($ $ $) 28) (($ $) 27)) (-1677 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-844)) 37)) (* (($ (-703) $) 25) (($ (-844) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
+(((-777) (-1187)) (T -777))
+((-3523 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-2339 (*1 *1 *1) (-4 *1 (-777))))
+(-13 (-723) (-962) (-659) (-10 -8 (-15 -3523 ((-107) $)) (-15 -1469 ((-107) $)) (-15 -1323 ((-517) $)) (-15 -2339 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3456 (($ $ $) 10)) (-4082 (($ $ $) 9)) (-1641 (((-107) $ $) 13)) (-1617 (((-107) $ $) 11)) (-1629 (((-107) $ $) 14)))
+(((-778 |#1|) (-10 -8 (-15 -3456 (|#1| |#1| |#1|)) (-15 -4082 (|#1| |#1| |#1|)) (-15 -1629 ((-107) |#1| |#1|)) (-15 -1641 ((-107) |#1| |#1|)) (-15 -1617 ((-107) |#1| |#1|))) (-779)) (T -778))
+NIL
+(-10 -8 (-15 -3456 (|#1| |#1| |#1|)) (-15 -4082 (|#1| |#1| |#1|)) (-15 -1629 ((-107) |#1| |#1|)) (-15 -1641 ((-107) |#1| |#1|)) (-15 -1617 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-3456 (($ $ $) 13)) (-4082 (($ $ $) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1641 (((-107) $ $) 16)) (-1617 (((-107) $ $) 17)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 15)) (-1607 (((-107) $ $) 18)))
+(((-779) (-1187)) (T -779))
+((-1607 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1617 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1641 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1629 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-4082 (*1 *1 *1 *1) (-4 *1 (-779))) (-3456 (*1 *1 *1 *1) (-4 *1 (-779))))
+(-13 (-1004) (-10 -8 (-15 -1607 ((-107) $ $)) (-15 -1617 ((-107) $ $)) (-15 -1641 ((-107) $ $)) (-15 -1629 ((-107) $ $)) (-15 -4082 ($ $ $)) (-15 -3456 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-3344 (($ $ $) 46)) (-4089 (($ $ $) 45)) (-3170 (($ $ $) 43)) (-1293 (($ $ $) 52)) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 47)) (-1719 (((-3 $ "failed") $ $) 50)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2186 (($ $) 36)) (-2995 (($ $ $) 40)) (-1523 (($ $ $) 39)) (-3064 (($ $ $) 48)) (-3897 (($ $ $) 54)) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 42)) (-1982 (((-3 $ "failed") $ $) 49)) (-2327 (((-3 $ "failed") $ |#2|) 29)) (-2035 ((|#2| $) 33)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-2907 (((-583 |#2|) $) 19)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
+(((-780 |#1| |#2|) (-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -3757 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -1293 (|#1| |#1| |#1|)) (-15 -1719 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -4089 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3477 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -1982 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 ((-583 |#2|) |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -2269 ((-787) |#1|))) (-781 |#2|) (-962)) (T -780))
+NIL
+(-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -3757 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -1293 (|#1| |#1| |#1|)) (-15 -1719 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -4089 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3477 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1317 |#1|)) |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -1982 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2327 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 ((-583 |#2|) |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3344 (($ $ $) 45 (|has| |#1| (-333)))) (-4089 (($ $ $) 46 (|has| |#1| (-333)))) (-3170 (($ $ $) 48 (|has| |#1| (-333)))) (-1293 (($ $ $) 43 (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 42 (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 47 (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) 74 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3388 (((-517) $) 75 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 68)) (-2371 (($ $) 64)) (-3163 (((-3 $ "failed") $) 34)) (-2186 (($ $) 55 (|has| |#1| (-421)))) (-1865 (((-107) $) 31)) (-2077 (($ |#1| (-703)) 62)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57 (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 58 (|has| |#1| (-509)))) (-2210 (((-703) $) 66)) (-2995 (($ $ $) 52 (|has| |#1| (-333)))) (-1523 (($ $ $) 53 (|has| |#1| (-333)))) (-3064 (($ $ $) 41 (|has| |#1| (-333)))) (-3897 (($ $ $) 50 (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 49 (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 54 (|has| |#1| (-333)))) (-2345 ((|#1| $) 65)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-2769 (((-703) $) 67)) (-2035 ((|#1| $) 56 (|has| |#1| (-421)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) 70)) (-2907 (((-583 |#1|) $) 61)) (-3952 ((|#1| $ (-703)) 63)) (-2950 (((-703)) 29)) (-2374 ((|#1| $ |#1| |#1|) 60)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-781 |#1|) (-1187) (-962)) (T -781))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-962)))) (-2077 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-962)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-583 *3)))) (-2374 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)))) (-2327 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-509)))) (-3524 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3)))) (-3659 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-421)))) (-2186 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-421)))) (-1696 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3)))) (-1523 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-2995 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-1982 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-3897 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-3477 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1))) (-4 *1 (-781 *3)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-3922 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3)))) (-4089 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-3344 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-1719 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-1293 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1))) (-4 *1 (-781 *3)))) (-3064 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(-13 (-962) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -2769 ((-703) $)) (-15 -2210 ((-703) $)) (-15 -2345 (|t#1| $)) (-15 -2371 ($ $)) (-15 -3952 (|t#1| $ (-703))) (-15 -2077 ($ |t#1| (-703))) (-15 -2907 ((-583 |t#1|) $)) (-15 -2374 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2327 ((-3 $ "failed") $ |t#1|)) (-15 -3524 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -3659 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2035 (|t#1| $)) (-15 -2186 ($ $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -1696 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -1523 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -1982 ((-3 $ "failed") $ $)) (-15 -3897 ($ $ $)) (-15 -3477 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $)) (-15 -3170 ($ $ $)) (-15 -3922 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -4089 ($ $ $)) (-15 -3344 ($ $ $)) (-15 -1719 ((-3 $ "failed") $ $)) (-15 -1293 ($ $ $)) (-15 -3757 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $)) (-15 -3064 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2384 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-3922 (((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-333)))) (-3659 (((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-1696 (((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2374 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -2384 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2374 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3524 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3659 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1696 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3922 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-962) (-781 |#1|)) (T -782))
+((-3922 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1696 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3659 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3524 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2374 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2384 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(-10 -7 (-15 -2384 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2374 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3524 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3659 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1696 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3922 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3344 (($ $ $) NIL (|has| |#1| (-333)))) (-4089 (($ $ $) NIL (|has| |#1| (-333)))) (-3170 (($ $ $) NIL (|has| |#1| (-333)))) (-1293 (($ $ $) NIL (|has| |#1| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 25 (|has| |#1| (-333)))) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-1927 (((-787) $ (-787)) NIL)) (-1865 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) NIL)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 21 (|has| |#1| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 19 (|has| |#1| (-509)))) (-2210 (((-703) $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-333)))) (-1523 (($ $ $) NIL (|has| |#1| (-333)))) (-3064 (($ $ $) NIL (|has| |#1| (-333)))) (-3897 (($ $ $) NIL (|has| |#1| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-1982 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 23 (|has| |#1| (-333)))) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2769 (((-703) $) NIL)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-953 (-377 (-517))))) (($ |#1|) NIL)) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2374 ((|#1| $ |#1| |#1|) 15)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-787))))) (-962) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
+((-1927 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-781 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-787)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3344 (($ $ $) NIL (|has| |#2| (-333)))) (-4089 (($ $ $) NIL (|has| |#2| (-333)))) (-3170 (($ $ $) NIL (|has| |#2| (-333)))) (-1293 (($ $ $) NIL (|has| |#2| (-333)))) (-3757 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#2| (-333)))) (-1719 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3922 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-333)))) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) ((|#2| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#2| (-421)))) (-1865 (((-107) $) NIL)) (-2077 (($ |#2| (-703)) 16)) (-3659 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-509)))) (-3524 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-509)))) (-2210 (((-703) $) NIL)) (-2995 (($ $ $) NIL (|has| |#2| (-333)))) (-1523 (($ $ $) NIL (|has| |#2| (-333)))) (-3064 (($ $ $) NIL (|has| |#2| (-333)))) (-3897 (($ $ $) NIL (|has| |#2| (-333)))) (-3477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#2| (-333)))) (-1982 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1696 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-333)))) (-2345 ((|#2| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2769 (((-703) $) NIL)) (-2035 ((|#2| $) NIL (|has| |#2| (-421)))) (-2269 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-953 (-377 (-517))))) (($ |#2|) NIL) (($ (-1152 |#1|)) 18)) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-703)) NIL)) (-2950 (((-703)) NIL)) (-2374 ((|#2| $ |#2| |#2|) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) 13 T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2269 ($ (-1152 |#1|))))) (-1075) (-962) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *3)) (-14 *3 (-1075)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-781 |#2|) (-10 -8 (-15 -2269 ($ (-1152 |#1|)))))
+((-2572 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-4165 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-1790 ((|#1| (-703) |#1|) 31)) (-2911 ((|#1| (-703) |#1|) 29)) (-3050 ((|#1| (-703) |#1|) 28)))
+(((-785 |#1|) (-10 -7 (-15 -3050 (|#1| (-703) |#1|)) (-15 -2911 (|#1| (-703) |#1|)) (-15 -1790 (|#1| (-703) |#1|)) (-15 -4165 (|#1| (-703) |#1|)) (-15 -4165 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2572 (|#1| (-703) |#1|)) |%noBranch|)) (-156)) (T -785))
+((-2572 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-4165 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-4165 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1790 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2911 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3050 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -3050 (|#1| (-703) |#1|)) (-15 -2911 (|#1| (-703) |#1|)) (-15 -1790 (|#1| (-703) |#1|)) (-15 -4165 (|#1| (-703) |#1|)) (-15 -4165 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2572 (|#1| (-703) |#1|)) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-3119 (((-517) $) 12)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 18) (($ (-517)) 11)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 8)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 9)))
+(((-786) (-13 (-779) (-10 -8 (-15 -2269 ($ (-517))) (-15 -3119 ((-517) $))))) (T -786))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
+(-13 (-779) (-10 -8 (-15 -2269 ($ (-517))) (-15 -3119 ((-517) $))))
+((-2118 (((-107) $ $) NIL)) (-1321 (($ $ $) 115)) (-3417 (((-517) $) 30) (((-517)) 35)) (-3939 (($ (-517)) 44)) (-4117 (($ $ $) 45) (($ (-583 $)) 76)) (-2712 (($ $ (-583 $)) 74)) (-3309 (((-517) $) 33)) (-4099 (($ $ $) 63)) (-3452 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1226 (((-517) $) 32)) (-1627 (($ $ $) 62)) (-1517 (($ $) 105)) (-1557 (($ $ $) 119)) (-2652 (($ (-583 $)) 52)) (-3691 (($ $ (-583 $)) 69)) (-2475 (($ (-517) (-517)) 46)) (-2986 (($ $) 116) (($ $ $) 117)) (-3298 (($ $ (-517)) 40) (($ $) 43)) (-2378 (($ $ $) 89)) (-2653 (($ $ $) 122)) (-1253 (($ $) 106)) (-2354 (($ $ $) 90)) (-3367 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3404 (((-1161) $) 8)) (-3267 (($ $) 109) (($ $ (-703)) 112)) (-3640 (($ $ $) 65)) (-1674 (($ $ $) 64)) (-4023 (($ $ (-583 $)) 100)) (-1832 (($ $ $) 104)) (-2728 (($ (-583 $)) 50)) (-3039 (($ $) 60) (($ (-583 $)) 61)) (-2266 (($ $ $) 113)) (-4064 (($ $) 107)) (-1781 (($ $ $) 118)) (-1927 (($ (-517)) 20) (($ (-1075)) 22) (($ (-1058)) 29) (($ (-199)) 24)) (-3977 (($ $ $) 93)) (-2477 (($ $) 94)) (-4167 (((-1161) (-1058)) 14)) (-2941 (($ (-1058)) 13)) (-2369 (($ (-583 (-583 $))) 48)) (-3286 (($ $ (-517)) 39) (($ $) 42)) (-1895 (((-1058) $) NIL)) (-3022 (($ $ $) 121)) (-1418 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2626 (((-107) $) 98)) (-4151 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-2892 (($ (-517)) 36)) (-1807 (((-517) $) 31) (((-517)) 34)) (-1768 (($ $ $) 37) (($ (-583 $)) 75)) (-4123 (((-1022) $) NIL)) (-2327 (($ $ $) 91)) (-1529 (($) 12)) (-2607 (($ $ (-583 $)) 99)) (-3989 (($ $) 108) (($ $ (-703)) 111)) (-2340 (($ $ $) 88)) (-2059 (($ $ (-703)) 127)) (-1235 (($ (-583 $)) 51)) (-2269 (((-787) $) 18)) (-3567 (($ $ (-517)) 38) (($ $) 41)) (-1365 (($ $) 58) (($ (-583 $)) 59)) (-3073 (($ $) 56) (($ (-583 $)) 57)) (-3438 (($ $) 114)) (-1823 (($ (-583 $)) 55)) (-3972 (($ $ $) 97)) (-2280 (($ $ $) 120)) (-3992 (($ $ $) 92)) (-2480 (($ $ $) 77)) (-1605 (($ $ $) 95) (($ $) 96)) (-1641 (($ $ $) 81)) (-1617 (($ $ $) 79)) (-1583 (((-107) $ $) 15) (($ $ $) 16)) (-1629 (($ $ $) 80)) (-1607 (($ $ $) 78)) (-1703 (($ $ $) 86)) (-1691 (($ $ $) 83) (($ $) 84)) (-1677 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-787) (-13 (-1004) (-10 -8 (-15 -3404 ((-1161) $)) (-15 -2941 ($ (-1058))) (-15 -4167 ((-1161) (-1058))) (-15 -1927 ($ (-517))) (-15 -1927 ($ (-1075))) (-15 -1927 ($ (-1058))) (-15 -1927 ($ (-199))) (-15 -1529 ($)) (-15 -3417 ((-517) $)) (-15 -1807 ((-517) $)) (-15 -3417 ((-517))) (-15 -1807 ((-517))) (-15 -1226 ((-517) $)) (-15 -3309 ((-517) $)) (-15 -2892 ($ (-517))) (-15 -3939 ($ (-517))) (-15 -2475 ($ (-517) (-517))) (-15 -3286 ($ $ (-517))) (-15 -3298 ($ $ (-517))) (-15 -3567 ($ $ (-517))) (-15 -3286 ($ $)) (-15 -3298 ($ $)) (-15 -3567 ($ $)) (-15 -1768 ($ $ $)) (-15 -4117 ($ $ $)) (-15 -1768 ($ (-583 $))) (-15 -4117 ($ (-583 $))) (-15 -4023 ($ $ (-583 $))) (-15 -4151 ($ $ (-583 $))) (-15 -4151 ($ $ $ $)) (-15 -1832 ($ $ $)) (-15 -2626 ((-107) $)) (-15 -2607 ($ $ (-583 $))) (-15 -1517 ($ $)) (-15 -3022 ($ $ $)) (-15 -3438 ($ $)) (-15 -2369 ($ (-583 (-583 $)))) (-15 -1321 ($ $ $)) (-15 -2986 ($ $)) (-15 -2986 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -2280 ($ $ $)) (-15 -2653 ($ $ $)) (-15 -2059 ($ $ (-703))) (-15 -3972 ($ $ $)) (-15 -1627 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3640 ($ $ $)) (-15 -3691 ($ $ (-583 $))) (-15 -2712 ($ $ (-583 $))) (-15 -1253 ($ $)) (-15 -3989 ($ $)) (-15 -3989 ($ $ (-703))) (-15 -3267 ($ $)) (-15 -3267 ($ $ (-703))) (-15 -4064 ($ $)) (-15 -2266 ($ $ $)) (-15 -3452 ($ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ $ $)) (-15 -3367 ($ $)) (-15 -3367 ($ $ $)) (-15 -3367 ($ $ $ $)) (-15 -1418 ($ $)) (-15 -1418 ($ $ $)) (-15 -1418 ($ $ $ $)) (-15 -3073 ($ $)) (-15 -3073 ($ (-583 $))) (-15 -1365 ($ $)) (-15 -1365 ($ (-583 $))) (-15 -3039 ($ $)) (-15 -3039 ($ (-583 $))) (-15 -2728 ($ (-583 $))) (-15 -1235 ($ (-583 $))) (-15 -2652 ($ (-583 $))) (-15 -1823 ($ (-583 $))) (-15 -1583 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -1617 ($ $ $)) (-15 -1629 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -1691 ($ $)) (-15 * ($ $ $)) (-15 -1703 ($ $ $)) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2378 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2327 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -2477 ($ $)) (-15 -1605 ($ $ $)) (-15 -1605 ($ $))))) (T -787))
+((-3404 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-787)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-787)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-787)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-787)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-787)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-1529 (*1 *1) (-5 *1 (-787))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3417 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1807 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2475 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3298 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3286 (*1 *1 *1) (-5 *1 (-787))) (-3298 (*1 *1 *1) (-5 *1 (-787))) (-3567 (*1 *1 *1) (-5 *1 (-787))) (-1768 (*1 *1 *1 *1) (-5 *1 (-787))) (-4117 (*1 *1 *1 *1) (-5 *1 (-787))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4023 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4151 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-1832 (*1 *1 *1 *1) (-5 *1 (-787))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1517 (*1 *1 *1) (-5 *1 (-787))) (-3022 (*1 *1 *1 *1) (-5 *1 (-787))) (-3438 (*1 *1 *1) (-5 *1 (-787))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-1321 (*1 *1 *1 *1) (-5 *1 (-787))) (-2986 (*1 *1 *1) (-5 *1 (-787))) (-2986 (*1 *1 *1 *1) (-5 *1 (-787))) (-1781 (*1 *1 *1 *1) (-5 *1 (-787))) (-1557 (*1 *1 *1 *1) (-5 *1 (-787))) (-2280 (*1 *1 *1 *1) (-5 *1 (-787))) (-2653 (*1 *1 *1 *1) (-5 *1 (-787))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3972 (*1 *1 *1 *1) (-5 *1 (-787))) (-1627 (*1 *1 *1 *1) (-5 *1 (-787))) (-4099 (*1 *1 *1 *1) (-5 *1 (-787))) (-1674 (*1 *1 *1 *1) (-5 *1 (-787))) (-3640 (*1 *1 *1 *1) (-5 *1 (-787))) (-3691 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1253 (*1 *1 *1) (-5 *1 (-787))) (-3989 (*1 *1 *1) (-5 *1 (-787))) (-3989 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3267 (*1 *1 *1) (-5 *1 (-787))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-4064 (*1 *1 *1) (-5 *1 (-787))) (-2266 (*1 *1 *1 *1) (-5 *1 (-787))) (-3452 (*1 *1 *1) (-5 *1 (-787))) (-3452 (*1 *1 *1 *1) (-5 *1 (-787))) (-3452 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3367 (*1 *1 *1) (-5 *1 (-787))) (-3367 (*1 *1 *1 *1) (-5 *1 (-787))) (-3367 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-1418 (*1 *1 *1) (-5 *1 (-787))) (-1418 (*1 *1 *1 *1) (-5 *1 (-787))) (-1418 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3073 (*1 *1 *1) (-5 *1 (-787))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1365 (*1 *1 *1) (-5 *1 (-787))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3039 (*1 *1 *1) (-5 *1 (-787))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1235 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1583 (*1 *1 *1 *1) (-5 *1 (-787))) (-2480 (*1 *1 *1 *1) (-5 *1 (-787))) (-1607 (*1 *1 *1 *1) (-5 *1 (-787))) (-1617 (*1 *1 *1 *1) (-5 *1 (-787))) (-1629 (*1 *1 *1 *1) (-5 *1 (-787))) (-1641 (*1 *1 *1 *1) (-5 *1 (-787))) (-1677 (*1 *1 *1 *1) (-5 *1 (-787))) (-1691 (*1 *1 *1 *1) (-5 *1 (-787))) (-1691 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1703 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2340 (*1 *1 *1 *1) (-5 *1 (-787))) (-2378 (*1 *1 *1 *1) (-5 *1 (-787))) (-2354 (*1 *1 *1 *1) (-5 *1 (-787))) (-2327 (*1 *1 *1 *1) (-5 *1 (-787))) (-3992 (*1 *1 *1 *1) (-5 *1 (-787))) (-3977 (*1 *1 *1 *1) (-5 *1 (-787))) (-2477 (*1 *1 *1) (-5 *1 (-787))) (-1605 (*1 *1 *1 *1) (-5 *1 (-787))) (-1605 (*1 *1 *1) (-5 *1 (-787))))
+(-13 (-1004) (-10 -8 (-15 -3404 ((-1161) $)) (-15 -2941 ($ (-1058))) (-15 -4167 ((-1161) (-1058))) (-15 -1927 ($ (-517))) (-15 -1927 ($ (-1075))) (-15 -1927 ($ (-1058))) (-15 -1927 ($ (-199))) (-15 -1529 ($)) (-15 -3417 ((-517) $)) (-15 -1807 ((-517) $)) (-15 -3417 ((-517))) (-15 -1807 ((-517))) (-15 -1226 ((-517) $)) (-15 -3309 ((-517) $)) (-15 -2892 ($ (-517))) (-15 -3939 ($ (-517))) (-15 -2475 ($ (-517) (-517))) (-15 -3286 ($ $ (-517))) (-15 -3298 ($ $ (-517))) (-15 -3567 ($ $ (-517))) (-15 -3286 ($ $)) (-15 -3298 ($ $)) (-15 -3567 ($ $)) (-15 -1768 ($ $ $)) (-15 -4117 ($ $ $)) (-15 -1768 ($ (-583 $))) (-15 -4117 ($ (-583 $))) (-15 -4023 ($ $ (-583 $))) (-15 -4151 ($ $ (-583 $))) (-15 -4151 ($ $ $ $)) (-15 -1832 ($ $ $)) (-15 -2626 ((-107) $)) (-15 -2607 ($ $ (-583 $))) (-15 -1517 ($ $)) (-15 -3022 ($ $ $)) (-15 -3438 ($ $)) (-15 -2369 ($ (-583 (-583 $)))) (-15 -1321 ($ $ $)) (-15 -2986 ($ $)) (-15 -2986 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -2280 ($ $ $)) (-15 -2653 ($ $ $)) (-15 -2059 ($ $ (-703))) (-15 -3972 ($ $ $)) (-15 -1627 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -3640 ($ $ $)) (-15 -3691 ($ $ (-583 $))) (-15 -2712 ($ $ (-583 $))) (-15 -1253 ($ $)) (-15 -3989 ($ $)) (-15 -3989 ($ $ (-703))) (-15 -3267 ($ $)) (-15 -3267 ($ $ (-703))) (-15 -4064 ($ $)) (-15 -2266 ($ $ $)) (-15 -3452 ($ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ $ $)) (-15 -3367 ($ $)) (-15 -3367 ($ $ $)) (-15 -3367 ($ $ $ $)) (-15 -1418 ($ $)) (-15 -1418 ($ $ $)) (-15 -1418 ($ $ $ $)) (-15 -3073 ($ $)) (-15 -3073 ($ (-583 $))) (-15 -1365 ($ $)) (-15 -1365 ($ (-583 $))) (-15 -3039 ($ $)) (-15 -3039 ($ (-583 $))) (-15 -2728 ($ (-583 $))) (-15 -1235 ($ (-583 $))) (-15 -2652 ($ (-583 $))) (-15 -1823 ($ (-583 $))) (-15 -1583 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -1617 ($ $ $)) (-15 -1629 ($ $ $)) (-15 -1641 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -1691 ($ $)) (-15 * ($ $ $)) (-15 -1703 ($ $ $)) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2378 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -2327 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -2477 ($ $)) (-15 -1605 ($ $ $)) (-15 -1605 ($ $))))
+((-3221 (((-1161) (-583 (-51))) 24)) (-2263 (((-1161) (-1058) (-787)) 14) (((-1161) (-787)) 9) (((-1161) (-1058)) 11)))
+(((-788) (-10 -7 (-15 -2263 ((-1161) (-1058))) (-15 -2263 ((-1161) (-787))) (-15 -2263 ((-1161) (-1058) (-787))) (-15 -3221 ((-1161) (-583 (-51)))))) (T -788))
+((-3221 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1161)) (-5 *1 (-788)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-787)) (-5 *2 (-1161)) (-5 *1 (-788)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-788)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-788)))))
+(-10 -7 (-15 -2263 ((-1161) (-1058))) (-15 -2263 ((-1161) (-787))) (-15 -2263 ((-1161) (-1058) (-787))) (-15 -3221 ((-1161) (-583 (-51)))))
+((-2118 (((-107) $ $) NIL)) (-3750 (((-3 $ "failed") (-1075)) 32)) (-2397 (((-703)) 30)) (-2200 (($) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-2031 (((-844) $) 28)) (-1895 (((-1058) $) 38)) (-2810 (($ (-844)) 27)) (-4123 (((-1022) $) NIL)) (-3357 (((-1075) $) 13) (((-493) $) 19) (((-815 (-349)) $) 25) (((-815 (-517)) $) 22)) (-2269 (((-787) $) 16)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 35)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 34)))
+(((-789 |#1|) (-13 (-773) (-558 (-1075)) (-558 (-493)) (-558 (-815 (-349))) (-558 (-815 (-517))) (-10 -8 (-15 -3750 ((-3 $ "failed") (-1075))))) (-583 (-1075))) (T -789))
+((-3750 (*1 *1 *2) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
+(-13 (-773) (-558 (-1075)) (-558 (-493)) (-558 (-815 (-349))) (-558 (-815 (-517))) (-10 -8 (-15 -3750 ((-3 $ "failed") (-1075)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (((-875 |#1|) $) NIL) (($ (-875 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-2950 (((-703)) NIL)) (-1316 (((-1161) (-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-790 |#1| |#2| |#3| |#4|) (-13 (-962) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2269 ((-875 |#1|) $)) (-15 -2269 ($ (-875 |#1|))) (IF (|has| |#1| (-333)) (-15 -1703 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1316 ((-1161) (-703))))) (-962) (-583 (-1075)) (-583 (-703)) (-703)) (T -790))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-875 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-962)) (-14 *4 (-583 (-1075))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1075))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1703 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-962)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 *3)) (-14 *7 *3))))
+(-13 (-962) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2269 ((-875 |#1|) $)) (-15 -2269 ($ (-875 |#1|))) (IF (|has| |#1| (-333)) (-15 -1703 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1316 ((-1161) (-703)))))
+((-4157 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-2044 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
+(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -2044 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -4157 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1147 |#1|) (-1132 |#1|)) (T -791))
+((-4157 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1147 *5)) (-4 *6 (-1132 *5)))) (-2044 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1147 *5)) (-4 *6 (-1132 *5)))))
+(-10 -7 (-15 -2044 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -4157 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
+((-2044 (((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) 26)))
+(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -2044 ((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) (-15 -2044 ((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|)))) (-333) (-1075) |#1|) (T -792))
+((-2044 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1148 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-377 (-1129 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-2044 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1148 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-377 (-1129 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(-10 -7 (-15 -2044 ((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) (-15 -2044 ((-3 (-377 (-1129 |#2| |#1|)) "failed") (-703) (-703) (-1148 |#1| |#2| |#3|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3879 (($ $ (-517)) 62)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-2986 (($ (-1071 (-517)) (-517)) 61)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-3626 (($ $) 64)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2053 (((-703) $) 69)) (-1865 (((-107) $) 31)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3326 (((-517)) 66)) (-2625 (((-517) $) 65)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2640 (($ $ (-517)) 68)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2207 (((-1056 (-517)) $) 70)) (-3478 (($ $) 67)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2202 (((-517) $ (-517)) 63)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-793 |#1|) (-1187) (-517)) (T -793))
+((-2207 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1056 (-517))))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-2640 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3478 (*1 *1 *1) (-4 *1 (-793 *2))) (-3326 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3626 (*1 *1 *1) (-4 *1 (-793 *2))) (-2202 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3879 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(-13 (-278) (-134) (-10 -8 (-15 -2207 ((-1056 (-517)) $)) (-15 -2053 ((-703) $)) (-15 -2640 ($ $ (-517))) (-15 -3478 ($ $)) (-15 -3326 ((-517))) (-15 -2625 ((-517) $)) (-15 -3626 ($ $)) (-15 -2202 ((-517) $ (-517))) (-15 -3879 ($ $ (-517))) (-15 -2986 ($ (-1071 (-517)) (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $ (-517)) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2986 (($ (-1071 (-517)) (-517)) NIL)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3626 (($ $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2053 (((-703) $) NIL)) (-1865 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3326 (((-517)) NIL)) (-2625 (((-517) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2640 (($ $ (-517)) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2207 (((-1056 (-517)) $) NIL)) (-3478 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2202 (((-517) $ (-517)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
(((-794 |#1|) (-793 |#1|) (-517)) (T -794))
NIL
(-793 |#1|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| (-794 |#1|) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-3232 (((-794 |#1|) $) NIL) (((-1074) $) NIL (|has| (-794 |#1|) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-2561 (($ $) NIL) (($ (-517) $) NIL)) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-794 |#1|))) (|:| |vec| (-1154 (-794 |#1|)))) (-623 $) (-1154 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-794 |#1|) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-794 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-794 |#1|) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-794 |#1|) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1050)))) (-1199 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3105 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-1939 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-794 |#1|) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2908 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-794 |#1|) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1074)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1074) (-794 |#1|)))) (($ $ (-1074) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1074) (-794 |#1|))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-794 |#1|) $) NIL)) (-3667 (((-814 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-937))) (((-199) $) NIL (|has| (-794 |#1|) (-937)))) (-2552 (((-157 (-377 (-517))) $) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1074)) NIL (|has| (-794 |#1|) (-952 (-1074))))) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))) (|has| (-794 |#1|) (-132))))) (-1217 (((-703)) NIL)) (-2434 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2673 (((-107) $ $) NIL)) (-3405 (((-377 (-517)) $ (-517)) NIL)) (-1724 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1074)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1074)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1678 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
-(((-795 |#1|) (-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $)))) (-517)) (T -795))
-((-3405 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2561 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2561 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
-(-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 ((|#2| $) NIL (|has| |#2| (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| |#2| (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (|has| |#2| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517))))) (-3232 ((|#2| $) NIL) (((-1074) $) NIL (|has| |#2| (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-517)))) (((-517) $) NIL (|has| |#2| (-952 (-517))))) (-2561 (($ $) 31) (($ (-517) $) 32)) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) 53)) (-4100 (($) NIL (|has| |#2| (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) NIL (|has| |#2| (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#2| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#2| (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 ((|#2| $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#2| (-1050)))) (-1199 (((-107) $) NIL (|has| |#2| (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 49)) (-3680 (($) NIL (|has| |#2| (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| |#2| (-278)))) (-2908 ((|#2| $) NIL (|has| |#2| (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1074)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1074) |#2|))) (($ $ (-1074) |#2|) NIL (|has| |#2| (-478 (-1074) |#2|)))) (-3196 (((-703) $) NIL)) (-1437 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1728 (($ $) NIL)) (-1852 ((|#2| $) NIL)) (-3667 (((-814 (-517)) $) NIL (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#2| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-937))) (((-199) $) NIL (|has| |#2| (-937)))) (-2552 (((-157 (-377 (-517))) $) 68)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2254 (((-787) $) 85) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1074)) NIL (|has| |#2| (-952 (-1074))))) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2434 ((|#2| $) NIL (|has| |#2| (-502)))) (-2673 (((-107) $ $) NIL)) (-3405 (((-377 (-517)) $ (-517)) 60)) (-1724 (($ $) NIL (|has| |#2| (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 14 T CONST)) (-2411 (($) 16 T CONST)) (-2738 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) 35)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1663 (($ $) 39) (($ $ $) 41)) (-1645 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-796 |#1| |#2|) (-13 (-909 |#2|) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
-((-3405 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-2552 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2561 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2561 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
-(-13 (-909 |#2|) (-10 -8 (-15 -3405 ((-377 (-517)) $ (-517))) (-15 -2552 ((-157 (-377 (-517))) $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $))))
-((-1587 (((-107) $ $) NIL)) (-2953 (((-517) $) 15)) (-1505 (($ (-142)) 11)) (-1278 (($ (-142)) 12)) (-1277 (((-1057) $) NIL)) (-1793 (((-142) $) 13)) (-3214 (((-1021) $) NIL)) (-2839 (($ (-142)) 9)) (-2371 (($ (-142)) 8)) (-2254 (((-787) $) 23) (($ (-142)) 16)) (-2004 (($ (-142)) 10)) (-1534 (((-107) $ $) NIL)))
-(((-797) (-13 (-1003) (-10 -8 (-15 -2371 ($ (-142))) (-15 -2839 ($ (-142))) (-15 -2004 ($ (-142))) (-15 -1505 ($ (-142))) (-15 -1278 ($ (-142))) (-15 -1793 ((-142) $)) (-15 -2953 ((-517) $)) (-15 -2254 ($ (-142)))))) (T -797))
-((-2371 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2839 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2004 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(-13 (-1003) (-10 -8 (-15 -2371 ($ (-142))) (-15 -2839 ($ (-142))) (-15 -2004 ($ (-142))) (-15 -1505 ($ (-142))) (-15 -1278 ($ (-142))) (-15 -1793 ((-142) $)) (-15 -2953 ((-517) $)) (-15 -2254 ($ (-142)))))
-((-2254 (((-286 (-517)) (-377 (-874 (-47)))) 21) (((-286 (-517)) (-874 (-47))) 16)))
-(((-798) (-10 -7 (-15 -2254 ((-286 (-517)) (-874 (-47)))) (-15 -2254 ((-286 (-517)) (-377 (-874 (-47))))))) (T -798))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
-(-10 -7 (-15 -2254 ((-286 (-517)) (-874 (-47)))) (-15 -2254 ((-286 (-517)) (-377 (-874 (-47))))))
-((-1939 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -1939 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1109) (-1109)) (T -799))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
-(-10 -7 (-15 -1939 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
-((-1401 (($ |#1| |#1|) 8)) (-1652 ((|#1| $ (-703)) 10)))
-(((-800 |#1|) (-10 -8 (-15 -1401 ($ |#1| |#1|)) (-15 -1652 (|#1| $ (-703)))) (-1109)) (T -800))
-((-1652 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1109)))) (-1401 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1109)))))
-(-10 -8 (-15 -1401 ($ |#1| |#1|)) (-15 -1652 (|#1| $ (-703))))
-((-1939 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -1939 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1109) (-1109)) (T -801))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
-(-10 -7 (-15 -1939 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
-((-1401 (($ |#1| |#1| |#1|) 8)) (-1652 ((|#1| $ (-703)) 10)))
-(((-802 |#1|) (-10 -8 (-15 -1401 ($ |#1| |#1| |#1|)) (-15 -1652 (|#1| $ (-703)))) (-1109)) (T -802))
-((-1652 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1109)))) (-1401 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1109)))))
-(-10 -8 (-15 -1401 ($ |#1| |#1| |#1|)) (-15 -1652 (|#1| $ (-703))))
-((-1939 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14)))
-(((-803 |#1| |#2|) (-10 -7 (-15 -1939 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1109) (-1109)) (T -803))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))))
-(-10 -7 (-15 -1939 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|))))
-((-2114 (($ |#1| |#1| |#1|) 8)) (-1652 ((|#1| $ (-703)) 10)))
-(((-804 |#1|) (-10 -8 (-15 -2114 ($ |#1| |#1| |#1|)) (-15 -1652 (|#1| $ (-703)))) (-1109)) (T -804))
-((-1652 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1109)))) (-2114 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
-(-10 -8 (-15 -2114 ($ |#1| |#1| |#1|)) (-15 -1652 (|#1| $ (-703))))
-((-1471 (((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517)))) 30)) (-1595 (((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517))) 26)) (-3732 (((-1055 (-583 (-517))) (-583 (-517))) 39) (((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517))) 38)) (-3412 (((-1055 (-583 (-517))) (-517)) 40)) (-2194 (((-1055 (-583 (-517))) (-517) (-517)) 22) (((-1055 (-583 (-517))) (-517)) 16) (((-1055 (-583 (-517))) (-517) (-517) (-517)) 12)) (-1894 (((-1055 (-583 (-517))) (-1055 (-583 (-517)))) 24)) (-1757 (((-583 (-517)) (-583 (-517))) 23)))
-(((-805) (-10 -7 (-15 -2194 ((-1055 (-583 (-517))) (-517) (-517) (-517))) (-15 -2194 ((-1055 (-583 (-517))) (-517))) (-15 -2194 ((-1055 (-583 (-517))) (-517) (-517))) (-15 -1757 ((-583 (-517)) (-583 (-517)))) (-15 -1894 ((-1055 (-583 (-517))) (-1055 (-583 (-517))))) (-15 -1595 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1471 ((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517))))) (-15 -3732 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3732 ((-1055 (-583 (-517))) (-583 (-517)))) (-15 -3412 ((-1055 (-583 (-517))) (-517))))) (T -805))
-((-3412 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-3732 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))) (-1595 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) (-2194 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-2194 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(-10 -7 (-15 -2194 ((-1055 (-583 (-517))) (-517) (-517) (-517))) (-15 -2194 ((-1055 (-583 (-517))) (-517))) (-15 -2194 ((-1055 (-583 (-517))) (-517) (-517))) (-15 -1757 ((-583 (-517)) (-583 (-517)))) (-15 -1894 ((-1055 (-583 (-517))) (-1055 (-583 (-517))))) (-15 -1595 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1471 ((-1055 (-583 (-517))) (-583 (-517)) (-1055 (-583 (-517))))) (-15 -3732 ((-1055 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3732 ((-1055 (-583 (-517))) (-583 (-517)))) (-15 -3412 ((-1055 (-583 (-517))) (-517))))
-((-3667 (((-814 (-349)) $) 9 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 8 (|has| |#1| (-558 (-814 (-517)))))))
-(((-806 |#1|) (-1185) (-1109)) (T -806))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |%noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |%noBranch|)))
-(((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
-((-1587 (((-107) $ $) NIL)) (-3475 (($) 14)) (-2022 (($ (-811 |#1| |#2|) (-811 |#1| |#3|)) 27)) (-3413 (((-811 |#1| |#3|) $) 16)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3941 (((-107) $) 22)) (-3689 (($) 19)) (-2254 (((-787) $) 30)) (-3664 (((-811 |#1| |#2|) $) 15)) (-1534 (((-107) $ $) 25)))
-(((-807 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -3941 ((-107) $)) (-15 -3689 ($)) (-15 -3475 ($)) (-15 -2022 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3664 ((-811 |#1| |#2|) $)) (-15 -3413 ((-811 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -807))
-((-3941 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3689 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3475 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))) (-3664 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3413 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(-13 (-1003) (-10 -8 (-15 -3941 ((-107) $)) (-15 -3689 ($)) (-15 -3475 ($)) (-15 -2022 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3664 ((-811 |#1| |#2|) $)) (-15 -3413 ((-811 |#1| |#3|) $))))
-((-1587 (((-107) $ $) 7)) (-3975 (((-811 |#1| $) $ (-814 |#1|) (-811 |#1| $)) 13)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-808 |#1|) (-1185) (-1003)) (T -808))
-((-3975 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -3975 ((-811 |t#1| $) $ (-814 |t#1|) (-811 |t#1| $)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-2506 (((-107) (-583 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-3847 (((-811 |#1| |#2|) |#2| |#3|) 42 (-12 (-2650 (|has| |#2| (-952 (-1074)))) (-2650 (|has| |#2| (-961))))) (((-583 (-265 (-874 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-961)) (-2650 (|has| |#2| (-952 (-1074)))))) (((-583 (-265 |#2|)) |#2| |#3|) 34 (|has| |#2| (-952 (-1074)))) (((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 20)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -2506 ((-107) |#2| |#3|)) (-15 -2506 ((-107) (-583 |#2|) |#3|)) (-15 -3847 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1074))) (-15 -3847 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -3847 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -3847 ((-811 |#1| |#2|) |#2| |#3|))))) (-1003) (-808 |#1|) (-558 (-814 |#1|))) (T -809))
-((-3847 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2650 (-4 *3 (-952 (-1074)))) (-2650 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-3847 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2650 (-4 *3 (-952 (-1074)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-3847 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1074))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-3847 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))) (-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
-(-10 -7 (-15 -2506 ((-107) |#2| |#3|)) (-15 -2506 ((-107) (-583 |#2|) |#3|)) (-15 -3847 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1074))) (-15 -3847 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -3847 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -3847 ((-811 |#1| |#2|) |#2| |#3|)))))
-((-1939 (((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)) 21)))
-(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -810))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))))
-(-10 -7 (-15 -1939 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|))))
-((-1587 (((-107) $ $) NIL)) (-1400 (($ $ $) 37)) (-2755 (((-3 (-107) "failed") $ (-814 |#1|)) 34)) (-3475 (($) 11)) (-1277 (((-1057) $) NIL)) (-3926 (($ (-814 |#1|) |#2| $) 20)) (-3214 (((-1021) $) NIL)) (-1287 (((-3 |#2| "failed") (-814 |#1|) $) 48)) (-3941 (((-107) $) 14)) (-3689 (($) 12)) (-1443 (((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|))) $) 25)) (-2272 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|)))) 23)) (-2254 (((-787) $) 42)) (-2855 (($ (-814 |#1|) |#2| $ |#2|) 46)) (-1987 (($ (-814 |#1|) |#2| $) 45)) (-1534 (((-107) $ $) 39)))
-(((-811 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3941 ((-107) $)) (-15 -3689 ($)) (-15 -3475 ($)) (-15 -1400 ($ $ $)) (-15 -1287 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1987 ($ (-814 |#1|) |#2| $)) (-15 -3926 ($ (-814 |#1|) |#2| $)) (-15 -2855 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -1443 ((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|))) $)) (-15 -2272 ($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|))))) (-15 -2755 ((-3 (-107) "failed") $ (-814 |#1|))))) (-1003) (-1003)) (T -811))
-((-3941 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3689 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3475 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1400 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1287 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))) (-1987 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-3926 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-2855 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) (-2755 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -3941 ((-107) $)) (-15 -3689 ($)) (-15 -3475 ($)) (-15 -1400 ($ $ $)) (-15 -1287 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1987 ($ (-814 |#1|) |#2| $)) (-15 -3926 ($ (-814 |#1|) |#2| $)) (-15 -2855 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -1443 ((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|))) $)) (-15 -2272 ($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 |#2|))))) (-15 -2755 ((-3 (-107) "failed") $ (-814 |#1|)))))
-((-1737 (((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|))) 30) (((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|)) 33)) (-2755 (((-107) (-583 |#2|) (-814 |#1|)) 39) (((-107) |#2| (-814 |#1|)) 35)) (-3532 (((-1 (-107) |#2|) (-814 |#1|)) 14)) (-4054 (((-583 |#2|) (-814 |#1|)) 23)) (-3336 (((-814 |#1|) (-814 |#1|) |#2|) 19)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -1737 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -1737 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -1737 ((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|)))) (-15 -3532 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2755 ((-107) |#2| (-814 |#1|))) (-15 -2755 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -3336 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -4054 ((-583 |#2|) (-814 |#1|)))) (-1003) (-1109)) (T -812))
-((-4054 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1109)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1109)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))) (-1737 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1074))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-812 *5 *6)))) (-1737 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) (-1737 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))))
-(-10 -7 (-15 -1737 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -1737 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -1737 ((-814 |#1|) (-814 |#1|) (-583 (-1074)) (-1 (-107) (-583 |#2|)))) (-15 -3532 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2755 ((-107) |#2| (-814 |#1|))) (-15 -2755 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -3336 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -4054 ((-583 |#2|) (-814 |#1|))))
-((-1939 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 17)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -1939 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1003) (-1003)) (T -813))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -1939 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
-((-1587 (((-107) $ $) NIL)) (-1675 (($ $ (-583 (-51))) 62)) (-1357 (((-583 $) $) 116)) (-1329 (((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $) 22)) (-3810 (((-107) $) 29)) (-2327 (($ $ (-583 (-1074)) (-51)) 24)) (-2124 (($ $ (-583 (-51))) 61)) (-1837 (((-3 |#1| "failed") $) 59) (((-3 (-1074) "failed") $) 138)) (-3232 ((|#1| $) 55) (((-1074) $) NIL)) (-2649 (($ $) 106)) (-2078 (((-107) $) 45)) (-3542 (((-583 (-51)) $) 43)) (-2932 (($ (-1074) (-107) (-107) (-107)) 63)) (-4134 (((-3 (-583 $) "failed") (-583 $)) 70)) (-1775 (((-107) $) 48)) (-1954 (((-107) $) 47)) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) 34)) (-2986 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-2337 (((-3 (-2 (|:| |val| $) (|:| -3010 $)) "failed") $) 81)) (-1674 (((-3 (-583 $) "failed") $) 31)) (-3426 (((-3 (-583 $) "failed") $ (-109)) 105) (((-3 (-2 (|:| -3819 (-109)) (|:| |arg| (-583 $))) "failed") $) 93)) (-2560 (((-3 (-583 $) "failed") $) 35)) (-3106 (((-3 (-2 (|:| |val| $) (|:| -3010 (-703))) "failed") $) 38)) (-3478 (((-107) $) 28)) (-3214 (((-1021) $) NIL)) (-2266 (((-107) $) 20)) (-3460 (((-107) $) 44)) (-1298 (((-583 (-51)) $) 109)) (-3577 (((-107) $) 46)) (-1437 (($ (-109) (-583 $)) 90)) (-2410 (((-703) $) 27)) (-2435 (($ $) 60)) (-3667 (($ (-583 $)) 57)) (-2207 (((-107) $) 25)) (-2254 (((-787) $) 50) (($ |#1|) 18) (($ (-1074)) 64)) (-3336 (($ $ (-51)) 108)) (-2398 (($) 89 T CONST)) (-2411 (($) 71 T CONST)) (-1534 (((-107) $ $) 77)) (-1678 (($ $ $) 98)) (-1645 (($ $ $) 102)) (** (($ $ (-703)) 97) (($ $ $) 51)) (* (($ $ $) 103)))
-(((-814 |#1|) (-13 (-1003) (-952 |#1|) (-952 (-1074)) (-10 -8 (-15 0 ($) -2497) (-15 1 ($) -2497) (-15 -1674 ((-3 (-583 $) "failed") $)) (-15 -3789 ((-3 (-583 $) "failed") $)) (-15 -3426 ((-3 (-583 $) "failed") $ (-109))) (-15 -3426 ((-3 (-2 (|:| -3819 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3106 ((-3 (-2 (|:| |val| $) (|:| -3010 (-703))) "failed") $)) (-15 -2986 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2560 ((-3 (-583 $) "failed") $)) (-15 -2337 ((-3 (-2 (|:| |val| $) (|:| -3010 $)) "failed") $)) (-15 -1437 ($ (-109) (-583 $))) (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1678 ($ $ $)) (-15 -2410 ((-703) $)) (-15 -3667 ($ (-583 $))) (-15 -2435 ($ $)) (-15 -3478 ((-107) $)) (-15 -2078 ((-107) $)) (-15 -3810 ((-107) $)) (-15 -2207 ((-107) $)) (-15 -3577 ((-107) $)) (-15 -1954 ((-107) $)) (-15 -1775 ((-107) $)) (-15 -3460 ((-107) $)) (-15 -3542 ((-583 (-51)) $)) (-15 -2124 ($ $ (-583 (-51)))) (-15 -1675 ($ $ (-583 (-51)))) (-15 -2932 ($ (-1074) (-107) (-107) (-107))) (-15 -2327 ($ $ (-583 (-1074)) (-51))) (-15 -1329 ((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $)) (-15 -2266 ((-107) $)) (-15 -2649 ($ $)) (-15 -3336 ($ $ (-51))) (-15 -1298 ((-583 (-51)) $)) (-15 -1357 ((-583 $) $)) (-15 -4134 ((-3 (-583 $) "failed") (-583 $))))) (-1003)) (T -814))
-((-2398 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2411 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1674 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3789 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3426 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-3426 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3819 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3106 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -3010 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2986 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2560 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2337 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -3010 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1437 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1645 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1678 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2932 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-2327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2649 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3336 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-4134 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(-13 (-1003) (-952 |#1|) (-952 (-1074)) (-10 -8 (-15 (-2398) ($) -2497) (-15 (-2411) ($) -2497) (-15 -1674 ((-3 (-583 $) "failed") $)) (-15 -3789 ((-3 (-583 $) "failed") $)) (-15 -3426 ((-3 (-583 $) "failed") $ (-109))) (-15 -3426 ((-3 (-2 (|:| -3819 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3106 ((-3 (-2 (|:| |val| $) (|:| -3010 (-703))) "failed") $)) (-15 -2986 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2560 ((-3 (-583 $) "failed") $)) (-15 -2337 ((-3 (-2 (|:| |val| $) (|:| -3010 $)) "failed") $)) (-15 -1437 ($ (-109) (-583 $))) (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1678 ($ $ $)) (-15 -2410 ((-703) $)) (-15 -3667 ($ (-583 $))) (-15 -2435 ($ $)) (-15 -3478 ((-107) $)) (-15 -2078 ((-107) $)) (-15 -3810 ((-107) $)) (-15 -2207 ((-107) $)) (-15 -3577 ((-107) $)) (-15 -1954 ((-107) $)) (-15 -1775 ((-107) $)) (-15 -3460 ((-107) $)) (-15 -3542 ((-583 (-51)) $)) (-15 -2124 ($ $ (-583 (-51)))) (-15 -1675 ($ $ (-583 (-51)))) (-15 -2932 ($ (-1074) (-107) (-107) (-107))) (-15 -2327 ($ $ (-583 (-1074)) (-51))) (-15 -1329 ((-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51))) $)) (-15 -2266 ((-107) $)) (-15 -2649 ($ $)) (-15 -3336 ($ $ (-51))) (-15 -1298 ((-583 (-51)) $)) (-15 -1357 ((-583 $) $)) (-15 -4134 ((-3 (-583 $) "failed") (-583 $)))))
-((-1587 (((-107) $ $) NIL)) (-3556 (((-583 |#1|) $) 16)) (-2874 (((-107) $) 38)) (-1837 (((-3 (-608 |#1|) "failed") $) 41)) (-3232 (((-608 |#1|) $) 39)) (-1761 (($ $) 18)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1631 (((-703) $) 45)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-608 |#1|) $) 17)) (-2254 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-2411 (($) 8 T CONST)) (-1503 (((-583 (-608 |#1|)) $) 23)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 11)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 48)))
-(((-815 |#1|) (-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 1 ($) -2497) (-15 -2254 ((-751 |#1|) $)) (-15 -2254 ($ |#1|)) (-15 -1750 ((-608 |#1|) $)) (-15 -1631 ((-703) $)) (-15 -1503 ((-583 (-608 |#1|)) $)) (-15 -1761 ($ $)) (-15 -2874 ((-107) $)) (-15 -3556 ((-583 |#1|) $)))) (-779)) (T -815))
-((-2411 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2254 (*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1761 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
-(-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 (-2411) ($) -2497) (-15 -2254 ((-751 |#1|) $)) (-15 -2254 ($ |#1|)) (-15 -1750 ((-608 |#1|) $)) (-15 -1631 ((-703) $)) (-15 -1503 ((-583 (-608 |#1|)) $)) (-15 -1761 ($ $)) (-15 -2874 ((-107) $)) (-15 -3556 ((-583 |#1|) $))))
-((-1922 ((|#1| |#1| |#1|) 19)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -1922 (|#1| |#1| |#1|))) (-1131 |#2|) (-961)) (T -816))
-((-1922 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1131 *3)))))
-(-10 -7 (-15 -1922 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-3226 (((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 14)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2295 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 13)) (-1534 (((-107) $ $) 6)))
-(((-817) (-1185)) (T -817))
-((-3226 (*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) (-2295 (*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
-(-13 (-1003) (-10 -7 (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| |explanations| (-1057))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -2295 ((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1997 ((|#1| |#1| (-703)) 23)) (-1519 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2176 (((-3 (-2 (|:| -3623 |#1|) (|:| -3633 |#1|)) "failed") |#1| (-703) (-703)) 26) (((-583 |#1|) |#1|) 28)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -2176 ((-583 |#1|) |#1|)) (-15 -2176 ((-3 (-2 (|:| -3623 |#1|) (|:| -3633 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1519 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1997 (|#1| |#1| (-703)))) (-1131 |#2|) (-333)) (T -818))
-((-1997 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1131 *4)))) (-1519 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1131 *3)))) (-2176 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3623 *3) (|:| -3633 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1131 *5)))) (-2176 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -2176 ((-583 |#1|) |#1|)) (-15 -2176 ((-3 (-2 (|:| -3623 |#1|) (|:| -3633 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1519 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1997 (|#1| |#1| (-703))))
-((-1955 (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057)) 92) (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199)) 87) (((-950) (-820) (-973)) 76) (((-950) (-820)) 77)) (-3226 (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973)) 50) (((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820)) 52)))
-(((-819) (-10 -7 (-15 -1955 ((-950) (-820))) (-15 -1955 ((-950) (-820) (-973))) (-15 -1955 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199))) (-15 -1955 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973))))) (T -819))
-((-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) (-1955 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1955 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))))
-(-10 -7 (-15 -1955 ((-950) (-820))) (-15 -1955 ((-950) (-820) (-973))) (-15 -1955 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057) (-199))) (-15 -1955 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1057))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820))) (-15 -3226 ((-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057)))) (-820) (-973))))
-((-1587 (((-107) $ $) NIL)) (-3232 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $) 10)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) 9)) (-1534 (((-107) $ $) NIL)))
-(((-820) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $))))) (T -820))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))))) (-15 -2254 ((-787) $)) (-15 -3232 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199))) $))))
-((-1248 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-2738 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
-(((-821 |#1| |#2|) (-10 -8 (-15 -2738 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2738 (|#1| |#1| |#2| (-703))) (-15 -2738 (|#1| |#1| (-583 |#2|))) (-15 -2738 (|#1| |#1| |#2|)) (-15 -1248 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -1248 (|#1| |#1| |#2| (-703))) (-15 -1248 (|#1| |#1| (-583 |#2|))) (-15 -1248 (|#1| |#1| |#2|))) (-822 |#2|) (-1003)) (T -821))
-NIL
-(-10 -8 (-15 -2738 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2738 (|#1| |#1| |#2| (-703))) (-15 -2738 (|#1| |#1| (-583 |#2|))) (-15 -2738 (|#1| |#1| |#2|)) (-15 -1248 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -1248 (|#1| |#1| |#2| (-703))) (-15 -1248 (|#1| |#1| (-583 |#2|))) (-15 -1248 (|#1| |#1| |#2|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-1248 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-822 |#1|) (-1185) (-1003)) (T -822))
-((-1248 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-1248 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-1248 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) (-2738 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-2738 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2738 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))))
-(-13 (-961) (-10 -8 (-15 -1248 ($ $ |t#1|)) (-15 -1248 ($ $ (-583 |t#1|))) (-15 -1248 ($ $ |t#1| (-703))) (-15 -1248 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -2738 ($ $ |t#1|)) (-15 -2738 ($ $ (-583 |t#1|))) (-15 -2738 ($ $ |t#1| (-703))) (-15 -2738 ($ $ (-583 |t#1|) (-583 (-703))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) 26)) (-3552 (((-107) $ (-703)) NIL)) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-3120 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2872 (($ $ $) NIL (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) (($ $ "left" $) NIL (|has| $ (-6 -4184))) (($ $ "right" $) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3633 (($ $) 25)) (-2929 (($ |#1|) 12) (($ $ $) 17)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3623 (($ $) 23)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) 20)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) 29 (|has| |#1| (-1003))) (((-1096 |#1|) $) 9)) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 21 (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-823 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2929 ($ |#1|)) (-15 -2929 ($ $ $)) (-15 -2254 ((-1096 |#1|) $)))) (-1003)) (T -823))
-((-2929 (*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2929 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))))
-(-13 (-114 |#1|) (-10 -8 (-15 -2929 ($ |#1|)) (-15 -2929 ($ $ $)) (-15 -2254 ((-1096 |#1|) $))))
-((-2798 ((|#2| (-1041 |#1| |#2|)) 39)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -2798 (|#2| (-1041 |#1| |#2|)))) (-843) (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (T -824))
-((-2798 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (-5 *1 (-824 *4 *2)))))
-(-10 -7 (-15 -2798 (|#2| (-1041 |#1| |#2|))))
-((-1587 (((-107) $ $) 7)) (-2706 (($) 20 T CONST)) (-3775 (((-3 $ "failed") $) 16)) (-2492 (((-1005 |#1|) $ |#1|) 35)) (-3469 (((-107) $) 19)) (-4055 (($ $ $) 33 (-3782 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3105 (($ $ $) 32 (-3782 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 27)) (-3214 (((-1021) $) 10)) (-2049 ((|#1| $ |#1|) 37)) (-1437 ((|#1| $ |#1|) 36)) (-3146 (($ (-583 (-583 |#1|))) 38)) (-1923 (($ (-583 |#1|)) 39)) (-1757 (($ $ $) 23)) (-2901 (($ $ $) 22)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2411 (($) 21 T CONST)) (-1600 (((-107) $ $) 30 (-3782 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1571 (((-107) $ $) 29 (-3782 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 31 (-3782 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1558 (((-107) $ $) 34)) (-1678 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
-(((-825 |#1|) (-1185) (-1003)) (T -825))
-((-1923 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-2049 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1437 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-2492 (*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) (-1558 (*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(-13 (-442) (-10 -8 (-15 -1923 ($ (-583 |t#1|))) (-15 -3146 ($ (-583 (-583 |t#1|)))) (-15 -2049 (|t#1| $ |t#1|)) (-15 -1437 (|t#1| $ |t#1|)) (-15 -2492 ((-1005 |t#1|) $ |t#1|)) (-15 -1558 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |%noBranch|)))
-(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3782 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-3465 (((-583 (-583 (-703))) $) 106)) (-3758 (((-583 (-703)) (-827 |#1|) $) 128)) (-3683 (((-583 (-703)) (-827 |#1|) $) 129)) (-3866 (((-583 (-827 |#1|)) $) 96)) (-4100 (((-827 |#1|) $ (-517)) 101) (((-827 |#1|) $) 102)) (-3978 (($ (-583 (-827 |#1|))) 108)) (-3730 (((-703) $) 103)) (-3977 (((-1005 (-1005 |#1|)) $) 126)) (-2492 (((-1005 |#1|) $ |#1|) 119) (((-1005 (-1005 |#1|)) $ (-1005 |#1|)) 137) (((-1005 (-583 |#1|)) $ (-583 |#1|)) 140)) (-3734 (((-1005 |#1|) $) 99)) (-1653 (((-107) (-827 |#1|) $) 90)) (-1277 (((-1057) $) NIL)) (-2922 (((-1159) $) 93) (((-1159) $ (-517) (-517)) 141)) (-3214 (((-1021) $) NIL)) (-1806 (((-583 (-827 |#1|)) $) 94)) (-1437 (((-827 |#1|) $ (-703)) 97)) (-3625 (((-703) $) 104)) (-2254 (((-787) $) 117) (((-583 (-827 |#1|)) $) 22) (($ (-583 (-827 |#1|))) 107)) (-1870 (((-583 |#1|) $) 105)) (-1534 (((-107) $ $) 134)) (-1585 (((-107) $ $) 132)) (-1558 (((-107) $ $) 131)))
-(((-826 |#1|) (-13 (-1003) (-10 -8 (-15 -2254 ((-583 (-827 |#1|)) $)) (-15 -1806 ((-583 (-827 |#1|)) $)) (-15 -1437 ((-827 |#1|) $ (-703))) (-15 -4100 ((-827 |#1|) $ (-517))) (-15 -4100 ((-827 |#1|) $)) (-15 -3730 ((-703) $)) (-15 -3625 ((-703) $)) (-15 -1870 ((-583 |#1|) $)) (-15 -3866 ((-583 (-827 |#1|)) $)) (-15 -3465 ((-583 (-583 (-703))) $)) (-15 -2254 ($ (-583 (-827 |#1|)))) (-15 -3978 ($ (-583 (-827 |#1|)))) (-15 -2492 ((-1005 |#1|) $ |#1|)) (-15 -3977 ((-1005 (-1005 |#1|)) $)) (-15 -2492 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -2492 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -1653 ((-107) (-827 |#1|) $)) (-15 -3758 ((-583 (-703)) (-827 |#1|) $)) (-15 -3683 ((-583 (-703)) (-827 |#1|) $)) (-15 -3734 ((-1005 |#1|) $)) (-15 -1558 ((-107) $ $)) (-15 -1585 ((-107) $ $)) (-15 -2922 ((-1159) $)) (-15 -2922 ((-1159) $ (-517) (-517))))) (-1003)) (T -826))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-4100 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-2492 (*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2492 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) (-2492 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) (-1653 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) (-3758 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-3683 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1558 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1585 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ((-583 (-827 |#1|)) $)) (-15 -1806 ((-583 (-827 |#1|)) $)) (-15 -1437 ((-827 |#1|) $ (-703))) (-15 -4100 ((-827 |#1|) $ (-517))) (-15 -4100 ((-827 |#1|) $)) (-15 -3730 ((-703) $)) (-15 -3625 ((-703) $)) (-15 -1870 ((-583 |#1|) $)) (-15 -3866 ((-583 (-827 |#1|)) $)) (-15 -3465 ((-583 (-583 (-703))) $)) (-15 -2254 ($ (-583 (-827 |#1|)))) (-15 -3978 ($ (-583 (-827 |#1|)))) (-15 -2492 ((-1005 |#1|) $ |#1|)) (-15 -3977 ((-1005 (-1005 |#1|)) $)) (-15 -2492 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -2492 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -1653 ((-107) (-827 |#1|) $)) (-15 -3758 ((-583 (-703)) (-827 |#1|) $)) (-15 -3683 ((-583 (-703)) (-827 |#1|) $)) (-15 -3734 ((-1005 |#1|) $)) (-15 -1558 ((-107) $ $)) (-15 -1585 ((-107) $ $)) (-15 -2922 ((-1159) $)) (-15 -2922 ((-1159) $ (-517) (-517)))))
-((-1587 (((-107) $ $) NIL)) (-4044 (((-583 $) (-583 $)) 76)) (-3345 (((-517) $) 59)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3730 (((-703) $) 57)) (-2492 (((-1005 |#1|) $ |#1|) 48)) (-3469 (((-107) $) NIL)) (-2119 (((-107) $) 62)) (-1993 (((-703) $) 60)) (-3734 (((-1005 |#1|) $) 41)) (-4055 (($ $ $) NIL (-3782 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3105 (($ $ $) NIL (-3782 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1931 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 35)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 92)) (-3214 (((-1021) $) NIL)) (-1290 (((-1005 |#1|) $) 99 (|has| |#1| (-338)))) (-1947 (((-107) $) 58)) (-2049 ((|#1| $ |#1|) 46)) (-1437 ((|#1| $ |#1|) 93)) (-3625 (((-703) $) 43)) (-3146 (($ (-583 (-583 |#1|))) 84)) (-2907 (((-888) $) 52)) (-1923 (($ (-583 |#1|)) 21)) (-1757 (($ $ $) NIL)) (-2901 (($ $ $) NIL)) (-2149 (($ (-583 (-583 |#1|))) 38)) (-3357 (($ (-583 (-583 |#1|))) 87)) (-3791 (($ (-583 |#1|)) 95)) (-2254 (((-787) $) 83) (($ (-583 (-583 |#1|))) 65) (($ (-583 |#1|)) 66)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2411 (($) 16 T CONST)) (-1600 (((-107) $ $) NIL (-3782 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1534 (((-107) $ $) 44)) (-1585 (((-107) $ $) NIL (-3782 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1558 (((-107) $ $) 64)) (-1678 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
-(((-827 |#1|) (-13 (-825 |#1|) (-10 -8 (-15 -1931 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2149 ($ (-583 (-583 |#1|)))) (-15 -2254 ($ (-583 (-583 |#1|)))) (-15 -2254 ($ (-583 |#1|))) (-15 -3357 ($ (-583 (-583 |#1|)))) (-15 -3625 ((-703) $)) (-15 -3734 ((-1005 |#1|) $)) (-15 -2907 ((-888) $)) (-15 -3730 ((-703) $)) (-15 -1993 ((-703) $)) (-15 -3345 ((-517) $)) (-15 -1947 ((-107) $)) (-15 -2119 ((-107) $)) (-15 -4044 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1290 ((-1005 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3791 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3791 ($ (-583 |#1|))) |%noBranch|)))) (-1003)) (T -827))
-((-1931 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(-13 (-825 |#1|) (-10 -8 (-15 -1931 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2149 ($ (-583 (-583 |#1|)))) (-15 -2254 ($ (-583 (-583 |#1|)))) (-15 -2254 ($ (-583 |#1|))) (-15 -3357 ($ (-583 (-583 |#1|)))) (-15 -3625 ((-703) $)) (-15 -3734 ((-1005 |#1|) $)) (-15 -2907 ((-888) $)) (-15 -3730 ((-703) $)) (-15 -1993 ((-703) $)) (-15 -3345 ((-517) $)) (-15 -1947 ((-107) $)) (-15 -2119 ((-107) $)) (-15 -4044 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1290 ((-1005 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3791 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3791 ($ (-583 |#1|))) |%noBranch|))))
-((-1250 (((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|)) 127)) (-3900 ((|#1|) 75)) (-2024 (((-388 (-1070 |#4|)) (-1070 |#4|)) 136)) (-3944 (((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|)) 67)) (-3164 (((-388 (-1070 |#4|)) (-1070 |#4|)) 146)) (-2701 (((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|) 91)))
-(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1250 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|))) (-15 -3164 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -2024 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -3900 (|#1|)) (-15 -2701 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|)) (-15 -3944 ((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|)))) (-831) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -828))
-((-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1070 *8)))) (-2701 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))) (-3900 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3164 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-1250 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1250 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|))) (-15 -3164 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -2024 ((-388 (-1070 |#4|)) (-1070 |#4|))) (-15 -3900 (|#1|)) (-15 -2701 ((-3 (-583 (-1070 |#4|)) "failed") (-583 (-1070 |#4|)) (-1070 |#4|) |#3|)) (-15 -3944 ((-388 (-1070 |#4|)) (-583 |#3|) (-1070 |#4|))))
-((-1250 (((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|)) 36)) (-3900 ((|#1|) 53)) (-2024 (((-388 (-1070 |#2|)) (-1070 |#2|)) 101)) (-3944 (((-388 (-1070 |#2|)) (-1070 |#2|)) 88)) (-3164 (((-388 (-1070 |#2|)) (-1070 |#2|)) 112)))
-(((-829 |#1| |#2|) (-10 -7 (-15 -1250 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))) (-15 -3164 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -2024 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -3900 (|#1|)) (-15 -3944 ((-388 (-1070 |#2|)) (-1070 |#2|)))) (-831) (-1131 |#1|)) (T -829))
-((-3944 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-3900 (*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1131 *2)))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-3164 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))) (-1250 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
-(-10 -7 (-15 -1250 ((-3 (-583 (-1070 |#2|)) "failed") (-583 (-1070 |#2|)) (-1070 |#2|))) (-15 -3164 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -2024 ((-388 (-1070 |#2|)) (-1070 |#2|))) (-15 -3900 (|#1|)) (-15 -3944 ((-388 (-1070 |#2|)) (-1070 |#2|))))
-((-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 39)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 18)) (-2486 (((-3 $ "failed") $) 33)))
-(((-830 |#1|) (-10 -8 (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-831)) (T -830))
-NIL
-(-10 -8 (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 60)) (-2377 (($ $) 51)) (-2674 (((-388 $) $) 52)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 57)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3083 (((-107) $) 53)) (-3469 (((-107) $) 31)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2736 (((-388 (-1070 $)) (-1070 $)) 58)) (-1673 (((-388 (-1070 $)) (-1070 $)) 59)) (-1376 (((-388 $) $) 50)) (-2483 (((-3 $ "failed") $ $) 42)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2486 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-831) (-1185)) (T -831))
-((-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-831)))) (-1851 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2736 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2899 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-831)))) (-1643 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1154 *1)))) (-2486 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
-(-13 (-1113) (-10 -8 (-15 -1851 ((-388 (-1070 $)) (-1070 $))) (-15 -1673 ((-388 (-1070 $)) (-1070 $))) (-15 -2736 ((-388 (-1070 $)) (-1070 $))) (-15 -3875 ((-1070 $) (-1070 $) (-1070 $))) (-15 -2899 ((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $))) (IF (|has| $ (-132)) (PROGN (-15 -1643 ((-3 (-1154 $) "failed") (-623 $))) (-15 -2486 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-3065 (((-107) $) NIL)) (-3877 (((-703)) NIL)) (-1462 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-2577 (((-1083 (-843) (-703)) (-517)) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-1719 (((-703)) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 $ "failed") $) NIL)) (-3232 (($ $) NIL)) (-4047 (($ (-1154 $)) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-2170 (($) NIL)) (-3449 (((-107) $) NIL)) (-2616 (($ $) NIL) (($ $ (-703)) NIL)) (-3083 (((-107) $) NIL)) (-3730 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3469 (((-107) $) NIL)) (-1921 (($) NIL (|has| $ (-338)))) (-3228 (((-107) $) NIL (|has| $ (-338)))) (-2962 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-3326 (((-3 $ "failed") $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2956 (((-1070 $) $ (-843)) NIL (|has| $ (-338))) (((-1070 $) $) NIL)) (-4034 (((-843) $) NIL)) (-4150 (((-1070 $) $) NIL (|has| $ (-338)))) (-4111 (((-3 (-1070 $) "failed") $ $) NIL (|has| $ (-338))) (((-1070 $) $) NIL (|has| $ (-338)))) (-2892 (($ $ (-1070 $)) NIL (|has| $ (-338)))) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL T CONST)) (-3544 (($ (-843)) NIL)) (-2368 (((-107) $) NIL)) (-3214 (((-1021) $) NIL)) (-3244 (($) NIL (|has| $ (-338)))) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL)) (-1376 (((-388 $) $) NIL)) (-4110 (((-843)) NIL) (((-765 (-843))) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3459 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-2232 (((-125)) NIL)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-3625 (((-843) $) NIL) (((-765 (-843)) $) NIL)) (-2780 (((-1070 $)) NIL)) (-2858 (($) NIL)) (-3551 (($) NIL (|has| $ (-338)))) (-3589 (((-623 $) (-1154 $)) NIL) (((-1154 $) $) NIL)) (-3667 (((-517) $) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-2486 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1217 (((-703)) NIL)) (-2080 (((-1154 $) (-843)) NIL) (((-1154 $)) NIL)) (-2673 (((-107) $ $) NIL)) (-1892 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2415 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-832 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -832))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-794 |#1|) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-794 |#1|) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| (-794 |#1|) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-953 (-517))))) (-3388 (((-794 |#1|) $) NIL) (((-1075) $) NIL (|has| (-794 |#1|) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-953 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-953 (-517))))) (-1675 (($ $) NIL) (($ (-517) $) NIL)) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-794 |#1|))) (|:| |vec| (-1156 (-794 |#1|)))) (-623 $) (-1156 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-794 |#1|) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-794 |#1|) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-794 |#1|) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-794 |#1|) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1051)))) (-1469 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-4082 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3308 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-794 |#1|) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2309 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-794 |#1|) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-794 |#1|) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1075)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1075) (-794 |#1|)))) (($ $ (-1075) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1075) (-794 |#1|))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1075)) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-794 |#1|) $) NIL)) (-3357 (((-815 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-938))) (((-199) $) NIL (|has| (-794 |#1|) (-938)))) (-3089 (((-157 (-377 (-517))) $) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1075)) NIL (|has| (-794 |#1|) (-953 (-1075))))) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-832))) (|has| (-794 |#1|) (-132))))) (-2950 (((-703)) NIL)) (-3475 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2914 (((-107) $ $) NIL)) (-2202 (((-377 (-517)) $ (-517)) NIL)) (-2339 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1075)) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-794 |#1|) (-823 (-1075)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1703 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
+(((-795 |#1|) (-13 (-910 (-794 |#1|)) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $)))) (-517)) (T -795))
+((-2202 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-1675 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-1675 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
+(-13 (-910 (-794 |#1|)) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 ((|#2| $) NIL (|has| |#2| (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| |#2| (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (|has| |#2| (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517))))) (-3388 ((|#2| $) NIL) (((-1075) $) NIL (|has| |#2| (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-517)))) (((-517) $) NIL (|has| |#2| (-953 (-517))))) (-1675 (($ $) 31) (($ (-517) $) 32)) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) 53)) (-2200 (($) NIL (|has| |#2| (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) NIL (|has| |#2| (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| |#2| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| |#2| (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 ((|#2| $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#2| (-1051)))) (-1469 (((-107) $) NIL (|has| |#2| (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 49)) (-2585 (($) NIL (|has| |#2| (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| |#2| (-278)))) (-2309 ((|#2| $) NIL (|has| |#2| (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1075)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1075) |#2|))) (($ $ (-1075) |#2|) NIL (|has| |#2| (-478 (-1075) |#2|)))) (-4094 (((-703) $) NIL)) (-2607 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3596 (($ $) NIL)) (-2097 ((|#2| $) NIL)) (-3357 (((-815 (-517)) $) NIL (|has| |#2| (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| |#2| (-558 (-815 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-938))) (((-199) $) NIL (|has| |#2| (-938)))) (-3089 (((-157 (-377 (-517))) $) 68)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-2269 (((-787) $) 86) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1075)) NIL (|has| |#2| (-953 (-1075))))) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3475 ((|#2| $) NIL (|has| |#2| (-502)))) (-2914 (((-107) $ $) NIL)) (-2202 (((-377 (-517)) $ (-517)) 60)) (-2339 (($ $) NIL (|has| |#2| (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 14 T CONST)) (-3617 (($) 16 T CONST)) (-3340 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) 35)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1691 (($ $) 39) (($ $ $) 41)) (-1677 (($ $ $) 37)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-796 |#1| |#2|) (-13 (-910 |#2|) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
+((-2202 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-3089 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-1675 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-1675 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(-13 (-910 |#2|) (-10 -8 (-15 -2202 ((-377 (-517)) $ (-517))) (-15 -3089 ((-157 (-377 (-517))) $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $))))
+((-2118 (((-107) $ $) NIL)) (-2065 (((-517) $) 15)) (-2073 (($ (-142)) 11)) (-2545 (($ (-142)) 12)) (-1895 (((-1058) $) NIL)) (-3919 (((-142) $) 13)) (-4123 (((-1022) $) NIL)) (-3131 (($ (-142)) 9)) (-3113 (($ (-142)) 8)) (-2269 (((-787) $) 23) (($ (-142)) 16)) (-3490 (($ (-142)) 10)) (-1583 (((-107) $ $) NIL)))
+(((-797) (-13 (-1004) (-10 -8 (-15 -3113 ($ (-142))) (-15 -3131 ($ (-142))) (-15 -3490 ($ (-142))) (-15 -2073 ($ (-142))) (-15 -2545 ($ (-142))) (-15 -3919 ((-142) $)) (-15 -2065 ((-517) $)) (-15 -2269 ($ (-142)))))) (T -797))
+((-3113 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(-13 (-1004) (-10 -8 (-15 -3113 ($ (-142))) (-15 -3131 ($ (-142))) (-15 -3490 ($ (-142))) (-15 -2073 ($ (-142))) (-15 -2545 ($ (-142))) (-15 -3919 ((-142) $)) (-15 -2065 ((-517) $)) (-15 -2269 ($ (-142)))))
+((-2269 (((-286 (-517)) (-377 (-875 (-47)))) 21) (((-286 (-517)) (-875 (-47))) 16)))
+(((-798) (-10 -7 (-15 -2269 ((-286 (-517)) (-875 (-47)))) (-15 -2269 ((-286 (-517)) (-377 (-875 (-47))))))) (T -798))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-875 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
+(-10 -7 (-15 -2269 ((-286 (-517)) (-875 (-47)))) (-15 -2269 ((-286 (-517)) (-377 (-875 (-47))))))
+((-3308 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
+(((-799 |#1| |#2|) (-10 -7 (-15 -3308 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1110) (-1110)) (T -799))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
+(-10 -7 (-15 -3308 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
+((-1894 (($ |#1| |#1|) 8)) (-2329 ((|#1| $ (-703)) 10)))
+(((-800 |#1|) (-10 -8 (-15 -1894 ($ |#1| |#1|)) (-15 -2329 (|#1| $ (-703)))) (-1110)) (T -800))
+((-2329 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1110)))) (-1894 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1110)))))
+(-10 -8 (-15 -1894 ($ |#1| |#1|)) (-15 -2329 (|#1| $ (-703))))
+((-3308 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -3308 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1110) (-1110)) (T -801))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
+(-10 -7 (-15 -3308 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
+((-1894 (($ |#1| |#1| |#1|) 8)) (-2329 ((|#1| $ (-703)) 10)))
+(((-802 |#1|) (-10 -8 (-15 -1894 ($ |#1| |#1| |#1|)) (-15 -2329 (|#1| $ (-703)))) (-1110)) (T -802))
+((-2329 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1110)))) (-1894 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1110)))))
+(-10 -8 (-15 -1894 ($ |#1| |#1| |#1|)) (-15 -2329 (|#1| $ (-703))))
+((-1818 (((-583 (-1080)) (-1058)) 8)))
+(((-803) (-10 -7 (-15 -1818 ((-583 (-1080)) (-1058))))) (T -803))
+((-1818 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-583 (-1080))) (-5 *1 (-803)))))
+(-10 -7 (-15 -1818 ((-583 (-1080)) (-1058))))
+((-3308 (((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)) 14)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -3308 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)))) (-1110) (-1110)) (T -804))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6)))))
+(-10 -7 (-15 -3308 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|))))
+((-3008 (($ |#1| |#1| |#1|) 8)) (-2329 ((|#1| $ (-703)) 10)))
+(((-805 |#1|) (-10 -8 (-15 -3008 ($ |#1| |#1| |#1|)) (-15 -2329 (|#1| $ (-703)))) (-1110)) (T -805))
+((-2329 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-805 *2)) (-4 *2 (-1110)))) (-3008 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1110)))))
+(-10 -8 (-15 -3008 ($ |#1| |#1| |#1|)) (-15 -2329 (|#1| $ (-703))))
+((-3838 (((-1056 (-583 (-517))) (-583 (-517)) (-1056 (-583 (-517)))) 32)) (-1245 (((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517))) 28)) (-3435 (((-1056 (-583 (-517))) (-583 (-517))) 41) (((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517))) 40)) (-4102 (((-1056 (-583 (-517))) (-517)) 42)) (-3005 (((-1056 (-583 (-517))) (-517) (-517)) 22) (((-1056 (-583 (-517))) (-517)) 16) (((-1056 (-583 (-517))) (-517) (-517) (-517)) 12)) (-2885 (((-1056 (-583 (-517))) (-1056 (-583 (-517)))) 26)) (-3026 (((-583 (-517)) (-583 (-517))) 25)))
+(((-806) (-10 -7 (-15 -3005 ((-1056 (-583 (-517))) (-517) (-517) (-517))) (-15 -3005 ((-1056 (-583 (-517))) (-517))) (-15 -3005 ((-1056 (-583 (-517))) (-517) (-517))) (-15 -3026 ((-583 (-517)) (-583 (-517)))) (-15 -2885 ((-1056 (-583 (-517))) (-1056 (-583 (-517))))) (-15 -1245 ((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3838 ((-1056 (-583 (-517))) (-583 (-517)) (-1056 (-583 (-517))))) (-15 -3435 ((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3435 ((-1056 (-583 (-517))) (-583 (-517)))) (-15 -4102 ((-1056 (-583 (-517))) (-517))))) (T -806))
+((-4102 (*1 *2 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-3435 (*1 *2 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-3435 (*1 *2 *3 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-3838 (*1 *2 *3 *2) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-806)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-583 (-517))))) (-2885 (*1 *2 *2) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-806)))) (-3005 (*1 *2 *3 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))) (-3005 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3005 ((-1056 (-583 (-517))) (-517) (-517) (-517))) (-15 -3005 ((-1056 (-583 (-517))) (-517))) (-15 -3005 ((-1056 (-583 (-517))) (-517) (-517))) (-15 -3026 ((-583 (-517)) (-583 (-517)))) (-15 -2885 ((-1056 (-583 (-517))) (-1056 (-583 (-517))))) (-15 -1245 ((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3838 ((-1056 (-583 (-517))) (-583 (-517)) (-1056 (-583 (-517))))) (-15 -3435 ((-1056 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3435 ((-1056 (-583 (-517))) (-583 (-517)))) (-15 -4102 ((-1056 (-583 (-517))) (-517))))
+((-3357 (((-815 (-349)) $) 9 (|has| |#1| (-558 (-815 (-349))))) (((-815 (-517)) $) 8 (|has| |#1| (-558 (-815 (-517)))))))
+(((-807 |#1|) (-1187) (-1110)) (T -807))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-558 (-815 (-517)))) (-6 (-558 (-815 (-517)))) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-349)))) (-6 (-558 (-815 (-349)))) |%noBranch|)))
+(((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))))
+((-2118 (((-107) $ $) NIL)) (-3211 (($) 14)) (-3044 (($ (-812 |#1| |#2|) (-812 |#1| |#3|)) 27)) (-3168 (((-812 |#1| |#3|) $) 16)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2826 (((-107) $) 22)) (-3208 (($) 19)) (-2269 (((-787) $) 30)) (-1959 (((-812 |#1| |#2|) $) 15)) (-1583 (((-107) $ $) 25)))
+(((-808 |#1| |#2| |#3|) (-13 (-1004) (-10 -8 (-15 -2826 ((-107) $)) (-15 -3208 ($)) (-15 -3211 ($)) (-15 -3044 ($ (-812 |#1| |#2|) (-812 |#1| |#3|))) (-15 -1959 ((-812 |#1| |#2|) $)) (-15 -3168 ((-812 |#1| |#3|) $)))) (-1004) (-1004) (-603 |#2|)) (T -808))
+((-2826 (*1 *2 *1) (-12 (-4 *4 (-1004)) (-5 *2 (-107)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1004)) (-4 *5 (-603 *4)))) (-3208 (*1 *1) (-12 (-4 *3 (-1004)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1004)) (-4 *4 (-603 *3)))) (-3211 (*1 *1) (-12 (-4 *3 (-1004)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1004)) (-4 *4 (-603 *3)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *2 (-812 *4 *5)) (-5 *3 (-812 *4 *6)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-603 *5)) (-5 *1 (-808 *4 *5 *6)))) (-1959 (*1 *2 *1) (-12 (-4 *4 (-1004)) (-5 *2 (-812 *3 *4)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1004)) (-4 *5 (-603 *4)))) (-3168 (*1 *2 *1) (-12 (-4 *4 (-1004)) (-5 *2 (-812 *3 *5)) (-5 *1 (-808 *3 *4 *5)) (-4 *3 (-1004)) (-4 *5 (-603 *4)))))
+(-13 (-1004) (-10 -8 (-15 -2826 ((-107) $)) (-15 -3208 ($)) (-15 -3211 ($)) (-15 -3044 ($ (-812 |#1| |#2|) (-812 |#1| |#3|))) (-15 -1959 ((-812 |#1| |#2|) $)) (-15 -3168 ((-812 |#1| |#3|) $))))
+((-2118 (((-107) $ $) 7)) (-2399 (((-812 |#1| $) $ (-815 |#1|) (-812 |#1| $)) 13)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-809 |#1|) (-1187) (-1004)) (T -809))
+((-2399 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-812 *4 *1)) (-5 *3 (-815 *4)) (-4 *1 (-809 *4)) (-4 *4 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -2399 ((-812 |t#1| $) $ (-815 |t#1|) (-812 |t#1| $)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-1290 (((-107) (-583 |#2|) |#3|) 23) (((-107) |#2| |#3|) 18)) (-2448 (((-812 |#1| |#2|) |#2| |#3|) 43 (-12 (-2477 (|has| |#2| (-953 (-1075)))) (-2477 (|has| |#2| (-962))))) (((-583 (-265 (-875 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-962)) (-2477 (|has| |#2| (-953 (-1075)))))) (((-583 (-265 |#2|)) |#2| |#3|) 35 (|has| |#2| (-953 (-1075)))) (((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21)))
+(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1290 ((-107) |#2| |#3|)) (-15 -1290 ((-107) (-583 |#2|) |#3|)) (-15 -2448 ((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-953 (-1075))) (-15 -2448 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2448 ((-583 (-265 (-875 |#2|))) |#2| |#3|)) (-15 -2448 ((-812 |#1| |#2|) |#2| |#3|))))) (-1004) (-809 |#1|) (-558 (-815 |#1|))) (T -810))
+((-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-5 *2 (-812 *5 *3)) (-5 *1 (-810 *5 *3 *4)) (-2477 (-4 *3 (-953 (-1075)))) (-2477 (-4 *3 (-962))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-5 *2 (-583 (-265 (-875 *3)))) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-962)) (-2477 (-4 *3 (-953 (-1075)))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-953 (-1075))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-4 *6 (-809 *5)) (-5 *2 (-808 *5 *6 (-583 *6))) (-5 *1 (-810 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-815 *5))))) (-1290 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-809 *5)) (-4 *5 (-1004)) (-5 *2 (-107)) (-5 *1 (-810 *5 *6 *4)) (-4 *4 (-558 (-815 *5))))) (-1290 (*1 *2 *3 *4) (-12 (-4 *5 (-1004)) (-5 *2 (-107)) (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))))
+(-10 -7 (-15 -1290 ((-107) |#2| |#3|)) (-15 -1290 ((-107) (-583 |#2|) |#3|)) (-15 -2448 ((-808 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-953 (-1075))) (-15 -2448 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2448 ((-583 (-265 (-875 |#2|))) |#2| |#3|)) (-15 -2448 ((-812 |#1| |#2|) |#2| |#3|)))))
+((-3308 (((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|)) 21)))
+(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|)))) (-1004) (-1004) (-1004)) (T -811))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-812 *5 *6)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-812 *5 *7)) (-5 *1 (-811 *5 *6 *7)))))
+(-10 -7 (-15 -3308 ((-812 |#1| |#3|) (-1 |#3| |#2|) (-812 |#1| |#2|))))
+((-2118 (((-107) $ $) NIL)) (-2382 (($ $ $) 37)) (-4055 (((-3 (-107) "failed") $ (-815 |#1|)) 34)) (-3211 (($) 11)) (-1895 (((-1058) $) NIL)) (-2753 (($ (-815 |#1|) |#2| $) 20)) (-4123 (((-1022) $) NIL)) (-4114 (((-3 |#2| "failed") (-815 |#1|) $) 48)) (-2826 (((-107) $) 14)) (-3208 (($) 12)) (-3940 (((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|))) $) 25)) (-2286 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|)))) 23)) (-2269 (((-787) $) 42)) (-3004 (($ (-815 |#1|) |#2| $ |#2|) 46)) (-2057 (($ (-815 |#1|) |#2| $) 45)) (-1583 (((-107) $ $) 39)))
+(((-812 |#1| |#2|) (-13 (-1004) (-10 -8 (-15 -2826 ((-107) $)) (-15 -3208 ($)) (-15 -3211 ($)) (-15 -2382 ($ $ $)) (-15 -4114 ((-3 |#2| "failed") (-815 |#1|) $)) (-15 -2057 ($ (-815 |#1|) |#2| $)) (-15 -2753 ($ (-815 |#1|) |#2| $)) (-15 -3004 ($ (-815 |#1|) |#2| $ |#2|)) (-15 -3940 ((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|))) $)) (-15 -2286 ($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|))))) (-15 -4055 ((-3 (-107) "failed") $ (-815 |#1|))))) (-1004) (-1004)) (T -812))
+((-2826 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-3208 (*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-3211 (*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-4114 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-4 *2 (-1004)) (-5 *1 (-812 *4 *2)))) (-2057 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1004)))) (-2753 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1004)))) (-3004 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1004)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 *4)))) (-5 *1 (-812 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 *4)))) (-4 *4 (-1004)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1004)))) (-4055 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-107)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -2826 ((-107) $)) (-15 -3208 ($)) (-15 -3211 ($)) (-15 -2382 ($ $ $)) (-15 -4114 ((-3 |#2| "failed") (-815 |#1|) $)) (-15 -2057 ($ (-815 |#1|) |#2| $)) (-15 -2753 ($ (-815 |#1|) |#2| $)) (-15 -3004 ($ (-815 |#1|) |#2| $ |#2|)) (-15 -3940 ((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|))) $)) (-15 -2286 ($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 |#2|))))) (-15 -4055 ((-3 (-107) "failed") $ (-815 |#1|)))))
+((-3556 (((-815 |#1|) (-815 |#1|) (-583 (-1075)) (-1 (-107) (-583 |#2|))) 30) (((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|)) 33)) (-4055 (((-107) (-583 |#2|) (-815 |#1|)) 39) (((-107) |#2| (-815 |#1|)) 35)) (-1689 (((-1 (-107) |#2|) (-815 |#1|)) 14)) (-1693 (((-583 |#2|) (-815 |#1|)) 23)) (-3142 (((-815 |#1|) (-815 |#1|) |#2|) 19)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -3556 ((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|))) (-15 -3556 ((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3556 ((-815 |#1|) (-815 |#1|) (-583 (-1075)) (-1 (-107) (-583 |#2|)))) (-15 -1689 ((-1 (-107) |#2|) (-815 |#1|))) (-15 -4055 ((-107) |#2| (-815 |#1|))) (-15 -4055 ((-107) (-583 |#2|) (-815 |#1|))) (-15 -3142 ((-815 |#1|) (-815 |#1|) |#2|)) (-15 -1693 ((-583 |#2|) (-815 |#1|)))) (-1004) (-1110)) (T -813))
+((-1693 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-583 *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1110)))) (-3142 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1110)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-4 *6 (-1110)) (-5 *2 (-107)) (-5 *1 (-813 *5 *6)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-5 *2 (-107)) (-5 *1 (-813 *5 *3)) (-4 *3 (-1110)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1110)))) (-3556 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-815 *5)) (-5 *3 (-583 (-1075))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1004)) (-4 *6 (-1110)) (-5 *1 (-813 *5 *6)))) (-3556 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1004)) (-4 *5 (-1110)) (-5 *1 (-813 *4 *5)))) (-3556 (*1 *2 *2 *3) (-12 (-5 *2 (-815 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1004)) (-4 *5 (-1110)) (-5 *1 (-813 *4 *5)))))
+(-10 -7 (-15 -3556 ((-815 |#1|) (-815 |#1|) (-1 (-107) |#2|))) (-15 -3556 ((-815 |#1|) (-815 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3556 ((-815 |#1|) (-815 |#1|) (-583 (-1075)) (-1 (-107) (-583 |#2|)))) (-15 -1689 ((-1 (-107) |#2|) (-815 |#1|))) (-15 -4055 ((-107) |#2| (-815 |#1|))) (-15 -4055 ((-107) (-583 |#2|) (-815 |#1|))) (-15 -3142 ((-815 |#1|) (-815 |#1|) |#2|)) (-15 -1693 ((-583 |#2|) (-815 |#1|))))
+((-3308 (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)) 17)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -3308 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)))) (-1004) (-1004)) (T -814))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6)))))
+(-10 -7 (-15 -3308 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|))))
+((-2118 (((-107) $ $) NIL)) (-1890 (($ $ (-583 (-51))) 63)) (-2096 (((-583 $) $) 117)) (-3496 (((-2 (|:| |var| (-583 (-1075))) (|:| |pred| (-51))) $) 23)) (-4093 (((-107) $) 30)) (-1390 (($ $ (-583 (-1075)) (-51)) 25)) (-3863 (($ $ (-583 (-51))) 62)) (-3226 (((-3 |#1| "failed") $) 60) (((-3 (-1075) "failed") $) 139)) (-3388 ((|#1| $) 56) (((-1075) $) NIL)) (-1442 (($ $) 107)) (-1541 (((-107) $) 46)) (-3448 (((-583 (-51)) $) 44)) (-2734 (($ (-1075) (-107) (-107) (-107)) 64)) (-3053 (((-3 (-583 $) "failed") (-583 $)) 71)) (-1643 (((-107) $) 49)) (-1428 (((-107) $) 48)) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) 35)) (-1755 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-2692 (((-3 (-2 (|:| |val| $) (|:| -2356 $)) "failed") $) 82)) (-2875 (((-3 (-583 $) "failed") $) 32)) (-2926 (((-3 (-583 $) "failed") $ (-109)) 106) (((-3 (-2 (|:| -1406 (-109)) (|:| |arg| (-583 $))) "failed") $) 94)) (-2131 (((-3 (-583 $) "failed") $) 36)) (-1812 (((-3 (-2 (|:| |val| $) (|:| -2356 (-703))) "failed") $) 39)) (-3153 (((-107) $) 29)) (-4123 (((-1022) $) NIL)) (-3003 (((-107) $) 21)) (-2147 (((-107) $) 45)) (-2275 (((-583 (-51)) $) 110)) (-2084 (((-107) $) 47)) (-2607 (($ (-109) (-583 $)) 91)) (-3143 (((-703) $) 28)) (-2460 (($ $) 61)) (-3357 (($ (-583 $)) 58)) (-3474 (((-107) $) 26)) (-2269 (((-787) $) 51) (($ |#1|) 18) (($ (-1075)) 65)) (-3142 (($ $ (-51)) 109)) (-3608 (($) 90 T CONST)) (-3617 (($) 72 T CONST)) (-1583 (((-107) $ $) 78)) (-1703 (($ $ $) 99)) (-1677 (($ $ $) 103)) (** (($ $ (-703)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
+(((-815 |#1|) (-13 (-1004) (-953 |#1|) (-953 (-1075)) (-10 -8 (-15 0 ($) -1384) (-15 1 ($) -1384) (-15 -2875 ((-3 (-583 $) "failed") $)) (-15 -3807 ((-3 (-583 $) "failed") $)) (-15 -2926 ((-3 (-583 $) "failed") $ (-109))) (-15 -2926 ((-3 (-2 (|:| -1406 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -1812 ((-3 (-2 (|:| |val| $) (|:| -2356 (-703))) "failed") $)) (-15 -1755 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2131 ((-3 (-583 $) "failed") $)) (-15 -2692 ((-3 (-2 (|:| |val| $) (|:| -2356 $)) "failed") $)) (-15 -2607 ($ (-109) (-583 $))) (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1703 ($ $ $)) (-15 -3143 ((-703) $)) (-15 -3357 ($ (-583 $))) (-15 -2460 ($ $)) (-15 -3153 ((-107) $)) (-15 -1541 ((-107) $)) (-15 -4093 ((-107) $)) (-15 -3474 ((-107) $)) (-15 -2084 ((-107) $)) (-15 -1428 ((-107) $)) (-15 -1643 ((-107) $)) (-15 -2147 ((-107) $)) (-15 -3448 ((-583 (-51)) $)) (-15 -3863 ($ $ (-583 (-51)))) (-15 -1890 ($ $ (-583 (-51)))) (-15 -2734 ($ (-1075) (-107) (-107) (-107))) (-15 -1390 ($ $ (-583 (-1075)) (-51))) (-15 -3496 ((-2 (|:| |var| (-583 (-1075))) (|:| |pred| (-51))) $)) (-15 -3003 ((-107) $)) (-15 -1442 ($ $)) (-15 -3142 ($ $ (-51))) (-15 -2275 ((-583 (-51)) $)) (-15 -2096 ((-583 $) $)) (-15 -3053 ((-3 (-583 $) "failed") (-583 $))))) (-1004)) (T -815))
+((-3608 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-3617 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-2875 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3807 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2926 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-815 *4))) (-5 *1 (-815 *4)) (-4 *4 (-1004)))) (-2926 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1406 (-109)) (|:| |arg| (-583 (-815 *3))))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1812 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2356 (-703)))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1755 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-815 *3)) (|:| |den| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2131 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2692 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2356 (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-815 *4))) (-5 *1 (-815 *4)) (-4 *4 (-1004)))) (-1677 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-1703 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2460 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1890 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2734 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-107)) (-5 *1 (-815 *4)) (-4 *4 (-1004)))) (-1390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-51)) (-5 *1 (-815 *4)) (-4 *4 (-1004)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1075))) (|:| |pred| (-51)))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))) (-3142 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))) (-3053 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(-13 (-1004) (-953 |#1|) (-953 (-1075)) (-10 -8 (-15 (-3608) ($) -1384) (-15 (-3617) ($) -1384) (-15 -2875 ((-3 (-583 $) "failed") $)) (-15 -3807 ((-3 (-583 $) "failed") $)) (-15 -2926 ((-3 (-583 $) "failed") $ (-109))) (-15 -2926 ((-3 (-2 (|:| -1406 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -1812 ((-3 (-2 (|:| |val| $) (|:| -2356 (-703))) "failed") $)) (-15 -1755 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2131 ((-3 (-583 $) "failed") $)) (-15 -2692 ((-3 (-2 (|:| |val| $) (|:| -2356 $)) "failed") $)) (-15 -2607 ($ (-109) (-583 $))) (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1703 ($ $ $)) (-15 -3143 ((-703) $)) (-15 -3357 ($ (-583 $))) (-15 -2460 ($ $)) (-15 -3153 ((-107) $)) (-15 -1541 ((-107) $)) (-15 -4093 ((-107) $)) (-15 -3474 ((-107) $)) (-15 -2084 ((-107) $)) (-15 -1428 ((-107) $)) (-15 -1643 ((-107) $)) (-15 -2147 ((-107) $)) (-15 -3448 ((-583 (-51)) $)) (-15 -3863 ($ $ (-583 (-51)))) (-15 -1890 ($ $ (-583 (-51)))) (-15 -2734 ($ (-1075) (-107) (-107) (-107))) (-15 -1390 ($ $ (-583 (-1075)) (-51))) (-15 -3496 ((-2 (|:| |var| (-583 (-1075))) (|:| |pred| (-51))) $)) (-15 -3003 ((-107) $)) (-15 -1442 ($ $)) (-15 -3142 ($ $ (-51))) (-15 -2275 ((-583 (-51)) $)) (-15 -2096 ((-583 $) $)) (-15 -3053 ((-3 (-583 $) "failed") (-583 $)))))
+((-2118 (((-107) $ $) NIL)) (-3365 (((-583 |#1|) $) 16)) (-2236 (((-107) $) 38)) (-3226 (((-3 (-608 |#1|) "failed") $) 41)) (-3388 (((-608 |#1|) $) 39)) (-2437 (($ $) 18)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3680 (((-703) $) 45)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-608 |#1|) $) 17)) (-2269 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-3617 (($) 8 T CONST)) (-2858 (((-583 (-608 |#1|)) $) 23)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 11)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 48)))
+(((-816 |#1|) (-13 (-779) (-953 (-608 |#1|)) (-10 -8 (-15 1 ($) -1384) (-15 -2269 ((-751 |#1|) $)) (-15 -2269 ($ |#1|)) (-15 -2427 ((-608 |#1|) $)) (-15 -3680 ((-703) $)) (-15 -2858 ((-583 (-608 |#1|)) $)) (-15 -2437 ($ $)) (-15 -2236 ((-107) $)) (-15 -3365 ((-583 |#1|) $)))) (-779)) (T -816))
+((-3617 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-2269 (*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-2437 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-779)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-953 (-608 |#1|)) (-10 -8 (-15 (-3617) ($) -1384) (-15 -2269 ((-751 |#1|) $)) (-15 -2269 ($ |#1|)) (-15 -2427 ((-608 |#1|) $)) (-15 -3680 ((-703) $)) (-15 -2858 ((-583 (-608 |#1|)) $)) (-15 -2437 ($ $)) (-15 -2236 ((-107) $)) (-15 -3365 ((-583 |#1|) $))))
+((-2603 ((|#1| |#1| |#1|) 20)))
+(((-817 |#1| |#2|) (-10 -7 (-15 -2603 (|#1| |#1| |#1|))) (-1132 |#2|) (-962)) (T -817))
+((-2603 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-817 *2 *3)) (-4 *2 (-1132 *3)))))
+(-10 -7 (-15 -2603 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-3615 (((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 14)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2242 (((-951) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 13)) (-1583 (((-107) $ $) 6)))
+(((-818) (-1187)) (T -818))
+((-3615 (*1 *2 *3 *4) (-12 (-4 *1 (-818)) (-5 *3 (-974)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058)))))) (-2242 (*1 *2 *3) (-12 (-4 *1 (-818)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) (-5 *2 (-951)))))
+(-13 (-1004) (-10 -7 (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))) (-974) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))))) (-15 -2242 ((-951) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2375 ((|#1| |#1| (-703)) 24)) (-3512 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2582 (((-3 (-2 (|:| -3286 |#1|) (|:| -3298 |#1|)) "failed") |#1| (-703) (-703)) 27) (((-583 |#1|) |#1|) 29)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -2582 ((-583 |#1|) |#1|)) (-15 -2582 ((-3 (-2 (|:| -3286 |#1|) (|:| -3298 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3512 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2375 (|#1| |#1| (-703)))) (-1132 |#2|) (-333)) (T -819))
+((-2375 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-819 *2 *4)) (-4 *2 (-1132 *4)))) (-3512 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-819 *2 *3)) (-4 *2 (-1132 *3)))) (-2582 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3286 *3) (|:| -3298 *3))) (-5 *1 (-819 *3 *5)) (-4 *3 (-1132 *5)))) (-2582 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-819 *3 *4)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -2582 ((-583 |#1|) |#1|)) (-15 -2582 ((-3 (-2 (|:| -3286 |#1|) (|:| -3298 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3512 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2375 (|#1| |#1| (-703))))
+((-2064 (((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058)) 92) (((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058) (-199)) 87) (((-951) (-821) (-974)) 76) (((-951) (-821)) 77)) (-3615 (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821) (-974)) 50) (((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821)) 52)))
+(((-820) (-10 -7 (-15 -2064 ((-951) (-821))) (-15 -2064 ((-951) (-821) (-974))) (-15 -2064 ((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058) (-199))) (-15 -2064 ((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821) (-974))))) (T -820))
+((-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-974)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-820)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058))))) (-5 *1 (-820)))) (-2064 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1058)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-951)) (-5 *1 (-820)))) (-2064 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1058)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-951)) (-5 *1 (-820)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-820)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-951)) (-5 *1 (-820)))))
+(-10 -7 (-15 -2064 ((-951) (-821))) (-15 -2064 ((-951) (-821) (-974))) (-15 -2064 ((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058) (-199))) (-15 -2064 ((-951) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1058))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821))) (-15 -3615 ((-2 (|:| -3615 (-349)) (|:| -2987 (-1058)) (|:| |explanations| (-583 (-1058)))) (-821) (-974))))
+((-2118 (((-107) $ $) NIL)) (-3388 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))) $) 10)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) 9)) (-1583 (((-107) $ $) NIL)))
+(((-821) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))) $))))) (T -821))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-821)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) (-5 *1 (-821)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199)))) (-5 *1 (-821)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))))) (-15 -2269 ((-787) $)) (-15 -3388 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058)) (|:| |tol| (-199))) $))))
+((-2059 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-3340 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
+(((-822 |#1| |#2|) (-10 -8 (-15 -3340 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3340 (|#1| |#1| |#2| (-703))) (-15 -3340 (|#1| |#1| (-583 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -2059 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#2| (-703))) (-15 -2059 (|#1| |#1| (-583 |#2|))) (-15 -2059 (|#1| |#1| |#2|))) (-823 |#2|) (-1004)) (T -822))
+NIL
+(-10 -8 (-15 -3340 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3340 (|#1| |#1| |#2| (-703))) (-15 -3340 (|#1| |#1| (-583 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -2059 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#2| (-703))) (-15 -2059 (|#1| |#1| (-583 |#2|))) (-15 -2059 (|#1| |#1| |#2|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2059 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-823 |#1|) (-1187) (-1004)) (T -823))
+((-2059 (*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1004)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1004)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1004)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4)) (-4 *4 (-1004)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1004)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1004)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1004)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4)) (-4 *4 (-1004)))))
+(-13 (-962) (-10 -8 (-15 -2059 ($ $ |t#1|)) (-15 -2059 ($ $ (-583 |t#1|))) (-15 -2059 ($ $ |t#1| (-703))) (-15 -2059 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -3340 ($ $ |t#1|)) (-15 -3340 ($ $ (-583 |t#1|))) (-15 -3340 ($ $ |t#1| (-703))) (-15 -3340 ($ $ (-583 |t#1|) (-583 (-703))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) 26)) (-2670 (((-107) $ (-703)) NIL)) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-1270 (($ $ $) NIL (|has| $ (-6 -4191)))) (-1289 (($ $ $) NIL (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) (($ $ "left" $) NIL (|has| $ (-6 -4191))) (($ $ "right" $) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3298 (($ $) 25)) (-2406 (($ |#1|) 12) (($ $ $) 17)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3286 (($ $) 23)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) 20)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1097 |#1|) $) 9) (((-787) $) 29 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 21 (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-824 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2406 ($ |#1|)) (-15 -2406 ($ $ $)) (-15 -2269 ((-1097 |#1|) $)))) (-1004)) (T -824))
+((-2406 (*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1004)))) (-2406 (*1 *1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1004)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1097 *3)) (-5 *1 (-824 *3)) (-4 *3 (-1004)))))
+(-13 (-114 |#1|) (-10 -8 (-15 -2406 ($ |#1|)) (-15 -2406 ($ $ $)) (-15 -2269 ((-1097 |#1|) $))))
+((-2288 ((|#2| (-1042 |#1| |#2|)) 41)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -2288 (|#2| (-1042 |#1| |#2|)))) (-844) (-13 (-962) (-10 -7 (-6 (-4192 "*"))))) (T -825))
+((-2288 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *2)) (-14 *4 (-844)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-4192 "*"))))) (-5 *1 (-825 *4 *2)))))
+(-10 -7 (-15 -2288 (|#2| (-1042 |#1| |#2|))))
+((-2118 (((-107) $ $) 7)) (-1681 (($) 20 T CONST)) (-3163 (((-3 $ "failed") $) 16)) (-3210 (((-1006 |#1|) $ |#1|) 35)) (-1865 (((-107) $) 19)) (-3456 (($ $ $) 33 (-3745 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-4082 (($ $ $) 32 (-3745 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 27)) (-4123 (((-1022) $) 10)) (-3522 ((|#1| $ |#1|) 37)) (-2607 ((|#1| $ |#1|) 36)) (-3375 (($ (-583 (-583 |#1|))) 38)) (-2741 (($ (-583 |#1|)) 39)) (-3026 (($ $ $) 23)) (-2609 (($ $ $) 22)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-844)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3617 (($) 21 T CONST)) (-1641 (((-107) $ $) 30 (-3745 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1617 (((-107) $ $) 29 (-3745 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 31 (-3745 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1607 (((-107) $ $) 34)) (-1703 (($ $ $) 26)) (** (($ $ (-844)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-826 |#1|) (-1187) (-1004)) (T -826))
+((-2741 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-826 *3)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-4 *1 (-826 *3)))) (-3522 (*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1004)))) (-2607 (*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1004)))) (-3210 (*1 *2 *1 *3) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1004)) (-5 *2 (-1006 *3)))) (-1607 (*1 *2 *1 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1004)) (-5 *2 (-107)))))
+(-13 (-442) (-10 -8 (-15 -2741 ($ (-583 |t#1|))) (-15 -3375 ($ (-583 (-583 |t#1|)))) (-15 -3522 (|t#1| $ |t#1|)) (-15 -2607 (|t#1| $ |t#1|)) (-15 -3210 ((-1006 |t#1|) $ |t#1|)) (-15 -1607 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |%noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3745 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-1308 (((-583 (-583 (-703))) $) 108)) (-2548 (((-583 (-703)) (-828 |#1|) $) 130)) (-3527 (((-583 (-703)) (-828 |#1|) $) 131)) (-2217 (((-583 (-828 |#1|)) $) 98)) (-2200 (((-828 |#1|) $ (-517)) 103) (((-828 |#1|) $) 104)) (-1318 (($ (-583 (-828 |#1|))) 110)) (-2053 (((-703) $) 105)) (-2504 (((-1006 (-1006 |#1|)) $) 128)) (-3210 (((-1006 |#1|) $ |#1|) 121) (((-1006 (-1006 |#1|)) $ (-1006 |#1|)) 139) (((-1006 (-583 |#1|)) $ (-583 |#1|)) 142)) (-1811 (((-1006 |#1|) $) 101)) (-4008 (((-107) (-828 |#1|) $) 92)) (-1895 (((-1058) $) NIL)) (-2282 (((-1161) $) 95) (((-1161) $ (-517) (-517)) 143)) (-4123 (((-1022) $) NIL)) (-1771 (((-583 (-828 |#1|)) $) 96)) (-2607 (((-828 |#1|) $ (-703)) 99)) (-2769 (((-703) $) 106)) (-2269 (((-787) $) 119) (((-583 (-828 |#1|)) $) 22) (($ (-583 (-828 |#1|))) 109)) (-3984 (((-583 |#1|) $) 107)) (-1583 (((-107) $ $) 136)) (-1629 (((-107) $ $) 134)) (-1607 (((-107) $ $) 133)))
+(((-827 |#1|) (-13 (-1004) (-10 -8 (-15 -2269 ((-583 (-828 |#1|)) $)) (-15 -1771 ((-583 (-828 |#1|)) $)) (-15 -2607 ((-828 |#1|) $ (-703))) (-15 -2200 ((-828 |#1|) $ (-517))) (-15 -2200 ((-828 |#1|) $)) (-15 -2053 ((-703) $)) (-15 -2769 ((-703) $)) (-15 -3984 ((-583 |#1|) $)) (-15 -2217 ((-583 (-828 |#1|)) $)) (-15 -1308 ((-583 (-583 (-703))) $)) (-15 -2269 ($ (-583 (-828 |#1|)))) (-15 -1318 ($ (-583 (-828 |#1|)))) (-15 -3210 ((-1006 |#1|) $ |#1|)) (-15 -2504 ((-1006 (-1006 |#1|)) $)) (-15 -3210 ((-1006 (-1006 |#1|)) $ (-1006 |#1|))) (-15 -3210 ((-1006 (-583 |#1|)) $ (-583 |#1|))) (-15 -4008 ((-107) (-828 |#1|) $)) (-15 -2548 ((-583 (-703)) (-828 |#1|) $)) (-15 -3527 ((-583 (-703)) (-828 |#1|) $)) (-15 -1811 ((-1006 |#1|) $)) (-15 -1607 ((-107) $ $)) (-15 -1629 ((-107) $ $)) (-15 -2282 ((-1161) $)) (-15 -2282 ((-1161) $ (-517) (-517))))) (-1004)) (T -827))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4)) (-4 *4 (-1004)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4)) (-4 *4 (-1004)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1004)) (-5 *1 (-827 *3)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1004)) (-5 *1 (-827 *3)))) (-3210 (*1 *2 *1 *3) (-12 (-5 *2 (-1006 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1006 (-1006 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-3210 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-1006 (-1006 *4))) (-5 *1 (-827 *4)) (-5 *3 (-1006 *4)))) (-3210 (*1 *2 *1 *3) (-12 (-4 *4 (-1004)) (-5 *2 (-1006 (-583 *4))) (-5 *1 (-827 *4)) (-5 *3 (-583 *4)))) (-4008 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-107)) (-5 *1 (-827 *4)))) (-2548 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-583 (-703))) (-5 *1 (-827 *4)))) (-3527 (*1 *2 *3 *1) (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-583 (-703))) (-5 *1 (-827 *4)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1006 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-1629 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))) (-2282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-827 *4)) (-4 *4 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ((-583 (-828 |#1|)) $)) (-15 -1771 ((-583 (-828 |#1|)) $)) (-15 -2607 ((-828 |#1|) $ (-703))) (-15 -2200 ((-828 |#1|) $ (-517))) (-15 -2200 ((-828 |#1|) $)) (-15 -2053 ((-703) $)) (-15 -2769 ((-703) $)) (-15 -3984 ((-583 |#1|) $)) (-15 -2217 ((-583 (-828 |#1|)) $)) (-15 -1308 ((-583 (-583 (-703))) $)) (-15 -2269 ($ (-583 (-828 |#1|)))) (-15 -1318 ($ (-583 (-828 |#1|)))) (-15 -3210 ((-1006 |#1|) $ |#1|)) (-15 -2504 ((-1006 (-1006 |#1|)) $)) (-15 -3210 ((-1006 (-1006 |#1|)) $ (-1006 |#1|))) (-15 -3210 ((-1006 (-583 |#1|)) $ (-583 |#1|))) (-15 -4008 ((-107) (-828 |#1|) $)) (-15 -2548 ((-583 (-703)) (-828 |#1|) $)) (-15 -3527 ((-583 (-703)) (-828 |#1|) $)) (-15 -1811 ((-1006 |#1|) $)) (-15 -1607 ((-107) $ $)) (-15 -1629 ((-107) $ $)) (-15 -2282 ((-1161) $)) (-15 -2282 ((-1161) $ (-517) (-517)))))
+((-2118 (((-107) $ $) NIL)) (-2162 (((-583 $) (-583 $)) 77)) (-1323 (((-517) $) 60)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-2053 (((-703) $) 58)) (-3210 (((-1006 |#1|) $ |#1|) 49)) (-1865 (((-107) $) NIL)) (-1623 (((-107) $) 63)) (-1531 (((-703) $) 61)) (-1811 (((-1006 |#1|) $) 42)) (-3456 (($ $ $) NIL (-3745 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-4082 (($ $ $) NIL (-3745 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3898 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 36)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 93)) (-4123 (((-1022) $) NIL)) (-3860 (((-1006 |#1|) $) 99 (|has| |#1| (-338)))) (-2085 (((-107) $) 59)) (-3522 ((|#1| $ |#1|) 47)) (-2607 ((|#1| $ |#1|) 94)) (-2769 (((-703) $) 44)) (-3375 (($ (-583 (-583 |#1|))) 85)) (-1329 (((-889) $) 53)) (-2741 (($ (-583 |#1|)) 21)) (-3026 (($ $ $) NIL)) (-2609 (($ $ $) NIL)) (-3328 (($ (-583 (-583 |#1|))) 39)) (-2752 (($ (-583 (-583 |#1|))) 88)) (-2026 (($ (-583 |#1|)) 96)) (-2269 (((-787) $) 84) (($ (-583 (-583 |#1|))) 66) (($ (-583 |#1|)) 67)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3617 (($) 16 T CONST)) (-1641 (((-107) $ $) NIL (-3745 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1583 (((-107) $ $) 45)) (-1629 (((-107) $ $) NIL (-3745 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1607 (((-107) $ $) 65)) (-1703 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
+(((-828 |#1|) (-13 (-826 |#1|) (-10 -8 (-15 -3898 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3328 ($ (-583 (-583 |#1|)))) (-15 -2269 ($ (-583 (-583 |#1|)))) (-15 -2269 ($ (-583 |#1|))) (-15 -2752 ($ (-583 (-583 |#1|)))) (-15 -2769 ((-703) $)) (-15 -1811 ((-1006 |#1|) $)) (-15 -1329 ((-889) $)) (-15 -2053 ((-703) $)) (-15 -1531 ((-703) $)) (-15 -1323 ((-517) $)) (-15 -2085 ((-107) $)) (-15 -1623 ((-107) $)) (-15 -2162 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -3860 ((-1006 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -2026 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -2026 ($ (-583 |#1|))) |%noBranch|)))) (-1004)) (T -828))
+((-3898 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-828 *3)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1006 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-889)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1004)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1006 *3)) (-5 *1 (-828 *3)) (-4 *3 (-338)) (-4 *3 (-1004)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-828 *3)))))
+(-13 (-826 |#1|) (-10 -8 (-15 -3898 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3328 ($ (-583 (-583 |#1|)))) (-15 -2269 ($ (-583 (-583 |#1|)))) (-15 -2269 ($ (-583 |#1|))) (-15 -2752 ($ (-583 (-583 |#1|)))) (-15 -2769 ((-703) $)) (-15 -1811 ((-1006 |#1|) $)) (-15 -1329 ((-889) $)) (-15 -2053 ((-703) $)) (-15 -1531 ((-703) $)) (-15 -1323 ((-517) $)) (-15 -2085 ((-107) $)) (-15 -1623 ((-107) $)) (-15 -2162 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -3860 ((-1006 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -2026 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -2026 ($ (-583 |#1|))) |%noBranch|))))
+((-2815 (((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|)) 128)) (-3746 ((|#1|) 76)) (-3949 (((-388 (-1071 |#4|)) (-1071 |#4|)) 137)) (-2775 (((-388 (-1071 |#4|)) (-583 |#3|) (-1071 |#4|)) 68)) (-1870 (((-388 (-1071 |#4|)) (-1071 |#4|)) 147)) (-2039 (((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|) |#3|) 92)))
+(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2815 ((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|))) (-15 -1870 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3949 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3746 (|#1|)) (-15 -2039 ((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|) |#3|)) (-15 -2775 ((-388 (-1071 |#4|)) (-583 |#3|) (-1071 |#4|)))) (-832) (-725) (-779) (-872 |#1| |#2| |#3|)) (T -829))
+((-2775 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-832)) (-4 *6 (-725)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-388 (-1071 *8))) (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-1071 *8)))) (-2039 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1071 *7))) (-5 *3 (-1071 *7)) (-4 *7 (-872 *5 *6 *4)) (-4 *5 (-832)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-829 *5 *6 *4 *7)))) (-3746 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832)) (-5 *1 (-829 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1071 *7))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1071 *7)))) (-2815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 *7))) (-5 *3 (-1071 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-829 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2815 ((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|))) (-15 -1870 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3949 ((-388 (-1071 |#4|)) (-1071 |#4|))) (-15 -3746 (|#1|)) (-15 -2039 ((-3 (-583 (-1071 |#4|)) "failed") (-583 (-1071 |#4|)) (-1071 |#4|) |#3|)) (-15 -2775 ((-388 (-1071 |#4|)) (-583 |#3|) (-1071 |#4|))))
+((-2815 (((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|)) 36)) (-3746 ((|#1|) 54)) (-3949 (((-388 (-1071 |#2|)) (-1071 |#2|)) 102)) (-2775 (((-388 (-1071 |#2|)) (-1071 |#2|)) 89)) (-1870 (((-388 (-1071 |#2|)) (-1071 |#2|)) 113)))
+(((-830 |#1| |#2|) (-10 -7 (-15 -2815 ((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|))) (-15 -1870 ((-388 (-1071 |#2|)) (-1071 |#2|))) (-15 -3949 ((-388 (-1071 |#2|)) (-1071 |#2|))) (-15 -3746 (|#1|)) (-15 -2775 ((-388 (-1071 |#2|)) (-1071 |#2|)))) (-832) (-1132 |#1|)) (T -830))
+((-2775 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))) (-3746 (*1 *2) (-12 (-4 *2 (-832)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1132 *2)))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5))) (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))) (-2815 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 *5))) (-5 *3 (-1071 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-832)) (-5 *1 (-830 *4 *5)))))
+(-10 -7 (-15 -2815 ((-3 (-583 (-1071 |#2|)) "failed") (-583 (-1071 |#2|)) (-1071 |#2|))) (-15 -1870 ((-388 (-1071 |#2|)) (-1071 |#2|))) (-15 -3949 ((-388 (-1071 |#2|)) (-1071 |#2|))) (-15 -3746 (|#1|)) (-15 -2775 ((-388 (-1071 |#2|)) (-1071 |#2|))))
+((-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 39)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 18)) (-2650 (((-3 $ "failed") $) 33)))
+(((-831 |#1|) (-10 -8 (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)))) (-832)) (T -831))
+NIL
+(-10 -8 (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 60)) (-3088 (($ $) 51)) (-1581 (((-388 $) $) 52)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 57)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-2963 (((-107) $) 53)) (-1865 (((-107) $) 31)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1510 (((-388 (-1071 $)) (-1071 $)) 58)) (-4071 (((-388 (-1071 $)) (-1071 $)) 59)) (-3866 (((-388 $) $) 50)) (-2327 (((-3 $ "failed") $ $) 42)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2650 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-832) (-1187)) (T -832))
+((-2793 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-832)))) (-2121 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))) (-4071 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))) (-1510 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))) (-2387 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1071 *1))) (-5 *3 (-1071 *1)) (-4 *1 (-832)))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-832)) (-5 *2 (-1156 *1)))) (-2650 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-832)))))
+(-13 (-1114) (-10 -8 (-15 -2121 ((-388 (-1071 $)) (-1071 $))) (-15 -4071 ((-388 (-1071 $)) (-1071 $))) (-15 -1510 ((-388 (-1071 $)) (-1071 $))) (-15 -2793 ((-1071 $) (-1071 $) (-1071 $))) (-15 -2387 ((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $))) (IF (|has| $ (-132)) (PROGN (-15 -3024 ((-3 (-1156 $) "failed") (-623 $))) (-15 -2650 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-3825 (((-107) $) NIL)) (-2495 (((-703)) NIL)) (-2008 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-2886 (((-1084 (-844) (-703)) (-517)) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-2397 (((-703)) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 $ "failed") $) NIL)) (-3388 (($ $) NIL)) (-1953 (($ (-1156 $)) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-1672 (($) NIL)) (-3454 (((-107) $) NIL)) (-2464 (($ $) NIL) (($ $ (-703)) NIL)) (-2963 (((-107) $) NIL)) (-2053 (((-765 (-844)) $) NIL) (((-844) $) NIL)) (-1865 (((-107) $) NIL)) (-3040 (($) NIL (|has| $ (-338)))) (-1798 (((-107) $) NIL (|has| $ (-338)))) (-2754 (($ $ (-844)) NIL (|has| $ (-338))) (($ $) NIL)) (-3572 (((-3 $ "failed") $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2456 (((-1071 $) $ (-844)) NIL (|has| $ (-338))) (((-1071 $) $) NIL)) (-2031 (((-844) $) NIL)) (-2508 (((-1071 $) $) NIL (|has| $ (-338)))) (-1199 (((-3 (-1071 $) "failed") $ $) NIL (|has| $ (-338))) (((-1071 $) $) NIL (|has| $ (-338)))) (-1526 (($ $ (-1071 $)) NIL (|has| $ (-338)))) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL T CONST)) (-2810 (($ (-844)) NIL)) (-1214 (((-107) $) NIL)) (-4123 (((-1022) $) NIL)) (-1317 (($) NIL (|has| $ (-338)))) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL)) (-3866 (((-388 $) $) NIL)) (-2370 (((-844)) NIL) (((-765 (-844))) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-1496 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1880 (((-125)) NIL)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2769 (((-844) $) NIL) (((-765 (-844)) $) NIL)) (-3586 (((-1071 $)) NIL)) (-3958 (($) NIL)) (-3304 (($) NIL (|has| $ (-338)))) (-3369 (((-623 $) (-1156 $)) NIL) (((-1156 $) $) NIL)) (-3357 (((-517) $) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-2650 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2950 (((-703)) NIL)) (-2062 (((-1156 $) (-844)) NIL) (((-1156 $)) NIL)) (-2914 (((-107) $ $) NIL)) (-3980 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-1739 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-833 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-844)) (T -833))
NIL
(-13 (-319) (-299 $) (-558 (-517)))
-((-3620 (((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-3282 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3730 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
-(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3730 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3282 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3620 ((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|) (-1131 |#2|) (-1131 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -833))
-((-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3730 (-703)) (|:| -1245 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3730 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3730 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3282 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3620 ((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
-((-3620 (((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-3282 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3730 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
-(((-834 |#1| |#2| |#3|) (-10 -7 (-15 -3730 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3282 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3620 ((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1131 (-377 (-517))) (-1131 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -834))
-((-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3730 (-703)) (|:| -1245 *6))) (-5 *1 (-834 *4 *5 *6)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))) (-3730 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))))
-(-10 -7 (-15 -3730 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3282 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3620 ((-3 (-2 (|:| -3730 (-703)) (|:| -1245 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
-((-1822 ((|#2| |#2|) 25)) (-2243 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-2896 (((-843) (-517)) 35)) (-2774 (((-517) |#2|) 42)) (-4139 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -2896 ((-843) (-517))) (-15 -4139 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -4139 ((-517) |#2|)) (-15 -2243 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -2774 ((-517) |#2|)) (-15 -1822 (|#2| |#2|))) (-1131 (-377 (-517))) (-1131 (-377 |#1|))) (T -835))
-((-1822 (*1 *2 *2) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1131 (-377 *3))))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))) (-4139 (*1 *2 *3) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1131 (-377 *3))))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
-(-10 -7 (-15 -2896 ((-843) (-517))) (-15 -4139 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -4139 ((-517) |#2|)) (-15 -2243 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -2774 ((-517) |#2|)) (-15 -1822 (|#2| |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 ((|#1| $) 80)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-2532 (($ $ $) NIL)) (-3775 (((-3 $ "failed") $) 74)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-1826 (($ |#1| (-388 |#1|)) 72)) (-1408 (((-1070 |#1|) |#1| |#1|) 40)) (-2934 (($ $) 48)) (-3469 (((-107) $) NIL)) (-3477 (((-517) $) 77)) (-3468 (($ $ (-517)) 79)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1632 ((|#1| $) 76)) (-2524 (((-388 |#1|) $) 75)) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) 73)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3422 (($ $) 38)) (-2254 (((-787) $) 98) (($ (-517)) 53) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 58) (($ (-377 (-388 |#1|))) 66)) (-1217 (((-703)) 51)) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 23 T CONST)) (-2411 (($) 11 T CONST)) (-1534 (((-107) $ $) 67)) (-1678 (($ $ $) NIL)) (-1663 (($ $) 87) (($ $ $) NIL)) (-1645 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 89) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL)))
-(((-836 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2254 ((-377 |#1|) $)) (-15 -2254 ($ (-377 (-388 |#1|)))) (-15 -3422 ($ $)) (-15 -2524 ((-388 |#1|) $)) (-15 -1632 (|#1| $)) (-15 -3468 ($ $ (-517))) (-15 -3477 ((-517) $)) (-15 -1408 ((-1070 |#1|) |#1| |#1|)) (-15 -2934 ($ $)) (-15 -1826 ($ |#1| (-388 |#1|))) (-15 -2065 (|#1| $)))) (-278)) (T -836))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) (-3422 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1632 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-1826 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) (-2065 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2254 ((-377 |#1|) $)) (-15 -2254 ($ (-377 (-388 |#1|)))) (-15 -3422 ($ $)) (-15 -2524 ((-388 |#1|) $)) (-15 -1632 (|#1| $)) (-15 -3468 ($ $ (-517))) (-15 -3477 ((-517) $)) (-15 -1408 ((-1070 |#1|) |#1| |#1|)) (-15 -2934 ($ $)) (-15 -1826 ($ |#1| (-388 |#1|))) (-15 -2065 (|#1| $))))
-((-1826 (((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074)) 16) (((-51) (-377 (-874 |#1|)) (-1074)) 17)))
-(((-837 |#1|) (-10 -7 (-15 -1826 ((-51) (-377 (-874 |#1|)) (-1074))) (-15 -1826 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074)))) (-13 (-278) (-134))) (T -837))
-((-1826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1074)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))))
-(-10 -7 (-15 -1826 ((-51) (-377 (-874 |#1|)) (-1074))) (-15 -1826 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1074))))
-((-2339 ((|#4| (-583 |#4|)) 118) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-1387 (((-1070 |#4|) (-583 (-1070 |#4|))) 111) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 48) ((|#4| (-583 |#4|)) 53) ((|#4| |#4| |#4|) 82)))
-(((-838 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1387 (|#4| |#4| |#4|)) (-15 -1387 (|#4| (-583 |#4|))) (-15 -1387 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1387 ((-1070 |#4|) (-583 (-1070 |#4|)))) (-15 -2339 (|#4| |#4| |#4|)) (-15 -2339 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2339 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -838))
-((-2339 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2339 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-2339 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-583 (-1070 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1070 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1387 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-1387 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))))
-(-10 -7 (-15 -1387 (|#4| |#4| |#4|)) (-15 -1387 (|#4| (-583 |#4|))) (-15 -1387 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -1387 ((-1070 |#4|) (-583 (-1070 |#4|)))) (-15 -2339 (|#4| |#4| |#4|)) (-15 -2339 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2339 (|#4| (-583 |#4|))))
-((-3642 (((-826 (-517)) (-888)) 22) (((-826 (-517)) (-583 (-517))) 19)) (-3582 (((-826 (-517)) (-583 (-517))) 46) (((-826 (-517)) (-843)) 47)) (-1714 (((-826 (-517))) 23)) (-2482 (((-826 (-517))) 36) (((-826 (-517)) (-583 (-517))) 35)) (-3390 (((-826 (-517))) 34) (((-826 (-517)) (-583 (-517))) 33)) (-3679 (((-826 (-517))) 32) (((-826 (-517)) (-583 (-517))) 31)) (-3761 (((-826 (-517))) 30) (((-826 (-517)) (-583 (-517))) 29)) (-2977 (((-826 (-517))) 28) (((-826 (-517)) (-583 (-517))) 27)) (-2655 (((-826 (-517))) 38) (((-826 (-517)) (-583 (-517))) 37)) (-2198 (((-826 (-517)) (-583 (-517))) 50) (((-826 (-517)) (-843)) 51)) (-4029 (((-826 (-517)) (-583 (-517))) 48) (((-826 (-517)) (-843)) 49)) (-2924 (((-826 (-517)) (-583 (-517))) 43) (((-826 (-517)) (-843)) 45)) (-2871 (((-826 (-517)) (-583 (-843))) 40)))
-(((-839) (-10 -7 (-15 -3582 ((-826 (-517)) (-843))) (-15 -3582 ((-826 (-517)) (-583 (-517)))) (-15 -2924 ((-826 (-517)) (-843))) (-15 -2924 ((-826 (-517)) (-583 (-517)))) (-15 -2871 ((-826 (-517)) (-583 (-843)))) (-15 -4029 ((-826 (-517)) (-843))) (-15 -4029 ((-826 (-517)) (-583 (-517)))) (-15 -2198 ((-826 (-517)) (-843))) (-15 -2198 ((-826 (-517)) (-583 (-517)))) (-15 -2977 ((-826 (-517)) (-583 (-517)))) (-15 -2977 ((-826 (-517)))) (-15 -3761 ((-826 (-517)) (-583 (-517)))) (-15 -3761 ((-826 (-517)))) (-15 -3679 ((-826 (-517)) (-583 (-517)))) (-15 -3679 ((-826 (-517)))) (-15 -3390 ((-826 (-517)) (-583 (-517)))) (-15 -3390 ((-826 (-517)))) (-15 -2482 ((-826 (-517)) (-583 (-517)))) (-15 -2482 ((-826 (-517)))) (-15 -2655 ((-826 (-517)) (-583 (-517)))) (-15 -2655 ((-826 (-517)))) (-15 -1714 ((-826 (-517)))) (-15 -3642 ((-826 (-517)) (-583 (-517)))) (-15 -3642 ((-826 (-517)) (-888))))) (T -839))
-((-3642 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1714 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2655 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2482 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3390 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3679 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3761 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2977 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(-10 -7 (-15 -3582 ((-826 (-517)) (-843))) (-15 -3582 ((-826 (-517)) (-583 (-517)))) (-15 -2924 ((-826 (-517)) (-843))) (-15 -2924 ((-826 (-517)) (-583 (-517)))) (-15 -2871 ((-826 (-517)) (-583 (-843)))) (-15 -4029 ((-826 (-517)) (-843))) (-15 -4029 ((-826 (-517)) (-583 (-517)))) (-15 -2198 ((-826 (-517)) (-843))) (-15 -2198 ((-826 (-517)) (-583 (-517)))) (-15 -2977 ((-826 (-517)) (-583 (-517)))) (-15 -2977 ((-826 (-517)))) (-15 -3761 ((-826 (-517)) (-583 (-517)))) (-15 -3761 ((-826 (-517)))) (-15 -3679 ((-826 (-517)) (-583 (-517)))) (-15 -3679 ((-826 (-517)))) (-15 -3390 ((-826 (-517)) (-583 (-517)))) (-15 -3390 ((-826 (-517)))) (-15 -2482 ((-826 (-517)) (-583 (-517)))) (-15 -2482 ((-826 (-517)))) (-15 -2655 ((-826 (-517)) (-583 (-517)))) (-15 -2655 ((-826 (-517)))) (-15 -1714 ((-826 (-517)))) (-15 -3642 ((-826 (-517)) (-583 (-517)))) (-15 -3642 ((-826 (-517)) (-888))))
-((-1273 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))) 10)) (-2916 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))) 9)))
-(((-840 |#1|) (-10 -7 (-15 -2916 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1273 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074))))) (-421)) (T -840))
-((-1273 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))) (-2916 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(-10 -7 (-15 -2916 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -1273 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1074)))))
-((-2254 (((-286 |#1|) (-446)) 15)))
-(((-841 |#1|) (-10 -7 (-15 -2254 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -841))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))))
-(-10 -7 (-15 -2254 ((-286 |#1|) (-446))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3469 (((-107) $) 31)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-842) (-1185)) (T -842))
-((-2299 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1965 (-583 *1)) (|:| -3244 *1))) (-5 *3 (-583 *1)))) (-1681 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
-(-13 (-421) (-10 -8 (-15 -2299 ((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $))) (-15 -1681 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1387 (($ $ $) NIL)) (-2254 (((-787) $) NIL)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2411 (($) NIL T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ $ $) NIL)))
-(((-843) (-13 (-25) (-779) (-659) (-10 -8 (-15 -1387 ($ $ $)) (-6 (-4185 "*"))))) (T -843))
-((-1387 (*1 *1 *1 *1) (-5 *1 (-843))))
-(-13 (-25) (-779) (-659) (-10 -8 (-15 -1387 ($ $ $)) (-6 (-4185 "*"))))
-((-1989 ((|#2| (-583 |#1|) (-583 |#1|)) 22)))
-(((-844 |#1| |#2|) (-10 -7 (-15 -1989 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1131 |#1|)) (T -844))
-((-1989 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1131 *4)) (-5 *1 (-844 *4 *2)))))
-(-10 -7 (-15 -1989 (|#2| (-583 |#1|) (-583 |#1|))))
-((-3442 (((-1070 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -3442 ((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3442 ((-1070 |#2|) (-583 |#2|) (-583 |#2|)))) (-1074) (-333)) (T -845))
-((-3442 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1070 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1074)))) (-3442 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1128 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1074)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))))
-(-10 -7 (-15 -3442 ((-1128 |#1| |#2|) (-1128 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3442 ((-1070 |#2|) (-583 |#2|) (-583 |#2|))))
-((-3114 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057)) 137)) (-3308 ((|#4| |#4|) 153)) (-3039 (((-583 (-377 (-874 |#1|))) (-583 (-1074))) 116)) (-2875 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-2734 (((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|)) 57)) (-3347 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-1613 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057)) 149)) (-1456 (((-517) (-623 |#4|) (-843) (-1057)) 130) (((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057)) 129) (((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057)) 128) (((-517) (-623 |#4|) (-1057)) 125) (((-517) (-623 |#4|) (-583 (-1074)) (-1057)) 124) (((-517) (-623 |#4|) (-583 |#4|) (-1057)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843)) 120) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|)) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074))) 117) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 114)) (-3678 ((|#4| (-874 |#1|)) 66)) (-1932 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 150)) (-3845 (((-583 (-583 (-517))) (-517) (-517)) 127)) (-3219 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2315 (((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-1629 (((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-2926 (((-107) (-583 (-874 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-2500 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-3640 (((-583 |#4|) |#4|) 47)) (-3358 (((-583 (-377 (-874 |#1|))) (-583 |#4|)) 112) (((-623 (-377 (-874 |#1|))) (-623 |#4|)) 54) (((-377 (-874 |#1|)) |#4|) 109)) (-1658 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517)) 89)) (-1514 (((-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-2223 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-3984 (((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -3534 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3334 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
-(((-846 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1456 ((-517) (-623 |#4|) (-583 |#4|) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 (-1074)) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-843) (-1057))) (-15 -3114 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -1613 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -1658 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517))) (-15 -3358 ((-377 (-874 |#1|)) |#4|)) (-15 -3358 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3358 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -3039 ((-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3678 (|#4| (-874 |#1|))) (-15 -2500 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1514 ((-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -2734 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -3984 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -3534 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3334 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -3640 ((-583 |#4|) |#4|)) (-15 -1629 ((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2315 ((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3219 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -3845 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1932 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2223 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3347 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2875 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3308 (|#4| |#4|)) (-15 -2926 ((-107) (-583 |#4|))) (-15 -2926 ((-107) (-583 (-874 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1074))) (-725) (-871 |#1| |#3| |#2|)) (T -846))
-((-2926 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3308 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))) (-2875 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1074)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *9)))) (|:| -2080 (-583 (-1154 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))) (-3845 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3534 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -3334 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-2734 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-1514 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))) (-2500 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-1658 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1057)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1074)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *8)))) (|:| -2080 (-583 (-1154 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *4 (-1057)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1456 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1456 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1057)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -2080 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -2080 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1074))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1456 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(-10 -7 (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1074)) (-843))) (-15 -1456 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1456 ((-517) (-623 |#4|) (-583 |#4|) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 (-1074)) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-583 (-1074)) (-843) (-1057))) (-15 -1456 ((-517) (-623 |#4|) (-843) (-1057))) (-15 -3114 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -1613 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|))))))))) (-1057))) (-15 -1658 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1057) (-517))) (-15 -3358 ((-377 (-874 |#1|)) |#4|)) (-15 -3358 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3358 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -3039 ((-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -3678 (|#4| (-874 |#1|))) (-15 -2500 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1514 ((-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -2734 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -3984 ((-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))) (-2 (|:| -3534 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -3334 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -3640 ((-583 |#4|) |#4|)) (-15 -1629 ((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2315 ((-703) (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3219 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -3845 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1932 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2223 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3347 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2875 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 |#1|)))) (|:| -2080 (-583 (-1154 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3308 (|#4| |#4|)) (-15 -2926 ((-107) (-583 |#4|))) (-15 -2926 ((-107) (-583 (-874 |#1|)))))
-((-2028 (((-849) |#1| (-1074)) 16) (((-849) |#1| (-1074) (-998 (-199))) 20)) (-3834 (((-849) |#1| |#1| (-1074) (-998 (-199))) 18) (((-849) |#1| (-1074) (-998 (-199))) 14)))
-(((-847 |#1|) (-10 -7 (-15 -3834 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -3834 ((-849) |#1| |#1| (-1074) (-998 (-199)))) (-15 -2028 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -2028 ((-849) |#1| (-1074)))) (-558 (-493))) (T -847))
-((-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3834 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3834 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))))
-(-10 -7 (-15 -3834 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -3834 ((-849) |#1| |#1| (-1074) (-998 (-199)))) (-15 -2028 ((-849) |#1| (-1074) (-998 (-199)))) (-15 -2028 ((-849) |#1| (-1074))))
-((-2669 (($ $ (-998 (-199)) (-998 (-199)) (-998 (-199))) 68)) (-3685 (((-998 (-199)) $) 40)) (-3674 (((-998 (-199)) $) 39)) (-3661 (((-998 (-199)) $) 38)) (-2361 (((-583 (-583 (-199))) $) 43)) (-2288 (((-998 (-199)) $) 41)) (-3799 (((-517) (-517)) 32)) (-1905 (((-517) (-517)) 28)) (-3727 (((-517) (-517)) 30)) (-3316 (((-107) (-107)) 35)) (-2681 (((-517)) 31)) (-2604 (($ $ (-998 (-199))) 71) (($ $) 72)) (-2106 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 76) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 77)) (-3834 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 80) (($ $ (-998 (-199))) 74)) (-3112 (((-517)) 36)) (-1484 (((-517)) 27)) (-1593 (((-517)) 29)) (-3221 (((-583 (-583 (-865 (-199)))) $) 92)) (-2574 (((-107) (-107)) 37)) (-2254 (((-787) $) 91)) (-4014 (((-107)) 34)))
-(((-848) (-13 (-891) (-10 -8 (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ $ (-998 (-199)))) (-15 -2669 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2604 ($ $ (-998 (-199)))) (-15 -2604 ($ $)) (-15 -2288 ((-998 (-199)) $)) (-15 -2361 ((-583 (-583 (-199))) $)) (-15 -1484 ((-517))) (-15 -1905 ((-517) (-517))) (-15 -1593 ((-517))) (-15 -3727 ((-517) (-517))) (-15 -2681 ((-517))) (-15 -3799 ((-517) (-517))) (-15 -4014 ((-107))) (-15 -3316 ((-107) (-107))) (-15 -3112 ((-517))) (-15 -2574 ((-107) (-107)))))) (T -848))
-((-2106 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-2106 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3834 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3834 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3834 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-2669 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-2604 (*1 *1 *1) (-5 *1 (-848))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))) (-1484 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1593 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2681 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-4014 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3112 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(-13 (-891) (-10 -8 (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ $ (-998 (-199)))) (-15 -2669 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2604 ($ $ (-998 (-199)))) (-15 -2604 ($ $)) (-15 -2288 ((-998 (-199)) $)) (-15 -2361 ((-583 (-583 (-199))) $)) (-15 -1484 ((-517))) (-15 -1905 ((-517) (-517))) (-15 -1593 ((-517))) (-15 -3727 ((-517) (-517))) (-15 -2681 ((-517))) (-15 -3799 ((-517) (-517))) (-15 -4014 ((-107))) (-15 -3316 ((-107) (-107))) (-15 -3112 ((-517))) (-15 -2574 ((-107) (-107)))))
-((-2669 (($ $ (-998 (-199))) 69) (($ $ (-998 (-199)) (-998 (-199))) 70)) (-3674 (((-998 (-199)) $) 43)) (-3661 (((-998 (-199)) $) 42)) (-2288 (((-998 (-199)) $) 44)) (-2473 (((-517) (-517)) 36)) (-1589 (((-517) (-517)) 32)) (-3895 (((-517) (-517)) 34)) (-1449 (((-107) (-107)) 38)) (-1435 (((-517)) 35)) (-2604 (($ $ (-998 (-199))) 73) (($ $) 74)) (-2106 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 83) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 84)) (-2028 (($ (-1 (-199) (-199)) (-998 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-3834 (($ (-1 (-199) (-199)) (-998 (-199))) 78) (($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199))) 79) (($ (-583 (-1 (-199) (-199))) (-998 (-199))) 86) (($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 81) (($ $ (-998 (-199))) 75)) (-3038 (((-107) $) 39)) (-2372 (((-517)) 40)) (-3259 (((-517)) 31)) (-1575 (((-517)) 33)) (-3221 (((-583 (-583 (-865 (-199)))) $) 22)) (-1411 (((-107) (-107)) 41)) (-2254 (((-787) $) 105)) (-2531 (((-107)) 37)))
-(((-849) (-13 (-876) (-10 -8 (-15 -3834 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3834 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2028 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2028 ($ (-1 (-199) (-199)))) (-15 -3834 ($ $ (-998 (-199)))) (-15 -3038 ((-107) $)) (-15 -2669 ($ $ (-998 (-199)))) (-15 -2669 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -2604 ($ $ (-998 (-199)))) (-15 -2604 ($ $)) (-15 -2288 ((-998 (-199)) $)) (-15 -3259 ((-517))) (-15 -1589 ((-517) (-517))) (-15 -1575 ((-517))) (-15 -3895 ((-517) (-517))) (-15 -1435 ((-517))) (-15 -2473 ((-517) (-517))) (-15 -2531 ((-107))) (-15 -1449 ((-107) (-107))) (-15 -2372 ((-517))) (-15 -1411 ((-107) (-107)))))) (T -849))
-((-3834 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2106 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2106 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2028 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) (-3834 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2669 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2604 (*1 *1 *1) (-5 *1 (-849))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3259 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1575 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1435 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2531 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2372 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1411 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(-13 (-876) (-10 -8 (-15 -3834 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3834 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3834 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -2106 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2028 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2028 ($ (-1 (-199) (-199)))) (-15 -3834 ($ $ (-998 (-199)))) (-15 -3038 ((-107) $)) (-15 -2669 ($ $ (-998 (-199)))) (-15 -2669 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -2604 ($ $ (-998 (-199)))) (-15 -2604 ($ $)) (-15 -2288 ((-998 (-199)) $)) (-15 -3259 ((-517))) (-15 -1589 ((-517) (-517))) (-15 -1575 ((-517))) (-15 -3895 ((-517) (-517))) (-15 -1435 ((-517))) (-15 -2473 ((-517) (-517))) (-15 -2531 ((-107))) (-15 -1449 ((-107) (-107))) (-15 -2372 ((-517))) (-15 -1411 ((-107) (-107)))))
-((-1384 (((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))) 23)))
-(((-850) (-10 -7 (-15 -1384 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))) (T -850))
-((-1384 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
-(-10 -7 (-15 -1384 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))
-((-2168 ((|#2| |#2|) 25)) (-1644 ((|#2| |#2|) 26)) (-2497 ((|#2| |#2|) 24)) (-2107 ((|#2| |#2| (-1057)) 23)))
-(((-851 |#1| |#2|) (-10 -7 (-15 -2107 (|#2| |#2| (-1057))) (-15 -2497 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1644 (|#2| |#2|))) (-779) (-400 |#1|)) (T -851))
-((-1644 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -2107 (|#2| |#2| (-1057))) (-15 -2497 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)))
-((-2168 (((-286 (-517)) (-1074)) 15)) (-1644 (((-286 (-517)) (-1074)) 13)) (-2497 (((-286 (-517)) (-1074)) 11)) (-2107 (((-286 (-517)) (-1074) (-1057)) 18)))
-(((-852) (-10 -7 (-15 -2107 ((-286 (-517)) (-1074) (-1057))) (-15 -2497 ((-286 (-517)) (-1074))) (-15 -2168 ((-286 (-517)) (-1074))) (-15 -1644 ((-286 (-517)) (-1074))))) (T -852))
-((-1644 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1057)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(-10 -7 (-15 -2107 ((-286 (-517)) (-1074) (-1057))) (-15 -2497 ((-286 (-517)) (-1074))) (-15 -2168 ((-286 (-517)) (-1074))) (-15 -1644 ((-286 (-517)) (-1074))))
-((-3975 (((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)) 24)) (-1187 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -1187 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3975 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-808 |#1|) (-13 (-1003) (-952 |#2|))) (T -853))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) (-1187 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
-(-10 -7 (-15 -1187 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3975 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|))))
-((-3975 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 29)))
-(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-779) (-808 |#1|)) (-13 (-400 |#2|) (-558 (-814 |#1|)) (-808 |#1|) (-952 (-556 $)))) (T -854))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))))
-(-10 -7 (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
-((-3975 (((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)) 12)))
-(((-855 |#1|) (-10 -7 (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) (-502)) (T -855))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))))
-(-10 -7 (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))))
-((-3975 (((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)) 52)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -3975 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) (-1003) (-13 (-779) (-952 (-556 $)) (-558 (-814 |#1|)) (-808 |#1|))) (T -856))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))))
-(-10 -7 (-15 -3975 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|))))
-((-3975 (((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)) 14)))
-(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) (-1003) (-808 |#1|) (-603 |#2|)) (T -857))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))))
-(-10 -7 (-15 -3975 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|))))
-((-3975 (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|)) 17 (|has| |#3| (-808 |#1|))) (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|))) 16)))
-(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3975 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -3975 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |%noBranch|)) (-1003) (-725) (-779) (-13 (-961) (-779) (-808 |#1|)) (-13 (-871 |#4| |#2| |#3|) (-558 (-814 |#1|)))) (T -858))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) (-3975 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3975 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -3975 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |%noBranch|))
-((-1737 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -1737 (|#2| |#2| (-1 (-107) |#3|))) (-15 -1737 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1109)) (T -859))
-((-1737 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) (-1737 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))))
-(-10 -7 (-15 -1737 (|#2| |#2| (-1 (-107) |#3|))) (-15 -1737 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
-((-1737 (((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1074) (-1 (-107) |#1|)) 13)))
-(((-860 |#1|) (-10 -7 (-15 -1737 ((-286 (-517)) (-1074) (-1 (-107) |#1|))) (-15 -1737 ((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|))))) (-1109)) (T -860))
-((-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))))
-(-10 -7 (-15 -1737 ((-286 (-517)) (-1074) (-1 (-107) |#1|))) (-15 -1737 ((-286 (-517)) (-1074) (-583 (-1 (-107) |#1|)))))
-((-3975 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 25)))
-(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-808 |#1|) (-558 (-814 |#1|))) (-909 |#2|)) (T -861))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))))
-(-10 -7 (-15 -3975 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
-((-3975 (((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074))) 17)))
-(((-862 |#1|) (-10 -7 (-15 -3975 ((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074))))) (-1003)) (T -862))
-((-3975 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1074))) (-5 *3 (-1074)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))))
-(-10 -7 (-15 -3975 ((-811 |#1| (-1074)) (-1074) (-814 |#1|) (-811 |#1| (-1074)))))
-((-2612 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 33)) (-3975 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 32)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -3975 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -2612 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) (-1003) (-13 (-961) (-779)) (-13 (-961) (-558 (-814 |#1|)) (-952 |#2|))) (T -863))
-((-2612 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
-(-10 -7 (-15 -3975 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -2612 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))))
-((-2019 (((-1070 (-377 (-517))) (-517)) 61)) (-3935 (((-1070 (-517)) (-517)) 64)) (-3452 (((-1070 (-517)) (-517)) 58)) (-3857 (((-517) (-1070 (-517))) 53)) (-3261 (((-1070 (-377 (-517))) (-517)) 47)) (-2964 (((-1070 (-517)) (-517)) 36)) (-2449 (((-1070 (-517)) (-517)) 66)) (-3721 (((-1070 (-517)) (-517)) 65)) (-2938 (((-1070 (-377 (-517))) (-517)) 49)))
-(((-864) (-10 -7 (-15 -2938 ((-1070 (-377 (-517))) (-517))) (-15 -3721 ((-1070 (-517)) (-517))) (-15 -2449 ((-1070 (-517)) (-517))) (-15 -2964 ((-1070 (-517)) (-517))) (-15 -3261 ((-1070 (-377 (-517))) (-517))) (-15 -3857 ((-517) (-1070 (-517)))) (-15 -3452 ((-1070 (-517)) (-517))) (-15 -3935 ((-1070 (-517)) (-517))) (-15 -2019 ((-1070 (-377 (-517))) (-517))))) (T -864))
-((-2019 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3935 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2964 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3721 (*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2938 (*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(-10 -7 (-15 -2938 ((-1070 (-377 (-517))) (-517))) (-15 -3721 ((-1070 (-517)) (-517))) (-15 -2449 ((-1070 (-517)) (-517))) (-15 -2964 ((-1070 (-517)) (-517))) (-15 -3261 ((-1070 (-377 (-517))) (-517))) (-15 -3857 ((-517) (-1070 (-517)))) (-15 -3452 ((-1070 (-517)) (-517))) (-15 -3935 ((-1070 (-517)) (-517))) (-15 -2019 ((-1070 (-377 (-517))) (-517))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703)) NIL (|has| |#1| (-23)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1482 (($ (-583 |#1|)) 13)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2719 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3475 (($ (-703) |#1|) 8)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 10 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2140 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2026 (((-107) $ (-703)) NIL)) (-1631 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-2204 (($ $ (-583 |#1|)) 24)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1122 (-517))) NIL)) (-1369 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-2232 (((-843) $) 16)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1843 (($ $ $) 22)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2272 (($ (-583 |#1|)) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1663 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1645 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2290 (((-703) $) 14 (|has| $ (-6 -4183)))))
-(((-865 |#1|) (-897 |#1|) (-961)) (T -865))
-NIL
-(-897 |#1|)
-((-1285 (((-449 |#1| |#2|) (-874 |#2|)) 17)) (-1318 (((-221 |#1| |#2|) (-874 |#2|)) 29)) (-2020 (((-874 |#2|) (-449 |#1| |#2|)) 22)) (-2881 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-3713 (((-874 |#2|) (-221 |#1| |#2|)) 26)) (-1887 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
-(((-866 |#1| |#2|) (-10 -7 (-15 -1887 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -2881 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -1285 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -2020 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3713 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -1318 ((-221 |#1| |#2|) (-874 |#2|)))) (-583 (-1074)) (-961)) (T -866))
-((-1318 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(-10 -7 (-15 -1887 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -2881 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -1285 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -2020 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3713 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -1318 ((-221 |#1| |#2|) (-874 |#2|))))
-((-2426 (((-583 |#2|) |#2| |#2|) 10)) (-2557 (((-703) (-583 |#1|)) 37 (|has| |#1| (-777)))) (-3848 (((-583 |#2|) |#2|) 11)) (-1460 (((-703) (-583 |#1|) (-517) (-517)) 39 (|has| |#1| (-777)))) (-3768 ((|#1| |#2|) 32 (|has| |#1| (-777)))))
-(((-867 |#1| |#2|) (-10 -7 (-15 -2426 ((-583 |#2|) |#2| |#2|)) (-15 -3848 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3768 (|#1| |#2|)) (-15 -2557 ((-703) (-583 |#1|))) (-15 -1460 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) (-333) (-1131 |#1|)) (T -867))
-((-1460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1131 *5)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1131 *4)))) (-3768 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1131 *2)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))) (-2426 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -2426 ((-583 |#2|) |#2| |#2|)) (-15 -3848 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3768 (|#1| |#2|)) (-15 -2557 ((-703) (-583 |#1|))) (-15 -1460 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|))
-((-1939 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 18)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -1939 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-961) (-961)) (T -868))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))))
-(-10 -7 (-15 -1939 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
-((-2374 (((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|)) 18)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -2374 ((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|)))) (-1074) (-961)) (T -869))
-((-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-1150 *5)) (-14 *5 (-1074)) (-4 *6 (-961)) (-5 *2 (-1128 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))))
-(-10 -7 (-15 -2374 ((-1128 |#1| (-874 |#2|)) (-874 |#2|) (-1150 |#1|))))
-((-3916 (((-703) $) 69) (((-703) $ (-583 |#4|)) 72)) (-2377 (($ $) 169)) (-2674 (((-388 $) $) 161)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 112)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 57)) (-3167 (($ $ $ |#4|) 74)) (-2749 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 102) (((-623 |#2|) (-623 $)) 95)) (-2038 (($ $) 176) (($ $ |#4|) 179)) (-1206 (((-583 $) $) 61)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 194) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 188)) (-3284 (((-583 $) $) 27)) (-1336 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 55)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#4|) 158)) (-3789 (((-3 (-583 $) "failed") $) 41)) (-1674 (((-3 (-583 $) "failed") $) 30)) (-3106 (((-3 (-2 (|:| |var| |#4|) (|:| -3010 (-703))) "failed") $) 45)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 105)) (-2736 (((-388 (-1070 $)) (-1070 $)) 118)) (-1673 (((-388 (-1070 $)) (-1070 $)) 116)) (-1376 (((-388 $) $) 136)) (-2049 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3383 (($ $ |#4|) 76)) (-3667 (((-814 (-349)) $) 208) (((-814 (-517)) $) 201) (((-493) $) 216)) (-4128 ((|#2| $) NIL) (($ $ |#4|) 171)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 150)) (-4104 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 50) (($ $ (-583 |#4|) (-583 (-703))) 53)) (-2486 (((-3 $ "failed") $) 152)) (-1558 (((-107) $ $) 182)))
-(((-870 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1643 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -2038 (|#1| |#1| |#4|)) (-15 -4128 (|#1| |#1| |#4|)) (-15 -3383 (|#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -1206 ((-583 |#1|) |#1|)) (-15 -3916 ((-703) |#1| (-583 |#4|))) (-15 -3916 ((-703) |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| |#4|) (|:| -3010 (-703))) "failed") |#1|)) (-15 -3789 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1674 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1336 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1336 (|#1| |#1| |#4| (-703))) (-15 -3431 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3284 ((-583 |#1|) |#1|)) (-15 -4104 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -4104 (|#1| |#1| |#4| (-703))) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#4| |#1|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#4| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#4| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1336 (|#1| |#2| |#3|)) (-15 -4104 (|#2| |#1| |#3|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2038 (|#1| |#1|))) (-871 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -870))
-NIL
-(-10 -8 (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -2486 ((-3 |#1| "failed") |#1|)) (-15 -1558 ((-107) |#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -1643 ((-3 (-1154 |#1|) "failed") (-623 |#1|))) (-15 -2038 (|#1| |#1| |#4|)) (-15 -4128 (|#1| |#1| |#4|)) (-15 -3383 (|#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -1206 ((-583 |#1|) |#1|)) (-15 -3916 ((-703) |#1| (-583 |#4|))) (-15 -3916 ((-703) |#1|)) (-15 -3106 ((-3 (-2 (|:| |var| |#4|) (|:| -3010 (-703))) "failed") |#1|)) (-15 -3789 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1674 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1336 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1336 (|#1| |#1| |#4| (-703))) (-15 -3431 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3284 ((-583 |#1|) |#1|)) (-15 -4104 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -4104 (|#1| |#1| |#4| (-703))) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#4| |#1|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#4| |#1|)) (-15 -2049 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2049 (|#1| |#1| |#4| |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1336 (|#1| |#2| |#3|)) (-15 -4104 (|#2| |#1| |#3|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2038 (|#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 |#3|) $) 110)) (-2374 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2239 (($ $) 88 (|has| |#1| (-509)))) (-3531 (((-107) $) 90 (|has| |#1| (-509)))) (-3916 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-2377 (($ $) 98 (|has| |#1| (-421)))) (-2674 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136)) (-3232 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135)) (-3167 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1221 (($ $) 154)) (-2749 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3775 (((-3 $ "failed") $) 34)) (-2038 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1206 (((-583 $) $) 109)) (-3083 (((-107) $) 96 (|has| |#1| (-831)))) (-2083 (($ $ |#1| |#2| $) 172)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3469 (((-107) $) 31)) (-3604 (((-703) $) 169)) (-1347 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3284 (((-583 $) $) 126)) (-2029 (((-107) $) 152)) (-1336 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#3|) 120)) (-3876 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-4055 (($ $ $) 79 (|has| |#1| (-779)))) (-3105 (($ $ $) 78 (|has| |#1| (-779)))) (-3602 (($ (-1 |#2| |#2|) $) 171)) (-1939 (($ (-1 |#1| |#1|) $) 151)) (-3382 (((-3 |#3| "failed") $) 123)) (-1687 (($ $) 149)) (-1193 ((|#1| $) 148)) (-1360 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1277 (((-1057) $) 9)) (-3789 (((-3 (-583 $) "failed") $) 114)) (-1674 (((-3 (-583 $) "failed") $) 115)) (-3106 (((-3 (-2 (|:| |var| |#3|) (|:| -3010 (-703))) "failed") $) 113)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 166)) (-1671 ((|#1| $) 167)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1387 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3383 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1248 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3625 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3667 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 104 (-4032 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3782 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3165 (((-583 |#1|) $) 168)) (-4104 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2486 (((-3 $ "failed") $) 73 (-3782 (-4032 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 29)) (-2829 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1600 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-871 |#1| |#2| |#3|) (-1185) (-961) (-725) (-779)) (T -871))
-((-2038 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3625 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-4104 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-4104 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-3284 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2374 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *3)))) (-3382 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3876 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-3431 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-871 *4 *5 *3)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1674 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3789 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3106 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -3010 (-703)))))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-3916 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1206 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3383 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2038 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2377 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2674 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(-13 (-822 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-952 |t#3|) (-347 |t#1|) (-10 -8 (-15 -3625 ((-703) $ |t#3|)) (-15 -3625 ((-583 (-703)) $ (-583 |t#3|))) (-15 -4104 ($ $ |t#3| (-703))) (-15 -4104 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -3284 ((-583 $) $)) (-15 -2374 ((-1070 $) $ |t#3|)) (-15 -2374 ((-1070 |t#1|) $)) (-15 -3382 ((-3 |t#3| "failed") $)) (-15 -3876 ((-703) $ |t#3|)) (-15 -3876 ((-583 (-703)) $ (-583 |t#3|))) (-15 -3431 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |t#3|)) (-15 -1336 ($ $ |t#3| (-703))) (-15 -1336 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1347 ($ (-1070 |t#1|) |t#3|)) (-15 -1347 ($ (-1070 $) |t#3|)) (-15 -1674 ((-3 (-583 $) "failed") $)) (-15 -3789 ((-3 (-583 $) "failed") $)) (-15 -3106 ((-3 (-2 (|:| |var| |t#3|) (|:| -3010 (-703))) "failed") $)) (-15 -3916 ((-703) $)) (-15 -3916 ((-703) $ (-583 |t#3|))) (-15 -1357 ((-583 |t#3|) $)) (-15 -1206 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-814 (-517)))) (IF (|has| |t#3| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (IF (|has| |t#3| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-808 (-517))) (IF (|has| |t#3| (-808 (-517))) (-6 (-808 (-517))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-808 (-349))) (IF (|has| |t#3| (-808 (-349))) (-6 (-808 (-349))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3167 ($ $ $ |t#3|)) (-15 -3383 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -4128 ($ $ |t#3|)) (-15 -2038 ($ $)) (-15 -2038 ($ $ |t#3|)) (-15 -2674 ((-388 $) $)) (-15 -2377 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4181)) (-6 -4181) |%noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-262) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
-((-1357 (((-583 |#2|) |#5|) 36)) (-2374 (((-1070 |#5|) |#5| |#2| (-1070 |#5|)) 23) (((-377 (-1070 |#5|)) |#5| |#2|) 16)) (-1347 ((|#5| (-377 (-1070 |#5|)) |#2|) 30)) (-3382 (((-3 |#2| "failed") |#5|) 61)) (-3789 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-2337 (((-3 (-2 (|:| |val| |#5|) (|:| -3010 (-517))) "failed") |#5|) 45)) (-1674 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3106 (((-3 (-2 (|:| |var| |#2|) (|:| -3010 (-517))) "failed") |#5|) 48)))
-(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1357 ((-583 |#2|) |#5|)) (-15 -3382 ((-3 |#2| "failed") |#5|)) (-15 -2374 ((-377 (-1070 |#5|)) |#5| |#2|)) (-15 -1347 (|#5| (-377 (-1070 |#5|)) |#2|)) (-15 -2374 ((-1070 |#5|) |#5| |#2| (-1070 |#5|))) (-15 -1674 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3789 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3106 ((-3 (-2 (|:| |var| |#2|) (|:| -3010 (-517))) "failed") |#5|)) (-15 -2337 ((-3 (-2 (|:| |val| |#5|) (|:| -3010 (-517))) "failed") |#5|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2254 ($ |#4|)) (-15 -1842 (|#4| $)) (-15 -1852 (|#4| $))))) (T -872))
-((-2337 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3010 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) (-3106 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3010 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) (-3789 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) (-1674 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) (-2374 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) (-2374 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1070 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) (-3382 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *6)) (-15 -1842 (*6 $)) (-15 -1852 (*6 $))))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(-10 -7 (-15 -1357 ((-583 |#2|) |#5|)) (-15 -3382 ((-3 |#2| "failed") |#5|)) (-15 -2374 ((-377 (-1070 |#5|)) |#5| |#2|)) (-15 -1347 (|#5| (-377 (-1070 |#5|)) |#2|)) (-15 -2374 ((-1070 |#5|) |#5| |#2| (-1070 |#5|))) (-15 -1674 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3789 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3106 ((-3 (-2 (|:| |var| |#2|) (|:| -3010 (-517))) "failed") |#5|)) (-15 -2337 ((-3 (-2 (|:| |val| |#5|) (|:| -3010 (-517))) "failed") |#5|)))
-((-1939 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1939 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -873))
-((-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))))
-(-10 -7 (-15 -1939 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-1074)) $) 15)) (-2374 (((-1070 $) $ (-1074)) 21) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-1074))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-1074) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-1074) $) NIL)) (-3167 (($ $ $ (-1074)) NIL (|has| |#1| (-156)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1074)) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-489 (-1074)) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1074) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1074) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#1|) (-1074)) NIL) (($ (-1070 $) (-1074)) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-1074)) NIL)) (-3876 (((-489 (-1074)) $) NIL) (((-703) $ (-1074)) NIL) (((-583 (-703)) $ (-583 (-1074))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 (-1074)) (-489 (-1074))) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3382 (((-3 (-1074) "failed") $) 19)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-1074)) (|:| -3010 (-703))) "failed") $) NIL)) (-3563 (($ $ (-1074)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-583 (-1074)) (-583 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-583 (-1074)) (-583 $)) NIL)) (-3383 (($ $ (-1074)) NIL (|has| |#1| (-156)))) (-1248 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-3625 (((-489 (-1074)) $) NIL) (((-703) $ (-1074)) NIL) (((-583 (-703)) $ (-583 (-1074))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-1074) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-1074) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-1074) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1074)) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1074)) 27) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-874 |#1|) (-13 (-871 |#1| (-489 (-1074)) (-1074)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1074))) |%noBranch|))) (-961)) (T -874))
-((-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
-(-13 (-871 |#1| (-489 (-1074)) (-1074)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1074))) |%noBranch|)))
-((-3697 (((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-2992 (((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-3686 (((-2 (|:| -3010 (-703)) (|:| -1965 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-3155 (((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
-(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3697 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2992 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3155 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -3686 ((-2 (|:| -3010 (-703)) (|:| -1965 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -1842 (|#4| $)) (-15 -1852 (|#4| $)) (-15 -2254 ($ |#4|))))) (T -875))
-((-3686 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1842 (*3 $)) (-15 -1852 (*3 $)) (-15 -2254 ($ *3))))))) (-3155 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1842 (*8 $)) (-15 -1852 (*8 $)) (-15 -2254 ($ *8))))))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1842 (*8 $)) (-15 -1852 (*8 $)) (-15 -2254 ($ *8))))))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1842 (*7 $)) (-15 -1852 (*7 $)) (-15 -2254 ($ *7))))))))
-(-10 -7 (-15 -3697 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2992 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3155 ((-2 (|:| -3010 (-703)) (|:| -1965 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -3686 ((-2 (|:| -3010 (-703)) (|:| -1965 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
-((-3674 (((-998 (-199)) $) 8)) (-3661 (((-998 (-199)) $) 9)) (-3221 (((-583 (-583 (-865 (-199)))) $) 10)) (-2254 (((-787) $) 6)))
-(((-876) (-1185)) (T -876))
-((-3221 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -3221 ((-583 (-583 (-865 (-199)))) $)) (-15 -3661 ((-998 (-199)) $)) (-15 -3674 ((-998 (-199)) $))))
+((-1666 (((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-2636 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-2053 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
+(((-834 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2053 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2636 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -1666 ((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-953 (-517))) (-400 |#1|) (-1132 |#2|) (-1132 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -834))
+((-1666 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-2 (|:| -2053 (-703)) (|:| -2225 *8))) (-5 *1 (-834 *4 *5 *6 *7 *8)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6 *7 *8)))) (-2053 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2053 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2636 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -1666 ((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
+((-1666 (((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-2636 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-2053 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
+(((-835 |#1| |#2| |#3|) (-10 -7 (-15 -2053 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2636 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1666 ((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1132 (-377 (-517))) (-1132 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -835))
+((-1666 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -2053 (-703)) (|:| -2225 *6))) (-5 *1 (-835 *4 *5 *6)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-835 *4 *5 *6)))) (-2053 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6)))))
+(-10 -7 (-15 -2053 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2636 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -1666 ((-3 (-2 (|:| -2053 (-703)) (|:| -2225 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
+((-2867 ((|#2| |#2|) 25)) (-2238 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-1992 (((-844) (-517)) 35)) (-3063 (((-517) |#2|) 42)) (-3665 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -1992 ((-844) (-517))) (-15 -3665 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3665 ((-517) |#2|)) (-15 -2238 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3063 ((-517) |#2|)) (-15 -2867 (|#2| |#2|))) (-1132 (-377 (-517))) (-1132 (-377 |#1|))) (T -836))
+((-2867 (*1 *2 *2) (-12 (-4 *3 (-1132 (-377 (-517)))) (-5 *1 (-836 *3 *2)) (-4 *2 (-1132 (-377 *3))))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3)) (-4 *3 (-1132 (-377 *4))))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *5)) (-4 *5 (-1132 (-377 *4))))) (-3665 (*1 *2 *3) (-12 (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3)) (-4 *3 (-1132 (-377 *4))))) (-3665 (*1 *2 *3) (-12 (-4 *3 (-1132 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-836 *3 *4)) (-4 *4 (-1132 (-377 *3))))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1132 (-377 *3))) (-5 *2 (-844)) (-5 *1 (-836 *4 *5)) (-4 *5 (-1132 (-377 *4))))))
+(-10 -7 (-15 -1992 ((-844) (-517))) (-15 -3665 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3665 ((-517) |#2|)) (-15 -2238 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3063 ((-517) |#2|)) (-15 -2867 (|#2| |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 ((|#1| $) 81)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-2378 (($ $ $) NIL)) (-3163 (((-3 $ "failed") $) 75)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2063 (($ |#1| (-388 |#1|)) 73)) (-3351 (((-1071 |#1|) |#1| |#1|) 40)) (-3419 (($ $) 49)) (-1865 (((-107) $) NIL)) (-1258 (((-517) $) 78)) (-4081 (($ $ (-517)) 80)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3878 ((|#1| $) 77)) (-1840 (((-388 |#1|) $) 76)) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) 74)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-3590 (($ $) 38)) (-2269 (((-787) $) 99) (($ (-517)) 54) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 59) (($ (-377 (-388 |#1|))) 67)) (-2950 (((-703)) 52)) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 23 T CONST)) (-3617 (($) 11 T CONST)) (-1583 (((-107) $ $) 68)) (-1703 (($ $ $) NIL)) (-1691 (($ $) 88) (($ $ $) NIL)) (-1677 (($ $ $) 37)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 90) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-837 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2269 ((-377 |#1|) $)) (-15 -2269 ($ (-377 (-388 |#1|)))) (-15 -3590 ($ $)) (-15 -1840 ((-388 |#1|) $)) (-15 -3878 (|#1| $)) (-15 -4081 ($ $ (-517))) (-15 -1258 ((-517) $)) (-15 -3351 ((-1071 |#1|) |#1| |#1|)) (-15 -3419 ($ $)) (-15 -2063 ($ |#1| (-388 |#1|))) (-15 -3297 (|#1| $)))) (-278)) (T -837))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-837 *3)))) (-3590 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-3878 (*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-1258 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-3351 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))) (-2063 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-837 *2)))) (-3297 (*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
+(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2269 ((-377 |#1|) $)) (-15 -2269 ($ (-377 (-388 |#1|)))) (-15 -3590 ($ $)) (-15 -1840 ((-388 |#1|) $)) (-15 -3878 (|#1| $)) (-15 -4081 ($ $ (-517))) (-15 -1258 ((-517) $)) (-15 -3351 ((-1071 |#1|) |#1| |#1|)) (-15 -3419 ($ $)) (-15 -2063 ($ |#1| (-388 |#1|))) (-15 -3297 (|#1| $))))
+((-2063 (((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1075)) 16) (((-51) (-377 (-875 |#1|)) (-1075)) 17)))
+(((-838 |#1|) (-10 -7 (-15 -2063 ((-51) (-377 (-875 |#1|)) (-1075))) (-15 -2063 ((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1075)))) (-13 (-278) (-134))) (T -838))
+((-2063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-875 *6))) (-5 *5 (-1075)) (-5 *3 (-875 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *6)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *5)))))
+(-10 -7 (-15 -2063 ((-51) (-377 (-875 |#1|)) (-1075))) (-15 -2063 ((-51) (-875 |#1|) (-388 (-875 |#1|)) (-1075))))
+((-2840 ((|#4| (-583 |#4|)) 119) (((-1071 |#4|) (-1071 |#4|) (-1071 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2368 (((-1071 |#4|) (-583 (-1071 |#4|))) 112) (((-1071 |#4|) (-1071 |#4|) (-1071 |#4|)) 49) ((|#4| (-583 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
+(((-839 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2368 (|#4| |#4| |#4|)) (-15 -2368 (|#4| (-583 |#4|))) (-15 -2368 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -2368 ((-1071 |#4|) (-583 (-1071 |#4|)))) (-15 -2840 (|#4| |#4| |#4|)) (-15 -2840 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -2840 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-872 |#3| |#1| |#2|)) (T -839))
+((-2840 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5)) (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2840 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6)))) (-2840 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1071 *7)) (-5 *1 (-839 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5)) (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2368 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4)))))
+(-10 -7 (-15 -2368 (|#4| |#4| |#4|)) (-15 -2368 (|#4| (-583 |#4|))) (-15 -2368 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -2368 ((-1071 |#4|) (-583 (-1071 |#4|)))) (-15 -2840 (|#4| |#4| |#4|)) (-15 -2840 ((-1071 |#4|) (-1071 |#4|) (-1071 |#4|))) (-15 -2840 (|#4| (-583 |#4|))))
+((-3065 (((-827 (-517)) (-889)) 22) (((-827 (-517)) (-583 (-517))) 19)) (-1824 (((-827 (-517)) (-583 (-517))) 46) (((-827 (-517)) (-844)) 47)) (-1467 (((-827 (-517))) 23)) (-2598 (((-827 (-517))) 36) (((-827 (-517)) (-583 (-517))) 35)) (-2954 (((-827 (-517))) 34) (((-827 (-517)) (-583 (-517))) 33)) (-3715 (((-827 (-517))) 32) (((-827 (-517)) (-583 (-517))) 31)) (-3623 (((-827 (-517))) 30) (((-827 (-517)) (-583 (-517))) 29)) (-3890 (((-827 (-517))) 28) (((-827 (-517)) (-583 (-517))) 27)) (-2838 (((-827 (-517))) 38) (((-827 (-517)) (-583 (-517))) 37)) (-3739 (((-827 (-517)) (-583 (-517))) 50) (((-827 (-517)) (-844)) 51)) (-1238 (((-827 (-517)) (-583 (-517))) 48) (((-827 (-517)) (-844)) 49)) (-2589 (((-827 (-517)) (-583 (-517))) 43) (((-827 (-517)) (-844)) 45)) (-1970 (((-827 (-517)) (-583 (-844))) 40)))
+(((-840) (-10 -7 (-15 -1824 ((-827 (-517)) (-844))) (-15 -1824 ((-827 (-517)) (-583 (-517)))) (-15 -2589 ((-827 (-517)) (-844))) (-15 -2589 ((-827 (-517)) (-583 (-517)))) (-15 -1970 ((-827 (-517)) (-583 (-844)))) (-15 -1238 ((-827 (-517)) (-844))) (-15 -1238 ((-827 (-517)) (-583 (-517)))) (-15 -3739 ((-827 (-517)) (-844))) (-15 -3739 ((-827 (-517)) (-583 (-517)))) (-15 -3890 ((-827 (-517)) (-583 (-517)))) (-15 -3890 ((-827 (-517)))) (-15 -3623 ((-827 (-517)) (-583 (-517)))) (-15 -3623 ((-827 (-517)))) (-15 -3715 ((-827 (-517)) (-583 (-517)))) (-15 -3715 ((-827 (-517)))) (-15 -2954 ((-827 (-517)) (-583 (-517)))) (-15 -2954 ((-827 (-517)))) (-15 -2598 ((-827 (-517)) (-583 (-517)))) (-15 -2598 ((-827 (-517)))) (-15 -2838 ((-827 (-517)) (-583 (-517)))) (-15 -2838 ((-827 (-517)))) (-15 -1467 ((-827 (-517)))) (-15 -3065 ((-827 (-517)) (-583 (-517)))) (-15 -3065 ((-827 (-517)) (-889))))) (T -840))
+((-3065 (*1 *2 *3) (-12 (-5 *3 (-889)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1467 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2838 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2598 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2954 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3715 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3623 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3890 (*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1238 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1238 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-583 (-844))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(-10 -7 (-15 -1824 ((-827 (-517)) (-844))) (-15 -1824 ((-827 (-517)) (-583 (-517)))) (-15 -2589 ((-827 (-517)) (-844))) (-15 -2589 ((-827 (-517)) (-583 (-517)))) (-15 -1970 ((-827 (-517)) (-583 (-844)))) (-15 -1238 ((-827 (-517)) (-844))) (-15 -1238 ((-827 (-517)) (-583 (-517)))) (-15 -3739 ((-827 (-517)) (-844))) (-15 -3739 ((-827 (-517)) (-583 (-517)))) (-15 -3890 ((-827 (-517)) (-583 (-517)))) (-15 -3890 ((-827 (-517)))) (-15 -3623 ((-827 (-517)) (-583 (-517)))) (-15 -3623 ((-827 (-517)))) (-15 -3715 ((-827 (-517)) (-583 (-517)))) (-15 -3715 ((-827 (-517)))) (-15 -2954 ((-827 (-517)) (-583 (-517)))) (-15 -2954 ((-827 (-517)))) (-15 -2598 ((-827 (-517)) (-583 (-517)))) (-15 -2598 ((-827 (-517)))) (-15 -2838 ((-827 (-517)) (-583 (-517)))) (-15 -2838 ((-827 (-517)))) (-15 -1467 ((-827 (-517)))) (-15 -3065 ((-827 (-517)) (-583 (-517)))) (-15 -3065 ((-827 (-517)) (-889))))
+((-1551 (((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075))) 10)) (-3294 (((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075))) 9)))
+(((-841 |#1|) (-10 -7 (-15 -3294 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -1551 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075))))) (-421)) (T -841))
+((-1551 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1075))) (-4 *4 (-421)) (-5 *1 (-841 *4)))) (-3294 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1075))) (-4 *4 (-421)) (-5 *1 (-841 *4)))))
+(-10 -7 (-15 -3294 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -1551 ((-583 (-875 |#1|)) (-583 (-875 |#1|)) (-583 (-1075)))))
+((-2269 (((-286 |#1|) (-446)) 15)))
+(((-842 |#1|) (-10 -7 (-15 -2269 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -842))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-842 *4)) (-4 *4 (-13 (-779) (-509))))))
+(-10 -7 (-15 -2269 ((-286 |#1|) (-446))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-1865 (((-107) $) 31)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-843) (-1187)) (T -843))
+((-2776 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-2 (|:| -1580 (-583 *1)) (|:| -1317 *1))) (-5 *3 (-583 *1)))) (-1456 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-843)))))
+(-13 (-421) (-10 -8 (-15 -2776 ((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $))) (-15 -1456 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2368 (($ $ $) NIL)) (-2269 (((-787) $) NIL)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3617 (($) NIL T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ $ $) NIL)))
+(((-844) (-13 (-25) (-779) (-659) (-10 -8 (-15 -2368 ($ $ $)) (-6 (-4192 "*"))))) (T -844))
+((-2368 (*1 *1 *1 *1) (-5 *1 (-844))))
+(-13 (-25) (-779) (-659) (-10 -8 (-15 -2368 ($ $ $)) (-6 (-4192 "*"))))
+((-4086 ((|#2| (-583 |#1|) (-583 |#1|)) 24)))
+(((-845 |#1| |#2|) (-10 -7 (-15 -4086 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1132 |#1|)) (T -845))
+((-4086 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1132 *4)) (-5 *1 (-845 *4 *2)))))
+(-10 -7 (-15 -4086 (|#2| (-583 |#1|) (-583 |#1|))))
+((-3729 (((-1071 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1129 |#1| |#2|) (-1129 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -3729 ((-1129 |#1| |#2|) (-1129 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3729 ((-1071 |#2|) (-583 |#2|) (-583 |#2|)))) (-1075) (-333)) (T -846))
+((-3729 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1071 *5)) (-5 *1 (-846 *4 *5)) (-14 *4 (-1075)))) (-3729 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1129 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1075)) (-4 *5 (-333)) (-5 *1 (-846 *4 *5)))))
+(-10 -7 (-15 -3729 ((-1129 |#1| |#2|) (-1129 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3729 ((-1071 |#2|) (-583 |#2|) (-583 |#2|))))
+((-3266 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058)) 138)) (-3114 ((|#4| |#4|) 154)) (-3470 (((-583 (-377 (-875 |#1|))) (-583 (-1075))) 117)) (-2522 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-2669 (((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-583 |#4|)) 57)) (-2450 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3232 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058)) 150)) (-2515 (((-517) (-623 |#4|) (-844) (-1058)) 131) (((-517) (-623 |#4|) (-583 (-1075)) (-844) (-1058)) 130) (((-517) (-623 |#4|) (-583 |#4|) (-844) (-1058)) 129) (((-517) (-623 |#4|) (-1058)) 126) (((-517) (-623 |#4|) (-583 (-1075)) (-1058)) 125) (((-517) (-623 |#4|) (-583 |#4|) (-1058)) 124) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075)) (-844)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|)) 119) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075))) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 115)) (-3743 ((|#4| (-875 |#1|)) 66)) (-1717 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 151)) (-3501 (((-583 (-583 (-517))) (-517) (-517)) 128)) (-2107 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2271 (((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-3588 (((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-3235 (((-107) (-583 (-875 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-2735 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-3032 (((-583 |#4|) |#4|) 47)) (-2945 (((-583 (-377 (-875 |#1|))) (-583 |#4|)) 113) (((-623 (-377 (-875 |#1|))) (-623 |#4|)) 54) (((-377 (-875 |#1|)) |#4|) 110)) (-2856 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1058) (-517)) 89)) (-1697 (((-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3223 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2906 (((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| -2831 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3736 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
+(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075)))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075)) (-844))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844))) (-15 -2515 ((-517) (-623 |#4|) (-583 |#4|) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 (-1075)) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 |#4|) (-844) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 (-1075)) (-844) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-844) (-1058))) (-15 -3266 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058))) (-15 -3232 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058))) (-15 -2856 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1058) (-517))) (-15 -2945 ((-377 (-875 |#1|)) |#4|)) (-15 -2945 ((-623 (-377 (-875 |#1|))) (-623 |#4|))) (-15 -2945 ((-583 (-377 (-875 |#1|))) (-583 |#4|))) (-15 -3470 ((-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3743 (|#4| (-875 |#1|))) (-15 -2735 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1697 ((-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -2669 ((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-583 |#4|))) (-15 -2906 ((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| -2831 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3736 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -3032 ((-583 |#4|) |#4|)) (-15 -3588 ((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2271 ((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2107 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -3501 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1717 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3223 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -2450 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2522 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3114 (|#4| |#4|)) (-15 -3235 ((-107) (-583 |#4|))) (-15 -3235 ((-107) (-583 (-875 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1075))) (-725) (-872 |#1| |#3| |#2|)) (T -847))
+((-3235 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1075)))) (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-872 *3 *5 *4)))) (-2522 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-875 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-872 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1075)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-875 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *9)))) (|:| -2062 (-583 (-1156 (-377 (-875 *9))))))))) (-5 *1 (-847 *9 *10 *11 *12)))) (-2450 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-1717 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *5 *6 *7 *8)))) (-3501 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *6 *5)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-872 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1075)))) (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *6)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-847 *4 *5 *6 *7)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-847 *4 *5 *6 *3)) (-4 *3 (-872 *4 *6 *5)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2831 (-623 (-377 (-875 *4)))) (|:| |vec| (-583 (-377 (-875 *4)))) (|:| -3736 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1156 (-377 (-875 *4)))) (|:| -2062 (-583 (-1156 (-377 (-875 *4))))))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-2669 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1156 (-377 (-875 *4)))) (|:| -2062 (-583 (-1156 (-377 (-875 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-872 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-703)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-4 *7 (-872 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-872 *4 *6 *5)) (-5 *1 (-847 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7)))) (-2945 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-377 (-875 *4))) (-5 *1 (-847 *4 *5 *6 *3)) (-4 *3 (-872 *4 *6 *5)))) (-2856 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-875 *8)))) (-5 *5 (-703)) (-5 *6 (-1058)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-872 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1075)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-875 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *8)))) (|:| -2062 (-583 (-1156 (-377 (-875 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-847 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-875 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *4)))) (|:| -2062 (-583 (-1156 (-377 (-875 *4)))))))))) (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *5)))) (|:| -2062 (-583 (-1156 (-377 (-875 *5)))))))))) (-5 *4 (-1058)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-872 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-844)) (-5 *5 (-1058)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-2515 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1075))) (-5 *5 (-844)) (-5 *6 (-1058)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1075)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *7 *8 *9 *10)))) (-2515 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-844)) (-5 *6 (-1058)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1075)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *7 *8 *9 *10)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1058)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1075))) (-5 *5 (-1058)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1058)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *6 *7 *8 *9)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-844)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *5)))) (|:| -2062 (-583 (-1156 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1075))) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-875 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *6)))) (|:| -2062 (-583 (-1156 (-377 (-875 *6)))))))))) (-5 *1 (-847 *6 *7 *8 *9)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-875 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *6)))) (|:| -2062 (-583 (-1156 (-377 (-875 *6)))))))))) (-5 *1 (-847 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-875 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *4)))) (|:| -2062 (-583 (-1156 (-377 (-875 *4)))))))))) (-5 *1 (-847 *4 *5 *6 *7)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1075))) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *5)))) (|:| -2062 (-583 (-1156 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-875 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 *5)))) (|:| -2062 (-583 (-1156 (-377 (-875 *5)))))))))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(-10 -7 (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075)))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-844))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-583 (-1075)) (-844))) (-15 -2515 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-623 |#4|) (-844))) (-15 -2515 ((-517) (-623 |#4|) (-583 |#4|) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 (-1075)) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 |#4|) (-844) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-583 (-1075)) (-844) (-1058))) (-15 -2515 ((-517) (-623 |#4|) (-844) (-1058))) (-15 -3266 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058))) (-15 -3232 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|))))))))) (-1058))) (-15 -2856 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-703) (-1058) (-517))) (-15 -2945 ((-377 (-875 |#1|)) |#4|)) (-15 -2945 ((-623 (-377 (-875 |#1|))) (-623 |#4|))) (-15 -2945 ((-583 (-377 (-875 |#1|))) (-583 |#4|))) (-15 -3470 ((-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3743 (|#4| (-875 |#1|))) (-15 -2735 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -1697 ((-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -2669 ((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-583 |#4|))) (-15 -2906 ((-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))) (-2 (|:| -2831 (-623 (-377 (-875 |#1|)))) (|:| |vec| (-583 (-377 (-875 |#1|)))) (|:| -3736 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -3032 ((-583 |#4|) |#4|)) (-15 -3588 ((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2271 ((-703) (-583 (-2 (|:| -3736 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2107 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -3501 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1717 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3223 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -2450 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2522 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-875 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1156 (-377 (-875 |#1|)))) (|:| -2062 (-583 (-1156 (-377 (-875 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-875 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3114 (|#4| |#4|)) (-15 -3235 ((-107) (-583 |#4|))) (-15 -3235 ((-107) (-583 (-875 |#1|)))))
+((-3839 (((-850) |#1| (-1075)) 16) (((-850) |#1| (-1075) (-999 (-199))) 20)) (-3865 (((-850) |#1| |#1| (-1075) (-999 (-199))) 18) (((-850) |#1| (-1075) (-999 (-199))) 14)))
+(((-848 |#1|) (-10 -7 (-15 -3865 ((-850) |#1| (-1075) (-999 (-199)))) (-15 -3865 ((-850) |#1| |#1| (-1075) (-999 (-199)))) (-15 -3839 ((-850) |#1| (-1075) (-999 (-199)))) (-15 -3839 ((-850) |#1| (-1075)))) (-558 (-493))) (T -848))
+((-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-3865 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))) (-3865 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850)) (-5 *1 (-848 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -3865 ((-850) |#1| (-1075) (-999 (-199)))) (-15 -3865 ((-850) |#1| |#1| (-1075) (-999 (-199)))) (-15 -3839 ((-850) |#1| (-1075) (-999 (-199)))) (-15 -3839 ((-850) |#1| (-1075))))
+((-3603 (($ $ (-999 (-199)) (-999 (-199)) (-999 (-199))) 69)) (-2731 (((-999 (-199)) $) 40)) (-2719 (((-999 (-199)) $) 39)) (-2707 (((-999 (-199)) $) 38)) (-3826 (((-583 (-583 (-199))) $) 43)) (-3066 (((-999 (-199)) $) 41)) (-3424 (((-517) (-517)) 32)) (-3529 (((-517) (-517)) 28)) (-3606 (((-517) (-517)) 30)) (-3499 (((-107) (-107)) 35)) (-2671 (((-517)) 31)) (-2403 (($ $ (-999 (-199))) 72) (($ $) 73)) (-3339 (($ (-1 (-866 (-199)) (-199)) (-999 (-199))) 77) (($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199))) 78)) (-3865 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199))) 81) (($ $ (-999 (-199))) 75)) (-1635 (((-517)) 36)) (-2720 (((-517)) 27)) (-1357 (((-517)) 29)) (-1304 (((-583 (-583 (-866 (-199)))) $) 93)) (-4057 (((-107) (-107)) 37)) (-2269 (((-787) $) 92)) (-3777 (((-107)) 34)))
+(((-849) (-13 (-892) (-10 -8 (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ $ (-999 (-199)))) (-15 -3603 ($ $ (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -2403 ($ $ (-999 (-199)))) (-15 -2403 ($ $)) (-15 -3066 ((-999 (-199)) $)) (-15 -3826 ((-583 (-583 (-199))) $)) (-15 -2720 ((-517))) (-15 -3529 ((-517) (-517))) (-15 -1357 ((-517))) (-15 -3606 ((-517) (-517))) (-15 -2671 ((-517))) (-15 -3424 ((-517) (-517))) (-15 -3777 ((-107))) (-15 -3499 ((-107) (-107))) (-15 -1635 ((-517))) (-15 -4057 ((-107) (-107)))))) (T -849))
+((-3339 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849)))) (-3339 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849)))) (-3865 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849)))) (-3865 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849)))) (-3603 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849)))) (-2403 (*1 *1 *1) (-5 *1 (-849))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-849)))) (-2720 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1357 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2671 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3777 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-1635 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(-13 (-892) (-10 -8 (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ $ (-999 (-199)))) (-15 -3603 ($ $ (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -2403 ($ $ (-999 (-199)))) (-15 -2403 ($ $)) (-15 -3066 ((-999 (-199)) $)) (-15 -3826 ((-583 (-583 (-199))) $)) (-15 -2720 ((-517))) (-15 -3529 ((-517) (-517))) (-15 -1357 ((-517))) (-15 -3606 ((-517) (-517))) (-15 -2671 ((-517))) (-15 -3424 ((-517) (-517))) (-15 -3777 ((-107))) (-15 -3499 ((-107) (-107))) (-15 -1635 ((-517))) (-15 -4057 ((-107) (-107)))))
+((-3603 (($ $ (-999 (-199))) 70) (($ $ (-999 (-199)) (-999 (-199))) 71)) (-2719 (((-999 (-199)) $) 43)) (-2707 (((-999 (-199)) $) 42)) (-3066 (((-999 (-199)) $) 44)) (-2022 (((-517) (-517)) 36)) (-2656 (((-517) (-517)) 32)) (-4018 (((-517) (-517)) 34)) (-3440 (((-107) (-107)) 38)) (-3244 (((-517)) 35)) (-2403 (($ $ (-999 (-199))) 74) (($ $) 75)) (-3339 (($ (-1 (-866 (-199)) (-199)) (-999 (-199))) 84) (($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199))) 85)) (-3839 (($ (-1 (-199) (-199)) (-999 (-199))) 92) (($ (-1 (-199) (-199))) 95)) (-3865 (($ (-1 (-199) (-199)) (-999 (-199))) 79) (($ (-1 (-199) (-199)) (-999 (-199)) (-999 (-199))) 80) (($ (-583 (-1 (-199) (-199))) (-999 (-199))) 87) (($ (-583 (-1 (-199) (-199))) (-999 (-199)) (-999 (-199))) 88) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199))) 81) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199))) 82) (($ $ (-999 (-199))) 76)) (-1511 (((-107) $) 39)) (-3744 (((-517)) 40)) (-3870 (((-517)) 31)) (-3911 (((-517)) 33)) (-1304 (((-583 (-583 (-866 (-199)))) $) 22)) (-1362 (((-107) (-107)) 41)) (-2269 (((-787) $) 106)) (-1788 (((-107)) 37)))
+(((-850) (-13 (-877) (-10 -8 (-15 -3865 ($ (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-583 (-1 (-199) (-199))) (-999 (-199)))) (-15 -3865 ($ (-583 (-1 (-199) (-199))) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3839 ($ (-1 (-199) (-199)) (-999 (-199)))) (-15 -3839 ($ (-1 (-199) (-199)))) (-15 -3865 ($ $ (-999 (-199)))) (-15 -1511 ((-107) $)) (-15 -3603 ($ $ (-999 (-199)))) (-15 -3603 ($ $ (-999 (-199)) (-999 (-199)))) (-15 -2403 ($ $ (-999 (-199)))) (-15 -2403 ($ $)) (-15 -3066 ((-999 (-199)) $)) (-15 -3870 ((-517))) (-15 -2656 ((-517) (-517))) (-15 -3911 ((-517))) (-15 -4018 ((-517) (-517))) (-15 -3244 ((-517))) (-15 -2022 ((-517) (-517))) (-15 -1788 ((-107))) (-15 -3440 ((-107) (-107))) (-15 -3744 ((-517))) (-15 -1362 ((-107) (-107)))))) (T -850))
+((-3865 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3339 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3339 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-850)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3603 (*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))) (-3603 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))) (-2403 (*1 *1 *1) (-5 *1 (-850))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))) (-3870 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3911 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3244 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-1788 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3744 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-1362 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(-13 (-877) (-10 -8 (-15 -3865 ($ (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-583 (-1 (-199) (-199))) (-999 (-199)))) (-15 -3865 ($ (-583 (-1 (-199) (-199))) (-999 (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)))) (-15 -3865 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)))) (-15 -3339 ($ (-1 (-866 (-199)) (-199)) (-999 (-199)) (-999 (-199)) (-999 (-199)))) (-15 -3839 ($ (-1 (-199) (-199)) (-999 (-199)))) (-15 -3839 ($ (-1 (-199) (-199)))) (-15 -3865 ($ $ (-999 (-199)))) (-15 -1511 ((-107) $)) (-15 -3603 ($ $ (-999 (-199)))) (-15 -3603 ($ $ (-999 (-199)) (-999 (-199)))) (-15 -2403 ($ $ (-999 (-199)))) (-15 -2403 ($ $)) (-15 -3066 ((-999 (-199)) $)) (-15 -3870 ((-517))) (-15 -2656 ((-517) (-517))) (-15 -3911 ((-517))) (-15 -4018 ((-517) (-517))) (-15 -3244 ((-517))) (-15 -2022 ((-517) (-517))) (-15 -1788 ((-107))) (-15 -3440 ((-107) (-107))) (-15 -3744 ((-517))) (-15 -1362 ((-107) (-107)))))
+((-3797 (((-583 (-999 (-199))) (-583 (-583 (-866 (-199))))) 23)))
+(((-851) (-10 -7 (-15 -3797 ((-583 (-999 (-199))) (-583 (-583 (-866 (-199)))))))) (T -851))
+((-3797 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-999 (-199)))) (-5 *1 (-851)))))
+(-10 -7 (-15 -3797 ((-583 (-999 (-199))) (-583 (-583 (-866 (-199)))))))
+((-3446 ((|#2| |#2|) 25)) (-3504 ((|#2| |#2|) 26)) (-1384 ((|#2| |#2|) 24)) (-3122 ((|#2| |#2| (-1058)) 23)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -3122 (|#2| |#2| (-1058))) (-15 -1384 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3504 (|#2| |#2|))) (-779) (-400 |#1|)) (T -852))
+((-3504 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-1384 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3)))) (-3122 (*1 *2 *2 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-779)) (-5 *1 (-852 *4 *2)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3122 (|#2| |#2| (-1058))) (-15 -1384 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)))
+((-3446 (((-286 (-517)) (-1075)) 15)) (-3504 (((-286 (-517)) (-1075)) 13)) (-1384 (((-286 (-517)) (-1075)) 11)) (-3122 (((-286 (-517)) (-1075) (-1058)) 18)))
+(((-853) (-10 -7 (-15 -3122 ((-286 (-517)) (-1075) (-1058))) (-15 -1384 ((-286 (-517)) (-1075))) (-15 -3446 ((-286 (-517)) (-1075))) (-15 -3504 ((-286 (-517)) (-1075))))) (T -853))
+((-3504 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-1058)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
+(-10 -7 (-15 -3122 ((-286 (-517)) (-1075) (-1058))) (-15 -1384 ((-286 (-517)) (-1075))) (-15 -3446 ((-286 (-517)) (-1075))) (-15 -3504 ((-286 (-517)) (-1075))))
+((-2399 (((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|)) 24)) (-1616 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
+(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -1616 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2399 ((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|)))) (-1004) (-809 |#1|) (-13 (-1004) (-953 |#2|))) (T -854))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-4 *6 (-13 (-1004) (-953 *3))) (-4 *3 (-809 *5)) (-5 *1 (-854 *5 *3 *6)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1004) (-953 *5))) (-4 *5 (-809 *4)) (-4 *4 (-1004)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-854 *4 *5 *6)))))
+(-10 -7 (-15 -1616 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2399 ((-812 |#1| |#3|) |#2| (-815 |#1|) (-812 |#1| |#3|))))
+((-2399 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 29)))
+(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-1004) (-13 (-509) (-779) (-809 |#1|)) (-13 (-400 |#2|) (-558 (-815 |#1|)) (-809 |#1|) (-953 (-556 $)))) (T -855))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004)) (-4 *3 (-13 (-400 *6) (-558 *4) (-809 *5) (-953 (-556 $)))) (-5 *4 (-815 *5)) (-4 *6 (-13 (-509) (-779) (-809 *5))) (-5 *1 (-855 *5 *6 *3)))))
+(-10 -7 (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))
+((-2399 (((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|)) 12)))
+(((-856 |#1|) (-10 -7 (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|)))) (-502)) (T -856))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 (-517) *3)) (-5 *4 (-815 (-517))) (-4 *3 (-502)) (-5 *1 (-856 *3)))))
+(-10 -7 (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))))
+((-2399 (((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|)) 52)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -2399 ((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|)))) (-1004) (-13 (-779) (-953 (-556 $)) (-558 (-815 |#1|)) (-809 |#1|))) (T -857))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1004)) (-4 *6 (-13 (-779) (-953 (-556 $)) (-558 *4) (-809 *5))) (-5 *4 (-815 *5)) (-5 *1 (-857 *5 *6)))))
+(-10 -7 (-15 -2399 ((-812 |#1| |#2|) (-556 |#2|) (-815 |#1|) (-812 |#1| |#2|))))
+((-2399 (((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|)) 14)))
+(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|)))) (-1004) (-809 |#1|) (-603 |#2|)) (T -858))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-4 *6 (-809 *5)) (-4 *3 (-603 *6)) (-5 *1 (-858 *5 *6 *3)))))
+(-10 -7 (-15 -2399 ((-808 |#1| |#2| |#3|) |#3| (-815 |#1|) (-808 |#1| |#2| |#3|))))
+((-2399 (((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|)) 17 (|has| |#3| (-809 |#1|))) (((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|))) 16)))
+(((-859 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2399 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|)))) (IF (|has| |#3| (-809 |#1|)) (-15 -2399 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|))) |%noBranch|)) (-1004) (-725) (-779) (-13 (-962) (-779) (-809 |#1|)) (-13 (-872 |#4| |#2| |#3|) (-558 (-815 |#1|)))) (T -859))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004)) (-4 *3 (-13 (-872 *8 *6 *7) (-558 *4))) (-5 *4 (-815 *5)) (-4 *7 (-809 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-962) (-779) (-809 *5))) (-5 *1 (-859 *5 *6 *7 *8 *3)))) (-2399 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-812 *6 *3) *8 (-815 *6) (-812 *6 *3))) (-4 *8 (-779)) (-5 *2 (-812 *6 *3)) (-5 *4 (-815 *6)) (-4 *6 (-1004)) (-4 *3 (-13 (-872 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-962) (-779) (-809 *6))) (-5 *1 (-859 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2399 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|) (-1 (-812 |#1| |#5|) |#3| (-815 |#1|) (-812 |#1| |#5|)))) (IF (|has| |#3| (-809 |#1|)) (-15 -2399 ((-812 |#1| |#5|) |#5| (-815 |#1|) (-812 |#1| |#5|))) |%noBranch|))
+((-3556 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -3556 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3556 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1110)) (T -860))
+((-3556 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1110)) (-4 *4 (-779)) (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3556 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1110)) (-4 *4 (-779)) (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3556 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3556 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
+((-3556 (((-286 (-517)) (-1075) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1075) (-1 (-107) |#1|)) 13)))
+(((-861 |#1|) (-10 -7 (-15 -3556 ((-286 (-517)) (-1075) (-1 (-107) |#1|))) (-15 -3556 ((-286 (-517)) (-1075) (-583 (-1 (-107) |#1|))))) (-1110)) (T -861))
+((-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1110)) (-5 *2 (-286 (-517))) (-5 *1 (-861 *5)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1110)) (-5 *2 (-286 (-517))) (-5 *1 (-861 *5)))))
+(-10 -7 (-15 -3556 ((-286 (-517)) (-1075) (-1 (-107) |#1|))) (-15 -3556 ((-286 (-517)) (-1075) (-583 (-1 (-107) |#1|)))))
+((-2399 (((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)) 25)))
+(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-1004) (-13 (-509) (-809 |#1|) (-558 (-815 |#1|))) (-910 |#2|)) (T -862))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004)) (-4 *3 (-910 *6)) (-4 *6 (-13 (-509) (-809 *5) (-558 *4))) (-5 *4 (-815 *5)) (-5 *1 (-862 *5 *6 *3)))))
+(-10 -7 (-15 -2399 ((-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))
+((-2399 (((-812 |#1| (-1075)) (-1075) (-815 |#1|) (-812 |#1| (-1075))) 17)))
+(((-863 |#1|) (-10 -7 (-15 -2399 ((-812 |#1| (-1075)) (-1075) (-815 |#1|) (-812 |#1| (-1075))))) (-1004)) (T -863))
+((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 (-1075))) (-5 *3 (-1075)) (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-5 *1 (-863 *5)))))
+(-10 -7 (-15 -2399 ((-812 |#1| (-1075)) (-1075) (-815 |#1|) (-812 |#1| (-1075)))))
+((-1546 (((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) 33)) (-2399 (((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))) 32)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-15 -1546 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|))))) (-1004) (-13 (-962) (-779)) (-13 (-962) (-558 (-815 |#1|)) (-953 |#2|))) (T -864))
+((-1546 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-815 *6))) (-5 *5 (-1 (-812 *6 *8) *8 (-815 *6) (-812 *6 *8))) (-4 *6 (-1004)) (-4 *8 (-13 (-962) (-558 (-815 *6)) (-953 *7))) (-5 *2 (-812 *6 *8)) (-4 *7 (-13 (-962) (-779))) (-5 *1 (-864 *6 *7 *8)))) (-2399 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-815 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-812 *7 *9) *9 (-815 *7) (-812 *7 *9))) (-4 *7 (-1004)) (-4 *9 (-13 (-962) (-558 (-815 *7)) (-953 *8))) (-5 *2 (-812 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-962) (-779))) (-5 *1 (-864 *7 *8 *9)))))
+(-10 -7 (-15 -2399 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-1 |#3| (-583 |#3|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))) (-15 -1546 ((-812 |#1| |#3|) (-583 |#3|) (-583 (-815 |#1|)) (-812 |#1| |#3|) (-1 (-812 |#1| |#3|) |#3| (-815 |#1|) (-812 |#1| |#3|)))))
+((-2639 (((-1071 (-377 (-517))) (-517)) 62)) (-3516 (((-1071 (-517)) (-517)) 65)) (-2114 (((-1071 (-517)) (-517)) 59)) (-1920 (((-517) (-1071 (-517))) 54)) (-3138 (((-1071 (-377 (-517))) (-517)) 48)) (-2806 (((-1071 (-517)) (-517)) 37)) (-2911 (((-1071 (-517)) (-517)) 67)) (-3050 (((-1071 (-517)) (-517)) 66)) (-2676 (((-1071 (-377 (-517))) (-517)) 50)))
+(((-865) (-10 -7 (-15 -2676 ((-1071 (-377 (-517))) (-517))) (-15 -3050 ((-1071 (-517)) (-517))) (-15 -2911 ((-1071 (-517)) (-517))) (-15 -2806 ((-1071 (-517)) (-517))) (-15 -3138 ((-1071 (-377 (-517))) (-517))) (-15 -1920 ((-517) (-1071 (-517)))) (-15 -2114 ((-1071 (-517)) (-517))) (-15 -3516 ((-1071 (-517)) (-517))) (-15 -2639 ((-1071 (-377 (-517))) (-517))))) (T -865))
+((-2639 (*1 *2 *3) (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))) (-3516 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2114 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1071 (-517))) (-5 *2 (-517)) (-5 *1 (-865)))) (-3138 (*1 *2 *3) (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2911 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))) (-2676 (*1 *2 *3) (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(-10 -7 (-15 -2676 ((-1071 (-377 (-517))) (-517))) (-15 -3050 ((-1071 (-517)) (-517))) (-15 -2911 ((-1071 (-517)) (-517))) (-15 -2806 ((-1071 (-517)) (-517))) (-15 -3138 ((-1071 (-377 (-517))) (-517))) (-15 -1920 ((-517) (-1071 (-517)))) (-15 -2114 ((-1071 (-517)) (-517))) (-15 -3516 ((-1071 (-517)) (-517))) (-15 -2639 ((-1071 (-377 (-517))) (-517))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703)) NIL (|has| |#1| (-23)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-3414 (($ (-583 |#1|)) 13)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2688 (((-623 |#1|) $ $) NIL (|has| |#1| (-962)))) (-3211 (($ (-703) |#1|) 8)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 10 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2961 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-4043 (((-107) $ (-703)) NIL)) (-3680 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-2640 (($ $ (-583 |#1|)) 24)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1123 (-517))) NIL)) (-3989 ((|#1| $ $) NIL (|has| |#1| (-962)))) (-1880 (((-844) $) 16)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-2579 (($ $ $) 22)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2286 (($ (-583 |#1|)) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1691 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1677 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3533 (((-703) $) 14 (|has| $ (-6 -4190)))))
+(((-866 |#1|) (-898 |#1|) (-962)) (T -866))
+NIL
+(-898 |#1|)
+((-2128 (((-449 |#1| |#2|) (-875 |#2|)) 17)) (-4048 (((-221 |#1| |#2|) (-875 |#2|)) 29)) (-2535 (((-875 |#2|) (-449 |#1| |#2|)) 22)) (-1687 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-2235 (((-875 |#2|) (-221 |#1| |#2|)) 26)) (-2255 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
+(((-867 |#1| |#2|) (-10 -7 (-15 -2255 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1687 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2128 ((-449 |#1| |#2|) (-875 |#2|))) (-15 -2535 ((-875 |#2|) (-449 |#1| |#2|))) (-15 -2235 ((-875 |#2|) (-221 |#1| |#2|))) (-15 -4048 ((-221 |#1| |#2|) (-875 |#2|)))) (-583 (-1075)) (-962)) (T -867))
+((-4048 (*1 *2 *3) (-12 (-5 *3 (-875 *5)) (-4 *5 (-962)) (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1075))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962)) (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962)) (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-875 *5)) (-4 *5 (-962)) (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1075))))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962)) (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962)) (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)))))
+(-10 -7 (-15 -2255 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1687 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2128 ((-449 |#1| |#2|) (-875 |#2|))) (-15 -2535 ((-875 |#2|) (-449 |#1| |#2|))) (-15 -2235 ((-875 |#2|) (-221 |#1| |#2|))) (-15 -4048 ((-221 |#1| |#2|) (-875 |#2|))))
+((-3822 (((-583 |#2|) |#2| |#2|) 10)) (-1538 (((-703) (-583 |#1|)) 38 (|has| |#1| (-777)))) (-1761 (((-583 |#2|) |#2|) 11)) (-3263 (((-703) (-583 |#1|) (-517) (-517)) 37 (|has| |#1| (-777)))) (-3924 ((|#1| |#2|) 33 (|has| |#1| (-777)))))
+(((-868 |#1| |#2|) (-10 -7 (-15 -3822 ((-583 |#2|) |#2| |#2|)) (-15 -1761 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3924 (|#1| |#2|)) (-15 -1538 ((-703) (-583 |#1|))) (-15 -3263 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) (-333) (-1132 |#1|)) (T -868))
+((-3263 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-868 *5 *6)) (-4 *6 (-1132 *5)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-868 *4 *5)) (-4 *5 (-1132 *4)))) (-3924 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1132 *2)))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1132 *4)))) (-3822 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -3822 ((-583 |#2|) |#2| |#2|)) (-15 -1761 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3924 (|#1| |#2|)) (-15 -1538 ((-703) (-583 |#1|))) (-15 -3263 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|))
+((-3308 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 18)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -3308 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-962) (-962)) (T -869))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-875 *6)) (-5 *1 (-869 *5 *6)))))
+(-10 -7 (-15 -3308 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|))))
+((-1440 (((-1129 |#1| (-875 |#2|)) (-875 |#2|) (-1152 |#1|)) 18)))
+(((-870 |#1| |#2|) (-10 -7 (-15 -1440 ((-1129 |#1| (-875 |#2|)) (-875 |#2|) (-1152 |#1|)))) (-1075) (-962)) (T -870))
+((-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-1152 *5)) (-14 *5 (-1075)) (-4 *6 (-962)) (-5 *2 (-1129 *5 (-875 *6))) (-5 *1 (-870 *5 *6)) (-5 *3 (-875 *6)))))
+(-10 -7 (-15 -1440 ((-1129 |#1| (-875 |#2|)) (-875 |#2|) (-1152 |#1|))))
+((-2629 (((-703) $) 70) (((-703) $ (-583 |#4|)) 73)) (-3088 (($ $) 170)) (-1581 (((-388 $) $) 162)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 113)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 58)) (-2272 (($ $ $ |#4|) 75)) (-2306 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 103) (((-623 |#2|) (-623 $)) 96)) (-2186 (($ $) 177) (($ $ |#4|) 180)) (-2358 (((-583 $) $) 62)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 195) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 189)) (-3370 (((-583 $) $) 28)) (-2077 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 56)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#4|) 159)) (-3807 (((-3 (-583 $) "failed") $) 42)) (-2875 (((-3 (-583 $) "failed") $) 31)) (-1812 (((-3 (-2 (|:| |var| |#4|) (|:| -2356 (-703))) "failed") $) 46)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 106)) (-1510 (((-388 (-1071 $)) (-1071 $)) 119)) (-4071 (((-388 (-1071 $)) (-1071 $)) 117)) (-3866 (((-388 $) $) 137)) (-3522 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-4032 (($ $ |#4|) 77)) (-3357 (((-815 (-349)) $) 209) (((-815 (-517)) $) 202) (((-493) $) 217)) (-2035 ((|#2| $) NIL) (($ $ |#4|) 172)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 151)) (-3952 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 51) (($ $ (-583 |#4|) (-583 (-703))) 54)) (-2650 (((-3 $ "failed") $) 153)) (-1607 (((-107) $ $) 183)))
+(((-871 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -3024 ((-3 (-1156 |#1|) "failed") (-623 |#1|))) (-15 -2186 (|#1| |#1| |#4|)) (-15 -2035 (|#1| |#1| |#4|)) (-15 -4032 (|#1| |#1| |#4|)) (-15 -2272 (|#1| |#1| |#1| |#4|)) (-15 -2358 ((-583 |#1|) |#1|)) (-15 -2629 ((-703) |#1| (-583 |#4|))) (-15 -2629 ((-703) |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| |#4|) (|:| -2356 (-703))) "failed") |#1|)) (-15 -3807 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2875 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2077 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2077 (|#1| |#1| |#4| (-703))) (-15 -2760 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-583 |#1|) |#1|)) (-15 -3952 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3952 (|#1| |#1| |#4| (-703))) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#4| |#1|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#4| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#4| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2077 (|#1| |#2| |#3|)) (-15 -3952 (|#2| |#1| |#3|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2186 (|#1| |#1|))) (-872 |#2| |#3| |#4|) (-962) (-725) (-779)) (T -871))
+NIL
+(-10 -8 (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -2650 ((-3 |#1| "failed") |#1|)) (-15 -1607 ((-107) |#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -3024 ((-3 (-1156 |#1|) "failed") (-623 |#1|))) (-15 -2186 (|#1| |#1| |#4|)) (-15 -2035 (|#1| |#1| |#4|)) (-15 -4032 (|#1| |#1| |#4|)) (-15 -2272 (|#1| |#1| |#1| |#4|)) (-15 -2358 ((-583 |#1|) |#1|)) (-15 -2629 ((-703) |#1| (-583 |#4|))) (-15 -2629 ((-703) |#1|)) (-15 -1812 ((-3 (-2 (|:| |var| |#4|) (|:| -2356 (-703))) "failed") |#1|)) (-15 -3807 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2875 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2077 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2077 (|#1| |#1| |#4| (-703))) (-15 -2760 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-583 |#1|) |#1|)) (-15 -3952 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3952 (|#1| |#1| |#4| (-703))) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#4| |#1|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#4| |#1|)) (-15 -3522 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3522 (|#1| |#1| |#4| |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2077 (|#1| |#2| |#3|)) (-15 -3952 (|#2| |#1| |#3|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2186 (|#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 |#3|) $) 110)) (-1440 (((-1071 $) $ |#3|) 125) (((-1071 |#1|) $) 124)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2729 (($ $) 88 (|has| |#1| (-509)))) (-2566 (((-107) $) 90 (|has| |#1| (-509)))) (-2629 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 100 (|has| |#1| (-832)))) (-3088 (($ $) 98 (|has| |#1| (-421)))) (-1581 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 103 (|has| |#1| (-832)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-953 (-517)))) (((-3 |#3| "failed") $) 136)) (-3388 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-953 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-953 (-517)))) ((|#3| $) 135)) (-2272 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2371 (($ $) 154)) (-2306 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3163 (((-3 $ "failed") $) 34)) (-2186 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2358 (((-583 $) $) 109)) (-2963 (((-107) $) 96 (|has| |#1| (-832)))) (-2027 (($ $ |#1| |#2| $) 172)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1865 (((-107) $) 31)) (-1942 (((-703) $) 169)) (-2086 (($ (-1071 |#1|) |#3|) 117) (($ (-1071 $) |#3|) 116)) (-3370 (((-583 $) $) 126)) (-1960 (((-107) $) 152)) (-2077 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#3|) 120)) (-2210 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3456 (($ $ $) 79 (|has| |#1| (-779)))) (-4082 (($ $ $) 78 (|has| |#1| (-779)))) (-3200 (($ (-1 |#2| |#2|) $) 171)) (-3308 (($ (-1 |#1| |#1|) $) 151)) (-1512 (((-3 |#3| "failed") $) 123)) (-2333 (($ $) 149)) (-2345 ((|#1| $) 148)) (-2330 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1895 (((-1058) $) 9)) (-3807 (((-3 (-583 $) "failed") $) 114)) (-2875 (((-3 (-583 $) "failed") $) 115)) (-1812 (((-3 (-2 (|:| |var| |#3|) (|:| -2356 (-703))) "failed") $) 113)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 166)) (-2319 ((|#1| $) 167)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 95 (|has| |#1| (-421)))) (-2368 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 102 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 101 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-4032 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2059 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-2769 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3357 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 104 (-3992 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3745 (|has| |#1| (-953 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-2907 (((-583 |#1|) $) 168)) (-3952 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2650 (((-3 $ "failed") $) 73 (-3745 (-3992 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 29)) (-3510 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1641 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-872 |#1| |#2| |#3|) (-1187) (-962) (-725) (-779)) (T -872))
+((-2186 (*1 *1 *1) (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-3952 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *2 (-779)))) (-3952 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)))) (-3370 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-1440 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1071 *1)) (-4 *1 (-872 *4 *5 *3)))) (-1440 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1071 *3)))) (-1512 (*1 *2 *1) (|partial| -12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2210 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2210 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2760 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-872 *4 *5 *3)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)))) (-2086 (*1 *1 *2 *3) (-12 (-5 *2 (-1071 *4)) (-4 *4 (-962)) (-4 *1 (-872 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-2086 (*1 *1 *2 *3) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)))) (-2875 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-3807 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-1812 (*1 *2 *1) (|partial| -12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2356 (-703)))))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2358 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5)))) (-2272 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-4032 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2035 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3088 (*1 *1 *1) (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-872 *3 *4 *5)))))
+(-13 (-823 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-953 |t#3|) (-347 |t#1|) (-10 -8 (-15 -2769 ((-703) $ |t#3|)) (-15 -2769 ((-583 (-703)) $ (-583 |t#3|))) (-15 -3952 ($ $ |t#3| (-703))) (-15 -3952 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -3370 ((-583 $) $)) (-15 -1440 ((-1071 $) $ |t#3|)) (-15 -1440 ((-1071 |t#1|) $)) (-15 -1512 ((-3 |t#3| "failed") $)) (-15 -2210 ((-703) $ |t#3|)) (-15 -2210 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2760 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |t#3|)) (-15 -2077 ($ $ |t#3| (-703))) (-15 -2077 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -2086 ($ (-1071 |t#1|) |t#3|)) (-15 -2086 ($ (-1071 $) |t#3|)) (-15 -2875 ((-3 (-583 $) "failed") $)) (-15 -3807 ((-3 (-583 $) "failed") $)) (-15 -1812 ((-3 (-2 (|:| |var| |t#3|) (|:| -2356 (-703))) "failed") $)) (-15 -2629 ((-703) $)) (-15 -2629 ((-703) $ (-583 |t#3|))) (-15 -2096 ((-583 |t#3|) $)) (-15 -2358 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-517)))) (IF (|has| |t#3| (-558 (-815 (-517)))) (-6 (-558 (-815 (-517)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-815 (-349)))) (IF (|has| |t#3| (-558 (-815 (-349)))) (-6 (-558 (-815 (-349)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-809 (-517))) (IF (|has| |t#3| (-809 (-517))) (-6 (-809 (-517))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-809 (-349))) (IF (|has| |t#3| (-809 (-349))) (-6 (-809 (-349))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2272 ($ $ $ |t#3|)) (-15 -4032 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -2035 ($ $ |t#3|)) (-15 -2186 ($ $)) (-15 -2186 ($ $ |t#3|)) (-15 -1581 ((-388 $) $)) (-15 -3088 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-262) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-832) |has| |#1| (-832)) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-953 |#3|) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) |has| |#1| (-832)))
+((-2096 (((-583 |#2|) |#5|) 36)) (-1440 (((-1071 |#5|) |#5| |#2| (-1071 |#5|)) 23) (((-377 (-1071 |#5|)) |#5| |#2|) 16)) (-2086 ((|#5| (-377 (-1071 |#5|)) |#2|) 30)) (-1512 (((-3 |#2| "failed") |#5|) 61)) (-3807 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-2692 (((-3 (-2 (|:| |val| |#5|) (|:| -2356 (-517))) "failed") |#5|) 45)) (-2875 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-1812 (((-3 (-2 (|:| |var| |#2|) (|:| -2356 (-517))) "failed") |#5|) 48)))
+(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2096 ((-583 |#2|) |#5|)) (-15 -1512 ((-3 |#2| "failed") |#5|)) (-15 -1440 ((-377 (-1071 |#5|)) |#5| |#2|)) (-15 -2086 (|#5| (-377 (-1071 |#5|)) |#2|)) (-15 -1440 ((-1071 |#5|) |#5| |#2| (-1071 |#5|))) (-15 -2875 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3807 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1812 ((-3 (-2 (|:| |var| |#2|) (|:| -2356 (-517))) "failed") |#5|)) (-15 -2692 ((-3 (-2 (|:| |val| |#5|) (|:| -2356 (-517))) "failed") |#5|))) (-725) (-779) (-962) (-872 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2269 ($ |#4|)) (-15 -3824 (|#4| $)) (-15 -2097 (|#4| $))))) (T -873))
+((-2692 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2356 (-517)))) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))) (-1812 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2356 (-517)))) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))) (-3807 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))) (-2875 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))) (-1440 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))) (-4 *7 (-872 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-962)) (-5 *1 (-873 *5 *4 *6 *7 *3)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1071 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-962)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))) (-5 *1 (-873 *5 *4 *6 *7 *2)) (-4 *7 (-872 *6 *5 *4)))) (-1440 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-377 (-1071 *3))) (-5 *1 (-873 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))) (-1512 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-962)) (-4 *6 (-872 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-873 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *6)) (-15 -3824 (*6 $)) (-15 -2097 (*6 $))))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-873 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $))))))))
+(-10 -7 (-15 -2096 ((-583 |#2|) |#5|)) (-15 -1512 ((-3 |#2| "failed") |#5|)) (-15 -1440 ((-377 (-1071 |#5|)) |#5| |#2|)) (-15 -2086 (|#5| (-377 (-1071 |#5|)) |#2|)) (-15 -1440 ((-1071 |#5|) |#5| |#2| (-1071 |#5|))) (-15 -2875 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3807 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1812 ((-3 (-2 (|:| |var| |#2|) (|:| -2356 (-517))) "failed") |#5|)) (-15 -2692 ((-3 (-2 (|:| |val| |#5|) (|:| -2356 (-517))) "failed") |#5|)))
+((-3308 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3308 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-962) (-872 |#3| |#1| |#2|) (-13 (-1004) (-10 -8 (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -874))
+((-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-962)) (-4 *6 (-725)) (-4 *2 (-13 (-1004) (-10 -8 (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-874 *6 *7 *8 *5 *2)) (-4 *5 (-872 *8 *6 *7)))))
+(-10 -7 (-15 -3308 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-1075)) $) 15)) (-1440 (((-1071 $) $ (-1075)) 21) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-1075))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-1075) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-1075) $) NIL)) (-2272 (($ $ $ (-1075)) NIL (|has| |#1| (-156)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1075)) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-489 (-1075)) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1075) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1075) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#1|) (-1075)) NIL) (($ (-1071 $) (-1075)) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-489 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-1075)) NIL)) (-2210 (((-489 (-1075)) $) NIL) (((-703) $ (-1075)) NIL) (((-583 (-703)) $ (-583 (-1075))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 (-1075)) (-489 (-1075))) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1512 (((-3 (-1075) "failed") $) 19)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-1075)) (|:| -2356 (-703))) "failed") $) NIL)) (-1518 (($ $ (-1075)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-583 (-1075)) (-583 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-583 (-1075)) (-583 $)) NIL)) (-4032 (($ $ (-1075)) NIL (|has| |#1| (-156)))) (-2059 (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-2769 (((-489 (-1075)) $) NIL) (((-703) $ (-1075)) NIL) (((-583 (-703)) $ (-583 (-1075))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-1075) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-1075) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-1075) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1075)) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1075)) 27) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-489 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-875 |#1|) (-13 (-872 |#1| (-489 (-1075)) (-1075)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1075))) |%noBranch|))) (-962)) (T -875))
+((-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-875 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)))))
+(-13 (-872 |#1| (-489 (-1075)) (-1075)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1075))) |%noBranch|)))
+((-2133 (((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-2736 (((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-2519 (((-2 (|:| -2356 (-703)) (|:| -1580 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-1914 (((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
+(((-876 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2133 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2736 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -1914 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -2519 ((-2 (|:| -2356 (-703)) (|:| -1580 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-872 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -3824 (|#4| $)) (-15 -2097 (|#4| $)) (-15 -2269 ($ |#4|))))) (T -876))
+((-2519 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-876 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3824 (*3 $)) (-15 -2097 (*3 $)) (-15 -2269 ($ *3))))))) (-1914 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| *3))) (-5 *1 (-876 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -3824 (*8 $)) (-15 -2097 (*8 $)) (-15 -2269 ($ *8))))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *9) (|:| |radicand| *9))) (-5 *1 (-876 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -3824 (*8 $)) (-15 -2097 (*8 $)) (-15 -2269 ($ *8))))))) (-2133 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-872 *3 *5 *6)) (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *8) (|:| |radicand| *8))) (-5 *1 (-876 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3824 (*7 $)) (-15 -2097 (*7 $)) (-15 -2269 ($ *7))))))))
+(-10 -7 (-15 -2133 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2736 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -1914 ((-2 (|:| -2356 (-703)) (|:| -1580 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -2519 ((-2 (|:| -2356 (-703)) (|:| -1580 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
+((-2719 (((-999 (-199)) $) 8)) (-2707 (((-999 (-199)) $) 9)) (-1304 (((-583 (-583 (-866 (-199)))) $) 10)) (-2269 (((-787) $) 6)))
+(((-877) (-1187)) (T -877))
+((-1304 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-583 (-583 (-866 (-199))))))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-999 (-199))))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-999 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1304 ((-583 (-583 (-866 (-199)))) $)) (-15 -2707 ((-999 (-199)) $)) (-15 -2719 ((-999 (-199)) $))))
(((-557 (-787)) . T))
-((-1715 (((-3 (-623 |#1|) "failed") |#2| (-843)) 14)))
-(((-877 |#1| |#2|) (-10 -7 (-15 -1715 ((-3 (-623 |#1|) "failed") |#2| (-843)))) (-509) (-593 |#1|)) (T -877))
-((-1715 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -1715 ((-3 (-623 |#1|) "failed") |#2| (-843))))
-((-3014 (((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 16)) (-1292 ((|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 18)) (-1939 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 13)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -3014 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1939 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1109) (-1109)) (T -878))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-878 *5 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))))
-(-10 -7 (-15 -3014 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1939 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 14)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) |#1|) 13)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) 10 (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) 12 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) 11)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1122 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) NIL)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2290 (((-703) $) 8 (|has| $ (-6 -4183)))))
-(((-879 |#1|) (-19 |#1|) (-1109)) (T -879))
+((-2788 (((-3 (-623 |#1|) "failed") |#2| (-844)) 14)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -2788 ((-3 (-623 |#1|) "failed") |#2| (-844)))) (-509) (-593 |#1|)) (T -878))
+((-2788 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-844)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-878 *5 *3)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -2788 ((-3 (-623 |#1|) "failed") |#2| (-844))))
+((-2499 (((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|) 16)) (-1521 ((|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|) 18)) (-3308 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 13)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -2499 ((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -3308 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1110) (-1110)) (T -879))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-880 *5)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-879 *5 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-880 *6)) (-4 *6 (-1110)) (-4 *5 (-1110)) (-5 *2 (-880 *5)) (-5 *1 (-879 *6 *5)))))
+(-10 -7 (-15 -2499 ((-880 |#2|) (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-880 |#1|) |#2|)) (-15 -3308 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 14)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) |#1|) 13)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) 10 (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) 12 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) 11)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1123 (-517))) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) NIL)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3533 (((-703) $) 8 (|has| $ (-6 -4190)))))
+(((-880 |#1|) (-19 |#1|) (-1110)) (T -880))
NIL
(-19 |#1|)
-((-1721 (($ $ (-996 $)) 7) (($ $ (-1074)) 6)))
-(((-880) (-1185)) (T -880))
-((-1721 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))) (-1721 (*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1074)))))
-(-13 (-10 -8 (-15 -1721 ($ $ (-1074))) (-15 -1721 ($ $ (-996 $)))))
-((-2170 (((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074)) 23) (((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074)) 41)))
-(((-881 |#1|) (-10 -7 (-15 -2170 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074))) (-15 -2170 ((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2170 ((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074)))) (-13 (-333) (-134))) (T -881))
-((-2170 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-5 *5 (-1074)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 *6))) (|:| |prim| (-1070 *6)))) (-5 *1 (-881 *6)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) (-2170 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1074)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))))
-(-10 -7 (-15 -2170 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 |#1|))) (-874 |#1|) (-1074) (-874 |#1|) (-1074))) (-15 -2170 ((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)))) (-15 -2170 ((-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-583 (-874 |#1|)) (-583 (-1074)) (-1074))))
-((-2326 (((-583 |#1|) |#1| |#1|) 42)) (-3083 (((-107) |#1|) 39)) (-2744 ((|#1| |#1|) 64)) (-2060 ((|#1| |#1|) 63)))
-(((-882 |#1|) (-10 -7 (-15 -3083 ((-107) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2326 ((-583 |#1|) |#1| |#1|))) (-502)) (T -882))
-((-2326 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) (-2744 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-2060 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3083 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
-(-10 -7 (-15 -3083 ((-107) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2326 ((-583 |#1|) |#1| |#1|)))
-((-2813 (((-1159) (-787)) 9)))
-(((-883) (-10 -7 (-15 -2813 ((-1159) (-787))))) (T -883))
-((-2813 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-883)))))
-(-10 -7 (-15 -2813 ((-1159) (-787))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 62 (|has| |#1| (-509)))) (-2239 (($ $) 63 (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) 24)) (-3775 (((-3 $ "failed") $) 35)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-2083 (($ $ |#1| |#2| $) 47)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) 16)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| |#2|) NIL)) (-3876 ((|#2| $) 19)) (-3602 (($ (-1 |#2| |#2|) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1687 (($ $) 23)) (-1193 ((|#1| $) 21)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) 40)) (-1671 ((|#1| $) NIL)) (-1776 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2483 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3625 ((|#2| $) 17)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ |#2|) 31)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) 15)) (-2829 (($ $ $ (-703)) 58 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 68 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 54) (($ $ (-703)) 55)) (-2398 (($) 22 T CONST)) (-2411 (($) 12 T CONST)) (-1534 (((-107) $ $) 67)) (-1678 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) 53) (($ $ (-703)) 51)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-884 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1776 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|))) (-961) (-724)) (T -884))
-((-1776 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1776 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-3398 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-2646 (((-3 $ "failed") $ $) 50 (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1719 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4114 ((|#2| $) 21)) (-3887 ((|#1| $) 20)) (-2706 (($) NIL (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3775 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-4100 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3469 (((-107) $) NIL (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-4055 (($ $ $) NIL (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3105 (($ $ $) NIL (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1857 (($ |#1| |#2|) 19)) (-4034 (((-843) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3544 (($ (-843)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3214 (((-1021) $) NIL)) (-1757 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2901 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2254 (((-787) $) 14)) (-2196 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2398 (($) 40 (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2411 (($) 24 (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1600 (((-107) $ $) NIL (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1571 (((-107) $ $) NIL (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1534 (((-107) $ $) 18)) (-1585 (((-107) $ $) NIL (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1558 (((-107) $ $) 66 (-3782 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1678 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1663 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1645 (($ $ $) 43 (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-843) $) NIL (-3782 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3782 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
-(((-885 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -1857 ($ |#1| |#2|)) (-15 -3887 (|#1| $)) (-15 -4114 (|#2| $)))) (-1003) (-1003)) (T -885))
-((-1857 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3887 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))) (-4114 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
-(-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -1857 ($ |#1| |#2|)) (-15 -3887 (|#1| $)) (-15 -4114 (|#2| $))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2931 (($ $ $) 43)) (-1676 (($ $ $) 44)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3105 ((|#1| $) 45)) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-886 |#1|) (-1185) (-779)) (T -886))
-((-3105 (*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-1676 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -3105 (|t#1| $)) (-15 -1676 ($ $ $)) (-15 -2931 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-3934 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|) 84)) (-1844 ((|#2| |#2| |#2|) 82)) (-2036 (((-2 (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|) 86)) (-2183 (((-2 (|:| |coef1| |#2|) (|:| -1387 |#2|)) |#2| |#2|) 88)) (-2225 (((-2 (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|) 106 (|has| |#1| (-421)))) (-1994 (((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|) 45)) (-3272 (((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|) 63)) (-1548 (((-2 (|:| |coef1| |#2|) (|:| -3167 |#1|)) |#2| |#2|) 65)) (-2329 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-2856 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 70)) (-3528 (((-2 (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|) 96)) (-3268 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-3701 (((-583 (-703)) |#2| |#2|) 81)) (-3651 ((|#1| |#2| |#2|) 41)) (-2933 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|) 104 (|has| |#1| (-421)))) (-3933 ((|#1| |#2| |#2|) 102 (|has| |#1| (-421)))) (-2788 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|) 43)) (-4103 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|) 62)) (-3167 ((|#1| |#2| |#2|) 60)) (-3064 (((-2 (|:| -1965 |#1|) (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|) 35)) (-3702 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3004 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1516 ((|#2| |#2| |#2|) 74)) (-4012 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 68)) (-1926 ((|#2| |#2| |#2| (-703)) 66)) (-1387 ((|#2| |#2| |#2|) 110 (|has| |#1| (-421)))) (-2483 (((-1154 |#2|) (-1154 |#2|) |#1|) 21)) (-2816 (((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|) 38)) (-1727 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|) 94)) (-3383 ((|#1| |#2|) 91)) (-2282 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 72)) (-1490 ((|#2| |#2| |#2| (-703)) 71)) (-3804 (((-583 |#2|) |#2| |#2|) 79)) (-2123 ((|#2| |#2| |#1| |#1| (-703)) 49)) (-2076 ((|#1| |#1| |#1| (-703)) 48)) (* (((-1154 |#2|) |#1| (-1154 |#2|)) 16)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -3167 (|#1| |#2| |#2|)) (-15 -4103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1548 ((-2 (|:| |coef1| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1926 (|#2| |#2| |#2| (-703))) (-15 -4012 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2856 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1490 (|#2| |#2| |#2| (-703))) (-15 -2282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1516 (|#2| |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2329 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1844 (|#2| |#2| |#2|)) (-15 -3934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -2036 ((-2 (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef1| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -3383 (|#1| |#2|)) (-15 -1727 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|)) (-15 -3528 ((-2 (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|)) (-15 -3804 ((-583 |#2|) |#2| |#2|)) (-15 -3701 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -3933 (|#1| |#2| |#2|)) (-15 -2933 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|)) (-15 -2225 ((-2 (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|)) (-15 -1387 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1154 |#2|) |#1| (-1154 |#2|))) (-15 -2483 ((-1154 |#2|) (-1154 |#2|) |#1|)) (-15 -3064 ((-2 (|:| -1965 |#1|) (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|)) (-15 -2816 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|)) (-15 -2076 (|#1| |#1| |#1| (-703))) (-15 -2123 (|#2| |#2| |#1| |#1| (-703))) (-15 -3702 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3651 (|#1| |#2| |#2|)) (-15 -2788 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|))) (-509) (-1131 |#1|)) (T -887))
-((-1994 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2788 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3651 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-3702 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2123 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2076 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1131 *2)))) (-2816 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3064 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1965 *4) (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (-1387 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2225 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3933 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3933 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3933 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3804 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3528 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3383 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3383 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3383 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) (-2183 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-2036 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3934 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1844 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-2329 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3004 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-1516 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) (-3268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-2282 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-1490 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-4012 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))) (-1926 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))) (-1548 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-4103 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) (-3167 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
-(-10 -7 (-15 -3167 (|#1| |#2| |#2|)) (-15 -4103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1548 ((-2 (|:| |coef1| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1926 (|#2| |#2| |#2| (-703))) (-15 -4012 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2856 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1490 (|#2| |#2| |#2| (-703))) (-15 -2282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1516 (|#2| |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2329 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1844 (|#2| |#2| |#2|)) (-15 -3934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -2036 ((-2 (|:| |coef2| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -2183 ((-2 (|:| |coef1| |#2|) (|:| -1387 |#2|)) |#2| |#2|)) (-15 -3383 (|#1| |#2|)) (-15 -1727 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|)) (-15 -3528 ((-2 (|:| |coef2| |#2|) (|:| -3383 |#1|)) |#2|)) (-15 -3804 ((-583 |#2|) |#2| |#2|)) (-15 -3701 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -3933 (|#1| |#2| |#2|)) (-15 -2933 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|)) (-15 -2225 ((-2 (|:| |coef2| |#2|) (|:| -3933 |#1|)) |#2| |#2|)) (-15 -1387 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1154 |#2|) |#1| (-1154 |#2|))) (-15 -2483 ((-1154 |#2|) (-1154 |#2|) |#1|)) (-15 -3064 ((-2 (|:| -1965 |#1|) (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|)) (-15 -2816 ((-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) |#2| |#2|)) (-15 -2076 (|#1| |#1| |#1| (-703))) (-15 -2123 (|#2| |#2| |#1| |#1| (-703))) (-15 -3702 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3651 (|#1| |#2| |#2|)) (-15 -2788 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| -3167 |#1|)) |#2| |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) 26)) (-2706 (($) NIL T CONST)) (-3211 (((-583 (-583 (-517))) (-583 (-517))) 28)) (-3646 (((-517) $) 44)) (-1274 (($ (-583 (-517))) 17)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3667 (((-583 (-517)) $) 11)) (-1757 (($ $) 31)) (-2254 (((-787) $) 42) (((-583 (-517)) $) 9)) (-2398 (($) 7 T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 19)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 18)) (-1645 (($ $ $) 20)) (* (($ (-703) $) 24) (($ (-843) $) NIL)))
-(((-888) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -1274 ($ (-583 (-517)))) (-15 -3211 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3646 ((-517) $)) (-15 -1757 ($ $)) (-15 -2254 ((-583 (-517)) $))))) (T -888))
-((-1274 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) (-3211 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))) (-1757 (*1 *1 *1) (-5 *1 (-888))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
-(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -1274 ($ (-583 (-517)))) (-15 -3211 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -3646 ((-517) $)) (-15 -1757 ($ $)) (-15 -2254 ((-583 (-517)) $))))
-((-1678 (($ $ |#2|) 30)) (-1663 (($ $) 22) (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
-(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1678 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-890 |#2| |#3| |#4|) (-961) (-724) (-779)) (T -889))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1678 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 |#3|) $) 74)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-2761 (((-107) $) 73)) (-3469 (((-107) $) 31)) (-2029 (((-107) $) 62)) (-1336 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3625 ((|#2| $) 64)) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-4104 ((|#1| $ |#2|) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-890 |#1| |#2| |#3|) (-1185) (-961) (-724) (-779)) (T -890))
-((-1193 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1336 ($ $ |t#3| |t#2|)) (-15 -1336 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -1687 ($ $)) (-15 -1193 (|t#1| $)) (-15 -3625 (|t#2| $)) (-15 -1357 ((-583 |t#3|) $)) (-15 -2761 ((-107) $)) (-15 -1486 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3685 (((-998 (-199)) $) 8)) (-3674 (((-998 (-199)) $) 9)) (-3661 (((-998 (-199)) $) 10)) (-3221 (((-583 (-583 (-865 (-199)))) $) 11)) (-2254 (((-787) $) 6)))
-(((-891) (-1185)) (T -891))
-((-3221 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(-13 (-557 (-787)) (-10 -8 (-15 -3221 ((-583 (-583 (-865 (-199)))) $)) (-15 -3661 ((-998 (-199)) $)) (-15 -3674 ((-998 (-199)) $)) (-15 -3685 ((-998 (-199)) $))))
+((-1217 (($ $ (-997 $)) 7) (($ $ (-1075)) 6)))
+(((-881) (-1187)) (T -881))
+((-1217 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-881)))) (-1217 (*1 *1 *1 *2) (-12 (-4 *1 (-881)) (-5 *2 (-1075)))))
+(-13 (-10 -8 (-15 -1217 ($ $ (-1075))) (-15 -1217 ($ $ (-997 $)))))
+((-1672 (((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075)) (-1075)) 23) (((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1071 |#1|))) (-875 |#1|) (-1075) (-875 |#1|) (-1075)) 41)))
+(((-882 |#1|) (-10 -7 (-15 -1672 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1071 |#1|))) (-875 |#1|) (-1075) (-875 |#1|) (-1075))) (-15 -1672 ((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -1672 ((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075)) (-1075)))) (-13 (-333) (-134))) (T -882))
+((-1672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075))) (-5 *5 (-1075)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 *6))) (|:| |prim| (-1071 *6)))) (-5 *1 (-882 *6)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 *5))) (|:| |prim| (-1071 *5)))) (-5 *1 (-882 *5)))) (-1672 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1075)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1071 *5)))) (-5 *1 (-882 *5)))))
+(-10 -7 (-15 -1672 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1071 |#1|))) (-875 |#1|) (-1075) (-875 |#1|) (-1075))) (-15 -1672 ((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075)))) (-15 -1672 ((-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 |#1|))) (|:| |prim| (-1071 |#1|))) (-583 (-875 |#1|)) (-583 (-1075)) (-1075))))
+((-1647 (((-583 |#1|) |#1| |#1|) 42)) (-2963 (((-107) |#1|) 39)) (-2290 ((|#1| |#1|) 65)) (-1433 ((|#1| |#1|) 64)))
+(((-883 |#1|) (-10 -7 (-15 -2963 ((-107) |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -2290 (|#1| |#1|)) (-15 -1647 ((-583 |#1|) |#1| |#1|))) (-502)) (T -883))
+((-1647 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-883 *3)) (-4 *3 (-502)))) (-2290 (*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))) (-1433 (*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))) (-2963 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-883 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -2963 ((-107) |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -2290 (|#1| |#1|)) (-15 -1647 ((-583 |#1|) |#1| |#1|)))
+((-3404 (((-1161) (-787)) 9)))
+(((-884) (-10 -7 (-15 -3404 ((-1161) (-787))))) (T -884))
+((-3404 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-884)))))
+(-10 -7 (-15 -3404 ((-1161) (-787))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 63 (|has| |#1| (-509)))) (-2729 (($ $) 64 (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) 24)) (-3163 (((-3 $ "failed") $) 35)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-2027 (($ $ |#1| |#2| $) 48)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) 16)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| |#2|) NIL)) (-2210 ((|#2| $) 19)) (-3200 (($ (-1 |#2| |#2|) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2333 (($ $) 23)) (-2345 ((|#1| $) 21)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) 40)) (-2319 ((|#1| $) NIL)) (-2714 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2327 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-509)))) (-2769 ((|#2| $) 17)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ |#2|) 31)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) 15)) (-3510 (($ $ $ (-703)) 59 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 69 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 55) (($ $ (-703)) 56)) (-3608 (($) 22 T CONST)) (-3617 (($) 12 T CONST)) (-1583 (((-107) $ $) 68)) (-1703 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) 54) (($ $ (-703)) 52)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-885 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2714 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|))) (-962) (-724)) (T -885))
+((-2714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-885 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-962)) (-4 *2 (-724)))))
+(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2714 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1836 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-1250 (((-3 $ "failed") $ $) 50 (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-2397 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-2407 ((|#2| $) 21)) (-1763 ((|#1| $) 20)) (-1681 (($) NIL (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3163 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2200 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1865 (((-107) $) NIL (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3456 (($ $ $) NIL (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-4082 (($ $ $) NIL (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3532 (($ |#1| |#2|) 19)) (-2031 (((-844) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2810 (($ (-844)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4123 (((-1022) $) NIL)) (-3026 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2609 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2269 (((-787) $) 14)) (-2813 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-844)) NIL (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3608 (($) 40 (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3617 (($) 24 (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1641 (((-107) $ $) NIL (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1617 (((-107) $ $) NIL (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1583 (((-107) $ $) 18)) (-1629 (((-107) $ $) NIL (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1607 (((-107) $ $) 66 (-3745 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1703 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1691 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1677 (($ $ $) 43 (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-844)) NIL (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-844) $) NIL (-3745 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3745 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
+(((-886 |#1| |#2|) (-13 (-1004) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3532 ($ |#1| |#2|)) (-15 -1763 (|#1| $)) (-15 -2407 (|#2| $)))) (-1004) (-1004)) (T -886))
+((-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-1763 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1004)))) (-2407 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1004)))))
+(-13 (-1004) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3532 ($ |#1| |#2|)) (-15 -1763 (|#1| $)) (-15 -2407 (|#2| $))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-1974 (($ $ $) 43)) (-3798 (($ $ $) 44)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-4082 ((|#1| $) 45)) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-887 |#1|) (-1187) (-779)) (T -887))
+((-4082 (*1 *2 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779)))) (-3798 (*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4190) (-15 -4082 (|t#1| $)) (-15 -3798 ($ $ $)) (-15 -1974 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-1800 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|) 85)) (-1784 ((|#2| |#2| |#2|) 83)) (-1342 (((-2 (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|) 87)) (-3482 (((-2 (|:| |coef1| |#2|) (|:| -2368 |#2|)) |#2| |#2|) 89)) (-2074 (((-2 (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|) 107 (|has| |#1| (-421)))) (-2834 (((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|) 46)) (-3134 (((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|) 64)) (-2296 (((-2 (|:| |coef1| |#2|) (|:| -2272 |#1|)) |#2| |#2|) 66)) (-2550 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2544 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 71)) (-2686 (((-2 (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|) 97)) (-2679 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 74)) (-3319 (((-583 (-703)) |#2| |#2|) 82)) (-1335 ((|#1| |#2| |#2|) 42)) (-1744 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|) 105 (|has| |#1| (-421)))) (-2122 ((|#1| |#2| |#2|) 103 (|has| |#1| (-421)))) (-3542 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|) 44)) (-1280 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|) 63)) (-2272 ((|#1| |#2| |#2|) 61)) (-2165 (((-2 (|:| -1580 |#1|) (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|) 35)) (-2417 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2401 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2337 ((|#2| |#2| |#2|) 75)) (-3942 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 69)) (-1556 ((|#2| |#2| |#2| (-703)) 67)) (-2368 ((|#2| |#2| |#2|) 111 (|has| |#1| (-421)))) (-2327 (((-1156 |#2|) (-1156 |#2|) |#1|) 21)) (-2928 (((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|) 39)) (-2910 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|) 95)) (-4032 ((|#1| |#2|) 92)) (-1220 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-1667 ((|#2| |#2| |#2| (-703)) 72)) (-3668 (((-583 |#2|) |#2| |#2|) 80)) (-3127 ((|#2| |#2| |#1| |#1| (-703)) 50)) (-3243 ((|#1| |#1| |#1| (-703)) 49)) (* (((-1156 |#2|) |#1| (-1156 |#2|)) 16)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -2272 (|#1| |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -2296 ((-2 (|:| |coef1| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -1556 (|#2| |#2| |#2| (-703))) (-15 -3942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2544 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1667 (|#2| |#2| |#2| (-703))) (-15 -1220 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2679 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2337 (|#2| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1784 (|#2| |#2| |#2|)) (-15 -1800 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -1342 ((-2 (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -3482 ((-2 (|:| |coef1| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -4032 (|#1| |#2|)) (-15 -2910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|)) (-15 -2686 ((-2 (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|)) (-15 -3668 ((-583 |#2|) |#2| |#2|)) (-15 -3319 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2122 (|#1| |#2| |#2|)) (-15 -1744 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|)) (-15 -2074 ((-2 (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|)) (-15 -2368 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1156 |#2|) |#1| (-1156 |#2|))) (-15 -2327 ((-1156 |#2|) (-1156 |#2|) |#1|)) (-15 -2165 ((-2 (|:| -1580 |#1|) (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|)) (-15 -2928 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|)) (-15 -3243 (|#1| |#1| |#1| (-703))) (-15 -3127 (|#2| |#2| |#1| |#1| (-703))) (-15 -2417 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1335 (|#1| |#2| |#2|)) (-15 -3542 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|))) (-509) (-1132 |#1|)) (T -888))
+((-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2272 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-3542 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2272 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1335 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2)))) (-2417 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))) (-3127 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))) (-3243 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-888 *2 *4)) (-4 *4 (-1132 *2)))) (-2928 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2165 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1580 *4) (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2327 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-509)) (-5 *1 (-888 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-509)) (-5 *1 (-888 *3 *4)))) (-2368 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))) (-2074 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2122 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1744 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2122 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2122 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-3668 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4032 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4032 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-4032 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2368 *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1342 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2368 *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1800 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2368 *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1784 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))) (-2550 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2337 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))) (-2679 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))) (-1220 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))) (-1667 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-888 *4 *2)) (-4 *2 (-1132 *4)))) (-2544 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))) (-3942 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))) (-1556 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-888 *4 *2)) (-4 *2 (-1132 *4)))) (-2296 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2272 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-3134 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2272 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-1280 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2272 *4))) (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))) (-2272 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2)))))
+(-10 -7 (-15 -2272 (|#1| |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -2296 ((-2 (|:| |coef1| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -1556 (|#2| |#2| |#2| (-703))) (-15 -3942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2544 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1667 (|#2| |#2| |#2| (-703))) (-15 -1220 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2679 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2337 (|#2| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1784 (|#2| |#2| |#2|)) (-15 -1800 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -1342 ((-2 (|:| |coef2| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -3482 ((-2 (|:| |coef1| |#2|) (|:| -2368 |#2|)) |#2| |#2|)) (-15 -4032 (|#1| |#2|)) (-15 -2910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|)) (-15 -2686 ((-2 (|:| |coef2| |#2|) (|:| -4032 |#1|)) |#2|)) (-15 -3668 ((-583 |#2|) |#2| |#2|)) (-15 -3319 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2122 (|#1| |#2| |#2|)) (-15 -1744 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|)) (-15 -2074 ((-2 (|:| |coef2| |#2|) (|:| -2122 |#1|)) |#2| |#2|)) (-15 -2368 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1156 |#2|) |#1| (-1156 |#2|))) (-15 -2327 ((-1156 |#2|) (-1156 |#2|) |#1|)) (-15 -2165 ((-2 (|:| -1580 |#1|) (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|)) (-15 -2928 ((-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) |#2| |#2|)) (-15 -3243 (|#1| |#1| |#1| (-703))) (-15 -3127 (|#2| |#2| |#1| |#1| (-703))) (-15 -2417 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1335 (|#1| |#2| |#2|)) (-15 -3542 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef2| |#2|) (|:| -2272 |#1|)) |#2| |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) 27)) (-1681 (($) NIL T CONST)) (-1474 (((-583 (-583 (-517))) (-583 (-517))) 29)) (-4106 (((-517) $) 45)) (-3450 (($ (-583 (-517))) 17)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3357 (((-583 (-517)) $) 11)) (-3026 (($ $) 32)) (-2269 (((-787) $) 43) (((-583 (-517)) $) 9)) (-3608 (($) 7 T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 20)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 19)) (-1677 (($ $ $) 21)) (* (($ (-703) $) 25) (($ (-844) $) NIL)))
+(((-889) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3450 ($ (-583 (-517)))) (-15 -1474 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -4106 ((-517) $)) (-15 -3026 ($ $)) (-15 -2269 ((-583 (-517)) $))))) (T -889))
+((-3450 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-889)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-889)) (-5 *3 (-583 (-517))))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-889)))) (-3026 (*1 *1 *1) (-5 *1 (-889))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-889)))))
+(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3450 ($ (-583 (-517)))) (-15 -1474 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -4106 ((-517) $)) (-15 -3026 ($ $)) (-15 -2269 ((-583 (-517)) $))))
+((-1703 (($ $ |#2|) 30)) (-1691 (($ $) 22) (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
+(((-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1703 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|))) (-891 |#2| |#3| |#4|) (-962) (-724) (-779)) (T -890))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1703 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-844) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 |#3|) $) 74)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-2098 (((-107) $) 73)) (-1865 (((-107) $) 31)) (-1960 (((-107) $) 62)) (-2077 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2769 ((|#2| $) 64)) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3952 ((|#1| $ |#2|) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-891 |#1| |#2| |#3|) (-1187) (-962) (-724) (-779)) (T -891))
+((-2345 (*1 *2 *1) (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-962)))) (-2333 (*1 *1 *1) (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-724)) (-4 *4 (-779)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *2 (-724)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-891 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-724)) (-4 *2 (-779)))) (-2077 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-891 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-724)) (-4 *6 (-779)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3478 (*1 *1 *1) (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2077 ($ $ |t#3| |t#2|)) (-15 -2077 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2333 ($ $)) (-15 -2345 (|t#1| $)) (-15 -2769 (|t#2| $)) (-15 -2096 ((-583 |t#3|) $)) (-15 -2098 ((-107) $)) (-15 -3478 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2731 (((-999 (-199)) $) 8)) (-2719 (((-999 (-199)) $) 9)) (-2707 (((-999 (-199)) $) 10)) (-1304 (((-583 (-583 (-866 (-199)))) $) 11)) (-2269 (((-787) $) 6)))
+(((-892) (-1187)) (T -892))
+((-1304 (*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-583 (-583 (-866 (-199))))))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1304 ((-583 (-583 (-866 (-199)))) $)) (-15 -2707 ((-999 (-199)) $)) (-15 -2719 ((-999 (-199)) $)) (-15 -2731 ((-999 (-199)) $))))
(((-557 (-787)) . T))
-((-1357 (((-583 |#4|) $) 23)) (-2799 (((-107) $) 47)) (-3741 (((-107) $) 46)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#4|) 35)) (-1190 (((-107) $) 48)) (-2212 (((-107) $ $) 54)) (-4058 (((-107) $ $) 57)) (-4021 (((-107) $) 52)) (-3381 (((-583 |#5|) (-583 |#5|) $) 89)) (-2468 (((-583 |#5|) (-583 |#5|) $) 86)) (-2240 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2402 (((-583 |#4|) $) 27)) (-1694 (((-107) |#4| $) 29)) (-2238 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1491 (($ $ |#4|) 32)) (-2583 (($ $ |#4|) 31)) (-3788 (($ $ |#4|) 33)) (-1534 (((-107) $ $) 39)))
-(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3741 ((-107) |#1|)) (-15 -3381 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2468 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2240 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2238 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1190 ((-107) |#1|)) (-15 -4058 ((-107) |#1| |#1|)) (-15 -2212 ((-107) |#1| |#1|)) (-15 -4021 ((-107) |#1|)) (-15 -2799 ((-107) |#1|)) (-15 -4044 ((-2 (|:| |under| |#1|) (|:| -2908 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1491 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2583 (|#1| |#1| |#4|)) (-15 -1694 ((-107) |#4| |#1|)) (-15 -2402 ((-583 |#4|) |#1|)) (-15 -1357 ((-583 |#4|) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-961) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -892))
-NIL
-(-10 -8 (-15 -3741 ((-107) |#1|)) (-15 -3381 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2468 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2240 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2238 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1190 ((-107) |#1|)) (-15 -4058 ((-107) |#1| |#1|)) (-15 -2212 ((-107) |#1| |#1|)) (-15 -4021 ((-107) |#1|)) (-15 -2799 ((-107) |#1|)) (-15 -4044 ((-2 (|:| |under| |#1|) (|:| -2908 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1491 (|#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#4|)) (-15 -2583 (|#1| |#1| |#4|)) (-15 -1694 ((-107) |#4| |#1|)) (-15 -2402 ((-583 |#4|) |#1|)) (-15 -1357 ((-583 |#4|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183)))) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183)))) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3214 (((-1021) $) 10)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-893 |#1| |#2| |#3| |#4|) (-1185) (-961) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -893))
-((-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1694 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-2583 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-1491 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-4044 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2908 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2212 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-4058 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2238 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2240 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2468 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3381 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(-13 (-1003) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4183) (-15 -1837 ((-3 $ "failed") (-583 |t#4|))) (-15 -3232 ($ (-583 |t#4|))) (-15 -2877 (|t#3| $)) (-15 -1357 ((-583 |t#3|) $)) (-15 -2402 ((-583 |t#3|) $)) (-15 -1694 ((-107) |t#3| $)) (-15 -2583 ($ $ |t#3|)) (-15 -3788 ($ $ |t#3|)) (-15 -1491 ($ $ |t#3|)) (-15 -4044 ((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |t#3|)) (-15 -2799 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -4021 ((-107) $)) (-15 -2212 ((-107) $ $)) (-15 -4058 ((-107) $ $)) (-15 -1190 ((-107) $)) (-15 -2238 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2240 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2468 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3381 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3741 ((-107) $))) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1109) . T))
-((-1902 (((-583 |#4|) |#4| |#4|) 116)) (-3301 (((-583 |#4|) (-583 |#4|) (-107)) 105 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 106 (|has| |#1| (-421)))) (-3743 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 34)) (-1766 (((-107) |#4|) 33)) (-1615 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-2180 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 19)) (-3048 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 21)) (-3397 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2079 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|)) 72)) (-1286 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2075 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-1753 (((-583 |#4|) (-583 |#4|)) 108)) (-3945 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 47) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 49)) (-2058 ((|#4| |#4| (-583 |#4|)) 48)) (-2596 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 112 (|has| |#1| (-421)))) (-1494 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 115 (|has| |#1| (-421)))) (-2585 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-3739 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 86) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 88) (((-583 |#4|) (-583 |#4|) |#4|) 119) (((-583 |#4|) |#4| |#4|) 117) (((-583 |#4|) (-583 |#4|)) 87)) (-2861 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1975 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 40)) (-2433 (((-107) (-583 |#4|)) 61)) (-2458 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 52)) (-2789 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 28)) (-2293 (((-107) |#4|) 27)) (-3101 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2296 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1487 (((-583 |#4|) (-583 |#4|)) 65)) (-1267 (((-583 |#4|) (-583 |#4|)) 78)) (-4153 (((-107) (-583 |#4|) (-583 |#4|)) 50)) (-2391 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 38)) (-2687 (((-107) |#4|) 35)))
-(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-583 |#4|) (-583 |#4|))) (-15 -3739 ((-583 |#4|) |#4| |#4|)) (-15 -1753 ((-583 |#4|) (-583 |#4|))) (-15 -1902 ((-583 |#4|) |#4| |#4|)) (-15 -3739 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -3739 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3739 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -4153 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2458 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2433 ((-107) (-583 |#4|))) (-15 -2180 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3048 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3397 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1975 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1766 ((-107) |#4|)) (-15 -3743 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2293 ((-107) |#4|)) (-15 -2789 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2687 ((-107) |#4|)) (-15 -2391 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3945 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3945 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2058 (|#4| |#4| (-583 |#4|))) (-15 -1487 ((-583 |#4|) (-583 |#4|))) (-15 -2079 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1267 ((-583 |#4|) (-583 |#4|))) (-15 -1286 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2075 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -1615 ((-583 |#4|) |#4|)) (-15 -3301 ((-583 |#4|) (-583 |#4|))) (-15 -3301 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2596 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2585 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1494 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -2296 ((-583 |#4|) (-583 |#4|))) (-15 -3101 ((-583 |#4|) (-583 |#4|))) (-15 -2861 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -894))
-((-2861 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2585 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2596 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3301 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1615 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-2075 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))) (-1286 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))) (-1267 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2079 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -1261 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2058 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))) (-3945 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-2789 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))) (-4153 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3739 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-3739 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3739 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) (-1902 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1753 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3739 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3739 ((-583 |#4|) (-583 |#4|))) (-15 -3739 ((-583 |#4|) |#4| |#4|)) (-15 -1753 ((-583 |#4|) (-583 |#4|))) (-15 -1902 ((-583 |#4|) |#4| |#4|)) (-15 -3739 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -3739 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3739 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -4153 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2458 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2433 ((-107) (-583 |#4|))) (-15 -2180 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3048 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3397 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1975 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1766 ((-107) |#4|)) (-15 -3743 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2293 ((-107) |#4|)) (-15 -2789 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2687 ((-107) |#4|)) (-15 -2391 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3945 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3945 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2058 (|#4| |#4| (-583 |#4|))) (-15 -1487 ((-583 |#4|) (-583 |#4|))) (-15 -2079 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1267 ((-583 |#4|) (-583 |#4|))) (-15 -1286 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2075 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -1615 ((-583 |#4|) |#4|)) (-15 -3301 ((-583 |#4|) (-583 |#4|))) (-15 -3301 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2596 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2585 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1494 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -2296 ((-583 |#4|) (-583 |#4|))) (-15 -3101 ((-583 |#4|) (-583 |#4|))) (-15 -2861 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|))
-((-3293 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2132 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)) 35)) (-2128 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-895 |#1|) (-10 -7 (-15 -3293 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2128 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2132 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|)))) (-333)) (T -895))
-((-2132 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)))) (-2128 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))) (-3293 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
-(-10 -7 (-15 -3293 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2128 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2132 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1154 |#1|)))) (-623 |#1|) (-1154 |#1|))))
-((-2674 (((-388 |#4|) |#4|) 47)))
-(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2674 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-871 |#3| |#2| |#1|)) (T -896))
-((-2674 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(-10 -7 (-15 -2674 ((-388 |#4|) |#4|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3597 (($ (-703)) 112 (|has| |#1| (-23)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-2624 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1482 (($ (-583 |#1|)) 118)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2719 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2140 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-2026 (((-107) $ (-703)) 10)) (-1631 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-2204 (($ $ (-583 |#1|)) 115)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-1369 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-2232 (((-843) $) 117)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-1843 (($ $ $) 104)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2272 (($ (-583 |#1|)) 70)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1663 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1645 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-897 |#1|) (-1185) (-961)) (T -897))
-((-1482 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) (-2204 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))))
-(-13 (-1152 |t#1|) (-10 -8 (-15 -1482 ($ (-583 |t#1|))) (-15 -2232 ((-843) $)) (-15 -3667 ($ (-583 |t#1|))) (-15 -1843 ($ $ $)) (-15 -2204 ($ $ (-583 |t#1|)))))
-(((-33) . T) ((-97) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T) ((-1152 |#1|) . T))
-((-1939 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 17)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -1939 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-961) (-961)) (T -898))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))))
-(-10 -7 (-15 -1939 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))))
-((-1424 ((|#1| (-865 |#1|)) 13)) (-1313 ((|#1| (-865 |#1|)) 12)) (-3012 ((|#1| (-865 |#1|)) 11)) (-3192 ((|#1| (-865 |#1|)) 15)) (-2953 ((|#1| (-865 |#1|)) 21)) (-3723 ((|#1| (-865 |#1|)) 14)) (-1291 ((|#1| (-865 |#1|)) 16)) (-1793 ((|#1| (-865 |#1|)) 20)) (-4137 ((|#1| (-865 |#1|)) 19)))
-(((-899 |#1|) (-10 -7 (-15 -3012 (|#1| (-865 |#1|))) (-15 -1313 (|#1| (-865 |#1|))) (-15 -1424 (|#1| (-865 |#1|))) (-15 -3723 (|#1| (-865 |#1|))) (-15 -3192 (|#1| (-865 |#1|))) (-15 -1291 (|#1| (-865 |#1|))) (-15 -4137 (|#1| (-865 |#1|))) (-15 -1793 (|#1| (-865 |#1|))) (-15 -2953 (|#1| (-865 |#1|)))) (-961)) (T -899))
-((-2953 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(-10 -7 (-15 -3012 (|#1| (-865 |#1|))) (-15 -1313 (|#1| (-865 |#1|))) (-15 -1424 (|#1| (-865 |#1|))) (-15 -3723 (|#1| (-865 |#1|))) (-15 -3192 (|#1| (-865 |#1|))) (-15 -1291 (|#1| (-865 |#1|))) (-15 -4137 (|#1| (-865 |#1|))) (-15 -1793 (|#1| (-865 |#1|))) (-15 -2953 (|#1| (-865 |#1|))))
-((-3750 (((-3 |#1| "failed") |#1|) 18)) (-2307 (((-3 |#1| "failed") |#1|) 6)) (-2046 (((-3 |#1| "failed") |#1|) 16)) (-1897 (((-3 |#1| "failed") |#1|) 4)) (-2659 (((-3 |#1| "failed") |#1|) 20)) (-1607 (((-3 |#1| "failed") |#1|) 8)) (-2086 (((-3 |#1| "failed") |#1| (-703)) 1)) (-2438 (((-3 |#1| "failed") |#1|) 3)) (-2443 (((-3 |#1| "failed") |#1|) 2)) (-3181 (((-3 |#1| "failed") |#1|) 21)) (-1334 (((-3 |#1| "failed") |#1|) 9)) (-2157 (((-3 |#1| "failed") |#1|) 19)) (-1881 (((-3 |#1| "failed") |#1|) 7)) (-1352 (((-3 |#1| "failed") |#1|) 17)) (-2404 (((-3 |#1| "failed") |#1|) 5)) (-1531 (((-3 |#1| "failed") |#1|) 24)) (-1461 (((-3 |#1| "failed") |#1|) 12)) (-2166 (((-3 |#1| "failed") |#1|) 22)) (-1679 (((-3 |#1| "failed") |#1|) 10)) (-3986 (((-3 |#1| "failed") |#1|) 26)) (-1708 (((-3 |#1| "failed") |#1|) 14)) (-2416 (((-3 |#1| "failed") |#1|) 27)) (-1760 (((-3 |#1| "failed") |#1|) 15)) (-2694 (((-3 |#1| "failed") |#1|) 25)) (-3648 (((-3 |#1| "failed") |#1|) 13)) (-3806 (((-3 |#1| "failed") |#1|) 23)) (-3229 (((-3 |#1| "failed") |#1|) 11)))
-(((-900 |#1|) (-1185) (-1095)) (T -900))
-((-2416 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3986 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2694 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1531 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3806 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2166 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3181 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2659 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2157 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3750 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1352 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2046 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1760 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1708 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3648 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1461 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-3229 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1679 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1334 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1607 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1881 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2307 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2404 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-1897 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2438 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2443 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))) (-2086 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(-13 (-10 -7 (-15 -2086 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -2443 ((-3 |t#1| "failed") |t#1|)) (-15 -2438 ((-3 |t#1| "failed") |t#1|)) (-15 -1897 ((-3 |t#1| "failed") |t#1|)) (-15 -2404 ((-3 |t#1| "failed") |t#1|)) (-15 -2307 ((-3 |t#1| "failed") |t#1|)) (-15 -1881 ((-3 |t#1| "failed") |t#1|)) (-15 -1607 ((-3 |t#1| "failed") |t#1|)) (-15 -1334 ((-3 |t#1| "failed") |t#1|)) (-15 -1679 ((-3 |t#1| "failed") |t#1|)) (-15 -3229 ((-3 |t#1| "failed") |t#1|)) (-15 -1461 ((-3 |t#1| "failed") |t#1|)) (-15 -3648 ((-3 |t#1| "failed") |t#1|)) (-15 -1708 ((-3 |t#1| "failed") |t#1|)) (-15 -1760 ((-3 |t#1| "failed") |t#1|)) (-15 -2046 ((-3 |t#1| "failed") |t#1|)) (-15 -1352 ((-3 |t#1| "failed") |t#1|)) (-15 -3750 ((-3 |t#1| "failed") |t#1|)) (-15 -2157 ((-3 |t#1| "failed") |t#1|)) (-15 -2659 ((-3 |t#1| "failed") |t#1|)) (-15 -3181 ((-3 |t#1| "failed") |t#1|)) (-15 -2166 ((-3 |t#1| "failed") |t#1|)) (-15 -3806 ((-3 |t#1| "failed") |t#1|)) (-15 -1531 ((-3 |t#1| "failed") |t#1|)) (-15 -2694 ((-3 |t#1| "failed") |t#1|)) (-15 -3986 ((-3 |t#1| "failed") |t#1|)) (-15 -2416 ((-3 |t#1| "failed") |t#1|))))
-((-2241 ((|#4| |#4| (-583 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-1301 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1939 ((|#4| (-1 |#4| (-874 |#1|)) |#4|) 30)))
-(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| |#4| |#3|)) (-15 -1301 (|#4| |#4| (-583 |#3|))) (-15 -2241 (|#4| |#4| |#3|)) (-15 -2241 (|#4| |#4| (-583 |#3|))) (-15 -1939 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) (-961) (-725) (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074))))) (-871 (-874 |#1|) |#2| |#3|)) (T -901))
-((-1939 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-2241 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2241 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) (-1301 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-1301 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))))
-(-10 -7 (-15 -1301 (|#4| |#4| |#3|)) (-15 -1301 (|#4| |#4| (-583 |#3|))) (-15 -2241 (|#4| |#4| |#3|)) (-15 -2241 (|#4| |#4| (-583 |#3|))) (-15 -1939 (|#4| (-1 |#4| (-874 |#1|)) |#4|)))
-((-2201 ((|#2| |#3|) 34)) (-2591 (((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-1866 (((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
-(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2201 (|#2| |#3|))) (-319) (-1131 |#1|) (-1131 |#2|) (-657 |#2| |#3|)) (T -902))
-((-2201 (*1 *2 *3) (-12 (-4 *3 (-1131 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-2591 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-1866 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2080 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
-(-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2201 (|#2| |#3|)))
-((-2935 (((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 64)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -2935 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1074)) (-703)) (T -903))
-((-2935 (*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
-(-10 -7 (-15 -2935 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
-((-1587 (((-107) $ $) NIL)) (-3190 (((-3 (-107) "failed") $) 67)) (-3781 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4095 (($ $ (-3 (-107) "failed")) 68)) (-3194 (($ (-583 |#4|) |#4|) 24)) (-1277 (((-1057) $) NIL)) (-3812 (($ $) 65)) (-3214 (((-1021) $) NIL)) (-1596 (((-107) $) 66)) (-2756 (($) 29)) (-3248 ((|#4| $) 70)) (-3747 (((-583 |#4|) $) 69)) (-2254 (((-787) $) 64)) (-1534 (((-107) $ $) NIL)))
-(((-904 |#1| |#2| |#3| |#4|) (-13 (-1003) (-557 (-787)) (-10 -8 (-15 -2756 ($)) (-15 -3194 ($ (-583 |#4|) |#4|)) (-15 -3190 ((-3 (-107) "failed") $)) (-15 -4095 ($ $ (-3 (-107) "failed"))) (-15 -1596 ((-107) $)) (-15 -3747 ((-583 |#4|) $)) (-15 -3248 (|#4| $)) (-15 -3812 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3781 ($ $)) |%noBranch|) |%noBranch|))) (-421) (-779) (-725) (-871 |#1| |#3| |#2|)) (T -904))
-((-2756 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))) (-3190 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-1596 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3747 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3248 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3812 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3781 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
-(-13 (-1003) (-557 (-787)) (-10 -8 (-15 -2756 ($)) (-15 -3194 ($ (-583 |#4|) |#4|)) (-15 -3190 ((-3 (-107) "failed") $)) (-15 -4095 ($ $ (-3 (-107) "failed"))) (-15 -1596 ((-107) $)) (-15 -3747 ((-583 |#4|) $)) (-15 -3248 (|#4| $)) (-15 -3812 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3781 ($ $)) |%noBranch|) |%noBranch|)))
-((-1920 (((-107) |#5| |#5|) 37)) (-1832 (((-107) |#5| |#5|) 51)) (-2454 (((-107) |#5| (-583 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-3472 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-2663 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) 62)) (-3554 (((-1159)) 33)) (-3450 (((-1159) (-1057) (-1057) (-1057)) 29)) (-2972 (((-583 |#5|) (-583 |#5|)) 80)) (-3888 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) 78)) (-4059 (((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 100)) (-3245 (((-107) |#5| |#5|) 46)) (-1752 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3507 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1603 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3706 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3575 (((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-2423 (((-583 |#5|) (-583 |#5|)) 42)))
-(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3450 ((-1159) (-1057) (-1057) (-1057))) (-15 -3554 ((-1159))) (-15 -1920 ((-107) |#5| |#5|)) (-15 -2423 ((-583 |#5|) (-583 |#5|))) (-15 -3245 ((-107) |#5| |#5|)) (-15 -1832 ((-107) |#5| |#5|)) (-15 -3472 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3507 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1603 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3706 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1752 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2454 ((-107) |#5| |#5|)) (-15 -2454 ((-107) |#5| (-583 |#5|))) (-15 -2972 ((-583 |#5|) (-583 |#5|))) (-15 -2663 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3888 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-15 -4059 ((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3575 ((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -905))
-((-3575 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-4059 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1341 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-2663 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-2454 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1752 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1603 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3507 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-1920 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3554 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3450 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3450 ((-1159) (-1057) (-1057) (-1057))) (-15 -3554 ((-1159))) (-15 -1920 ((-107) |#5| |#5|)) (-15 -2423 ((-583 |#5|) (-583 |#5|))) (-15 -3245 ((-107) |#5| |#5|)) (-15 -1832 ((-107) |#5| |#5|)) (-15 -3472 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3507 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1603 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3706 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1752 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2454 ((-107) |#5| |#5|)) (-15 -2454 ((-107) |#5| (-583 |#5|))) (-15 -2972 ((-583 |#5|) (-583 |#5|))) (-15 -2663 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3888 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-15 -4059 ((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3575 ((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3518 (((-1074) $) 15)) (-3207 (((-1057) $) 16)) (-2769 (($ (-1074) (-1057)) 14)) (-2254 (((-787) $) 13)))
-(((-906) (-13 (-557 (-787)) (-10 -8 (-15 -2769 ($ (-1074) (-1057))) (-15 -3518 ((-1074) $)) (-15 -3207 ((-1057) $))))) (T -906))
-((-2769 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-906)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-906)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-906)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2769 ($ (-1074) (-1057))) (-15 -3518 ((-1074) $)) (-15 -3207 ((-1057) $))))
-((-1939 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-909 |#1|) (-909 |#2|)) (T -907))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-1074) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3232 ((|#2| $) NIL) (((-1074) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-2749 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-4100 (($) 98)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 74) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 83)) (-1583 (($ $) 10)) (-3326 (((-3 $ "failed") $) 20)) (-1939 (($ (-1 |#2| |#2|) $) 22)) (-3680 (($) 16)) (-2172 (($ $) 54)) (-1248 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1728 (($ $) 12)) (-3667 (((-814 (-517)) $) 69) (((-814 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1074)) 57)) (-1217 (((-703)) 31)) (-1558 (((-107) $ $) 50)))
-(((-908 |#1| |#2|) (-10 -8 (-15 -1558 ((-107) |#1| |#1|)) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -2254 (|#1| (-1074))) (-15 -4100 (|#1|)) (-15 -2172 (|#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -2254 ((-787) |#1|))) (-909 |#2|) (-509)) (T -908))
-((-1217 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))))
-(-10 -8 (-15 -1558 ((-107) |#1| |#1|)) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -2254 (|#1| (-1074))) (-15 -4100 (|#1|)) (-15 -2172 (|#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3975 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -2749 ((-623 |#2|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2065 ((|#1| $) 139 (|has| |#1| (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 130 (|has| |#1| (-831)))) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 133 (|has| |#1| (-831)))) (-2448 (((-107) $ $) 59)) (-3345 (((-517) $) 120 (|has| |#1| (-752)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 178) (((-3 (-1074) "failed") $) 128 (|has| |#1| (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-952 (-517))))) (-3232 ((|#1| $) 177) (((-1074) $) 127 (|has| |#1| (-952 (-1074)))) (((-377 (-517)) $) 111 (|has| |#1| (-952 (-517)))) (((-517) $) 109 (|has| |#1| (-952 (-517))))) (-2532 (($ $ $) 55)) (-2749 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3775 (((-3 $ "failed") $) 34)) (-4100 (($) 137 (|has| |#1| (-502)))) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-3162 (((-107) $) 122 (|has| |#1| (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 146 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 145 (|has| |#1| (-808 (-349))))) (-3469 (((-107) $) 31)) (-1583 (($ $) 141)) (-1842 ((|#1| $) 143)) (-3326 (((-3 $ "failed") $) 108 (|has| |#1| (-1050)))) (-1199 (((-107) $) 121 (|has| |#1| (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4055 (($ $ $) 118 (|has| |#1| (-779)))) (-3105 (($ $ $) 117 (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) 169)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3680 (($) 107 (|has| |#1| (-1050)) CONST)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2172 (($ $) 138 (|has| |#1| (-278)))) (-2908 ((|#1| $) 135 (|has| |#1| (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 132 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 131 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 170 (|has| |#1| (-478 (-1074) |#1|)))) (-3196 (((-703) $) 58)) (-1437 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-1248 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1074)) 164 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 163 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 162 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 161 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-1728 (($ $) 140)) (-1852 ((|#1| $) 142)) (-3667 (((-814 (-517)) $) 148 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 147 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-937))) (((-199) $) 123 (|has| |#1| (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 134 (-4032 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1074)) 129 (|has| |#1| (-952 (-1074))))) (-2486 (((-3 $ "failed") $) 126 (-3782 (|has| |#1| (-132)) (-4032 (|has| $ (-132)) (|has| |#1| (-831)))))) (-1217 (((-703)) 29)) (-2434 ((|#1| $) 136 (|has| |#1| (-502)))) (-2673 (((-107) $ $) 39)) (-1724 (($ $) 119 (|has| |#1| (-752)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1074)) 160 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 159 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 158 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 157 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1600 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1678 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-909 |#1|) (-1185) (-509)) (T -909))
-((-1678 (*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1728 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2172 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-4100 (*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
-(-13 (-333) (-37 |t#1|) (-952 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-806 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1678 ($ |t#1| |t#1|)) (-15 -1842 (|t#1| $)) (-15 -1852 (|t#1| $)) (-15 -1583 ($ $)) (-15 -1728 ($ $)) (IF (|has| |t#1| (-1050)) (-6 (-1050)) |%noBranch|) (IF (|has| |t#1| (-952 (-517))) (PROGN (-6 (-952 (-517))) (-6 (-952 (-377 (-517))))) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-952 (-1074))) (-6 (-952 (-1074))) |%noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2065 (|t#1| $)) (-15 -2172 ($ $))) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -4100 ($)) (-15 -2434 (|t#1| $)) (-15 -2908 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-937)) ((-558 (-349)) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3782 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) |has| |#1| (-831)) ((-842) . T) ((-937) |has| |#1| (-937)) ((-952 (-377 (-517))) |has| |#1| (-952 (-517))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-1074)) |has| |#1| (-952 (-1074))) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-1050)) ((-1109) . T) ((-1113) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-2215 (($ (-1041 |#1| |#2|)) 11)) (-1884 (((-1041 |#1| |#2|) $) 12)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1437 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2254 (((-787) $) NIL)) (-2398 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
-(((-910 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2215 ($ (-1041 |#1| |#2|))) (-15 -1884 ((-1041 |#1| |#2|) $)) (-15 -1437 (|#2| $ (-214 |#1| |#2|))))) (-843) (-333)) (T -910))
-((-2215 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2215 ($ (-1041 |#1| |#2|))) (-15 -1884 ((-1041 |#1| |#2|) $)) (-15 -1437 (|#2| $ (-214 |#1| |#2|)))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3859 (($ $) 46)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1631 (((-703) $) 45)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2867 ((|#1| $) 44)) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3785 ((|#1| |#1| $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-3041 ((|#1| $) 47)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-1934 ((|#1| $) 43)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-911 |#1|) (-1185) (-1109)) (T -911))
-((-3785 (*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-3041 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-3859 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -3785 (|t#1| |t#1| $)) (-15 -3041 (|t#1| $)) (-15 -3859 ($ $)) (-15 -1631 ((-703) $)) (-15 -2867 (|t#1| $)) (-15 -1934 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-2778 (((-107) $) 42)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-3937 (((-3 (-377 (-517)) "failed") $) 78)) (-1541 (((-107) $) 72)) (-3320 (((-377 (-517)) $) 76)) (-3469 (((-107) $) 41)) (-2962 ((|#2| $) 22)) (-1939 (($ (-1 |#2| |#2|) $) 19)) (-1639 (($ $) 61)) (-1248 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3667 (((-493) $) 67)) (-1757 (($ $) 17)) (-2254 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-1217 (((-703)) 10)) (-1724 ((|#2| $) 71)) (-1534 (((-107) $ $) 25)) (-1558 (((-107) $ $) 69)) (-1663 (($ $) 29) (($ $ $) 28)) (-1645 (($ $ $) 26)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
-(((-912 |#1| |#2|) (-10 -8 (-15 -2254 (|#1| (-377 (-517)))) (-15 -1558 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -1639 (|#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -3469 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-913 |#2|) (-156)) (T -912))
-((-1217 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))))
-(-10 -8 (-15 -2254 (|#1| (-377 (-517)))) (-15 -1558 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -1639 (|#1| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -2962 (|#2| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1939 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -2254 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -3469 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2778 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1837 (((-3 (-517) "failed") $) 119 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3232 (((-517) $) 120 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 115)) (-2749 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3775 (((-3 $ "failed") $) 34)) (-1398 ((|#1| $) 80)) (-3937 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-1541 (((-107) $) 78 (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2275 (($ |#1| |#1| |#1| |#1|) 81)) (-3469 (((-107) $) 31)) (-2962 ((|#1| $) 82)) (-4055 (($ $ $) 68 (|has| |#1| (-779)))) (-3105 (($ $ $) 67 (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) 91)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 73 (|has| |#1| (-333)))) (-3204 ((|#1| $) 83)) (-2960 ((|#1| $) 84)) (-1213 ((|#1| $) 85)) (-3214 (((-1021) $) 10)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) 92 (|has| |#1| (-478 (-1074) |#1|)))) (-1437 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-1248 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1074)) 110 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 109 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 108 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 107 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3667 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1757 (($ $) 86)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-2486 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-1724 ((|#1| $) 79 (|has| |#1| (-970)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1074)) 106 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 105 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 104 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 103 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1600 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
-(((-913 |#1|) (-1185) (-156)) (T -913))
-((-1757 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1213 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2275 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3937 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
-(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1757 ($ $)) (-15 -1213 (|t#1| $)) (-15 -2960 (|t#1| $)) (-15 -3204 (|t#1| $)) (-15 -2962 (|t#1| $)) (-15 -2275 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1398 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-970)) (-15 -1724 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1541 ((-107) $)) (-15 -3320 ((-377 (-517)) $)) (-15 -3937 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3782 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1074) |#1|) |has| |#1| (-478 (-1074) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 (-377 (-517))) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-333)) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1939 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-156) (-913 |#4|) (-156)) (T -914))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))))
-(-10 -7 (-15 -1939 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1398 ((|#1| $) 12)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1541 (((-107) $) NIL (|has| |#1| (-502)))) (-3320 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2275 (($ |#1| |#1| |#1| |#1|) 16)) (-3469 (((-107) $) NIL)) (-2962 ((|#1| $) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3204 ((|#1| $) 15)) (-2960 ((|#1| $) 14)) (-1213 ((|#1| $) 13)) (-3214 (((-1021) $) NIL)) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1074) |#1|))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-478 (-1074) |#1|)))) (-1437 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1248 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1757 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-1724 ((|#1| $) NIL (|has| |#1| (-970)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 8 T CONST)) (-2411 (($) 10 T CONST)) (-2738 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
-(((-915 |#1|) (-913 |#1|) (-156)) (T -915))
-NIL
-(-913 |#1|)
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-3859 (($ $) 20)) (-2082 (($ (-583 |#1|)) 29)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1631 (((-703) $) 22)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) 24)) (-3676 (($ |#1| $) 15)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2867 ((|#1| $) 23)) (-3773 ((|#1| $) 19)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3785 ((|#1| |#1| $) 14)) (-1596 (((-107) $) 17)) (-2756 (($) NIL)) (-3041 ((|#1| $) 18)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) NIL)) (-1934 ((|#1| $) 26)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-916 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -2082 ($ (-583 |#1|))))) (-1003)) (T -916))
-((-2082 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
-(-13 (-911 |#1|) (-10 -8 (-15 -2082 ($ (-583 |#1|)))))
-((-1386 (($ $) 12)) (-2003 (($ $ (-517)) 13)))
-(((-917 |#1|) (-10 -8 (-15 -1386 (|#1| |#1|)) (-15 -2003 (|#1| |#1| (-517)))) (-918)) (T -917))
-NIL
-(-10 -8 (-15 -1386 (|#1| |#1|)) (-15 -2003 (|#1| |#1| (-517))))
-((-1386 (($ $) 6)) (-2003 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
-(((-918) (-1185)) (T -918))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) (-2003 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))) (-1386 (*1 *1 *1) (-4 *1 (-918))))
-(-13 (-10 -8 (-15 -1386 ($ $)) (-15 -2003 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2548 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2239 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3531 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1205 (((-623 (-377 |#2|)) (-1154 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1462 (((-377 |#2|) $) NIL)) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2674 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2448 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1719 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1660 (((-107)) NIL)) (-3837 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-4047 (($ (-1154 (-377 |#2|)) (-1154 $)) NIL) (($ (-1154 (-377 |#2|))) 70) (($ (-1154 |#2|) |#2|) NIL)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2532 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2739 (((-623 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-377 |#2|))) (|:| |vec| (-1154 (-377 |#2|)))) (-623 $) (-1154 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-2747 (((-1154 $) (-1154 $)) NIL)) (-1292 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3775 (((-3 $ "failed") $) NIL)) (-3299 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3659 (((-107) |#1| |#1|) NIL)) (-3334 (((-843)) NIL)) (-4100 (($) NIL (|has| (-377 |#2|) (-338)))) (-3735 (((-107)) NIL)) (-3387 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2509 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2038 (($ $) NIL)) (-2170 (($) NIL (|has| (-377 |#2|) (-319)))) (-3449 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2616 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3083 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3730 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3469 (((-107) $) NIL)) (-2430 (((-703)) NIL)) (-3540 (((-1154 $) (-1154 $)) NIL)) (-2962 (((-377 |#2|) $) NIL)) (-1734 (((-583 (-874 |#1|)) (-1074)) NIL (|has| |#1| (-333)))) (-3326 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2956 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4034 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-1283 ((|#3| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1277 (((-1057) $) NIL)) (-1340 (((-623 (-377 |#2|))) 52)) (-3454 (((-623 (-377 |#2|))) 51)) (-1639 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1909 (($ (-1154 |#2|) |#2|) 71)) (-2062 (((-623 (-377 |#2|))) 50)) (-1474 (((-623 (-377 |#2|))) 49)) (-2397 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2216 (((-2 (|:| |num| (-1154 |#2|)) (|:| |den| |#2|)) $) 77)) (-3816 (((-1154 $)) 46)) (-1866 (((-1154 $)) 45)) (-3406 (((-107) $) NIL)) (-2464 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3680 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3544 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3719 (((-3 |#2| "failed")) 63)) (-3214 (((-1021) $) NIL)) (-1900 (((-703)) NIL)) (-3244 (($) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-377 |#2|) (-333)))) (-1387 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-1376 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2483 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3196 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1437 ((|#1| $ |#1| |#1|) NIL)) (-1476 (((-3 |#2| "failed")) 62)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3383 (((-377 |#2|) (-1154 $)) NIL) (((-377 |#2|)) 42)) (-3459 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-1248 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2072 (((-623 (-377 |#2|)) (-1154 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2780 ((|#3|) 53)) (-2858 (($) NIL (|has| (-377 |#2|) (-319)))) (-3589 (((-1154 (-377 |#2|)) $ (-1154 $)) NIL) (((-623 (-377 |#2|)) (-1154 $) (-1154 $)) NIL) (((-1154 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1154 $)) NIL)) (-3667 (((-1154 (-377 |#2|)) $) NIL) (($ (-1154 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-2510 (((-1154 $) (-1154 $)) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3782 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2486 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1924 ((|#3| $) NIL)) (-1217 (((-703)) NIL)) (-2662 (((-107)) 60)) (-2378 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-2080 (((-1154 $)) 124)) (-2673 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1342 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2249 (((-107)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2398 (($) 94 T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1074))))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3782 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
-(((-919 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1113) (-1131 |#1|) (-1131 (-377 |#2|)) (-377 |#2|) (-703)) (T -919))
+((-2096 (((-583 |#4|) $) 23)) (-3494 (((-107) $) 48)) (-4062 (((-107) $) 47)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#4|) 36)) (-2737 (((-107) $) 49)) (-2871 (((-107) $ $) 55)) (-2819 (((-107) $ $) 58)) (-1219 (((-107) $) 53)) (-2259 (((-583 |#5|) (-583 |#5|) $) 90)) (-1825 (((-583 |#5|) (-583 |#5|) $) 87)) (-1451 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1310 (((-583 |#4|) $) 27)) (-1234 (((-107) |#4| $) 30)) (-2188 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2654 (($ $ |#4|) 33)) (-2054 (($ $ |#4|) 32)) (-2530 (($ $ |#4|) 34)) (-1583 (((-107) $ $) 40)))
+(((-893 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4062 ((-107) |#1|)) (-15 -2259 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1825 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1451 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2188 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2737 ((-107) |#1|)) (-15 -2819 ((-107) |#1| |#1|)) (-15 -2871 ((-107) |#1| |#1|)) (-15 -1219 ((-107) |#1|)) (-15 -3494 ((-107) |#1|)) (-15 -2162 ((-2 (|:| |under| |#1|) (|:| -2309 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2654 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -1234 ((-107) |#4| |#1|)) (-15 -1310 ((-583 |#4|) |#1|)) (-15 -2096 ((-583 |#4|) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-894 |#2| |#3| |#4| |#5|) (-962) (-725) (-779) (-976 |#2| |#3| |#4|)) (T -893))
+NIL
+(-10 -8 (-15 -4062 ((-107) |#1|)) (-15 -2259 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1825 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1451 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2188 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2737 ((-107) |#1|)) (-15 -2819 ((-107) |#1| |#1|)) (-15 -2871 ((-107) |#1| |#1|)) (-15 -1219 ((-107) |#1|)) (-15 -3494 ((-107) |#1|)) (-15 -2162 ((-2 (|:| |under| |#1|) (|:| -2309 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2654 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -1234 ((-107) |#4| |#1|)) (-15 -1310 ((-583 |#4|) |#1|)) (-15 -2096 ((-583 |#4|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190)))) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190)))) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-4123 (((-1022) $) 10)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-894 |#1| |#2| |#3| |#4|) (-1187) (-962) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -894))
+((-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-894 *3 *4 *5 *6)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-894 *3 *4 *5 *6)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-779)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1234 (*1 *2 *3 *1) (-12 (-4 *1 (-894 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-107)))) (-2054 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))) (-2530 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))) (-2654 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))) (-2162 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2309 *1) (|:| |upper| *1))) (-4 *1 (-894 *4 *5 *3 *6)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-1219 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2871 (*1 *2 *1 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2819 (*1 *2 *1 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2188 (*1 *2 *3 *1) (-12 (-4 *1 (-894 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1451 (*1 *2 *3 *1) (-12 (-4 *1 (-894 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1825 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)))) (-2259 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(-13 (-1004) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4190) (-15 -3226 ((-3 $ "failed") (-583 |t#4|))) (-15 -3388 ($ (-583 |t#4|))) (-15 -3834 (|t#3| $)) (-15 -2096 ((-583 |t#3|) $)) (-15 -1310 ((-583 |t#3|) $)) (-15 -1234 ((-107) |t#3| $)) (-15 -2054 ($ $ |t#3|)) (-15 -2530 ($ $ |t#3|)) (-15 -2654 ($ $ |t#3|)) (-15 -2162 ((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |t#3|)) (-15 -3494 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -1219 ((-107) $)) (-15 -2871 ((-107) $ $)) (-15 -2819 ((-107) $ $)) (-15 -2737 ((-107) $)) (-15 -2188 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1451 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1825 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2259 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -4062 ((-107) $))) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-1004) . T) ((-1110) . T))
+((-1544 (((-583 |#4|) |#4| |#4|) 115)) (-1309 (((-583 |#4|) (-583 |#4|) (-107)) 104 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 105 (|has| |#1| (-421)))) (-1585 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 35)) (-1481 (((-107) |#4|) 34)) (-3819 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-1267 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 20)) (-3775 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2142 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 23)) (-1412 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|)) 73)) (-2395 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3789 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-2971 (((-583 |#4|) (-583 |#4|)) 107)) (-3023 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 48) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 50)) (-3804 ((|#4| |#4| (-583 |#4|)) 49)) (-2702 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 111 (|has| |#1| (-421)))) (-2658 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-3771 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 113 (|has| |#1| (-421)))) (-2604 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 87) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 89) (((-583 |#4|) (-583 |#4|) |#4|) 118) (((-583 |#4|) |#4| |#4|) 116) (((-583 |#4|) (-583 |#4|)) 88)) (-3046 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3430 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 41)) (-1725 (((-107) (-583 |#4|)) 62)) (-2159 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 53)) (-1986 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 29)) (-1753 (((-107) |#4|) 28)) (-2877 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3396 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-2458 (((-583 |#4|) (-583 |#4|)) 66)) (-2749 (((-583 |#4|) (-583 |#4|)) 79)) (-2874 (((-107) (-583 |#4|) (-583 |#4|)) 51)) (-2424 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 39)) (-3975 (((-107) |#4|) 36)))
+(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2604 ((-583 |#4|) (-583 |#4|))) (-15 -2604 ((-583 |#4|) |#4| |#4|)) (-15 -2971 ((-583 |#4|) (-583 |#4|))) (-15 -1544 ((-583 |#4|) |#4| |#4|)) (-15 -2604 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2604 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2604 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2874 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2159 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -1725 ((-107) (-583 |#4|))) (-15 -1267 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3775 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2142 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3430 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1481 ((-107) |#4|)) (-15 -1585 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1753 ((-107) |#4|)) (-15 -1986 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3975 ((-107) |#4|)) (-15 -2424 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3023 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3023 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3804 (|#4| |#4| (-583 |#4|))) (-15 -2458 ((-583 |#4|) (-583 |#4|))) (-15 -1412 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2749 ((-583 |#4|) (-583 |#4|))) (-15 -2395 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3789 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3819 ((-583 |#4|) |#4|)) (-15 -1309 ((-583 |#4|) (-583 |#4|))) (-15 -1309 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2702 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3771 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2658 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3396 ((-583 |#4|) (-583 |#4|))) (-15 -2877 ((-583 |#4|) (-583 |#4|))) (-15 -3046 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-509) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -895))
+((-3046 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2877 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2658 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3771 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2702 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1309 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *7)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-3789 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-895 *5 *6 *7 *8)))) (-2395 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-895 *6 *7 *8 *9)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1412 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2551 (-583 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-3804 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *2)))) (-3023 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *7)))) (-3023 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-1986 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1481 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-3430 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1267 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *4 *5 *6 *7)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *5 *6 *7 *8)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-895 *4 *5 *6 *7)))) (-2604 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *7)))) (-2604 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2604 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *3)))) (-1544 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2971 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))) (-2604 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2604 ((-583 |#4|) (-583 |#4|))) (-15 -2604 ((-583 |#4|) |#4| |#4|)) (-15 -2971 ((-583 |#4|) (-583 |#4|))) (-15 -1544 ((-583 |#4|) |#4| |#4|)) (-15 -2604 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2604 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2604 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2874 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2159 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -1725 ((-107) (-583 |#4|))) (-15 -1267 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3775 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2142 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3430 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1481 ((-107) |#4|)) (-15 -1585 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1753 ((-107) |#4|)) (-15 -1986 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3975 ((-107) |#4|)) (-15 -2424 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3023 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3023 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3804 (|#4| |#4| (-583 |#4|))) (-15 -2458 ((-583 |#4|) (-583 |#4|))) (-15 -1412 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2749 ((-583 |#4|) (-583 |#4|))) (-15 -2395 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3789 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3819 ((-583 |#4|) |#4|)) (-15 -1309 ((-583 |#4|) (-583 |#4|))) (-15 -1309 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2702 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3771 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2658 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3396 ((-583 |#4|) (-583 |#4|))) (-15 -2877 ((-583 |#4|) (-583 |#4|))) (-15 -3046 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|))
+((-1639 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3609 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|)) 36)) (-1738 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-896 |#1|) (-10 -7 (-15 -1639 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1738 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3609 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|)))) (-333)) (T -896))
+((-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1156 *5))))) (-5 *1 (-896 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)))) (-1738 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-896 *5)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-896 *6)) (-5 *3 (-623 *6)))))
+(-10 -7 (-15 -1639 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1738 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3609 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1156 |#1|)))) (-623 |#1|) (-1156 |#1|))))
+((-1581 (((-388 |#4|) |#4|) 47)))
+(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1581 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-872 |#3| |#2| |#1|)) (T -897))
+((-1581 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
+(-10 -7 (-15 -1581 ((-388 |#4|) |#4|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3875 (($ (-703)) 112 (|has| |#1| (-23)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1211 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1004)))) (-3414 (($ (-583 |#1|)) 118)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2688 (((-623 |#1|) $ $) 105 (|has| |#1| (-962)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2961 ((|#1| $) 102 (-12 (|has| |#1| (-962)) (|has| |#1| (-919))))) (-4043 (((-107) $ (-703)) 10)) (-3680 ((|#1| $) 103 (-12 (|has| |#1| (-962)) (|has| |#1| (-919))))) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-2640 (($ $ (-583 |#1|)) 115)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-3989 ((|#1| $ $) 106 (|has| |#1| (-962)))) (-1880 (((-844) $) 117)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-2579 (($ $ $) 104)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2286 (($ (-583 |#1|)) 70)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1691 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1677 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-898 |#1|) (-1187) (-962)) (T -898))
+((-3414 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-898 *3)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-962)) (-5 *2 (-844)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-898 *3)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-962)))) (-2640 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-898 *3)) (-4 *3 (-962)))))
+(-13 (-1154 |t#1|) (-10 -8 (-15 -3414 ($ (-583 |t#1|))) (-15 -1880 ((-844) $)) (-15 -3357 ($ (-583 |t#1|))) (-15 -2579 ($ $ $)) (-15 -2640 ($ $ (-583 |t#1|)))))
+(((-33) . T) ((-97) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1004) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-1110) . T) ((-1154 |#1|) . T))
+((-3308 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 17)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -3308 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-962) (-962)) (T -899))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-866 *6)) (-5 *1 (-899 *5 *6)))))
+(-10 -7 (-15 -3308 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))))
+((-4163 ((|#1| (-866 |#1|)) 13)) (-3506 ((|#1| (-866 |#1|)) 12)) (-3676 ((|#1| (-866 |#1|)) 11)) (-1579 ((|#1| (-866 |#1|)) 15)) (-2065 ((|#1| (-866 |#1|)) 21)) (-3136 ((|#1| (-866 |#1|)) 14)) (-2307 ((|#1| (-866 |#1|)) 16)) (-3919 ((|#1| (-866 |#1|)) 20)) (-3198 ((|#1| (-866 |#1|)) 19)))
+(((-900 |#1|) (-10 -7 (-15 -3676 (|#1| (-866 |#1|))) (-15 -3506 (|#1| (-866 |#1|))) (-15 -4163 (|#1| (-866 |#1|))) (-15 -3136 (|#1| (-866 |#1|))) (-15 -1579 (|#1| (-866 |#1|))) (-15 -2307 (|#1| (-866 |#1|))) (-15 -3198 (|#1| (-866 |#1|))) (-15 -3919 (|#1| (-866 |#1|))) (-15 -2065 (|#1| (-866 |#1|)))) (-962)) (T -900))
+((-2065 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(-10 -7 (-15 -3676 (|#1| (-866 |#1|))) (-15 -3506 (|#1| (-866 |#1|))) (-15 -4163 (|#1| (-866 |#1|))) (-15 -3136 (|#1| (-866 |#1|))) (-15 -1579 (|#1| (-866 |#1|))) (-15 -2307 (|#1| (-866 |#1|))) (-15 -3198 (|#1| (-866 |#1|))) (-15 -3919 (|#1| (-866 |#1|))) (-15 -2065 (|#1| (-866 |#1|))))
+((-2870 (((-3 |#1| "failed") |#1|) 18)) (-3698 (((-3 |#1| "failed") |#1|) 6)) (-2291 (((-3 |#1| "failed") |#1|) 16)) (-3060 (((-3 |#1| "failed") |#1|) 4)) (-2163 (((-3 |#1| "failed") |#1|) 20)) (-1736 (((-3 |#1| "failed") |#1|) 8)) (-1560 (((-3 |#1| "failed") |#1| (-703)) 1)) (-2601 (((-3 |#1| "failed") |#1|) 3)) (-2817 (((-3 |#1| "failed") |#1|) 2)) (-3415 (((-3 |#1| "failed") |#1|) 21)) (-2575 (((-3 |#1| "failed") |#1|) 9)) (-1814 (((-3 |#1| "failed") |#1|) 19)) (-2116 (((-3 |#1| "failed") |#1|) 7)) (-3128 (((-3 |#1| "failed") |#1|) 17)) (-1333 (((-3 |#1| "failed") |#1|) 5)) (-1413 (((-3 |#1| "failed") |#1|) 24)) (-4159 (((-3 |#1| "failed") |#1|) 12)) (-3903 (((-3 |#1| "failed") |#1|) 22)) (-1673 (((-3 |#1| "failed") |#1|) 10)) (-3461 (((-3 |#1| "failed") |#1|) 26)) (-2923 (((-3 |#1| "failed") |#1|) 14)) (-1276 (((-3 |#1| "failed") |#1|) 27)) (-2706 (((-3 |#1| "failed") |#1|) 15)) (-2183 (((-3 |#1| "failed") |#1|) 25)) (-3390 (((-3 |#1| "failed") |#1|) 13)) (-1613 (((-3 |#1| "failed") |#1|) 23)) (-2969 (((-3 |#1| "failed") |#1|) 11)))
+(((-901 |#1|) (-1187) (-1096)) (T -901))
+((-1276 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3461 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2183 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1413 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1613 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3903 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3415 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2163 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1814 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2870 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3128 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2291 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2706 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2923 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3390 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-4159 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1673 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2575 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1736 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2116 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3698 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1333 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-3060 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2601 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-2817 (*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))) (-1560 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(-13 (-10 -7 (-15 -1560 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -2817 ((-3 |t#1| "failed") |t#1|)) (-15 -2601 ((-3 |t#1| "failed") |t#1|)) (-15 -3060 ((-3 |t#1| "failed") |t#1|)) (-15 -1333 ((-3 |t#1| "failed") |t#1|)) (-15 -3698 ((-3 |t#1| "failed") |t#1|)) (-15 -2116 ((-3 |t#1| "failed") |t#1|)) (-15 -1736 ((-3 |t#1| "failed") |t#1|)) (-15 -2575 ((-3 |t#1| "failed") |t#1|)) (-15 -1673 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -4159 ((-3 |t#1| "failed") |t#1|)) (-15 -3390 ((-3 |t#1| "failed") |t#1|)) (-15 -2923 ((-3 |t#1| "failed") |t#1|)) (-15 -2706 ((-3 |t#1| "failed") |t#1|)) (-15 -2291 ((-3 |t#1| "failed") |t#1|)) (-15 -3128 ((-3 |t#1| "failed") |t#1|)) (-15 -2870 ((-3 |t#1| "failed") |t#1|)) (-15 -1814 ((-3 |t#1| "failed") |t#1|)) (-15 -2163 ((-3 |t#1| "failed") |t#1|)) (-15 -3415 ((-3 |t#1| "failed") |t#1|)) (-15 -3903 ((-3 |t#1| "failed") |t#1|)) (-15 -1613 ((-3 |t#1| "failed") |t#1|)) (-15 -1413 ((-3 |t#1| "failed") |t#1|)) (-15 -2183 ((-3 |t#1| "failed") |t#1|)) (-15 -3461 ((-3 |t#1| "failed") |t#1|)) (-15 -1276 ((-3 |t#1| "failed") |t#1|))))
+((-3321 ((|#4| |#4| (-583 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1610 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3308 ((|#4| (-1 |#4| (-875 |#1|)) |#4|) 30)))
+(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1610 (|#4| |#4| |#3|)) (-15 -1610 (|#4| |#4| (-583 |#3|))) (-15 -3321 (|#4| |#4| |#3|)) (-15 -3321 (|#4| |#4| (-583 |#3|))) (-15 -3308 (|#4| (-1 |#4| (-875 |#1|)) |#4|))) (-962) (-725) (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075))))) (-872 (-875 |#1|) |#2| |#3|)) (T -902))
+((-3308 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-875 *4))) (-4 *4 (-962)) (-4 *2 (-872 (-875 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-5 *1 (-902 *4 *5 *6 *2)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-4 *4 (-962)) (-4 *5 (-725)) (-5 *1 (-902 *4 *5 *6 *2)) (-4 *2 (-872 (-875 *4) *5 *6)))) (-3321 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-5 *1 (-902 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3)))) (-1610 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-4 *4 (-962)) (-4 *5 (-725)) (-5 *1 (-902 *4 *5 *6 *2)) (-4 *2 (-872 (-875 *4) *5 *6)))) (-1610 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)) (-15 -3750 ((-3 $ "failed") (-1075)))))) (-5 *1 (-902 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3)))))
+(-10 -7 (-15 -1610 (|#4| |#4| |#3|)) (-15 -1610 (|#4| |#4| (-583 |#3|))) (-15 -3321 (|#4| |#4| |#3|)) (-15 -3321 (|#4| |#4| (-583 |#3|))) (-15 -3308 (|#4| (-1 |#4| (-875 |#1|)) |#4|)))
+((-2349 ((|#2| |#3|) 34)) (-4146 (((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-3057 (((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
+(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2349 (|#2| |#3|))) (-319) (-1132 |#1|) (-1132 |#2|) (-657 |#2| |#3|)) (T -903))
+((-2349 (*1 *2 *3) (-12 (-4 *3 (-1132 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-903 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 *3)) (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-903 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-3057 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| -2062 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
+(-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2349 (|#2| |#3|)))
+((-3468 (((-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 65)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -3468 ((-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1075)) (-703)) (T -904))
+((-3468 (*1 *2 *2) (-12 (-5 *2 (-905 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1075))) (-14 *4 (-703)) (-5 *1 (-904 *3 *4)))))
+(-10 -7 (-15 -3468 ((-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-905 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
+((-2118 (((-107) $ $) NIL)) (-1569 (((-3 (-107) "failed") $) 67)) (-1934 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3880 (($ $ (-3 (-107) "failed")) 68)) (-3441 (($ (-583 |#4|) |#4|) 24)) (-1895 (((-1058) $) NIL)) (-3110 (($ $) 65)) (-4123 (((-1022) $) NIL)) (-3270 (((-107) $) 66)) (-1529 (($) 29)) (-3077 ((|#4| $) 70)) (-2964 (((-583 |#4|) $) 69)) (-2269 (((-787) $) 64)) (-1583 (((-107) $ $) NIL)))
+(((-905 |#1| |#2| |#3| |#4|) (-13 (-1004) (-557 (-787)) (-10 -8 (-15 -1529 ($)) (-15 -3441 ($ (-583 |#4|) |#4|)) (-15 -1569 ((-3 (-107) "failed") $)) (-15 -3880 ($ $ (-3 (-107) "failed"))) (-15 -3270 ((-107) $)) (-15 -2964 ((-583 |#4|) $)) (-15 -3077 (|#4| $)) (-15 -3110 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -1934 ($ $)) |%noBranch|) |%noBranch|))) (-421) (-779) (-725) (-872 |#1| |#3| |#2|)) (T -905))
+((-1529 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-872 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-905 *4 *5 *6 *3)))) (-1569 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-3270 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-2964 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))) (-3077 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-905 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3110 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))) (-1934 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))))
+(-13 (-1004) (-557 (-787)) (-10 -8 (-15 -1529 ($)) (-15 -3441 ($ (-583 |#4|) |#4|)) (-15 -1569 ((-3 (-107) "failed") $)) (-15 -3880 ($ $ (-3 (-107) "failed"))) (-15 -3270 ((-107) $)) (-15 -2964 ((-583 |#4|) $)) (-15 -3077 (|#4| $)) (-15 -3110 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -1934 ($ $)) |%noBranch|) |%noBranch|)))
+((-2943 (((-107) |#5| |#5|) 38)) (-2786 (((-107) |#5| |#5|) 52)) (-1379 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 61)) (-1233 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-1704 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) 63)) (-2887 (((-1161)) 33)) (-1269 (((-1161) (-1058) (-1058) (-1058)) 29)) (-2637 (((-583 |#5|) (-583 |#5|)) 81)) (-1189 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) 79)) (-1425 (((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-3580 (((-107) |#5| |#5|) 47)) (-3581 (((-3 (-107) "failed") |#5| |#5|) 71)) (-4113 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1375 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1837 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3738 (((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-3525 (((-583 |#5|) (-583 |#5|)) 43)))
+(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1269 ((-1161) (-1058) (-1058) (-1058))) (-15 -2887 ((-1161))) (-15 -2943 ((-107) |#5| |#5|)) (-15 -3525 ((-583 |#5|) (-583 |#5|))) (-15 -3580 ((-107) |#5| |#5|)) (-15 -2786 ((-107) |#5| |#5|)) (-15 -1233 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -4113 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1375 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1837 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3581 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1379 ((-107) |#5| |#5|)) (-15 -1379 ((-107) |#5| (-583 |#5|))) (-15 -2637 ((-583 |#5|) (-583 |#5|))) (-15 -1704 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -1189 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-15 -1425 ((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3738 ((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -906))
+((-3738 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3779 (-583 *9)) (|:| -3831 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-906 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-981 *6 *7 *8 *9)))) (-1425 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-981 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3779 (-583 *9)) (|:| -3831 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-906 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-1189 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3831 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *6 *7)))) (-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-906 *3 *4 *5 *6 *7)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-906 *5 *6 *7 *8 *3)))) (-1379 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3581 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-1375 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-4113 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-1233 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3580 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-906 *3 *4 *5 *6 *7)))) (-2943 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-2887 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-906 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-1269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1269 ((-1161) (-1058) (-1058) (-1058))) (-15 -2887 ((-1161))) (-15 -2943 ((-107) |#5| |#5|)) (-15 -3525 ((-583 |#5|) (-583 |#5|))) (-15 -3580 ((-107) |#5| |#5|)) (-15 -2786 ((-107) |#5| |#5|)) (-15 -1233 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -4113 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1375 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1837 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3581 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1379 ((-107) |#5| |#5|)) (-15 -1379 ((-107) |#5| (-583 |#5|))) (-15 -2637 ((-583 |#5|) (-583 |#5|))) (-15 -1704 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -1189 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-15 -1425 ((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3738 ((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-3750 (((-1075) $) 15)) (-3119 (((-1058) $) 16)) (-2966 (($ (-1075) (-1058)) 14)) (-2269 (((-787) $) 13)))
+(((-907) (-13 (-557 (-787)) (-10 -8 (-15 -2966 ($ (-1075) (-1058))) (-15 -3750 ((-1075) $)) (-15 -3119 ((-1058) $))))) (T -907))
+((-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1058)) (-5 *1 (-907)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-907)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-907)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2966 ($ (-1075) (-1058))) (-15 -3750 ((-1075) $)) (-15 -3119 ((-1058) $))))
+((-3308 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-910 |#1|) (-910 |#2|)) (T -908))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-910 *6)) (-5 *1 (-908 *5 *6 *4 *2)) (-4 *4 (-910 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-1075) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3388 ((|#2| $) NIL) (((-1075) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-2306 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-2200 (($) 98)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 74) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 83)) (-3967 (($ $) 10)) (-3572 (((-3 $ "failed") $) 20)) (-3308 (($ (-1 |#2| |#2|) $) 22)) (-2585 (($) 16)) (-1288 (($ $) 54)) (-2059 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3596 (($ $) 12)) (-3357 (((-815 (-517)) $) 69) (((-815 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1075)) 57)) (-2950 (((-703)) 31)) (-1607 (((-107) $ $) 50)))
+(((-909 |#1| |#2|) (-10 -8 (-15 -1607 ((-107) |#1| |#1|)) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -2269 (|#1| (-1075))) (-15 -2200 (|#1|)) (-15 -1288 (|#1| |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -2269 ((-787) |#1|))) (-910 |#2|) (-509)) (T -909))
+((-2950 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-909 *3 *4)) (-4 *3 (-910 *4)))))
+(-10 -8 (-15 -1607 ((-107) |#1| |#1|)) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -2269 (|#1| (-1075))) (-15 -2200 (|#1|)) (-15 -1288 (|#1| |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -2399 ((-812 (-517) |#1|) |#1| (-815 (-517)) (-812 (-517) |#1|))) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -2306 ((-623 |#2|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3297 ((|#1| $) 139 (|has| |#1| (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 130 (|has| |#1| (-832)))) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 133 (|has| |#1| (-832)))) (-3998 (((-107) $ $) 59)) (-1323 (((-517) $) 120 (|has| |#1| (-752)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 178) (((-3 (-1075) "failed") $) 128 (|has| |#1| (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-953 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-953 (-517))))) (-3388 ((|#1| $) 177) (((-1075) $) 127 (|has| |#1| (-953 (-1075)))) (((-377 (-517)) $) 111 (|has| |#1| (-953 (-517)))) (((-517) $) 109 (|has| |#1| (-953 (-517))))) (-2378 (($ $ $) 55)) (-2306 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3163 (((-3 $ "failed") $) 34)) (-2200 (($) 137 (|has| |#1| (-502)))) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-3523 (((-107) $) 122 (|has| |#1| (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 146 (|has| |#1| (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 145 (|has| |#1| (-809 (-349))))) (-1865 (((-107) $) 31)) (-3967 (($ $) 141)) (-3824 ((|#1| $) 143)) (-3572 (((-3 $ "failed") $) 108 (|has| |#1| (-1051)))) (-1469 (((-107) $) 121 (|has| |#1| (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3456 (($ $ $) 118 (|has| |#1| (-779)))) (-4082 (($ $ $) 117 (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) 169)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-2585 (($) 107 (|has| |#1| (-1051)) CONST)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1288 (($ $) 138 (|has| |#1| (-278)))) (-2309 ((|#1| $) 135 (|has| |#1| (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 132 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 131 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) 170 (|has| |#1| (-478 (-1075) |#1|)))) (-4094 (((-703) $) 58)) (-2607 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-2059 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1075)) 164 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 163 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 162 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 161 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3596 (($ $) 140)) (-2097 ((|#1| $) 142)) (-3357 (((-815 (-517)) $) 148 (|has| |#1| (-558 (-815 (-517))))) (((-815 (-349)) $) 147 (|has| |#1| (-558 (-815 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-938))) (((-199) $) 123 (|has| |#1| (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 134 (-3992 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1075)) 129 (|has| |#1| (-953 (-1075))))) (-2650 (((-3 $ "failed") $) 126 (-3745 (|has| |#1| (-132)) (-3992 (|has| $ (-132)) (|has| |#1| (-832)))))) (-2950 (((-703)) 29)) (-3475 ((|#1| $) 136 (|has| |#1| (-502)))) (-2914 (((-107) $ $) 39)) (-2339 (($ $) 119 (|has| |#1| (-752)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1075)) 160 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 159 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 158 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 157 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1641 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1703 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-910 |#1|) (-1187) (-509)) (T -910))
+((-1703 (*1 *1 *2 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))) (-3967 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-1288 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2200 (*1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
+(-13 (-333) (-37 |t#1|) (-953 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-807 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1703 ($ |t#1| |t#1|)) (-15 -3824 (|t#1| $)) (-15 -2097 (|t#1| $)) (-15 -3967 ($ $)) (-15 -3596 ($ $)) (IF (|has| |t#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |t#1| (-953 (-517))) (PROGN (-6 (-953 (-517))) (-6 (-953 (-377 (-517))))) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |%noBranch|) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-953 (-1075))) (-6 (-953 (-1075))) |%noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -3297 (|t#1| $)) (-15 -1288 ($ $))) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2200 ($)) (-15 -3475 (|t#1| $)) (-15 -2309 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-938)) ((-558 (-349)) |has| |#1| (-938)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-815 (-349))) |has| |#1| (-558 (-815 (-349)))) ((-558 (-815 (-517))) |has| |#1| (-558 (-815 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3745 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-809 (-349)) |has| |#1| (-809 (-349))) ((-809 (-517)) |has| |#1| (-809 (-517))) ((-807 |#1|) . T) ((-832) |has| |#1| (-832)) ((-843) . T) ((-938) |has| |#1| (-938)) ((-953 (-377 (-517))) |has| |#1| (-953 (-517))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 (-1075)) |has| |#1| (-953 (-1075))) ((-953 |#1|) . T) ((-968 #0#) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| |#1| (-1051)) ((-1110) . T) ((-1114) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-1746 (($ (-1042 |#1| |#2|)) 11)) (-2369 (((-1042 |#1| |#2|) $) 12)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2607 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2269 (((-787) $) NIL)) (-3608 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
+(((-911 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1746 ($ (-1042 |#1| |#2|))) (-15 -2369 ((-1042 |#1| |#2|) $)) (-15 -2607 (|#2| $ (-214 |#1| |#2|))))) (-844) (-333)) (T -911))
+((-1746 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333)) (-5 *1 (-911 *3 *4)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-5 *1 (-911 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-844)) (-4 *2 (-333)) (-5 *1 (-911 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1746 ($ (-1042 |#1| |#2|))) (-15 -2369 ((-1042 |#1| |#2|) $)) (-15 -2607 (|#2| $ (-214 |#1| |#2|)))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-2196 (($ $) 46)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-3680 (((-703) $) 45)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-4107 ((|#1| $) 44)) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3068 ((|#1| |#1| $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-4036 ((|#1| $) 47)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3285 ((|#1| $) 43)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-912 |#1|) (-1187) (-1110)) (T -912))
+((-3068 (*1 *2 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))) (-2196 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4190) (-15 -3068 (|t#1| |t#1| $)) (-15 -4036 (|t#1| $)) (-15 -2196 ($ $)) (-15 -3680 ((-703) $)) (-15 -4107 (|t#1| $)) (-15 -3285 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2033 (((-107) $) 42)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-2253 (((-3 (-377 (-517)) "failed") $) 78)) (-1654 (((-107) $) 72)) (-3652 (((-377 (-517)) $) 76)) (-1865 (((-107) $) 41)) (-2754 ((|#2| $) 22)) (-3308 (($ (-1 |#2| |#2|) $) 19)) (-2298 (($ $) 61)) (-2059 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3357 (((-493) $) 67)) (-3026 (($ $) 17)) (-2269 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-2950 (((-703)) 10)) (-2339 ((|#2| $) 71)) (-1583 (((-107) $ $) 25)) (-1607 (((-107) $ $) 69)) (-1691 (($ $) 29) (($ $ $) 28)) (-1677 (($ $ $) 26)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-913 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| (-377 (-517)))) (-15 -1607 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2298 (|#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -1865 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-914 |#2|) (-156)) (T -913))
+((-2950 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-913 *3 *4)) (-4 *3 (-914 *4)))))
+(-10 -8 (-15 -2269 (|#1| (-377 (-517)))) (-15 -1607 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2298 (|#1| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -2754 (|#2| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3308 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2269 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -1865 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2033 ((-107) |#1|)) (-15 * (|#1| (-844) |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3226 (((-3 (-517) "failed") $) 119 (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3388 (((-517) $) 120 (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) 115)) (-2306 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3163 (((-3 $ "failed") $) 34)) (-3891 ((|#1| $) 80)) (-2253 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-1654 (((-107) $) 78 (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2500 (($ |#1| |#1| |#1| |#1|) 81)) (-1865 (((-107) $) 31)) (-2754 ((|#1| $) 82)) (-3456 (($ $ $) 68 (|has| |#1| (-779)))) (-4082 (($ $ $) 67 (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) 91)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 73 (|has| |#1| (-333)))) (-2268 ((|#1| $) 83)) (-3103 ((|#1| $) 84)) (-2430 ((|#1| $) 85)) (-4123 (((-1022) $) 10)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) 92 (|has| |#1| (-478 (-1075) |#1|)))) (-2607 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-2059 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1075)) 110 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 109 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 108 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 107 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3357 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-3026 (($ $) 86)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517))))))) (-2650 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-2339 ((|#1| $) 79 (|has| |#1| (-971)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1075)) 106 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 105 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 104 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 103 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1641 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
+(((-914 |#1|) (-1187) (-156)) (T -914))
+((-3026 (*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-2500 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)) (-4 *2 (-971)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2253 (*1 *2 *1) (|partial| -12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3026 ($ $)) (-15 -2430 (|t#1| $)) (-15 -3103 (|t#1| $)) (-15 -2268 (|t#1| $)) (-15 -2754 (|t#1| $)) (-15 -2500 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3891 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-971)) (-15 -2339 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1654 ((-107) $)) (-15 -3652 ((-377 (-517)) $)) (-15 -2253 ((-3 (-377 (-517)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3745 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1075) |#1|) |has| |#1| (-478 (-1075) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 #0#) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-968 #0#) |has| |#1| (-333)) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3308 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-915 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|))) (-914 |#2|) (-156) (-914 |#4|) (-156)) (T -915))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-914 *6)) (-5 *1 (-915 *4 *5 *2 *6)) (-4 *4 (-914 *5)))))
+(-10 -7 (-15 -3308 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3891 ((|#1| $) 12)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1654 (((-107) $) NIL (|has| |#1| (-502)))) (-3652 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2500 (($ |#1| |#1| |#1| |#1|) 16)) (-1865 (((-107) $) NIL)) (-2754 ((|#1| $) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-2268 ((|#1| $) 15)) (-3103 ((|#1| $) 14)) (-2430 ((|#1| $) 13)) (-4123 (((-1022) $) NIL)) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1075) |#1|))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-478 (-1075) |#1|)))) (-2607 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2059 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-3026 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517))))))) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-2339 ((|#1| $) NIL (|has| |#1| (-971)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 8 T CONST)) (-3617 (($) 10 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
+(((-916 |#1|) (-914 |#1|) (-156)) (T -916))
+NIL
+(-914 |#1|)
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-2196 (($ $) 20)) (-2811 (($ (-583 |#1|)) 29)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-3680 (((-703) $) 22)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) 24)) (-2704 (($ |#1| $) 15)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-4107 ((|#1| $) 23)) (-1785 ((|#1| $) 19)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3068 ((|#1| |#1| $) 14)) (-3270 (((-107) $) 17)) (-1529 (($) NIL)) (-4036 ((|#1| $) 18)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) NIL)) (-3285 ((|#1| $) 26)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-917 |#1|) (-13 (-912 |#1|) (-10 -8 (-15 -2811 ($ (-583 |#1|))))) (-1004)) (T -917))
+((-2811 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-917 *3)))))
+(-13 (-912 |#1|) (-10 -8 (-15 -2811 ($ (-583 |#1|)))))
+((-3879 (($ $) 12)) (-1484 (($ $ (-517)) 13)))
+(((-918 |#1|) (-10 -8 (-15 -3879 (|#1| |#1|)) (-15 -1484 (|#1| |#1| (-517)))) (-919)) (T -918))
+NIL
+(-10 -8 (-15 -3879 (|#1| |#1|)) (-15 -1484 (|#1| |#1| (-517))))
+((-3879 (($ $) 6)) (-1484 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
+(((-919) (-1187)) (T -919))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-377 (-517))))) (-1484 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-517)))) (-3879 (*1 *1 *1) (-4 *1 (-919))))
+(-13 (-10 -8 (-15 -3879 ($ $)) (-15 -1484 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1337 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2729 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2566 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3861 (((-623 (-377 |#2|)) (-1156 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-2008 (((-377 |#2|) $) NIL)) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1581 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3998 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2397 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-1859 (((-107)) NIL)) (-3329 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| (-377 |#2|) (-953 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-953 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1953 (($ (-1156 (-377 |#2|)) (-1156 $)) NIL) (($ (-1156 (-377 |#2|))) 70) (($ (-1156 |#2|) |#2|) NIL)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1416 (((-623 (-377 |#2|)) $ (-1156 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-377 |#2|))) (|:| |vec| (-1156 (-377 |#2|)))) (-623 $) (-1156 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3311 (((-1156 $) (-1156 $)) NIL)) (-1521 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3163 (((-3 $ "failed") $) NIL)) (-3601 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3518 (((-107) |#1| |#1|) NIL)) (-3736 (((-844)) NIL)) (-2200 (($) NIL (|has| (-377 |#2|) (-338)))) (-3444 (((-107)) NIL)) (-2214 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2354 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-2186 (($ $) NIL)) (-1672 (($) NIL (|has| (-377 |#2|) (-319)))) (-3454 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2464 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2963 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-2053 (((-844) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-844)) $) NIL (|has| (-377 |#2|) (-319)))) (-1865 (((-107) $) NIL)) (-3821 (((-703)) NIL)) (-1664 (((-1156 $) (-1156 $)) NIL)) (-2754 (((-377 |#2|) $) NIL)) (-2258 (((-583 (-875 |#1|)) (-1075)) NIL (|has| |#1| (-333)))) (-3572 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2456 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-2031 (((-844) $) NIL (|has| (-377 |#2|) (-338)))) (-1508 ((|#3| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1895 (((-1058) $) NIL)) (-2771 (((-623 (-377 |#2|))) 52)) (-1389 (((-623 (-377 |#2|))) 51)) (-2298 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2055 (($ (-1156 |#2|) |#2|) 71)) (-3941 (((-623 (-377 |#2|))) 50)) (-1932 (((-623 (-377 |#2|))) 49)) (-3379 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3481 (((-2 (|:| |num| (-1156 |#2|)) (|:| |den| |#2|)) $) 77)) (-3706 (((-1156 $)) 46)) (-3057 (((-1156 $)) 45)) (-1576 (((-107) $) NIL)) (-3256 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2585 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2810 (($ (-844)) NIL (|has| (-377 |#2|) (-338)))) (-1782 (((-3 |#2| "failed")) 63)) (-4123 (((-1022) $) NIL)) (-1486 (((-703)) NIL)) (-1317 (($) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| (-377 |#2|) (-333)))) (-2368 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3866 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2327 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-4094 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2607 ((|#1| $ |#1| |#1|) NIL)) (-3602 (((-3 |#2| "failed")) 62)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-4032 (((-377 |#2|) (-1156 $)) NIL) (((-377 |#2|)) 42)) (-1496 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2059 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2678 (((-623 (-377 |#2|)) (-1156 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-3586 ((|#3|) 53)) (-3958 (($) NIL (|has| (-377 |#2|) (-319)))) (-3369 (((-1156 (-377 |#2|)) $ (-1156 $)) NIL) (((-623 (-377 |#2|)) (-1156 $) (-1156 $)) NIL) (((-1156 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1156 $)) NIL)) (-3357 (((-1156 (-377 |#2|)) $) NIL) (($ (-1156 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3688 (((-1156 $) (-1156 $)) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3745 (|has| (-377 |#2|) (-953 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2650 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-1900 ((|#3| $) NIL)) (-2950 (((-703)) NIL)) (-4029 (((-107)) 60)) (-4011 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-2062 (((-1156 $)) 124)) (-2914 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1453 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2139 (((-107)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3608 (($) 94 T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-823 (-1075))))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3745 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-920 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1114) (-1132 |#1|) (-1132 (-377 |#2|)) (-377 |#2|) (-703)) (T -920))
NIL
(-312 |#1| |#2| |#3|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2190 (((-583 (-517)) $) 54)) (-2562 (($ (-583 (-517))) 62)) (-2065 (((-517) $) 40 (|has| (-517) (-278)))) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL (|has| (-517) (-752)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) 49) (((-3 (-1074) "failed") $) NIL (|has| (-517) (-952 (-1074)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-952 (-517))))) (-3232 (((-517) $) NIL) (((-1074) $) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2532 (($ $ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4100 (($) NIL (|has| (-517) (-502)))) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3107 (((-583 (-517)) $) 60)) (-3162 (((-107) $) NIL (|has| (-517) (-752)))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL)) (-1842 (((-517) $) 37)) (-3326 (((-3 $ "failed") $) NIL (|has| (-517) (-1050)))) (-1199 (((-107) $) NIL (|has| (-517) (-752)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-517) (-779)))) (-1939 (($ (-1 (-517) (-517)) $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL)) (-3680 (($) NIL (|has| (-517) (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2172 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-1561 (((-1055 (-517)) $) 59)) (-1453 (($ (-583 (-517)) (-583 (-517))) 63)) (-2908 (((-517) $) 53 (|has| (-517) (-502)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| (-517) (-831)))) (-1376 (((-388 $) $) NIL)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2049 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1074)) (-583 (-517))) NIL (|has| (-517) (-478 (-1074) (-517)))) (($ $ (-1074) (-517)) NIL (|has| (-517) (-478 (-1074) (-517))))) (-3196 (((-703) $) NIL)) (-1437 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1728 (($ $) NIL)) (-1852 (((-517) $) 39)) (-2027 (((-583 (-517)) $) 61)) (-3667 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2254 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1074)) NIL (|has| (-517) (-952 (-1074)))) (((-377 (-517)) $) 17)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-1217 (((-703)) 9)) (-2434 (((-517) $) 51 (|has| (-517) (-502)))) (-2673 (((-107) $ $) NIL)) (-1724 (($ $) NIL (|has| (-517) (-752)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 10 T CONST)) (-2411 (($) 12 T CONST)) (-2738 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1074)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| (-517) (-822 (-1074)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1600 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1534 (((-107) $ $) 14)) (-1585 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1558 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1678 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1663 (($ $) 15) (($ $ $) 22)) (-1645 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
-(((-920 |#1|) (-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2190 ((-583 (-517)) $)) (-15 -1561 ((-1055 (-517)) $)) (-15 -3107 ((-583 (-517)) $)) (-15 -2027 ((-583 (-517)) $)) (-15 -2562 ($ (-583 (-517)))) (-15 -1453 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -920))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1453 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(-13 (-909 (-517)) (-10 -8 (-15 -2254 ((-377 (-517)) $)) (-15 -2172 ((-377 (-517)) $)) (-15 -2190 ((-583 (-517)) $)) (-15 -1561 ((-1055 (-517)) $)) (-15 -3107 ((-583 (-517)) $)) (-15 -2027 ((-583 (-517)) $)) (-15 -2562 ($ (-583 (-517)))) (-15 -1453 ($ (-583 (-517)) (-583 (-517))))))
-((-2481 (((-51) (-377 (-517)) (-517)) 9)))
-(((-921) (-10 -7 (-15 -2481 ((-51) (-377 (-517)) (-517))))) (T -921))
-((-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
-(-10 -7 (-15 -2481 ((-51) (-377 (-517)) (-517))))
-((-1719 (((-517)) 13)) (-2013 (((-517)) 16)) (-2276 (((-1159) (-517)) 15)) (-2751 (((-517) (-517)) 17) (((-517)) 12)))
-(((-922) (-10 -7 (-15 -2751 ((-517))) (-15 -1719 ((-517))) (-15 -2751 ((-517) (-517))) (-15 -2276 ((-1159) (-517))) (-15 -2013 ((-517))))) (T -922))
-((-2013 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-922)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1719 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-2751 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(-10 -7 (-15 -2751 ((-517))) (-15 -1719 ((-517))) (-15 -2751 ((-517) (-517))) (-15 -2276 ((-1159) (-517))) (-15 -2013 ((-517))))
-((-1943 (((-388 |#1|) |#1|) 40)) (-1376 (((-388 |#1|) |#1|) 39)))
-(((-923 |#1|) (-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1|))) (-1131 (-377 (-517)))) (T -923))
-((-1943 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))))
-(-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1|)))
-((-3937 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-1541 (((-107) |#1|) 13)) (-3320 (((-377 (-517)) |#1|) 9)))
-(((-924 |#1|) (-10 -7 (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|))) (-952 (-377 (-517)))) (T -924))
-((-3937 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))) (-3320 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(-10 -7 (-15 -3320 ((-377 (-517)) |#1|)) (-15 -1541 ((-107) |#1|)) (-15 -3937 ((-3 (-377 (-517)) "failed") |#1|)))
-((-2412 ((|#2| $ "value" |#2|) 12)) (-1437 ((|#2| $ "value") 10)) (-2432 (((-107) $ $) 18)))
-(((-925 |#1| |#2|) (-10 -8 (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -2432 ((-107) |#1| |#1|)) (-15 -1437 (|#2| |#1| "value"))) (-926 |#2|) (-1109)) (T -925))
-NIL
-(-10 -8 (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -2432 ((-107) |#1| |#1|)) (-15 -1437 (|#2| |#1| "value")))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-2706 (($) 7 T CONST)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47)) (-3792 (((-517) $ $) 44)) (-1985 (((-107) $) 46)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-926 |#1|) (-1185) (-1109)) (T -926))
-((-2125 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) (-3792 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))) (-2432 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-4082 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4184)) (-4 *1 (-926 *3)) (-4 *3 (-1109)))) (-2412 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))) (-3967 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))))
-(-13 (-456 |t#1|) (-10 -8 (-15 -2125 ((-583 $) $)) (-15 -3883 ((-583 $) $)) (-15 -2284 ((-107) $)) (-15 -3207 (|t#1| $)) (-15 -1437 (|t#1| $ "value")) (-15 -1985 ((-107) $)) (-15 -2281 ((-583 |t#1|) $)) (-15 -3792 ((-517) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2432 ((-107) $ $)) (-15 -4082 ((-107) $ $))) |%noBranch|) (IF (|has| $ (-6 -4184)) (PROGN (-15 -2973 ($ $ (-583 $))) (-15 -2412 (|t#1| $ "value" |t#1|)) (-15 -3967 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1386 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3249 (((-3 $ "failed") (-1070 $) (-843) (-787)) 23) (((-3 $ "failed") (-1070 $) (-843)) 28)) (-2003 (($ $ (-517)) 49)) (-1217 (((-703)) 16)) (-3846 (((-583 $) (-1070 $)) NIL) (((-583 $) (-1070 (-377 (-517)))) 54) (((-583 $) (-1070 (-517))) 59) (((-583 $) (-874 $)) 63) (((-583 $) (-874 (-377 (-517)))) 67) (((-583 $) (-874 (-517))) 71)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
-(((-927 |#1|) (-10 -8 (-15 -1386 (|#1| (-517))) (-15 -1386 (|#1| (-377 (-517)))) (-15 -1386 (|#1| |#1| (-703))) (-15 -3846 ((-583 |#1|) (-874 (-517)))) (-15 -3846 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3846 ((-583 |#1|) (-874 |#1|))) (-15 -3846 ((-583 |#1|) (-1070 (-517)))) (-15 -3846 ((-583 |#1|) (-1070 (-377 (-517))))) (-15 -3846 ((-583 |#1|) (-1070 |#1|))) (-15 -3249 ((-3 |#1| "failed") (-1070 |#1|) (-843))) (-15 -3249 ((-3 |#1| "failed") (-1070 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2003 (|#1| |#1| (-517))) (-15 -1386 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1217 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) (-928)) (T -927))
-((-1217 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))))
-(-10 -8 (-15 -1386 (|#1| (-517))) (-15 -1386 (|#1| (-377 (-517)))) (-15 -1386 (|#1| |#1| (-703))) (-15 -3846 ((-583 |#1|) (-874 (-517)))) (-15 -3846 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3846 ((-583 |#1|) (-874 |#1|))) (-15 -3846 ((-583 |#1|) (-1070 (-517)))) (-15 -3846 ((-583 |#1|) (-1070 (-377 (-517))))) (-15 -3846 ((-583 |#1|) (-1070 |#1|))) (-15 -3249 ((-3 |#1| "failed") (-1070 |#1|) (-843))) (-15 -3249 ((-3 |#1| "failed") (-1070 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2003 (|#1| |#1| (-517))) (-15 -1386 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1217 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 89)) (-2239 (($ $) 90)) (-3531 (((-107) $) 92)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 109)) (-2674 (((-388 $) $) 110)) (-1386 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-2448 (((-107) $ $) 100)) (-3345 (((-517) $) 127)) (-2706 (($) 17 T CONST)) (-3249 (((-3 $ "failed") (-1070 $) (-843) (-787)) 67) (((-3 $ "failed") (-1070 $) (-843)) 66)) (-1837 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3232 (((-517) $) 86 (|has| (-377 (-517)) (-952 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 80)) (-3150 (($ $ (-787)) 56)) (-1316 (($ $ (-787)) 55)) (-2532 (($ $ $) 104)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 103)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 98)) (-3083 (((-107) $) 111)) (-3162 (((-107) $) 125)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 72)) (-1199 (((-107) $) 126)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-4055 (($ $ $) 124)) (-3105 (($ $ $) 123)) (-2777 (((-3 (-1070 $) "failed") $) 68)) (-1500 (((-3 (-787) "failed") $) 70)) (-3046 (((-3 (-1070 $) "failed") $) 69)) (-1360 (($ (-583 $)) 96) (($ $ $) 95)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 112)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 97)) (-1387 (($ (-583 $)) 94) (($ $ $) 93)) (-1376 (((-388 $) $) 108)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 105)) (-2483 (((-3 $ "failed") $ $) 88)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3196 (((-703) $) 101)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 102)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 91)) (-3405 (((-377 (-517)) $ $) 54)) (-3846 (((-583 $) (-1070 $)) 65) (((-583 $) (-1070 (-377 (-517)))) 64) (((-583 $) (-1070 (-517))) 63) (((-583 $) (-874 $)) 62) (((-583 $) (-874 (-377 (-517)))) 61) (((-583 $) (-874 (-517))) 60)) (-1724 (($ $) 128)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 121)) (-1571 (((-107) $ $) 120)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 122)) (-1558 (((-107) $ $) 119)) (-1678 (($ $ $) 118)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
-(((-928) (-1185)) (T -928))
-((-1386 (*1 *1 *1) (-4 *1 (-928))) (-1500 (*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3046 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))) (-2777 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))) (-3249 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) (-3249 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1070 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-1386 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) (-1386 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) (-1386 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-1316 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3405 (*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))))
-(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-918) (-10 -8 (-15 -1500 ((-3 (-787) "failed") $)) (-15 -3046 ((-3 (-1070 $) "failed") $)) (-15 -2777 ((-3 (-1070 $) "failed") $)) (-15 -3249 ((-3 $ "failed") (-1070 $) (-843) (-787))) (-15 -3249 ((-3 $ "failed") (-1070 $) (-843))) (-15 -3846 ((-583 $) (-1070 $))) (-15 -3846 ((-583 $) (-1070 (-377 (-517))))) (-15 -3846 ((-583 $) (-1070 (-517)))) (-15 -3846 ((-583 $) (-874 $))) (-15 -3846 ((-583 $) (-874 (-377 (-517))))) (-15 -3846 ((-583 $) (-874 (-517)))) (-15 -1386 ($ $ (-703))) (-15 -1386 ($ $)) (-15 -1386 ($ (-377 (-517)))) (-15 -1386 ($ (-517))) (-15 -3150 ($ $ (-787))) (-15 -1316 ($ $ (-787))) (-15 -3405 ((-377 (-517)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 (-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 (-517) (-517)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 (-517)) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) |has| (-377 (-517)) (-952 (-517))) ((-967 (-377 (-517))) . T) ((-967 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-3187 (((-2 (|:| |ans| |#2|) (|:| -3633 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3187 ((-2 (|:| |ans| |#2|) (|:| -3633 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-27) (-400 |#1|))) (T -929))
-((-3187 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3633 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
-(-10 -7 (-15 -3187 ((-2 (|:| |ans| |#2|) (|:| -3633 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1289 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -1289 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1095) (-27) (-400 |#1|))) (T -930))
-((-1289 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
-(-10 -7 (-15 -1289 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1074) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -4124 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3003 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2153 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-4048 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 56)) (-1192 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 61)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -4048 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1192 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -3003 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2153 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -931))
-((-3003 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2153 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))) (-1192 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))) (-4048 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2148 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -4048 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1192 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -3003 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2153 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
-((-2346 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-3322 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -2346 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3322 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1131 |#1|)) (T -932))
-((-3322 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-2346 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2148 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
-(-10 -7 (-15 -2346 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2148 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3322 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
-((-1754 (((-1 |#1|) (-583 (-2 (|:| -3207 |#1|) (|:| -2388 (-517))))) 37)) (-2613 (((-1 |#1|) (-1005 |#1|)) 45)) (-3138 (((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517)) 34)))
-(((-933 |#1|) (-10 -7 (-15 -2613 ((-1 |#1|) (-1005 |#1|))) (-15 -1754 ((-1 |#1|) (-583 (-2 (|:| -3207 |#1|) (|:| -2388 (-517)))))) (-15 -3138 ((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517)))) (-1003)) (T -933))
-((-3138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *6)) (-5 *4 (-1154 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3207 *4) (|:| -2388 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
-(-10 -7 (-15 -2613 ((-1 |#1|) (-1005 |#1|))) (-15 -1754 ((-1 |#1|) (-583 (-2 (|:| -3207 |#1|) (|:| -2388 (-517)))))) (-15 -3138 ((-1 |#1|) (-1154 |#1|) (-1154 (-517)) (-517))))
-((-3730 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3730 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1131 |#1|) (-1131 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -934))
-((-3730 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-4 *4 (-1131 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3730 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2604 (((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) 31) (((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517))) 28)) (-2421 (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) 32) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|) 27)) (-1961 (((-583 (-377 (-517))) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) 19)) (-2812 (((-377 (-517)) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) 16)))
-(((-935 |#1|) (-10 -7 (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|)) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2812 ((-377 (-517)) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -1961 ((-583 (-377 (-517))) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))))) (-1131 (-517))) (T -935))
-((-1961 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))) (-2604 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) (-2604 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) (-2421 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *5) (|:| -3633 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3623 *5) (|:| -3633 *5))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-377 (-517))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) (-2421 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))))
-(-10 -7 (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|)) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2812 ((-377 (-517)) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -1961 ((-583 (-377 (-517))) (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))))
-((-2604 (((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) 35) (((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517))) 32)) (-2421 (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) 28) (((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|) 24)))
-(((-936 |#1|) (-10 -7 (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|)) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) (-1131 (-377 (-517)))) (T -936))
-((-2604 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) (-2604 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) (-2421 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *5) (|:| -3633 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *5)) (-5 *4 (-2 (|:| -3623 *5) (|:| -3633 *5))))) (-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *4) (|:| -3633 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))) (-5 *4 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) (-2421 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))))
-(-10 -7 (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1|)) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2421 ((-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-377 (-517)))) (-15 -2604 ((-3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) "failed") |#1| (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))) (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))))
-((-3667 (((-199) $) 6) (((-349) $) 9)))
-(((-937) (-1185)) (T -937))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1829 (((-583 (-517)) $) 54)) (-1366 (($ (-583 (-517))) 62)) (-3297 (((-517) $) 40 (|has| (-517) (-278)))) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL (|has| (-517) (-752)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) 49) (((-3 (-1075) "failed") $) NIL (|has| (-517) (-953 (-1075)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-953 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-953 (-517))))) (-3388 (((-517) $) NIL) (((-1075) $) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) NIL (|has| (-517) (-953 (-517)))) (((-517) $) NIL (|has| (-517) (-953 (-517))))) (-2378 (($ $ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2200 (($) NIL (|has| (-517) (-502)))) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2082 (((-583 (-517)) $) 60)) (-3523 (((-107) $) NIL (|has| (-517) (-752)))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (|has| (-517) (-809 (-517)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (|has| (-517) (-809 (-349))))) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL)) (-3824 (((-517) $) 37)) (-3572 (((-3 $ "failed") $) NIL (|has| (-517) (-1051)))) (-1469 (((-107) $) NIL (|has| (-517) (-752)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-517) (-779)))) (-3308 (($ (-1 (-517) (-517)) $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL)) (-2585 (($) NIL (|has| (-517) (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1288 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-1339 (((-1056 (-517)) $) 59)) (-2441 (($ (-583 (-517)) (-583 (-517))) 63)) (-2309 (((-517) $) 53 (|has| (-517) (-502)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| (-517) (-832)))) (-3866 (((-388 $) $) NIL)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3522 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1075)) (-583 (-517))) NIL (|has| (-517) (-478 (-1075) (-517)))) (($ $ (-1075) (-517)) NIL (|has| (-517) (-478 (-1075) (-517))))) (-4094 (((-703) $) NIL)) (-2607 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-3596 (($ $) NIL)) (-2097 (((-517) $) 39)) (-2108 (((-583 (-517)) $) 61)) (-3357 (((-815 (-517)) $) NIL (|has| (-517) (-558 (-815 (-517))))) (((-815 (-349)) $) NIL (|has| (-517) (-558 (-815 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-938))) (((-199) $) NIL (|has| (-517) (-938)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-832))))) (-2269 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1075)) NIL (|has| (-517) (-953 (-1075)))) (((-377 (-517)) $) 17)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-517) (-832))) (|has| (-517) (-132))))) (-2950 (((-703)) 9)) (-3475 (((-517) $) 51 (|has| (-517) (-502)))) (-2914 (((-107) $ $) NIL)) (-2339 (($ $) NIL (|has| (-517) (-752)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 10 T CONST)) (-3617 (($) 12 T CONST)) (-3340 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1075)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| (-517) (-823 (-1075)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1641 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) 14)) (-1629 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1607 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1703 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1691 (($ $) 15) (($ $ $) 22)) (-1677 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
+(((-921 |#1|) (-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -1829 ((-583 (-517)) $)) (-15 -1339 ((-1056 (-517)) $)) (-15 -2082 ((-583 (-517)) $)) (-15 -2108 ((-583 (-517)) $)) (-15 -1366 ($ (-583 (-517)))) (-15 -2441 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -921))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))) (-2441 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(-13 (-910 (-517)) (-10 -8 (-15 -2269 ((-377 (-517)) $)) (-15 -1288 ((-377 (-517)) $)) (-15 -1829 ((-583 (-517)) $)) (-15 -1339 ((-1056 (-517)) $)) (-15 -2082 ((-583 (-517)) $)) (-15 -2108 ((-583 (-517)) $)) (-15 -1366 ($ (-583 (-517)))) (-15 -2441 ($ (-583 (-517)) (-583 (-517))))))
+((-3944 (((-51) (-377 (-517)) (-517)) 9)))
+(((-922) (-10 -7 (-15 -3944 ((-51) (-377 (-517)) (-517))))) (T -922))
+((-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-922)))))
+(-10 -7 (-15 -3944 ((-51) (-377 (-517)) (-517))))
+((-2397 (((-517)) 13)) (-1206 (((-517)) 16)) (-3731 (((-1161) (-517)) 15)) (-2402 (((-517) (-517)) 17) (((-517)) 12)))
+(((-923) (-10 -7 (-15 -2402 ((-517))) (-15 -2397 ((-517))) (-15 -2402 ((-517) (-517))) (-15 -3731 ((-1161) (-517))) (-15 -1206 ((-517))))) (T -923))
+((-1206 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-923)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))) (-2397 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))) (-2402 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))))
+(-10 -7 (-15 -2402 ((-517))) (-15 -2397 ((-517))) (-15 -2402 ((-517) (-517))) (-15 -3731 ((-1161) (-517))) (-15 -1206 ((-517))))
+((-1625 (((-388 |#1|) |#1|) 40)) (-3866 (((-388 |#1|) |#1|) 39)))
+(((-924 |#1|) (-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1|))) (-1132 (-377 (-517)))) (T -924))
+((-1625 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1132 (-377 (-517)))))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1132 (-377 (-517)))))))
+(-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1|)))
+((-2253 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-1654 (((-107) |#1|) 13)) (-3652 (((-377 (-517)) |#1|) 9)))
+(((-925 |#1|) (-10 -7 (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|))) (-953 (-377 (-517)))) (T -925))
+((-2253 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-925 *3)) (-4 *3 (-953 *2)))) (-1654 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-925 *3)) (-4 *3 (-953 (-377 (-517)))))) (-3652 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-925 *3)) (-4 *3 (-953 *2)))))
+(-10 -7 (-15 -3652 ((-377 (-517)) |#1|)) (-15 -1654 ((-107) |#1|)) (-15 -2253 ((-3 (-377 (-517)) "failed") |#1|)))
+((-2443 ((|#2| $ "value" |#2|) 12)) (-2607 ((|#2| $ "value") 10)) (-2198 (((-107) $ $) 18)))
+(((-926 |#1| |#2|) (-10 -8 (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -2198 ((-107) |#1| |#1|)) (-15 -2607 (|#2| |#1| "value"))) (-927 |#2|) (-1110)) (T -926))
+NIL
+(-10 -8 (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -2198 ((-107) |#1| |#1|)) (-15 -2607 (|#2| |#1| "value")))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-1681 (($) 7 T CONST)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47)) (-2093 (((-517) $ $) 44)) (-1657 (((-107) $) 46)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-927 |#1|) (-1187) (-1110)) (T -927))
+((-1497 (*1 *2 *1) (-12 (-4 *3 (-1110)) (-5 *2 (-583 *1)) (-4 *1 (-927 *3)))) (-1345 (*1 *2 *1) (-12 (-4 *3 (-1110)) (-5 *2 (-583 *1)) (-4 *1 (-927 *3)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1110)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-927 *2)) (-4 *2 (-1110)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-583 *3)))) (-2093 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-517)))) (-2198 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-107)))) (-1528 (*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-107)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4191)) (-4 *1 (-927 *3)) (-4 *3 (-1110)))) (-2443 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4191)) (-4 *1 (-927 *2)) (-4 *2 (-1110)))) (-2482 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-927 *2)) (-4 *2 (-1110)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -1497 ((-583 $) $)) (-15 -1345 ((-583 $) $)) (-15 -4141 ((-107) $)) (-15 -3119 (|t#1| $)) (-15 -2607 (|t#1| $ "value")) (-15 -1657 ((-107) $)) (-15 -1938 ((-583 |t#1|) $)) (-15 -2093 ((-517) $ $)) (IF (|has| |t#1| (-1004)) (PROGN (-15 -2198 ((-107) $ $)) (-15 -1528 ((-107) $ $))) |%noBranch|) (IF (|has| $ (-6 -4191)) (PROGN (-15 -1374 ($ $ (-583 $))) (-15 -2443 (|t#1| $ "value" |t#1|)) (-15 -2482 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-3879 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3772 (((-3 $ "failed") (-1071 $) (-844) (-787)) 23) (((-3 $ "failed") (-1071 $) (-844)) 28)) (-1484 (($ $ (-517)) 49)) (-2950 (((-703)) 16)) (-3132 (((-583 $) (-1071 $)) NIL) (((-583 $) (-1071 (-377 (-517)))) 54) (((-583 $) (-1071 (-517))) 59) (((-583 $) (-875 $)) 63) (((-583 $) (-875 (-377 (-517)))) 67) (((-583 $) (-875 (-517))) 71)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
+(((-928 |#1|) (-10 -8 (-15 -3879 (|#1| (-517))) (-15 -3879 (|#1| (-377 (-517)))) (-15 -3879 (|#1| |#1| (-703))) (-15 -3132 ((-583 |#1|) (-875 (-517)))) (-15 -3132 ((-583 |#1|) (-875 (-377 (-517))))) (-15 -3132 ((-583 |#1|) (-875 |#1|))) (-15 -3132 ((-583 |#1|) (-1071 (-517)))) (-15 -3132 ((-583 |#1|) (-1071 (-377 (-517))))) (-15 -3132 ((-583 |#1|) (-1071 |#1|))) (-15 -3772 ((-3 |#1| "failed") (-1071 |#1|) (-844))) (-15 -3772 ((-3 |#1| "failed") (-1071 |#1|) (-844) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1484 (|#1| |#1| (-517))) (-15 -3879 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2950 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844)))) (-929)) (T -928))
+((-2950 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-928 *3)) (-4 *3 (-929)))))
+(-10 -8 (-15 -3879 (|#1| (-517))) (-15 -3879 (|#1| (-377 (-517)))) (-15 -3879 (|#1| |#1| (-703))) (-15 -3132 ((-583 |#1|) (-875 (-517)))) (-15 -3132 ((-583 |#1|) (-875 (-377 (-517))))) (-15 -3132 ((-583 |#1|) (-875 |#1|))) (-15 -3132 ((-583 |#1|) (-1071 (-517)))) (-15 -3132 ((-583 |#1|) (-1071 (-377 (-517))))) (-15 -3132 ((-583 |#1|) (-1071 |#1|))) (-15 -3772 ((-3 |#1| "failed") (-1071 |#1|) (-844))) (-15 -3772 ((-3 |#1| "failed") (-1071 |#1|) (-844) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1484 (|#1| |#1| (-517))) (-15 -3879 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2950 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 89)) (-2729 (($ $) 90)) (-2566 (((-107) $) 92)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 109)) (-1581 (((-388 $) $) 110)) (-3879 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-3998 (((-107) $ $) 100)) (-1323 (((-517) $) 127)) (-1681 (($) 17 T CONST)) (-3772 (((-3 $ "failed") (-1071 $) (-844) (-787)) 67) (((-3 $ "failed") (-1071 $) (-844)) 66)) (-3226 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-953 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3388 (((-517) $) 86 (|has| (-377 (-517)) (-953 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-953 (-377 (-517))))) (((-377 (-517)) $) 80)) (-1853 (($ $ (-787)) 56)) (-1209 (($ $ (-787)) 55)) (-2378 (($ $ $) 104)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 103)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 98)) (-2963 (((-107) $) 111)) (-3523 (((-107) $) 125)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 72)) (-1469 (((-107) $) 126)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-3456 (($ $ $) 124)) (-4082 (($ $ $) 123)) (-1591 (((-3 (-1071 $) "failed") $) 68)) (-2045 (((-3 (-787) "failed") $) 70)) (-2780 (((-3 (-1071 $) "failed") $) 69)) (-2330 (($ (-583 $)) 96) (($ $ $) 95)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 112)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 97)) (-2368 (($ (-583 $)) 94) (($ $ $) 93)) (-3866 (((-388 $) $) 108)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 105)) (-2327 (((-3 $ "failed") $ $) 88)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-4094 (((-703) $) 101)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 102)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 91)) (-2202 (((-377 (-517)) $ $) 54)) (-3132 (((-583 $) (-1071 $)) 65) (((-583 $) (-1071 (-377 (-517)))) 64) (((-583 $) (-1071 (-517))) 63) (((-583 $) (-875 $)) 62) (((-583 $) (-875 (-377 (-517)))) 61) (((-583 $) (-875 (-517))) 60)) (-2339 (($ $) 128)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 121)) (-1617 (((-107) $ $) 120)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 122)) (-1607 (((-107) $ $) 119)) (-1703 (($ $ $) 118)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
+(((-929) (-1187)) (T -929))
+((-3879 (*1 *1 *1) (-4 *1 (-929))) (-2045 (*1 *2 *1) (|partial| -12 (-4 *1 (-929)) (-5 *2 (-787)))) (-2780 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071 *1)) (-4 *1 (-929)))) (-1591 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071 *1)) (-4 *1 (-929)))) (-3772 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1071 *1)) (-5 *3 (-844)) (-5 *4 (-787)) (-4 *1 (-929)))) (-3772 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1071 *1)) (-5 *3 (-844)) (-4 *1 (-929)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-929)) (-5 *2 (-583 *1)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-1071 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-929)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-1071 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-929)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-929)) (-5 *2 (-583 *1)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-929)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-929)))) (-3879 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-703)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-929)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-929)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-787)))) (-1209 (*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-787)))) (-2202 (*1 *2 *1 *1) (-12 (-4 *1 (-929)) (-5 *2 (-377 (-517))))))
+(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-919) (-10 -8 (-15 -2045 ((-3 (-787) "failed") $)) (-15 -2780 ((-3 (-1071 $) "failed") $)) (-15 -1591 ((-3 (-1071 $) "failed") $)) (-15 -3772 ((-3 $ "failed") (-1071 $) (-844) (-787))) (-15 -3772 ((-3 $ "failed") (-1071 $) (-844))) (-15 -3132 ((-583 $) (-1071 $))) (-15 -3132 ((-583 $) (-1071 (-377 (-517))))) (-15 -3132 ((-583 $) (-1071 (-517)))) (-15 -3132 ((-583 $) (-875 $))) (-15 -3132 ((-583 $) (-875 (-377 (-517))))) (-15 -3132 ((-583 $) (-875 (-517)))) (-15 -3879 ($ $ (-703))) (-15 -3879 ($ $)) (-15 -3879 ($ (-377 (-517)))) (-15 -3879 ($ (-517))) (-15 -1853 ($ $ (-787))) (-15 -1209 ($ $ (-787))) (-15 -2202 ((-377 (-517)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 #1=(-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 #1#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-843) . T) ((-919) . T) ((-953 (-377 (-517))) . T) ((-953 (-517)) |has| (-377 (-517)) (-953 (-517))) ((-968 #0#) . T) ((-968 #1#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-1325 (((-2 (|:| |ans| |#2|) (|:| -3298 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -1325 ((-2 (|:| |ans| |#2|) (|:| -3298 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-27) (-400 |#1|))) (T -930))
+((-1325 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1075)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1096) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-953 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3298 *4) (|:| |sol?| (-107)))) (-5 *1 (-930 *8 *4)))))
+(-10 -7 (-15 -1325 ((-2 (|:| |ans| |#2|) (|:| -3298 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2767 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -2767 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))) (-13 (-1096) (-27) (-400 |#1|))) (T -931))
+((-2767 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1075)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1096) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-953 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-931 *8 *4)))))
+(-10 -7 (-15 -2767 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -1306 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3018 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3779 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2981 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 57)) (-2178 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 62)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -2981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2178 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -3018 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3779 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-953 (-517))) (-1132 |#1|)) (T -932))
+((-3018 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1132 *6)) (-4 *6 (-13 (-333) (-134) (-953 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -3779 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-932 *6 *3)))) (-2178 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-2981 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -1712 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2178 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -3018 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3779 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
+((-2425 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-3968 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
+(((-933 |#1| |#2|) (-10 -7 (-15 -2425 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3968 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-953 (-517))) (-1132 |#1|)) (T -933))
+((-3968 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-933 *4 *5)) (-5 *3 (-377 *5)))) (-2425 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1712 *6))) (-5 *1 (-933 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2425 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1712 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3968 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
+((-1505 (((-1 |#1|) (-583 (-2 (|:| -3119 |#1|) (|:| -1463 (-517))))) 37)) (-4045 (((-1 |#1|) (-1006 |#1|)) 45)) (-3599 (((-1 |#1|) (-1156 |#1|) (-1156 (-517)) (-517)) 34)))
+(((-934 |#1|) (-10 -7 (-15 -4045 ((-1 |#1|) (-1006 |#1|))) (-15 -1505 ((-1 |#1|) (-583 (-2 (|:| -3119 |#1|) (|:| -1463 (-517)))))) (-15 -3599 ((-1 |#1|) (-1156 |#1|) (-1156 (-517)) (-517)))) (-1004)) (T -934))
+((-3599 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1156 *6)) (-5 *4 (-1156 (-517))) (-5 *5 (-517)) (-4 *6 (-1004)) (-5 *2 (-1 *6)) (-5 *1 (-934 *6)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3119 *4) (|:| -1463 (-517))))) (-4 *4 (-1004)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-1006 *4)) (-4 *4 (-1004)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4)))))
+(-10 -7 (-15 -4045 ((-1 |#1|) (-1006 |#1|))) (-15 -1505 ((-1 |#1|) (-583 (-2 (|:| -3119 |#1|) (|:| -1463 (-517)))))) (-15 -3599 ((-1 |#1|) (-1156 |#1|) (-1156 (-517)) (-517))))
+((-2053 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-935 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2053 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1132 |#1|) (-1132 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -935))
+((-2053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1132 *6)) (-4 *4 (-1132 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-935 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2053 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2403 (((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) 31) (((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517))) 28)) (-2454 (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) 32) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|) 27)) (-2148 (((-583 (-377 (-517))) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) 19)) (-3019 (((-377 (-517)) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) 16)))
+(((-936 |#1|) (-10 -7 (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|)) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -3019 ((-377 (-517)) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2148 ((-583 (-377 (-517))) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))))) (-1132 (-517))) (T -936))
+((-2148 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-936 *4)) (-4 *4 (-1132 (-517))))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-936 *4)) (-4 *4 (-1132 (-517))))) (-2403 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))))) (-2403 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3286 *5) (|:| -3298 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))) (-5 *4 (-2 (|:| -3286 *5) (|:| -3298 *5))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))) (-5 *4 (-377 (-517))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))) (-5 *4 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))) (-2454 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))))))
+(-10 -7 (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|)) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -3019 ((-377 (-517)) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2148 ((-583 (-377 (-517))) (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))))
+((-2403 (((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) 35) (((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517))) 32)) (-2454 (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) 28) (((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|) 24)))
+(((-937 |#1|) (-10 -7 (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|)) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))) (-1132 (-377 (-517)))) (T -937))
+((-2403 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517)))))) (-2403 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-937 *3)) (-4 *3 (-1132 *4)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3286 *5) (|:| -3298 *5)))) (-5 *1 (-937 *3)) (-4 *3 (-1132 *5)) (-5 *4 (-2 (|:| -3286 *5) (|:| -3298 *5))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3286 *4) (|:| -3298 *4)))) (-5 *1 (-937 *3)) (-4 *3 (-1132 *4)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517)))) (-5 *4 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))) (-2454 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517)))))))
+(-10 -7 (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1|)) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2454 ((-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-377 (-517)))) (-15 -2403 ((-3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) "failed") |#1| (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))) (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))))
+((-3357 (((-199) $) 6) (((-349) $) 9)))
+(((-938) (-1187)) (T -938))
NIL
(-13 (-558 (-199)) (-558 (-349)))
(((-558 (-199)) . T) ((-558 (-349)) . T))
-((-1955 (((-583 (-349)) (-874 (-517)) (-349)) 27) (((-583 (-349)) (-874 (-377 (-517))) (-349)) 26)) (-1246 (((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349)) 36)))
-(((-938) (-10 -7 (-15 -1955 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1955 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -1246 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349))))) (T -938))
-((-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))))
-(-10 -7 (-15 -1955 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1955 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -1246 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1074)) (-349))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 70)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-1386 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) 65)) (-2706 (($) NIL T CONST)) (-3249 (((-3 $ "failed") (-1070 $) (-843) (-787)) NIL) (((-3 $ "failed") (-1070 $) (-843)) 49)) (-1837 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3782 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3232 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3782 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3150 (($ $ (-787)) 40)) (-1316 (($ $ (-787)) 41)) (-2532 (($ $ $) NIL)) (-2764 (((-377 (-517)) $ $) 18)) (-3775 (((-3 $ "failed") $) 83)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-3162 (((-107) $) 60)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL)) (-1199 (((-107) $) 63)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-2777 (((-3 (-1070 $) "failed") $) 78)) (-1500 (((-3 (-787) "failed") $) 77)) (-3046 (((-3 (-1070 $) "failed") $) 75)) (-1295 (((-3 (-971 $ (-1070 $)) "failed") $) 73)) (-1360 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 84)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-2254 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-1217 (((-703)) NIL)) (-2673 (((-107) $ $) NIL)) (-3405 (((-377 (-517)) $ $) 24)) (-3846 (((-583 $) (-1070 $)) 55) (((-583 $) (-1070 (-377 (-517)))) NIL) (((-583 $) (-1070 (-517))) NIL) (((-583 $) (-874 $)) NIL) (((-583 $) (-874 (-377 (-517)))) NIL) (((-583 $) (-874 (-517))) NIL)) (-2862 (($ (-971 $ (-1070 $)) (-787)) 39)) (-1724 (($ $) 19)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2398 (($) 28 T CONST)) (-2411 (($) 34 T CONST)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 71)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 21)) (-1678 (($ $ $) 32)) (-1663 (($ $) 33) (($ $ $) 69)) (-1645 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
-(((-939 |#1|) (-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2862 ($ (-971 $ (-1070 $)) (-787))) (-15 -1295 ((-3 (-971 $ (-1070 $)) "failed") $)) (-15 -2764 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-937))) (T -939))
-((-2862 (*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1070 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1070 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) (-2764 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
-(-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2862 ($ (-971 $ (-1070 $)) (-787))) (-15 -1295 ((-3 (-971 $ (-1070 $)) "failed") $)) (-15 -2764 ((-377 (-517)) $ $))))
-((-1827 (((-2 (|:| -2153 |#2|) (|:| -3819 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -1827 (|#2| |#2| |#1|)) (-15 -1827 ((-2 (|:| -2153 |#2|) (|:| -3819 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -940))
-((-1827 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2153 *3) (|:| -3819 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-1827 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))))
-(-10 -7 (-15 -1827 (|#2| |#2| |#1|)) (-15 -1827 ((-2 (|:| -2153 |#2|) (|:| -3819 (-583 |#1|))) |#2| (-583 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2943 ((|#1| $ |#1|) 14)) (-2412 ((|#1| $ |#1|) 12)) (-3479 (($ |#1|) 10)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1437 ((|#1| $) 11)) (-3872 ((|#1| $) 13)) (-2254 (((-787) $) 21 (|has| |#1| (-1003)))) (-1534 (((-107) $ $) 9)))
-(((-941 |#1|) (-13 (-1109) (-10 -8 (-15 -3479 ($ |#1|)) (-15 -1437 (|#1| $)) (-15 -2412 (|#1| $ |#1|)) (-15 -3872 (|#1| $)) (-15 -2943 (|#1| $ |#1|)) (-15 -1534 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|))) (-1109)) (T -941))
-((-3479 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-1437 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-2412 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-3872 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-2943 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) (-1534 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -3479 ($ |#1|)) (-15 -1437 (|#1| $)) (-15 -2412 (|#1| $ |#1|)) (-15 -3872 (|#1| $)) (-15 -2943 (|#1| $ |#1|)) (-15 -1534 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3258 (((-583 $) (-583 |#4|)) 104) (((-583 $) (-583 |#4|) (-107)) 105) (((-583 $) (-583 |#4|) (-107) (-107)) 103) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 106)) (-1357 (((-583 |#3|) $) NIL)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2802 ((|#4| |#4| $) NIL)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 98)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 53)) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) 26 (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3381 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3232 (($ (-583 |#4|)) NIL)) (-1761 (((-3 $ "failed") $) 39)) (-3896 ((|#4| |#4| $) 56)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2050 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3797 ((|#4| |#4| $) NIL)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) NIL)) (-1262 (((-107) |#4| $) NIL)) (-4030 (((-107) |#4| $) NIL)) (-2031 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3976 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 118)) (-3240 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2877 ((|#3| $) 33)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3696 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 21)) (-2402 (((-583 |#3|) $) NIL)) (-1694 (((-107) |#3| $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 96)) (-2067 (((-3 |#4| "failed") $) 37)) (-3805 (((-583 $) |#4| $) 79)) (-1956 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-2375 (((-583 $) |#4| $) 101) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 102) (((-583 $) |#4| (-583 $)) NIL)) (-3922 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 113)) (-3912 (($ |#4| $) 69) (($ (-583 |#4|) $) 70) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-2825 (((-583 |#4|) $) NIL)) (-1966 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4083 ((|#4| |#4| $) NIL)) (-3706 (((-107) $ $) NIL)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1382 ((|#4| |#4| $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-3 |#4| "failed") $) 35)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2463 (((-3 $ "failed") $ |#4|) 47)) (-2204 (($ $ |#4|) NIL) (((-583 $) |#4| $) 81) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 76)) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 15)) (-2756 (($) 13)) (-3625 (((-703) $) NIL)) (-3223 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) 12)) (-3667 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 20)) (-1491 (($ $ |#3|) 42)) (-2583 (($ $ |#3|) 43)) (-2202 (($ $) NIL)) (-3788 (($ $ |#3|) NIL)) (-2254 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1444 (((-703) $) NIL (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1597 (((-583 $) |#4| $) 78) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) NIL)) (-2710 (((-107) |#4| $) NIL)) (-1892 (((-107) |#3| $) 52)) (-1534 (((-107) $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-942 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3912 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3922 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3976 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -942))
-((-3912 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-3258 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3258 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3922 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3976 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3912 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3922 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3976 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-2514 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-3069 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 51) (((-623 |#1|) (-623 |#1|) (-843)) 50)) (-3188 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-827 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-827 (-517)) (-517)) 62)) (-4105 (((-623 (-874 |#1|)) (-703)) 80)) (-3710 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 37 (|has| |#1| (-6 (-4185 "*")))) (((-623 |#1|) (-623 |#1|) (-843)) 35 (|has| |#1| (-6 (-4185 "*"))))))
-(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3710 ((-623 |#1|) (-623 |#1|) (-843))) |%noBranch|) (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3710 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |%noBranch|) (-15 -4105 ((-623 (-874 |#1|)) (-703))) (-15 -3069 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -3069 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -2514 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2514 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2514 ((-623 |#1|) (-623 |#1|))) (-15 -2514 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3188 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3188 ((-623 (-517)) (-583 (-517)))) (-15 -3188 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3188 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-961)) (T -943))
-((-3188 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3069 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3710 ((-623 |#1|) (-623 |#1|) (-843))) |%noBranch|) (IF (|has| |#1| (-6 (-4185 "*"))) (-15 -3710 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |%noBranch|) (-15 -4105 ((-623 (-874 |#1|)) (-703))) (-15 -3069 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -3069 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -2514 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2514 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -2514 ((-623 |#1|) (-623 |#1|))) (-15 -2514 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3188 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3188 ((-623 (-517)) (-583 (-517)))) (-15 -3188 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3188 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
-((-3267 (((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)) 48 (|has| |#1| (-278)))) (-3447 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|)) 76 (|has| |#1| (-333)))) (-3780 (((-1154 |#1|) (-583 (-1154 |#1|)) (-517)) 90 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-2273 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843)) 82 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 79 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-4069 (((-107) (-583 (-623 |#1|))) 68 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 70 (|has| |#1| (-333)))) (-3695 (((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|)) 46 (|has| |#1| (-278)))) (-3927 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 32)) (-3420 (((-623 |#1|) (-1154 (-1154 |#1|))) 29)) (-3886 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 62 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 61 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 66 (|has| |#1| (-333)))))
-(((-944 |#1|) (-10 -7 (-15 -3420 ((-623 |#1|) (-1154 (-1154 |#1|)))) (-15 -3927 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -3695 ((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -3267 ((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4069 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4069 ((-107) (-583 (-623 |#1|)))) (-15 -3447 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -3447 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -3780 ((-1154 |#1|) (-583 (-1154 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) (-961)) (T -944))
-((-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1154 *5))) (-5 *4 (-517)) (-5 *2 (-1154 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) (-2273 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 (-1154 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) (-3886 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))) (-3886 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) (-3886 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1154 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1154 (-1154 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1154 *5)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-1154 (-1154 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
-(-10 -7 (-15 -3420 ((-623 |#1|) (-1154 (-1154 |#1|)))) (-15 -3927 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -3695 ((-1154 (-1154 |#1|)) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -3267 ((-623 |#1|) (-583 (-623 |#1|)) (-1154 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3886 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4069 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4069 ((-107) (-583 (-623 |#1|)))) (-15 -3447 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 |#1|))) (-15 -3447 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1154 (-1154 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2273 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -3780 ((-1154 |#1|) (-583 (-1154 |#1|)) (-517)))) |%noBranch|) |%noBranch|))
-((-4011 ((|#1| (-843) |#1|) 9)))
-(((-945 |#1|) (-10 -7 (-15 -4011 (|#1| (-843) |#1|))) (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $))))) (T -945))
-((-4011 (*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $))))))))
-(-10 -7 (-15 -4011 (|#1| (-843) |#1|)))
-((-2944 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517))))) 58)) (-3843 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517))))) 48)) (-1612 (((-583 (-286 (-517))) (-623 (-377 (-874 (-517))))) 41)) (-1478 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))) 67)) (-2383 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2947 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-1876 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517))))) 65)))
-(((-946) (-10 -7 (-15 -2944 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -3843 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -1612 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1876 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -2383 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2947 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -1478 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))) (T -946))
-((-1478 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2383 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1876 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
-(-10 -7 (-15 -2944 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -3843 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -1612 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1876 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -2383 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2947 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -1478 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))
-((-3688 ((|#1| |#1| (-843)) 9)))
-(((-947 |#1|) (-10 -7 (-15 -3688 (|#1| |#1| (-843)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -947))
-((-3688 (*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3688 (|#1| |#1| (-843))))
-((-2254 ((|#1| (-282)) 11) (((-1159) |#1|) 9)))
-(((-948 |#1|) (-10 -7 (-15 -2254 ((-1159) |#1|)) (-15 -2254 (|#1| (-282)))) (-1109)) (T -948))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1109)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-948 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2254 ((-1159) |#1|)) (-15 -2254 (|#1| (-282))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1292 (($ |#4|) 25)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-1283 ((|#4| $) 27)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1217 (((-703)) 43)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 21 T CONST)) (-2411 (($) 23 T CONST)) (-1534 (((-107) $ $) 40)) (-1663 (($ $) 31) (($ $ $) NIL)) (-1645 (($ $ $) 29)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -1292 ($ |#4|)) (-15 -2254 ($ |#4|)) (-15 -1283 (|#4| $)))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|) (-583 |#4|)) (T -949))
-((-1292 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-1283 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(-13 (-156) (-37 |#1|) (-10 -8 (-15 -1292 ($ |#4|)) (-15 -2254 ($ |#4|)) (-15 -1283 (|#4| $))))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-2787 (((-1159) $ (-1074) (-1074)) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-3446 (((-107) (-107)) 39)) (-1432 (((-107) (-107)) 38)) (-2412 (((-51) $ (-1074) (-51)) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 (-51) "failed") (-1074) $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-1835 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1074) $) NIL)) (-2050 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3705 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -4184)))) (-3537 (((-51) $ (-1074)) NIL)) (-3240 (((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-1074) $) NIL (|has| (-1074) (-779)))) (-2332 (((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3920 (((-1074) $) NIL (|has| (-1074) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3666 (((-583 (-1074)) $) 34)) (-2550 (((-107) (-1074) $) NIL)) (-3074 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL)) (-3676 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL)) (-2950 (((-583 (-1074)) $) NIL)) (-4093 (((-107) (-1074) $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-1750 (((-51) $) NIL (|has| (-1074) (-779)))) (-3222 (((-3 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) "failed") (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL)) (-2880 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3949 (((-583 (-51)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 (((-51) $ (-1074)) 35) (((-51) $ (-1074) (-51)) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-2254 (((-787) $) 37 (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-950) (-13 (-1086 (-1074) (-51)) (-10 -7 (-15 -3446 ((-107) (-107))) (-15 -1432 ((-107) (-107))) (-6 -4183)))) (T -950))
-((-3446 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(-13 (-1086 (-1074) (-51)) (-10 -7 (-15 -3446 ((-107) (-107))) (-15 -1432 ((-107) (-107))) (-6 -4183)))
-((-3232 ((|#2| $) 10)))
-(((-951 |#1| |#2|) (-10 -8 (-15 -3232 (|#2| |#1|))) (-952 |#2|) (-1109)) (T -951))
-NIL
-(-10 -8 (-15 -3232 (|#2| |#1|)))
-((-1837 (((-3 |#1| "failed") $) 7)) (-3232 ((|#1| $) 8)) (-2254 (($ |#1|) 6)))
-(((-952 |#1|) (-1185) (-1109)) (T -952))
-((-3232 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) (-1837 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) (-2254 (*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))))
-(-13 (-10 -8 (-15 -2254 ($ |t#1|)) (-15 -1837 ((-3 |t#1| "failed") $)) (-15 -3232 (|t#1| $))))
-((-3790 (((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074))) 35)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -3790 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074))))) (-509) (-13 (-509) (-952 |#1|))) (T -953))
-((-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
-(-10 -7 (-15 -3790 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1074)))))
-((-1492 (((-349)) 15)) (-2613 (((-1 (-349)) (-349) (-349)) 20)) (-2148 (((-1 (-349)) (-703)) 42)) (-2289 (((-349)) 33)) (-2565 (((-1 (-349)) (-349) (-349)) 34)) (-2030 (((-349)) 26)) (-1885 (((-1 (-349)) (-349)) 27)) (-3015 (((-349) (-703)) 37)) (-2181 (((-1 (-349)) (-703)) 38)) (-1709 (((-1 (-349)) (-703) (-703)) 41)) (-2393 (((-1 (-349)) (-703) (-703)) 39)))
-(((-954) (-10 -7 (-15 -1492 ((-349))) (-15 -2289 ((-349))) (-15 -2030 ((-349))) (-15 -3015 ((-349) (-703))) (-15 -2613 ((-1 (-349)) (-349) (-349))) (-15 -2565 ((-1 (-349)) (-349) (-349))) (-15 -1885 ((-1 (-349)) (-349))) (-15 -2181 ((-1 (-349)) (-703))) (-15 -2393 ((-1 (-349)) (-703) (-703))) (-15 -1709 ((-1 (-349)) (-703) (-703))) (-15 -2148 ((-1 (-349)) (-703))))) (T -954))
-((-2148 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1709 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2393 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2181 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2565 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2613 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))) (-2030 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-2289 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-1492 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(-10 -7 (-15 -1492 ((-349))) (-15 -2289 ((-349))) (-15 -2030 ((-349))) (-15 -3015 ((-349) (-703))) (-15 -2613 ((-1 (-349)) (-349) (-349))) (-15 -2565 ((-1 (-349)) (-349) (-349))) (-15 -1885 ((-1 (-349)) (-349))) (-15 -2181 ((-1 (-349)) (-703))) (-15 -2393 ((-1 (-349)) (-703) (-703))) (-15 -1709 ((-1 (-349)) (-703) (-703))) (-15 -2148 ((-1 (-349)) (-703))))
-((-1376 (((-388 |#1|) |#1|) 31)))
-(((-955 |#1|) (-10 -7 (-15 -1376 ((-388 |#1|) |#1|))) (-1131 (-377 (-874 (-517))))) (T -955))
-((-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1131 (-377 (-874 (-517))))))))
-(-10 -7 (-15 -1376 ((-388 |#1|) |#1|)))
-((-2465 (((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))) 14)))
-(((-956 |#1|) (-10 -7 (-15 -2465 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) (-278)) (T -956))
-((-2465 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
-(-10 -7 (-15 -2465 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|)))))
-((-1357 (((-583 (-1074)) (-377 (-874 |#1|))) 15)) (-2374 (((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074)) 22)) (-1347 (((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074)) 24)) (-3382 (((-3 (-1074) "failed") (-377 (-874 |#1|))) 18)) (-2049 (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|))))) 29) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 31) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|)))) 26) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|))) 27)) (-2254 (((-377 (-874 |#1|)) |#1|) 11)))
-(((-957 |#1|) (-10 -7 (-15 -1357 ((-583 (-1074)) (-377 (-874 |#1|)))) (-15 -3382 ((-3 (-1074) "failed") (-377 (-874 |#1|)))) (-15 -2374 ((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1347 ((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|))))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2254 ((-377 (-874 |#1|)) |#1|))) (-509)) (T -957))
-((-2254 (*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) (-2049 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2049 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2049 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) (-2049 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 (-377 (-874 *5))))) (-5 *4 (-1074)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-377 (-1070 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))) (-3382 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1074)) (-5 *1 (-957 *4)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1074))) (-5 *1 (-957 *4)))))
-(-10 -7 (-15 -1357 ((-583 (-1074)) (-377 (-874 |#1|)))) (-15 -3382 ((-3 (-1074) "failed") (-377 (-874 |#1|)))) (-15 -2374 ((-377 (-1070 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1347 ((-377 (-874 |#1|)) (-377 (-1070 (-377 (-874 |#1|)))) (-1074))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1074)) (-583 (-377 (-874 |#1|))))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2049 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2254 ((-377 (-874 |#1|)) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3258 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-1357 (((-583 (-789 |#2|)) $) NIL)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-2300 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2802 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2377 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -1341 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) NIL (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-1323 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-3381 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-2468 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3232 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1761 (((-3 $ "failed") $) NIL)) (-3896 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-2050 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-2169 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-3797 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1292 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4183))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1218 (((-2 (|:| -1219 (-583 (-712 |#1| (-789 |#2|)))) (|:| -1602 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-1262 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-4030 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2031 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3240 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2919 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2877 (((-789 |#2|) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-3696 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-2402 (((-583 (-789 |#2|)) $) NIL)) (-1694 (((-107) (-789 |#2|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-4068 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1516 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -1341 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2067 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-3805 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-1956 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2375 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-3912 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2825 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1966 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-4083 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3706 (((-107) $ $) NIL)) (-2238 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-2844 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1382 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-3222 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-2463 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-2204 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3029 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-3625 (((-703) $) NIL)) (-3223 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1491 (($ $ (-789 |#2|)) NIL)) (-2583 (($ $ (-789 |#2|)) NIL)) (-2202 (($ $) NIL)) (-3788 (($ $ (-789 |#2|)) NIL)) (-2254 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1444 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1874 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-1597 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-2258 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-4060 (((-583 (-789 |#2|)) $) NIL)) (-2710 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1892 (((-107) (-789 |#2|) $) NIL)) (-1534 (((-107) $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-958 |#1| |#2|) (-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3258 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1074))) (T -958))
-((-3258 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
-(-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3258 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
-((-2613 (((-1 (-517)) (-998 (-517))) 33)) (-2048 (((-517) (-517) (-517) (-517) (-517)) 30)) (-2685 (((-1 (-517)) |RationalNumber|) NIL)) (-1251 (((-1 (-517)) |RationalNumber|) NIL)) (-4033 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
-(((-959) (-10 -7 (-15 -2613 ((-1 (-517)) (-998 (-517)))) (-15 -4033 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -2685 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2048 ((-517) (-517) (-517) (-517) (-517))))) (T -959))
-((-2048 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))) (-1251 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-2685 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-4033 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(-10 -7 (-15 -2613 ((-1 (-517)) (-998 (-517)))) (-15 -4033 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -2685 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2048 ((-517) (-517) (-517) (-517) (-517))))
-((-2254 (((-787) $) NIL) (($ (-517)) 10)))
-(((-960 |#1|) (-10 -8 (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-961)) (T -960))
-NIL
-(-10 -8 (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-961) (-1185)) (T -961))
-((-1217 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))))
-(-13 (-968) (-659) (-585 $) (-10 -8 (-15 -1217 ((-703))) (-15 -2254 ($ (-517))) (-6 -4180)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-3442 (((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -3442 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1074) (-333)) (T -962))
-((-3442 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1074)))))
-(-10 -7 (-15 -3442 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
-((-1545 (((-107) $) 27)) (-3323 (((-107) $) 16)) (-1259 (((-703) $) 13)) (-1269 (((-703) $) 14)) (-3402 (((-107) $) 25)) (-3053 (((-107) $) 29)))
-(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1269 ((-703) |#1|)) (-15 -1259 ((-703) |#1|)) (-15 -3053 ((-107) |#1|)) (-15 -1545 ((-107) |#1|)) (-15 -3402 ((-107) |#1|)) (-15 -3323 ((-107) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-961) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -963))
-NIL
-(-10 -8 (-15 -1269 ((-703) |#1|)) (-15 -1259 ((-703) |#1|)) (-15 -3053 ((-107) |#1|)) (-15 -1545 ((-107) |#1|)) (-15 -3402 ((-107) |#1|)) (-15 -3323 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1545 (((-107) $) 51)) (-2646 (((-3 $ "failed") $ $) 19)) (-3323 (((-107) $) 53)) (-3552 (((-107) $ (-703)) 61)) (-2706 (($) 17 T CONST)) (-2889 (($ $) 34 (|has| |#3| (-278)))) (-3193 ((|#4| $ (-517)) 39)) (-3334 (((-703) $) 33 (|has| |#3| (-509)))) (-3537 ((|#3| $ (-517) (-517)) 41)) (-3240 (((-583 |#3|) $) 68 (|has| $ (-6 -4183)))) (-2879 (((-703) $) 32 (|has| |#3| (-509)))) (-1735 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1259 (((-703) $) 45)) (-1269 (((-703) $) 44)) (-2629 (((-107) $ (-703)) 60)) (-1234 (((-517) $) 49)) (-2493 (((-517) $) 47)) (-2332 (((-583 |#3|) $) 69 (|has| $ (-6 -4183)))) (-1653 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4183))))) (-2189 (((-517) $) 48)) (-3294 (((-517) $) 46)) (-1884 (($ (-583 (-583 |#3|))) 54)) (-3696 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3418 (((-583 (-583 |#3|)) $) 43)) (-2026 (((-107) $ (-703)) 59)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-3029 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-2349 (((-107) $ $) 55)) (-1596 (((-107) $) 58)) (-2756 (($) 57)) (-1437 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-3402 (((-107) $) 52)) (-3223 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4183)))) (-2435 (($ $) 56)) (-2939 ((|#5| $ (-517)) 38)) (-2254 (((-787) $) 11)) (-2258 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4183)))) (-3053 (((-107) $) 50)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2290 (((-703) $) 62 (|has| $ (-6 -4183)))))
-(((-964 |#1| |#2| |#3| |#4| |#5|) (-1185) (-703) (-703) (-961) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -964))
-((-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1234 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-1437 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-3537 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1437 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-1939 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2483 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
-(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4183) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -1884 ($ (-583 (-583 |t#3|)))) (-15 -3323 ((-107) $)) (-15 -3402 ((-107) $)) (-15 -1545 ((-107) $)) (-15 -3053 ((-107) $)) (-15 -1234 ((-517) $)) (-15 -2189 ((-517) $)) (-15 -2493 ((-517) $)) (-15 -3294 ((-517) $)) (-15 -1259 ((-703) $)) (-15 -1269 ((-703) $)) (-15 -3418 ((-583 (-583 |t#3|)) $)) (-15 -1437 (|t#3| $ (-517) (-517))) (-15 -3537 (|t#3| $ (-517) (-517))) (-15 -1437 (|t#3| $ (-517) (-517) |t#3|)) (-15 -3193 (|t#4| $ (-517))) (-15 -2939 (|t#5| $ (-517))) (-15 -1939 ($ (-1 |t#3| |t#3|) $)) (-15 -1939 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2483 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-333)) (-15 -1678 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-278)) (-15 -2889 ($ $)) |%noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3334 ((-703) $)) (-15 -2879 ((-703) $)) (-15 -1735 ((-583 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-967 |#3|) . T) ((-1003) . T) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1545 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3323 (((-107) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-2889 (($ $) 40 (|has| |#3| (-278)))) (-3193 (((-214 |#2| |#3|) $ (-517)) 29)) (-3621 (($ (-623 |#3|)) 38)) (-3334 (((-703) $) 42 (|has| |#3| (-509)))) (-3537 ((|#3| $ (-517) (-517)) NIL)) (-3240 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-2879 (((-703) $) 44 (|has| |#3| (-509)))) (-1735 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1259 (((-703) $) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-1884 (($ (-583 (-583 |#3|))) 24)) (-3696 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3418 (((-583 (-583 |#3|)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-3029 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-2232 (((-125)) 51 (|has| |#3| (-333)))) (-3402 (((-107) $) NIL)) (-3223 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-2939 (((-214 |#1| |#3|) $ (-517)) 33)) (-2254 (((-787) $) 16) (((-623 |#3|) $) 35)) (-2258 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-2398 (($) 13 T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1161 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3621 ($ (-623 |#3|))) (-15 -2254 ((-623 |#3|) $)))) (-703) (-703) (-961)) (T -965))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
-(-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1161 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3621 ($ (-623 |#3|))) (-15 -2254 ((-623 |#3|) $))))
-((-1292 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1939 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1939 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1292 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-961) (-212 |#2| |#3|) (-212 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-961) (-212 |#2| |#7|) (-212 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966))
-((-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
-(-10 -7 (-15 -1939 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1292 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
-(((-967 |#1|) (-1185) (-968)) (T -967))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))))
+((-2064 (((-583 (-349)) (-875 (-517)) (-349)) 27) (((-583 (-349)) (-875 (-377 (-517))) (-349)) 26)) (-3630 (((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1075)) (-349)) 36)))
+(((-939) (-10 -7 (-15 -2064 ((-583 (-349)) (-875 (-377 (-517))) (-349))) (-15 -2064 ((-583 (-349)) (-875 (-517)) (-349))) (-15 -3630 ((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1075)) (-349))))) (T -939))
+((-3630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-583 (-1075))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-939)) (-5 *5 (-349)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-939)) (-5 *4 (-349)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-939)) (-5 *4 (-349)))))
+(-10 -7 (-15 -2064 ((-583 (-349)) (-875 (-377 (-517))) (-349))) (-15 -2064 ((-583 (-349)) (-875 (-517)) (-349))) (-15 -3630 ((-583 (-583 (-349))) (-583 (-875 (-517))) (-583 (-1075)) (-349))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 70)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3879 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) 65)) (-1681 (($) NIL T CONST)) (-3772 (((-3 $ "failed") (-1071 $) (-844) (-787)) NIL) (((-3 $ "failed") (-1071 $) (-844)) 49)) (-3226 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-953 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3745 (|has| (-377 (-517)) (-953 (-517))) (|has| |#1| (-953 (-517)))))) (-3388 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-953 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3745 (|has| (-377 (-517)) (-953 (-517))) (|has| |#1| (-953 (-517)))))) (-1853 (($ $ (-787)) 40)) (-1209 (($ $ (-787)) 41)) (-2378 (($ $ $) NIL)) (-2687 (((-377 (-517)) $ $) 18)) (-3163 (((-3 $ "failed") $) 83)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-3523 (((-107) $) 60)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL)) (-1469 (((-107) $) 63)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-1591 (((-3 (-1071 $) "failed") $) 78)) (-2045 (((-3 (-787) "failed") $) 77)) (-2780 (((-3 (-1071 $) "failed") $) 75)) (-3678 (((-3 (-972 $ (-1071 $)) "failed") $) 73)) (-2330 (($ (-583 $)) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 84)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2269 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-2950 (((-703)) NIL)) (-2914 (((-107) $ $) NIL)) (-2202 (((-377 (-517)) $ $) 24)) (-3132 (((-583 $) (-1071 $)) 55) (((-583 $) (-1071 (-377 (-517)))) NIL) (((-583 $) (-1071 (-517))) NIL) (((-583 $) (-875 $)) NIL) (((-583 $) (-875 (-377 (-517)))) NIL) (((-583 $) (-875 (-517))) NIL)) (-3021 (($ (-972 $ (-1071 $)) (-787)) 39)) (-2339 (($ $) 19)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3608 (($) 28 T CONST)) (-3617 (($) 34 T CONST)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 71)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 21)) (-1703 (($ $ $) 32)) (-1691 (($ $) 33) (($ $ $) 69)) (-1677 (($ $ $) 104)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-940 |#1|) (-13 (-929) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -3021 ($ (-972 $ (-1071 $)) (-787))) (-15 -3678 ((-3 (-972 $ (-1071 $)) "failed") $)) (-15 -2687 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-938))) (T -940))
+((-3021 (*1 *1 *2 *3) (-12 (-5 *2 (-972 (-940 *4) (-1071 (-940 *4)))) (-5 *3 (-787)) (-5 *1 (-940 *4)) (-4 *4 (-13 (-777) (-333) (-938))))) (-3678 (*1 *2 *1) (|partial| -12 (-5 *2 (-972 (-940 *3) (-1071 (-940 *3)))) (-5 *1 (-940 *3)) (-4 *3 (-13 (-777) (-333) (-938))))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-940 *3)) (-4 *3 (-13 (-777) (-333) (-938))))))
+(-13 (-929) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -3021 ($ (-972 $ (-1071 $)) (-787))) (-15 -3678 ((-3 (-972 $ (-1071 $)) "failed") $)) (-15 -2687 ((-377 (-517)) $ $))))
+((-3540 (((-2 (|:| -3779 |#2|) (|:| -1406 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-941 |#1| |#2|) (-10 -7 (-15 -3540 (|#2| |#2| |#1|)) (-15 -3540 ((-2 (|:| -3779 |#2|) (|:| -1406 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -941))
+((-3540 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3779 *3) (|:| -1406 (-583 *5)))) (-5 *1 (-941 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-3540 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-941 *3 *2)) (-4 *2 (-593 *3)))))
+(-10 -7 (-15 -3540 (|#2| |#2| |#1|)) (-15 -3540 ((-2 (|:| -3779 |#2|) (|:| -1406 (-583 |#1|))) |#2| (-583 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3662 ((|#1| $ |#1|) 14)) (-2443 ((|#1| $ |#1|) 12)) (-2239 (($ |#1|) 10)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2607 ((|#1| $) 11)) (-3420 ((|#1| $) 13)) (-2269 (((-787) $) 21 (|has| |#1| (-1004)))) (-1583 (((-107) $ $) 9)))
+(((-942 |#1|) (-13 (-1110) (-10 -8 (-15 -2239 ($ |#1|)) (-15 -2607 (|#1| $)) (-15 -2443 (|#1| $ |#1|)) (-15 -3420 (|#1| $)) (-15 -3662 (|#1| $ |#1|)) (-15 -1583 ((-107) $ $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|))) (-1110)) (T -942))
+((-2239 (*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))) (-2607 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))) (-2443 (*1 *2 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))) (-3420 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))) (-3662 (*1 *2 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))) (-1583 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-942 *3)) (-4 *3 (-1110)))))
+(-13 (-1110) (-10 -8 (-15 -2239 ($ |#1|)) (-15 -2607 (|#1| $)) (-15 -2443 (|#1| $ |#1|)) (-15 -3420 (|#1| $)) (-15 -3662 (|#1| $ |#1|)) (-15 -1583 ((-107) $ $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2283 (((-583 $) (-583 |#4|)) 105) (((-583 $) (-583 |#4|) (-107)) 106) (((-583 $) (-583 |#4|) (-107) (-107)) 104) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 107)) (-2096 (((-583 |#3|) $) NIL)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2675 ((|#4| |#4| $) NIL)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 99)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 54)) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) 26 (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2259 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3388 (($ (-583 |#4|)) NIL)) (-2437 (((-3 $ "failed") $) 39)) (-1358 ((|#4| |#4| $) 57)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1808 ((|#4| |#4| $) NIL)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) NIL)) (-3554 (((-107) |#4| $) NIL)) (-3203 (((-107) |#4| $) NIL)) (-1867 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2718 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 119)) (-1535 (((-583 |#4|) $) 16 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3834 ((|#3| $) 33)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#4|) $) 17 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-2744 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 21)) (-1310 (((-583 |#3|) $) NIL)) (-1234 (((-107) |#3| $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 97)) (-1445 (((-3 |#4| "failed") $) 37)) (-2577 (((-583 $) |#4| $) 80)) (-3115 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 90) (((-107) |#4| $) 52)) (-3257 (((-583 $) |#4| $) 102) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 103) (((-583 $) |#4| (-583 $)) NIL)) (-2781 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 114)) (-3622 (($ |#4| $) 70) (($ (-583 |#4|) $) 71) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 67)) (-3778 (((-583 |#4|) $) NIL)) (-3015 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4014 ((|#4| |#4| $) NIL)) (-1837 (((-107) $ $) NIL)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3422 ((|#4| |#4| $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-3 |#4| "failed") $) 35)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3760 (((-3 $ "failed") $ |#4|) 48)) (-2640 (($ $ |#4|) NIL) (((-583 $) |#4| $) 82) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 77)) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 15)) (-1529 (($) 13)) (-2769 (((-703) $) NIL)) (-4135 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) 12)) (-3357 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 20)) (-2654 (($ $ |#3|) 42)) (-2054 (($ $ |#3|) 44)) (-3345 (($ $) NIL)) (-2530 (($ $ |#3|) NIL)) (-2269 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1659 (((-703) $) NIL (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2094 (((-583 $) |#4| $) 79) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) NIL)) (-3427 (((-107) |#4| $) NIL)) (-3980 (((-107) |#3| $) 53)) (-1583 (((-107) $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-943 |#1| |#2| |#3| |#4|) (-13 (-981 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3622 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2781 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2718 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -943))
+((-3622 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-943 *5 *6 *7 *3))) (-5 *1 (-943 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-2283 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2283 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8)))) (-2718 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-943 *5 *6 *7 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-981 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3622 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2781 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2718 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-3099 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-4133 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844)) 51) (((-623 |#1|) (-623 |#1|) (-844)) 50)) (-3148 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-828 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-828 (-517)) (-517)) 62)) (-1401 (((-623 (-875 |#1|)) (-703)) 80)) (-3116 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844)) 36 (|has| |#1| (-6 (-4192 "*")))) (((-623 |#1|) (-623 |#1|) (-844)) 34 (|has| |#1| (-6 (-4192 "*"))))))
+(((-944 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4192 "*"))) (-15 -3116 ((-623 |#1|) (-623 |#1|) (-844))) |%noBranch|) (IF (|has| |#1| (-6 (-4192 "*"))) (-15 -3116 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) |%noBranch|) (-15 -1401 ((-623 (-875 |#1|)) (-703))) (-15 -4133 ((-623 |#1|) (-623 |#1|) (-844))) (-15 -4133 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) (-15 -3099 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3099 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3099 ((-623 |#1|) (-623 |#1|))) (-15 -3099 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3148 ((-623 (-517)) (-828 (-517)) (-517))) (-15 -3148 ((-623 (-517)) (-583 (-517)))) (-15 -3148 ((-583 (-623 (-517))) (-583 (-828 (-517))) (-517))) (-15 -3148 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-962)) (T -944))
+((-3148 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-944 *4)) (-4 *4 (-962)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-828 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-944 *5)) (-4 *5 (-962)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-944 *4)) (-4 *4 (-962)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-828 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-944 *5)) (-4 *5 (-962)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-962)) (-5 *1 (-944 *3)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-944 *3)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-962)) (-5 *1 (-944 *3)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-944 *3)))) (-4133 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-4133 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-875 *4))) (-5 *1 (-944 *4)) (-4 *4 (-962)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (|has| *4 (-6 (-4192 "*"))) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (|has| *4 (-6 (-4192 "*"))) (-4 *4 (-962)) (-5 *1 (-944 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4192 "*"))) (-15 -3116 ((-623 |#1|) (-623 |#1|) (-844))) |%noBranch|) (IF (|has| |#1| (-6 (-4192 "*"))) (-15 -3116 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) |%noBranch|) (-15 -1401 ((-623 (-875 |#1|)) (-703))) (-15 -4133 ((-623 |#1|) (-623 |#1|) (-844))) (-15 -4133 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-844))) (-15 -3099 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3099 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3099 ((-623 |#1|) (-623 |#1|))) (-15 -3099 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3148 ((-623 (-517)) (-828 (-517)) (-517))) (-15 -3148 ((-623 (-517)) (-583 (-517)))) (-15 -3148 ((-583 (-623 (-517))) (-583 (-828 (-517))) (-517))) (-15 -3148 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
+((-4065 (((-623 |#1|) (-583 (-623 |#1|)) (-1156 |#1|)) 50 (|has| |#1| (-278)))) (-2975 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 (-1156 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 |#1|)) 71 (|has| |#1| (-333)))) (-1873 (((-1156 |#1|) (-583 (-1156 |#1|)) (-517)) 75 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3517 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 77 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 76 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3848 (((-107) (-583 (-623 |#1|))) 69 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 68 (|has| |#1| (-333)))) (-3171 (((-1156 (-1156 |#1|)) (-583 (-623 |#1|)) (-1156 |#1|)) 48 (|has| |#1| (-278)))) (-2315 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 33)) (-2614 (((-623 |#1|) (-1156 (-1156 |#1|))) 30)) (-1196 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 64 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 63 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 62 (|has| |#1| (-333)))))
+(((-945 |#1|) (-10 -7 (-15 -2614 ((-623 |#1|) (-1156 (-1156 |#1|)))) (-15 -2315 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -3171 ((-1156 (-1156 |#1|)) (-583 (-623 |#1|)) (-1156 |#1|))) (-15 -4065 ((-623 |#1|) (-583 (-623 |#1|)) (-1156 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3848 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3848 ((-107) (-583 (-623 |#1|)))) (-15 -2975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 |#1|))) (-15 -2975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 (-1156 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844))) (-15 -1873 ((-1156 |#1|) (-583 (-1156 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) (-962)) (T -945))
+((-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1156 *5))) (-5 *4 (-517)) (-5 *2 (-1156 *5)) (-5 *1 (-945 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-583 (-623 *5))))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-583 (-623 *5))))) (-3517 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-962)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-583 (-623 *4))))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-962)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-945 *6)) (-5 *3 (-583 (-623 *6))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *4 (-1156 (-1156 *5))) (-4 *5 (-333)) (-4 *5 (-962)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-583 (-623 *5))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *4 (-1156 *5)) (-4 *5 (-333)) (-4 *5 (-962)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-583 (-623 *5))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-962)) (-5 *2 (-107)) (-5 *1 (-945 *4)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-962)) (-5 *2 (-107)) (-5 *1 (-945 *5)))) (-1196 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-945 *5)) (-4 *5 (-333)) (-4 *5 (-962)))) (-1196 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-945 *4)) (-4 *4 (-333)) (-4 *4 (-962)))) (-1196 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-945 *6)) (-4 *6 (-333)) (-4 *6 (-962)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1156 *5)) (-4 *5 (-278)) (-4 *5 (-962)) (-5 *2 (-623 *5)) (-5 *1 (-945 *5)))) (-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-962)) (-5 *2 (-1156 (-1156 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1156 *5)))) (-2315 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-962)) (-5 *1 (-945 *4)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1156 (-1156 *4))) (-4 *4 (-962)) (-5 *2 (-623 *4)) (-5 *1 (-945 *4)))))
+(-10 -7 (-15 -2614 ((-623 |#1|) (-1156 (-1156 |#1|)))) (-15 -2315 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -3171 ((-1156 (-1156 |#1|)) (-583 (-623 |#1|)) (-1156 |#1|))) (-15 -4065 ((-623 |#1|) (-583 (-623 |#1|)) (-1156 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1196 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3848 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3848 ((-107) (-583 (-623 |#1|)))) (-15 -2975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 |#1|))) (-15 -2975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1156 (-1156 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -3517 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-844))) (-15 -1873 ((-1156 |#1|) (-583 (-1156 |#1|)) (-517)))) |%noBranch|) |%noBranch|))
+((-3990 ((|#1| (-844) |#1|) 9)))
+(((-946 |#1|) (-10 -7 (-15 -3990 (|#1| (-844) |#1|))) (-13 (-1004) (-10 -8 (-15 -1677 ($ $ $))))) (T -946))
+((-3990 (*1 *2 *3 *2) (-12 (-5 *3 (-844)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1004) (-10 -8 (-15 -1677 ($ $ $))))))))
+(-10 -7 (-15 -3990 (|#1| (-844) |#1|)))
+((-2643 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517))))) 58)) (-2730 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517))))) 48)) (-3634 (((-583 (-286 (-517))) (-623 (-377 (-875 (-517))))) 41)) (-3062 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517))))) 68)) (-1356 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2763 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-3054 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517))))) 65)))
+(((-947) (-10 -7 (-15 -2643 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517)))))) (-15 -2730 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517)))))) (-15 -3634 ((-583 (-286 (-517))) (-623 (-377 (-875 (-517)))))) (-15 -3054 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517)))))) (-15 -1356 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2763 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3062 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517)))))))) (T -947))
+((-3062 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-947)))) (-3054 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-947)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-947)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947)) (-5 *3 (-286 (-517))))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-947)))))
+(-10 -7 (-15 -2643 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-875 (-517)))))) (-15 -2730 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-875 (-517)))))) (-15 -3634 ((-583 (-286 (-517))) (-623 (-377 (-875 (-517)))))) (-15 -3054 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-875 (-517)))))) (-15 -1356 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2763 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3062 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-875 (-517)))))))
+((-2247 ((|#1| |#1| (-844)) 9)))
+(((-948 |#1|) (-10 -7 (-15 -2247 (|#1| |#1| (-844)))) (-13 (-1004) (-10 -8 (-15 * ($ $ $))))) (T -948))
+((-2247 (*1 *2 *2 *3) (-12 (-5 *3 (-844)) (-5 *1 (-948 *2)) (-4 *2 (-13 (-1004) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2247 (|#1| |#1| (-844))))
+((-2269 ((|#1| (-282)) 11) (((-1161) |#1|) 9)))
+(((-949 |#1|) (-10 -7 (-15 -2269 ((-1161) |#1|)) (-15 -2269 (|#1| (-282)))) (-1110)) (T -949))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-949 *2)) (-4 *2 (-1110)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-949 *3)) (-4 *3 (-1110)))))
+(-10 -7 (-15 -2269 ((-1161) |#1|)) (-15 -2269 (|#1| (-282))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-1521 (($ |#4|) 25)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-1508 ((|#4| $) 27)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2950 (((-703)) 43)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 21 T CONST)) (-3617 (($) 23 T CONST)) (-1583 (((-107) $ $) 40)) (-1691 (($ $) 31) (($ $ $) NIL)) (-1677 (($ $ $) 29)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-950 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -1521 ($ |#4|)) (-15 -2269 ($ |#4|)) (-15 -1508 (|#4| $)))) (-333) (-725) (-779) (-872 |#1| |#2| |#3|) (-583 |#4|)) (T -950))
+((-1521 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-950 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-950 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5)) (-14 *6 (-583 *2)))) (-1508 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *4 *5)) (-5 *1 (-950 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(-13 (-156) (-37 |#1|) (-10 -8 (-15 -1521 ($ |#4|)) (-15 -2269 ($ |#4|)) (-15 -1508 (|#4| $))))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-1478 (((-1161) $ (-1075) (-1075)) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-3752 (((-107) (-107)) 39)) (-3078 (((-107) (-107)) 38)) (-2443 (((-51) $ (-1075) (-51)) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 (-51) "failed") (-1075) $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3593 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-3 (-51) "failed") (-1075) $) NIL)) (-1422 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2757 (((-51) $ (-1075) (-51)) NIL (|has| $ (-6 -4191)))) (-2563 (((-51) $ (-1075)) NIL)) (-1535 (((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-1075) $) NIL (|has| (-1075) (-779)))) (-2898 (((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-3979 (((-1075) $) NIL (|has| (-1075) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4191))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-1881 (((-583 (-1075)) $) 34)) (-3472 (((-107) (-1075) $) NIL)) (-2431 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL)) (-2704 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL)) (-4121 (((-583 (-1075)) $) NIL)) (-3536 (((-107) (-1075) $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-2427 (((-51) $) NIL (|has| (-1075) (-779)))) (-2999 (((-3 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) "failed") (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL)) (-3191 (($ $ (-51)) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-265 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-1831 (((-583 (-51)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 (((-51) $ (-1075)) 35) (((-51) $ (-1075) (-51)) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-2269 (((-787) $) 37 (-3745 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-951) (-13 (-1087 (-1075) (-51)) (-10 -7 (-15 -3752 ((-107) (-107))) (-15 -3078 ((-107) (-107))) (-6 -4190)))) (T -951))
+((-3752 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-951)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-951)))))
+(-13 (-1087 (-1075) (-51)) (-10 -7 (-15 -3752 ((-107) (-107))) (-15 -3078 ((-107) (-107))) (-6 -4190)))
+((-3388 ((|#2| $) 10)))
+(((-952 |#1| |#2|) (-10 -8 (-15 -3388 (|#2| |#1|))) (-953 |#2|) (-1110)) (T -952))
+NIL
+(-10 -8 (-15 -3388 (|#2| |#1|)))
+((-3226 (((-3 |#1| "failed") $) 7)) (-3388 ((|#1| $) 8)) (-2269 (($ |#1|) 6)))
+(((-953 |#1|) (-1187) (-1110)) (T -953))
+((-3388 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1110)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *1 (-953 *2)) (-4 *2 (-1110)))) (-2269 (*1 *1 *2) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1110)))))
+(-13 (-10 -8 (-15 -2269 ($ |t#1|)) (-15 -3226 ((-3 |t#1| "failed") $)) (-15 -3388 (|t#1| $))))
+((-1775 (((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1075))) 35)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -1775 ((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1075))))) (-509) (-13 (-509) (-953 |#1|))) (T -954))
+((-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075))) (-4 *6 (-13 (-509) (-953 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *6)))))) (-5 *1 (-954 *5 *6)))))
+(-10 -7 (-15 -1775 ((-583 (-583 (-265 (-377 (-875 |#2|))))) (-583 (-875 |#2|)) (-583 (-1075)))))
+((-2960 (((-349)) 15)) (-4045 (((-1 (-349)) (-349) (-349)) 20)) (-1712 (((-1 (-349)) (-703)) 43)) (-3224 (((-349)) 34)) (-1386 (((-1 (-349)) (-349) (-349)) 35)) (-2241 (((-349)) 26)) (-1559 (((-1 (-349)) (-349)) 27)) (-3864 (((-349) (-703)) 38)) (-1971 (((-1 (-349)) (-703)) 39)) (-1724 (((-1 (-349)) (-703) (-703)) 42)) (-3196 (((-1 (-349)) (-703) (-703)) 40)))
+(((-955) (-10 -7 (-15 -2960 ((-349))) (-15 -3224 ((-349))) (-15 -2241 ((-349))) (-15 -3864 ((-349) (-703))) (-15 -4045 ((-1 (-349)) (-349) (-349))) (-15 -1386 ((-1 (-349)) (-349) (-349))) (-15 -1559 ((-1 (-349)) (-349))) (-15 -1971 ((-1 (-349)) (-703))) (-15 -3196 ((-1 (-349)) (-703) (-703))) (-15 -1724 ((-1 (-349)) (-703) (-703))) (-15 -1712 ((-1 (-349)) (-703))))) (T -955))
+((-1712 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))) (-1724 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-955)))) (-2241 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))) (-3224 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))) (-2960 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))))
+(-10 -7 (-15 -2960 ((-349))) (-15 -3224 ((-349))) (-15 -2241 ((-349))) (-15 -3864 ((-349) (-703))) (-15 -4045 ((-1 (-349)) (-349) (-349))) (-15 -1386 ((-1 (-349)) (-349) (-349))) (-15 -1559 ((-1 (-349)) (-349))) (-15 -1971 ((-1 (-349)) (-703))) (-15 -3196 ((-1 (-349)) (-703) (-703))) (-15 -1724 ((-1 (-349)) (-703) (-703))) (-15 -1712 ((-1 (-349)) (-703))))
+((-3866 (((-388 |#1|) |#1|) 31)))
+(((-956 |#1|) (-10 -7 (-15 -3866 ((-388 |#1|) |#1|))) (-1132 (-377 (-875 (-517))))) (T -956))
+((-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-956 *3)) (-4 *3 (-1132 (-377 (-875 (-517))))))))
+(-10 -7 (-15 -3866 ((-388 |#1|) |#1|)))
+((-3635 (((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|))) 14)))
+(((-957 |#1|) (-10 -7 (-15 -3635 ((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|))))) (-278)) (T -957))
+((-3635 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-875 *4)))) (-5 *1 (-957 *4)))))
+(-10 -7 (-15 -3635 ((-377 (-388 (-875 |#1|))) (-377 (-875 |#1|)))))
+((-2096 (((-583 (-1075)) (-377 (-875 |#1|))) 15)) (-1440 (((-377 (-1071 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075)) 22)) (-2086 (((-377 (-875 |#1|)) (-377 (-1071 (-377 (-875 |#1|)))) (-1075)) 24)) (-1512 (((-3 (-1075) "failed") (-377 (-875 |#1|))) 18)) (-3522 (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|))))) 29) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|)))) 31) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1075)) (-583 (-377 (-875 |#1|)))) 26) (((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|))) 27)) (-2269 (((-377 (-875 |#1|)) |#1|) 11)))
+(((-958 |#1|) (-10 -7 (-15 -2096 ((-583 (-1075)) (-377 (-875 |#1|)))) (-15 -1512 ((-3 (-1075) "failed") (-377 (-875 |#1|)))) (-15 -1440 ((-377 (-1071 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075))) (-15 -2086 ((-377 (-875 |#1|)) (-377 (-1071 (-377 (-875 |#1|)))) (-1075))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1075)) (-583 (-377 (-875 |#1|))))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2269 ((-377 (-875 |#1|)) |#1|))) (-509)) (T -958))
+((-2269 (*1 *2 *3) (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-958 *3)) (-4 *3 (-509)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-5 *2 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *1 (-958 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-5 *2 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *1 (-958 *4)))) (-3522 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1075))) (-5 *4 (-583 (-377 (-875 *5)))) (-5 *2 (-377 (-875 *5))) (-4 *5 (-509)) (-5 *1 (-958 *5)))) (-3522 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1075)) (-4 *4 (-509)) (-5 *1 (-958 *4)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1071 (-377 (-875 *5))))) (-5 *4 (-1075)) (-5 *2 (-377 (-875 *5))) (-5 *1 (-958 *5)) (-4 *5 (-509)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-509)) (-5 *2 (-377 (-1071 (-377 (-875 *5))))) (-5 *1 (-958 *5)) (-5 *3 (-377 (-875 *5))))) (-1512 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-1075)) (-5 *1 (-958 *4)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1075))) (-5 *1 (-958 *4)))))
+(-10 -7 (-15 -2096 ((-583 (-1075)) (-377 (-875 |#1|)))) (-15 -1512 ((-3 (-1075) "failed") (-377 (-875 |#1|)))) (-15 -1440 ((-377 (-1071 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075))) (-15 -2086 ((-377 (-875 |#1|)) (-377 (-1071 (-377 (-875 |#1|)))) (-1075))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-1075)) (-583 (-377 (-875 |#1|))))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-265 (-377 (-875 |#1|))))) (-15 -3522 ((-377 (-875 |#1|)) (-377 (-875 |#1|)) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2269 ((-377 (-875 |#1|)) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2283 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-2096 (((-583 (-789 |#2|)) $) NIL)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-1759 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2675 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3088 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3831 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) NIL (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2276 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2259 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1825 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3388 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2437 (((-3 $ "failed") $) NIL)) (-1358 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-712 |#1| (-789 |#2|)) (-1004))))) (-1422 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3100 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1808 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1521 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4190))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-3709 (((-2 (|:| -1723 (-583 (-712 |#1| (-789 |#2|)))) (|:| -3674 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-3554 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3203 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1867 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1535 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3091 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3834 (((-789 |#2|) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-712 |#1| (-789 |#2|)) (-1004))))) (-2744 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-1310 (((-583 (-789 |#2|)) $) NIL)) (-1234 (((-107) (-789 |#2|) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1398 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2337 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3831 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1445 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2577 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-3115 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3257 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-3622 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3778 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3015 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-4014 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1837 (((-107) $ $) NIL)) (-2188 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3974 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3422 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2999 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-3760 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-2640 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3480 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2769 (((-703) $) NIL)) (-4135 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-712 |#1| (-789 |#2|)) (-1004)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2654 (($ $ (-789 |#2|)) NIL)) (-2054 (($ $ (-789 |#2|)) NIL)) (-3345 (($ $) NIL)) (-2530 (($ $ (-789 |#2|)) NIL)) (-2269 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1659 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2953 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-2094 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3160 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3693 (((-583 (-789 |#2|)) $) NIL)) (-3427 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3980 (((-107) (-789 |#2|) $) NIL)) (-1583 (((-107) $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-959 |#1| |#2|) (-13 (-981 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -2283 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1075))) (T -959))
+((-2283 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))))
+(-13 (-981 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -2283 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
+((-4045 (((-1 (-517)) (-999 (-517))) 33)) (-1973 (((-517) (-517) (-517) (-517) (-517)) 30)) (-1984 (((-1 (-517)) |RationalNumber|) NIL)) (-3025 (((-1 (-517)) |RationalNumber|) NIL)) (-3972 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
+(((-960) (-10 -7 (-15 -4045 ((-1 (-517)) (-999 (-517)))) (-15 -3972 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1984 ((-1 (-517)) |RationalNumber|)) (-15 -3025 ((-1 (-517)) |RationalNumber|)) (-15 -1973 ((-517) (-517) (-517) (-517) (-517))))) (T -960))
+((-1973 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-960)))) (-3025 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960)))) (-1984 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960)) (-5 *3 (-517)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-999 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-960)))))
+(-10 -7 (-15 -4045 ((-1 (-517)) (-999 (-517)))) (-15 -3972 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1984 ((-1 (-517)) |RationalNumber|)) (-15 -3025 ((-1 (-517)) |RationalNumber|)) (-15 -1973 ((-517) (-517) (-517) (-517) (-517))))
+((-2269 (((-787) $) NIL) (($ (-517)) 10)))
+(((-961 |#1|) (-10 -8 (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-962)) (T -961))
+NIL
+(-10 -8 (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-962) (-1187)) (T -962))
+((-2950 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-703)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-962)))))
+(-13 (-969) (-659) (-585 $) (-10 -8 (-15 -2950 ((-703))) (-15 -2269 ($ (-517))) (-6 -4187)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3729 (((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -3729 ((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1075) (-333)) (T -963))
+((-3729 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-875 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1075)))))
+(-10 -7 (-15 -3729 ((-377 (-875 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
+((-1572 (((-107) $) 28)) (-1793 (((-107) $) 16)) (-1420 (((-703) $) 13)) (-1434 (((-703) $) 14)) (-2434 (((-107) $) 26)) (-3515 (((-107) $) 30)))
+(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1434 ((-703) |#1|)) (-15 -1420 ((-703) |#1|)) (-15 -3515 ((-107) |#1|)) (-15 -1572 ((-107) |#1|)) (-15 -2434 ((-107) |#1|)) (-15 -1793 ((-107) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-962) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -964))
+NIL
+(-10 -8 (-15 -1434 ((-703) |#1|)) (-15 -1420 ((-703) |#1|)) (-15 -3515 ((-107) |#1|)) (-15 -1572 ((-107) |#1|)) (-15 -2434 ((-107) |#1|)) (-15 -1793 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1572 (((-107) $) 51)) (-1250 (((-3 $ "failed") $ $) 19)) (-1793 (((-107) $) 53)) (-2670 (((-107) $ (-703)) 61)) (-1681 (($) 17 T CONST)) (-1680 (($ $) 34 (|has| |#3| (-278)))) (-3766 ((|#4| $ (-517)) 39)) (-3736 (((-703) $) 33 (|has| |#3| (-509)))) (-2563 ((|#3| $ (-517) (-517)) 41)) (-1535 (((-583 |#3|) $) 68 (|has| $ (-6 -4190)))) (-3805 (((-703) $) 32 (|has| |#3| (-509)))) (-3794 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1420 (((-703) $) 45)) (-1434 (((-703) $) 44)) (-2361 (((-107) $ (-703)) 60)) (-2380 (((-517) $) 49)) (-3442 (((-517) $) 47)) (-2898 (((-583 |#3|) $) 69 (|has| $ (-6 -4190)))) (-4008 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1004)) (|has| $ (-6 -4190))))) (-1977 (((-517) $) 48)) (-3996 (((-517) $) 46)) (-2369 (($ (-583 (-583 |#3|))) 54)) (-2744 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1548 (((-583 (-583 |#3|)) $) 43)) (-4043 (((-107) $ (-703)) 59)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-3480 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))) (-3180 (((-107) $ $) 55)) (-3270 (((-107) $) 58)) (-1529 (($) 57)) (-2607 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-2434 (((-107) $) 52)) (-4135 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4190)))) (-2460 (($ $) 56)) (-2708 ((|#5| $ (-517)) 38)) (-2269 (((-787) $) 11)) (-3160 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4190)))) (-3515 (((-107) $) 50)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3533 (((-703) $) 62 (|has| $ (-6 -4190)))))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-1187) (-703) (-703) (-962) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -965))
+((-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-962)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-2607 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-962)))) (-2563 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-962)))) (-2607 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-3308 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2327 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1703 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4190) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -2369 ($ (-583 (-583 |t#3|)))) (-15 -1793 ((-107) $)) (-15 -2434 ((-107) $)) (-15 -1572 ((-107) $)) (-15 -3515 ((-107) $)) (-15 -2380 ((-517) $)) (-15 -1977 ((-517) $)) (-15 -3442 ((-517) $)) (-15 -3996 ((-517) $)) (-15 -1420 ((-703) $)) (-15 -1434 ((-703) $)) (-15 -1548 ((-583 (-583 |t#3|)) $)) (-15 -2607 (|t#3| $ (-517) (-517))) (-15 -2563 (|t#3| $ (-517) (-517))) (-15 -2607 (|t#3| $ (-517) (-517) |t#3|)) (-15 -3766 (|t#4| $ (-517))) (-15 -2708 (|t#5| $ (-517))) (-15 -3308 ($ (-1 |t#3| |t#3|) $)) (-15 -3308 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2327 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-333)) (-15 -1703 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-278)) (-15 -1680 ($ $)) |%noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3736 ((-703) $)) (-15 -3805 ((-703) $)) (-15 -3794 ((-583 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-968 |#3|) . T) ((-1004) . T) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1572 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1793 (((-107) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-1680 (($ $) 40 (|has| |#3| (-278)))) (-3766 (((-214 |#2| |#3|) $ (-517)) 29)) (-1188 (($ (-623 |#3|)) 38)) (-3736 (((-703) $) 42 (|has| |#3| (-509)))) (-2563 ((|#3| $ (-517) (-517)) NIL)) (-1535 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-3805 (((-703) $) 44 (|has| |#3| (-509)))) (-3794 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1420 (((-703) $) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2369 (($ (-583 (-583 |#3|))) 24)) (-2744 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1548 (((-583 (-583 |#3|)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-3480 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-1880 (((-125)) 51 (|has| |#3| (-333)))) (-2434 (((-107) $) NIL)) (-4135 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-2708 (((-214 |#1| |#3|) $ (-517)) 33)) (-2269 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3160 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-3608 (($) 13 T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1163 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -1188 ($ (-623 |#3|))) (-15 -2269 ((-623 |#3|) $)))) (-703) (-703) (-962)) (T -966))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-962)))) (-1188 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-962)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(-13 (-965 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1163 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -1188 ($ (-623 |#3|))) (-15 -2269 ((-623 |#3|) $))))
+((-1521 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3308 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3308 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-962) (-212 |#2| |#3|) (-212 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-962) (-212 |#2| |#7|) (-212 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967))
+((-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
+(-10 -7 (-15 -3308 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
+(((-968 |#1|) (-1187) (-969)) (T -968))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-969)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-843)) 26)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-968) (-1185)) (T -968))
-NIL
-(-13 (-21) (-1015))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
-((-1935 (($ $) 16)) (-3434 (($ $) 22)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 49)) (-2962 (($ $) 24)) (-2172 (($ $) 11)) (-2908 (($ $) 38)) (-3667 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) 33)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-1217 (((-703)) 8)) (-2434 (($ $) 39)))
-(((-969 |#1|) (-10 -8 (-15 -3434 (|#1| |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -2172 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2962 (|#1| |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -2254 ((-787) |#1|))) (-970)) (T -969))
-((-1217 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
-(-10 -8 (-15 -3434 (|#1| |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -2172 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2962 (|#1| |#1|)) (-15 -3975 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 -3667 ((-199) |#1|)) (-15 -3667 ((-349) |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -1217 ((-703))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2065 (((-517) $) 89)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-1935 (($ $) 87)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-1386 (($ $) 97)) (-2448 (((-107) $ $) 59)) (-3345 (((-517) $) 114)) (-2706 (($) 17 T CONST)) (-3434 (($ $) 86)) (-1837 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3232 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-3083 (((-107) $) 71)) (-3162 (((-107) $) 112)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 96)) (-2962 (($ $) 92)) (-1199 (((-107) $) 113)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4055 (($ $ $) 111)) (-3105 (($ $ $) 110)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-2172 (($ $) 88)) (-2908 (($ $) 90)) (-1376 (((-388 $) $) 74)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-3667 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1217 (((-703)) 29)) (-2434 (($ $) 91)) (-2673 (((-107) $ $) 39)) (-1724 (($ $) 115)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1600 (((-107) $ $) 108)) (-1571 (((-107) $ $) 107)) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 109)) (-1558 (((-107) $ $) 106)) (-1678 (($ $ $) 64)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
-(((-970) (-1185)) (T -970))
-((-1724 (*1 *1 *1) (-4 *1 (-970))) (-2962 (*1 *1 *1) (-4 *1 (-970))) (-2434 (*1 *1 *1) (-4 *1 (-970))) (-2908 (*1 *1 *1) (-4 *1 (-970))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))) (-2172 (*1 *1 *1) (-4 *1 (-970))) (-1935 (*1 *1 *1) (-4 *1 (-970))) (-3434 (*1 *1 *1) (-4 *1 (-970))))
-(-13 (-333) (-777) (-937) (-952 (-517)) (-952 (-377 (-517))) (-918) (-558 (-814 (-349))) (-808 (-349)) (-134) (-10 -8 (-15 -2962 ($ $)) (-15 -2434 ($ $)) (-15 -2908 ($ $)) (-15 -2065 ((-517) $)) (-15 -2172 ($ $)) (-15 -1935 ($ $)) (-15 -3434 ($ $)) (-15 -1724 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) |#2| $) 23)) (-1719 ((|#1| $) 10)) (-3345 (((-517) |#2| $) 88)) (-3249 (((-3 $ "failed") |#2| (-843)) 58)) (-3633 ((|#1| $) 28)) (-2764 ((|#1| |#2| $ |#1|) 37)) (-2604 (($ $) 25)) (-3775 (((-3 |#2| "failed") |#2| $) 87)) (-3162 (((-107) |#2| $) NIL)) (-1199 (((-107) |#2| $) NIL)) (-3247 (((-107) |#2| $) 24)) (-2095 ((|#1| $) 89)) (-3623 ((|#1| $) 27)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2780 ((|#2| $) 79)) (-2254 (((-787) $) 71)) (-3405 ((|#1| |#2| $ |#1|) 38)) (-3846 (((-583 $) |#2|) 60)) (-1534 (((-107) $ $) 74)))
-(((-971 |#1| |#2|) (-13 (-977 |#1| |#2|) (-10 -8 (-15 -3623 (|#1| $)) (-15 -3633 (|#1| $)) (-15 -1719 (|#1| $)) (-15 -2095 (|#1| $)) (-15 -2604 ($ $)) (-15 -3247 ((-107) |#2| $)) (-15 -2764 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1131 |#1|)) (T -971))
-((-2764 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3623 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3633 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-1719 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-2095 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-2604 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) (-3247 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1131 *4)))))
-(-13 (-977 |#1| |#2|) (-10 -8 (-15 -3623 (|#1| $)) (-15 -3633 (|#1| $)) (-15 -1719 (|#1| $)) (-15 -2095 (|#1| $)) (-15 -2604 ($ $)) (-15 -3247 ((-107) |#2| $)) (-15 -2764 (|#1| |#2| $ |#1|))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2014 (($ $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1764 (($ $ $ $) NIL)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL)) (-1356 (($ $ $) NIL)) (-2706 (($) NIL T CONST)) (-1829 (($ (-1074)) 10) (($ (-517)) 7)) (-1837 (((-3 (-517) "failed") $) NIL)) (-3232 (((-517) $) NIL)) (-2532 (($ $ $) NIL)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL)) (-1541 (((-107) $) NIL)) (-3320 (((-377 (-517)) $) NIL)) (-4100 (($) NIL) (($ $) NIL)) (-2509 (($ $ $) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-4101 (($ $ $ $) NIL)) (-3509 (($ $ $) NIL)) (-3162 (((-107) $) NIL)) (-1630 (($ $ $) NIL)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3469 (((-107) $) NIL)) (-2119 (((-107) $) NIL)) (-3326 (((-3 $ "failed") $) NIL)) (-1199 (((-107) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4102 (($ $ $ $) NIL)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1521 (($ $) NIL)) (-1631 (($ $) NIL)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1810 (($ $ $) NIL)) (-3680 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-3214 (((-1021) $) NIL) (($ $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1803 (($ $) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-2142 (($ $) NIL)) (-2435 (($ $) NIL)) (-3667 (((-517) $) 16) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1074)) 9)) (-2254 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-1217 (((-703)) NIL)) (-2121 (((-107) $ $) NIL)) (-4033 (($ $ $) NIL)) (-1870 (($) NIL)) (-2673 (((-107) $ $) NIL)) (-2320 (($ $ $ $) NIL)) (-1724 (($ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) NIL)) (-1663 (($ $) 19) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
-(((-972) (-13 (-502) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3667 ($ (-1074))) (-15 -1829 ($ (-1074))) (-15 -1829 ($ (-517)))))) (T -972))
-((-3667 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))))
-(-13 (-502) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3667 ($ (-1074))) (-15 -1829 ($ (-1074))) (-15 -1829 ($ (-517)))))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-2787 (((-1159) $ (-1074) (-1074)) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-3342 (($) 9)) (-2412 (((-51) $ (-1074) (-51)) NIL)) (-1998 (($ $) 23)) (-2384 (($ $) 21)) (-3882 (($ $) 20)) (-1467 (($ $) 22)) (-2675 (($ $) 25)) (-3690 (($ $) 26)) (-2625 (($ $) 19)) (-1767 (($ $) 24)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) 18 (|has| $ (-6 -4183)))) (-3263 (((-3 (-51) "failed") (-1074) $) 34)) (-2706 (($) NIL T CONST)) (-1823 (($) 7)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-1835 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) 46 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-3 (-51) "failed") (-1074) $) NIL)) (-2050 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183)))) (-2905 (((-3 (-1057) "failed") $ (-1057) (-517)) 59)) (-3705 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -4184)))) (-3537 (((-51) $ (-1074)) NIL)) (-3240 (((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-1074) $) NIL (|has| (-1074) (-779)))) (-2332 (((-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) 28 (|has| $ (-6 -4183))) (((-583 (-51)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3920 (((-1074) $) NIL (|has| (-1074) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4184))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3666 (((-583 (-1074)) $) NIL)) (-2550 (((-107) (-1074) $) NIL)) (-3074 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL)) (-3676 (($ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) 37)) (-2950 (((-583 (-1074)) $) NIL)) (-4093 (((-107) (-1074) $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3980 (((-349) $ (-1074)) 45)) (-3141 (((-583 (-1057)) $ (-1057)) 60)) (-1750 (((-51) $) NIL (|has| (-1074) (-779)))) (-3222 (((-3 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) "failed") (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL)) (-2880 (($ $ (-51)) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL (-12 (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-280 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003))))) (-3949 (((-583 (-51)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 (((-51) $ (-1074)) NIL) (((-51) $ (-1074) (-51)) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-3880 (($ $ (-1074)) 47)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) 30)) (-2455 (($ $ $) 31)) (-2254 (((-787) $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-3764 (($ $ (-1074) (-349)) 43)) (-2996 (($ $ (-1074) (-349)) 44)) (-2882 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 (-1074)) (|:| -1338 (-51)))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-51) (-1003)) (|has| (-2 (|:| -3458 (-1074)) (|:| -1338 (-51))) (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-973) (-13 (-1086 (-1074) (-51)) (-10 -8 (-15 -2455 ($ $ $)) (-15 -1823 ($)) (-15 -2625 ($ $)) (-15 -3882 ($ $)) (-15 -2384 ($ $)) (-15 -1467 ($ $)) (-15 -1767 ($ $)) (-15 -1998 ($ $)) (-15 -2675 ($ $)) (-15 -3690 ($ $)) (-15 -3764 ($ $ (-1074) (-349))) (-15 -2996 ($ $ (-1074) (-349))) (-15 -3980 ((-349) $ (-1074))) (-15 -3141 ((-583 (-1057)) $ (-1057))) (-15 -3880 ($ $ (-1074))) (-15 -3342 ($)) (-15 -2905 ((-3 (-1057) "failed") $ (-1057) (-517))) (-6 -4183)))) (T -973))
-((-2455 (*1 *1 *1 *1) (-5 *1 (-973))) (-1823 (*1 *1) (-5 *1 (-973))) (-2625 (*1 *1 *1) (-5 *1 (-973))) (-3882 (*1 *1 *1) (-5 *1 (-973))) (-2384 (*1 *1 *1) (-5 *1 (-973))) (-1467 (*1 *1 *1) (-5 *1 (-973))) (-1767 (*1 *1 *1) (-5 *1 (-973))) (-1998 (*1 *1 *1) (-5 *1 (-973))) (-2675 (*1 *1 *1) (-5 *1 (-973))) (-3690 (*1 *1 *1) (-5 *1 (-973))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))) (-2996 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-349)) (-5 *1 (-973)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-973)) (-5 *3 (-1057)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-973)))) (-3342 (*1 *1) (-5 *1 (-973))) (-2905 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-973)))))
-(-13 (-1086 (-1074) (-51)) (-10 -8 (-15 -2455 ($ $ $)) (-15 -1823 ($)) (-15 -2625 ($ $)) (-15 -3882 ($ $)) (-15 -2384 ($ $)) (-15 -1467 ($ $)) (-15 -1767 ($ $)) (-15 -1998 ($ $)) (-15 -2675 ($ $)) (-15 -3690 ($ $)) (-15 -3764 ($ $ (-1074) (-349))) (-15 -2996 ($ $ (-1074) (-349))) (-15 -3980 ((-349) $ (-1074))) (-15 -3141 ((-583 (-1057)) $ (-1057))) (-15 -3880 ($ $ (-1074))) (-15 -3342 ($)) (-15 -2905 ((-3 (-1057) "failed") $ (-1057) (-517))) (-6 -4183)))
-((-2811 (($ $) 45)) (-1925 (((-107) $ $) 74)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) 226) (((-3 $ "failed") (-874 (-517))) 225) (((-3 $ "failed") (-874 |#2|)) 228)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-874 (-377 (-517)))) 214) (($ (-874 (-517))) 210) (($ (-874 |#2|)) 230)) (-1221 (($ $) NIL) (($ $ |#4|) 43)) (-2169 (((-107) $ $) 111) (((-107) $ (-583 $)) 112)) (-2427 (((-107) $) 56)) (-3064 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 106)) (-3256 (($ $) 137)) (-3480 (($ $) 133)) (-3091 (($ $) 132)) (-3291 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3407 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2919 (((-107) $ $) 120) (((-107) $ (-583 $)) 121)) (-2877 ((|#4| $) 33)) (-3987 (($ $ $) 109)) (-3973 (((-107) $) 55)) (-1982 (((-703) $) 35)) (-4136 (($ $) 151)) (-1539 (($ $) 148)) (-4144 (((-583 $) $) 68)) (-1532 (($ $) 57)) (-3652 (($ $) 144)) (-1722 (((-583 $) $) 65)) (-2703 (($ $) 59)) (-1193 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1419 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2993 (-703))) $ $) 110)) (-3835 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $) 107) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $ |#4|) 108)) (-3019 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $) 103) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $ |#4|) 104)) (-4063 (($ $ $) 89) (($ $ $ |#4|) 94)) (-1726 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1910 (((-583 $) $) 51)) (-1966 (((-107) $ $) 117) (((-107) $ (-583 $)) 118)) (-4083 (($ $ $) 102)) (-3680 (($ $) 37)) (-3706 (((-107) $ $) 72)) (-2844 (((-107) $ $) 113) (((-107) $ (-583 $)) 115)) (-1382 (($ $ $) 100)) (-3671 (($ $) 40)) (-1387 ((|#2| |#2| $) 141) (($ (-583 $)) NIL) (($ $ $) NIL)) (-3490 (($ $ |#2|) NIL) (($ $ $) 130)) (-1244 (($ $ |#2|) 125) (($ $ $) 128)) (-3113 (($ $) 48)) (-3796 (($ $) 52)) (-3667 (((-814 (-349)) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (($ (-874 (-377 (-517)))) 216) (($ (-874 (-517))) 212) (($ (-874 |#2|)) 227) (((-1057) $) 249) (((-874 |#2|) $) 161)) (-2254 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-874 |#2|) $) 162) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3195 (((-3 (-107) "failed") $ $) 71)))
-(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 ((-874 |#2|) |#1|)) (-15 -3667 ((-874 |#2|) |#1|)) (-15 -3667 ((-1057) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -3256 (|#1| |#1|)) (-15 -1387 (|#2| |#2| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -1244 (|#1| |#1| |#1|)) (-15 -3490 (|#1| |#1| |#2|)) (-15 -1244 (|#1| |#1| |#2|)) (-15 -3480 (|#1| |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3667 (|#1| (-874 |#2|))) (-15 -3232 (|#1| (-874 |#2|))) (-15 -1837 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3667 (|#1| (-874 (-517)))) (-15 -3232 (|#1| (-874 (-517)))) (-15 -1837 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3667 (|#1| (-874 (-377 (-517))))) (-15 -3232 (|#1| (-874 (-377 (-517))))) (-15 -1837 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -4083 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -1419 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2993 (-703))) |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3064 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3019 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3019 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1| |#4|)) (-15 -4063 (|#1| |#1| |#1| |#4|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -4063 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#4|)) (-15 -3291 (|#1| |#1| |#1| |#4|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| |#1|)) (-15 -2919 ((-107) |#1| (-583 |#1|))) (-15 -2919 ((-107) |#1| |#1|)) (-15 -1966 ((-107) |#1| (-583 |#1|))) (-15 -1966 ((-107) |#1| |#1|)) (-15 -2844 ((-107) |#1| (-583 |#1|))) (-15 -2844 ((-107) |#1| |#1|)) (-15 -2169 ((-107) |#1| (-583 |#1|))) (-15 -2169 ((-107) |#1| |#1|)) (-15 -1925 ((-107) |#1| |#1|)) (-15 -3706 ((-107) |#1| |#1|)) (-15 -3195 ((-3 (-107) "failed") |#1| |#1|)) (-15 -4144 ((-583 |#1|) |#1|)) (-15 -1722 ((-583 |#1|) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -2427 ((-107) |#1|)) (-15 -3973 ((-107) |#1|)) (-15 -1221 (|#1| |#1| |#4|)) (-15 -1193 (|#1| |#1| |#4|)) (-15 -3796 (|#1| |#1|)) (-15 -1910 ((-583 |#1|) |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -1982 ((-703) |#1|)) (-15 -2877 (|#4| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3232 (|#4| |#1|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2254 (|#1| |#4|)) (-15 -1193 (|#2| |#1|)) (-15 -1221 (|#1| |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-975 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -974))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1387 (|#1| (-583 |#1|))) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 ((-874 |#2|) |#1|)) (-15 -3667 ((-874 |#2|) |#1|)) (-15 -3667 ((-1057) |#1|)) (-15 -4136 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -3652 (|#1| |#1|)) (-15 -3256 (|#1| |#1|)) (-15 -1387 (|#2| |#2| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -1244 (|#1| |#1| |#1|)) (-15 -3490 (|#1| |#1| |#2|)) (-15 -1244 (|#1| |#1| |#2|)) (-15 -3480 (|#1| |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3667 (|#1| (-874 |#2|))) (-15 -3232 (|#1| (-874 |#2|))) (-15 -1837 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3667 (|#1| (-874 (-517)))) (-15 -3232 (|#1| (-874 (-517)))) (-15 -1837 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3667 (|#1| (-874 (-377 (-517))))) (-15 -3232 (|#1| (-874 (-377 (-517))))) (-15 -1837 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -4083 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -1419 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2993 (-703))) |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -3064 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3835 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3019 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2240 |#1|)) |#1| |#1| |#4|)) (-15 -3019 ((-2 (|:| -1965 |#1|) (|:| |gap| (-703)) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1| |#4|)) (-15 -4063 (|#1| |#1| |#1| |#4|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -4063 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1| |#4|)) (-15 -3291 (|#1| |#1| |#1| |#4|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3291 (|#1| |#1| |#1|)) (-15 -2919 ((-107) |#1| (-583 |#1|))) (-15 -2919 ((-107) |#1| |#1|)) (-15 -1966 ((-107) |#1| (-583 |#1|))) (-15 -1966 ((-107) |#1| |#1|)) (-15 -2844 ((-107) |#1| (-583 |#1|))) (-15 -2844 ((-107) |#1| |#1|)) (-15 -2169 ((-107) |#1| (-583 |#1|))) (-15 -2169 ((-107) |#1| |#1|)) (-15 -1925 ((-107) |#1| |#1|)) (-15 -3706 ((-107) |#1| |#1|)) (-15 -3195 ((-3 (-107) "failed") |#1| |#1|)) (-15 -4144 ((-583 |#1|) |#1|)) (-15 -1722 ((-583 |#1|) |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -2427 ((-107) |#1|)) (-15 -3973 ((-107) |#1|)) (-15 -1221 (|#1| |#1| |#4|)) (-15 -1193 (|#1| |#1| |#4|)) (-15 -3796 (|#1| |#1|)) (-15 -1910 ((-583 |#1|) |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -1982 ((-703) |#1|)) (-15 -2877 (|#4| |#1|)) (-15 -3667 ((-493) |#1|)) (-15 -3667 ((-814 (-517)) |#1|)) (-15 -3667 ((-814 (-349)) |#1|)) (-15 -3232 (|#4| |#1|)) (-15 -1837 ((-3 |#4| "failed") |#1|)) (-15 -2254 (|#1| |#4|)) (-15 -1193 (|#2| |#1|)) (-15 -1221 (|#1| |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 |#3|) $) 110)) (-2374 (((-1070 $) $ |#3|) 125) (((-1070 |#1|) $) 124)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2239 (($ $) 88 (|has| |#1| (-509)))) (-3531 (((-107) $) 90 (|has| |#1| (-509)))) (-3916 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2811 (($ $) 271)) (-1925 (((-107) $ $) 257)) (-2646 (((-3 $ "failed") $ $) 19)) (-1844 (($ $ $) 216 (|has| |#1| (-509)))) (-4009 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-2377 (($ $) 98 (|has| |#1| (-421)))) (-2674 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-874 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (((-3 $ "failed") (-874 (-517))) 228 (-3782 (-12 (-2650 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (((-3 $ "failed") (-874 |#1|)) 225 (-3782 (-12 (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1074)))) (-12 (-2650 (|has| |#1| (-502))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (-2650 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))))) (-3232 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) (($ (-874 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (($ (-874 (-517))) 227 (-3782 (-12 (-2650 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (($ (-874 |#1|)) 224 (-3782 (-12 (-2650 (|has| |#1| (-37 (-377 (-517))))) (-2650 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1074)))) (-12 (-2650 (|has| |#1| (-502))) (-2650 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (-2650 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))))) (-3167 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-1221 (($ $) 154) (($ $ |#3|) 266)) (-2749 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-2169 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3775 (((-3 $ "failed") $) 34)) (-2427 (((-107) $) 264)) (-3064 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 236)) (-3256 (($ $) 205 (|has| |#1| (-421)))) (-2038 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1206 (((-583 $) $) 109)) (-3083 (((-107) $) 96 (|has| |#1| (-831)))) (-3480 (($ $) 221 (|has| |#1| (-509)))) (-3091 (($ $) 222 (|has| |#1| (-509)))) (-3291 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3407 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2083 (($ $ |#1| |#2| $) 172)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3469 (((-107) $) 31)) (-3604 (((-703) $) 169)) (-2919 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-4131 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-2877 ((|#3| $) 275)) (-1347 (($ (-1070 |#1|) |#3|) 117) (($ (-1070 $) |#3|) 116)) (-3284 (((-583 $) $) 126)) (-2029 (((-107) $) 152)) (-1336 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3987 (($ $ $) 235)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#3|) 120)) (-3973 (((-107) $) 265)) (-3876 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-4055 (($ $ $) 79 (|has| |#1| (-779)))) (-1982 (((-703) $) 274)) (-3105 (($ $ $) 78 (|has| |#1| (-779)))) (-3602 (($ (-1 |#2| |#2|) $) 171)) (-1939 (($ (-1 |#1| |#1|) $) 151)) (-3382 (((-3 |#3| "failed") $) 123)) (-4136 (($ $) 202 (|has| |#1| (-421)))) (-1539 (($ $) 203 (|has| |#1| (-421)))) (-4144 (((-583 $) $) 260)) (-1532 (($ $) 263)) (-3652 (($ $) 204 (|has| |#1| (-421)))) (-1722 (((-583 $) $) 261)) (-2703 (($ $) 262)) (-1687 (($ $) 149)) (-1193 ((|#1| $) 148) (($ $ |#3|) 267)) (-1360 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1419 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2993 (-703))) $ $) 234)) (-3835 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $) 238) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $ |#3|) 237)) (-3019 (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $) 240) (((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $ |#3|) 239)) (-4063 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1726 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1277 (((-1057) $) 9)) (-1516 (($ $ $) 210 (|has| |#1| (-509)))) (-1910 (((-583 $) $) 269)) (-3789 (((-3 (-583 $) "failed") $) 114)) (-1674 (((-3 (-583 $) "failed") $) 115)) (-3106 (((-3 (-2 (|:| |var| |#3|) (|:| -3010 (-703))) "failed") $) 113)) (-1966 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-4083 (($ $ $) 232)) (-3680 (($ $) 273)) (-3706 (((-107) $ $) 258)) (-2844 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-1382 (($ $ $) 233)) (-3671 (($ $) 272)) (-3214 (((-1021) $) 10)) (-3391 (((-2 (|:| -1387 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-3898 (((-2 (|:| -1387 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-1656 (((-107) $) 166)) (-1671 ((|#1| $) 167)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1387 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 99 (|has| |#1| (-831)))) (-3840 (((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2483 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3490 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-1244 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3383 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-1248 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3625 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3113 (($ $) 270)) (-3796 (($ $) 268)) (-3667 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-874 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074))))) (($ (-874 (-517))) 226 (-3782 (-12 (-2650 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1074)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1074)))))) (($ (-874 |#1|)) 223 (|has| |#3| (-558 (-1074)))) (((-1057) $) 201 (-12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1074))))) (((-874 |#1|) $) 200 (|has| |#3| (-558 (-1074))))) (-4128 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 104 (-4032 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-874 |#1|) $) 199 (|has| |#3| (-558 (-1074)))) (($ (-377 (-517))) 72 (-3782 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) 168)) (-4104 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2486 (((-3 $ "failed") $) 73 (-3782 (-4032 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 29)) (-2829 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-3195 (((-3 (-107) "failed") $ $) 259)) (-2411 (($) 30 T CONST)) (-2834 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-2969 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-2738 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1600 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-975 |#1| |#2| |#3|) (-1185) (-961) (-725) (-779)) (T -975))
-((-2877 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3113 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1910 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1193 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1221 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2703 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1722 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3195 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3706 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1925 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2169 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2844 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1966 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1966 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2919 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3291 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3407 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3291 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3407 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4063 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-4063 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1726 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3019 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))) (-3019 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2240 *1))) (-4 *1 (-975 *4 *5 *3)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))) (-3835 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *4 *5 *3)))) (-3064 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1419 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2993 (-703)))) (-4 *1 (-975 *3 *4 *5)))) (-1382 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-4083 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1837 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-1837 (*1 *1 *2) (|partial| -3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3232 (*1 *1 *2) (-3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3667 (*1 *1 *2) (-3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-1837 (*1 *1 *2) (|partial| -3782 (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-2650 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-502))) (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3232 (*1 *1 *2) (-3782 (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-2650 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-502))) (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1074))) (-4 *4 (-725)) (-4 *5 (-779)))) (-3091 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3480 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1244 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3490 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1244 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3840 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3898 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3391 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4009 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1516 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2969 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-2834 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-4131 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1387 (*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3256 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1539 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4136 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(-13 (-871 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2877 (|t#3| $)) (-15 -1982 ((-703) $)) (-15 -3680 ($ $)) (-15 -3671 ($ $)) (-15 -2811 ($ $)) (-15 -3113 ($ $)) (-15 -1910 ((-583 $) $)) (-15 -3796 ($ $)) (-15 -1193 ($ $ |t#3|)) (-15 -1221 ($ $ |t#3|)) (-15 -3973 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1532 ($ $)) (-15 -2703 ($ $)) (-15 -1722 ((-583 $) $)) (-15 -4144 ((-583 $) $)) (-15 -3195 ((-3 (-107) "failed") $ $)) (-15 -3706 ((-107) $ $)) (-15 -1925 ((-107) $ $)) (-15 -2169 ((-107) $ $)) (-15 -2169 ((-107) $ (-583 $))) (-15 -2844 ((-107) $ $)) (-15 -2844 ((-107) $ (-583 $))) (-15 -1966 ((-107) $ $)) (-15 -1966 ((-107) $ (-583 $))) (-15 -2919 ((-107) $ $)) (-15 -2919 ((-107) $ (-583 $))) (-15 -3291 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3291 ($ $ $ |t#3|)) (-15 -3407 ($ $ $ |t#3|)) (-15 -4063 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -4063 ($ $ $ |t#3|)) (-15 -1726 ($ $ $ |t#3|)) (-15 -3019 ((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $)) (-15 -3019 ((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2240 $)) $ $ |t#3|)) (-15 -3835 ((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -3835 ((-2 (|:| -1965 $) (|:| |gap| (-703)) (|:| -2317 $) (|:| -2240 $)) $ $ |t#3|)) (-15 -3064 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -3987 ($ $ $)) (-15 -1419 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2993 (-703))) $ $)) (-15 -1382 ($ $ $)) (-15 -4083 ($ $ $)) (IF (|has| |t#3| (-558 (-1074))) (PROGN (-6 (-557 (-874 |t#1|))) (-6 (-558 (-874 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1837 ((-3 $ "failed") (-874 (-377 (-517))))) (-15 -3232 ($ (-874 (-377 (-517))))) (-15 -3667 ($ (-874 (-377 (-517))))) (-15 -1837 ((-3 $ "failed") (-874 (-517)))) (-15 -3232 ($ (-874 (-517)))) (-15 -3667 ($ (-874 (-517)))) (IF (|has| |t#1| (-909 (-517))) |%noBranch| (PROGN (-15 -1837 ((-3 $ "failed") (-874 |t#1|))) (-15 -3232 ($ (-874 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -1837 ((-3 $ "failed") (-874 (-517)))) (-15 -3232 ($ (-874 (-517)))) (-15 -3667 ($ (-874 (-517)))) (IF (|has| |t#1| (-502)) |%noBranch| (PROGN (-15 -1837 ((-3 $ "failed") (-874 |t#1|))) (-15 -3232 ($ (-874 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) |%noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -1837 ((-3 $ "failed") (-874 |t#1|))) (-15 -3232 ($ (-874 |t#1|)))))) (-15 -3667 ($ (-874 |t#1|))) (IF (|has| |t#1| (-952 (-517))) (-6 (-558 (-1057))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3091 ($ $)) (-15 -3480 ($ $)) (-15 -1244 ($ $ |t#1|)) (-15 -3490 ($ $ |t#1|)) (-15 -1244 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -1844 ($ $ $)) (-15 -3840 ((-2 (|:| -1387 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3898 ((-2 (|:| -1387 $) (|:| |coef1| $)) $ $)) (-15 -3391 ((-2 (|:| -1387 $) (|:| |coef2| $)) $ $)) (-15 -3167 ($ $ $)) (-15 -4009 ((-583 $) $ $)) (-15 -1516 ($ $ $)) (-15 -2969 ($ $ $ (-703))) (-15 -2834 ($ $ $ $ (-703))) (-15 -4131 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1387 (|t#1| |t#1| $)) (-15 -3256 ($ $)) (-15 -3652 ($ $)) (-15 -1539 ($ $)) (-15 -4136 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-874 |#1|)) |has| |#3| (-558 (-1074))) ((-156) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-558 (-874 |#1|)) |has| |#3| (-558 (-1074))) ((-558 (-1057)) -12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1074)))) ((-262) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#2| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) |has| |#1| (-831)))
-((-2778 (((-107) |#3| $) 13)) (-3249 (((-3 $ "failed") |#3| (-843)) 23)) (-3775 (((-3 |#3| "failed") |#3| $) 37)) (-3162 (((-107) |#3| $) 16)) (-1199 (((-107) |#3| $) 14)))
-(((-976 |#1| |#2| |#3|) (-10 -8 (-15 -3249 ((-3 |#1| "failed") |#3| (-843))) (-15 -3775 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3162 ((-107) |#3| |#1|)) (-15 -1199 ((-107) |#3| |#1|)) (-15 -2778 ((-107) |#3| |#1|))) (-977 |#2| |#3|) (-13 (-777) (-333)) (-1131 |#2|)) (T -976))
-NIL
-(-10 -8 (-15 -3249 ((-3 |#1| "failed") |#3| (-843))) (-15 -3775 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3162 ((-107) |#3| |#1|)) (-15 -1199 ((-107) |#3| |#1|)) (-15 -2778 ((-107) |#3| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) |#2| $) 21)) (-3345 (((-517) |#2| $) 22)) (-3249 (((-3 $ "failed") |#2| (-843)) 15)) (-2764 ((|#1| |#2| $ |#1|) 13)) (-3775 (((-3 |#2| "failed") |#2| $) 18)) (-3162 (((-107) |#2| $) 19)) (-1199 (((-107) |#2| $) 20)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2780 ((|#2| $) 17)) (-2254 (((-787) $) 11)) (-3405 ((|#1| |#2| $ |#1|) 14)) (-3846 (((-583 $) |#2|) 16)) (-1534 (((-107) $ $) 6)))
-(((-977 |#1| |#2|) (-1185) (-13 (-777) (-333)) (-1131 |t#1|)) (T -977))
-((-3345 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-517)))) (-2778 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-1199 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-3162 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))) (-3775 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))) (-3249 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1131 *4)))) (-3405 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))) (-2764 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))))
-(-13 (-1003) (-10 -8 (-15 -3345 ((-517) |t#2| $)) (-15 -2778 ((-107) |t#2| $)) (-15 -1199 ((-107) |t#2| $)) (-15 -3162 ((-107) |t#2| $)) (-15 -3775 ((-3 |t#2| "failed") |t#2| $)) (-15 -2780 (|t#2| $)) (-15 -3846 ((-583 $) |t#2|)) (-15 -3249 ((-3 $ "failed") |t#2| (-843))) (-15 -3405 (|t#1| |t#2| $ |t#1|)) (-15 -2764 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3096 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703)) 95)) (-3321 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703)) 55)) (-3606 (((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703)) 87)) (-1808 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-3586 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2176 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3667 (((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) 82)) (-3270 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-107)) 54)) (-3116 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3116 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1808 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3270 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-107))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3096 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703))) (-15 -3667 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3606 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -978))
-((-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-3096 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1341 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1341 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) (-2176 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2176 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3586 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) (-3321 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3321 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3270 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3116 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1808 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3270 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-107))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3096 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703))) (-15 -3667 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3606 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703))))
-((-1262 (((-107) |#5| $) 20)) (-4030 (((-107) |#5| $) 23)) (-2031 (((-107) |#5| $) 16) (((-107) $) 44)) (-2375 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 76) (((-583 $) (-583 |#5|) (-583 $)) 74) (((-583 $) |#5| (-583 $)) 77)) (-2204 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 59) (((-583 $) (-583 |#5|) $) 61) (((-583 $) (-583 |#5|) (-583 $)) 63)) (-1597 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 53) (((-583 $) (-583 |#5|) $) 55) (((-583 $) (-583 |#5|) (-583 $)) 57)) (-2710 (((-107) |#5| $) 26)))
-(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2204 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2204 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2204 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2204 ((-583 |#1|) |#5| |#1|)) (-15 -1597 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1597 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1597 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1597 ((-583 |#1|) |#5| |#1|)) (-15 -2375 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2375 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2375 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2375 ((-583 |#1|) |#5| |#1|)) (-15 -4030 ((-107) |#5| |#1|)) (-15 -2031 ((-107) |#1|)) (-15 -2710 ((-107) |#5| |#1|)) (-15 -1262 ((-107) |#5| |#1|)) (-15 -2031 ((-107) |#5| |#1|)) (-15 -2204 (|#1| |#1| |#5|))) (-980 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -979))
-NIL
-(-10 -8 (-15 -2204 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2204 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2204 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2204 ((-583 |#1|) |#5| |#1|)) (-15 -1597 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1597 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1597 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1597 ((-583 |#1|) |#5| |#1|)) (-15 -2375 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2375 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2375 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2375 ((-583 |#1|) |#5| |#1|)) (-15 -4030 ((-107) |#5| |#1|)) (-15 -2031 ((-107) |#1|)) (-15 -2710 ((-107) |#5| |#1|)) (-15 -1262 ((-107) |#5| |#1|)) (-15 -2031 ((-107) |#5| |#1|)) (-15 -2204 (|#1| |#1| |#5|)))
-((-1587 (((-107) $ $) 7)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) 85)) (-3258 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) 101) (((-107) $) 97)) (-2802 ((|#4| |#4| $) 92)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 126)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1761 (((-3 $ "failed") $) 82)) (-3896 ((|#4| |#4| $) 89)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3797 ((|#4| |#4| $) 87)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) 105)) (-1262 (((-107) |#4| $) 136)) (-4030 (((-107) |#4| $) 133)) (-2031 (((-107) |#4| $) 137) (((-107) $) 134)) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) 104) (((-107) $) 103)) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 127)) (-2067 (((-3 |#4| "failed") $) 83)) (-3805 (((-583 $) |#4| $) 129)) (-1956 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2375 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3912 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2825 (((-583 |#4|) $) 107)) (-1966 (((-107) |#4| $) 99) (((-107) $) 95)) (-4083 ((|#4| |#4| $) 90)) (-3706 (((-107) $ $) 110)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) 100) (((-107) $) 96)) (-1382 ((|#4| |#4| $) 91)) (-3214 (((-1021) $) 10)) (-1750 (((-3 |#4| "failed") $) 84)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2463 (((-3 $ "failed") $ |#4|) 78)) (-2204 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3625 (((-703) $) 106)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-2202 (($ $) 88)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1444 (((-703) $) 76 (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1597 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) 81)) (-2710 (((-107) |#4| $) 135)) (-1892 (((-107) |#3| $) 80)) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-980 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -980))
-((-2031 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1262 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2710 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-4030 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1956 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3140 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3140 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3805 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-4068 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1516 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2377 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2375 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-2375 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-2375 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-2375 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-1597 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-1597 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-3912 (*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-2204 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-2204 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-2204 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))))
-(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2031 ((-107) |t#4| $)) (-15 -1262 ((-107) |t#4| $)) (-15 -2710 ((-107) |t#4| $)) (-15 -2031 ((-107) $)) (-15 -4030 ((-107) |t#4| $)) (-15 -1956 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3140 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |t#4| $)) (-15 -3140 ((-107) |t#4| $)) (-15 -3805 ((-583 $) |t#4| $)) (-15 -4068 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1516 ((-583 (-2 (|:| |val| |t#4|) (|:| -1341 $))) |t#4| |t#4| $)) (-15 -2377 ((-583 (-2 (|:| |val| |t#4|) (|:| -1341 $))) |t#4| $)) (-15 -2375 ((-583 $) |t#4| $)) (-15 -2375 ((-583 $) (-583 |t#4|) $)) (-15 -2375 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2375 ((-583 $) |t#4| (-583 $))) (-15 -1597 ((-583 $) |t#4| $)) (-15 -1597 ((-583 $) |t#4| (-583 $))) (-15 -1597 ((-583 $) (-583 |t#4|) $)) (-15 -1597 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3912 ($ |t#4| $)) (-15 -3912 ($ (-583 |t#4|) $)) (-15 -2204 ((-583 $) |t#4| $)) (-15 -2204 ((-583 $) |t#4| (-583 $))) (-15 -2204 ((-583 $) (-583 |t#4|) $)) (-15 -2204 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3258 ((-583 $) (-583 |t#4|) (-107)))))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
-((-3952 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|) 81)) (-3497 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|) 112)) (-2495 (((-583 |#5|) |#4| |#5|) 70)) (-3936 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2071 (((-1159)) 35)) (-1311 (((-1159)) 25)) (-3288 (((-1159) (-1057) (-1057) (-1057)) 31)) (-1706 (((-1159) (-1057) (-1057) (-1057)) 20)) (-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|) 95)) (-3474 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107)) 106) (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3068 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|) 101)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1706 ((-1159) (-1057) (-1057) (-1057))) (-15 -1311 ((-1159))) (-15 -3288 ((-1159) (-1057) (-1057) (-1057))) (-15 -2071 ((-1159))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3474 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -3474 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107))) (-15 -3068 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3497 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3936 ((-107) |#4| |#5|)) (-15 -3936 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2495 ((-583 |#5|) |#4| |#5|)) (-15 -3952 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -981))
-((-3952 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3497 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3068 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1341 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))) (-3474 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3047 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2071 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1311 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1706 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1706 ((-1159) (-1057) (-1057) (-1057))) (-15 -1311 ((-1159))) (-15 -3288 ((-1159) (-1057) (-1057) (-1057))) (-15 -2071 ((-1159))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3474 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -3474 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107))) (-15 -3068 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3497 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3936 ((-107) |#4| |#5|)) (-15 -3936 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2495 ((-583 |#5|) |#4| |#5|)) (-15 -3952 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|)))
-((-1587 (((-107) $ $) NIL)) (-1214 (((-1074) $) 8)) (-1277 (((-1057) $) 16)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 13)))
-(((-982 |#1|) (-13 (-1003) (-10 -8 (-15 -1214 ((-1074) $)))) (-1074)) (T -982))
-((-1214 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-982 *3)) (-14 *3 *2))))
-(-13 (-1003) (-10 -8 (-15 -1214 ((-1074) $))))
-((-1587 (((-107) $ $) NIL)) (-1737 (($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|))) 29)) (-2679 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1074))) 19)) (-3684 ((|#3| $) 13)) (-1837 (((-3 (-265 |#3|) "failed") $) 56)) (-3232 (((-265 |#3|) $) NIL)) (-2400 (((-583 (-1074)) $) 15)) (-2186 (((-814 |#1|) $) 11)) (-3672 ((|#3| $) 12)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1437 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-843)) 36)) (-2254 (((-787) $) 84) (($ (-265 |#3|)) 20)) (-1534 (((-107) $ $) 33)))
-(((-983 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2679 ($ |#3| |#3|)) (-15 -2679 ($ |#3| |#3| (-583 (-1074)))) (-15 -1737 ($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|)))) (-15 -2186 ((-814 |#1|) $)) (-15 -3672 (|#3| $)) (-15 -3684 (|#3| $)) (-15 -1437 (|#3| $ |#3| (-843))) (-15 -2400 ((-583 (-1074)) $)))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -983))
-((-2679 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-2679 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-1737 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))) (-2186 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))) (-3672 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-3684 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-1437 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2400 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1074))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2679 ($ |#3| |#3|)) (-15 -2679 ($ |#3| |#3| (-583 (-1074)))) (-15 -1737 ($ $ (-583 (-1074)) (-1 (-107) (-583 |#3|)))) (-15 -2186 ((-814 |#1|) $)) (-15 -3672 (|#3| $)) (-15 -3684 (|#3| $)) (-15 -1437 (|#3| $ |#3| (-843))) (-15 -2400 ((-583 (-1074)) $))))
-((-1587 (((-107) $ $) NIL)) (-1703 (($ (-583 (-983 |#1| |#2| |#3|))) 12)) (-3498 (((-583 (-983 |#1| |#2| |#3|)) $) 19)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1437 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-843)) 25)) (-2254 (((-787) $) 15)) (-1534 (((-107) $ $) 18)))
-(((-984 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -1703 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3498 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1437 (|#3| $ |#3| (-843))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -984))
-((-1703 (*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))) (-3498 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-1437 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
-(-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -1703 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3498 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1437 (|#3| $ |#3| (-843)))))
-((-3778 (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 73) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 75) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 74)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1074))) (T -985))
-((-3778 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))))
-(-10 -7 (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -3778 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))))
-((-1376 (((-388 |#3|) |#3|) 16)))
-(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -1376 ((-388 |#3|) |#3|))) (-1131 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1131 |#2|)) (T -986))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#3|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 125)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-2239 (($ $) NIL (|has| |#1| (-333)))) (-3531 (((-107) $) NIL (|has| |#1| (-333)))) (-1205 (((-623 |#1|) (-1154 $)) NIL) (((-623 |#1|)) 115)) (-1462 ((|#1| $) 119)) (-2577 (((-1083 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1719 (((-703)) 40 (|has| |#1| (-338)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-4047 (($ (-1154 |#1|) (-1154 $)) NIL) (($ (-1154 |#1|)) 43)) (-3603 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-2739 (((-623 |#1|) $ (-1154 $)) NIL) (((-623 |#1|) $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-1292 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3775 (((-3 $ "failed") $) NIL)) (-3334 (((-843)) 77)) (-4100 (($) 44 (|has| |#1| (-338)))) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2170 (($) NIL (|has| |#1| (-319)))) (-3449 (((-107) $) NIL (|has| |#1| (-319)))) (-2616 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-3730 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3469 (((-107) $) NIL)) (-2962 ((|#1| $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2956 ((|#2| $) 84 (|has| |#1| (-333)))) (-4034 (((-843) $) 129 (|has| |#1| (-338)))) (-1283 ((|#2| $) 58)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3680 (($) NIL (|has| |#1| (-319)) CONST)) (-3544 (($ (-843)) 124 (|has| |#1| (-338)))) (-3214 (((-1021) $) NIL)) (-3244 (($) 121)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (((-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))) NIL (|has| |#1| (-319)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-3383 ((|#1| (-1154 $)) NIL) ((|#1|) 109)) (-3459 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-1248 (($ $) NIL (-3782 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2072 (((-623 |#1|) (-1154 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2780 ((|#2|) 73)) (-2858 (($) NIL (|has| |#1| (-319)))) (-3589 (((-1154 |#1|) $ (-1154 $)) 89) (((-623 |#1|) (-1154 $) (-1154 $)) NIL) (((-1154 |#1|) $) 71) (((-623 |#1|) (-1154 $)) 85)) (-3667 (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2254 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-2486 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1924 ((|#2| $) 82)) (-1217 (((-703)) 75)) (-2080 (((-1154 $)) 81)) (-2673 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 30 T CONST)) (-2411 (($) 19 T CONST)) (-2738 (($ $) NIL (-3782 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1074))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1534 (((-107) $ $) 63)) (-1678 (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) 67) (($ $ $) NIL)) (-1645 (($ $ $) 65)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
-(((-987 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1131 |#1|) |#2|) (T -987))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-844)) 26)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-969) (-1187)) (T -969))
+NIL
+(-13 (-21) (-1016))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1016) . T) ((-1004) . T))
+((-3509 (($ $) 16)) (-4013 (($ $) 22)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 49)) (-2754 (($ $) 24)) (-1288 (($ $) 11)) (-2309 (($ $) 38)) (-3357 (((-349) $) NIL) (((-199) $) NIL) (((-815 (-349)) $) 33)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-2950 (((-703)) 8)) (-3475 (($ $) 39)))
+(((-970 |#1|) (-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -1288 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -2754 (|#1| |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -2269 ((-787) |#1|))) (-971)) (T -970))
+((-2950 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-970 *3)) (-4 *3 (-971)))))
+(-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -1288 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -2754 (|#1| |#1|)) (-15 -2399 ((-812 (-349) |#1|) |#1| (-815 (-349)) (-812 (-349) |#1|))) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 -3357 ((-199) |#1|)) (-15 -3357 ((-349) |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2950 ((-703))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3297 (((-517) $) 89)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-3509 (($ $) 87)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3879 (($ $) 97)) (-3998 (((-107) $ $) 59)) (-1323 (((-517) $) 114)) (-1681 (($) 17 T CONST)) (-4013 (($ $) 86)) (-3226 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3388 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2963 (((-107) $) 71)) (-3523 (((-107) $) 112)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 93)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 96)) (-2754 (($ $) 92)) (-1469 (((-107) $) 113)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3456 (($ $ $) 111)) (-4082 (($ $ $) 110)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-1288 (($ $) 88)) (-2309 (($ $) 90)) (-3866 (((-388 $) $) 74)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-3357 (((-349) $) 105) (((-199) $) 104) (((-815 (-349)) $) 94)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2950 (((-703)) 29)) (-3475 (($ $) 91)) (-2914 (((-107) $ $) 39)) (-2339 (($ $) 115)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1641 (((-107) $ $) 108)) (-1617 (((-107) $ $) 107)) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 109)) (-1607 (((-107) $ $) 106)) (-1703 (($ $ $) 64)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-971) (-1187)) (T -971))
+((-2339 (*1 *1 *1) (-4 *1 (-971))) (-2754 (*1 *1 *1) (-4 *1 (-971))) (-3475 (*1 *1 *1) (-4 *1 (-971))) (-2309 (*1 *1 *1) (-4 *1 (-971))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-517)))) (-1288 (*1 *1 *1) (-4 *1 (-971))) (-3509 (*1 *1 *1) (-4 *1 (-971))) (-4013 (*1 *1 *1) (-4 *1 (-971))))
+(-13 (-333) (-777) (-938) (-953 (-517)) (-953 (-377 (-517))) (-919) (-558 (-815 (-349))) (-809 (-349)) (-134) (-10 -8 (-15 -2754 ($ $)) (-15 -3475 ($ $)) (-15 -2309 ($ $)) (-15 -3297 ((-517) $)) (-15 -1288 ($ $)) (-15 -3509 ($ $)) (-15 -4013 ($ $)) (-15 -2339 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-815 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-809 (-349)) . T) ((-843) . T) ((-919) . T) ((-938) . T) ((-953 (-377 (-517))) . T) ((-953 (-517)) . T) ((-968 #0#) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) |#2| $) 23)) (-2397 ((|#1| $) 10)) (-1323 (((-517) |#2| $) 89)) (-3772 (((-3 $ "failed") |#2| (-844)) 58)) (-3298 ((|#1| $) 28)) (-2687 ((|#1| |#2| $ |#1|) 37)) (-2403 (($ $) 25)) (-3163 (((-3 |#2| "failed") |#2| $) 88)) (-3523 (((-107) |#2| $) NIL)) (-1469 (((-107) |#2| $) NIL)) (-1727 (((-107) |#2| $) 24)) (-1552 ((|#1| $) 90)) (-3286 ((|#1| $) 27)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3586 ((|#2| $) 80)) (-2269 (((-787) $) 71)) (-2202 ((|#1| |#2| $ |#1|) 38)) (-3132 (((-583 $) |#2|) 60)) (-1583 (((-107) $ $) 75)))
+(((-972 |#1| |#2|) (-13 (-978 |#1| |#2|) (-10 -8 (-15 -3286 (|#1| $)) (-15 -3298 (|#1| $)) (-15 -2397 (|#1| $)) (-15 -1552 (|#1| $)) (-15 -2403 ($ $)) (-15 -1727 ((-107) |#2| $)) (-15 -2687 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1132 |#1|)) (T -972))
+((-2687 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-3286 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-3298 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-2397 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-1552 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-2403 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3)) (-4 *3 (-1132 *2)))) (-1727 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-972 *4 *3)) (-4 *3 (-1132 *4)))))
+(-13 (-978 |#1| |#2|) (-10 -8 (-15 -3286 (|#1| $)) (-15 -3298 (|#1| $)) (-15 -2397 (|#1| $)) (-15 -1552 (|#1| $)) (-15 -2403 ($ $)) (-15 -1727 ((-107) |#2| $)) (-15 -2687 (|#1| |#2| $ |#1|))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1732 (($ $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1448 (($ $ $ $) NIL)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL)) (-2140 (($ $ $) NIL)) (-1681 (($) NIL T CONST)) (-3439 (($ (-1075)) 10) (($ (-517)) 7)) (-3226 (((-3 (-517) "failed") $) NIL)) (-3388 (((-517) $) NIL)) (-2378 (($ $ $) NIL)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL)) (-1654 (((-107) $) NIL)) (-3652 (((-377 (-517)) $) NIL)) (-2200 (($) NIL) (($ $) NIL)) (-2354 (($ $ $) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2171 (($ $ $ $) NIL)) (-3101 (($ $ $) NIL)) (-3523 (((-107) $) NIL)) (-1298 (($ $ $) NIL)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1865 (((-107) $) NIL)) (-1623 (((-107) $) NIL)) (-3572 (((-3 $ "failed") $) NIL)) (-1469 (((-107) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1431 (($ $ $ $) NIL)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-2634 (($ $) NIL)) (-3680 (($ $) NIL)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2825 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-4004 (($ $) NIL)) (-4123 (((-1022) $) NIL) (($ $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3012 (($ $) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2916 (($ $) NIL)) (-2460 (($ $) NIL)) (-3357 (((-517) $) 16) (((-493) $) NIL) (((-815 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1075)) 9)) (-2269 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-2950 (((-703)) NIL)) (-4012 (((-107) $ $) NIL)) (-3972 (($ $ $) NIL)) (-3984 (($) NIL)) (-2914 (((-107) $ $) NIL)) (-3359 (($ $ $ $) NIL)) (-2339 (($ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) NIL)) (-1691 (($ $) 19) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-973) (-13 (-502) (-10 -8 (-6 -4177) (-6 -4182) (-6 -4178) (-15 -3357 ($ (-1075))) (-15 -3439 ($ (-1075))) (-15 -3439 ($ (-517)))))) (T -973))
+((-3357 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-973)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-973)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-973)))))
+(-13 (-502) (-10 -8 (-6 -4177) (-6 -4182) (-6 -4178) (-15 -3357 ($ (-1075))) (-15 -3439 ($ (-1075))) (-15 -3439 ($ (-517)))))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-1478 (((-1161) $ (-1075) (-1075)) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-3368 (($) 9)) (-2443 (((-51) $ (-1075) (-51)) NIL)) (-3061 (($ $) 23)) (-2426 (($ $) 21)) (-2696 (($ $) 20)) (-1438 (($ $) 22)) (-3873 (($ $) 25)) (-3893 (($ $) 26)) (-2992 (($ $) 19)) (-2795 (($ $) 24)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) 18 (|has| $ (-6 -4190)))) (-3562 (((-3 (-51) "failed") (-1075) $) 34)) (-1681 (($) NIL T CONST)) (-3325 (($) 7)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3593 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) 46 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-3 (-51) "failed") (-1075) $) NIL)) (-1422 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190)))) (-2170 (((-3 (-1058) "failed") $ (-1058) (-517)) 59)) (-2757 (((-51) $ (-1075) (-51)) NIL (|has| $ (-6 -4191)))) (-2563 (((-51) $ (-1075)) NIL)) (-1535 (((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-1075) $) NIL (|has| (-1075) (-779)))) (-2898 (((-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) 28 (|has| $ (-6 -4190))) (((-583 (-51)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-3979 (((-1075) $) NIL (|has| (-1075) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4191))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-1881 (((-583 (-1075)) $) NIL)) (-3472 (((-107) (-1075) $) NIL)) (-2431 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL)) (-2704 (($ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) 37)) (-4121 (((-583 (-1075)) $) NIL)) (-3536 (((-107) (-1075) $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3570 (((-349) $ (-1075)) 45)) (-1292 (((-583 (-1058)) $ (-1058)) 60)) (-2427 (((-51) $) NIL (|has| (-1075) (-779)))) (-2999 (((-3 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) "failed") (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL)) (-3191 (($ $ (-51)) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-265 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL (-12 (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-280 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004))))) (-1831 (((-583 (-51)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 (((-51) $ (-1075)) NIL) (((-51) $ (-1075) (-51)) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-3978 (($ $ (-1075)) 47)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-51) (-1004)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) 30)) (-4108 (($ $ $) 31)) (-2269 (((-787) $) NIL (-3745 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-557 (-787)))))) (-2695 (($ $ (-1075) (-349)) 43)) (-1319 (($ $ (-1075) (-349)) 44)) (-4155 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 (-1075)) (|:| -1860 (-51)))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-51) (-1004)) (|has| (-2 (|:| -2581 (-1075)) (|:| -1860 (-51))) (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-974) (-13 (-1087 (-1075) (-51)) (-10 -8 (-15 -4108 ($ $ $)) (-15 -3325 ($)) (-15 -2992 ($ $)) (-15 -2696 ($ $)) (-15 -2426 ($ $)) (-15 -1438 ($ $)) (-15 -2795 ($ $)) (-15 -3061 ($ $)) (-15 -3873 ($ $)) (-15 -3893 ($ $)) (-15 -2695 ($ $ (-1075) (-349))) (-15 -1319 ($ $ (-1075) (-349))) (-15 -3570 ((-349) $ (-1075))) (-15 -1292 ((-583 (-1058)) $ (-1058))) (-15 -3978 ($ $ (-1075))) (-15 -3368 ($)) (-15 -2170 ((-3 (-1058) "failed") $ (-1058) (-517))) (-6 -4190)))) (T -974))
+((-4108 (*1 *1 *1 *1) (-5 *1 (-974))) (-3325 (*1 *1) (-5 *1 (-974))) (-2992 (*1 *1 *1) (-5 *1 (-974))) (-2696 (*1 *1 *1) (-5 *1 (-974))) (-2426 (*1 *1 *1) (-5 *1 (-974))) (-1438 (*1 *1 *1) (-5 *1 (-974))) (-2795 (*1 *1 *1) (-5 *1 (-974))) (-3061 (*1 *1 *1) (-5 *1 (-974))) (-3873 (*1 *1 *1) (-5 *1 (-974))) (-3893 (*1 *1 *1) (-5 *1 (-974))) (-2695 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-349)) (-5 *1 (-974)))) (-1319 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-349)) (-5 *1 (-974)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-349)) (-5 *1 (-974)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-974)) (-5 *3 (-1058)))) (-3978 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-974)))) (-3368 (*1 *1) (-5 *1 (-974))) (-2170 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-974)))))
+(-13 (-1087 (-1075) (-51)) (-10 -8 (-15 -4108 ($ $ $)) (-15 -3325 ($)) (-15 -2992 ($ $)) (-15 -2696 ($ $)) (-15 -2426 ($ $)) (-15 -1438 ($ $)) (-15 -2795 ($ $)) (-15 -3061 ($ $)) (-15 -3873 ($ $)) (-15 -3893 ($ $)) (-15 -2695 ($ $ (-1075) (-349))) (-15 -1319 ($ $ (-1075) (-349))) (-15 -3570 ((-349) $ (-1075))) (-15 -1292 ((-583 (-1058)) $ (-1058))) (-15 -3978 ($ $ (-1075))) (-15 -3368 ($)) (-15 -2170 ((-3 (-1058) "failed") $ (-1058) (-517))) (-6 -4190)))
+((-1540 (($ $) 45)) (-3605 (((-107) $ $) 74)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-875 (-377 (-517)))) 227) (((-3 $ "failed") (-875 (-517))) 226) (((-3 $ "failed") (-875 |#2|)) 229)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-875 (-377 (-517)))) 215) (($ (-875 (-517))) 211) (($ (-875 |#2|)) 231)) (-2371 (($ $) NIL) (($ $ |#4|) 43)) (-3100 (((-107) $ $) 112) (((-107) $ (-583 $)) 113)) (-2777 (((-107) $) 56)) (-2165 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 107)) (-4063 (($ $) 138)) (-4090 (($ $) 134)) (-1631 (($ $) 133)) (-1791 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3098 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3091 (((-107) $ $) 121) (((-107) $ (-583 $)) 122)) (-3834 ((|#4| $) 33)) (-3550 (($ $ $) 110)) (-1728 (((-107) $) 55)) (-2979 (((-703) $) 35)) (-2439 (($ $) 152)) (-2553 (($ $) 149)) (-3932 (((-583 $) $) 68)) (-1957 (($ $) 57)) (-3959 (($ $) 145)) (-1879 (((-583 $) $) 65)) (-1603 (($ $) 59)) (-2345 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2400 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3664 (-703))) $ $) 111)) (-2879 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $) 108) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $ |#4|) 109)) (-4069 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $) 104) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $ |#4|) 105)) (-1363 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2428 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2175 (((-583 $) $) 51)) (-3015 (((-107) $ $) 118) (((-107) $ (-583 $)) 119)) (-4014 (($ $ $) 103)) (-2585 (($ $) 37)) (-1837 (((-107) $ $) 72)) (-3974 (((-107) $ $) 114) (((-107) $ (-583 $)) 116)) (-3422 (($ $ $) 101)) (-2868 (($ $) 40)) (-2368 ((|#2| |#2| $) 142) (($ (-583 $)) NIL) (($ $ $) NIL)) (-2404 (($ $ |#2|) NIL) (($ $ $) 131)) (-2173 (($ $ |#2|) 126) (($ $ $) 129)) (-2778 (($ $) 48)) (-2449 (($ $) 52)) (-3357 (((-815 (-349)) $) NIL) (((-815 (-517)) $) NIL) (((-493) $) NIL) (($ (-875 (-377 (-517)))) 217) (($ (-875 (-517))) 213) (($ (-875 |#2|)) 228) (((-1058) $) 250) (((-875 |#2|) $) 162)) (-2269 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-875 |#2|) $) 163) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2392 (((-3 (-107) "failed") $ $) 71)))
+(((-975 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 ((-875 |#2|) |#1|)) (-15 -3357 ((-875 |#2|) |#1|)) (-15 -3357 ((-1058) |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -2368 (|#2| |#2| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2173 (|#1| |#1| |#2|)) (-15 -4090 (|#1| |#1|)) (-15 -1631 (|#1| |#1|)) (-15 -3357 (|#1| (-875 |#2|))) (-15 -3388 (|#1| (-875 |#2|))) (-15 -3226 ((-3 |#1| "failed") (-875 |#2|))) (-15 -3357 (|#1| (-875 (-517)))) (-15 -3388 (|#1| (-875 (-517)))) (-15 -3226 ((-3 |#1| "failed") (-875 (-517)))) (-15 -3357 (|#1| (-875 (-377 (-517))))) (-15 -3388 (|#1| (-875 (-377 (-517))))) (-15 -3226 ((-3 |#1| "failed") (-875 (-377 (-517))))) (-15 -4014 (|#1| |#1| |#1|)) (-15 -3422 (|#1| |#1| |#1|)) (-15 -2400 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3664 (-703))) |#1| |#1|)) (-15 -3550 (|#1| |#1| |#1|)) (-15 -2165 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -4069 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -4069 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1| |#4|)) (-15 -1363 (|#1| |#1| |#1| |#4|)) (-15 -2428 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1| |#4|)) (-15 -1791 (|#1| |#1| |#1| |#4|)) (-15 -3098 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -3091 ((-107) |#1| (-583 |#1|))) (-15 -3091 ((-107) |#1| |#1|)) (-15 -3015 ((-107) |#1| (-583 |#1|))) (-15 -3015 ((-107) |#1| |#1|)) (-15 -3974 ((-107) |#1| (-583 |#1|))) (-15 -3974 ((-107) |#1| |#1|)) (-15 -3100 ((-107) |#1| (-583 |#1|))) (-15 -3100 ((-107) |#1| |#1|)) (-15 -3605 ((-107) |#1| |#1|)) (-15 -1837 ((-107) |#1| |#1|)) (-15 -2392 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3932 ((-583 |#1|) |#1|)) (-15 -1879 ((-583 |#1|) |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2777 ((-107) |#1|)) (-15 -1728 ((-107) |#1|)) (-15 -2371 (|#1| |#1| |#4|)) (-15 -2345 (|#1| |#1| |#4|)) (-15 -2449 (|#1| |#1|)) (-15 -2175 ((-583 |#1|) |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2979 ((-703) |#1|)) (-15 -3834 (|#4| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3388 (|#4| |#1|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -2269 (|#1| |#4|)) (-15 -2345 (|#2| |#1|)) (-15 -2371 (|#1| |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-976 |#2| |#3| |#4|) (-962) (-725) (-779)) (T -975))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2368 (|#1| (-583 |#1|))) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 ((-875 |#2|) |#1|)) (-15 -3357 ((-875 |#2|) |#1|)) (-15 -3357 ((-1058) |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2553 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -2368 (|#2| |#2| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2173 (|#1| |#1| |#2|)) (-15 -4090 (|#1| |#1|)) (-15 -1631 (|#1| |#1|)) (-15 -3357 (|#1| (-875 |#2|))) (-15 -3388 (|#1| (-875 |#2|))) (-15 -3226 ((-3 |#1| "failed") (-875 |#2|))) (-15 -3357 (|#1| (-875 (-517)))) (-15 -3388 (|#1| (-875 (-517)))) (-15 -3226 ((-3 |#1| "failed") (-875 (-517)))) (-15 -3357 (|#1| (-875 (-377 (-517))))) (-15 -3388 (|#1| (-875 (-377 (-517))))) (-15 -3226 ((-3 |#1| "failed") (-875 (-377 (-517))))) (-15 -4014 (|#1| |#1| |#1|)) (-15 -3422 (|#1| |#1| |#1|)) (-15 -2400 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3664 (-703))) |#1| |#1|)) (-15 -3550 (|#1| |#1| |#1|)) (-15 -2165 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -2879 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -4069 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -1451 |#1|)) |#1| |#1| |#4|)) (-15 -4069 ((-2 (|:| -1580 |#1|) (|:| |gap| (-703)) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1| |#4|)) (-15 -1363 (|#1| |#1| |#1| |#4|)) (-15 -2428 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1| |#1| |#4|)) (-15 -1791 (|#1| |#1| |#1| |#4|)) (-15 -3098 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -3091 ((-107) |#1| (-583 |#1|))) (-15 -3091 ((-107) |#1| |#1|)) (-15 -3015 ((-107) |#1| (-583 |#1|))) (-15 -3015 ((-107) |#1| |#1|)) (-15 -3974 ((-107) |#1| (-583 |#1|))) (-15 -3974 ((-107) |#1| |#1|)) (-15 -3100 ((-107) |#1| (-583 |#1|))) (-15 -3100 ((-107) |#1| |#1|)) (-15 -3605 ((-107) |#1| |#1|)) (-15 -1837 ((-107) |#1| |#1|)) (-15 -2392 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3932 ((-583 |#1|) |#1|)) (-15 -1879 ((-583 |#1|) |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2777 ((-107) |#1|)) (-15 -1728 ((-107) |#1|)) (-15 -2371 (|#1| |#1| |#4|)) (-15 -2345 (|#1| |#1| |#4|)) (-15 -2449 (|#1| |#1|)) (-15 -2175 ((-583 |#1|) |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2979 ((-703) |#1|)) (-15 -3834 (|#4| |#1|)) (-15 -3357 ((-493) |#1|)) (-15 -3357 ((-815 (-517)) |#1|)) (-15 -3357 ((-815 (-349)) |#1|)) (-15 -3388 (|#4| |#1|)) (-15 -3226 ((-3 |#4| "failed") |#1|)) (-15 -2269 (|#1| |#4|)) (-15 -2345 (|#2| |#1|)) (-15 -2371 (|#1| |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 |#3|) $) 110)) (-1440 (((-1071 $) $ |#3|) 125) (((-1071 |#1|) $) 124)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2729 (($ $) 88 (|has| |#1| (-509)))) (-2566 (((-107) $) 90 (|has| |#1| (-509)))) (-2629 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1540 (($ $) 271)) (-3605 (((-107) $ $) 257)) (-1250 (((-3 $ "failed") $ $) 19)) (-1784 (($ $ $) 216 (|has| |#1| (-509)))) (-2007 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) 100 (|has| |#1| (-832)))) (-3088 (($ $) 98 (|has| |#1| (-421)))) (-1581 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 103 (|has| |#1| (-832)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-953 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-875 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075))))) (((-3 $ "failed") (-875 (-517))) 228 (-3745 (-12 (-2477 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1075)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075)))))) (((-3 $ "failed") (-875 |#1|)) 225 (-3745 (-12 (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1075)))) (-12 (-2477 (|has| |#1| (-502))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1075)))) (-12 (-2477 (|has| |#1| (-910 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075))))))) (-3388 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-953 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-953 (-517)))) ((|#3| $) 135) (($ (-875 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075))))) (($ (-875 (-517))) 227 (-3745 (-12 (-2477 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1075)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075)))))) (($ (-875 |#1|)) 224 (-3745 (-12 (-2477 (|has| |#1| (-37 (-377 (-517))))) (-2477 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1075)))) (-12 (-2477 (|has| |#1| (-502))) (-2477 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1075)))) (-12 (-2477 (|has| |#1| (-910 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075))))))) (-2272 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-2371 (($ $) 154) (($ $ |#3|) 266)) (-2306 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3100 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3163 (((-3 $ "failed") $) 34)) (-2777 (((-107) $) 264)) (-2165 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 236)) (-4063 (($ $) 205 (|has| |#1| (-421)))) (-2186 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2358 (((-583 $) $) 109)) (-2963 (((-107) $) 96 (|has| |#1| (-832)))) (-4090 (($ $) 221 (|has| |#1| (-509)))) (-1631 (($ $) 222 (|has| |#1| (-509)))) (-1791 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3098 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2027 (($ $ |#1| |#2| $) 172)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| |#3| (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| |#3| (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1865 (((-107) $) 31)) (-1942 (((-703) $) 169)) (-3091 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-1820 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-3834 ((|#3| $) 275)) (-2086 (($ (-1071 |#1|) |#3|) 117) (($ (-1071 $) |#3|) 116)) (-3370 (((-583 $) $) 126)) (-1960 (((-107) $) 152)) (-2077 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-3550 (($ $ $) 235)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#3|) 120)) (-1728 (((-107) $) 265)) (-2210 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3456 (($ $ $) 79 (|has| |#1| (-779)))) (-2979 (((-703) $) 274)) (-4082 (($ $ $) 78 (|has| |#1| (-779)))) (-3200 (($ (-1 |#2| |#2|) $) 171)) (-3308 (($ (-1 |#1| |#1|) $) 151)) (-1512 (((-3 |#3| "failed") $) 123)) (-2439 (($ $) 202 (|has| |#1| (-421)))) (-2553 (($ $) 203 (|has| |#1| (-421)))) (-3932 (((-583 $) $) 260)) (-1957 (($ $) 263)) (-3959 (($ $) 204 (|has| |#1| (-421)))) (-1879 (((-583 $) $) 261)) (-1603 (($ $) 262)) (-2333 (($ $) 149)) (-2345 ((|#1| $) 148) (($ $ |#3|) 267)) (-2330 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-2400 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3664 (-703))) $ $) 234)) (-2879 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $) 238) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $ |#3|) 237)) (-4069 (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $) 240) (((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $ |#3|) 239)) (-1363 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2428 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1895 (((-1058) $) 9)) (-2337 (($ $ $) 210 (|has| |#1| (-509)))) (-2175 (((-583 $) $) 269)) (-3807 (((-3 (-583 $) "failed") $) 114)) (-2875 (((-3 (-583 $) "failed") $) 115)) (-1812 (((-3 (-2 (|:| |var| |#3|) (|:| -2356 (-703))) "failed") $) 113)) (-3015 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-4014 (($ $ $) 232)) (-2585 (($ $) 273)) (-1837 (((-107) $ $) 258)) (-3974 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3422 (($ $ $) 233)) (-2868 (($ $) 272)) (-4123 (((-1022) $) 10)) (-3761 (((-2 (|:| -2368 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-2205 (((-2 (|:| -2368 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-2308 (((-107) $) 166)) (-2319 ((|#1| $) 167)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 95 (|has| |#1| (-421)))) (-2368 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 102 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 101 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 99 (|has| |#1| (-832)))) (-2004 (((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2327 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2404 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-2173 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-4032 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2059 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-2769 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-2778 (($ $) 270)) (-2449 (($ $) 268)) (-3357 (((-815 (-349)) $) 82 (-12 (|has| |#3| (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| |#3| (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-875 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075))))) (($ (-875 (-517))) 226 (-3745 (-12 (-2477 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1075)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1075)))))) (($ (-875 |#1|)) 223 (|has| |#3| (-558 (-1075)))) (((-1058) $) 201 (-12 (|has| |#1| (-953 (-517))) (|has| |#3| (-558 (-1075))))) (((-875 |#1|) $) 200 (|has| |#3| (-558 (-1075))))) (-2035 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 104 (-3992 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-875 |#1|) $) 199 (|has| |#3| (-558 (-1075)))) (($ (-377 (-517))) 72 (-3745 (|has| |#1| (-953 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) 168)) (-3952 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-2650 (((-3 $ "failed") $) 73 (-3745 (-3992 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 29)) (-3510 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-2392 (((-3 (-107) "failed") $ $) 259)) (-3617 (($) 30 T CONST)) (-3187 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-2630 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-3340 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1641 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-976 |#1| |#2| |#3|) (-1187) (-962) (-725) (-779)) (T -976))
+((-3834 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2585 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2778 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2175 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2345 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2371 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1957 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1603 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3932 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-2392 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1837 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3605 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3100 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3100 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3974 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3974 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3015 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3091 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1791 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3098 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1791 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3098 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1363 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2428 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1363 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2428 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4069 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -1451 *1))) (-4 *1 (-976 *3 *4 *5)))) (-4069 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -1451 *1))) (-4 *1 (-976 *4 *5 *3)))) (-2879 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-976 *3 *4 *5)))) (-2879 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-976 *4 *5 *3)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2400 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3664 (-703)))) (-4 *1 (-976 *3 *4 *5)))) (-3422 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-4014 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3226 (*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3226 (*1 *1 *2) (|partial| -3745 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3388 (*1 *1 *2) (-3745 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3357 (*1 *1 *2) (-3745 (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3226 (*1 *1 *2) (|partial| -3745 (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-2477 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-502))) (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-910 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3388 (*1 *1 *2) (-3745 (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-2477 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-502))) (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-875 *3)) (-12 (-2477 (-4 *3 (-910 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075)))) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *5 (-558 (-1075))) (-4 *4 (-725)) (-4 *5 (-779)))) (-1631 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2173 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2404 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2004 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2368 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-2205 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2368 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2368 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2007 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2630 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3187 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-1820 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2368 (*1 *2 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4063 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2553 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(-13 (-872 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3834 (|t#3| $)) (-15 -2979 ((-703) $)) (-15 -2585 ($ $)) (-15 -2868 ($ $)) (-15 -1540 ($ $)) (-15 -2778 ($ $)) (-15 -2175 ((-583 $) $)) (-15 -2449 ($ $)) (-15 -2345 ($ $ |t#3|)) (-15 -2371 ($ $ |t#3|)) (-15 -1728 ((-107) $)) (-15 -2777 ((-107) $)) (-15 -1957 ($ $)) (-15 -1603 ($ $)) (-15 -1879 ((-583 $) $)) (-15 -3932 ((-583 $) $)) (-15 -2392 ((-3 (-107) "failed") $ $)) (-15 -1837 ((-107) $ $)) (-15 -3605 ((-107) $ $)) (-15 -3100 ((-107) $ $)) (-15 -3100 ((-107) $ (-583 $))) (-15 -3974 ((-107) $ $)) (-15 -3974 ((-107) $ (-583 $))) (-15 -3015 ((-107) $ $)) (-15 -3015 ((-107) $ (-583 $))) (-15 -3091 ((-107) $ $)) (-15 -3091 ((-107) $ (-583 $))) (-15 -1791 ($ $ $)) (-15 -3098 ($ $ $)) (-15 -1791 ($ $ $ |t#3|)) (-15 -3098 ($ $ $ |t#3|)) (-15 -1363 ($ $ $)) (-15 -2428 ($ $ $)) (-15 -1363 ($ $ $ |t#3|)) (-15 -2428 ($ $ $ |t#3|)) (-15 -4069 ((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $)) (-15 -4069 ((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -1451 $)) $ $ |t#3|)) (-15 -2879 ((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -2879 ((-2 (|:| -1580 $) (|:| |gap| (-703)) (|:| -2525 $) (|:| -1451 $)) $ $ |t#3|)) (-15 -2165 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -3550 ($ $ $)) (-15 -2400 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3664 (-703))) $ $)) (-15 -3422 ($ $ $)) (-15 -4014 ($ $ $)) (IF (|has| |t#3| (-558 (-1075))) (PROGN (-6 (-557 (-875 |t#1|))) (-6 (-558 (-875 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3226 ((-3 $ "failed") (-875 (-377 (-517))))) (-15 -3388 ($ (-875 (-377 (-517))))) (-15 -3357 ($ (-875 (-377 (-517))))) (-15 -3226 ((-3 $ "failed") (-875 (-517)))) (-15 -3388 ($ (-875 (-517)))) (-15 -3357 ($ (-875 (-517)))) (IF (|has| |t#1| (-910 (-517))) |%noBranch| (PROGN (-15 -3226 ((-3 $ "failed") (-875 |t#1|))) (-15 -3388 ($ (-875 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3226 ((-3 $ "failed") (-875 (-517)))) (-15 -3388 ($ (-875 (-517)))) (-15 -3357 ($ (-875 (-517)))) (IF (|has| |t#1| (-502)) |%noBranch| (PROGN (-15 -3226 ((-3 $ "failed") (-875 |t#1|))) (-15 -3388 ($ (-875 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) |%noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3226 ((-3 $ "failed") (-875 |t#1|))) (-15 -3388 ($ (-875 |t#1|)))))) (-15 -3357 ($ (-875 |t#1|))) (IF (|has| |t#1| (-953 (-517))) (-6 (-558 (-1058))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -1631 ($ $)) (-15 -4090 ($ $)) (-15 -2173 ($ $ |t#1|)) (-15 -2404 ($ $ |t#1|)) (-15 -2173 ($ $ $)) (-15 -2404 ($ $ $)) (-15 -1784 ($ $ $)) (-15 -2004 ((-2 (|:| -2368 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2205 ((-2 (|:| -2368 $) (|:| |coef1| $)) $ $)) (-15 -3761 ((-2 (|:| -2368 $) (|:| |coef2| $)) $ $)) (-15 -2272 ($ $ $)) (-15 -2007 ((-583 $) $ $)) (-15 -2337 ($ $ $)) (-15 -2630 ($ $ $ (-703))) (-15 -3187 ($ $ $ $ (-703))) (-15 -1820 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2368 (|t#1| |t#1| $)) (-15 -4063 ($ $)) (-15 -3959 ($ $)) (-15 -2553 ($ $)) (-15 -2439 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-875 |#1|)) |has| |#3| (-558 (-1075))) ((-156) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#3| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#3| (-558 (-815 (-517))))) ((-558 (-875 |#1|)) |has| |#3| (-558 (-1075))) ((-558 (-1058)) -12 (|has| |#1| (-953 (-517))) (|has| |#3| (-558 (-1075)))) ((-262) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-832)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 |#3|) . T) ((-809 (-349)) -12 (|has| |#1| (-809 (-349))) (|has| |#3| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-809 (-517))) (|has| |#3| (-809 (-517)))) ((-872 |#1| |#2| |#3|) . T) ((-832) |has| |#1| (-832)) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 |#1|) . T) ((-953 |#3|) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) |has| |#1| (-832)))
+((-2033 (((-107) |#3| $) 13)) (-3772 (((-3 $ "failed") |#3| (-844)) 23)) (-3163 (((-3 |#3| "failed") |#3| $) 37)) (-3523 (((-107) |#3| $) 16)) (-1469 (((-107) |#3| $) 14)))
+(((-977 |#1| |#2| |#3|) (-10 -8 (-15 -3772 ((-3 |#1| "failed") |#3| (-844))) (-15 -3163 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3523 ((-107) |#3| |#1|)) (-15 -1469 ((-107) |#3| |#1|)) (-15 -2033 ((-107) |#3| |#1|))) (-978 |#2| |#3|) (-13 (-777) (-333)) (-1132 |#2|)) (T -977))
+NIL
+(-10 -8 (-15 -3772 ((-3 |#1| "failed") |#3| (-844))) (-15 -3163 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3523 ((-107) |#3| |#1|)) (-15 -1469 ((-107) |#3| |#1|)) (-15 -2033 ((-107) |#3| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) |#2| $) 21)) (-1323 (((-517) |#2| $) 22)) (-3772 (((-3 $ "failed") |#2| (-844)) 15)) (-2687 ((|#1| |#2| $ |#1|) 13)) (-3163 (((-3 |#2| "failed") |#2| $) 18)) (-3523 (((-107) |#2| $) 19)) (-1469 (((-107) |#2| $) 20)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-3586 ((|#2| $) 17)) (-2269 (((-787) $) 11)) (-2202 ((|#1| |#2| $ |#1|) 14)) (-3132 (((-583 $) |#2|) 16)) (-1583 (((-107) $ $) 6)))
+(((-978 |#1| |#2|) (-1187) (-13 (-777) (-333)) (-1132 |t#1|)) (T -978))
+((-1323 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-517)))) (-2033 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-107)))) (-1469 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-107)))) (-3523 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-107)))) (-3163 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-978 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1132 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1132 *3)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-583 *1)) (-4 *1 (-978 *4 *3)))) (-3772 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-844)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-978 *4 *2)) (-4 *2 (-1132 *4)))) (-2202 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-978 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1132 *2)))) (-2687 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-978 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1132 *2)))))
+(-13 (-1004) (-10 -8 (-15 -1323 ((-517) |t#2| $)) (-15 -2033 ((-107) |t#2| $)) (-15 -1469 ((-107) |t#2| $)) (-15 -3523 ((-107) |t#2| $)) (-15 -3163 ((-3 |t#2| "failed") |t#2| $)) (-15 -3586 (|t#2| $)) (-15 -3132 ((-583 $) |t#2|)) (-15 -3772 ((-3 $ "failed") |t#2| (-844))) (-15 -2202 (|t#1| |t#2| $ |t#1|)) (-15 -2687 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2488 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703)) 96)) (-1452 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703)) 55)) (-2615 (((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703)) 87)) (-2012 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2041 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2582 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3357 (((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) 82)) (-3884 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-107)) 54)) (-1908 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1908 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2012 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3884 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-107))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -2488 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703))) (-15 -3357 ((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -2615 ((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703)))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -979))
+((-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9)))) (-5 *4 (-703)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1161)) (-5 *1 (-979 *5 *6 *7 *8 *9)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1058)) (-5 *1 (-979 *4 *5 *6 *7 *8)))) (-2488 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3831 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3831 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-981 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-979 *7 *8 *9 *10 *11)))) (-2582 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-979 *5 *6 *7 *8 *9)))) (-2582 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-979 *5 *6 *7 *8 *9)))) (-2041 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3)))) (-2041 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *7 *8 *9 *3 *4)) (-4 *4 (-981 *7 *8 *9 *3)))) (-1452 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-1452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3)))) (-3884 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-979 *5 *6 *7 *8 *9)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-979 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1908 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2012 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3884 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-107))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -2488 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703))) (-15 -3357 ((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -2615 ((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703))))
+((-3554 (((-107) |#5| $) 21)) (-3203 (((-107) |#5| $) 24)) (-1867 (((-107) |#5| $) 16) (((-107) $) 45)) (-3257 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 77) (((-583 $) (-583 |#5|) (-583 $)) 75) (((-583 $) |#5| (-583 $)) 78)) (-2640 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 60) (((-583 $) (-583 |#5|) $) 62) (((-583 $) (-583 |#5|) (-583 $)) 64)) (-2094 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 54) (((-583 $) (-583 |#5|) $) 56) (((-583 $) (-583 |#5|) (-583 $)) 58)) (-3427 (((-107) |#5| $) 27)))
+(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2640 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2640 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2640 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2640 ((-583 |#1|) |#5| |#1|)) (-15 -2094 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2094 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2094 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2094 ((-583 |#1|) |#5| |#1|)) (-15 -3257 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3257 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3257 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3257 ((-583 |#1|) |#5| |#1|)) (-15 -3203 ((-107) |#5| |#1|)) (-15 -1867 ((-107) |#1|)) (-15 -3427 ((-107) |#5| |#1|)) (-15 -3554 ((-107) |#5| |#1|)) (-15 -1867 ((-107) |#5| |#1|)) (-15 -2640 (|#1| |#1| |#5|))) (-981 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-976 |#2| |#3| |#4|)) (T -980))
+NIL
+(-10 -8 (-15 -2640 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2640 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2640 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2640 ((-583 |#1|) |#5| |#1|)) (-15 -2094 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2094 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2094 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2094 ((-583 |#1|) |#5| |#1|)) (-15 -3257 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3257 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3257 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3257 ((-583 |#1|) |#5| |#1|)) (-15 -3203 ((-107) |#5| |#1|)) (-15 -1867 ((-107) |#1|)) (-15 -3427 ((-107) |#5| |#1|)) (-15 -3554 ((-107) |#5| |#1|)) (-15 -1867 ((-107) |#5| |#1|)) (-15 -2640 (|#1| |#1| |#5|)))
+((-2118 (((-107) $ $) 7)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) 85)) (-2283 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) 101) (((-107) $) 97)) (-2675 ((|#4| |#4| $) 92)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 126)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 79)) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2437 (((-3 $ "failed") $) 82)) (-1358 ((|#4| |#4| $) 89)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1808 ((|#4| |#4| $) 87)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) 105)) (-3554 (((-107) |#4| $) 136)) (-3203 (((-107) |#4| $) 133)) (-1867 (((-107) |#4| $) 137) (((-107) $) 134)) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) 104) (((-107) $) 103)) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 127)) (-1445 (((-3 |#4| "failed") $) 83)) (-2577 (((-583 $) |#4| $) 129)) (-3115 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3257 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3622 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3778 (((-583 |#4|) $) 107)) (-3015 (((-107) |#4| $) 99) (((-107) $) 95)) (-4014 ((|#4| |#4| $) 90)) (-1837 (((-107) $ $) 110)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) 100) (((-107) $) 96)) (-3422 ((|#4| |#4| $) 91)) (-4123 (((-1022) $) 10)) (-2427 (((-3 |#4| "failed") $) 84)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3760 (((-3 $ "failed") $ |#4|) 78)) (-2640 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-2769 (((-703) $) 106)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-3345 (($ $) 88)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1659 (((-703) $) 76 (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2094 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) 81)) (-3427 (((-107) |#4| $) 135)) (-3980 (((-107) |#3| $) 80)) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-981 |#1| |#2| |#3| |#4|) (-1187) (-421) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -981))
+((-1867 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3554 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3427 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3115 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-981 *4 *5 *6 *3)))) (-3784 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *1)))) (-4 *1 (-981 *4 *5 *6 *3)))) (-3784 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-2577 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)))) (-1398 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-981 *4 *5 *6 *3)))) (-2337 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *1)))) (-4 *1 (-981 *4 *5 *6 *3)))) (-3088 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *1)))) (-4 *1 (-981 *4 *5 *6 *3)))) (-3257 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)))) (-3257 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)))) (-3257 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)))) (-2094 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)))) (-2094 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)))) (-3622 (*1 *1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-3622 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)))) (-2640 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)))) (-2640 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)))) (-2640 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *7)))) (-2640 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-981 *5 *6 *7 *8)))))
+(-13 (-1104 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1867 ((-107) |t#4| $)) (-15 -3554 ((-107) |t#4| $)) (-15 -3427 ((-107) |t#4| $)) (-15 -1867 ((-107) $)) (-15 -3203 ((-107) |t#4| $)) (-15 -3115 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3784 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |t#4| $)) (-15 -3784 ((-107) |t#4| $)) (-15 -2577 ((-583 $) |t#4| $)) (-15 -1398 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -2337 ((-583 (-2 (|:| |val| |t#4|) (|:| -3831 $))) |t#4| |t#4| $)) (-15 -3088 ((-583 (-2 (|:| |val| |t#4|) (|:| -3831 $))) |t#4| $)) (-15 -3257 ((-583 $) |t#4| $)) (-15 -3257 ((-583 $) (-583 |t#4|) $)) (-15 -3257 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3257 ((-583 $) |t#4| (-583 $))) (-15 -2094 ((-583 $) |t#4| $)) (-15 -2094 ((-583 $) |t#4| (-583 $))) (-15 -2094 ((-583 $) (-583 |t#4|) $)) (-15 -2094 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3622 ($ |t#4| $)) (-15 -3622 ($ (-583 |t#4|) $)) (-15 -2640 ((-583 $) |t#4| $)) (-15 -2640 ((-583 $) |t#4| (-583 $))) (-15 -2640 ((-583 $) (-583 |t#4|) $)) (-15 -2640 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2283 ((-583 $) (-583 |t#4|) (-107)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-894 |#1| |#2| |#3| |#4|) . T) ((-1004) . T) ((-1104 |#1| |#2| |#3| |#4|) . T) ((-1110) . T))
+((-1907 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|) 81)) (-2933 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|) 113)) (-3126 (((-583 |#5|) |#4| |#5|) 70)) (-2137 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-3577 (((-1161)) 35)) (-3929 (((-1161)) 25)) (-2455 (((-1161) (-1058) (-1058) (-1058)) 31)) (-1947 (((-1161) (-1058) (-1058) (-1058)) 20)) (-2350 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|) 96)) (-2756 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107)) 107) (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1414 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|) 102)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1947 ((-1161) (-1058) (-1058) (-1058))) (-15 -3929 ((-1161))) (-15 -2455 ((-1161) (-1058) (-1058) (-1058))) (-15 -3577 ((-1161))) (-15 -2350 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2756 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2756 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107))) (-15 -1414 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2933 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2137 ((-107) |#4| |#5|)) (-15 -2137 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -3126 ((-583 |#5|) |#4| |#5|)) (-15 -1907 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -982))
+((-1907 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3126 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2137 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4)))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2137 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2933 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-1414 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9)))) (-5 *5 (-107)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-981 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3831 *9)))) (-5 *1 (-982 *6 *7 *4 *8 *9)))) (-2756 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3)))) (-2350 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3577 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-982 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-2455 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-982 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-3929 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-982 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-1947 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-982 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1947 ((-1161) (-1058) (-1058) (-1058))) (-15 -3929 ((-1161))) (-15 -2455 ((-1161) (-1058) (-1058) (-1058))) (-15 -3577 ((-1161))) (-15 -2350 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2756 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2756 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107))) (-15 -1414 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2933 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2137 ((-107) |#4| |#5|)) (-15 -2137 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -3126 ((-583 |#5|) |#4| |#5|)) (-15 -1907 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|)))
+((-2118 (((-107) $ $) NIL)) (-2987 (((-1075) $) 8)) (-1895 (((-1058) $) 16)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 13)))
+(((-983 |#1|) (-13 (-1004) (-10 -8 (-15 -2987 ((-1075) $)))) (-1075)) (T -983))
+((-2987 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-983 *3)) (-14 *3 *2))))
+(-13 (-1004) (-10 -8 (-15 -2987 ((-1075) $))))
+((-2118 (((-107) $ $) NIL)) (-3556 (($ $ (-583 (-1075)) (-1 (-107) (-583 |#3|))) 29)) (-2038 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1075))) 19)) (-2513 ((|#3| $) 13)) (-3226 (((-3 (-265 |#3|) "failed") $) 56)) (-3388 (((-265 |#3|) $) NIL)) (-2336 (((-583 (-1075)) $) 15)) (-1340 (((-815 |#1|) $) 11)) (-2505 ((|#3| $) 12)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2607 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-844)) 36)) (-2269 (((-787) $) 85) (($ (-265 |#3|)) 20)) (-1583 (((-107) $ $) 33)))
+(((-984 |#1| |#2| |#3|) (-13 (-1004) (-258 |#3| |#3|) (-953 (-265 |#3|)) (-10 -8 (-15 -2038 ($ |#3| |#3|)) (-15 -2038 ($ |#3| |#3| (-583 (-1075)))) (-15 -3556 ($ $ (-583 (-1075)) (-1 (-107) (-583 |#3|)))) (-15 -1340 ((-815 |#1|) $)) (-15 -2505 (|#3| $)) (-15 -2513 (|#3| $)) (-15 -2607 (|#3| $ |#3| (-844))) (-15 -2336 ((-583 (-1075)) $)))) (-1004) (-13 (-962) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -984))
+((-2038 (*1 *1 *2 *2) (-12 (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *1 (-984 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))) (-2038 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-3556 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-984 *4 *5 *6)))) (-1340 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 *2))) (-5 *2 (-815 *3)) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 *2))))) (-2505 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-984 *3 *4 *2)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))))) (-2513 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-984 *3 *4 *2)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))))) (-2607 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *2 (-583 (-1075))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
+(-13 (-1004) (-258 |#3| |#3|) (-953 (-265 |#3|)) (-10 -8 (-15 -2038 ($ |#3| |#3|)) (-15 -2038 ($ |#3| |#3| (-583 (-1075)))) (-15 -3556 ($ $ (-583 (-1075)) (-1 (-107) (-583 |#3|)))) (-15 -1340 ((-815 |#1|) $)) (-15 -2505 (|#3| $)) (-15 -2513 (|#3| $)) (-15 -2607 (|#3| $ |#3| (-844))) (-15 -2336 ((-583 (-1075)) $))))
+((-2118 (((-107) $ $) NIL)) (-3537 (($ (-583 (-984 |#1| |#2| |#3|))) 12)) (-3906 (((-583 (-984 |#1| |#2| |#3|)) $) 19)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2607 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-844)) 25)) (-2269 (((-787) $) 15)) (-1583 (((-107) $ $) 18)))
+(((-985 |#1| |#2| |#3|) (-13 (-1004) (-258 |#3| |#3|) (-10 -8 (-15 -3537 ($ (-583 (-984 |#1| |#2| |#3|)))) (-15 -3906 ((-583 (-984 |#1| |#2| |#3|)) $)) (-15 -2607 (|#3| $ |#3| (-844))))) (-1004) (-13 (-962) (-809 |#1|) (-779) (-558 (-815 |#1|))) (-13 (-400 |#2|) (-809 |#1|) (-558 (-815 |#1|)))) (T -985))
+((-3537 (*1 *1 *2) (-12 (-5 *2 (-583 (-984 *3 *4 *5))) (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))) (-5 *1 (-985 *3 *4 *5)))) (-3906 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3)))) (-5 *2 (-583 (-984 *3 *4 *5))) (-5 *1 (-985 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))) (-2607 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-844)) (-4 *4 (-1004)) (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4)))) (-5 *1 (-985 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))))
+(-13 (-1004) (-258 |#3| |#3|) (-10 -8 (-15 -3537 ($ (-583 (-984 |#1| |#2| |#3|)))) (-15 -3906 ((-583 (-984 |#1| |#2| |#3|)) $)) (-15 -2607 (|#3| $ |#3| (-844)))))
+((-3505 (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)) 74) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|))) 76) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107)) 75)))
+(((-986 |#1| |#2|) (-10 -7 (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1075))) (T -986))
+((-3505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5)))))) (-5 *1 (-986 *5 *6)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1075))))) (-3505 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4)))))) (-5 *1 (-986 *4 *5)) (-5 *3 (-583 (-875 *4))) (-14 *5 (-583 (-1075))))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5)))))) (-5 *1 (-986 *5 *6)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1075))))))
+(-10 -7 (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -3505 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))))
+((-3866 (((-388 |#3|) |#3|) 16)))
+(((-987 |#1| |#2| |#3|) (-10 -7 (-15 -3866 ((-388 |#3|) |#3|))) (-1132 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1132 |#2|)) (T -987))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-987 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#3|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 125)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-2729 (($ $) NIL (|has| |#1| (-333)))) (-2566 (((-107) $) NIL (|has| |#1| (-333)))) (-3861 (((-623 |#1|) (-1156 $)) NIL) (((-623 |#1|)) 115)) (-2008 ((|#1| $) 119)) (-2886 (((-1084 (-844) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2397 (((-703)) 40 (|has| |#1| (-338)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-1953 (($ (-1156 |#1|) (-1156 $)) NIL) (($ (-1156 |#1|)) 43)) (-2081 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-1416 (((-623 |#1|) $ (-1156 $)) NIL) (((-623 |#1|) $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-1521 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3163 (((-3 $ "failed") $) NIL)) (-3736 (((-844)) 77)) (-2200 (($) 44 (|has| |#1| (-338)))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-1672 (($) NIL (|has| |#1| (-319)))) (-3454 (((-107) $) NIL (|has| |#1| (-319)))) (-2464 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2053 (((-844) $) NIL (|has| |#1| (-319))) (((-765 (-844)) $) NIL (|has| |#1| (-319)))) (-1865 (((-107) $) NIL)) (-2754 ((|#1| $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2456 ((|#2| $) 84 (|has| |#1| (-333)))) (-2031 (((-844) $) 130 (|has| |#1| (-338)))) (-1508 ((|#2| $) 58)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-2585 (($) NIL (|has| |#1| (-319)) CONST)) (-2810 (($ (-844)) 124 (|has| |#1| (-338)))) (-4123 (((-1022) $) NIL)) (-1317 (($) 121)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3699 (((-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))) NIL (|has| |#1| (-319)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-4032 ((|#1| (-1156 $)) NIL) ((|#1|) 109)) (-1496 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2059 (($ $) NIL (-3745 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2678 (((-623 |#1|) (-1156 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3586 ((|#2|) 73)) (-3958 (($) NIL (|has| |#1| (-319)))) (-3369 (((-1156 |#1|) $ (-1156 $)) 89) (((-623 |#1|) (-1156 $) (-1156 $)) NIL) (((-1156 |#1|) $) 71) (((-623 |#1|) (-1156 $)) 85)) (-3357 (((-1156 |#1|) $) NIL) (($ (-1156 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2269 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-333)) (|has| |#1| (-953 (-377 (-517))))))) (-2650 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1900 ((|#2| $) 82)) (-2950 (((-703)) 75)) (-2062 (((-1156 $)) 81)) (-2914 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 30 T CONST)) (-3617 (($) 19 T CONST)) (-3340 (($ $) NIL (-3745 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-823 (-1075))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1583 (((-107) $ $) 63)) (-1703 (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) 67) (($ $ $) NIL)) (-1677 (($ $ $) 65)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+(((-988 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1132 |#1|) |#2|) (T -988))
NIL
(-657 |#1| |#2|)
-((-1376 (((-388 |#3|) |#3|) 16)))
-(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -1376 ((-388 |#3|) |#3|))) (-1131 (-377 (-874 (-517)))) (-13 (-333) (-134) (-657 (-377 (-874 (-517))) |#1|)) (-1131 |#2|)) (T -988))
-((-1376 (*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(-10 -7 (-15 -1376 ((-388 |#3|) |#3|)))
-((-1587 (((-107) $ $) NIL)) (-4055 (($ $ $) 14)) (-3105 (($ $ $) 15)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1542 (($) 6)) (-3667 (((-1074) $) 18)) (-2254 (((-787) $) 12)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 13)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 8)))
-(((-989) (-13 (-779) (-10 -8 (-15 -1542 ($)) (-15 -3667 ((-1074) $))))) (T -989))
-((-1542 (*1 *1) (-5 *1 (-989))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-989)))))
-(-13 (-779) (-10 -8 (-15 -1542 ($)) (-15 -3667 ((-1074) $))))
-((-3538 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1472 (((-1159)) 15)) (-2061 (((-583 |#1|)) 9)))
-(((-990 |#1|) (-10 -7 (-15 -1472 ((-1159))) (-15 -2061 ((-583 |#1|))) (-15 -3538 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3538 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -990))
-((-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-2061 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))) (-1472 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
-(-10 -7 (-15 -1472 ((-1159))) (-15 -2061 ((-583 |#1|))) (-15 -3538 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3538 (|#1| |#1| (-1 (-517) |#1| |#1|))))
-((-2507 (((-1154 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|))) 60) (((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|)))) 76)) (-3589 (((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
-(((-991 |#1|) (-10 -7 (-15 -2507 ((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|))))) (-15 -2507 ((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|)))) (-15 -2507 ((-1154 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3589 ((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -991))
-((-3589 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1154 *5)) (-5 *1 (-991 *5)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-991 *4)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(-10 -7 (-15 -2507 ((-1154 (-623 (-377 (-874 |#1|)))) (-583 (-1074)) (-623 (-377 (-874 |#1|))))) (-15 -2507 ((-1154 (-623 (-874 |#1|))) (-583 (-1074)) (-623 (-874 |#1|)))) (-15 -2507 ((-1154 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3589 ((-1154 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1195 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1074)) NIL)) (-2388 (((-703) $) NIL) (((-703) $ (-1074)) NIL)) (-1357 (((-583 (-993 (-1074))) $) NIL)) (-2374 (((-1070 $) $ (-993 (-1074))) NIL) (((-1070 |#1|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-993 (-1074)))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1445 (($ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-993 (-1074)) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL) (((-3 (-1026 |#1| (-1074)) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-993 (-1074)) $) NIL) (((-1074) $) NIL) (((-1026 |#1| (-1074)) $) NIL)) (-3167 (($ $ $ (-993 (-1074))) NIL (|has| |#1| (-156)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1074))) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-489 (-993 (-1074))) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-993 (-1074)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-993 (-1074)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ (-1074)) NIL) (((-703) $) NIL)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-1347 (($ (-1070 |#1|) (-993 (-1074))) NIL) (($ (-1070 $) (-993 (-1074))) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-489 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-993 (-1074))) NIL)) (-3876 (((-489 (-993 (-1074))) $) NIL) (((-703) $ (-993 (-1074))) NIL) (((-583 (-703)) $ (-583 (-993 (-1074)))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 (-993 (-1074))) (-489 (-993 (-1074)))) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (((-1 $ (-703)) (-1074)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-3382 (((-3 (-993 (-1074)) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-2141 (((-993 (-1074)) $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-1836 (((-107) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-993 (-1074))) (|:| -3010 (-703))) "failed") $) NIL)) (-2645 (($ $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-993 (-1074)) |#1|) NIL) (($ $ (-583 (-993 (-1074))) (-583 |#1|)) NIL) (($ $ (-993 (-1074)) $) NIL) (($ $ (-583 (-993 (-1074))) (-583 $)) NIL) (($ $ (-1074) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1074)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3383 (($ $ (-993 (-1074))) NIL (|has| |#1| (-156)))) (-1248 (($ $ (-993 (-1074))) NIL) (($ $ (-583 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1849 (((-583 (-1074)) $) NIL)) (-3625 (((-489 (-993 (-1074))) $) NIL) (((-703) $ (-993 (-1074))) NIL) (((-583 (-703)) $ (-583 (-993 (-1074)))) NIL) (((-703) $ (-1074)) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-993 (-1074)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1074))) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-993 (-1074))) NIL) (($ (-1074)) NIL) (($ (-1026 |#1| (-1074))) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-489 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-993 (-1074))) NIL) (($ $ (-583 (-993 (-1074)))) NIL) (($ $ (-993 (-1074)) (-703)) NIL) (($ $ (-583 (-993 (-1074))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-992 |#1|) (-13 (-226 |#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) (-952 (-1026 |#1| (-1074)))) (-961)) (T -992))
-NIL
-(-13 (-226 |#1| (-1074) (-993 (-1074)) (-489 (-993 (-1074)))) (-952 (-1026 |#1| (-1074))))
-((-1587 (((-107) $ $) NIL)) (-2388 (((-703) $) NIL)) (-3518 ((|#1| $) 10)) (-1837 (((-3 |#1| "failed") $) NIL)) (-3232 ((|#1| $) NIL)) (-3730 (((-703) $) 11)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1393 (($ |#1| (-703)) 9)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1248 (($ $) NIL) (($ $ (-703)) NIL)) (-2254 (((-787) $) NIL) (($ |#1|) NIL)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 15)))
-(((-993 |#1|) (-239 |#1|) (-779)) (T -993))
+((-3866 (((-388 |#3|) |#3|) 16)))
+(((-989 |#1| |#2| |#3|) (-10 -7 (-15 -3866 ((-388 |#3|) |#3|))) (-1132 (-377 (-875 (-517)))) (-13 (-333) (-134) (-657 (-377 (-875 (-517))) |#1|)) (-1132 |#2|)) (T -989))
+((-3866 (*1 *2 *3) (-12 (-4 *4 (-1132 (-377 (-875 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-875 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(-10 -7 (-15 -3866 ((-388 |#3|) |#3|)))
+((-2118 (((-107) $ $) NIL)) (-3456 (($ $ $) 14)) (-4082 (($ $ $) 15)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3747 (($) 6)) (-3357 (((-1075) $) 18)) (-2269 (((-787) $) 12)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 13)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 8)))
+(((-990) (-13 (-779) (-10 -8 (-15 -3747 ($)) (-15 -3357 ((-1075) $))))) (T -990))
+((-3747 (*1 *1) (-5 *1 (-990))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-990)))))
+(-13 (-779) (-10 -8 (-15 -3747 ($)) (-15 -3357 ((-1075) $))))
+((-1902 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-107) |#1|)) 20)) (-2287 (((-1161)) 15)) (-3817 (((-583 |#1|)) 9)))
+(((-991 |#1|) (-10 -7 (-15 -2287 ((-1161))) (-15 -3817 ((-583 |#1|))) (-15 -1902 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1902 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -991))
+((-1902 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-991 *2)))) (-1902 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-991 *2)))) (-3817 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-991 *3)) (-4 *3 (-124)))) (-2287 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-991 *3)) (-4 *3 (-124)))))
+(-10 -7 (-15 -2287 ((-1161))) (-15 -3817 ((-583 |#1|))) (-15 -1902 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1902 (|#1| |#1| (-1 (-517) |#1| |#1|))))
+((-1402 (((-1156 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1156 (-623 (-875 |#1|))) (-583 (-1075)) (-623 (-875 |#1|))) 61) (((-1156 (-623 (-377 (-875 |#1|)))) (-583 (-1075)) (-623 (-377 (-875 |#1|)))) 77)) (-3369 (((-1156 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
+(((-992 |#1|) (-10 -7 (-15 -1402 ((-1156 (-623 (-377 (-875 |#1|)))) (-583 (-1075)) (-623 (-377 (-875 |#1|))))) (-15 -1402 ((-1156 (-623 (-875 |#1|))) (-583 (-1075)) (-623 (-875 |#1|)))) (-15 -1402 ((-1156 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3369 ((-1156 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -992))
+((-3369 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1156 *5)) (-5 *1 (-992 *5)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1156 (-623 *4))) (-5 *1 (-992 *4)))) (-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1075))) (-4 *5 (-333)) (-5 *2 (-1156 (-623 (-875 *5)))) (-5 *1 (-992 *5)) (-5 *4 (-623 (-875 *5))))) (-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1075))) (-4 *5 (-333)) (-5 *2 (-1156 (-623 (-377 (-875 *5))))) (-5 *1 (-992 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
+(-10 -7 (-15 -1402 ((-1156 (-623 (-377 (-875 |#1|)))) (-583 (-1075)) (-623 (-377 (-875 |#1|))))) (-15 -1402 ((-1156 (-623 (-875 |#1|))) (-583 (-1075)) (-623 (-875 |#1|)))) (-15 -1402 ((-1156 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3369 ((-1156 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3502 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1075)) NIL)) (-1463 (((-703) $) NIL) (((-703) $ (-1075)) NIL)) (-2096 (((-583 (-994 (-1075))) $) NIL)) (-1440 (((-1071 $) $ (-994 (-1075))) NIL) (((-1071 |#1|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-994 (-1075)))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1527 (($ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-994 (-1075)) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL) (((-3 (-1027 |#1| (-1075)) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-994 (-1075)) $) NIL) (((-1075) $) NIL) (((-1027 |#1| (-1075)) $) NIL)) (-2272 (($ $ $ (-994 (-1075))) NIL (|has| |#1| (-156)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ (-994 (-1075))) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-489 (-994 (-1075))) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-994 (-1075)) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-994 (-1075)) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ (-1075)) NIL) (((-703) $) NIL)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-2086 (($ (-1071 |#1|) (-994 (-1075))) NIL) (($ (-1071 $) (-994 (-1075))) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-489 (-994 (-1075)))) NIL) (($ $ (-994 (-1075)) (-703)) NIL) (($ $ (-583 (-994 (-1075))) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-994 (-1075))) NIL)) (-2210 (((-489 (-994 (-1075))) $) NIL) (((-703) $ (-994 (-1075))) NIL) (((-583 (-703)) $ (-583 (-994 (-1075)))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 (-994 (-1075))) (-489 (-994 (-1075)))) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-3528 (((-1 $ (-703)) (-1075)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1512 (((-3 (-994 (-1075)) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-3301 (((-994 (-1075)) $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-3033 (((-107) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-994 (-1075))) (|:| -2356 (-703))) "failed") $) NIL)) (-2623 (($ $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-994 (-1075)) |#1|) NIL) (($ $ (-583 (-994 (-1075))) (-583 |#1|)) NIL) (($ $ (-994 (-1075)) $) NIL) (($ $ (-583 (-994 (-1075))) (-583 $)) NIL) (($ $ (-1075) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1075)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1075)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-4032 (($ $ (-994 (-1075))) NIL (|has| |#1| (-156)))) (-2059 (($ $ (-994 (-1075))) NIL) (($ $ (-583 (-994 (-1075)))) NIL) (($ $ (-994 (-1075)) (-703)) NIL) (($ $ (-583 (-994 (-1075))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1255 (((-583 (-1075)) $) NIL)) (-2769 (((-489 (-994 (-1075))) $) NIL) (((-703) $ (-994 (-1075))) NIL) (((-583 (-703)) $ (-583 (-994 (-1075)))) NIL) (((-703) $ (-1075)) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-994 (-1075)) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-994 (-1075)) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-994 (-1075)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-994 (-1075))) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-994 (-1075))) NIL) (($ (-1075)) NIL) (($ (-1027 |#1| (-1075))) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-489 (-994 (-1075)))) NIL) (($ $ (-994 (-1075)) (-703)) NIL) (($ $ (-583 (-994 (-1075))) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-994 (-1075))) NIL) (($ $ (-583 (-994 (-1075)))) NIL) (($ $ (-994 (-1075)) (-703)) NIL) (($ $ (-583 (-994 (-1075))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-993 |#1|) (-13 (-226 |#1| (-1075) (-994 (-1075)) (-489 (-994 (-1075)))) (-953 (-1027 |#1| (-1075)))) (-962)) (T -993))
+NIL
+(-13 (-226 |#1| (-1075) (-994 (-1075)) (-489 (-994 (-1075)))) (-953 (-1027 |#1| (-1075))))
+((-2118 (((-107) $ $) NIL)) (-1463 (((-703) $) NIL)) (-3750 ((|#1| $) 10)) (-3226 (((-3 |#1| "failed") $) NIL)) (-3388 ((|#1| $) NIL)) (-2053 (((-703) $) 11)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-3528 (($ |#1| (-703)) 9)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2059 (($ $) NIL) (($ $ (-703)) NIL)) (-2269 (((-787) $) NIL) (($ |#1|) NIL)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 15)))
+(((-994 |#1|) (-239 |#1|) (-779)) (T -994))
NIL
(-239 |#1|)
-((-1939 (((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 23 (|has| |#1| (-777))) (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 14)))
-(((-994 |#1| |#2|) (-10 -7 (-15 -1939 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1939 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |%noBranch|)) (-1109) (-1109)) (T -994))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))))
-(-10 -7 (-15 -1939 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1939 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |%noBranch|))
-((-1939 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19)))
-(((-995 |#1| |#2|) (-10 -7 (-15 -1939 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1109) (-1109)) (T -995))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))))
-(-10 -7 (-15 -1939 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3518 (((-1074) $) 11)) (-2543 (((-998 |#1|) $) 12)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2769 (($ (-1074) (-998 |#1|)) 10)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-1534 (((-107) $ $) 15 (|has| |#1| (-1003)))))
-(((-996 |#1|) (-13 (-1109) (-10 -8 (-15 -2769 ($ (-1074) (-998 |#1|))) (-15 -3518 ((-1074) $)) (-15 -2543 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|))) (-1109)) (T -996))
-((-2769 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-998 *4)) (-4 *4 (-1109)) (-5 *1 (-996 *4)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2769 ($ (-1074) (-998 |#1|))) (-15 -3518 ((-1074) $)) (-15 -2543 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|)))
-((-2543 (($ |#1| |#1|) 7)) (-2722 ((|#1| $) 10)) (-3349 ((|#1| $) 12)) (-3360 (((-517) $) 8)) (-2682 ((|#1| $) 9)) (-3373 ((|#1| $) 11)) (-3667 (($ |#1|) 6)) (-2957 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
-(((-997 |#1|) (-1185) (-1109)) (T -997))
-((-2957 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1109)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))) (-2543 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2957 ($ |t#1| |t#1|)) (-15 -1321 ($ $ (-517))) (-15 -3349 (|t#1| $)) (-15 -3373 (|t#1| $)) (-15 -2722 (|t#1| $)) (-15 -2682 (|t#1| $)) (-15 -3360 ((-517) $)) (-15 -2543 ($ |t#1| |t#1|)) (-15 -3667 ($ |t#1|))))
-(((-1109) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2543 (($ |#1| |#1|) 15)) (-1939 (((-583 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-777)))) (-2722 ((|#1| $) 10)) (-3349 ((|#1| $) 9)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3360 (((-517) $) 14)) (-2682 ((|#1| $) 12)) (-3373 ((|#1| $) 11)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3523 (((-583 |#1|) $) 35 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 34 (|has| |#1| (-777)))) (-3667 (($ |#1|) 26)) (-2254 (((-787) $) 25 (|has| |#1| (-1003)))) (-2957 (($ |#1| |#1|) 8)) (-1321 (($ $ (-517)) 16)) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))))
-(((-998 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |%noBranch|))) (-1109)) (T -998))
-NIL
-(-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |%noBranch|)))
-((-2543 (($ |#1| |#1|) 7)) (-1939 ((|#2| (-1 |#1| |#1|) $) 16)) (-2722 ((|#1| $) 10)) (-3349 ((|#1| $) 12)) (-3360 (((-517) $) 8)) (-2682 ((|#1| $) 9)) (-3373 ((|#1| $) 11)) (-3523 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3667 (($ |#1|) 6)) (-2957 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
-(((-999 |#1| |#2|) (-1185) (-777) (-1048 |t#1|)) (T -999))
-((-3523 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1048 *3)))) (-1939 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))))
-(-13 (-997 |t#1|) (-10 -8 (-15 -3523 (|t#2| (-583 $))) (-15 -3523 (|t#2| $)) (-15 -1939 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-997 |#1|) . T) ((-1109) . T))
-((-1400 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3867 (($ $ $) 10)) (-1853 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1000 |#1| |#2|) (-10 -8 (-15 -1400 (|#1| |#2| |#1|)) (-15 -1400 (|#1| |#1| |#2|)) (-15 -1400 (|#1| |#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000))
-NIL
-(-10 -8 (-15 -1400 (|#1| |#2| |#1|)) (-15 -1400 (|#1| |#1| |#2|)) (-15 -1400 (|#1| |#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1400 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3867 (($ $ $) 20)) (-3994 (((-107) $ $) 19)) (-3552 (((-107) $ (-703)) 35)) (-1353 (($) 25) (($ (-583 |#1|)) 24)) (-3555 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4183)))) (-2706 (($) 36 T CONST)) (-1783 (($ $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4183)))) (-3240 (((-583 |#1|) $) 43 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 34)) (-2332 (((-583 |#1|) $) 44 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 38)) (-2026 (((-107) $ (-703)) 33)) (-1277 (((-1057) $) 9)) (-2375 (($ $ $) 23)) (-3214 (((-1021) $) 10)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-3029 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 29)) (-1596 (((-107) $) 32)) (-2756 (($) 31)) (-1853 (($ $ $) 22) (($ $ |#1|) 21)) (-3223 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4183)))) (-2435 (($ $) 30)) (-3667 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 51)) (-2254 (((-787) $) 11)) (-3171 (($) 27) (($ (-583 |#1|)) 26)) (-2258 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 6)) (-1558 (((-107) $ $) 28)) (-2290 (((-703) $) 37 (|has| $ (-6 -4183)))))
-(((-1001 |#1|) (-1185) (-1003)) (T -1001))
-((-1558 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3171 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1353 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-2375 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1853 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3994 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1400 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1400 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1400 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(-13 (-1003) (-138 |t#1|) (-10 -8 (-6 -4173) (-15 -1558 ((-107) $ $)) (-15 -3171 ($)) (-15 -3171 ($ (-583 |t#1|))) (-15 -1353 ($)) (-15 -1353 ($ (-583 |t#1|))) (-15 -2375 ($ $ $)) (-15 -1853 ($ $ $)) (-15 -1853 ($ $ |t#1|)) (-15 -3867 ($ $ $)) (-15 -3994 ((-107) $ $)) (-15 -1400 ($ $ $)) (-15 -1400 ($ $ |t#1|)) (-15 -1400 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1109) . T))
-((-1277 (((-1057) $) 10)) (-3214 (((-1021) $) 8)))
-(((-1002 |#1|) (-10 -8 (-15 -1277 ((-1057) |#1|)) (-15 -3214 ((-1021) |#1|))) (-1003)) (T -1002))
-NIL
-(-10 -8 (-15 -1277 ((-1057) |#1|)) (-15 -3214 ((-1021) |#1|)))
-((-1587 (((-107) $ $) 7)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-1003) (-1185)) (T -1003))
-((-3214 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1057)))))
-(-13 (-97) (-557 (-787)) (-10 -8 (-15 -3214 ((-1021) $)) (-15 -1277 ((-1057) $))))
+((-3308 (((-583 |#2|) (-1 |#2| |#1|) (-999 |#1|)) 24 (|has| |#1| (-777))) (((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)) 14)))
+(((-995 |#1| |#2|) (-10 -7 (-15 -3308 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|))) (IF (|has| |#1| (-777)) (-15 -3308 ((-583 |#2|) (-1 |#2| |#1|) (-999 |#1|))) |%noBranch|)) (-1110) (-1110)) (T -995))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-777)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-583 *6)) (-5 *1 (-995 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-999 *6)) (-5 *1 (-995 *5 *6)))))
+(-10 -7 (-15 -3308 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|))) (IF (|has| |#1| (-777)) (-15 -3308 ((-583 |#2|) (-1 |#2| |#1|) (-999 |#1|))) |%noBranch|))
+((-3308 (((-997 |#2|) (-1 |#2| |#1|) (-997 |#1|)) 19)))
+(((-996 |#1| |#2|) (-10 -7 (-15 -3308 ((-997 |#2|) (-1 |#2| |#1|) (-997 |#1|)))) (-1110) (-1110)) (T -996))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-997 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-997 *6)) (-5 *1 (-996 *5 *6)))))
+(-10 -7 (-15 -3308 ((-997 |#2|) (-1 |#2| |#1|) (-997 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3750 (((-1075) $) 11)) (-2209 (((-999 |#1|) $) 12)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2966 (($ (-1075) (-999 |#1|)) 10)) (-2269 (((-787) $) 20 (|has| |#1| (-1004)))) (-1583 (((-107) $ $) 15 (|has| |#1| (-1004)))))
+(((-997 |#1|) (-13 (-1110) (-10 -8 (-15 -2966 ($ (-1075) (-999 |#1|))) (-15 -3750 ((-1075) $)) (-15 -2209 ((-999 |#1|) $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|))) (-1110)) (T -997))
+((-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-999 *4)) (-4 *4 (-1110)) (-5 *1 (-997 *4)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-997 *3)) (-4 *3 (-1110)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-999 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1110)))))
+(-13 (-1110) (-10 -8 (-15 -2966 ($ (-1075) (-999 |#1|))) (-15 -3750 ((-1075) $)) (-15 -2209 ((-999 |#1|) $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|)))
+((-2209 (($ |#1| |#1|) 7)) (-3704 ((|#1| $) 10)) (-2157 ((|#1| $) 12)) (-2167 (((-517) $) 8)) (-2312 ((|#1| $) 9)) (-2174 ((|#1| $) 11)) (-3357 (($ |#1|) 6)) (-1605 (($ |#1| |#1|) 14)) (-1326 (($ $ (-517)) 13)))
+(((-998 |#1|) (-1187) (-1110)) (T -998))
+((-1605 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-998 *3)) (-4 *3 (-1110)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1110)) (-5 *2 (-517)))) (-2209 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))))
+(-13 (-1110) (-10 -8 (-15 -1605 ($ |t#1| |t#1|)) (-15 -1326 ($ $ (-517))) (-15 -2157 (|t#1| $)) (-15 -2174 (|t#1| $)) (-15 -3704 (|t#1| $)) (-15 -2312 (|t#1| $)) (-15 -2167 ((-517) $)) (-15 -2209 ($ |t#1| |t#1|)) (-15 -3357 ($ |t#1|))))
+(((-1110) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2209 (($ |#1| |#1|) 15)) (-3308 (((-583 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-777)))) (-3704 ((|#1| $) 10)) (-2157 ((|#1| $) 9)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2167 (((-517) $) 14)) (-2312 ((|#1| $) 12)) (-2174 ((|#1| $) 11)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2294 (((-583 |#1|) $) 36 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 35 (|has| |#1| (-777)))) (-3357 (($ |#1|) 26)) (-2269 (((-787) $) 25 (|has| |#1| (-1004)))) (-1605 (($ |#1| |#1|) 8)) (-1326 (($ $ (-517)) 16)) (-1583 (((-107) $ $) 19 (|has| |#1| (-1004)))))
+(((-999 |#1|) (-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1000 |#1| (-583 |#1|))) |%noBranch|))) (-1110)) (T -999))
+NIL
+(-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1000 |#1| (-583 |#1|))) |%noBranch|)))
+((-2209 (($ |#1| |#1|) 7)) (-3308 ((|#2| (-1 |#1| |#1|) $) 16)) (-3704 ((|#1| $) 10)) (-2157 ((|#1| $) 12)) (-2167 (((-517) $) 8)) (-2312 ((|#1| $) 9)) (-2174 ((|#1| $) 11)) (-2294 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3357 (($ |#1|) 6)) (-1605 (($ |#1| |#1|) 14)) (-1326 (($ $ (-517)) 13)))
+(((-1000 |#1| |#2|) (-1187) (-777) (-1049 |t#1|)) (T -1000))
+((-2294 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1049 *4)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1049 *3)))) (-3308 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1049 *4)))))
+(-13 (-998 |t#1|) (-10 -8 (-15 -2294 (|t#2| (-583 $))) (-15 -2294 (|t#2| $)) (-15 -3308 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-998 |#1|) . T) ((-1110) . T))
+((-2382 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1826 (($ $ $) 10)) (-1598 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1001 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#2| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#2|)) (-15 -1598 (|#1| |#1| |#1|))) (-1002 |#2|) (-1004)) (T -1001))
+NIL
+(-10 -8 (-15 -2382 (|#1| |#2| |#1|)) (-15 -2382 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1598 (|#1| |#1| |#2|)) (-15 -1598 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2382 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1826 (($ $ $) 20)) (-2104 (((-107) $ $) 19)) (-2670 (((-107) $ (-703)) 35)) (-1883 (($) 25) (($ (-583 |#1|)) 24)) (-2324 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4190)))) (-1681 (($) 36 T CONST)) (-2453 (($ $) 59 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 58 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4190)))) (-1535 (((-583 |#1|) $) 43 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 34)) (-2898 (((-583 |#1|) $) 44 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 38)) (-4043 (((-107) $ (-703)) 33)) (-1895 (((-1058) $) 9)) (-3257 (($ $ $) 23)) (-4123 (((-1022) $) 10)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-3480 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 29)) (-3270 (((-107) $) 32)) (-1529 (($) 31)) (-1598 (($ $ $) 22) (($ $ |#1|) 21)) (-4135 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4190)))) (-2460 (($ $) 30)) (-3357 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 51)) (-2269 (((-787) $) 11)) (-3073 (($) 27) (($ (-583 |#1|)) 26)) (-3160 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 6)) (-1607 (((-107) $ $) 28)) (-3533 (((-703) $) 37 (|has| $ (-6 -4190)))))
+(((-1002 |#1|) (-1187) (-1004)) (T -1002))
+((-1607 (*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1004)) (-5 *2 (-107)))) (-3073 (*1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-1002 *3)))) (-1883 (*1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-1002 *3)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-1598 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-1598 (*1 *1 *1 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-1826 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-2104 (*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1004)) (-5 *2 (-107)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))) (-2382 (*1 *1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(-13 (-1004) (-138 |t#1|) (-10 -8 (-6 -4180) (-15 -1607 ((-107) $ $)) (-15 -3073 ($)) (-15 -3073 ($ (-583 |t#1|))) (-15 -1883 ($)) (-15 -1883 ($ (-583 |t#1|))) (-15 -3257 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -1598 ($ $ |t#1|)) (-15 -1826 ($ $ $)) (-15 -2104 ((-107) $ $)) (-15 -2382 ($ $ $)) (-15 -2382 ($ $ |t#1|)) (-15 -2382 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) . T) ((-1110) . T))
+((-1895 (((-1058) $) 10)) (-4123 (((-1022) $) 8)))
+(((-1003 |#1|) (-10 -8 (-15 -1895 ((-1058) |#1|)) (-15 -4123 ((-1022) |#1|))) (-1004)) (T -1003))
+NIL
+(-10 -8 (-15 -1895 ((-1058) |#1|)) (-15 -4123 ((-1022) |#1|)))
+((-2118 (((-107) $ $) 7)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-1004) (-1187)) (T -1004))
+((-4123 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1022)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1058)))))
+(-13 (-97) (-557 (-787)) (-10 -8 (-15 -4123 ((-1022) $)) (-15 -1895 ((-1058) $))))
(((-97) . T) ((-557 (-787)) . T))
-((-1587 (((-107) $ $) NIL)) (-1719 (((-703)) 30)) (-1780 (($ (-583 (-843))) 52)) (-2185 (((-3 $ "failed") $ (-843) (-843)) 57)) (-4100 (($) 32)) (-1653 (((-107) (-843) $) 35)) (-4034 (((-843) $) 50)) (-1277 (((-1057) $) NIL)) (-3544 (($ (-843)) 31)) (-2285 (((-3 $ "failed") $ (-843)) 55)) (-3214 (((-1021) $) NIL)) (-3814 (((-1154 $)) 40)) (-3160 (((-583 (-843)) $) 23)) (-4125 (((-703) $ (-843) (-843)) 56)) (-2254 (((-787) $) 29)) (-1534 (((-107) $ $) 21)))
-(((-1004 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2285 ((-3 $ "failed") $ (-843))) (-15 -2185 ((-3 $ "failed") $ (-843) (-843))) (-15 -3160 ((-583 (-843)) $)) (-15 -1780 ($ (-583 (-843)))) (-15 -3814 ((-1154 $))) (-15 -1653 ((-107) (-843) $)) (-15 -4125 ((-703) $ (-843) (-843))))) (-843) (-843)) (T -1004))
-((-2285 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2185 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3814 (*1 *2) (-12 (-5 *2 (-1154 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-1653 (*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4125 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-338) (-10 -8 (-15 -2285 ((-3 $ "failed") $ (-843))) (-15 -2185 ((-3 $ "failed") $ (-843) (-843))) (-15 -3160 ((-583 (-843)) $)) (-15 -1780 ($ (-583 (-843)))) (-15 -3814 ((-1154 $))) (-15 -1653 ((-107) (-843) $)) (-15 -4125 ((-703) $ (-843) (-843)))))
-((-1587 (((-107) $ $) NIL)) (-2476 (($) NIL (|has| |#1| (-338)))) (-1400 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3867 (($ $ $) 71)) (-3994 (((-107) $ $) 72)) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#1| (-338)))) (-1353 (($ (-583 |#1|)) NIL) (($) 13)) (-2975 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-1835 (($ |#1| $) 67 (|has| $ (-6 -4183))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4183)))) (-4100 (($) NIL (|has| |#1| (-338)))) (-3240 (((-583 |#1|) $) 19 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-4055 ((|#1| $) 57 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3105 ((|#1| $) 55 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 34)) (-4034 (((-843) $) NIL (|has| |#1| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2375 (($ $ $) 69)) (-3074 ((|#1| $) 25)) (-3676 (($ |#1| $) 65)) (-3544 (($ (-843)) NIL (|has| |#1| (-338)))) (-3214 (((-1021) $) NIL)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-3773 ((|#1| $) 27)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 21)) (-2756 (($) 11)) (-1853 (($ $ |#1|) NIL) (($ $ $) 70)) (-3230 (($) NIL) (($ (-583 |#1|)) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 16)) (-3667 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 61)) (-3553 (($ $) NIL (|has| |#1| (-338)))) (-2254 (((-787) $) NIL)) (-4107 (((-703) $) NIL)) (-3171 (($ (-583 |#1|)) NIL) (($) 12)) (-2882 (($ (-583 |#1|)) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 54)) (-1558 (((-107) $ $) NIL)) (-2290 (((-703) $) 10 (|has| $ (-6 -4183)))))
-(((-1005 |#1|) (-395 |#1|) (-1003)) (T -1005))
+((-2118 (((-107) $ $) NIL)) (-2397 (((-703)) 30)) (-3238 (($ (-583 (-844))) 52)) (-3833 (((-3 $ "failed") $ (-844) (-844)) 57)) (-2200 (($) 32)) (-4008 (((-107) (-844) $) 35)) (-2031 (((-844) $) 50)) (-1895 (((-1058) $) NIL)) (-2810 (($ (-844)) 31)) (-1619 (((-3 $ "failed") $ (-844)) 55)) (-4123 (((-1022) $) NIL)) (-2151 (((-1156 $)) 40)) (-2302 (((-583 (-844)) $) 23)) (-1856 (((-703) $ (-844) (-844)) 56)) (-2269 (((-787) $) 29)) (-1583 (((-107) $ $) 21)))
+(((-1005 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -1619 ((-3 $ "failed") $ (-844))) (-15 -3833 ((-3 $ "failed") $ (-844) (-844))) (-15 -2302 ((-583 (-844)) $)) (-15 -3238 ($ (-583 (-844)))) (-15 -2151 ((-1156 $))) (-15 -4008 ((-107) (-844) $)) (-15 -1856 ((-703) $ (-844) (-844))))) (-844) (-844)) (T -1005))
+((-1619 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1005 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3833 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1005 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1005 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1005 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-2151 (*1 *2) (-12 (-5 *2 (-1156 (-1005 *3 *4))) (-5 *1 (-1005 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844)))) (-4008 (*1 *2 *3 *1) (-12 (-5 *3 (-844)) (-5 *2 (-107)) (-5 *1 (-1005 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1856 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-703)) (-5 *1 (-1005 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-338) (-10 -8 (-15 -1619 ((-3 $ "failed") $ (-844))) (-15 -3833 ((-3 $ "failed") $ (-844) (-844))) (-15 -2302 ((-583 (-844)) $)) (-15 -3238 ($ (-583 (-844)))) (-15 -2151 ((-1156 $))) (-15 -4008 ((-107) (-844) $)) (-15 -1856 ((-703) $ (-844) (-844)))))
+((-2118 (((-107) $ $) NIL)) (-2457 (($) NIL (|has| |#1| (-338)))) (-2382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1826 (($ $ $) 72)) (-2104 (((-107) $ $) 73)) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#1| (-338)))) (-1883 (($ (-583 |#1|)) NIL) (($) 13)) (-3042 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3593 (($ |#1| $) 67 (|has| $ (-6 -4190))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4190)))) (-2200 (($) NIL (|has| |#1| (-338)))) (-1535 (((-583 |#1|) $) 19 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3456 ((|#1| $) 57 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-4082 ((|#1| $) 55 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 34)) (-2031 (((-844) $) NIL (|has| |#1| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-3257 (($ $ $) 70)) (-2431 ((|#1| $) 25)) (-2704 (($ |#1| $) 65)) (-2810 (($ (-844)) NIL (|has| |#1| (-338)))) (-4123 (((-1022) $) NIL)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-1785 ((|#1| $) 27)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 21)) (-1529 (($) 11)) (-1598 (($ $ |#1|) NIL) (($ $ $) 71)) (-1494 (($) NIL) (($ (-583 |#1|)) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 16)) (-3357 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 61)) (-2381 (($ $) NIL (|has| |#1| (-338)))) (-2269 (((-787) $) NIL)) (-3288 (((-703) $) NIL)) (-3073 (($ (-583 |#1|)) NIL) (($) 12)) (-4155 (($ (-583 |#1|)) NIL)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 54)) (-1607 (((-107) $ $) NIL)) (-3533 (((-703) $) 10 (|has| $ (-6 -4190)))))
+(((-1006 |#1|) (-395 |#1|) (-1004)) (T -1006))
NIL
(-395 |#1|)
-((-1587 (((-107) $ $) 7)) (-3810 (((-107) $) 32)) (-3871 ((|#2| $) 27)) (-2776 (((-107) $) 33)) (-3881 ((|#1| $) 28)) (-3073 (((-107) $) 35)) (-1345 (((-107) $) 37)) (-1241 (((-107) $) 34)) (-1277 (((-1057) $) 9)) (-2413 (((-107) $) 31)) (-3905 ((|#3| $) 26)) (-3214 (((-1021) $) 10)) (-1797 (((-107) $) 30)) (-4002 ((|#4| $) 25)) (-1659 ((|#5| $) 24)) (-2153 (((-107) $ $) 38)) (-1437 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-1443 (((-583 $) $) 29)) (-3667 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2254 (((-787) $) 11)) (-2111 (($ $) 16)) (-2103 (($ $) 17)) (-3813 (((-107) $) 36)) (-1534 (((-107) $ $) 6)) (-2290 (((-517) $) 15)))
-(((-1006 |#1| |#2| |#3| |#4| |#5|) (-1185) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006))
-((-2153 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1241 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1443 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) (-3667 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-2103 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2153 ((-107) $ $)) (-15 -1345 ((-107) $)) (-15 -3813 ((-107) $)) (-15 -3073 ((-107) $)) (-15 -1241 ((-107) $)) (-15 -2776 ((-107) $)) (-15 -3810 ((-107) $)) (-15 -2413 ((-107) $)) (-15 -1797 ((-107) $)) (-15 -1443 ((-583 $) $)) (-15 -3881 (|t#1| $)) (-15 -3871 (|t#2| $)) (-15 -3905 (|t#3| $)) (-15 -4002 (|t#4| $)) (-15 -1659 (|t#5| $)) (-15 -3667 ($ (-583 $))) (-15 -3667 ($ |t#1|)) (-15 -3667 ($ |t#2|)) (-15 -3667 ($ |t#3|)) (-15 -3667 ($ |t#4|)) (-15 -3667 ($ |t#5|)) (-15 -2103 ($ $)) (-15 -2111 ($ $)) (-15 -2290 ((-517) $)) (-15 -1437 ($ $ (-517))) (-15 -1437 ($ $ (-583 (-517))))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-3810 (((-107) $) NIL)) (-3871 (((-1074) $) NIL)) (-2776 (((-107) $) NIL)) (-3881 (((-1057) $) NIL)) (-3073 (((-107) $) NIL)) (-1345 (((-107) $) NIL)) (-1241 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-2413 (((-107) $) NIL)) (-3905 (((-517) $) NIL)) (-3214 (((-1021) $) NIL)) (-1797 (((-107) $) NIL)) (-4002 (((-199) $) NIL)) (-1659 (((-787) $) NIL)) (-2153 (((-107) $ $) NIL)) (-1437 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-1443 (((-583 $) $) NIL)) (-3667 (($ (-583 $)) NIL) (($ (-1057)) NIL) (($ (-1074)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2254 (((-787) $) NIL)) (-2111 (($ $) NIL)) (-2103 (($ $) NIL)) (-3813 (((-107) $) NIL)) (-1534 (((-107) $ $) NIL)) (-2290 (((-517) $) NIL)))
-(((-1007) (-1006 (-1057) (-1074) (-517) (-199) (-787))) (T -1007))
-NIL
-(-1006 (-1057) (-1074) (-517) (-199) (-787))
-((-1587 (((-107) $ $) NIL)) (-3810 (((-107) $) 37)) (-3871 ((|#2| $) 41)) (-2776 (((-107) $) 36)) (-3881 ((|#1| $) 40)) (-3073 (((-107) $) 34)) (-1345 (((-107) $) 14)) (-1241 (((-107) $) 35)) (-1277 (((-1057) $) NIL)) (-2413 (((-107) $) 38)) (-3905 ((|#3| $) 43)) (-3214 (((-1021) $) NIL)) (-1797 (((-107) $) 39)) (-4002 ((|#4| $) 42)) (-1659 ((|#5| $) 44)) (-2153 (((-107) $ $) 33)) (-1437 (($ $ (-517)) 55) (($ $ (-583 (-517))) 57)) (-1443 (((-583 $) $) 21)) (-3667 (($ (-583 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2254 (((-787) $) 22)) (-2111 (($ $) 20)) (-2103 (($ $) 51)) (-3813 (((-107) $) 18)) (-1534 (((-107) $ $) 32)) (-2290 (((-517) $) 53)))
-(((-1008 |#1| |#2| |#3| |#4| |#5|) (-1006 |#1| |#2| |#3| |#4| |#5|) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1008))
-NIL
-(-1006 |#1| |#2| |#3| |#4| |#5|)
-((-4099 (((-1159) $) 23)) (-2229 (($ (-1074) (-404) |#2|) 11)) (-2254 (((-787) $) 16)))
-(((-1009 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2229 ($ (-1074) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1009))
-((-2229 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
-(-13 (-365) (-10 -8 (-15 -2229 ($ (-1074) (-404) |#2|))))
-((-1920 (((-107) |#5| |#5|) 37)) (-1832 (((-107) |#5| |#5|) 51)) (-2454 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-3472 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-2663 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) 62)) (-3554 (((-1159)) 33)) (-3450 (((-1159) (-1057) (-1057) (-1057)) 29)) (-2972 (((-583 |#5|) (-583 |#5|)) 81)) (-3888 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) 79)) (-4059 (((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-3245 (((-107) |#5| |#5|) 46)) (-1752 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3507 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1603 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3706 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3575 (((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-2423 (((-583 |#5|) (-583 |#5|)) 42)))
-(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3450 ((-1159) (-1057) (-1057) (-1057))) (-15 -3554 ((-1159))) (-15 -1920 ((-107) |#5| |#5|)) (-15 -2423 ((-583 |#5|) (-583 |#5|))) (-15 -3245 ((-107) |#5| |#5|)) (-15 -1832 ((-107) |#5| |#5|)) (-15 -3472 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3507 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1603 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3706 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1752 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2454 ((-107) |#5| |#5|)) (-15 -2454 ((-107) |#5| (-583 |#5|))) (-15 -2972 ((-583 |#5|) (-583 |#5|))) (-15 -2663 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3888 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-15 -4059 ((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3575 ((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1010))
-((-3575 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-4059 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1341 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2663 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-2454 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1752 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1603 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3507 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-1920 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3554 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3450 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3450 ((-1159) (-1057) (-1057) (-1057))) (-15 -3554 ((-1159))) (-15 -1920 ((-107) |#5| |#5|)) (-15 -2423 ((-583 |#5|) (-583 |#5|))) (-15 -3245 ((-107) |#5| |#5|)) (-15 -1832 ((-107) |#5| |#5|)) (-15 -3472 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3507 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1603 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3706 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1752 ((-3 (-107) "failed") |#5| |#5|)) (-15 -2454 ((-107) |#5| |#5|)) (-15 -2454 ((-107) |#5| (-583 |#5|))) (-15 -2972 ((-583 |#5|) (-583 |#5|))) (-15 -2663 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3888 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-15 -4059 ((-583 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3575 ((-3 (-2 (|:| -2153 (-583 |#4|)) (|:| -1341 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3716 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|) 94)) (-3483 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|) 70)) (-2544 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|) 88)) (-3779 (((-583 |#5|) |#4| |#5|) 109)) (-2015 (((-583 |#5|) |#4| |#5|) 116)) (-2091 (((-583 |#5|) |#4| |#5|) 117)) (-1540 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|) 95)) (-3166 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|) 115)) (-3400 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-3771 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107)) 82) (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1402 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|) 77)) (-2071 (((-1159)) 35)) (-1311 (((-1159)) 25)) (-3288 (((-1159) (-1057) (-1057) (-1057)) 31)) (-1706 (((-1159) (-1057) (-1057) (-1057)) 20)))
-(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1706 ((-1159) (-1057) (-1057) (-1057))) (-15 -1311 ((-1159))) (-15 -3288 ((-1159) (-1057) (-1057) (-1057))) (-15 -2071 ((-1159))) (-15 -3483 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3771 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -3771 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107))) (-15 -1402 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -2544 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3400 ((-107) |#4| |#5|)) (-15 -1540 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -3779 ((-583 |#5|) |#4| |#5|)) (-15 -3166 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2015 ((-583 |#5|) |#4| |#5|)) (-15 -3400 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2091 ((-583 |#5|) |#4| |#5|)) (-15 -3716 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1011))
-((-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2091 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3400 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3166 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3400 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2544 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1402 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1341 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-3771 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3483 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2071 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-3288 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1311 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1706 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1706 ((-1159) (-1057) (-1057) (-1057))) (-15 -1311 ((-1159))) (-15 -3288 ((-1159) (-1057) (-1057) (-1057))) (-15 -2071 ((-1159))) (-15 -3483 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3771 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -3771 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) |#3| (-107))) (-15 -1402 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -2544 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#4| |#5|)) (-15 -3400 ((-107) |#4| |#5|)) (-15 -1540 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -3779 ((-583 |#5|) |#4| |#5|)) (-15 -3166 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2015 ((-583 |#5|) |#4| |#5|)) (-15 -3400 ((-583 (-2 (|:| |val| (-107)) (|:| -1341 |#5|))) |#4| |#5|)) (-15 -2091 ((-583 |#5|) |#4| |#5|)) (-15 -3716 ((-583 (-2 (|:| |val| |#4|) (|:| -1341 |#5|))) |#4| |#5|)))
-((-1587 (((-107) $ $) 7)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) 85)) (-3258 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) 101) (((-107) $) 97)) (-2802 ((|#4| |#4| $) 92)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 126)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1761 (((-3 $ "failed") $) 82)) (-3896 ((|#4| |#4| $) 89)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3797 ((|#4| |#4| $) 87)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) 105)) (-1262 (((-107) |#4| $) 136)) (-4030 (((-107) |#4| $) 133)) (-2031 (((-107) |#4| $) 137) (((-107) $) 134)) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) 104) (((-107) $) 103)) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 127)) (-2067 (((-3 |#4| "failed") $) 83)) (-3805 (((-583 $) |#4| $) 129)) (-1956 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2375 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3912 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2825 (((-583 |#4|) $) 107)) (-1966 (((-107) |#4| $) 99) (((-107) $) 95)) (-4083 ((|#4| |#4| $) 90)) (-3706 (((-107) $ $) 110)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) 100) (((-107) $) 96)) (-1382 ((|#4| |#4| $) 91)) (-3214 (((-1021) $) 10)) (-1750 (((-3 |#4| "failed") $) 84)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2463 (((-3 $ "failed") $ |#4|) 78)) (-2204 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3625 (((-703) $) 106)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-2202 (($ $) 88)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1444 (((-703) $) 76 (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1597 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) 81)) (-2710 (((-107) |#4| $) 135)) (-1892 (((-107) |#3| $) 80)) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-1012 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1012))
-NIL
-(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
-((-1872 (((-583 (-517)) (-517) (-517) (-517)) 20)) (-3786 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1938 (((-583 (-517)) (-517) (-517) (-517)) 16)) (-2475 (((-517) (-517) (-517)) 9)) (-2808 (((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517)) 44) (((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517)) 39)) (-3995 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 26)) (-2173 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 43)) (-2600 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 31)) (-3147 (((-583 (-623 (-517))) (-583 (-517))) 33)) (-3265 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 46)) (-2948 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 54)))
-(((-1013) (-10 -7 (-15 -2948 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3265 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3147 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -2600 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2173 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3995 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2808 ((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517))) (-15 -2808 ((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517))) (-15 -2475 ((-517) (-517) (-517))) (-15 -1938 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3786 ((-583 (-517)) (-517) (-517) (-517))) (-15 -1872 ((-583 (-517)) (-517) (-517) (-517))))) (T -1013))
-((-1872 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-3786 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-1938 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2475 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))) (-2808 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))) (-2808 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) (-3995 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))) (-2173 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))) (-2600 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))) (-3265 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))) (-2948 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(-10 -7 (-15 -2948 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3265 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3147 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -2600 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2173 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3995 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2808 ((-1154 (-517)) (-1154 (-517)) (-1154 (-517)) (-517))) (-15 -2808 ((-1154 (-517)) (-583 (-517)) (-1154 (-517)) (-517))) (-15 -2475 ((-517) (-517) (-517))) (-15 -1938 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3786 ((-583 (-517)) (-517) (-517) (-517))) (-15 -1872 ((-583 (-517)) (-517) (-517) (-517))))
-((-2196 (($ $ (-843)) 12)) (** (($ $ (-843)) 10)))
-(((-1014 |#1|) (-10 -8 (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-1015)) (T -1014))
-NIL
-(-10 -8 (-15 -2196 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
-((-1587 (((-107) $ $) 7)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-2196 (($ $ (-843)) 13)) (-1534 (((-107) $ $) 6)) (** (($ $ (-843)) 14)) (* (($ $ $) 15)))
-(((-1015) (-1185)) (T -1015))
-((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) (-2196 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
-(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-843))) (-15 -2196 ($ $ (-843)))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-2778 (((-107) $) NIL (|has| |#3| (-123)))) (-1441 (($ (-843)) NIL (|has| |#3| (-961)))) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3398 (($ $ $) NIL (|has| |#3| (-725)))) (-2646 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-3552 (((-107) $ (-703)) NIL)) (-1719 (((-703)) NIL (|has| |#3| (-338)))) (-3345 (((-517) $) NIL (|has| |#3| (-777)))) (-2412 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003)))) (-3232 (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) ((|#3| $) NIL (|has| |#3| (-1003)))) (-2749 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961)))) (-3775 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-4100 (($) NIL (|has| |#3| (-338)))) (-3705 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#3| $ (-517)) 12)) (-3162 (((-107) $) NIL (|has| |#3| (-777)))) (-3240 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL (|has| |#3| (-961)))) (-1199 (((-107) $) NIL (|has| |#3| (-777)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2332 (((-583 |#3|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3696 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#3| |#3|) $) NIL)) (-4034 (((-843) $) NIL (|has| |#3| (-338)))) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#3| (-1003)))) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3544 (($ (-843)) NIL (|has| |#3| (-338)))) (-3214 (((-1021) $) NIL (|has| |#3| (-1003)))) (-1750 ((|#3| $) NIL (|has| (-517) (-779)))) (-2880 (($ $ |#3|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-3949 (((-583 |#3|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-1369 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-1421 (($ (-1154 |#3|)) NIL)) (-2232 (((-125)) NIL (|has| |#3| (-333)))) (-1248 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-3223 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#3| (-1003))))) (-2435 (($ $) NIL)) (-2254 (((-1154 |#3|) $) NIL) (((-787) $) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3782 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (($ |#3|) NIL (|has| |#3| (-1003)))) (-1217 (((-703)) NIL (|has| |#3| (-961)))) (-2258 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4183)))) (-1724 (($ $) NIL (|has| |#3| (-777)))) (-2196 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2398 (($) NIL (|has| |#3| (-123)) CONST)) (-2411 (($) NIL (|has| |#3| (-961)) CONST)) (-2738 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1074)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1074))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-1600 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1571 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1534 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-1585 (((-107) $ $) NIL (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1558 (((-107) $ $) 17 (-3782 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1678 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1663 (($ $ $) NIL (|has| |#3| (-961))) (($ $) NIL (|has| |#3| (-961)))) (-1645 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ $ $) NIL (|has| |#3| (-961))) (($ (-517) $) NIL (|has| |#3| (-961))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-843) $) NIL (|has| |#3| (-25)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1016 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1016))
+((-2118 (((-107) $ $) 7)) (-4093 (((-107) $) 32)) (-2250 ((|#2| $) 27)) (-3476 (((-107) $) 33)) (-1517 ((|#1| $) 28)) (-3555 (((-107) $) 35)) (-1268 (((-107) $) 37)) (-2768 (((-107) $) 34)) (-1895 (((-1058) $) 9)) (-2828 (((-107) $) 31)) (-2265 ((|#3| $) 26)) (-4123 (((-1022) $) 10)) (-2931 (((-107) $) 30)) (-3209 ((|#4| $) 25)) (-3711 ((|#5| $) 24)) (-3779 (((-107) $ $) 38)) (-2607 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3940 (((-583 $) $) 29)) (-3357 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2269 (((-787) $) 11)) (-3307 (($ $) 16)) (-3293 (($ $) 17)) (-3401 (((-107) $) 36)) (-1583 (((-107) $ $) 6)) (-3533 (((-517) $) 15)))
+(((-1007 |#1| |#2| |#3| |#4| |#5|) (-1187) (-1004) (-1004) (-1004) (-1004) (-1004)) (T -1007))
+((-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-1268 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))) (-3940 (*1 *2 *1) (-12 (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-583 *1)) (-4 *1 (-1007 *3 *4 *5 *6 *7)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *2)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-1007 *3 *2 *4 *5 *6)) (-4 *3 (-1004)) (-4 *2 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *2 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-1004)))) (-3357 (*1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *2)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-517)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -3779 ((-107) $ $)) (-15 -1268 ((-107) $)) (-15 -3401 ((-107) $)) (-15 -3555 ((-107) $)) (-15 -2768 ((-107) $)) (-15 -3476 ((-107) $)) (-15 -4093 ((-107) $)) (-15 -2828 ((-107) $)) (-15 -2931 ((-107) $)) (-15 -3940 ((-583 $) $)) (-15 -1517 (|t#1| $)) (-15 -2250 (|t#2| $)) (-15 -2265 (|t#3| $)) (-15 -3209 (|t#4| $)) (-15 -3711 (|t#5| $)) (-15 -3357 ($ (-583 $))) (-15 -3357 ($ |t#1|)) (-15 -3357 ($ |t#2|)) (-15 -3357 ($ |t#3|)) (-15 -3357 ($ |t#4|)) (-15 -3357 ($ |t#5|)) (-15 -3293 ($ $)) (-15 -3307 ($ $)) (-15 -3533 ((-517) $)) (-15 -2607 ($ $ (-517))) (-15 -2607 ($ $ (-583 (-517))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-4093 (((-107) $) NIL)) (-2250 (((-1075) $) NIL)) (-3476 (((-107) $) NIL)) (-1517 (((-1058) $) NIL)) (-3555 (((-107) $) NIL)) (-1268 (((-107) $) NIL)) (-2768 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-2828 (((-107) $) NIL)) (-2265 (((-517) $) NIL)) (-4123 (((-1022) $) NIL)) (-2931 (((-107) $) NIL)) (-3209 (((-199) $) NIL)) (-3711 (((-787) $) NIL)) (-3779 (((-107) $ $) NIL)) (-2607 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3940 (((-583 $) $) NIL)) (-3357 (($ (-583 $)) NIL) (($ (-1058)) NIL) (($ (-1075)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2269 (((-787) $) NIL)) (-3307 (($ $) NIL)) (-3293 (($ $) NIL)) (-3401 (((-107) $) NIL)) (-1583 (((-107) $ $) NIL)) (-3533 (((-517) $) NIL)))
+(((-1008) (-1007 (-1058) (-1075) (-517) (-199) (-787))) (T -1008))
+NIL
+(-1007 (-1058) (-1075) (-517) (-199) (-787))
+((-2118 (((-107) $ $) NIL)) (-4093 (((-107) $) 38)) (-2250 ((|#2| $) 42)) (-3476 (((-107) $) 37)) (-1517 ((|#1| $) 41)) (-3555 (((-107) $) 35)) (-1268 (((-107) $) 14)) (-2768 (((-107) $) 36)) (-1895 (((-1058) $) NIL)) (-2828 (((-107) $) 39)) (-2265 ((|#3| $) 44)) (-4123 (((-1022) $) NIL)) (-2931 (((-107) $) 40)) (-3209 ((|#4| $) 43)) (-3711 ((|#5| $) 45)) (-3779 (((-107) $ $) 34)) (-2607 (($ $ (-517)) 56) (($ $ (-583 (-517))) 58)) (-3940 (((-583 $) $) 22)) (-3357 (($ (-583 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2269 (((-787) $) 23)) (-3307 (($ $) 21)) (-3293 (($ $) 52)) (-3401 (((-107) $) 18)) (-1583 (((-107) $ $) 33)) (-3533 (((-517) $) 54)))
+(((-1009 |#1| |#2| |#3| |#4| |#5|) (-1007 |#1| |#2| |#3| |#4| |#5|) (-1004) (-1004) (-1004) (-1004) (-1004)) (T -1009))
+NIL
+(-1007 |#1| |#2| |#3| |#4| |#5|)
+((-1897 (((-1161) $) 23)) (-2700 (($ (-1075) (-404) |#2|) 11)) (-2269 (((-787) $) 16)))
+(((-1010 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2700 ($ (-1075) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1010))
+((-2700 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1010 *5 *4)) (-4 *4 (-400 *5)))))
+(-13 (-365) (-10 -8 (-15 -2700 ($ (-1075) (-404) |#2|))))
+((-2943 (((-107) |#5| |#5|) 38)) (-2786 (((-107) |#5| |#5|) 52)) (-1379 (((-107) |#5| (-583 |#5|)) 75) (((-107) |#5| |#5|) 61)) (-1233 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-1704 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) 63)) (-2887 (((-1161)) 33)) (-1269 (((-1161) (-1058) (-1058) (-1058)) 29)) (-2637 (((-583 |#5|) (-583 |#5|)) 82)) (-1189 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) 80)) (-1425 (((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 102)) (-3580 (((-107) |#5| |#5|) 47)) (-3581 (((-3 (-107) "failed") |#5| |#5|) 71)) (-4113 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1375 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1837 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3738 (((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 98)) (-3525 (((-583 |#5|) (-583 |#5|)) 43)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1269 ((-1161) (-1058) (-1058) (-1058))) (-15 -2887 ((-1161))) (-15 -2943 ((-107) |#5| |#5|)) (-15 -3525 ((-583 |#5|) (-583 |#5|))) (-15 -3580 ((-107) |#5| |#5|)) (-15 -2786 ((-107) |#5| |#5|)) (-15 -1233 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -4113 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1375 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1837 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3581 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1379 ((-107) |#5| |#5|)) (-15 -1379 ((-107) |#5| (-583 |#5|))) (-15 -2637 ((-583 |#5|) (-583 |#5|))) (-15 -1704 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -1189 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-15 -1425 ((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3738 ((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -1011))
+((-3738 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3779 (-583 *9)) (|:| -3831 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1011 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-981 *6 *7 *8 *9)))) (-1425 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-981 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3779 (-583 *9)) (|:| -3831 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1011 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-1189 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3831 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *8)))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *8 *3)))) (-1379 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3581 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-1375 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-4113 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-1233 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3580 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-2943 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))) (-2887 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-1269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1269 ((-1161) (-1058) (-1058) (-1058))) (-15 -2887 ((-1161))) (-15 -2943 ((-107) |#5| |#5|)) (-15 -3525 ((-583 |#5|) (-583 |#5|))) (-15 -3580 ((-107) |#5| |#5|)) (-15 -2786 ((-107) |#5| |#5|)) (-15 -1233 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -4113 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1375 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1837 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3581 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1379 ((-107) |#5| |#5|)) (-15 -1379 ((-107) |#5| (-583 |#5|))) (-15 -2637 ((-583 |#5|) (-583 |#5|))) (-15 -1704 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -1189 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-15 -1425 ((-583 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3738 ((-3 (-2 (|:| -3779 (-583 |#4|)) (|:| -3831 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-2726 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|) 95)) (-2194 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|) 71)) (-3183 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|) 89)) (-4024 (((-583 |#5|) |#4| |#5|) 110)) (-3811 (((-583 |#5|) |#4| |#5|) 117)) (-2797 (((-583 |#5|) |#4| |#5|) 118)) (-3041 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|) 96)) (-3425 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|) 116)) (-2988 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2633 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107)) 83) (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3411 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|) 78)) (-3577 (((-1161)) 35)) (-3929 (((-1161)) 25)) (-2455 (((-1161) (-1058) (-1058) (-1058)) 31)) (-1947 (((-1161) (-1058) (-1058) (-1058)) 20)))
+(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1947 ((-1161) (-1058) (-1058) (-1058))) (-15 -3929 ((-1161))) (-15 -2455 ((-1161) (-1058) (-1058) (-1058))) (-15 -3577 ((-1161))) (-15 -2194 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2633 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2633 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107))) (-15 -3411 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -3183 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2988 ((-107) |#4| |#5|)) (-15 -3041 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -4024 ((-583 |#5|) |#4| |#5|)) (-15 -3425 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -3811 ((-583 |#5|) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -2797 ((-583 |#5|) |#4| |#5|)) (-15 -2726 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-981 |#1| |#2| |#3| |#4|)) (T -1012))
+((-2726 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2797 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2988 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3811 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3425 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-4024 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3041 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2988 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3183 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3411 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-2633 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9)))) (-5 *5 (-107)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-981 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3831 *9)))) (-5 *1 (-1012 *6 *7 *4 *8 *9)))) (-2633 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3)))) (-2194 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))) (-3577 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-2455 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))) (-3929 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))) (-1947 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1947 ((-1161) (-1058) (-1058) (-1058))) (-15 -3929 ((-1161))) (-15 -2455 ((-1161) (-1058) (-1058) (-1058))) (-15 -3577 ((-1161))) (-15 -2194 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2633 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2633 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) |#3| (-107))) (-15 -3411 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -3183 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#4| |#5|)) (-15 -2988 ((-107) |#4| |#5|)) (-15 -3041 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -4024 ((-583 |#5|) |#4| |#5|)) (-15 -3425 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -3811 ((-583 |#5|) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3831 |#5|))) |#4| |#5|)) (-15 -2797 ((-583 |#5|) |#4| |#5|)) (-15 -2726 ((-583 (-2 (|:| |val| |#4|) (|:| -3831 |#5|))) |#4| |#5|)))
+((-2118 (((-107) $ $) 7)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) 85)) (-2283 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) 101) (((-107) $) 97)) (-2675 ((|#4| |#4| $) 92)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 126)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 79)) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2437 (((-3 $ "failed") $) 82)) (-1358 ((|#4| |#4| $) 89)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1808 ((|#4| |#4| $) 87)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) 105)) (-3554 (((-107) |#4| $) 136)) (-3203 (((-107) |#4| $) 133)) (-1867 (((-107) |#4| $) 137) (((-107) $) 134)) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) 104) (((-107) $) 103)) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 127)) (-1445 (((-3 |#4| "failed") $) 83)) (-2577 (((-583 $) |#4| $) 129)) (-3115 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3257 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3622 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3778 (((-583 |#4|) $) 107)) (-3015 (((-107) |#4| $) 99) (((-107) $) 95)) (-4014 ((|#4| |#4| $) 90)) (-1837 (((-107) $ $) 110)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) 100) (((-107) $) 96)) (-3422 ((|#4| |#4| $) 91)) (-4123 (((-1022) $) 10)) (-2427 (((-3 |#4| "failed") $) 84)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3760 (((-3 $ "failed") $ |#4|) 78)) (-2640 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-2769 (((-703) $) 106)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-3345 (($ $) 88)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1659 (((-703) $) 76 (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2094 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) 81)) (-3427 (((-107) |#4| $) 135)) (-3980 (((-107) |#3| $) 80)) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-1013 |#1| |#2| |#3| |#4|) (-1187) (-421) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -1013))
+NIL
+(-13 (-981 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-894 |#1| |#2| |#3| |#4|) . T) ((-981 |#1| |#2| |#3| |#4|) . T) ((-1004) . T) ((-1104 |#1| |#2| |#3| |#4|) . T) ((-1110) . T))
+((-2367 (((-583 (-517)) (-517) (-517) (-517)) 22)) (-3112 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1192 (((-583 (-517)) (-517) (-517) (-517)) 18)) (-1353 (((-517) (-517) (-517)) 9)) (-2951 (((-1156 (-517)) (-583 (-517)) (-1156 (-517)) (-517)) 45) (((-1156 (-517)) (-1156 (-517)) (-1156 (-517)) (-517)) 40)) (-3782 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 27)) (-3179 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 44)) (-3671 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 32)) (-2561 (((-583 (-623 (-517))) (-583 (-517))) 34)) (-4109 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 47)) (-2881 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 55)))
+(((-1014) (-10 -7 (-15 -2881 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -4109 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2561 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3671 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3179 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3782 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2951 ((-1156 (-517)) (-1156 (-517)) (-1156 (-517)) (-517))) (-15 -2951 ((-1156 (-517)) (-583 (-517)) (-1156 (-517)) (-517))) (-15 -1353 ((-517) (-517) (-517))) (-15 -1192 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3112 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2367 ((-583 (-517)) (-517) (-517) (-517))))) (T -1014))
+((-2367 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))) (-3112 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))) (-1192 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))) (-1353 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1014)))) (-2951 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1156 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1014)))) (-2951 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1156 (-517))) (-5 *3 (-517)) (-5 *1 (-1014)))) (-3782 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1014)))) (-3179 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1014)))) (-3671 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1014)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1014)))) (-4109 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1014)))) (-2881 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1014)))))
+(-10 -7 (-15 -2881 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -4109 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2561 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3671 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3179 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -3782 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -2951 ((-1156 (-517)) (-1156 (-517)) (-1156 (-517)) (-517))) (-15 -2951 ((-1156 (-517)) (-583 (-517)) (-1156 (-517)) (-517))) (-15 -1353 ((-517) (-517) (-517))) (-15 -1192 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3112 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2367 ((-583 (-517)) (-517) (-517) (-517))))
+((-2813 (($ $ (-844)) 12)) (** (($ $ (-844)) 10)))
+(((-1015 |#1|) (-10 -8 (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844)))) (-1016)) (T -1015))
+NIL
+(-10 -8 (-15 -2813 (|#1| |#1| (-844))) (-15 ** (|#1| |#1| (-844))))
+((-2118 (((-107) $ $) 7)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-2813 (($ $ (-844)) 13)) (-1583 (((-107) $ $) 6)) (** (($ $ (-844)) 14)) (* (($ $ $) 15)))
+(((-1016) (-1187)) (T -1016))
+((* (*1 *1 *1 *1) (-4 *1 (-1016))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-844)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-844)))))
+(-13 (-1004) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-844))) (-15 -2813 ($ $ (-844)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL (|has| |#3| (-1004)))) (-2033 (((-107) $) NIL (|has| |#3| (-123)))) (-2531 (($ (-844)) NIL (|has| |#3| (-962)))) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-1836 (($ $ $) NIL (|has| |#3| (-725)))) (-1250 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2670 (((-107) $ (-703)) NIL)) (-2397 (((-703)) NIL (|has| |#3| (-338)))) (-1323 (((-517) $) NIL (|has| |#3| (-777)))) (-2443 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1004)))) (-3388 (((-517) $) NIL (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004)))) ((|#3| $) NIL (|has| |#3| (-1004)))) (-2306 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-962)))) (((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 $) (-1156 $)) NIL (|has| |#3| (-962))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-962)))) (-3163 (((-3 $ "failed") $) NIL (|has| |#3| (-962)))) (-2200 (($) NIL (|has| |#3| (-338)))) (-2757 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#3| $ (-517)) 12)) (-3523 (((-107) $) NIL (|has| |#3| (-777)))) (-1535 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL (|has| |#3| (-962)))) (-1469 (((-107) $) NIL (|has| |#3| (-777)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2898 (((-583 |#3|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2744 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#3| |#3|) $) NIL)) (-2031 (((-844) $) NIL (|has| |#3| (-338)))) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#3| (-1004)))) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-2810 (($ (-844)) NIL (|has| |#3| (-338)))) (-4123 (((-1022) $) NIL (|has| |#3| (-1004)))) (-2427 ((|#3| $) NIL (|has| (-517) (-779)))) (-3191 (($ $ |#3|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-1831 (((-583 |#3|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3989 ((|#3| $ $) NIL (|has| |#3| (-962)))) (-3907 (($ (-1156 |#3|)) NIL)) (-1880 (((-125)) NIL (|has| |#3| (-333)))) (-2059 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-962))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)))) (-4135 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#3| (-1004))))) (-2460 (($ $) NIL)) (-2269 (((-1156 |#3|) $) NIL) (($ (-517)) NIL (-3745 (-12 (|has| |#3| (-953 (-517))) (|has| |#3| (-1004))) (|has| |#3| (-962)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-953 (-377 (-517)))) (|has| |#3| (-1004)))) (($ |#3|) NIL (|has| |#3| (-1004))) (((-787) $) NIL (|has| |#3| (-557 (-787))))) (-2950 (((-703)) NIL (|has| |#3| (-962)))) (-3160 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4190)))) (-2339 (($ $) NIL (|has| |#3| (-777)))) (-2813 (($ $ (-703)) NIL (|has| |#3| (-962))) (($ $ (-844)) NIL (|has| |#3| (-962)))) (-3608 (($) NIL (|has| |#3| (-123)) CONST)) (-3617 (($) NIL (|has| |#3| (-962)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-962)))) (($ $ (-1075)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#3| (-823 (-1075))) (|has| |#3| (-962)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-962))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)))) (-1641 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1617 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (|has| |#3| (-1004)))) (-1629 (((-107) $ $) NIL (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1607 (((-107) $ $) 17 (-3745 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1703 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1691 (($ $ $) NIL (|has| |#3| (-962))) (($ $) NIL (|has| |#3| (-962)))) (-1677 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-962))) (($ $ (-844)) NIL (|has| |#3| (-962)))) (* (($ $ $) NIL (|has| |#3| (-962))) (($ (-517) $) NIL (|has| |#3| (-962))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-844) $) NIL (|has| |#3| (-25)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1017 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1017))
NIL
(-212 |#1| |#3|)
-((-1963 (((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 36)) (-2385 (((-517) (-1128 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2697 (((-517) (-1128 |#2| |#1|)) 53)) (-1738 (((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 44)) (-2104 (((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 67 (|has| |#1| (-421)))) (-2902 (((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 47)) (-1710 (((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|)) 52)))
-(((-1017 |#1| |#2|) (-10 -7 (-15 -1963 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1738 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2902 ((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1710 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2697 ((-517) (-1128 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2104 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2385 ((-517) (-1128 |#2| |#1|)))) |%noBranch|)) (-752) (-1074)) (T -1017))
-((-2385 (*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2104 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1710 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2902 (*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))) (-1738 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))) (-1963 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
-(-10 -7 (-15 -1963 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1738 ((-583 (-1128 |#2| |#1|)) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2902 ((-583 |#1|) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -1710 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2697 ((-517) (-1128 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2104 ((-517) (-1128 |#2| |#1|) (-1128 |#2| |#1|))) (-15 -2385 ((-517) (-1128 |#2| |#1|)))) |%noBranch|))
-((-3345 (((-3 (-517) "failed") |#2| (-1074) |#2| (-1057)) 16) (((-3 (-517) "failed") |#2| (-1074) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3345 ((-3 (-517) "failed") |#2|)) (-15 -3345 ((-3 (-517) "failed") |#2| (-1074) (-772 |#2|))) (-15 -3345 ((-3 (-517) "failed") |#2| (-1074) |#2| (-1057)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|))) (T -1018))
-((-3345 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))))) (-3345 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) (-3345 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
-(-10 -7 (-15 -3345 ((-3 (-517) "failed") |#2|)) (-15 -3345 ((-3 (-517) "failed") |#2| (-1074) (-772 |#2|))) (-15 -3345 ((-3 (-517) "failed") |#2| (-1074) |#2| (-1057))))
-((-3345 (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057)) 34) (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-874 |#1|))) 12)))
-(((-1019 |#1|) (-10 -7 (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|))))) (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057)))) (-421)) (T -1019))
-((-3345 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3345 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))))
-(-10 -7 (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-772 (-377 (-874 |#1|))))) (-15 -3345 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1074) (-377 (-874 |#1|)) (-1057))))
-((-3781 (((-286 (-517)) (-47)) 11)))
-(((-1020) (-10 -7 (-15 -3781 ((-286 (-517)) (-47))))) (T -1020))
-((-3781 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))))
-(-10 -7 (-15 -3781 ((-286 (-517)) (-47))))
-((-1587 (((-107) $ $) NIL)) (-1522 (($ $) 41)) (-2778 (((-107) $) 65)) (-1790 (($ $ $) 48)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 84)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2014 (($ $ $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1764 (($ $ $ $) 74)) (-2377 (($ $) NIL)) (-2674 (((-388 $) $) NIL)) (-2448 (((-107) $ $) NIL)) (-3345 (((-517) $) NIL)) (-1356 (($ $ $) 71)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL)) (-3232 (((-517) $) NIL)) (-2532 (($ $ $) 59)) (-2749 (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3775 (((-3 $ "failed") $) NIL)) (-3937 (((-3 (-377 (-517)) "failed") $) NIL)) (-1541 (((-107) $) NIL)) (-3320 (((-377 (-517)) $) NIL)) (-4100 (($) 81) (($ $) 82)) (-2509 (($ $ $) 58)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL)) (-3083 (((-107) $) NIL)) (-4101 (($ $ $ $) NIL)) (-3509 (($ $ $) 79)) (-3162 (((-107) $) NIL)) (-1630 (($ $ $) NIL)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3469 (((-107) $) 66)) (-2119 (((-107) $) 64)) (-2650 (($ $) 42)) (-3326 (((-3 $ "failed") $) NIL)) (-1199 (((-107) $) 75)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-4102 (($ $ $ $) 72)) (-4055 (($ $ $) 68) (($) 39)) (-3105 (($ $ $) 67) (($) 38)) (-1521 (($ $) NIL)) (-1631 (($ $) 70)) (-1360 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1277 (((-1057) $) NIL)) (-1810 (($ $ $) NIL)) (-3680 (($) NIL T CONST)) (-3152 (($ $) 50)) (-3214 (((-1021) $) NIL) (($ $) 69)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL)) (-1387 (($ $ $) 62) (($ (-583 $)) NIL)) (-1803 (($ $) NIL)) (-1376 (((-388 $) $) NIL)) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL)) (-2483 (((-3 $ "failed") $ $) NIL)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1947 (((-107) $) NIL)) (-3196 (((-703) $) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 61)) (-1248 (($ $ (-703)) NIL) (($ $) NIL)) (-2142 (($ $) 51)) (-2435 (($ $) NIL)) (-3667 (((-517) $) 32) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2254 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-1217 (((-703)) NIL)) (-2121 (((-107) $ $) NIL)) (-4033 (($ $ $) NIL)) (-1870 (($) 37)) (-2673 (((-107) $ $) NIL)) (-2320 (($ $ $ $) 73)) (-1724 (($ $) 63)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2403 (($ $ $) 44)) (-2398 (($) 35 T CONST)) (-3624 (($ $ $) 47)) (-2411 (($) 36 T CONST)) (-2822 (((-1057) $) 21) (((-1057) $ (-107)) 23) (((-1159) (-754) $) 24) (((-1159) (-754) $ (-107)) 25)) (-3634 (($ $) 45)) (-2738 (($ $ (-703)) NIL) (($ $) NIL)) (-3615 (($ $ $) 46)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 40)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 49)) (-2392 (($ $ $) 43)) (-1663 (($ $) 52) (($ $ $) 54)) (-1645 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
-(((-1021) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3105 ($)) (-15 -4055 ($)) (-15 -2650 ($ $)) (-15 -1522 ($ $)) (-15 -2392 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -3634 ($ $)) (-15 -3615 ($ $ $)) (-15 -3624 ($ $ $))))) (T -1021))
-((-2403 (*1 *1 *1 *1) (-5 *1 (-1021))) (-2392 (*1 *1 *1 *1) (-5 *1 (-1021))) (-1522 (*1 *1 *1) (-5 *1 (-1021))) (-3105 (*1 *1) (-5 *1 (-1021))) (-4055 (*1 *1) (-5 *1 (-1021))) (-2650 (*1 *1 *1) (-5 *1 (-1021))) (-1790 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3634 (*1 *1 *1) (-5 *1 (-1021))) (-3615 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3624 (*1 *1 *1 *1) (-5 *1 (-1021))))
-(-13 (-502) (-598) (-760) (-10 -8 (-6 -4170) (-6 -4175) (-6 -4171) (-15 -3105 ($)) (-15 -4055 ($)) (-15 -2650 ($ $)) (-15 -1522 ($ $)) (-15 -2392 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -3634 ($ $)) (-15 -3615 ($ $ $)) (-15 -3624 ($ $ $))))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1261 ((|#1| $) 44)) (-3552 (((-107) $ (-703)) 8)) (-2706 (($) 7 T CONST)) (-3660 ((|#1| |#1| $) 46)) (-3591 ((|#1| $) 45)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-3074 ((|#1| $) 39)) (-3676 (($ |#1| $) 40)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-3773 ((|#1| $) 41)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-2410 (((-703) $) 43)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) 42)) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1022 |#1|) (-1185) (-1109)) (T -1022))
-((-3660 (*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-1261 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4183) (-15 -3660 (|t#1| |t#1| $)) (-15 -3591 (|t#1| $)) (-15 -1261 (|t#1| $)) (-15 -2410 ((-703) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1462 ((|#3| $) 76)) (-1837 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3232 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-2749 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL) (((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 $) (-1154 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-1248 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2084 ((|#3| $) 78)) (-2025 ((|#4| $) 32)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
-(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2084 (|#3| |#1|)) (-15 -1462 (|#3| |#1|)) (-15 -2025 (|#4| |#1|)) (-15 -2749 ((-623 |#3|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2254 (|#1| |#3|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2254 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2254 ((-787) |#1|))) (-1024 |#2| |#3| |#4| |#5|) (-703) (-961) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1023))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2084 (|#3| |#1|)) (-15 -1462 (|#3| |#1|)) (-15 -2025 (|#4| |#1|)) (-15 -2749 ((-623 |#3|) (-623 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 |#3|)) (|:| |vec| (-1154 |#3|))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 |#1|) (-1154 |#1|))) (-15 -2749 ((-623 (-517)) (-623 |#1|))) (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2254 (|#1| |#3|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-517) |#1|)) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -1248 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2254 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1462 ((|#2| $) 72)) (-1545 (((-107) $) 112)) (-2646 (((-3 $ "failed") $ $) 19)) (-3323 (((-107) $) 110)) (-3552 (((-107) $ (-703)) 102)) (-3511 (($ |#2|) 75)) (-2706 (($) 17 T CONST)) (-2889 (($ $) 129 (|has| |#2| (-278)))) (-3193 ((|#3| $ (-517)) 124)) (-1837 (((-3 (-517) "failed") $) 86 (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3232 (((-517) $) 87 (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) 80)) (-2749 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3775 (((-3 $ "failed") $) 34)) (-3334 (((-703) $) 130 (|has| |#2| (-509)))) (-3537 ((|#2| $ (-517) (-517)) 122)) (-3240 (((-583 |#2|) $) 95 (|has| $ (-6 -4183)))) (-3469 (((-107) $) 31)) (-2879 (((-703) $) 131 (|has| |#2| (-509)))) (-1735 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1259 (((-703) $) 118)) (-1269 (((-703) $) 119)) (-2629 (((-107) $ (-703)) 103)) (-3157 ((|#2| $) 67 (|has| |#2| (-6 (-4185 "*"))))) (-1234 (((-517) $) 114)) (-2493 (((-517) $) 116)) (-2332 (((-583 |#2|) $) 94 (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2189 (((-517) $) 115)) (-3294 (((-517) $) 117)) (-1884 (($ (-583 (-583 |#2|))) 109)) (-3696 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3418 (((-583 (-583 |#2|)) $) 120)) (-2026 (((-107) $ (-703)) 104)) (-1277 (((-1057) $) 9)) (-1779 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-3214 (((-1021) $) 10)) (-2483 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-3029 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) 108)) (-1596 (((-107) $) 105)) (-2756 (($) 106)) (-1437 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-1248 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1074)) (-583 (-703))) 44 (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) 43 (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) 42 (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) 41 (|has| |#2| (-822 (-1074)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-2084 ((|#2| $) 71)) (-3970 (($ (-583 |#2|)) 74)) (-3402 (((-107) $) 111)) (-2025 ((|#3| $) 73)) (-1358 ((|#2| $) 68 (|has| |#2| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4183))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 107)) (-2939 ((|#4| $ (-517)) 125)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) 82)) (-1217 (((-703)) 29)) (-2258 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4183)))) (-3053 (((-107) $) 113)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1074)) (-583 (-703))) 48 (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) 47 (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) 46 (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) 45 (|has| |#2| (-822 (-1074)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2290 (((-703) $) 101 (|has| $ (-6 -4183)))))
-(((-1024 |#1| |#2| |#3| |#4|) (-1185) (-703) (-961) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1024))
-((-3511 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) (-1779 (*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
-(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -3511 ($ |t#2|)) (-15 -3970 ($ (-583 |t#2|))) (-15 -2025 (|t#3| $)) (-15 -1462 (|t#2| $)) (-15 -2084 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4185 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -1358 (|t#2| $)) (-15 -3157 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -1779 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4185 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3782 (|has| |#2| (-156)) (|has| |#2| (-6 (-4185 "*")))) ((-659) . T) ((-822 (-1074)) |has| |#2| (-822 (-1074))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-377 (-517))) |has| |#2| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#2| (-952 (-517))) ((-952 |#2|) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1109) . T))
-((-4019 ((|#4| |#4|) 67)) (-3452 ((|#4| |#4|) 62)) (-3808 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|) 75)) (-3072 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3631 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64)))
-(((-1025 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 (|#4| |#4|)) (-15 -3631 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4019 (|#4| |#4|)) (-15 -3072 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3808 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1025))
-((-3808 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3072 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3631 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -3452 (|#4| |#4|)) (-15 -3631 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4019 (|#4| |#4|)) (-15 -3072 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3808 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2080 (-583 |#3|))) |#4| |#3|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 17)) (-1357 (((-583 |#2|) $) 160)) (-2374 (((-1070 $) $ |#2|) 54) (((-1070 |#1|) $) 43)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 110 (|has| |#1| (-509)))) (-2239 (($ $) 112 (|has| |#1| (-509)))) (-3531 (((-107) $) 114 (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) 157) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3232 ((|#1| $) 155) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL)) (-3167 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-1221 (($ $) 197)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) 82)) (-2038 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-489 |#2|) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3469 (((-107) $) 19)) (-3604 (((-703) $) 26)) (-1347 (($ (-1070 |#1|) |#2|) 48) (($ (-1070 $) |#2|) 64)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) 31)) (-1336 (($ |#1| (-489 |#2|)) 71) (($ $ |#2| (-703)) 52) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ |#2|) NIL)) (-3876 (((-489 |#2|) $) 187) (((-703) $ |#2|) 188) (((-583 (-703)) $ (-583 |#2|)) 189)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) 122)) (-3382 (((-3 |#2| "failed") $) 162)) (-1687 (($ $) 196)) (-1193 ((|#1| $) 37)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| |#2|) (|:| -3010 (-703))) "failed") $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) 32)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 140 (|has| |#1| (-421)))) (-1387 (($ (-583 $)) 145 (|has| |#1| (-421))) (($ $ $) 132 (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2483 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-509)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-583 |#2|) (-583 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-583 |#2|) (-583 $)) 177)) (-3383 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-1248 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3625 (((-489 |#2|) $) 183) (((-703) $ |#2|) 179) (((-583 (-703)) $ (-583 |#2|)) 181)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#1| $) 128 (|has| |#1| (-421))) (($ $ |#2|) 131 (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2254 (((-787) $) 151) (($ (-517)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3165 (((-583 |#1|) $) 154)) (-4104 ((|#1| $ (-489 |#2|)) 73) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 79)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) 117 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 102) (($ $ (-703)) 104)) (-2398 (($) 12 T CONST)) (-2411 (($) 14 T CONST)) (-2738 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 97)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 126 (|has| |#1| (-333)))) (-1663 (($ $) 85) (($ $ $) 95)) (-1645 (($ $ $) 49)) (** (($ $ (-843)) 103) (($ $ (-703)) 100)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 88) (($ $ $) 65) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1026 |#1| |#2|) (-871 |#1| (-489 |#2|) |#2|) (-961) (-779)) (T -1026))
-NIL
-(-871 |#1| (-489 |#2|) |#2|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 |#2|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-2725 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1523 (((-874 |#1|) $ (-703)) NIL) (((-874 |#1|) $ (-703) (-703)) NIL)) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2029 (((-107) $) NIL)) (-1336 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 57) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3563 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-1771 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-377 (-517)))))) (-2204 (($ $ (-703)) 15)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2643 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (($ $ |#2| $) 95) (($ $ (-583 |#2|) (-583 $)) 88) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-1248 (($ $ |#2|) 98) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3625 (((-489 |#2|) $) NIL)) (-2860 (((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|))) 78)) (-1543 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 17)) (-2254 (((-787) $) 179) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 64) (($ |#3|) 62)) (-4104 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-1584 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-3756 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 18 T CONST)) (-2411 (($) 10 T CONST)) (-2738 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) 181 (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 60)) (** (($ $ (-843)) NIL) (($ $ (-703)) 69) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 101 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) 106 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 104 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1027 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -4104 (|#3| $ (-703))) (-15 -2254 ($ |#2|)) (-15 -2254 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2860 ((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $ |#2| |#1|)) (-15 -1771 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-779) (-871 |#1| (-489 |#2|) |#2|)) (T -1027))
-((-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1055 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1055 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))) (-3563 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-1771 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))))
-(-13 (-673 |#1| |#2|) (-10 -8 (-15 -4104 (|#3| $ (-703))) (-15 -2254 ($ |#2|)) (-15 -2254 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2860 ((-1 (-1055 |#3|) |#3|) (-583 |#2|) (-583 (-1055 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $ |#2| |#1|)) (-15 -1771 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1587 (((-107) $ $) 7)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) 85)) (-3258 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) 101) (((-107) $) 97)) (-2802 ((|#4| |#4| $) 92)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 126)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1761 (((-3 $ "failed") $) 82)) (-3896 ((|#4| |#4| $) 89)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3797 ((|#4| |#4| $) 87)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) 105)) (-1262 (((-107) |#4| $) 136)) (-4030 (((-107) |#4| $) 133)) (-2031 (((-107) |#4| $) 137) (((-107) $) 134)) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) 104) (((-107) $) 103)) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 127)) (-2067 (((-3 |#4| "failed") $) 83)) (-3805 (((-583 $) |#4| $) 129)) (-1956 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2375 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3912 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2825 (((-583 |#4|) $) 107)) (-1966 (((-107) |#4| $) 99) (((-107) $) 95)) (-4083 ((|#4| |#4| $) 90)) (-3706 (((-107) $ $) 110)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) 100) (((-107) $) 96)) (-1382 ((|#4| |#4| $) 91)) (-3214 (((-1021) $) 10)) (-1750 (((-3 |#4| "failed") $) 84)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2463 (((-3 $ "failed") $ |#4|) 78)) (-2204 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3625 (((-703) $) 106)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-2202 (($ $) 88)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1444 (((-703) $) 76 (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1597 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) 81)) (-2710 (((-107) |#4| $) 135)) (-1892 (((-107) |#3| $) 80)) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-1028 |#1| |#2| |#3| |#4|) (-1185) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1028))
-NIL
-(-13 (-1012 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1109) . T))
-((-1955 (((-583 |#2|) |#1|) 12)) (-2597 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-2525 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-3238 ((|#2| |#1|) 42)) (-1937 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-1502 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-2347 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-4003 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1958 ((|#2| |#2| |#2| |#2|) 39)) (-3508 ((|#2| |#2| |#2|) 38)) (-1677 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1029 |#1| |#2|) (-10 -7 (-15 -1955 ((-583 |#2|) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -1937 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1502 ((-583 |#2|) |#1|)) (-15 -2525 ((-583 |#2|) |#1|)) (-15 -2347 ((-583 |#2|) |#1|)) (-15 -2597 ((-583 |#2|) |#1|)) (-15 -1502 ((-583 |#2|) |#2| |#2|)) (-15 -2525 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -2347 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2597 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3508 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4003 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1131 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1029))
-((-4003 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-1677 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-1958 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-3508 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-2597 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-2347 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-2525 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-1502 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-2525 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-1502 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1131 *5)))) (-3238 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -1955 ((-583 |#2|) |#1|)) (-15 -3238 (|#2| |#1|)) (-15 -1937 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1502 ((-583 |#2|) |#1|)) (-15 -2525 ((-583 |#2|) |#1|)) (-15 -2347 ((-583 |#2|) |#1|)) (-15 -2597 ((-583 |#2|) |#1|)) (-15 -1502 ((-583 |#2|) |#2| |#2|)) (-15 -2525 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -2347 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2597 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3508 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4003 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2098 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|))))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074))) 93) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|)))) 91) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 89) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|)))) 75) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074)) 76) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|))) 70) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074)) 59)) (-3853 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 87) (((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074)) 43)) (-2801 (((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074)) 97) (((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074)) 96)))
-(((-1030 |#1|) (-10 -7 (-15 -2098 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3853 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3853 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -2801 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -2801 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074)))) (-13 (-278) (-779) (-134))) (T -1030))
-((-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))))
-(-10 -7 (-15 -2098 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1074))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -2098 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -2098 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -3853 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3853 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -2801 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -2801 ((-1064 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1074))))
-((-1425 (((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517)) 27)) (-1194 (((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|)))) 39)))
-(((-1031 |#1|) (-10 -7 (-15 -1194 ((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))))) (-15 -1425 ((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1031))
-((-1425 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1070 (-286 *5)))) (-5 *3 (-1154 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))) (-1194 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1070 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
-(-10 -7 (-15 -1194 ((-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))) (-377 (-1070 (-286 |#1|))))) (-15 -1425 ((-377 (-1070 (-286 |#1|))) (-1154 (-286 |#1|)) (-377 (-1070 (-286 |#1|))) (-517))))
-((-1955 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074))) 216) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
-(((-1032 |#1|) (-10 -7 (-15 -1955 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074))) (-15 -1955 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074))))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (T -1032))
-((-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))))
-(-10 -7 (-15 -1955 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1074))) (-15 -1955 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1074))) (-15 -1955 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1074)))))
-((-3946 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-1537 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
-(((-1033 |#1| |#2|) (-10 -7 (-15 -1537 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -3946 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1537 (|#2| |#2|)) (-15 -3946 (|#2| |#2|))) |%noBranch|)) (-1109) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4183) (-6 -4184)))) (T -1033))
-((-3946 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) (-1537 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))))
-(-10 -7 (-15 -1537 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -3946 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1537 (|#2| |#2|)) (-15 -3946 (|#2| |#2|))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-1817 (((-1063 3 |#1|) $) 105)) (-2244 (((-107) $) 72)) (-1252 (($ $ (-583 (-865 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-865 |#1|))) 74) (((-583 (-865 |#1|)) $) 73)) (-4036 (((-107) $) 41)) (-1482 (($ $ (-865 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-865 |#1|)) 47) (((-865 |#1|) $) 45)) (-1859 (((-2 (|:| -1235 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 103)) (-3161 (((-703) $) 26)) (-2430 (((-703) $) 25)) (-1605 (($ $ (-703) (-865 |#1|)) 39)) (-3969 (((-107) $) 82)) (-1634 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-865 |#1|)))) 86) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-865 |#1|))) $) 84)) (-1676 (($ (-583 $)) 28) (($ $ $) 29)) (-3050 (((-583 (-155)) $) 101)) (-3765 (((-583 (-865 |#1|)) $) 96)) (-4001 (((-583 (-583 (-155))) $) 100)) (-2491 (((-583 (-583 (-583 (-865 |#1|)))) $) NIL)) (-3849 (((-583 (-583 (-583 (-703)))) $) 98)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3506 (((-703) $ (-583 (-865 |#1|))) 37)) (-2150 (((-107) $) 54)) (-1401 (($ $ (-583 (-865 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-865 |#1|))) 57) (((-583 (-865 |#1|)) $) 55)) (-3502 (($) 23) (($ (-1063 3 |#1|)) 24)) (-2435 (($ $) 35)) (-1367 (((-583 $) $) 34)) (-2472 (($ (-583 $)) 31)) (-1964 (((-583 $) $) 33)) (-2254 (((-787) $) 109)) (-3691 (((-107) $) 64)) (-1723 (($ $ (-583 (-865 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-865 |#1|))) 67) (((-583 (-865 |#1|)) $) 65)) (-2252 (($ $) 104)) (-1534 (((-107) $ $) NIL)))
-(((-1034 |#1|) (-1035 |#1|) (-961)) (T -1034))
-NIL
-(-1035 |#1|)
-((-1587 (((-107) $ $) 7)) (-1817 (((-1063 3 |#1|) $) 13)) (-2244 (((-107) $) 29)) (-1252 (($ $ (-583 (-865 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-865 |#1|))) 31) (((-583 (-865 |#1|)) $) 30)) (-4036 (((-107) $) 44)) (-1482 (($ $ (-865 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-865 |#1|)) 46) (((-865 |#1|) $) 45)) (-1859 (((-2 (|:| -1235 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-3161 (((-703) $) 58)) (-2430 (((-703) $) 59)) (-1605 (($ $ (-703) (-865 |#1|)) 50)) (-3969 (((-107) $) 21)) (-1634 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-865 |#1|)))) 24) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-865 |#1|))) $) 22)) (-1676 (($ (-583 $)) 57) (($ $ $) 56)) (-3050 (((-583 (-155)) $) 16)) (-3765 (((-583 (-865 |#1|)) $) 20)) (-4001 (((-583 (-583 (-155))) $) 17)) (-2491 (((-583 (-583 (-583 (-865 |#1|)))) $) 18)) (-3849 (((-583 (-583 (-583 (-703)))) $) 19)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3506 (((-703) $ (-583 (-865 |#1|))) 51)) (-2150 (((-107) $) 39)) (-1401 (($ $ (-583 (-865 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-865 |#1|))) 41) (((-583 (-865 |#1|)) $) 40)) (-3502 (($) 61) (($ (-1063 3 |#1|)) 60)) (-2435 (($ $) 52)) (-1367 (((-583 $) $) 53)) (-2472 (($ (-583 $)) 55)) (-1964 (((-583 $) $) 54)) (-2254 (((-787) $) 11)) (-3691 (((-107) $) 34)) (-1723 (($ $ (-583 (-865 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-865 |#1|))) 36) (((-583 (-865 |#1|)) $) 35)) (-2252 (($ $) 14)) (-1534 (((-107) $ $) 6)))
-(((-1035 |#1|) (-1185) (-961)) (T -1035))
-((-2254 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) (-3502 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1063 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1676 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1676 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2472 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1964 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-1367 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2435 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3506 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1252 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1252 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1252 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1634 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1634 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1634 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1634 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1634 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1235 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1063 3 *3)))))
-(-13 (-1003) (-10 -8 (-15 -3502 ($)) (-15 -3502 ($ (-1063 3 |t#1|))) (-15 -2430 ((-703) $)) (-15 -3161 ((-703) $)) (-15 -1676 ($ (-583 $))) (-15 -1676 ($ $ $)) (-15 -2472 ($ (-583 $))) (-15 -1964 ((-583 $) $)) (-15 -1367 ((-583 $) $)) (-15 -2435 ($ $)) (-15 -3506 ((-703) $ (-583 (-865 |t#1|)))) (-15 -1605 ($ $ (-703) (-865 |t#1|))) (-15 -1482 ($ $ (-865 |t#1|))) (-15 -1482 ($ $ (-583 |t#1|))) (-15 -1482 ($ $ (-703))) (-15 -1482 ($ (-865 |t#1|))) (-15 -1482 ((-865 |t#1|) $)) (-15 -4036 ((-107) $)) (-15 -1401 ($ $ (-583 (-865 |t#1|)))) (-15 -1401 ($ $ (-583 (-583 |t#1|)))) (-15 -1401 ($ (-583 (-865 |t#1|)))) (-15 -1401 ((-583 (-865 |t#1|)) $)) (-15 -2150 ((-107) $)) (-15 -1723 ($ $ (-583 (-865 |t#1|)))) (-15 -1723 ($ $ (-583 (-583 |t#1|)))) (-15 -1723 ($ (-583 (-865 |t#1|)))) (-15 -1723 ((-583 (-865 |t#1|)) $)) (-15 -3691 ((-107) $)) (-15 -1252 ($ $ (-583 (-865 |t#1|)))) (-15 -1252 ($ $ (-583 (-583 |t#1|)))) (-15 -1252 ($ (-583 (-865 |t#1|)))) (-15 -1252 ((-583 (-865 |t#1|)) $)) (-15 -2244 ((-107) $)) (-15 -1634 ($ $ (-583 (-583 (-865 |t#1|))) (-583 (-155)) (-155))) (-15 -1634 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -1634 ($ $ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1634 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -1634 ($ (-583 (-583 (-865 |t#1|))))) (-15 -1634 ($ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1634 ((-583 (-583 (-865 |t#1|))) $)) (-15 -3969 ((-107) $)) (-15 -3765 ((-583 (-865 |t#1|)) $)) (-15 -3849 ((-583 (-583 (-583 (-703)))) $)) (-15 -2491 ((-583 (-583 (-583 (-865 |t#1|)))) $)) (-15 -4001 ((-583 (-583 (-155))) $)) (-15 -3050 ((-583 (-155)) $)) (-15 -1859 ((-2 (|:| -1235 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -2252 ($ $)) (-15 -1817 ((-1063 3 |t#1|) $)) (-15 -2254 ((-787) $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-1554 (((-583 (-1079)) (-1057)) 8)))
-(((-1036) (-10 -7 (-15 -1554 ((-583 (-1079)) (-1057))))) (T -1036))
-((-1554 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-583 (-1079))) (-5 *1 (-1036)))))
-(-10 -7 (-15 -1554 ((-583 (-1079)) (-1057))))
-((-1577 (((-1159) (-583 (-787))) 23) (((-1159) (-787)) 22)) (-2779 (((-1159) (-583 (-787))) 21) (((-1159) (-787)) 20)) (-4099 (((-1159) (-583 (-787))) 19) (((-1159) (-787)) 11) (((-1159) (-1057) (-787)) 17)))
-(((-1037) (-10 -7 (-15 -4099 ((-1159) (-1057) (-787))) (-15 -4099 ((-1159) (-787))) (-15 -2779 ((-1159) (-787))) (-15 -1577 ((-1159) (-787))) (-15 -4099 ((-1159) (-583 (-787)))) (-15 -2779 ((-1159) (-583 (-787)))) (-15 -1577 ((-1159) (-583 (-787)))))) (T -1037))
-((-1577 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))))
-(-10 -7 (-15 -4099 ((-1159) (-1057) (-787))) (-15 -4099 ((-1159) (-787))) (-15 -2779 ((-1159) (-787))) (-15 -1577 ((-1159) (-787))) (-15 -4099 ((-1159) (-583 (-787)))) (-15 -2779 ((-1159) (-583 (-787)))) (-15 -1577 ((-1159) (-583 (-787)))))
-((-2828 (($ $ $) 10)) (-3744 (($ $) 9)) (-1388 (($ $ $) 13)) (-3958 (($ $ $) 15)) (-3956 (($ $ $) 12)) (-3770 (($ $ $) 14)) (-1833 (($ $) 17)) (-1878 (($ $) 16)) (-1724 (($ $) 6)) (-2609 (($ $ $) 11) (($ $) 7)) (-2393 (($ $ $) 8)))
-(((-1038) (-1185)) (T -1038))
-((-1833 (*1 *1 *1) (-4 *1 (-1038))) (-1878 (*1 *1 *1) (-4 *1 (-1038))) (-3958 (*1 *1 *1 *1) (-4 *1 (-1038))) (-3770 (*1 *1 *1 *1) (-4 *1 (-1038))) (-1388 (*1 *1 *1 *1) (-4 *1 (-1038))) (-3956 (*1 *1 *1 *1) (-4 *1 (-1038))) (-2609 (*1 *1 *1 *1) (-4 *1 (-1038))) (-2828 (*1 *1 *1 *1) (-4 *1 (-1038))) (-3744 (*1 *1 *1) (-4 *1 (-1038))) (-2393 (*1 *1 *1 *1) (-4 *1 (-1038))) (-2609 (*1 *1 *1) (-4 *1 (-1038))) (-1724 (*1 *1 *1) (-4 *1 (-1038))))
-(-13 (-10 -8 (-15 -1724 ($ $)) (-15 -2609 ($ $)) (-15 -2393 ($ $ $)) (-15 -3744 ($ $)) (-15 -2828 ($ $ $)) (-15 -2609 ($ $ $)) (-15 -3956 ($ $ $)) (-15 -1388 ($ $ $)) (-15 -3770 ($ $ $)) (-15 -3958 ($ $ $)) (-15 -1878 ($ $)) (-15 -1833 ($ $))))
-((-1587 (((-107) $ $) 41)) (-3207 ((|#1| $) 15)) (-3925 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-3190 (((-107) $) 17)) (-2691 (($ $ |#1|) 28)) (-1390 (($ $ (-107)) 30)) (-1740 (($ $) 31)) (-2018 (($ $ |#2|) 29)) (-1277 (((-1057) $) NIL)) (-2743 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3214 (((-1021) $) NIL)) (-1596 (((-107) $) 14)) (-2756 (($) 10)) (-2435 (($ $) 27)) (-2272 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1341 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-3504 ((|#2| $) 16)) (-2254 (((-787) $) 50)) (-1534 (((-107) $ $) 39)))
-(((-1039 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2756 ($)) (-15 -1596 ((-107) $)) (-15 -3207 (|#1| $)) (-15 -3504 (|#2| $)) (-15 -3190 ((-107) $)) (-15 -2272 ($ |#1| |#2| (-107))) (-15 -2272 ($ |#1| |#2|)) (-15 -2272 ($ (-2 (|:| |val| |#1|) (|:| -1341 |#2|)))) (-15 -2272 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|))))) (-15 -2272 ((-583 $) |#1| (-583 |#2|))) (-15 -2435 ($ $)) (-15 -2691 ($ $ |#1|)) (-15 -2018 ($ $ |#2|)) (-15 -1390 ($ $ (-107))) (-15 -1740 ($ $)) (-15 -2743 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3925 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1039))
-((-2756 (*1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3207 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *3 (-13 (-1003) (-33))))) (-3504 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2272 (*1 *1 *2 *3) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1341 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1341 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *4 *5))) (-5 *1 (-1039 *4 *5)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *3 *5))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) (-2435 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2691 (*1 *1 *1 *2) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2018 (*1 *1 *1 *2) (-12 (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))) (-1390 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1740 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2743 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))) (-3925 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
-(-13 (-1003) (-10 -8 (-15 -2756 ($)) (-15 -1596 ((-107) $)) (-15 -3207 (|#1| $)) (-15 -3504 (|#2| $)) (-15 -3190 ((-107) $)) (-15 -2272 ($ |#1| |#2| (-107))) (-15 -2272 ($ |#1| |#2|)) (-15 -2272 ($ (-2 (|:| |val| |#1|) (|:| -1341 |#2|)))) (-15 -2272 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|))))) (-15 -2272 ((-583 $) |#1| (-583 |#2|))) (-15 -2435 ($ $)) (-15 -2691 ($ $ |#1|)) (-15 -2018 ($ $ |#2|)) (-15 -1390 ($ $ (-107))) (-15 -1740 ($ $)) (-15 -2743 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3925 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
-((-1587 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-3207 (((-1039 |#1| |#2|) $) 25)) (-4156 (($ $) 75)) (-1447 (((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-1220 (($ $ $ (-583 (-1039 |#1| |#2|))) 89) (($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-3552 (((-107) $ (-703)) NIL)) (-3967 (((-1039 |#1| |#2|) $ (-1039 |#1| |#2|)) 42 (|has| $ (-6 -4184)))) (-2412 (((-1039 |#1| |#2|) $ "value" (-1039 |#1| |#2|)) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 40 (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3583 (((-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|))) $) 79)) (-1835 (($ (-1039 |#1| |#2|) $) 38)) (-2050 (($ (-1039 |#1| |#2|) $) 30)) (-3240 (((-583 (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-2092 (((-107) (-1039 |#1| |#2|) $) 81)) (-4082 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 (-1039 |#1| |#2|)) $) 54 (|has| $ (-6 -4183)))) (-1653 (((-107) (-1039 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-1039 |#1| |#2|) (-1003))))) (-3696 (($ (-1 (-1039 |#1| |#2|) (-1039 |#1| |#2|)) $) 46 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-1039 |#1| |#2|) (-1039 |#1| |#2|)) $) 45)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 (-1039 |#1| |#2|)) $) 52)) (-2284 (((-107) $) 41)) (-1277 (((-1057) $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-3214 (((-1021) $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-1433 (((-3 $ "failed") $) 74)) (-3029 (((-107) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-1039 |#1| |#2|)))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-265 (-1039 |#1| |#2|))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-1039 |#1| |#2|) (-1039 |#1| |#2|)) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003)))) (($ $ (-583 (-1039 |#1| |#2|)) (-583 (-1039 |#1| |#2|))) NIL (-12 (|has| (-1039 |#1| |#2|) (-280 (-1039 |#1| |#2|))) (|has| (-1039 |#1| |#2|) (-1003))))) (-2349 (((-107) $ $) 49)) (-1596 (((-107) $) 22)) (-2756 (($) 24)) (-1437 (((-1039 |#1| |#2|) $ "value") NIL)) (-3792 (((-517) $ $) NIL)) (-1985 (((-107) $) 43)) (-3223 (((-703) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183))) (((-703) (-1039 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-1039 |#1| |#2|) (-1003))))) (-2435 (($ $) 48)) (-2272 (($ (-1039 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1039 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-2253 (((-583 |#2|) $) 80)) (-2254 (((-787) $) 72 (|has| (-1039 |#1| |#2|) (-1003)))) (-2125 (((-583 $) $) 28)) (-2432 (((-107) $ $) NIL (|has| (-1039 |#1| |#2|) (-1003)))) (-2258 (((-107) (-1 (-107) (-1039 |#1| |#2|)) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 63 (|has| (-1039 |#1| |#2|) (-1003)))) (-2290 (((-703) $) 57 (|has| $ (-6 -4183)))))
-(((-1040 |#1| |#2|) (-13 (-926 (-1039 |#1| |#2|)) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1433 ((-3 $ "failed") $)) (-15 -4156 ($ $)) (-15 -2272 ($ (-1039 |#1| |#2|))) (-15 -2272 ($ |#1| |#2| (-583 $))) (-15 -2272 ($ |#1| |#2| (-583 (-1039 |#1| |#2|)))) (-15 -2272 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2253 ((-583 |#2|) $)) (-15 -3583 ((-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|))) $)) (-15 -2092 ((-107) (-1039 |#1| |#2|) $)) (-15 -1447 ((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2050 ($ (-1039 |#1| |#2|) $)) (-15 -1835 ($ (-1039 |#1| |#2|) $)) (-15 -1220 ($ $ $ (-583 (-1039 |#1| |#2|)))) (-15 -1220 ($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1040))
-((-1433 (*1 *1 *1) (|partial| -12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-4156 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1040 *2 *3))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)))) (-2272 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2092 (*1 *2 *3 *1) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)))) (-1447 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1039 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))) (-2050 (*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-1220 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1039 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) (-1220 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1039 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1040 *4 *5)))))
-(-13 (-926 (-1039 |#1| |#2|)) (-10 -8 (-6 -4184) (-6 -4183) (-15 -1433 ((-3 $ "failed") $)) (-15 -4156 ($ $)) (-15 -2272 ($ (-1039 |#1| |#2|))) (-15 -2272 ($ |#1| |#2| (-583 $))) (-15 -2272 ($ |#1| |#2| (-583 (-1039 |#1| |#2|)))) (-15 -2272 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2253 ((-583 |#2|) $)) (-15 -3583 ((-583 (-2 (|:| |val| |#1|) (|:| -1341 |#2|))) $)) (-15 -2092 ((-107) (-1039 |#1| |#2|) $)) (-15 -1447 ((-107) (-1039 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2050 ($ (-1039 |#1| |#2|) $)) (-15 -1835 ($ (-1039 |#1| |#2|) $)) (-15 -1220 ($ $ $ (-583 (-1039 |#1| |#2|)))) (-15 -1220 ($ $ $ (-583 (-1039 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3860 (($ $) NIL)) (-1462 ((|#2| $) NIL)) (-1545 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2298 (($ (-623 |#2|)) 45)) (-3323 (((-107) $) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3511 (($ |#2|) 9)) (-2706 (($) NIL T CONST)) (-2889 (($ $) 58 (|has| |#2| (-278)))) (-3193 (((-214 |#1| |#2|) $ (-517)) 31)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) 72)) (-3334 (((-703) $) 60 (|has| |#2| (-509)))) (-3537 ((|#2| $ (-517) (-517)) NIL)) (-3240 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-3469 (((-107) $) NIL)) (-2879 (((-703) $) 62 (|has| |#2| (-509)))) (-1735 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1259 (((-703) $) NIL)) (-1269 (((-703) $) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-3157 ((|#2| $) 56 (|has| |#2| (-6 (-4185 "*"))))) (-1234 (((-517) $) NIL)) (-2493 (((-517) $) NIL)) (-2332 (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2189 (((-517) $) NIL)) (-3294 (((-517) $) NIL)) (-1884 (($ (-583 (-583 |#2|))) 26)) (-3696 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-583 (-583 |#2|)) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-1779 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-3214 (((-1021) $) NIL)) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3029 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-1248 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2084 ((|#2| $) NIL)) (-3970 (($ (-583 |#2|)) 40)) (-3402 (((-107) $) NIL)) (-2025 (((-214 |#1| |#2|) $) NIL)) (-1358 ((|#2| $) 54 (|has| |#2| (-6 (-4185 "*"))))) (-3223 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-2435 (($ $) NIL)) (-3667 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-2939 (((-214 |#1| |#2|) $ (-517)) 33)) (-2254 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-1217 (((-703)) 17)) (-2258 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-3053 (((-107) $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 11 T CONST)) (-2411 (($) 14 T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1041 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -3860 ($ $)) (-15 -2298 ($ (-623 |#2|))) (-15 -2254 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4185 "*"))) (-6 -4172) |%noBranch|) (IF (|has| |#2| (-6 (-4185 "*"))) (IF (|has| |#2| (-6 -4180)) (-6 -4180) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-703) (-961)) (T -1041))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)))))
-(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -3860 ($ $)) (-15 -2298 ($ (-623 |#2|))) (-15 -2254 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4185 "*"))) (-6 -4172) |%noBranch|) (IF (|has| |#2| (-6 (-4185 "*"))) (IF (|has| |#2| (-6 -4180)) (-6 -4180) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
-((-1420 (($ $) 19)) (-2174 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-1455 (((-107) $ $) 24)) (-2115 (($ $) 17)) (-1437 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (($ $ $) 29)) (-2254 (($ (-131)) 27) (((-787) $) NIL)))
-(((-1042 |#1|) (-10 -8 (-15 -2254 ((-787) |#1|)) (-15 -1437 (|#1| |#1| |#1|)) (-15 -2174 (|#1| |#1| (-128))) (-15 -2174 (|#1| |#1| (-131))) (-15 -2254 (|#1| (-131))) (-15 -1455 ((-107) |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -1437 ((-131) |#1| (-517))) (-15 -1437 ((-131) |#1| (-517) (-131)))) (-1043)) (T -1042))
-NIL
-(-10 -8 (-15 -2254 ((-787) |#1|)) (-15 -1437 (|#1| |#1| |#1|)) (-15 -2174 (|#1| |#1| (-128))) (-15 -2174 (|#1| |#1| (-131))) (-15 -2254 (|#1| (-131))) (-15 -1455 ((-107) |#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -1437 ((-131) |#1| (-517))) (-15 -1437 ((-131) |#1| (-517) (-131))))
-((-1587 (((-107) $ $) 18 (|has| (-131) (-1003)))) (-2462 (($ $) 120)) (-1420 (($ $) 121)) (-2174 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1434 (((-107) $ $) 118)) (-1416 (((-107) $ $ (-517)) 117)) (-3447 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-3753 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-3500 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3365 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1818 (($ $ (-1122 (-517)) $) 114)) (-1783 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4183)))) (-1292 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4183)))) (-3705 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4184)))) (-3537 (((-131) $ (-517)) 51)) (-1455 (((-107) $ $) 119)) (-2624 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-3240 (((-583 (-131)) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) (-131)) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| (-131) (-779)))) (-1676 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2332 (((-583 (-131)) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| (-131) (-779)))) (-1320 (((-107) $ $ (-131)) 115)) (-2263 (((-703) $ $ (-131)) 116)) (-3696 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3557 (($ $) 122)) (-2115 (($ $) 123)) (-2026 (((-107) $ (-703)) 10)) (-3379 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1277 (((-1057) $) 22 (|has| (-131) (-1003)))) (-2636 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| (-131) (-1003)))) (-1750 (((-131) $) 42 (|has| (-517) (-779)))) (-3222 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2880 (($ $ (-131)) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3949 (((-583 (-131)) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1122 (-517))) 63) (($ $ $) 102)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4183))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2272 (($ (-583 (-131))) 70)) (-2455 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (($ (-131)) 111) (((-787) $) 20 (|has| (-131) (-1003)))) (-2258 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1571 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1534 (((-107) $ $) 19 (|has| (-131) (-1003)))) (-1585 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1558 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1043) (-1185)) (T -1043))
-((-2115 (*1 *1 *1) (-4 *1 (-1043))) (-3557 (*1 *1 *1) (-4 *1 (-1043))) (-1420 (*1 *1 *1) (-4 *1 (-1043))) (-2462 (*1 *1 *1) (-4 *1 (-1043))) (-1455 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))) (-1434 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))) (-1416 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-517)) (-5 *2 (-107)))) (-2263 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1320 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-107)))) (-1818 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-1122 (-517))))) (-2624 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)))) (-2624 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1043)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) (-2174 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-2174 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-3379 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-3379 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) (-1437 (*1 *1 *1 *1) (-4 *1 (-1043))))
-(-13 (-19 (-131)) (-10 -8 (-15 -2115 ($ $)) (-15 -3557 ($ $)) (-15 -1420 ($ $)) (-15 -2462 ($ $)) (-15 -1455 ((-107) $ $)) (-15 -1434 ((-107) $ $)) (-15 -1416 ((-107) $ $ (-517))) (-15 -2263 ((-703) $ $ (-131))) (-15 -1320 ((-107) $ $ (-131))) (-15 -1818 ($ $ (-1122 (-517)) $)) (-15 -2624 ((-517) $ $ (-517))) (-15 -2624 ((-517) (-128) $ (-517))) (-15 -2254 ($ (-131))) (-15 -3447 ((-583 $) $ (-131))) (-15 -3447 ((-583 $) $ (-128))) (-15 -2174 ($ $ (-131))) (-15 -2174 ($ $ (-128))) (-15 -3379 ($ $ (-131))) (-15 -3379 ($ $ (-128))) (-15 -3365 ($ $ (-131))) (-15 -3365 ($ $ (-128))) (-15 -1437 ($ $ $))))
-(((-33) . T) ((-97) -3782 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-557 (-787)) -3782 (|has| (-131) (-1003)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-779) |has| (-131) (-779)) ((-1003) -3782 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-1109) . T))
-((-3096 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703)) 93)) (-3321 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703)) 53)) (-3606 (((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703)) 85)) (-1808 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-3586 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2176 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3667 (((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) 80)) (-3270 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|) 52)) (-3116 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
-(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3116 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1808 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3270 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3096 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703))) (-15 -3667 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3606 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1044))
-((-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-1044 *4 *5 *6 *7 *8)))) (-3096 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1341 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1341 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1044 *7 *8 *9 *10 *11)))) (-2176 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-2176 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-3586 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-3321 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-3321 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3116 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -1808 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3270 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3321 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5| (-703))) (-15 -3586 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) |#4| |#5|)) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2176 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3096 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))))) (-703))) (-15 -3667 ((-1057) (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|)))) (-15 -3606 ((-1159) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1341 |#5|))) (-703))))
-((-1587 (((-107) $ $) NIL)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3258 (((-583 $) (-583 |#4|)) 109) (((-583 $) (-583 |#4|) (-107)) 110) (((-583 $) (-583 |#4|) (-107) (-107)) 108) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 111)) (-1357 (((-583 |#3|) $) NIL)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2802 ((|#4| |#4| $) NIL)) (-2377 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| $) 83)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 61)) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) 26 (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3381 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3232 (($ (-583 |#4|)) NIL)) (-1761 (((-3 $ "failed") $) 39)) (-3896 ((|#4| |#4| $) 64)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2050 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3797 ((|#4| |#4| $) NIL)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) NIL)) (-1262 (((-107) |#4| $) NIL)) (-4030 (((-107) |#4| $) NIL)) (-2031 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3976 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 123)) (-3240 (((-583 |#4|) $) 16 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2877 ((|#3| $) 33)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#4|) $) 17 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-3696 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 21)) (-2402 (((-583 |#3|) $) NIL)) (-1694 (((-107) |#3| $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-4068 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1516 (((-583 (-2 (|:| |val| |#4|) (|:| -1341 $))) |#4| |#4| $) 102)) (-2067 (((-3 |#4| "failed") $) 37)) (-3805 (((-583 $) |#4| $) 87)) (-1956 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3140 (((-583 (-2 (|:| |val| (-107)) (|:| -1341 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-2375 (((-583 $) |#4| $) 106) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 107) (((-583 $) |#4| (-583 $)) NIL)) (-3922 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 118)) (-3912 (($ |#4| $) 74) (($ (-583 |#4|) $) 75) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-2825 (((-583 |#4|) $) NIL)) (-1966 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4083 ((|#4| |#4| $) NIL)) (-3706 (((-107) $ $) NIL)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1382 ((|#4| |#4| $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-3 |#4| "failed") $) 35)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2463 (((-3 $ "failed") $ |#4|) 47)) (-2204 (($ $ |#4|) NIL) (((-583 $) |#4| $) 89) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 85)) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 15)) (-2756 (($) 13)) (-3625 (((-703) $) NIL)) (-3223 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) 12)) (-3667 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 20)) (-1491 (($ $ |#3|) 42)) (-2583 (($ $ |#3|) 43)) (-2202 (($ $) NIL)) (-3788 (($ $ |#3|) NIL)) (-2254 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1444 (((-703) $) NIL (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1597 (((-583 $) |#4| $) 53) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) NIL)) (-2710 (((-107) |#4| $) NIL)) (-1892 (((-107) |#3| $) 60)) (-1534 (((-107) $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1045 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3912 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3922 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3976 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1045))
-((-3912 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-3258 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-3258 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-3922 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-3976 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3912 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3258 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3922 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -3976 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1261 ((|#1| $) 28)) (-2356 (($ (-583 |#1|)) 33)) (-3552 (((-107) $ (-703)) NIL)) (-2706 (($) NIL T CONST)) (-3660 ((|#1| |#1| $) 30)) (-3591 ((|#1| $) 26)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3074 ((|#1| $) 29)) (-3676 (($ |#1| $) 31)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3773 ((|#1| $) 27)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 24)) (-2756 (($) 32)) (-2410 (((-703) $) 22)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 20)) (-2254 (((-787) $) 17 (|has| |#1| (-1003)))) (-2882 (($ (-583 |#1|)) NIL)) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 12 (|has| |#1| (-1003)))) (-2290 (((-703) $) 23 (|has| $ (-6 -4183)))))
-(((-1046 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -2356 ($ (-583 |#1|))))) (-1003)) (T -1046))
-((-2356 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1046 *3)))))
-(-13 (-1022 |#1|) (-10 -8 (-15 -2356 ($ (-583 |#1|)))))
-((-2412 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1122 (-517)) |#2|) 43) ((|#2| $ (-517) |#2|) 40)) (-3295 (((-107) $) 11)) (-3696 (($ (-1 |#2| |#2|) $) 38)) (-1750 ((|#2| $) NIL) (($ $ (-703)) 16)) (-2880 (($ $ |#2|) 39)) (-1556 (((-107) $) 10)) (-1437 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1122 (-517))) 30) ((|#2| $ (-517)) 22) ((|#2| $ (-517) |#2|) NIL)) (-1819 (($ $ $) 46) (($ $ |#2|) NIL)) (-2455 (($ $ $) 32) (($ |#2| $) NIL) (($ (-583 $)) 35) (($ $ |#2|) NIL)))
-(((-1047 |#1| |#2|) (-10 -8 (-15 -3295 ((-107) |#1|)) (-15 -1556 ((-107) |#1|)) (-15 -2412 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2455 (|#1| (-583 |#1|))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -2412 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2412 (|#2| |#1| "last" |#2|)) (-15 -2412 (|#1| |#1| "rest" |#1|)) (-15 -2412 (|#2| |#1| "first" |#2|)) (-15 -1819 (|#1| |#1| |#2|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1437 (|#2| |#1| "last")) (-15 -1437 (|#1| |#1| "rest")) (-15 -1750 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "first")) (-15 -1750 (|#2| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|))) (-1048 |#2|) (-1109)) (T -1047))
-NIL
-(-10 -8 (-15 -3295 ((-107) |#1|)) (-15 -1556 ((-107) |#1|)) (-15 -2412 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517) |#2|)) (-15 -1437 (|#2| |#1| (-517))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2455 (|#1| (-583 |#1|))) (-15 -1437 (|#1| |#1| (-1122 (-517)))) (-15 -2412 (|#2| |#1| (-1122 (-517)) |#2|)) (-15 -2412 (|#2| |#1| "last" |#2|)) (-15 -2412 (|#1| |#1| "rest" |#1|)) (-15 -2412 (|#2| |#1| "first" |#2|)) (-15 -1819 (|#1| |#1| |#2|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -1437 (|#2| |#1| "last")) (-15 -1437 (|#1| |#1| "rest")) (-15 -1750 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "first")) (-15 -1750 (|#2| |#1|)) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3696 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3026 ((|#1| $) 65)) (-2811 (($ $) 67)) (-2787 (((-1159) $ (-517) (-517)) 97 (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-1326 (($ $ $) 56 (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 117 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4183)))) (-3013 ((|#1| $) 66)) (-2706 (($) 7 T CONST)) (-1761 (($ $) 73) (($ $ (-703)) 71)) (-1783 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4183))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3705 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 87)) (-3295 (((-107) $) 83)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) 108)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 95 (|has| (-517) (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 94 (|has| (-517) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2067 ((|#1| $) 70) (($ $ (-703)) 68)) (-2636 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-2950 (((-583 (-517)) $) 92)) (-4093 (((-107) (-517) $) 91)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 76) (($ $ (-703)) 74)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2880 (($ $ |#1|) 96 (|has| $ (-6 -4184)))) (-1556 (((-107) $) 84)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 90)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1122 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3792 (((-517) $ $) 44)) (-3726 (($ $ (-1122 (-517))) 114) (($ $ (-517)) 113)) (-1985 (((-107) $) 46)) (-2849 (($ $) 62)) (-3825 (($ $) 59 (|has| $ (-6 -4184)))) (-2077 (((-703) $) 63)) (-2334 (($ $) 64)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-3667 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 107)) (-1819 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2455 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1048 |#1|) (-1185) (-1109)) (T -1048))
-((-1556 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(-13 (-1143 |t#1|) (-588 |t#1|) (-10 -8 (-15 -1556 ((-107) $)) (-15 -3295 ((-107) $))))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T) ((-1143 |#1|) . T))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) NIL)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1049 |#1| |#2| |#3|) (-1086 |#1| |#2|) (-1003) (-1003) |#2|) (T -1049))
-NIL
-(-1086 |#1| |#2|)
-((-1587 (((-107) $ $) 7)) (-3326 (((-3 $ "failed") $) 13)) (-1277 (((-1057) $) 9)) (-3680 (($) 14 T CONST)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11)) (-1534 (((-107) $ $) 6)))
-(((-1050) (-1185)) (T -1050))
-((-3680 (*1 *1) (-4 *1 (-1050))) (-3326 (*1 *1 *1) (|partial| -4 *1 (-1050))))
-(-13 (-1003) (-10 -8 (-15 -3680 ($) -2497) (-15 -3326 ((-3 $ "failed") $))))
-(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
-((-3650 (((-1055 |#1|) (-1055 |#1|)) 17)) (-3578 (((-1055 |#1|) (-1055 |#1|)) 13)) (-2338 (((-1055 |#1|) (-1055 |#1|) (-517) (-517)) 20)) (-3119 (((-1055 |#1|) (-1055 |#1|)) 15)))
-(((-1051 |#1|) (-10 -7 (-15 -3578 ((-1055 |#1|) (-1055 |#1|))) (-15 -3119 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -2338 ((-1055 |#1|) (-1055 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1051))
-((-2338 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1051 *4)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
-(-10 -7 (-15 -3578 ((-1055 |#1|) (-1055 |#1|))) (-15 -3119 ((-1055 |#1|) (-1055 |#1|))) (-15 -3650 ((-1055 |#1|) (-1055 |#1|))) (-15 -2338 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))))
-((-2455 (((-1055 |#1|) (-1055 (-1055 |#1|))) 15)))
-(((-1052 |#1|) (-10 -7 (-15 -2455 ((-1055 |#1|) (-1055 (-1055 |#1|))))) (-1109)) (T -1052))
-((-2455 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1052 *4)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -2455 ((-1055 |#1|) (-1055 (-1055 |#1|)))))
-((-3014 (((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 25)) (-1292 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 26)) (-1939 (((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 16)))
-(((-1053 |#1| |#2|) (-10 -7 (-15 -1939 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (-15 -3014 ((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))) (-15 -1292 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)))) (-1109) (-1109)) (T -1053))
-((-1292 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1053 *5 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1109)) (-4 *3 (-1109)) (-5 *2 (-1055 *3)) (-5 *1 (-1053 *6 *3)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1053 *5 *6)))))
-(-10 -7 (-15 -1939 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (-15 -3014 ((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))) (-15 -1292 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))))
-((-1939 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)) 21)))
-(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)))) (-1109) (-1109) (-1109)) (T -1054))
-((-1939 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-1054 *6 *7 *8)))))
-(-10 -7 (-15 -1939 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) NIL)) (-3026 ((|#1| $) NIL)) (-2811 (($ $) 50)) (-2787 (((-1159) $ (-517) (-517)) 75 (|has| $ (-6 -4184)))) (-1422 (($ $ (-517)) 109 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-3028 (((-787) $) 40 (|has| |#1| (-1003)))) (-3559 (((-107)) 39 (|has| |#1| (-1003)))) (-3967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4184)))) (-1326 (($ $ $) 97 (|has| $ (-6 -4184))) (($ $ (-517) $) 120)) (-2619 ((|#1| $ |#1|) 106 (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 101 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 103 (|has| $ (-6 -4184))) (($ $ "rest" $) 105 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 108 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 88 (|has| $ (-6 -4184))) ((|#1| $ (-517) |#1|) 54 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 57)) (-3013 ((|#1| $) NIL)) (-2706 (($) NIL T CONST)) (-1332 (($ $) 14)) (-1761 (($ $) 28) (($ $ (-703)) 87)) (-1562 (((-107) (-583 |#1|) $) 114 (|has| |#1| (-1003)))) (-1959 (($ (-583 |#1|)) 111)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) 56)) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-3295 (((-107) $) NIL)) (-3240 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2113 (((-1159) (-517) $) 119 (|has| |#1| (-1003)))) (-1339 (((-703) $) 116)) (-3883 (((-583 $) $) NIL)) (-4082 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#1| |#1| |#1|) $ $) 66)) (-2026 (((-107) $ (-703)) NIL)) (-2281 (((-583 |#1|) $) NIL)) (-2284 (((-107) $) NIL)) (-1712 (($ $) 89)) (-2927 (((-107) $) 13)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2067 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2636 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) 73)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3493 (($ (-1 |#1|)) 122) (($ (-1 |#1| |#1|) |#1|) 123)) (-3095 ((|#1| $) 10)) (-1750 ((|#1| $) 27) (($ $ (-703)) 48)) (-2695 (((-2 (|:| |cycle?| (-107)) (|:| -1651 (-703)) (|:| |period| (-703))) (-703) $) 24)) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3533 (($ (-1 (-107) |#1|) $) 124)) (-3545 (($ (-1 (-107) |#1|) $) 125)) (-2880 (($ $ |#1|) 67 (|has| $ (-6 -4184)))) (-2204 (($ $ (-517)) 31)) (-1556 (((-107) $) 71)) (-2733 (((-107) $) 12)) (-3339 (((-107) $) 115)) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 20)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) 15)) (-2756 (($) 42)) (-1437 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1122 (-517))) NIL) ((|#1| $ (-517)) 53) ((|#1| $ (-517) |#1|) NIL)) (-3792 (((-517) $ $) 47)) (-3726 (($ $ (-1122 (-517))) NIL) (($ $ (-517)) NIL)) (-3822 (($ (-1 $)) 46)) (-1985 (((-107) $) 68)) (-2849 (($ $) 69)) (-3825 (($ $) 98 (|has| $ (-6 -4184)))) (-2077 (((-703) $) NIL)) (-2334 (($ $) NIL)) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 43)) (-3667 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 52)) (-1635 (($ |#1| $) 96)) (-1819 (($ $ $) 99 (|has| $ (-6 -4184))) (($ $ |#1|) 100 (|has| $ (-6 -4184)))) (-2455 (($ $ $) 77) (($ |#1| $) 44) (($ (-583 $)) 82) (($ $ |#1|) 76)) (-1486 (($ $) 49)) (-2254 (((-787) $) 41 (|has| |#1| (-1003))) (($ (-583 |#1|)) 110)) (-2125 (((-583 $) $) NIL)) (-2432 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 113 (|has| |#1| (-1003)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1055 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4184) (-15 -2254 ($ (-583 |#1|))) (-15 -1959 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -1562 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2695 ((-2 (|:| |cycle?| (-107)) (|:| -1651 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3822 ($ (-1 $))) (-15 -1635 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2113 ((-1159) (-517) $)) (-15 -3028 ((-787) $)) (-15 -3559 ((-107)))) |%noBranch|) (-15 -1326 ($ $ (-517) $)) (-15 -3493 ($ (-1 |#1|))) (-15 -3493 ($ (-1 |#1| |#1|) |#1|)) (-15 -3533 ($ (-1 (-107) |#1|) $)) (-15 -3545 ($ (-1 (-107) |#1|) $)))) (-1109)) (T -1055))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-1562 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)) (-5 *1 (-1055 *4)))) (-2695 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1651 (-703)) (|:| |period| (-703)))) (-5 *1 (-1055 *4)) (-4 *4 (-1109)) (-5 *3 (-703)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) (-1635 (*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1109)))) (-2113 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))) (-3559 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))) (-1326 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3493 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) (-3545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
-(-13 (-610 |#1|) (-10 -8 (-6 -4184) (-15 -2254 ($ (-583 |#1|))) (-15 -1959 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -1562 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2695 ((-2 (|:| |cycle?| (-107)) (|:| -1651 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3822 ($ (-1 $))) (-15 -1635 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2113 ((-1159) (-517) $)) (-15 -3028 ((-787) $)) (-15 -3559 ((-107)))) |%noBranch|) (-15 -1326 ($ $ (-517) $)) (-15 -3493 ($ (-1 |#1|))) (-15 -3493 ($ (-1 |#1| |#1|) |#1|)) (-15 -3533 ($ (-1 (-107) |#1|) $)) (-15 -3545 ($ (-1 (-107) |#1|) $))))
-((-1587 (((-107) $ $) 18)) (-2462 (($ $) 120)) (-1420 (($ $) 121)) (-2174 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-1434 (((-107) $ $) 118)) (-1416 (((-107) $ $ (-517)) 117)) (-3881 (($ (-517)) 127)) (-3447 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-3753 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-3500 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3365 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1818 (($ $ (-1122 (-517)) $) 114)) (-1783 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4183)))) (-1292 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4183)))) (-3705 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4184)))) (-3537 (((-131) $ (-517)) 51)) (-1455 (((-107) $ $) 119)) (-2624 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-3240 (((-583 (-131)) $) 30 (|has| $ (-6 -4183)))) (-3475 (($ (-703) (-131)) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| (-131) (-779)))) (-1676 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2332 (((-583 (-131)) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| (-131) (-779)))) (-1320 (((-107) $ $ (-131)) 115)) (-2263 (((-703) $ $ (-131)) 116)) (-3696 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3557 (($ $) 122)) (-2115 (($ $) 123)) (-2026 (((-107) $ (-703)) 10)) (-3379 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1277 (((-1057) $) 22)) (-2636 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21)) (-1750 (((-131) $) 42 (|has| (-517) (-779)))) (-3222 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2880 (($ $ (-131)) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3949 (((-583 (-131)) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1122 (-517))) 63) (($ $ $) 102)) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-3223 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4183))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2272 (($ (-583 (-131))) 70)) (-2455 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (($ (-131)) 111) (((-787) $) 20)) (-2258 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4183)))) (-2822 (((-1057) $) 131) (((-1057) $ (-107)) 130) (((-1159) (-754) $) 129) (((-1159) (-754) $ (-107)) 128)) (-1600 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1571 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1534 (((-107) $ $) 19)) (-1585 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1558 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1056) (-1185)) (T -1056))
-((-3881 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1056)))))
-(-13 (-1043) (-1003) (-760) (-10 -8 (-15 -3881 ($ (-517)))))
-(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1003) . T) ((-1043) . T) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2462 (($ $) NIL)) (-1420 (($ $) NIL)) (-2174 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-1434 (((-107) $ $) NIL)) (-1416 (((-107) $ $ (-517)) NIL)) (-3881 (($ (-517)) 7)) (-3447 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-3753 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-3500 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| (-131) (-779))))) (-4044 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184))) (((-131) $ (-1122 (-517)) (-131)) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3365 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1818 (($ $ (-1122 (-517)) $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2050 (($ (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4183))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4183)))) (-3705 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4184)))) (-3537 (((-131) $ (-517)) NIL)) (-1455 (((-107) $ $) NIL)) (-2624 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1003))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-3240 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-3475 (($ (-703) (-131)) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| (-131) (-779)))) (-1676 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2332 (((-583 (-131)) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| (-131) (-779)))) (-1320 (((-107) $ $ (-131)) NIL)) (-2263 (((-703) $ $ (-131)) NIL)) (-3696 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3557 (($ $) NIL)) (-2115 (($ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-3379 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1277 (((-1057) $) NIL)) (-2636 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-131) $) NIL (|has| (-517) (-779)))) (-3222 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2880 (($ $ (-131)) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-3949 (((-583 (-131)) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1122 (-517))) NIL) (($ $ $) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-3223 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-131) (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2272 (($ (-583 (-131))) NIL)) (-2455 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (($ (-131)) NIL) (((-787) $) NIL)) (-2258 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4183)))) (-2822 (((-1057) $) 18) (((-1057) $ (-107)) 20) (((-1159) (-754) $) 21) (((-1159) (-754) $ (-107)) 22)) (-1600 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1571 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1558 (((-107) $ $) NIL (|has| (-131) (-779)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1057) (-1056)) (T -1057))
-NIL
-(-1056)
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-2787 (((-1159) $ (-1057) (-1057)) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-1057) |#1|) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#1| "failed") (-1057) $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#1| "failed") (-1057) $) NIL)) (-2050 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-1057) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-1057)) NIL)) (-3240 (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-1057) $) NIL (|has| (-1057) (-779)))) (-2332 (((-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-1057) $) NIL (|has| (-1057) (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3666 (((-583 (-1057)) $) NIL)) (-2550 (((-107) (-1057) $) NIL)) (-3074 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-2950 (((-583 (-1057)) $) NIL)) (-4093 (((-107) (-1057) $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1750 ((|#1| $) NIL (|has| (-1057) (-779)))) (-3222 (((-3 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) "failed") (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL (-12 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-280 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-1057)) NIL) ((|#1| $ (-1057) |#1|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 (-1057)) (|:| -1338 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1058 |#1|) (-13 (-1086 (-1057) |#1|) (-10 -7 (-6 -4183))) (-1003)) (T -1058))
-NIL
-(-13 (-1086 (-1057) |#1|) (-10 -7 (-6 -4183)))
-((-1308 (((-1055 |#1|) (-1055 |#1|)) 77)) (-3775 (((-3 (-1055 |#1|) "failed") (-1055 |#1|)) 37)) (-2575 (((-1055 |#1|) (-377 (-517)) (-1055 |#1|)) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2993 (((-1055 |#1|) |#1| (-1055 |#1|)) 123 (|has| |#1| (-333)))) (-1927 (((-1055 |#1|) (-1055 |#1|)) 90)) (-3515 (((-1055 (-517)) (-517)) 57)) (-3311 (((-1055 |#1|) (-1055 (-1055 |#1|))) 109 (|has| |#1| (-37 (-377 (-517)))))) (-3656 (((-1055 |#1|) (-517) (-517) (-1055 |#1|)) 95)) (-3838 (((-1055 |#1|) |#1| (-517)) 45)) (-2782 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 60)) (-1282 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 121 (|has| |#1| (-333)))) (-3399 (((-1055 |#1|) |#1| (-1 (-1055 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-3097 (((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|))) 122 (|has| |#1| (-333)))) (-4155 (((-1055 |#1|) (-1055 |#1|)) 89)) (-3062 (((-1055 |#1|) (-1055 |#1|)) 76)) (-2090 (((-1055 |#1|) (-517) (-517) (-1055 |#1|)) 96)) (-3563 (((-1055 |#1|) |#1| (-1055 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1310 (((-1055 (-517)) (-517)) 56)) (-3594 (((-1055 |#1|) |#1|) 59)) (-2863 (((-1055 |#1|) (-1055 |#1|) (-517) (-517)) 92)) (-1691 (((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|)) 66)) (-2483 (((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|)) 35)) (-3042 (((-1055 |#1|) (-1055 |#1|)) 91)) (-2049 (((-1055 |#1|) (-1055 |#1|) |#1|) 71)) (-1381 (((-1055 |#1|) (-1055 |#1|)) 62)) (-1922 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 72)) (-2254 (((-1055 |#1|) |#1|) 67)) (-1200 (((-1055 |#1|) (-1055 (-1055 |#1|))) 82)) (-1678 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 36)) (-1663 (((-1055 |#1|) (-1055 |#1|)) 21) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 23)) (-1645 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 17)) (* (((-1055 |#1|) (-1055 |#1|) |#1|) 29) (((-1055 |#1|) |#1| (-1055 |#1|)) 26) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 27)))
-(((-1059 |#1|) (-10 -7 (-15 -1645 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1663 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1663 ((-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2483 ((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|))) (-15 -1678 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3775 ((-3 (-1055 |#1|) "failed") (-1055 |#1|))) (-15 -3838 ((-1055 |#1|) |#1| (-517))) (-15 -1310 ((-1055 (-517)) (-517))) (-15 -3515 ((-1055 (-517)) (-517))) (-15 -3594 ((-1055 |#1|) |#1|)) (-15 -2782 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1381 ((-1055 |#1|) (-1055 |#1|))) (-15 -1691 ((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|))) (-15 -2254 ((-1055 |#1|) |#1|)) (-15 -2049 ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -1922 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3062 ((-1055 |#1|) (-1055 |#1|))) (-15 -1308 ((-1055 |#1|) (-1055 |#1|))) (-15 -1200 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -4155 ((-1055 |#1|) (-1055 |#1|))) (-15 -1927 ((-1055 |#1|) (-1055 |#1|))) (-15 -3042 ((-1055 |#1|) (-1055 |#1|))) (-15 -2863 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))) (-15 -3656 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (-15 -2090 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 -3399 ((-1055 |#1|) |#1| (-1 (-1055 |#1|)))) (-15 -3311 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -2575 ((-1055 |#1|) (-377 (-517)) (-1055 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1282 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3097 ((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|)))) (-15 -2993 ((-1055 |#1|) |#1| (-1055 |#1|)))) |%noBranch|)) (-961)) (T -1059))
-((-2993 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3097 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)))) (-1282 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2575 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1059 *4)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2090 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-3656 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-2863 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1200 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-961)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1922 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2049 (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2782 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-3594 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-1310 (*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) (-3775 (*1 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1678 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-2483 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1663 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(-10 -7 (-15 -1645 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1663 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1663 ((-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -2483 ((-3 (-1055 |#1|) "failed") (-1055 |#1|) (-1055 |#1|))) (-15 -1678 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3775 ((-3 (-1055 |#1|) "failed") (-1055 |#1|))) (-15 -3838 ((-1055 |#1|) |#1| (-517))) (-15 -1310 ((-1055 (-517)) (-517))) (-15 -3515 ((-1055 (-517)) (-517))) (-15 -3594 ((-1055 |#1|) |#1|)) (-15 -2782 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -1381 ((-1055 |#1|) (-1055 |#1|))) (-15 -1691 ((-1055 |#1|) (-1 |#1| (-517)) (-1055 |#1|))) (-15 -2254 ((-1055 |#1|) |#1|)) (-15 -2049 ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -1922 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3062 ((-1055 |#1|) (-1055 |#1|))) (-15 -1308 ((-1055 |#1|) (-1055 |#1|))) (-15 -1200 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -4155 ((-1055 |#1|) (-1055 |#1|))) (-15 -1927 ((-1055 |#1|) (-1055 |#1|))) (-15 -3042 ((-1055 |#1|) (-1055 |#1|))) (-15 -2863 ((-1055 |#1|) (-1055 |#1|) (-517) (-517))) (-15 -3656 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (-15 -2090 ((-1055 |#1|) (-517) (-517) (-1055 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 -3399 ((-1055 |#1|) |#1| (-1 (-1055 |#1|)))) (-15 -3311 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -2575 ((-1055 |#1|) (-377 (-517)) (-1055 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1282 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3097 ((-1055 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1055 |#1|)))) (-15 -2993 ((-1055 |#1|) |#1| (-1055 |#1|)))) |%noBranch|))
-((-2725 (((-1055 |#1|) (-1055 |#1|)) 57)) (-2602 (((-1055 |#1|) (-1055 |#1|)) 39)) (-2705 (((-1055 |#1|) (-1055 |#1|)) 53)) (-2580 (((-1055 |#1|) (-1055 |#1|)) 35)) (-1533 (((-1055 |#1|) (-1055 |#1|)) 60)) (-2626 (((-1055 |#1|) (-1055 |#1|)) 42)) (-1875 (((-1055 |#1|) (-1055 |#1|)) 31)) (-2643 (((-1055 |#1|) (-1055 |#1|)) 27)) (-1543 (((-1055 |#1|) (-1055 |#1|)) 61)) (-2638 (((-1055 |#1|) (-1055 |#1|)) 43)) (-2735 (((-1055 |#1|) (-1055 |#1|)) 58)) (-2614 (((-1055 |#1|) (-1055 |#1|)) 40)) (-2714 (((-1055 |#1|) (-1055 |#1|)) 55)) (-2590 (((-1055 |#1|) (-1055 |#1|)) 37)) (-1584 (((-1055 |#1|) (-1055 |#1|)) 65)) (-2670 (((-1055 |#1|) (-1055 |#1|)) 47)) (-1557 (((-1055 |#1|) (-1055 |#1|)) 63)) (-2651 (((-1055 |#1|) (-1055 |#1|)) 45)) (-1614 (((-1055 |#1|) (-1055 |#1|)) 68)) (-2688 (((-1055 |#1|) (-1055 |#1|)) 50)) (-3756 (((-1055 |#1|) (-1055 |#1|)) 69)) (-2698 (((-1055 |#1|) (-1055 |#1|)) 51)) (-1599 (((-1055 |#1|) (-1055 |#1|)) 67)) (-2678 (((-1055 |#1|) (-1055 |#1|)) 49)) (-1570 (((-1055 |#1|) (-1055 |#1|)) 66)) (-2660 (((-1055 |#1|) (-1055 |#1|)) 48)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 33)))
-(((-1060 |#1|) (-10 -7 (-15 -2643 ((-1055 |#1|) (-1055 |#1|))) (-15 -1875 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -2580 ((-1055 |#1|) (-1055 |#1|))) (-15 -2590 ((-1055 |#1|) (-1055 |#1|))) (-15 -2602 ((-1055 |#1|) (-1055 |#1|))) (-15 -2614 ((-1055 |#1|) (-1055 |#1|))) (-15 -2626 ((-1055 |#1|) (-1055 |#1|))) (-15 -2638 ((-1055 |#1|) (-1055 |#1|))) (-15 -2651 ((-1055 |#1|) (-1055 |#1|))) (-15 -2660 ((-1055 |#1|) (-1055 |#1|))) (-15 -2670 ((-1055 |#1|) (-1055 |#1|))) (-15 -2678 ((-1055 |#1|) (-1055 |#1|))) (-15 -2688 ((-1055 |#1|) (-1055 |#1|))) (-15 -2698 ((-1055 |#1|) (-1055 |#1|))) (-15 -2705 ((-1055 |#1|) (-1055 |#1|))) (-15 -2714 ((-1055 |#1|) (-1055 |#1|))) (-15 -2725 ((-1055 |#1|) (-1055 |#1|))) (-15 -2735 ((-1055 |#1|) (-1055 |#1|))) (-15 -1533 ((-1055 |#1|) (-1055 |#1|))) (-15 -1543 ((-1055 |#1|) (-1055 |#1|))) (-15 -1557 ((-1055 |#1|) (-1055 |#1|))) (-15 -1570 ((-1055 |#1|) (-1055 |#1|))) (-15 -1584 ((-1055 |#1|) (-1055 |#1|))) (-15 -1599 ((-1055 |#1|) (-1055 |#1|))) (-15 -1614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3756 ((-1055 |#1|) (-1055 |#1|)))) (-37 (-377 (-517)))) (T -1060))
-((-3756 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2580 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
-(-10 -7 (-15 -2643 ((-1055 |#1|) (-1055 |#1|))) (-15 -1875 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -2580 ((-1055 |#1|) (-1055 |#1|))) (-15 -2590 ((-1055 |#1|) (-1055 |#1|))) (-15 -2602 ((-1055 |#1|) (-1055 |#1|))) (-15 -2614 ((-1055 |#1|) (-1055 |#1|))) (-15 -2626 ((-1055 |#1|) (-1055 |#1|))) (-15 -2638 ((-1055 |#1|) (-1055 |#1|))) (-15 -2651 ((-1055 |#1|) (-1055 |#1|))) (-15 -2660 ((-1055 |#1|) (-1055 |#1|))) (-15 -2670 ((-1055 |#1|) (-1055 |#1|))) (-15 -2678 ((-1055 |#1|) (-1055 |#1|))) (-15 -2688 ((-1055 |#1|) (-1055 |#1|))) (-15 -2698 ((-1055 |#1|) (-1055 |#1|))) (-15 -2705 ((-1055 |#1|) (-1055 |#1|))) (-15 -2714 ((-1055 |#1|) (-1055 |#1|))) (-15 -2725 ((-1055 |#1|) (-1055 |#1|))) (-15 -2735 ((-1055 |#1|) (-1055 |#1|))) (-15 -1533 ((-1055 |#1|) (-1055 |#1|))) (-15 -1543 ((-1055 |#1|) (-1055 |#1|))) (-15 -1557 ((-1055 |#1|) (-1055 |#1|))) (-15 -1570 ((-1055 |#1|) (-1055 |#1|))) (-15 -1584 ((-1055 |#1|) (-1055 |#1|))) (-15 -1599 ((-1055 |#1|) (-1055 |#1|))) (-15 -1614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3756 ((-1055 |#1|) (-1055 |#1|))))
-((-2725 (((-1055 |#1|) (-1055 |#1|)) 100)) (-2602 (((-1055 |#1|) (-1055 |#1|)) 64)) (-3104 (((-2 (|:| -2705 (-1055 |#1|)) (|:| -2714 (-1055 |#1|))) (-1055 |#1|)) 96)) (-2705 (((-1055 |#1|) (-1055 |#1|)) 97)) (-3353 (((-2 (|:| -2580 (-1055 |#1|)) (|:| -2590 (-1055 |#1|))) (-1055 |#1|)) 53)) (-2580 (((-1055 |#1|) (-1055 |#1|)) 54)) (-1533 (((-1055 |#1|) (-1055 |#1|)) 102)) (-2626 (((-1055 |#1|) (-1055 |#1|)) 71)) (-1875 (((-1055 |#1|) (-1055 |#1|)) 39)) (-2643 (((-1055 |#1|) (-1055 |#1|)) 36)) (-1543 (((-1055 |#1|) (-1055 |#1|)) 103)) (-2638 (((-1055 |#1|) (-1055 |#1|)) 72)) (-2735 (((-1055 |#1|) (-1055 |#1|)) 101)) (-2614 (((-1055 |#1|) (-1055 |#1|)) 67)) (-2714 (((-1055 |#1|) (-1055 |#1|)) 98)) (-2590 (((-1055 |#1|) (-1055 |#1|)) 55)) (-1584 (((-1055 |#1|) (-1055 |#1|)) 111)) (-2670 (((-1055 |#1|) (-1055 |#1|)) 86)) (-1557 (((-1055 |#1|) (-1055 |#1|)) 105)) (-2651 (((-1055 |#1|) (-1055 |#1|)) 82)) (-1614 (((-1055 |#1|) (-1055 |#1|)) 115)) (-2688 (((-1055 |#1|) (-1055 |#1|)) 90)) (-3756 (((-1055 |#1|) (-1055 |#1|)) 117)) (-2698 (((-1055 |#1|) (-1055 |#1|)) 92)) (-1599 (((-1055 |#1|) (-1055 |#1|)) 113)) (-2678 (((-1055 |#1|) (-1055 |#1|)) 88)) (-1570 (((-1055 |#1|) (-1055 |#1|)) 107)) (-2660 (((-1055 |#1|) (-1055 |#1|)) 84)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 40)))
-(((-1061 |#1|) (-10 -7 (-15 -2643 ((-1055 |#1|) (-1055 |#1|))) (-15 -1875 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3353 ((-2 (|:| -2580 (-1055 |#1|)) (|:| -2590 (-1055 |#1|))) (-1055 |#1|))) (-15 -2580 ((-1055 |#1|) (-1055 |#1|))) (-15 -2590 ((-1055 |#1|) (-1055 |#1|))) (-15 -2602 ((-1055 |#1|) (-1055 |#1|))) (-15 -2614 ((-1055 |#1|) (-1055 |#1|))) (-15 -2626 ((-1055 |#1|) (-1055 |#1|))) (-15 -2638 ((-1055 |#1|) (-1055 |#1|))) (-15 -2651 ((-1055 |#1|) (-1055 |#1|))) (-15 -2660 ((-1055 |#1|) (-1055 |#1|))) (-15 -2670 ((-1055 |#1|) (-1055 |#1|))) (-15 -2678 ((-1055 |#1|) (-1055 |#1|))) (-15 -2688 ((-1055 |#1|) (-1055 |#1|))) (-15 -2698 ((-1055 |#1|) (-1055 |#1|))) (-15 -3104 ((-2 (|:| -2705 (-1055 |#1|)) (|:| -2714 (-1055 |#1|))) (-1055 |#1|))) (-15 -2705 ((-1055 |#1|) (-1055 |#1|))) (-15 -2714 ((-1055 |#1|) (-1055 |#1|))) (-15 -2725 ((-1055 |#1|) (-1055 |#1|))) (-15 -2735 ((-1055 |#1|) (-1055 |#1|))) (-15 -1533 ((-1055 |#1|) (-1055 |#1|))) (-15 -1543 ((-1055 |#1|) (-1055 |#1|))) (-15 -1557 ((-1055 |#1|) (-1055 |#1|))) (-15 -1570 ((-1055 |#1|) (-1055 |#1|))) (-15 -1584 ((-1055 |#1|) (-1055 |#1|))) (-15 -1599 ((-1055 |#1|) (-1055 |#1|))) (-15 -1614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3756 ((-1055 |#1|) (-1055 |#1|)))) (-37 (-377 (-517)))) (T -1061))
-((-3756 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -2705 (-1055 *4)) (|:| -2714 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2580 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3353 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -2580 (-1055 *4)) (|:| -2590 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(-10 -7 (-15 -2643 ((-1055 |#1|) (-1055 |#1|))) (-15 -1875 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3353 ((-2 (|:| -2580 (-1055 |#1|)) (|:| -2590 (-1055 |#1|))) (-1055 |#1|))) (-15 -2580 ((-1055 |#1|) (-1055 |#1|))) (-15 -2590 ((-1055 |#1|) (-1055 |#1|))) (-15 -2602 ((-1055 |#1|) (-1055 |#1|))) (-15 -2614 ((-1055 |#1|) (-1055 |#1|))) (-15 -2626 ((-1055 |#1|) (-1055 |#1|))) (-15 -2638 ((-1055 |#1|) (-1055 |#1|))) (-15 -2651 ((-1055 |#1|) (-1055 |#1|))) (-15 -2660 ((-1055 |#1|) (-1055 |#1|))) (-15 -2670 ((-1055 |#1|) (-1055 |#1|))) (-15 -2678 ((-1055 |#1|) (-1055 |#1|))) (-15 -2688 ((-1055 |#1|) (-1055 |#1|))) (-15 -2698 ((-1055 |#1|) (-1055 |#1|))) (-15 -3104 ((-2 (|:| -2705 (-1055 |#1|)) (|:| -2714 (-1055 |#1|))) (-1055 |#1|))) (-15 -2705 ((-1055 |#1|) (-1055 |#1|))) (-15 -2714 ((-1055 |#1|) (-1055 |#1|))) (-15 -2725 ((-1055 |#1|) (-1055 |#1|))) (-15 -2735 ((-1055 |#1|) (-1055 |#1|))) (-15 -1533 ((-1055 |#1|) (-1055 |#1|))) (-15 -1543 ((-1055 |#1|) (-1055 |#1|))) (-15 -1557 ((-1055 |#1|) (-1055 |#1|))) (-15 -1570 ((-1055 |#1|) (-1055 |#1|))) (-15 -1584 ((-1055 |#1|) (-1055 |#1|))) (-15 -1599 ((-1055 |#1|) (-1055 |#1|))) (-15 -1614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3756 ((-1055 |#1|) (-1055 |#1|))))
-((-3971 (((-879 |#2|) |#2| |#2|) 35)) (-2038 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
-(((-1062 |#1| |#2|) (-10 -7 (-15 -3971 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2038 (|#2| |#2| |#1|)) |%noBranch|)) (-509) (-1131 |#1|)) (T -1062))
-((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1062 *3 *2)) (-4 *2 (-1131 *3)))) (-3971 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1062 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -3971 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2038 (|#2| |#2| |#1|)) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-3049 (($ $ (-583 (-703))) 66)) (-1817 (($) 25)) (-4120 (($ $) 41)) (-1781 (((-583 $) $) 50)) (-1280 (((-107) $) 16)) (-2414 (((-583 (-865 |#2|)) $) 73)) (-2016 (($ $) 67)) (-1263 (((-703) $) 36)) (-3475 (($) 24)) (-1992 (($ $ (-583 (-703)) (-865 |#2|)) 59) (($ $ (-583 (-703)) (-703)) 60) (($ $ (-703) (-865 |#2|)) 62)) (-1676 (($ $ $) 47) (($ (-583 $)) 49)) (-2912 (((-703) $) 74)) (-2284 (((-107) $) 15)) (-1277 (((-1057) $) NIL)) (-2797 (((-107) $) 17)) (-3214 (((-1021) $) NIL)) (-3800 (((-155) $) 72)) (-1768 (((-865 |#2|) $) 68)) (-3297 (((-703) $) 69)) (-3844 (((-107) $) 71)) (-1496 (($ $ (-583 (-703)) (-155)) 65)) (-1621 (($ $) 42)) (-2254 (((-787) $) 84)) (-4147 (($ $ (-583 (-703)) (-107)) 64)) (-2125 (((-583 $) $) 11)) (-2810 (($ $ (-703)) 35)) (-2567 (($ $) 31)) (-2501 (($ $ $ (-865 |#2|) (-703)) 55)) (-2551 (($ $ (-865 |#2|)) 54)) (-3997 (($ $ (-583 (-703)) (-865 |#2|)) 53) (($ $ (-583 (-703)) (-703)) 57) (((-703) $ (-865 |#2|)) 58)) (-1534 (((-107) $ $) 78)))
-(((-1063 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2284 ((-107) $)) (-15 -1280 ((-107) $)) (-15 -2797 ((-107) $)) (-15 -3475 ($)) (-15 -1817 ($)) (-15 -2567 ($ $)) (-15 -2810 ($ $ (-703))) (-15 -2125 ((-583 $) $)) (-15 -1263 ((-703) $)) (-15 -4120 ($ $)) (-15 -1621 ($ $)) (-15 -1676 ($ $ $)) (-15 -1676 ($ (-583 $))) (-15 -1781 ((-583 $) $)) (-15 -3997 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2551 ($ $ (-865 |#2|))) (-15 -2501 ($ $ $ (-865 |#2|) (-703))) (-15 -1992 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -3997 ($ $ (-583 (-703)) (-703))) (-15 -1992 ($ $ (-583 (-703)) (-703))) (-15 -3997 ((-703) $ (-865 |#2|))) (-15 -1992 ($ $ (-703) (-865 |#2|))) (-15 -4147 ($ $ (-583 (-703)) (-107))) (-15 -1496 ($ $ (-583 (-703)) (-155))) (-15 -3049 ($ $ (-583 (-703)))) (-15 -1768 ((-865 |#2|) $)) (-15 -3297 ((-703) $)) (-15 -3844 ((-107) $)) (-15 -3800 ((-155) $)) (-15 -2912 ((-703) $)) (-15 -2016 ($ $)) (-15 -2414 ((-583 (-865 |#2|)) $)))) (-843) (-961)) (T -1063))
-((-2284 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1280 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3475 (*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1817 (*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2567 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2810 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-4120 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1621 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1676 (*1 *1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-1676 (*1 *1 *2) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-2551 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)))) (-2501 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-1992 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-3997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-1992 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-1992 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) (-4147 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-1496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(-13 (-1003) (-10 -8 (-15 -2284 ((-107) $)) (-15 -1280 ((-107) $)) (-15 -2797 ((-107) $)) (-15 -3475 ($)) (-15 -1817 ($)) (-15 -2567 ($ $)) (-15 -2810 ($ $ (-703))) (-15 -2125 ((-583 $) $)) (-15 -1263 ((-703) $)) (-15 -4120 ($ $)) (-15 -1621 ($ $)) (-15 -1676 ($ $ $)) (-15 -1676 ($ (-583 $))) (-15 -1781 ((-583 $) $)) (-15 -3997 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2551 ($ $ (-865 |#2|))) (-15 -2501 ($ $ $ (-865 |#2|) (-703))) (-15 -1992 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -3997 ($ $ (-583 (-703)) (-703))) (-15 -1992 ($ $ (-583 (-703)) (-703))) (-15 -3997 ((-703) $ (-865 |#2|))) (-15 -1992 ($ $ (-703) (-865 |#2|))) (-15 -4147 ($ $ (-583 (-703)) (-107))) (-15 -1496 ($ $ (-583 (-703)) (-155))) (-15 -3049 ($ $ (-583 (-703)))) (-15 -1768 ((-865 |#2|) $)) (-15 -3297 ((-703) $)) (-15 -3844 ((-107) $)) (-15 -3800 ((-155) $)) (-15 -2912 ((-703) $)) (-15 -2016 ($ $)) (-15 -2414 ((-583 (-865 |#2|)) $))))
-((-1587 (((-107) $ $) NIL)) (-3684 ((|#2| $) 11)) (-3672 ((|#1| $) 10)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2272 (($ |#1| |#2|) 9)) (-2254 (((-787) $) 16)) (-1534 (((-107) $ $) NIL)))
-(((-1064 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2272 ($ |#1| |#2|)) (-15 -3672 (|#1| $)) (-15 -3684 (|#2| $)))) (-1003) (-1003)) (T -1064))
-((-2272 (*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3672 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1003)))) (-3684 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *3 *2)) (-4 *3 (-1003)))))
-(-13 (-1003) (-10 -8 (-15 -2272 ($ |#1| |#2|)) (-15 -3672 (|#1| $)) (-15 -3684 (|#2| $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 11)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2239 (($ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3531 (((-107) $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1935 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1821 (((-1072 |#1| |#2| |#3|) $) 36)) (-2428 (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 29)) (-1565 (((-1072 |#1| |#2| |#3|) $) 30)) (-2725 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3345 (((-517) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1074) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3232 (((-1072 |#1| |#2| |#3|) $) 131) (((-1074) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2561 (($ $) 34) (($ (-517) $) 35)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-1072 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-1072 |#1| |#2| |#3|))) (|:| |vec| (-1154 (-1072 |#1| |#2| |#3|)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3775 (((-3 $ "failed") $) 48)) (-2830 (((-377 (-874 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-4100 (($) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-3162 (((-107) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2761 (((-107) $) 25)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3730 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL (|has| |#1| (-333)))) (-1842 (((-1072 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3326 (((-3 $ "failed") $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))))) (-1199 (((-107) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3699 (($ $ (-843)) NIL)) (-3766 (($ (-1 |#1| (-517)) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-517)) 18) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-4055 (($ $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3105 (($ $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1875 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1579 (($ (-517) (-1072 |#1| |#2| |#3|)) 33)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2172 (($ $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2908 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-517)) 145)) (-2483 (((-3 $ "failed") $ $) 49 (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-478 (-1074) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1072 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1072 |#1| |#2| |#3|)) (-583 (-1072 |#1| |#2| |#3|))) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-280 (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1015))) (($ $ (-1072 |#1| |#2| |#3|)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-258 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1150 |#2|)) 51) (($ $ (-703)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1728 (($ $) NIL (|has| |#1| (-333)))) (-1852 (((-1072 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-3625 (((-517) $) 37)) (-1543 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3667 (((-493) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1072 |#1| |#2| |#3|)) 27) (($ (-1150 |#2|)) 23) (($ (-1074)) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (($ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-4104 ((|#1| $ (-517)) 68)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 12)) (-2434 (((-1072 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1584 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1557 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-1724 (($ $) NIL (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 20 T CONST)) (-2411 (($) 16 T CONST)) (-2738 (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1600 (((-107) $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1571 (((-107) $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1558 (((-107) $ $) NIL (-3782 (-12 (|has| (-1072 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1072 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1072 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 21)) (** (($ $ (-843)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1072 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1072 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1065 |#1| |#2| |#3|) (-13 (-1117 |#1| (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1065))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1117 |#1| (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-3411 ((|#2| |#2| (-996 |#2|)) 26) ((|#2| |#2| (-1074)) 28)))
-(((-1066 |#1| |#2|) (-10 -7 (-15 -3411 (|#2| |#2| (-1074))) (-15 -3411 (|#2| |#2| (-996 |#2|)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1095))) (T -1066))
-((-3411 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)))) (-3411 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))))))
-(-10 -7 (-15 -3411 (|#2| |#2| (-1074))) (-15 -3411 (|#2| |#2| (-996 |#2|))))
-((-3411 (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))) 30) (((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|))) 44) (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074)) 32) (((-377 (-874 |#1|)) (-874 |#1|) (-1074)) 36)))
-(((-1067 |#1|) (-10 -7 (-15 -3411 ((-377 (-874 |#1|)) (-874 |#1|) (-1074))) (-15 -3411 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3411 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -3411 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) (-13 (-509) (-779) (-952 (-517)))) (T -1067))
-((-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1067 *5)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1067 *5)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-377 (-874 *5))))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-874 *5)))))
-(-10 -7 (-15 -3411 ((-377 (-874 |#1|)) (-874 |#1|) (-1074))) (-15 -3411 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1074))) (-15 -3411 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -3411 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|))))))
-((-1939 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 13)))
-(((-1068 |#1| |#2|) (-10 -7 (-15 -1939 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)))) (-961) (-961)) (T -1068))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6)))))
-(-10 -7 (-15 -1939 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))))
-((-2674 (((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))) 50)) (-1376 (((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))) 51)))
-(((-1069 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1376 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))) (-15 -2674 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|))))) (-725) (-779) (-421) (-871 |#3| |#1| |#2|)) (T -1069))
-((-2674 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))))
-(-10 -7 (-15 -1376 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))) (-15 -2674 ((-388 (-1070 (-377 |#4|))) (-1070 (-377 |#4|)))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 30)) (-1364 (((-1154 |#1|) $ (-703)) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-1255 (($ (-1070 |#1|)) NIL)) (-2374 (((-1070 $) $ (-989)) 59) (((-1070 |#1|) $) 48)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) 132 (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) 126 (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) 72 (|has| |#1| (-831)))) (-2377 (($ $) NIL (|has| |#1| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 92 (|has| |#1| (-831)))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3983 (($ $ (-703)) 42)) (-2958 (($ $ (-703)) 43)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3232 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3167 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) 57)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1414 (($ $ $) 104)) (-3466 (($ $ $) NIL (|has| |#1| (-509)))) (-3064 (((-2 (|:| -1965 |#1|) (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2038 (($ $) 133 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-703) $) 46)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3158 (((-787) $ (-787)) 117)) (-3730 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3469 (((-107) $) 32)) (-3604 (((-703) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#1| (-1050)))) (-1347 (($ (-1070 |#1|) (-989)) 50) (($ (-1070 $) (-989)) 66)) (-3699 (($ $ (-703)) 34)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) 64) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-989)) NIL) (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 121)) (-3876 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3602 (($ (-1 (-703) (-703)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-3145 (((-1070 |#1|) $) NIL)) (-3382 (((-3 (-989) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) 53)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1277 (((-1057) $) NIL)) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) 41)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-989)) (|:| -3010 (-703))) "failed") $) NIL)) (-3563 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) NIL (|has| |#1| (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) 33)) (-1671 ((|#1| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 80 (|has| |#1| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 135 (|has| |#1| (-421)))) (-1776 (($ $ (-703) |#1| $) 99)) (-2736 (((-388 (-1070 $)) (-1070 $)) 78 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 77 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 85 (|has| |#1| (-831)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1730 (((-3 $ "failed") $ (-703)) 37)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 137 (|has| |#1| (-333)))) (-3383 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-1248 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3625 (((-703) $) 55) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) 130 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2472 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2254 (((-787) $) 118) (($ (-517)) NIL) (($ |#1|) 54) (($ (-989)) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 15) (($ $ (-703)) 16)) (-2398 (($) 17 T CONST)) (-2411 (($) 18 T CONST)) (-2738 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) 97)) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 138 (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 67)) (** (($ $ (-843)) 14) (($ $ (-703)) 12)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1070 |#1|) (-13 (-1131 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-787))) (-15 -1776 ($ $ (-703) |#1| $)))) (-961)) (T -1070))
-((-3158 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))) (-1776 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))))
-(-13 (-1131 |#1|) (-10 -8 (-15 -3158 ((-787) $ (-787))) (-15 -1776 ($ $ (-703) |#1| $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 11)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-1065 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1072 |#1| |#2| |#3|) "failed") $) 35)) (-3232 (((-1065 |#1| |#2| |#3|) $) NIL) (((-1072 |#1| |#2| |#3|) $) NIL)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4140 (((-377 (-517)) $) 55)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1594 (($ (-377 (-517)) (-1065 |#1| |#2| |#3|)) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-377 (-517))) 19) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3818 (((-1065 |#1| |#2| |#3|) $) 40)) (-1225 (((-3 (-1065 |#1| |#2| |#3|) "failed") $) NIL)) (-1579 (((-1065 |#1| |#2| |#3|) $) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 37)) (-3625 (((-377 (-517)) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1065 |#1| |#2| |#3|)) 29) (($ (-1072 |#1| |#2| |#3|)) 30) (($ (-1150 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 12)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 21 T CONST)) (-2411 (($) 16 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 23)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1071 |#1| |#2| |#3|) (-13 (-1138 |#1| (-1065 |#1| |#2| |#3|)) (-952 (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1071))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1138 |#1| (-1065 |#1| |#2| |#3|)) (-952 (-1072 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 124)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 115)) (-3828 (((-1128 |#2| |#1|) $ (-703)) 62)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-703)) 78) (($ $ (-703) (-703)) 75)) (-1378 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 101)) (-2725 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 114) (($ (-1055 |#1|)) 109)) (-1533 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) 23)) (-1204 (($ $) 26)) (-1523 (((-874 |#1|) $ (-703)) 74) (((-874 |#1|) $ (-703) (-703)) 76)) (-2761 (((-107) $) 119)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $) 121) (((-703) $ (-703)) 123)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) NIL)) (-3766 (($ (-1 |#1| (-517)) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) 13) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3563 (($ $) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-2204 (($ $ (-703)) 15)) (-2483 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-2643 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1437 ((|#1| $ (-703)) 118) (($ $ $) 127 (|has| (-703) (-1015)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1150 |#2|)) 29)) (-3625 (((-703) $) NIL)) (-1543 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) 200) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1128 |#2| |#1|)) 50) (($ (-1150 |#2|)) 32)) (-3165 (((-1055 |#1|) $) 97)) (-4104 ((|#1| $ (-703)) 117)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 53)) (-1584 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 17 T CONST)) (-2411 (($) 19 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) 193)) (-1645 (($ $ $) 31)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 197 (|has| |#1| (-333))) (($ $ $) 133 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 136 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1072 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2254 ($ (-1128 |#2| |#1|))) (-15 -3828 ((-1128 |#2| |#1|) $ (-703))) (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1072))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1072 *3 *4 *5)))) (-3828 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1072 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1146 |#1|) (-10 -8 (-15 -2254 ($ (-1128 |#2| |#1|))) (-15 -3828 ((-1128 |#2| |#1|) $ (-703))) (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-2254 (((-787) $) 22) (($ (-1074)) 24)) (-3782 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3772 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-4121 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-4109 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-4096 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-4086 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3126 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
-(((-1073) (-13 (-557 (-787)) (-10 -8 (-15 -2254 ($ (-1074))) (-15 -4121 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4096 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4109 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4086 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3782 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3126 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3772 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3772 ($ $))))) (T -1073))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1073)))) (-4121 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4096 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4109 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-4086 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3782 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3126 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))) (-3772 (*1 *1 *1) (-5 *1 (-1073))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2254 ($ (-1074))) (-15 -4121 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4096 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4109 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4086 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3782 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3126 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3772 ($ (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3772 ($ $))))
-((-1587 (((-107) $ $) NIL)) (-3280 (($ $ (-583 (-787))) 58)) (-4004 (($ $ (-583 (-787))) 56)) (-3881 (((-1057) $) 82)) (-1649 (((-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-3760 (((-107) $) 21)) (-4072 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-2706 (($) 122 T CONST)) (-2155 (((-1159)) 103)) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 65) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 71)) (-3475 (($) 92) (($ $) 98)) (-1214 (($ $) 81)) (-4055 (($ $ $) NIL)) (-3105 (($ $ $) NIL)) (-1619 (((-583 $) $) 104)) (-1277 (((-1057) $) 87)) (-3214 (((-1021) $) NIL)) (-1437 (($ $ (-583 (-787))) 57)) (-3667 (((-493) $) 45) (((-1074) $) 46) (((-814 (-517)) $) 75) (((-814 (-349)) $) 73)) (-2254 (((-787) $) 52) (($ (-1057)) 47)) (-2766 (($ $ (-583 (-787))) 59)) (-2822 (((-1057) $) 33) (((-1057) $ (-107)) 34) (((-1159) (-754) $) 35) (((-1159) (-754) $ (-107)) 36)) (-1600 (((-107) $ $) NIL)) (-1571 (((-107) $ $) NIL)) (-1534 (((-107) $ $) 48)) (-1585 (((-107) $ $) NIL)) (-1558 (((-107) $ $) 49)))
-(((-1074) (-13 (-779) (-558 (-493)) (-760) (-558 (-1074)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3475 ($)) (-15 -3475 ($ $)) (-15 -2155 ((-1159))) (-15 -2254 ($ (-1057))) (-15 -1214 ($ $)) (-15 -3760 ((-107) $)) (-15 -1649 ((-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -4072 ($ $ (-583 (-583 (-787))))) (-15 -4072 ($ $ (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -4004 ($ $ (-583 (-787)))) (-15 -3280 ($ $ (-583 (-787)))) (-15 -2766 ($ $ (-583 (-787)))) (-15 -1437 ($ $ (-583 (-787)))) (-15 -3881 ((-1057) $)) (-15 -1619 ((-583 $) $)) (-15 -2706 ($) -2497)))) (T -1074))
-((-3475 (*1 *1) (-5 *1 (-1074))) (-3475 (*1 *1 *1) (-5 *1 (-1074))) (-2155 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1074)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) (-1214 (*1 *1 *1) (-5 *1 (-1074))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1074)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1074)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-2766 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1074)))) (-2706 (*1 *1) (-5 *1 (-1074))))
-(-13 (-779) (-558 (-493)) (-760) (-558 (-1074)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3475 ($)) (-15 -3475 ($ $)) (-15 -2155 ((-1159))) (-15 -2254 ($ (-1057))) (-15 -1214 ($ $)) (-15 -3760 ((-107) $)) (-15 -1649 ((-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -4072 ($ $ (-583 (-583 (-787))))) (-15 -4072 ($ $ (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -4004 ($ $ (-583 (-787)))) (-15 -3280 ($ $ (-583 (-787)))) (-15 -2766 ($ $ (-583 (-787)))) (-15 -1437 ($ $ (-583 (-787)))) (-15 -3881 ((-1057) $)) (-15 -1619 ((-583 $) $)) (-15 -2706 ($) -2497)))
-((-2783 (((-1154 |#1|) |#1| (-843)) 16) (((-1154 |#1|) (-583 |#1|)) 20)))
-(((-1075 |#1|) (-10 -7 (-15 -2783 ((-1154 |#1|) (-583 |#1|))) (-15 -2783 ((-1154 |#1|) |#1| (-843)))) (-961)) (T -1075))
-((-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1154 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)) (-5 *1 (-1075 *4)))))
-(-10 -7 (-15 -2783 ((-1154 |#1|) (-583 |#1|))) (-15 -2783 ((-1154 |#1|) |#1| (-843))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3232 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2038 (($ $) NIL (|has| |#1| (-421)))) (-2083 (($ $ |#1| (-888) $) NIL)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-888)) NIL)) (-3876 (((-888) $) NIL)) (-3602 (($ (-1 (-888) (-888)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#1| $) NIL)) (-1776 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-123)) (|has| |#1| (-509))))) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3625 (((-888) $) NIL)) (-4128 ((|#1| $) NIL (|has| |#1| (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3782 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ (-888)) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 9 T CONST)) (-2411 (($) 14 T CONST)) (-1534 (((-107) $ $) 16)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1076 |#1|) (-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1776 ($ $ (-888) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|))) (-961)) (T -1076))
-((-1776 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1076 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1776 ($ $ (-888) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|)))
-((-2979 (((-1078) (-1074) $) 24)) (-2441 (($) 28)) (-3675 (((-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-1074) $) 21)) (-2336 (((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")) $) 40) (((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) 41) (((-1159) (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) 42)) (-3988 (((-1159) (-1074)) 57)) (-3715 (((-1159) (-1074) $) 54) (((-1159) (-1074)) 55) (((-1159)) 56)) (-3868 (((-1159) (-1074)) 36)) (-1627 (((-1074)) 35)) (-2756 (($) 33)) (-2381 (((-407) (-1074) (-407) (-1074) $) 44) (((-407) (-583 (-1074)) (-407) (-1074) $) 48) (((-407) (-1074) (-407)) 45) (((-407) (-1074) (-407) (-1074)) 49)) (-3385 (((-1074)) 34)) (-2254 (((-787) $) 27)) (-1796 (((-1159)) 29) (((-1159) (-1074)) 32)) (-2035 (((-583 (-1074)) (-1074) $) 23)) (-3127 (((-1159) (-1074) (-583 (-1074)) $) 37) (((-1159) (-1074) (-583 (-1074))) 38) (((-1159) (-583 (-1074))) 39)))
-(((-1077) (-13 (-557 (-787)) (-10 -8 (-15 -2441 ($)) (-15 -1796 ((-1159))) (-15 -1796 ((-1159) (-1074))) (-15 -2381 ((-407) (-1074) (-407) (-1074) $)) (-15 -2381 ((-407) (-583 (-1074)) (-407) (-1074) $)) (-15 -2381 ((-407) (-1074) (-407))) (-15 -2381 ((-407) (-1074) (-407) (-1074))) (-15 -3868 ((-1159) (-1074))) (-15 -3385 ((-1074))) (-15 -1627 ((-1074))) (-15 -3127 ((-1159) (-1074) (-583 (-1074)) $)) (-15 -3127 ((-1159) (-1074) (-583 (-1074)))) (-15 -3127 ((-1159) (-583 (-1074)))) (-15 -2336 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")) $)) (-15 -2336 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")))) (-15 -2336 ((-1159) (-3 (|:| |fst| (-404)) (|:| -2720 "void")))) (-15 -3715 ((-1159) (-1074) $)) (-15 -3715 ((-1159) (-1074))) (-15 -3715 ((-1159))) (-15 -3988 ((-1159) (-1074))) (-15 -2756 ($)) (-15 -3675 ((-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-1074) $)) (-15 -2035 ((-583 (-1074)) (-1074) $)) (-15 -2979 ((-1078) (-1074) $))))) (T -1077))
-((-2441 (*1 *1) (-5 *1 (-1077))) (-1796 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2381 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-2381 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *4 (-1074)) (-5 *1 (-1077)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-2381 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3385 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))) (-1627 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))) (-3127 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3127 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2336 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3715 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3715 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) (-2756 (*1 *1) (-5 *1 (-1077))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *1 (-1077)))) (-2035 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1077)) (-5 *3 (-1074)))) (-2979 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1078)) (-5 *1 (-1077)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2441 ($)) (-15 -1796 ((-1159))) (-15 -1796 ((-1159) (-1074))) (-15 -2381 ((-407) (-1074) (-407) (-1074) $)) (-15 -2381 ((-407) (-583 (-1074)) (-407) (-1074) $)) (-15 -2381 ((-407) (-1074) (-407))) (-15 -2381 ((-407) (-1074) (-407) (-1074))) (-15 -3868 ((-1159) (-1074))) (-15 -3385 ((-1074))) (-15 -1627 ((-1074))) (-15 -3127 ((-1159) (-1074) (-583 (-1074)) $)) (-15 -3127 ((-1159) (-1074) (-583 (-1074)))) (-15 -3127 ((-1159) (-583 (-1074)))) (-15 -2336 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")) $)) (-15 -2336 ((-1159) (-1074) (-3 (|:| |fst| (-404)) (|:| -2720 "void")))) (-15 -2336 ((-1159) (-3 (|:| |fst| (-404)) (|:| -2720 "void")))) (-15 -3715 ((-1159) (-1074) $)) (-15 -3715 ((-1159) (-1074))) (-15 -3715 ((-1159))) (-15 -3988 ((-1159) (-1074))) (-15 -2756 ($)) (-15 -3675 ((-3 (|:| |fst| (-404)) (|:| -2720 "void")) (-1074) $)) (-15 -2035 ((-583 (-1074)) (-1074) $)) (-15 -2979 ((-1078) (-1074) $))))
-((-2897 (((-583 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $) 57)) (-3608 (((-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $) 40)) (-4056 (($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-407))))) 15)) (-3988 (((-1159) $) 65)) (-3423 (((-583 (-1074)) $) 20)) (-2291 (((-1007) $) 53)) (-1590 (((-407) (-1074) $) 27)) (-1668 (((-583 (-1074)) $) 30)) (-2756 (($) 17)) (-2381 (((-407) (-583 (-1074)) (-407) $) 25) (((-407) (-1074) (-407) $) 24)) (-2254 (((-787) $) 9) (((-1083 (-1074) (-407)) $) 11)))
-(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -2254 ((-1083 (-1074) (-407)) $)) (-15 -2756 ($)) (-15 -2381 ((-407) (-583 (-1074)) (-407) $)) (-15 -2381 ((-407) (-1074) (-407) $)) (-15 -1590 ((-407) (-1074) $)) (-15 -3423 ((-583 (-1074)) $)) (-15 -3608 ((-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -1668 ((-583 (-1074)) $)) (-15 -2897 ((-583 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $)) (-15 -2291 ((-1007) $)) (-15 -3988 ((-1159) $)) (-15 -4056 ($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-407))))))))) (T -1078))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-1083 (-1074) (-407))) (-5 *1 (-1078)))) (-2756 (*1 *1) (-5 *1 (-1078))) (-2381 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *1 (-1078)))) (-2381 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1078)))) (-1590 (*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-407)) (-5 *1 (-1078)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))) (-3608 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) (-5 *1 (-1078)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1078)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1078)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-407))))) (-5 *1 (-1078)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -2254 ((-1083 (-1074) (-407)) $)) (-15 -2756 ($)) (-15 -2381 ((-407) (-583 (-1074)) (-407) $)) (-15 -2381 ((-407) (-1074) (-407) $)) (-15 -1590 ((-407) (-1074) $)) (-15 -3423 ((-583 (-1074)) $)) (-15 -3608 ((-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -1668 ((-583 (-1074)) $)) (-15 -2897 ((-583 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) $)) (-15 -2291 ((-1007) $)) (-15 -3988 ((-1159) $)) (-15 -4056 ($ (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-407))))))))
-((-1215 (((-3 (-517) (-199) (-1074) (-1057) $) $) 35)) (-1354 (((-583 $) $) 39)) (-3667 (((-1007) $) 6) (($ (-1007)) 7) (($ (-517)) 10) (($ (-199)) 13) (($ (-1074)) 16) (($ (-1057)) 19)) (-2254 (((-787) $) NIL)) (-3177 (($ (-1074) (-583 $)) 23)))
-(((-1079) (-13 (-557 (-787)) (-10 -8 (-15 -3667 ((-1007) $)) (-15 -3667 ($ (-1007))) (-15 -3667 ($ (-517))) (-15 -3667 ($ (-199))) (-15 -3667 ($ (-1074))) (-15 -3667 ($ (-1057))) (-15 -3177 ($ (-1074) (-583 $))) (-15 -1215 ((-3 (-517) (-199) (-1074) (-1057) $) $)) (-15 -1354 ((-583 $) $))))) (T -1079))
-((-3667 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1079)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1079)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1079)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1079)))) (-3177 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-1079))) (-5 *1 (-1079)))) (-1215 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1074) (-1057) (-1079))) (-5 *1 (-1079)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079))) (-5 *1 (-1079)))))
-(-13 (-557 (-787)) (-10 -8 (-15 -3667 ((-1007) $)) (-15 -3667 ($ (-1007))) (-15 -3667 ($ (-517))) (-15 -3667 ($ (-199))) (-15 -3667 ($ (-1074))) (-15 -3667 ($ (-1057))) (-15 -3177 ($ (-1074) (-583 $))) (-15 -1215 ((-3 (-517) (-199) (-1074) (-1057) $) $)) (-15 -1354 ((-583 $) $))))
-((-2772 (((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 55)) (-1955 (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|)))) 66) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|))) 62) (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074)) 67) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074)) 61) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|))))) 91) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|)))) 90) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074))) 92) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074))) 89)))
-(((-1080 |#1|) (-10 -7 (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -2772 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074))))) (-509)) (T -1080))
-((-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1080 *5)))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-265 (-377 (-874 *4)))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-377 (-874 *4))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-377 (-874 *5))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)))))
-(-10 -7 (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1074)))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1955 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1074))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1074))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1955 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -2772 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1074)))))
-((-3283 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-1696 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-3001 (((-1082 (-583 |#1|)) (-583 |#1|)) 34)) (-1294 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-2593 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-2394 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2259 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-1779 (((-583 |#1|) (-583 |#1|)) 31)) (-2450 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-3595 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-1300 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-1907 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-1293 (((-583 (-583 |#1|)) (-1082 (-583 |#1|))) 41)))
-(((-1081 |#1|) (-10 -7 (-15 -1300 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3595 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2450 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3283 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1907 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1293 ((-583 (-583 |#1|)) (-1082 (-583 |#1|)))) (-15 -1696 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3001 ((-1082 (-583 |#1|)) (-583 |#1|))) (-15 -2259 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -1294 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -1779 ((-583 |#1|) (-583 |#1|))) (-15 -2394 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2593 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1081))
-((-2593 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-2394 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1081 *6)) (-5 *4 (-583 *5)))) (-1779 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1081 *3)))) (-1294 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1081 *3)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1082 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 *4))))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1082 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-4 *4 (-779)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1081 *4)))) (-2450 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1081 *4)))) (-3595 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1081 *5)))) (-1300 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1081 *6)) (-5 *5 (-583 *4)))))
-(-10 -7 (-15 -1300 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3595 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2450 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3283 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1907 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1293 ((-583 (-583 |#1|)) (-1082 (-583 |#1|)))) (-15 -1696 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3001 ((-1082 (-583 |#1|)) (-583 |#1|))) (-15 -2259 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -1294 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -1779 ((-583 |#1|) (-583 |#1|))) (-15 -2394 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2593 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
-((-3286 (($ (-583 (-583 |#1|))) 9)) (-3418 (((-583 (-583 |#1|)) $) 10)) (-2254 (((-787) $) 25)))
-(((-1082 |#1|) (-10 -8 (-15 -3286 ($ (-583 (-583 |#1|)))) (-15 -3418 ((-583 (-583 |#1|)) $)) (-15 -2254 ((-787) $))) (-1003)) (T -1082))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) (-3286 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1082 *3)))))
-(-10 -8 (-15 -3286 ($ (-583 (-583 |#1|)))) (-15 -3418 ((-583 (-583 |#1|)) $)) (-15 -2254 ((-787) $)))
-((-1587 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3448 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2787 (((-1159) $ |#1| |#1|) NIL (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#2| $ |#1| |#2|) NIL)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) NIL)) (-2706 (($) NIL T CONST)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) NIL)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) NIL)) (-1739 ((|#1| $) NIL (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-583 |#2|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3920 ((|#1| $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3666 (((-583 |#1|) $) NIL)) (-2550 (((-107) |#1| $) NIL)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-2950 (((-583 |#1|) $) NIL)) (-4093 (((-107) |#1| $) NIL)) (-3214 (((-1021) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1750 ((|#2| $) NIL (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL)) (-2880 (($ $ |#2|) NIL (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3230 (($) NIL) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) NIL (-12 (|has| $ (-6 -4183)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2254 (((-787) $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) NIL)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) NIL (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) NIL (-3782 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1083 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183))) (-1003) (-1003)) (T -1083))
-NIL
-(-13 (-1086 |#1| |#2|) (-10 -7 (-6 -4183)))
-((-4017 ((|#1| (-583 |#1|)) 32)) (-1417 ((|#1| |#1| (-517)) 18)) (-1598 (((-1070 |#1|) |#1| (-843)) 15)))
-(((-1084 |#1|) (-10 -7 (-15 -4017 (|#1| (-583 |#1|))) (-15 -1598 ((-1070 |#1|) |#1| (-843))) (-15 -1417 (|#1| |#1| (-517)))) (-333)) (T -1084))
-((-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1070 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-333)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
-(-10 -7 (-15 -4017 (|#1| (-583 |#1|))) (-15 -1598 ((-1070 |#1|) |#1| (-843))) (-15 -1417 (|#1| |#1| (-517))))
-((-3448 (($) 10) (($ (-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)))) 14)) (-1835 (($ (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3240 (((-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-3696 (($ (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1939 (($ (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3074 (((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) 53)) (-3676 (($ (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) 16)) (-2950 (((-583 |#2|) $) 19)) (-4093 (((-107) |#2| $) 58)) (-3222 (((-3 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) "failed") (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) 57)) (-3773 (((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) 62)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-3949 (((-583 |#3|) $) 43)) (-1437 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) NIL) (((-703) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 66)) (-2254 (((-787) $) 27)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1534 (((-107) $ $) 48)))
-(((-1085 |#1| |#2| |#3|) (-10 -8 (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1939 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3448 (|#1| (-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))))) (-15 -3448 (|#1|)) (-15 -1939 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3696 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -3240 ((-583 |#3|) |#1|)) (-15 -3223 ((-703) |#3| |#1|)) (-15 -1437 (|#3| |#1| |#2| |#3|)) (-15 -1437 (|#3| |#1| |#2|)) (-15 -3949 ((-583 |#3|) |#1|)) (-15 -4093 ((-107) |#2| |#1|)) (-15 -2950 ((-583 |#2|) |#1|)) (-15 -1835 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1835 (|#1| (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -1835 (|#1| (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3222 ((-3 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) "failed") (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3074 ((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3676 (|#1| (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3773 ((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3223 ((-703) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3240 ((-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3223 ((-703) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3029 ((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -2258 ((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3696 (|#1| (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -1939 (|#1| (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|))) (-1086 |#2| |#3|) (-1003) (-1003)) (T -1085))
-NIL
-(-10 -8 (-15 -1534 ((-107) |#1| |#1|)) (-15 -2254 ((-787) |#1|)) (-15 -1939 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3448 (|#1| (-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))))) (-15 -3448 (|#1|)) (-15 -1939 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3696 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2258 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3029 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3223 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -3240 ((-583 |#3|) |#1|)) (-15 -3223 ((-703) |#3| |#1|)) (-15 -1437 (|#3| |#1| |#2| |#3|)) (-15 -1437 (|#3| |#1| |#2|)) (-15 -3949 ((-583 |#3|) |#1|)) (-15 -4093 ((-107) |#2| |#1|)) (-15 -2950 ((-583 |#2|) |#1|)) (-15 -1835 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1835 (|#1| (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -1835 (|#1| (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3222 ((-3 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) "failed") (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3074 ((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3676 (|#1| (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3773 ((-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3223 ((-703) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) |#1|)) (-15 -3240 ((-583 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3223 ((-703) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3029 ((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -2258 ((-107) (-1 (-107) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -3696 (|#1| (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)) (-15 -1939 (|#1| (-1 (-2 (|:| -3458 |#2|) (|:| -1338 |#3|)) (-2 (|:| -3458 |#2|) (|:| -1338 |#3|))) |#1|)))
-((-1587 (((-107) $ $) 18 (-3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3448 (($) 72) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 71)) (-2787 (((-1159) $ |#1| |#1|) 99 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#2| $ |#1| |#2|) 73)) (-2975 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 45 (|has| $ (-6 -4183)))) (-3555 (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 55 (|has| $ (-6 -4183)))) (-3263 (((-3 |#2| "failed") |#1| $) 61)) (-2706 (($) 7 T CONST)) (-1783 (($ $) 58 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183))))) (-1835 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 47 (|has| $ (-6 -4183))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 46 (|has| $ (-6 -4183))) (((-3 |#2| "failed") |#1| $) 62)) (-2050 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 54 (|has| $ (-6 -4183)))) (-1292 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 56 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 53 (|has| $ (-6 -4183))) (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 52 (|has| $ (-6 -4183)))) (-3705 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4184)))) (-3537 ((|#2| $ |#1|) 88)) (-3240 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 30 (|has| $ (-6 -4183))) (((-583 |#2|) $) 79 (|has| $ (-6 -4183)))) (-2629 (((-107) $ (-703)) 9)) (-1739 ((|#1| $) 96 (|has| |#1| (-779)))) (-2332 (((-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 29 (|has| $ (-6 -4183))) (((-583 |#2|) $) 80 (|has| $ (-6 -4183)))) (-1653 (((-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183))))) (-3920 ((|#1| $) 95 (|has| |#1| (-779)))) (-3696 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 34 (|has| $ (-6 -4184))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4184)))) (-1939 (($ (-1 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2026 (((-107) $ (-703)) 10)) (-1277 (((-1057) $) 22 (-3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-3666 (((-583 |#1|) $) 63)) (-2550 (((-107) |#1| $) 64)) (-3074 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 39)) (-3676 (($ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 40)) (-2950 (((-583 |#1|) $) 93)) (-4093 (((-107) |#1| $) 92)) (-3214 (((-1021) $) 21 (-3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-1750 ((|#2| $) 97 (|has| |#1| (-779)))) (-3222 (((-3 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) "failed") (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 51)) (-2880 (($ $ |#2|) 98 (|has| $ (-6 -4184)))) (-3773 (((-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 41)) (-3029 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 32 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))))) 26 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 25 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) 24 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 23 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4183)) (|has| |#2| (-1003))))) (-3949 (((-583 |#2|) $) 91)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3230 (($) 49) (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 48)) (-3223 (((-703) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 31 (|has| $ (-6 -4183))) (((-703) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| $ (-6 -4183)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4183)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 59 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))))) (-2272 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 50)) (-2254 (((-787) $) 20 (-3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2882 (($ (-583 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) 42)) (-2258 (((-107) (-1 (-107) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) $) 33 (|has| $ (-6 -4183))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 19 (-3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1086 |#1| |#2|) (-1185) (-1003) (-1003)) (T -1086))
-((-2412 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3448 (*1 *1) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 *3) (|:| -1338 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1086 *3 *4)))) (-1939 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2412 (|t#2| $ |t#1| |t#2|)) (-15 -3448 ($)) (-15 -3448 ($ (-583 (-2 (|:| -3458 |t#1|) (|:| -1338 |t#2|))))) (-15 -1939 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-97) -3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-557 (-787)) -3782 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-209 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-2 (|:| -3458 |#1|) (|:| -1338 |#2|))) -12 (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-280 (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)))) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-1003) -3782 (|has| |#2| (-1003)) (|has| (-2 (|:| -3458 |#1|) (|:| -1338 |#2|)) (-1003))) ((-1109) . T))
-((-3234 (((-107)) 24)) (-2768 (((-1159) (-1057)) 26)) (-3212 (((-107)) 36)) (-2784 (((-1159)) 34)) (-2162 (((-1159) (-1057) (-1057)) 25)) (-2255 (((-107)) 37)) (-3676 (((-1159) |#1| |#2|) 44)) (-2610 (((-1159)) 20)) (-1860 (((-3 |#2| "failed") |#1|) 42)) (-4037 (((-1159)) 35)))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -2610 ((-1159))) (-15 -2162 ((-1159) (-1057) (-1057))) (-15 -2768 ((-1159) (-1057))) (-15 -2784 ((-1159))) (-15 -4037 ((-1159))) (-15 -3234 ((-107))) (-15 -3212 ((-107))) (-15 -2255 ((-107))) (-15 -1860 ((-3 |#2| "failed") |#1|)) (-15 -3676 ((-1159) |#1| |#2|))) (-1003) (-1003)) (T -1087))
-((-3676 (*1 *2 *3 *4) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1860 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1087 *3 *2)) (-4 *3 (-1003)))) (-2255 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3212 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3234 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-4037 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2784 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2162 (*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2610 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(-10 -7 (-15 -2610 ((-1159))) (-15 -2162 ((-1159) (-1057) (-1057))) (-15 -2768 ((-1159) (-1057))) (-15 -2784 ((-1159))) (-15 -4037 ((-1159))) (-15 -3234 ((-107))) (-15 -3212 ((-107))) (-15 -2255 ((-107))) (-15 -1860 ((-3 |#2| "failed") |#1|)) (-15 -3676 ((-1159) |#1| |#2|)))
-((-2425 (((-1057) (-1057)) 18)) (-1426 (((-51) (-1057)) 21)))
-(((-1088) (-10 -7 (-15 -1426 ((-51) (-1057))) (-15 -2425 ((-1057) (-1057))))) (T -1088))
-((-2425 (*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1088)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-1088)))))
-(-10 -7 (-15 -1426 ((-51) (-1057))) (-15 -2425 ((-1057) (-1057))))
-((-2254 (((-1090) |#1|) 11)))
-(((-1089 |#1|) (-10 -7 (-15 -2254 ((-1090) |#1|))) (-1003)) (T -1089))
-((-2254 (*1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1089 *3)) (-4 *3 (-1003)))))
-(-10 -7 (-15 -2254 ((-1090) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-4106 (((-583 (-1057)) $) 33)) (-3148 (((-583 (-1057)) $ (-583 (-1057))) 36)) (-3627 (((-583 (-1057)) $ (-583 (-1057))) 35)) (-3090 (((-583 (-1057)) $ (-583 (-1057))) 37)) (-3569 (((-583 (-1057)) $) 32)) (-3475 (($) 22)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2579 (((-583 (-1057)) $) 34)) (-1253 (((-1159) $ (-517)) 29) (((-1159) $) 30)) (-3667 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2254 (((-787) $) 39) (($ (-787)) 24)) (-1534 (((-107) $ $) NIL)))
-(((-1090) (-13 (-1003) (-10 -8 (-15 -2254 ($ (-787))) (-15 -3667 ($ (-787) (-517))) (-15 -3667 ($ (-787) (-517) (-787))) (-15 -1253 ((-1159) $ (-517))) (-15 -1253 ((-1159) $)) (-15 -2579 ((-583 (-1057)) $)) (-15 -4106 ((-583 (-1057)) $)) (-15 -3475 ($)) (-15 -3569 ((-583 (-1057)) $)) (-15 -3090 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3148 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3627 ((-583 (-1057)) $ (-583 (-1057))))))) (T -1090))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1090)))) (-3667 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) (-3667 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) (-1253 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1090)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1090)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3475 (*1 *1) (-5 *1 (-1090))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3090 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3148 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))) (-3627 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(-13 (-1003) (-10 -8 (-15 -2254 ($ (-787))) (-15 -3667 ($ (-787) (-517))) (-15 -3667 ($ (-787) (-517) (-787))) (-15 -1253 ((-1159) $ (-517))) (-15 -1253 ((-1159) $)) (-15 -2579 ((-583 (-1057)) $)) (-15 -4106 ((-583 (-1057)) $)) (-15 -3475 ($)) (-15 -3569 ((-583 (-1057)) $)) (-15 -3090 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3148 ((-583 (-1057)) $ (-583 (-1057)))) (-15 -3627 ((-583 (-1057)) $ (-583 (-1057))))))
-((-1587 (((-107) $ $) NIL)) (-3198 (((-1057) $ (-1057)) 15) (((-1057) $) 14)) (-2528 (((-1057) $ (-1057)) 13)) (-3909 (($ $ (-1057)) NIL)) (-4149 (((-3 (-1057) "failed") $) 11)) (-1972 (((-1057) $) 8)) (-2513 (((-3 (-1057) "failed") $) 12)) (-1256 (((-1057) $) 9)) (-1602 (($ (-358)) NIL) (($ (-358) (-1057)) NIL)) (-1214 (((-358) $) NIL)) (-1277 (((-1057) $) NIL)) (-2639 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3063 (((-107) $) 17)) (-2254 (((-787) $) NIL)) (-2666 (($ $) NIL)) (-1534 (((-107) $ $) NIL)))
-(((-1091) (-13 (-334 (-358) (-1057)) (-10 -8 (-15 -3198 ((-1057) $ (-1057))) (-15 -3198 ((-1057) $)) (-15 -1972 ((-1057) $)) (-15 -4149 ((-3 (-1057) "failed") $)) (-15 -2513 ((-3 (-1057) "failed") $)) (-15 -3063 ((-107) $))))) (T -1091))
-((-3198 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-4149 (*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-2513 (*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091)))))
-(-13 (-334 (-358) (-1057)) (-10 -8 (-15 -3198 ((-1057) $ (-1057))) (-15 -3198 ((-1057) $)) (-15 -1972 ((-1057) $)) (-15 -4149 ((-3 (-1057) "failed") $)) (-15 -2513 ((-3 (-1057) "failed") $)) (-15 -3063 ((-107) $))))
-((-3345 (((-3 (-517) "failed") |#1|) 19)) (-1374 (((-3 (-517) "failed") |#1|) 13)) (-2209 (((-517) (-1057)) 28)))
-(((-1092 |#1|) (-10 -7 (-15 -3345 ((-3 (-517) "failed") |#1|)) (-15 -1374 ((-3 (-517) "failed") |#1|)) (-15 -2209 ((-517) (-1057)))) (-961)) (T -1092))
-((-2209 (*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-1092 *4)) (-4 *4 (-961)))) (-1374 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
-(-10 -7 (-15 -3345 ((-3 (-517) "failed") |#1|)) (-15 -1374 ((-3 (-517) "failed") |#1|)) (-15 -2209 ((-517) (-1057))))
-((-1355 (((-1034 (-199))) 8)))
-(((-1093) (-10 -7 (-15 -1355 ((-1034 (-199)))))) (T -1093))
-((-1355 (*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1093)))))
-(-10 -7 (-15 -1355 ((-1034 (-199)))))
-((-2665 (($) 11)) (-1584 (($ $) 35)) (-1557 (($ $) 33)) (-2651 (($ $) 25)) (-1614 (($ $) 17)) (-3756 (($ $) 15)) (-1599 (($ $) 19)) (-2678 (($ $) 30)) (-1570 (($ $) 34)) (-2660 (($ $) 29)))
-(((-1094 |#1|) (-10 -8 (-15 -2665 (|#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2660 (|#1| |#1|))) (-1095)) (T -1094))
-NIL
-(-10 -8 (-15 -2665 (|#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)))
-((-2725 (($ $) 26)) (-2602 (($ $) 11)) (-2705 (($ $) 27)) (-2580 (($ $) 10)) (-1533 (($ $) 28)) (-2626 (($ $) 9)) (-2665 (($) 16)) (-1875 (($ $) 19)) (-2643 (($ $) 18)) (-1543 (($ $) 29)) (-2638 (($ $) 8)) (-2735 (($ $) 30)) (-2614 (($ $) 7)) (-2714 (($ $) 31)) (-2590 (($ $) 6)) (-1584 (($ $) 20)) (-2670 (($ $) 32)) (-1557 (($ $) 21)) (-2651 (($ $) 33)) (-1614 (($ $) 22)) (-2688 (($ $) 34)) (-3756 (($ $) 23)) (-2698 (($ $) 35)) (-1599 (($ $) 24)) (-2678 (($ $) 36)) (-1570 (($ $) 25)) (-2660 (($ $) 37)) (** (($ $ $) 17)))
-(((-1095) (-1185)) (T -1095))
-((-2665 (*1 *1) (-4 *1 (-1095))))
-(-13 (-1098) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2665 ($))))
-(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1098) . T))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3207 ((|#1| $) 17)) (-3492 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-3552 (((-107) $ (-703)) 46)) (-3967 ((|#1| $ |#1|) 14 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 13 (|has| $ (-6 -4184)))) (-2706 (($) NIL T CONST)) (-3240 (((-583 |#1|) $) 50 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 41)) (-4082 (((-107) $ $) 32 (|has| |#1| (-1003)))) (-2629 (((-107) $ (-703)) 39)) (-2332 (((-583 |#1|) $) 51 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3696 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 22)) (-2026 (((-107) $ (-703)) 38)) (-2281 (((-583 |#1|) $) 36)) (-2284 (((-107) $) 35)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3029 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 73)) (-1596 (((-107) $) 9)) (-2756 (($) 10)) (-1437 ((|#1| $ "value") NIL)) (-3792 (((-517) $ $) 31)) (-3378 (((-583 $) $) 57)) (-4010 (((-107) $ $) 75)) (-2504 (((-583 $) $) 70)) (-1498 (($ $) 71)) (-1985 (((-107) $) 54)) (-3223 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4183))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2435 (($ $) 56)) (-2254 (((-787) $) 59 (|has| |#1| (-1003)))) (-2125 (((-583 $) $) 12)) (-2432 (((-107) $ $) 29 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 28 (|has| |#1| (-1003)))) (-2290 (((-703) $) 37 (|has| $ (-6 -4183)))))
-(((-1096 |#1|) (-13 (-926 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3492 ($ |#1| (-583 $))) (-15 -3492 ($ (-583 |#1|))) (-15 -3492 ($ |#1|)) (-15 -1985 ((-107) $)) (-15 -1498 ($ $)) (-15 -2504 ((-583 $) $)) (-15 -4010 ((-107) $ $)) (-15 -3378 ((-583 $) $)))) (-1003)) (T -1096))
-((-1985 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-3492 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1096 *2))) (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1096 *3)))) (-3492 (*1 *1 *2) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-4010 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
-(-13 (-926 |#1|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3492 ($ |#1| (-583 $))) (-15 -3492 ($ (-583 |#1|))) (-15 -3492 ($ |#1|)) (-15 -1985 ((-107) $)) (-15 -1498 ($ $)) (-15 -2504 ((-583 $) $)) (-15 -4010 ((-107) $ $)) (-15 -3378 ((-583 $) $))))
-((-2602 (($ $) 15)) (-2626 (($ $) 12)) (-2638 (($ $) 10)) (-2614 (($ $) 17)))
-(((-1097 |#1|) (-10 -8 (-15 -2614 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2602 (|#1| |#1|))) (-1098)) (T -1097))
-NIL
-(-10 -8 (-15 -2614 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)))
-((-2602 (($ $) 11)) (-2580 (($ $) 10)) (-2626 (($ $) 9)) (-2638 (($ $) 8)) (-2614 (($ $) 7)) (-2590 (($ $) 6)))
-(((-1098) (-1185)) (T -1098))
-((-2602 (*1 *1 *1) (-4 *1 (-1098))) (-2580 (*1 *1 *1) (-4 *1 (-1098))) (-2626 (*1 *1 *1) (-4 *1 (-1098))) (-2638 (*1 *1 *1) (-4 *1 (-1098))) (-2614 (*1 *1 *1) (-4 *1 (-1098))) (-2590 (*1 *1 *1) (-4 *1 (-1098))))
-(-13 (-10 -8 (-15 -2590 ($ $)) (-15 -2614 ($ $)) (-15 -2638 ($ $)) (-15 -2626 ($ $)) (-15 -2580 ($ $)) (-15 -2602 ($ $))))
-((-3549 ((|#2| |#2|) 85)) (-1544 (((-107) |#2|) 25)) (-1398 ((|#2| |#2|) 29)) (-1410 ((|#2| |#2|) 31)) (-2967 ((|#2| |#2| (-1074)) 79) ((|#2| |#2|) 80)) (-1330 (((-153 |#2|) |#2|) 27)) (-3801 ((|#2| |#2| (-1074)) 81) ((|#2| |#2|) 82)))
-(((-1099 |#1| |#2|) (-10 -7 (-15 -2967 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-1074))) (-15 -3801 (|#2| |#2|)) (-15 -3801 (|#2| |#2| (-1074))) (-15 -3549 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1544 ((-107) |#2|)) (-15 -1330 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1095) (-400 |#1|))) (T -1099))
-((-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-3801 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) (-2967 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
-(-10 -7 (-15 -2967 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-1074))) (-15 -3801 (|#2| |#2|)) (-15 -3801 (|#2| |#2| (-1074))) (-15 -3549 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1544 ((-107) |#2|)) (-15 -1330 ((-153 |#2|) |#2|)))
-((-3036 ((|#4| |#4| |#1|) 27)) (-3662 ((|#4| |#4| |#1|) 28)))
-(((-1100 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3036 (|#4| |#4| |#1|)) (-15 -3662 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1100))
-((-3662 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3036 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(-10 -7 (-15 -3036 (|#4| |#4| |#1|)) (-15 -3662 (|#4| |#4| |#1|)))
-((-3824 ((|#2| |#2|) 132)) (-2352 ((|#2| |#2|) 129)) (-1789 ((|#2| |#2|) 120)) (-3394 ((|#2| |#2|) 117)) (-3310 ((|#2| |#2|) 125)) (-3309 ((|#2| |#2|) 113)) (-1744 ((|#2| |#2|) 42)) (-3903 ((|#2| |#2|) 93)) (-3781 ((|#2| |#2|) 73)) (-4087 ((|#2| |#2|) 127)) (-3453 ((|#2| |#2|) 115)) (-4160 ((|#2| |#2|) 137)) (-2260 ((|#2| |#2|) 135)) (-3629 ((|#2| |#2|) 136)) (-2909 ((|#2| |#2|) 134)) (-3058 ((|#2| |#2|) 146)) (-3224 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-814 |#1|))) (|has| |#2| (-808 |#1|)) (|has| |#1| (-558 (-814 |#1|))) (|has| |#1| (-808 |#1|))))) (-2841 ((|#2| |#2|) 74)) (-1315 ((|#2| |#2|) 138)) (-3523 ((|#2| |#2|) 139)) (-3111 ((|#2| |#2|) 126)) (-1572 ((|#2| |#2|) 114)) (-1302 ((|#2| |#2|) 133)) (-2073 ((|#2| |#2|) 131)) (-3254 ((|#2| |#2|) 121)) (-4070 ((|#2| |#2|) 119)) (-2821 ((|#2| |#2|) 123)) (-2203 ((|#2| |#2|) 111)))
-(((-1101 |#1| |#2|) (-10 -7 (-15 -3523 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -2841 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -3310 (|#2| |#2|)) (-15 -1789 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -3224 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1095))) (T -1101))
-((-3224 (*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1095))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3310 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2203 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1315 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-2841 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(-10 -7 (-15 -3523 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -2841 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -3310 (|#2| |#2|)) (-15 -1789 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -4160 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -3224 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2300 (((-107) |#5| $) 59) (((-107) $) 101)) (-2802 ((|#5| |#5| $) 74)) (-3555 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-1323 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-1837 (((-3 $ "failed") (-583 |#5|)) 125)) (-1761 (((-3 $ "failed") $) 111)) (-3896 ((|#5| |#5| $) 93)) (-2169 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-3797 ((|#5| |#5| $) 97)) (-1292 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-1218 (((-2 (|:| -1219 (-583 |#5|)) (|:| -1602 (-583 |#5|))) $) 54)) (-2919 (((-107) |#5| $) 57) (((-107) $) 102)) (-2877 ((|#4| $) 107)) (-2067 (((-3 |#5| "failed") $) 109)) (-2825 (((-583 |#5|) $) 48)) (-1966 (((-107) |#5| $) 66) (((-107) $) 106)) (-4083 ((|#5| |#5| $) 80)) (-3706 (((-107) $ $) 26)) (-2844 (((-107) |#5| $) 62) (((-107) $) 104)) (-1382 ((|#5| |#5| $) 77)) (-1750 (((-3 |#5| "failed") $) 108)) (-2204 (($ $ |#5|) 126)) (-3625 (((-703) $) 51)) (-2272 (($ (-583 |#5|)) 123)) (-1491 (($ $ |#4|) 121)) (-2583 (($ $ |#4|) 120)) (-2202 (($ $) 119)) (-2254 (((-787) $) NIL) (((-583 |#5|) $) 112)) (-1444 (((-703) $) 129)) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-1874 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 99)) (-4060 (((-583 |#4|) $) 114)) (-1892 (((-107) |#4| $) 117)) (-1534 (((-107) $ $) 19)))
-(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1444 ((-703) |#1|)) (-15 -2204 (|#1| |#1| |#5|)) (-15 -3555 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1892 ((-107) |#4| |#1|)) (-15 -4060 ((-583 |#4|) |#1|)) (-15 -1761 ((-3 |#1| "failed") |#1|)) (-15 -2067 ((-3 |#5| "failed") |#1|)) (-15 -1750 ((-3 |#5| "failed") |#1|)) (-15 -3797 (|#5| |#5| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -3896 (|#5| |#5| |#1|)) (-15 -4083 (|#5| |#5| |#1|)) (-15 -1382 (|#5| |#5| |#1|)) (-15 -2802 (|#5| |#5| |#1|)) (-15 -1323 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1292 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1966 ((-107) |#1|)) (-15 -2844 ((-107) |#1|)) (-15 -2300 ((-107) |#1|)) (-15 -1874 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1966 ((-107) |#5| |#1|)) (-15 -2844 ((-107) |#5| |#1|)) (-15 -2300 ((-107) |#5| |#1|)) (-15 -2169 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -2919 ((-107) |#1|)) (-15 -2919 ((-107) |#5| |#1|)) (-15 -1218 ((-2 (|:| -1219 (-583 |#5|)) (|:| -1602 (-583 |#5|))) |#1|)) (-15 -3625 ((-703) |#1|)) (-15 -2825 ((-583 |#5|) |#1|)) (-15 -1257 ((-3 (-2 (|:| |bas| |#1|) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1257 ((-3 (-2 (|:| |bas| |#1|) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3706 ((-107) |#1| |#1|)) (-15 -1491 (|#1| |#1| |#4|)) (-15 -2583 (|#1| |#1| |#4|)) (-15 -2877 (|#4| |#1|)) (-15 -1837 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2254 ((-583 |#5|) |#1|)) (-15 -2272 (|#1| (-583 |#5|))) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3555 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|))) (-1103 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -1102))
-NIL
-(-10 -8 (-15 -1444 ((-703) |#1|)) (-15 -2204 (|#1| |#1| |#5|)) (-15 -3555 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1892 ((-107) |#4| |#1|)) (-15 -4060 ((-583 |#4|) |#1|)) (-15 -1761 ((-3 |#1| "failed") |#1|)) (-15 -2067 ((-3 |#5| "failed") |#1|)) (-15 -1750 ((-3 |#5| "failed") |#1|)) (-15 -3797 (|#5| |#5| |#1|)) (-15 -2202 (|#1| |#1|)) (-15 -3896 (|#5| |#5| |#1|)) (-15 -4083 (|#5| |#5| |#1|)) (-15 -1382 (|#5| |#5| |#1|)) (-15 -2802 (|#5| |#5| |#1|)) (-15 -1323 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1292 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1966 ((-107) |#1|)) (-15 -2844 ((-107) |#1|)) (-15 -2300 ((-107) |#1|)) (-15 -1874 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1966 ((-107) |#5| |#1|)) (-15 -2844 ((-107) |#5| |#1|)) (-15 -2300 ((-107) |#5| |#1|)) (-15 -2169 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -2919 ((-107) |#1|)) (-15 -2919 ((-107) |#5| |#1|)) (-15 -1218 ((-2 (|:| -1219 (-583 |#5|)) (|:| -1602 (-583 |#5|))) |#1|)) (-15 -3625 ((-703) |#1|)) (-15 -2825 ((-583 |#5|) |#1|)) (-15 -1257 ((-3 (-2 (|:| |bas| |#1|) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1257 ((-3 (-2 (|:| |bas| |#1|) (|:| -1261 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3706 ((-107) |#1| |#1|)) (-15 -1491 (|#1| |#1| |#4|)) (-15 -2583 (|#1| |#1| |#4|)) (-15 -2877 (|#4| |#1|)) (-15 -1837 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2254 ((-583 |#5|) |#1|)) (-15 -2272 (|#1| (-583 |#5|))) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3555 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1292 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2254 ((-787) |#1|)) (-15 -1534 ((-107) |#1| |#1|)))
-((-1587 (((-107) $ $) 7)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) 85)) (-3258 (((-583 $) (-583 |#4|)) 86)) (-1357 (((-583 |#3|) $) 33)) (-2799 (((-107) $) 26)) (-3741 (((-107) $) 17 (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) 101) (((-107) $) 97)) (-2802 ((|#4| |#4| $) 92)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) 27)) (-3552 (((-107) $ (-703)) 44)) (-3555 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) 79)) (-2706 (($) 45 T CONST)) (-1190 (((-107) $) 22 (|has| |#1| (-509)))) (-2212 (((-107) $ $) 24 (|has| |#1| (-509)))) (-4058 (((-107) $ $) 23 (|has| |#1| (-509)))) (-4021 (((-107) $) 25 (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-3381 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) 36)) (-3232 (($ (-583 |#4|)) 35)) (-1761 (((-3 $ "failed") $) 82)) (-3896 ((|#4| |#4| $) 89)) (-1783 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-3797 ((|#4| |#4| $) 87)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) 105)) (-3240 (((-583 |#4|) $) 52 (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) 104) (((-107) $) 103)) (-2877 ((|#3| $) 34)) (-2629 (((-107) $ (-703)) 43)) (-2332 (((-583 |#4|) $) 53 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) 47)) (-2402 (((-583 |#3|) $) 32)) (-1694 (((-107) |#3| $) 31)) (-2026 (((-107) $ (-703)) 42)) (-1277 (((-1057) $) 9)) (-2067 (((-3 |#4| "failed") $) 83)) (-2825 (((-583 |#4|) $) 107)) (-1966 (((-107) |#4| $) 99) (((-107) $) 95)) (-4083 ((|#4| |#4| $) 90)) (-3706 (((-107) $ $) 110)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) 100) (((-107) $) 96)) (-1382 ((|#4| |#4| $) 91)) (-3214 (((-1021) $) 10)) (-1750 (((-3 |#4| "failed") $) 84)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2463 (((-3 $ "failed") $ |#4|) 78)) (-2204 (($ $ |#4|) 77)) (-3029 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) 38)) (-1596 (((-107) $) 41)) (-2756 (($) 40)) (-3625 (((-703) $) 106)) (-3223 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4183)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4183)))) (-2435 (($ $) 39)) (-3667 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) 60)) (-1491 (($ $ |#3|) 28)) (-2583 (($ $ |#3|) 30)) (-2202 (($ $) 88)) (-3788 (($ $ |#3|) 29)) (-2254 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1444 (((-703) $) 76 (|has| |#3| (-338)))) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2258 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) 81)) (-1892 (((-107) |#3| $) 80)) (-1534 (((-107) $ $) 6)) (-2290 (((-703) $) 46 (|has| $ (-6 -4183)))))
-(((-1103 |#1| |#2| |#3| |#4|) (-1185) (-509) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1103))
-((-3706 (*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1261 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1103 *5 *6 *7 *8)))) (-1257 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1261 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1103 *6 *7 *8 *9)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) (-1218 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1219 (-583 *6)) (|:| -1602 (-583 *6)))))) (-2919 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2169 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1103 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))) (-2300 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2844 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1966 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1874 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1292 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1103 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) (-1323 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1103 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))) (-2802 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1382 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-4083 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3896 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2202 (*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-3797 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1219 *1) (|:| -1602 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1103 *4 *5 *6 *7)))) (-1750 (*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2067 (*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1761 (*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1892 (*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3555 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1103 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) (-2463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
-(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4183) (-6 -4184) (-15 -3706 ((-107) $ $)) (-15 -1257 ((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1257 ((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2825 ((-583 |t#4|) $)) (-15 -3625 ((-703) $)) (-15 -1218 ((-2 (|:| -1219 (-583 |t#4|)) (|:| -1602 (-583 |t#4|))) $)) (-15 -2919 ((-107) |t#4| $)) (-15 -2919 ((-107) $)) (-15 -2169 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -2300 ((-107) |t#4| $)) (-15 -2844 ((-107) |t#4| $)) (-15 -1966 ((-107) |t#4| $)) (-15 -1874 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -2300 ((-107) $)) (-15 -2844 ((-107) $)) (-15 -1966 ((-107) $)) (-15 -1292 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1323 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2802 (|t#4| |t#4| $)) (-15 -1382 (|t#4| |t#4| $)) (-15 -4083 (|t#4| |t#4| $)) (-15 -3896 (|t#4| |t#4| $)) (-15 -2202 ($ $)) (-15 -3797 (|t#4| |t#4| $)) (-15 -3258 ((-583 $) (-583 |t#4|))) (-15 -1698 ((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |t#4|)))) (-583 |t#4|))) (-15 -1750 ((-3 |t#4| "failed") $)) (-15 -2067 ((-3 |t#4| "failed") $)) (-15 -1761 ((-3 $ "failed") $)) (-15 -4060 ((-583 |t#3|) $)) (-15 -1892 ((-107) |t#3| $)) (-15 -3555 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2463 ((-3 $ "failed") $ |t#4|)) (-15 -2204 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -1444 ((-703) $)) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1109) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-1074)) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1523 (((-874 |#1|) $ (-703)) 16) (((-874 |#1|) $ (-703) (-703)) NIL)) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $ (-1074)) NIL) (((-703) $ (-1074) (-703)) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2029 (((-107) $) NIL)) (-1336 (($ $ (-583 (-1074)) (-583 (-489 (-1074)))) NIL) (($ $ (-1074) (-489 (-1074))) NIL) (($ |#1| (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3563 (($ $ (-1074)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-1771 (($ (-1 $) (-1074) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2204 (($ $ (-703)) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (($ $ (-1074) $) NIL) (($ $ (-583 (-1074)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-1248 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-3625 (((-489 (-1074)) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1074)) NIL) (($ (-874 |#1|)) NIL)) (-4104 ((|#1| $ (-489 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (((-874 |#1|) $ (-703)) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) NIL T CONST)) (-2738 (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1104 |#1|) (-13 (-673 |#1| (-1074)) (-10 -8 (-15 -4104 ((-874 |#1|) $ (-703))) (-15 -2254 ($ (-1074))) (-15 -2254 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $ (-1074) |#1|)) (-15 -1771 ($ (-1 $) (-1074) |#1|))) |%noBranch|))) (-961)) (T -1104))
-((-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1104 *4)) (-4 *4 (-961)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-961)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1104 *3)))) (-3563 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-1771 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1104 *4))) (-5 *3 (-1074)) (-5 *1 (-1104 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(-13 (-673 |#1| (-1074)) (-10 -8 (-15 -4104 ((-874 |#1|) $ (-703))) (-15 -2254 ($ (-1074))) (-15 -2254 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $ (-1074) |#1|)) (-15 -1771 ($ (-1 $) (-1074) |#1|))) |%noBranch|)))
-((-2711 (($ |#1| (-583 (-583 (-865 (-199)))) (-107)) 15)) (-3203 (((-107) $ (-107)) 14)) (-3858 (((-107) $) 13)) (-3462 (((-583 (-583 (-865 (-199)))) $) 10)) (-3592 ((|#1| $) 8)) (-2496 (((-107) $) 12)))
-(((-1105 |#1|) (-10 -8 (-15 -3592 (|#1| $)) (-15 -3462 ((-583 (-583 (-865 (-199)))) $)) (-15 -2496 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -3203 ((-107) $ (-107))) (-15 -2711 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) (-891)) (T -1105))
-((-2711 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1105 *2)) (-4 *2 (-891)))) (-3203 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1105 *3)) (-4 *3 (-891)))) (-3592 (*1 *2 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
-(-10 -8 (-15 -3592 (|#1| $)) (-15 -3462 ((-583 (-583 (-865 (-199)))) $)) (-15 -2496 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -3203 ((-107) $ (-107))) (-15 -2711 ($ |#1| (-583 (-583 (-865 (-199)))) (-107))))
-((-1441 (((-865 (-199)) (-865 (-199))) 25)) (-1482 (((-865 (-199)) (-199) (-199) (-199) (-199)) 10)) (-3609 (((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))) 35)) (-1369 (((-199) (-865 (-199)) (-865 (-199))) 21)) (-1843 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 22)) (-2690 (((-583 (-583 (-199))) (-517)) 31)) (-1663 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 20)) (-1645 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 19)) (* (((-865 (-199)) (-199) (-865 (-199))) 18)))
-(((-1106) (-10 -7 (-15 -1482 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1645 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1663 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1369 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -1843 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1441 ((-865 (-199)) (-865 (-199)))) (-15 -2690 ((-583 (-583 (-199))) (-517))) (-15 -3609 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))) (T -1106))
-((-3609 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1106)) (-5 *3 (-865 *4)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1106)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-1843 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-1369 (*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1106)))) (-1663 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1106)))) (-1482 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)) (-5 *3 (-199)))))
-(-10 -7 (-15 -1482 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1645 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1663 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1369 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -1843 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1441 ((-865 (-199)) (-865 (-199)))) (-15 -2690 ((-583 (-583 (-199))) (-517))) (-15 -3609 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3555 ((|#1| $ (-703)) 13)) (-1631 (((-703) $) 12)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2254 (((-879 |#1|) $) 10) (($ (-879 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1534 (((-107) $ $) 16 (|has| |#1| (-1003)))))
-(((-1107 |#1|) (-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2254 ($ (-879 |#1|))) (-15 -3555 (|#1| $ (-703))) (-15 -1631 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|))) (-1109)) (T -1107))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1109)) (-5 *1 (-1107 *3)))) (-3555 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1107 *3)) (-4 *3 (-1109)))))
-(-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2254 ($ (-879 |#1|))) (-15 -3555 (|#1| $ (-703))) (-15 -1631 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|)))
-((-2134 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517)) 79)) (-2040 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 73)) (-2101 (((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 58)))
-(((-1108 |#1|) (-10 -7 (-15 -2040 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -2101 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -2134 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517)))) (-319)) (T -1108))
-((-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1070 (-1070 *5)))) (-5 *1 (-1108 *5)) (-5 *3 (-1070 (-1070 *5))))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
-(-10 -7 (-15 -2040 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -2101 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -2134 ((-388 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-517))))
-NIL
-(((-1109) (-1185)) (T -1109))
-NIL
-(-13 (-10 -7 (-6 -3371)))
-((-1882 (((-107)) 14)) (-2502 (((-1159) (-583 |#1|) (-583 |#1|)) 18) (((-1159) (-583 |#1|)) 19)) (-2629 (((-107) |#1| |#1|) 30 (|has| |#1| (-779)))) (-2026 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-2311 ((|#1| (-583 |#1|)) 31 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-3457 (((-2 (|:| -2722 (-583 |#1|)) (|:| -2682 (-583 |#1|)))) 16)))
-(((-1110 |#1|) (-10 -7 (-15 -2502 ((-1159) (-583 |#1|))) (-15 -2502 ((-1159) (-583 |#1|) (-583 |#1|))) (-15 -3457 ((-2 (|:| -2722 (-583 |#1|)) (|:| -2682 (-583 |#1|))))) (-15 -2026 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2026 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2311 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1882 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2311 (|#1| (-583 |#1|))) (-15 -2629 ((-107) |#1| |#1|))) |%noBranch|)) (-1003)) (T -1110))
-((-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1110 *2)))) (-1882 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-1003)))) (-2026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1110 *3)))) (-2026 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-3457 (*1 *2) (-12 (-5 *2 (-2 (|:| -2722 (-583 *3)) (|:| -2682 (-583 *3)))) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) (-2502 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))))
-(-10 -7 (-15 -2502 ((-1159) (-583 |#1|))) (-15 -2502 ((-1159) (-583 |#1|) (-583 |#1|))) (-15 -3457 ((-2 (|:| -2722 (-583 |#1|)) (|:| -2682 (-583 |#1|))))) (-15 -2026 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2026 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2311 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1882 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2311 (|#1| (-583 |#1|))) (-15 -2629 ((-107) |#1| |#1|))) |%noBranch|))
-((-3115 (((-1159) (-583 (-1074)) (-583 (-1074))) 12) (((-1159) (-583 (-1074))) 10)) (-3669 (((-1159)) 13)) (-2671 (((-2 (|:| -2682 (-583 (-1074))) (|:| -2722 (-583 (-1074))))) 17)))
-(((-1111) (-10 -7 (-15 -3115 ((-1159) (-583 (-1074)))) (-15 -3115 ((-1159) (-583 (-1074)) (-583 (-1074)))) (-15 -2671 ((-2 (|:| -2682 (-583 (-1074))) (|:| -2722 (-583 (-1074)))))) (-15 -3669 ((-1159))))) (T -1111))
-((-3669 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1111)))) (-2671 (*1 *2) (-12 (-5 *2 (-2 (|:| -2682 (-583 (-1074))) (|:| -2722 (-583 (-1074))))) (-5 *1 (-1111)))) (-3115 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))))
-(-10 -7 (-15 -3115 ((-1159) (-583 (-1074)))) (-15 -3115 ((-1159) (-583 (-1074)) (-583 (-1074)))) (-15 -2671 ((-2 (|:| -2682 (-583 (-1074))) (|:| -2722 (-583 (-1074)))))) (-15 -3669 ((-1159))))
-((-2377 (($ $) 16)) (-3083 (((-107) $) 23)))
-(((-1112 |#1|) (-10 -8 (-15 -2377 (|#1| |#1|)) (-15 -3083 ((-107) |#1|))) (-1113)) (T -1112))
-NIL
-(-10 -8 (-15 -2377 (|#1| |#1|)) (-15 -3083 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 51)) (-2674 (((-388 $) $) 52)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3083 (((-107) $) 53)) (-3469 (((-107) $) 31)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1376 (((-388 $) $) 50)) (-2483 (((-3 $ "failed") $ $) 42)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
-(((-1113) (-1185)) (T -1113))
-((-3083 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-107)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) (-2377 (*1 *1 *1) (-4 *1 (-1113))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))))
-(-13 (-421) (-10 -8 (-15 -3083 ((-107) $)) (-15 -2674 ((-388 $) $)) (-15 -2377 ($ $)) (-15 -1376 ((-388 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1939 (((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|)) 23)))
-(((-1114 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1939 ((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|)))) (-961) (-961) (-1074) (-1074) |#1| |#2|) (T -1114))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1119 *6 *8 *10)) (-5 *1 (-1114 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))))
-(-10 -7 (-15 -1939 ((-1119 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1119 |#1| |#3| |#5|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-2725 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 162 (|has| |#1| (-333)))) (-2674 (((-388 $) $) 163 (|has| |#1| (-333)))) (-1386 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) 153 (|has| |#1| (-333)))) (-2705 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1533 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-2532 (($ $ $) 157 (|has| |#1| (-333)))) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-2830 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2509 (($ $ $) 156 (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3083 (((-107) $) 164 (|has| |#1| (-333)))) (-2761 (((-107) $) 73)) (-2665 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) 101)) (-3766 (($ (-1 |#1| (-517)) $) 173)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-2029 (((-107) $) 62)) (-1336 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1875 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1360 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 165 (|has| |#1| (-333)))) (-3563 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3782 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1387 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1376 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 158 (|has| |#1| (-333)))) (-2204 (($ $ (-517)) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2643 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3196 (((-703) $) 154 (|has| |#1| (-333)))) (-1437 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 155 (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3625 (((-517) $) 64)) (-1543 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-4104 ((|#1| $ (-517)) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-1584 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1557 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1115 |#1|) (-1185) (-961)) (T -1115))
-((-4016 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1115 *3)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1115 *3)) (-4 *3 (-961)))) (-2830 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2830 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-3563 (*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1133 |t#1| (-517)) (-10 -8 (-15 -4016 ($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3766 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2830 ((-377 (-874 |t#1|)) $ (-517))) (-15 -2830 ((-377 (-874 |t#1|)) $ (-517) (-517)))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $)) (IF (|has| |t#1| (-15 -3563 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1357 ((-583 (-1074)) |t#1|))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-918)) (-6 (-1095))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-517)) . T))
-((-2778 (((-107) $) 12)) (-1837 (((-3 |#3| "failed") $) 17) (((-3 (-1074) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3232 ((|#3| $) 14) (((-1074) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
-(((-1116 |#1| |#2| |#3|) (-10 -8 (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2778 ((-107) |#1|))) (-1117 |#2| |#3|) (-961) (-1146 |#2|)) (T -1116))
-NIL
-(-10 -8 (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3232 ((-1074) |#1|)) (-15 -1837 ((-3 (-1074) "failed") |#1|)) (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2778 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2065 ((|#2| $) 231 (-4032 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1821 ((|#2| $) 267)) (-2428 (((-3 |#2| "failed") $) 263)) (-1565 ((|#2| $) 264)) (-2725 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-1851 (((-388 (-1070 $)) (-1070 $)) 240 (-4032 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2377 (($ $) 162 (|has| |#1| (-333)))) (-2674 (((-388 $) $) 163 (|has| |#1| (-333)))) (-1386 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 237 (-4032 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2448 (((-107) $ $) 153 (|has| |#1| (-333)))) (-2705 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3345 (((-517) $) 249 (-4032 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1533 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4032 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4032 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1074) "failed") $) 242 (-4032 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-3232 ((|#2| $) 269) (((-517) $) 260 (-4032 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4032 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1074) $) 243 (-4032 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-2561 (($ $) 266) (($ (-517) $) 265)) (-2532 (($ $ $) 157 (|has| |#1| (-333)))) (-1221 (($ $) 60)) (-2749 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 219 (-4032 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4032 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3775 (((-3 $ "failed") $) 34)) (-2830 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-4100 (($) 233 (-4032 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2509 (($ $ $) 156 (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3083 (((-107) $) 164 (|has| |#1| (-333)))) (-3162 (((-107) $) 247 (-4032 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2761 (((-107) $) 73)) (-2665 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 225 (-4032 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 224 (-4032 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3730 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3469 (((-107) $) 31)) (-1583 (($ $) 229 (|has| |#1| (-333)))) (-1842 ((|#2| $) 227 (|has| |#1| (-333)))) (-2003 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3326 (((-3 $ "failed") $) 261 (-4032 (|has| |#2| (-1050)) (|has| |#1| (-333))))) (-1199 (((-107) $) 248 (-4032 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3699 (($ $ (-843)) 101)) (-3766 (($ (-1 |#1| (-517)) $) 173)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-2029 (((-107) $) 62)) (-1336 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-4055 (($ $ $) 251 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3105 (($ $ $) 252 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1939 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1875 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1360 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1579 (($ (-517) |#2|) 268)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 165 (|has| |#1| (-333)))) (-3563 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3782 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3680 (($) 262 (-4032 (|has| |#2| (-1050)) (|has| |#1| (-333))) CONST)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1387 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-2172 (($ $) 232 (-4032 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2908 ((|#2| $) 235 (-4032 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2736 (((-388 (-1070 $)) (-1070 $)) 238 (-4032 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1673 (((-388 (-1070 $)) (-1070 $)) 239 (-4032 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1376 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 158 (|has| |#1| (-333)))) (-2204 (($ $ (-517)) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2643 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) |#2|) 212 (-4032 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 |#2|)) 211 (-4032 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4032 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4032 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4032 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4032 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3196 (((-703) $) 154 (|has| |#1| (-333)))) (-1437 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015))) (($ $ |#2|) 206 (-4032 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 155 (|has| |#1| (-333)))) (-1248 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3782 (-4032 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3782 (-4032 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) 89 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074) (-703)) 88 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1074))) 87 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074)) 86 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1728 (($ $) 230 (|has| |#1| (-333)))) (-1852 ((|#2| $) 228 (|has| |#1| (-333)))) (-3625 (((-517) $) 64)) (-1543 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3667 (((-199) $) 246 (-4032 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) 245 (-4032 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) 244 (-4032 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) 223 (-4032 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) 222 (-4032 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 236 (-4032 (-4032 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#1| (-333))))) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1074)) 241 (-4032 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-4104 ((|#1| $ (-517)) 59)) (-2486 (((-3 $ "failed") $) 48 (-3782 (-4032 (-3782 (|has| |#2| (-132)) (-4032 (|has| $ (-132)) (|has| |#2| (-831)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-2434 ((|#2| $) 234 (-4032 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1584 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1557 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1724 (($ $) 250 (-4032 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3782 (-4032 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3782 (-4032 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) 93 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074) (-703)) 92 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1074))) 91 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1074)) 90 (-3782 (-4032 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1600 (((-107) $ $) 254 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1571 (((-107) $ $) 255 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 253 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1558 (((-107) $ $) 256 (-4032 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1117 |#1| |#2|) (-1185) (-961) (-1146 |t#1|)) (T -1117))
-((-3625 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)) (-5 *2 (-517)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1117 *3 *2)) (-4 *2 (-1146 *3)))) (-1579 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1117 *4 *3)) (-4 *3 (-1146 *4)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))) (-2561 (*1 *1 *1) (-12 (-4 *1 (-1117 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1146 *2)))) (-2561 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))) (-2428 (*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
-(-13 (-1115 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1579 ($ (-517) |t#2|)) (-15 -3625 ((-517) $)) (-15 -1821 (|t#2| $)) (-15 -2561 ($ $)) (-15 -2561 ($ (-517) $)) (-15 -2254 ($ |t#2|)) (-15 -1565 (|t#2| $)) (-15 -2428 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-909 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1074) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1074) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-822 (-1074)) -3782 (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1074)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))) ((-808 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))) ((-806 |#2|) |has| |#1| (-333)) ((-831) -12 (|has| |#1| (-333)) (|has| |#2| (-831))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-909 |#2|) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-937) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-952 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-1074)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1074)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-333)) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) -12 (|has| |#1| (-333)) (|has| |#2| (-1050))) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1109) |has| |#1| (-333)) ((-1113) |has| |#1| (-333)) ((-1115 |#1|) . T) ((-1133 |#1| (-517)) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 70)) (-2065 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 88)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-1821 ((|#2| $) 11)) (-2428 (((-3 |#2| "failed") $) 30)) (-1565 ((|#2| $) 31)) (-2725 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3345 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1533 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1074) "failed") $) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-3232 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1074) $) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333))))) (-2561 (($ $) 61) (($ (-517) $) 24)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-2749 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3775 (((-3 $ "failed") $) 77)) (-2830 (((-377 (-874 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-4100 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-3162 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2761 (((-107) $) 64)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3730 (((-517) $) 93) (((-517) $ (-517)) 95)) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL (|has| |#1| (-333)))) (-1842 ((|#2| $) 151 (|has| |#1| (-333)))) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3326 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1050)) (|has| |#1| (-333))))) (-1199 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3699 (($ $ (-843)) 136)) (-3766 (($ (-1 |#1| (-517)) $) 132)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-517)) 19) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-4055 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3105 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1939 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1875 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1579 (($ (-517) |#2|) 10)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 145 (|has| |#1| (-333)))) (-3563 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 219 (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-3680 (($) NIL (-12 (|has| |#2| (-1050)) (|has| |#1| (-333))) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2172 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2908 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-517)) 126)) (-2483 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) |#2|) NIL (-12 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1074) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1015))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3782 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) 140 (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1728 (($ $) NIL (|has| |#1| (-333)))) (-1852 ((|#2| $) 152 (|has| |#1| (-333)))) (-3625 (((-517) $) 12)) (-1543 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3667 (((-199) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1486 (($ $) 124)) (-2254 (((-787) $) 242) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1074)) NIL (-12 (|has| |#2| (-952 (-1074))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-517)) 74)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1217 (((-703)) 142)) (-2984 ((|#1| $) 90)) (-2434 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1584 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1724 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 13 T CONST)) (-2411 (($) 17 T CONST)) (-2738 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3782 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3782 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#2| (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1600 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1571 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1534 (((-107) $ $) 63)) (-1585 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1558 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1663 (($ $) 213) (($ $ $) 68)) (-1645 (($ $ $) 66)) (** (($ $ (-843)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1118 |#1| |#2|) (-1117 |#1| |#2|) (-961) (-1146 |#1|)) (T -1118))
-NIL
-(-1117 |#1| |#2|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2065 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 10)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2239 (($ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3531 (((-107) $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1935 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-1378 (((-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1821 (((-1147 |#1| |#2| |#3|) $) NIL)) (-2428 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) NIL)) (-1565 (((-1147 |#1| |#2| |#3|) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3345 (((-517) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-4016 (($ (-1055 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3232 (((-1147 |#1| |#2| |#3|) $) NIL) (((-1074) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2561 (($ $) NIL) (($ (-517) $) NIL)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-1147 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1154 (-1147 |#1| |#2| |#3|)))) (-623 $) (-1154 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3775 (((-3 $ "failed") $) NIL)) (-2830 (((-377 (-874 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-4100 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-3162 (((-107) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3975 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3730 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-3469 (((-107) $) NIL)) (-1583 (($ $) NIL (|has| |#1| (-333)))) (-1842 (((-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3326 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))))) (-1199 (((-107) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3699 (($ $ (-843)) NIL)) (-3766 (($ (-1 |#1| (-517)) $) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-517)) 17) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-4055 (($ $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3105 (($ $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1579 (($ (-517) (-1147 |#1| |#2| |#3|)) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1050)) (|has| |#1| (-333))) CONST)) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2172 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2908 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-517)) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1074) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1074)) (-583 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-478 (-1074) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1147 |#1| |#2| |#3|)) (-583 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-280 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1015))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-258 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1150 |#2|)) 24) (($ $ (-703)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1728 (($ $) NIL (|has| |#1| (-333)))) (-1852 (((-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3625 (((-517) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3667 (((-493) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1147 |#1| |#2| |#3|)) NIL) (($ (-1150 |#2|)) 22) (($ (-1074)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-1074))) (|has| |#1| (-333)))) (($ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-4104 ((|#1| $ (-517)) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 11)) (-2434 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1724 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 19 T CONST)) (-2411 (($) 15 T CONST)) (-2738 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074) (-703)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-583 (-1074))) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074)))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-822 (-1074))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1074))))))) (-1600 (((-107) $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1571 (((-107) $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1558 (((-107) $ $) NIL (-3782 (-12 (|has| (-1147 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1147 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1119 |#1| |#2| |#3|) (-13 (-1117 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1119))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1117 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-3893 (((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107)) 10)) (-1943 (((-388 |#1|) |#1|) 21)) (-1376 (((-388 |#1|) |#1|) 20)))
-(((-1120 |#1|) (-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1|)) (-15 -3893 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107)))) (-1131 (-517))) (T -1120))
-((-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))) (-1943 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))) (-1376 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
-(-10 -7 (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1943 ((-388 |#1|) |#1|)) (-15 -3893 ((-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| |#1|) (|:| -1436 (-517)))))) |#1| (-107))))
-((-1939 (((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 23 (|has| |#1| (-777))) (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 17)))
-(((-1121 |#1| |#2|) (-10 -7 (-15 -1939 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (IF (|has| |#1| (-777)) (-15 -1939 ((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) |%noBranch|)) (-1109) (-1109)) (T -1121))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1121 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))))
-(-10 -7 (-15 -1939 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) (IF (|has| |#1| (-777)) (-15 -1939 ((-1055 |#2|) (-1 |#2| |#1|) (-1122 |#1|))) |%noBranch|))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2543 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1939 (((-1055 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-2722 ((|#1| $) 14)) (-3349 ((|#1| $) 10)) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-3360 (((-517) $) 18)) (-2682 ((|#1| $) 17)) (-3373 ((|#1| $) 11)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3992 (((-107) $) 16)) (-3523 (((-1055 |#1|) $) 38 (|has| |#1| (-777))) (((-1055 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3667 (($ |#1|) 25)) (-2254 (($ (-998 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1003)))) (-2957 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1321 (($ $ (-517)) 13)) (-1534 (((-107) $ $) 27 (|has| |#1| (-1003)))))
-(((-1122 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2957 ($ |#1|)) (-15 -2543 ($ |#1|)) (-15 -2254 ($ (-998 |#1|))) (-15 -3992 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1055 |#1|))) |%noBranch|))) (-1109)) (T -1122))
-((-2957 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))) (-2543 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1109)) (-5 *1 (-1122 *3)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1122 *3)) (-4 *3 (-1109)))))
-(-13 (-997 |#1|) (-10 -8 (-15 -2957 ($ |#1|)) (-15 -2543 ($ |#1|)) (-15 -2254 ($ (-998 |#1|))) (-15 -3992 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1055 |#1|))) |%noBranch|)))
-((-1939 (((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|)) 15)))
-(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 ((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|)))) (-1074) (-961) (-1074) (-961)) (T -1123))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1128 *5 *6)) (-14 *5 (-1074)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1128 *7 *8)) (-5 *1 (-1123 *5 *6 *7 *8)) (-14 *7 (-1074)))))
-(-10 -7 (-15 -1939 ((-1128 |#3| |#4|) (-1 |#4| |#2|) (-1128 |#1| |#2|))))
-((-1617 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3123 ((|#1| |#3|) 13)) (-3327 ((|#3| |#3|) 19)))
-(((-1124 |#1| |#2| |#3|) (-10 -7 (-15 -3123 (|#1| |#3|)) (-15 -3327 (|#3| |#3|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-1131 |#2|)) (T -1124))
-((-1617 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1124 *4 *5 *3)) (-4 *3 (-1131 *5)))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1124 *3 *4 *2)) (-4 *2 (-1131 *4)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1124 *2 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -3123 (|#1| |#3|)) (-15 -3327 (|#3| |#3|)) (-15 -1617 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2683 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-3070 (((-3 |#2| "failed") |#2| (-703)) 30)) (-4117 (((-3 (-2 (|:| -3623 |#2|) (|:| -3633 |#2|)) "failed") |#2|) 42)) (-1438 (((-583 |#2|) |#2|) 44)) (-3251 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -3070 ((-3 |#2| "failed") |#2| (-703))) (-15 -2683 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3251 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4117 ((-3 (-2 (|:| -3623 |#2|) (|:| -3633 |#2|)) "failed") |#2|)) (-15 -1438 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1131 |#1|)) (T -1125))
-((-1438 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))) (-4117 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3623 *3) (|:| -3633 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))) (-3251 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-1131 *3)))) (-2683 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))) (-3070 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
-(-10 -7 (-15 -3070 ((-3 |#2| "failed") |#2| (-703))) (-15 -2683 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3251 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4117 ((-3 (-2 (|:| -3623 |#2|) (|:| -3633 |#2|)) "failed") |#2|)) (-15 -1438 ((-583 |#2|) |#2|)))
-((-2918 (((-3 (-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) "failed") |#2| |#2|) 31)))
-(((-1126 |#1| |#2|) (-10 -7 (-15 -2918 ((-3 (-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) "failed") |#2| |#2|))) (-509) (-1131 |#1|)) (T -1126))
-((-2918 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1131 *4)))))
-(-10 -7 (-15 -2918 ((-3 (-2 (|:| -2317 |#2|) (|:| -2240 |#2|)) "failed") |#2| |#2|)))
-((-2167 ((|#2| |#2| |#2|) 19)) (-3314 ((|#2| |#2| |#2|) 30)) (-1995 ((|#2| |#2| |#2| (-703) (-703)) 36)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -2167 (|#2| |#2| |#2|)) (-15 -3314 (|#2| |#2| |#2|)) (-15 -1995 (|#2| |#2| |#2| (-703) (-703)))) (-961) (-1131 |#1|)) (T -1127))
-((-1995 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1131 *4)))) (-3314 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))) (-2167 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
-(-10 -7 (-15 -2167 (|#2| |#2| |#2|)) (-15 -3314 (|#2| |#2| |#2|)) (-15 -1995 (|#2| |#2| |#2| (-703) (-703))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1364 (((-1154 |#2|) $ (-703)) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-1255 (($ (-1070 |#2|)) NIL)) (-2374 (((-1070 $) $ (-989)) NIL) (((-1070 |#2|) $) NIL)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2239 (($ $) NIL (|has| |#2| (-509)))) (-3531 (((-107) $) NIL (|has| |#2| (-509)))) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) NIL (|has| |#2| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2377 (($ $) NIL (|has| |#2| (-421)))) (-2674 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-2448 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3983 (($ $ (-703)) NIL)) (-2958 (($ $ (-703)) NIL)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3232 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-989) $) NIL)) (-3167 (($ $ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2532 (($ $ $) NIL (|has| |#2| (-333)))) (-1221 (($ $) NIL)) (-2749 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#2|)) (|:| |vec| (-1154 |#2|))) (-623 $) (-1154 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-2509 (($ $ $) NIL (|has| |#2| (-333)))) (-1414 (($ $ $) NIL)) (-3466 (($ $ $) NIL (|has| |#2| (-509)))) (-3064 (((-2 (|:| -1965 |#2|) (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2038 (($ $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1206 (((-583 $) $) NIL)) (-3083 (((-107) $) NIL (|has| |#2| (-831)))) (-2083 (($ $ |#2| (-703) $) NIL)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3730 (((-703) $ $) NIL (|has| |#2| (-509)))) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3326 (((-3 $ "failed") $) NIL (|has| |#2| (-1050)))) (-1347 (($ (-1070 |#2|) (-989)) NIL) (($ (-1070 $) (-989)) NIL)) (-3699 (($ $ (-703)) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-1336 (($ |#2| (-703)) 17) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-989)) NIL) (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL)) (-3876 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-779)))) (-3105 (($ $ $) NIL (|has| |#2| (-779)))) (-3602 (($ (-1 (-703) (-703)) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-3145 (((-1070 |#2|) $) NIL)) (-3382 (((-3 (-989) "failed") $) NIL)) (-1687 (($ $) NIL)) (-1193 ((|#2| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1277 (((-1057) $) NIL)) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) NIL)) (-3789 (((-3 (-583 $) "failed") $) NIL)) (-1674 (((-3 (-583 $) "failed") $) NIL)) (-3106 (((-3 (-2 (|:| |var| (-989)) (|:| -3010 (-703))) "failed") $) NIL)) (-3563 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-3680 (($) NIL (|has| |#2| (-1050)) CONST)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 ((|#2| $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-421)))) (-1387 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1776 (($ $ (-703) |#2| $) NIL)) (-2736 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-831)))) (-1376 (((-388 $) $) NIL (|has| |#2| (-831)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#2| (-333)))) (-2483 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2049 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) NIL) (($ $ (-583 (-989)) (-583 |#2|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3196 (((-703) $) NIL (|has| |#2| (-333)))) (-1437 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-1730 (((-3 $ "failed") $ (-703)) NIL)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#2| (-333)))) (-3383 (($ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-1248 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3625 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3667 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4128 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2472 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2254 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) NIL) (($ (-1150 |#1|)) 19) (($ (-377 (-517))) NIL (-3782 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2486 (((-3 $ "failed") $) NIL (-3782 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2673 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2411 (($) 14 T CONST)) (-2738 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1074)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1074) (-703)) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) NIL (|has| |#2| (-822 (-1074)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1600 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1534 (((-107) $ $) NIL)) (-1585 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1678 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1128 |#1| |#2|) (-13 (-1131 |#2|) (-10 -8 (-15 -2254 ($ (-1150 |#1|))) (-15 -1776 ($ $ (-703) |#2| $)))) (-1074) (-961)) (T -1128))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-1128 *3 *4)) (-4 *4 (-961)))) (-1776 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1128 *4 *3)) (-14 *4 (-1074)) (-4 *3 (-961)))))
-(-13 (-1131 |#2|) (-10 -8 (-15 -2254 ($ (-1150 |#1|))) (-15 -1776 ($ $ (-703) |#2| $))))
-((-1939 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1131 |#1|) (-961) (-1131 |#3|)) (T -1129))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1131 *6)) (-5 *1 (-1129 *5 *4 *6 *2)) (-4 *4 (-1131 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1364 (((-1154 |#2|) $ (-703)) 113)) (-1357 (((-583 (-989)) $) 15)) (-1255 (($ (-1070 |#2|)) 66)) (-3916 (((-703) $) NIL) (((-703) $ (-583 (-989))) 18)) (-1851 (((-388 (-1070 $)) (-1070 $)) 183)) (-2377 (($ $) 173)) (-2674 (((-388 $) $) 171)) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 81)) (-3983 (($ $ (-703)) 70)) (-2958 (($ $ (-703)) 72)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1837 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-989) "failed") $) NIL)) (-3232 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-989) $) NIL)) (-3466 (($ $ $) 150)) (-3064 (((-2 (|:| -1965 |#2|) (|:| -2317 $) (|:| -2240 $)) $ $) 152)) (-3730 (((-703) $ $) 168)) (-3326 (((-3 $ "failed") $) 122)) (-1336 (($ |#2| (-703)) NIL) (($ $ (-989) (-703)) 46) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-3876 (((-703) $) NIL) (((-703) $ (-989)) 41) (((-583 (-703)) $ (-583 (-989))) 42)) (-3145 (((-1070 |#2|) $) 58)) (-3382 (((-3 (-989) "failed") $) 39)) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) 69)) (-3563 (($ $) 194)) (-3680 (($) 118)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 180)) (-2736 (((-388 (-1070 $)) (-1070 $)) 87)) (-1673 (((-388 (-1070 $)) (-1070 $)) 85)) (-1376 (((-388 $) $) 105)) (-2049 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) 31) (($ $ (-583 (-989)) (-583 |#2|)) 28) (($ $ (-989) $) 25) (($ $ (-583 (-989)) (-583 $)) 23)) (-3196 (((-703) $) 186)) (-1437 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 185) (((-377 $) $ (-377 $)) 167)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 189)) (-1248 (($ $ (-989)) 139) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1074)) NIL) (($ $ (-583 (-1074))) NIL) (($ $ (-1074) (-703)) NIL) (($ $ (-583 (-1074)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3625 (((-703) $) NIL) (((-703) $ (-989)) 16) (((-583 (-703)) $ (-583 (-989))) 20)) (-4128 ((|#2| $) NIL) (($ $ (-989)) 124)) (-2472 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
-(((-1130 |#1| |#2|) (-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3196 ((-703) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -1437 (|#2| (-377 |#1|) |#2|)) (-15 -1781 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3064 ((-2 (|:| -1965 |#2|) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -2472 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -2472 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3730 ((-703) |#1| |#1|)) (-15 -1437 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2958 (|#1| |#1| (-703))) (-15 -3983 (|#1| |#1| (-703))) (-15 -2116 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| (-703))) (-15 -1255 (|#1| (-1070 |#2|))) (-15 -3145 ((-1070 |#2|) |#1|)) (-15 -1364 ((-1154 |#2|) |#1| (-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| |#1|)) (-15 -1437 (|#2| |#1| |#2|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1851 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -4128 (|#1| |#1| (-989))) (-15 -1357 ((-583 (-989)) |#1|)) (-15 -3916 ((-703) |#1| (-583 (-989)))) (-15 -3916 ((-703) |#1|)) (-15 -1336 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1336 (|#1| |#1| (-989) (-703))) (-15 -3876 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3876 ((-703) |#1| (-989))) (-15 -3382 ((-3 (-989) "failed") |#1|)) (-15 -3625 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3625 ((-703) |#1| (-989))) (-15 -3232 ((-989) |#1|)) (-15 -1837 ((-3 (-989) "failed") |#1|)) (-15 -2254 (|#1| (-989))) (-15 -2049 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-989) |#1|)) (-15 -2049 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2049 (|#1| |#1| (-989) |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3625 ((-703) |#1|)) (-15 -1336 (|#1| |#2| (-703))) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -3876 ((-703) |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -1248 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-989) (-703))) (-15 -1248 (|#1| |#1| (-583 (-989)))) (-15 -1248 (|#1| |#1| (-989))) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|))) (-1131 |#2|) (-961)) (T -1130))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -3875 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2674 ((-388 |#1|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -3680 (|#1|)) (-15 -3326 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3196 ((-703) |#1|)) (-15 -2816 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -1437 (|#2| (-377 |#1|) |#2|)) (-15 -1781 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3064 ((-2 (|:| -1965 |#2|) (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| |#1|)) (-15 -3466 (|#1| |#1| |#1|)) (-15 -2472 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -2472 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3730 ((-703) |#1| |#1|)) (-15 -1437 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2958 (|#1| |#1| (-703))) (-15 -3983 (|#1| |#1| (-703))) (-15 -2116 ((-2 (|:| -2317 |#1|) (|:| -2240 |#1|)) |#1| (-703))) (-15 -1255 (|#1| (-1070 |#2|))) (-15 -3145 ((-1070 |#2|) |#1|)) (-15 -1364 ((-1154 |#2|) |#1| (-703))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1248 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-1074) (-703))) (-15 -1248 (|#1| |#1| (-583 (-1074)))) (-15 -1248 (|#1| |#1| (-1074))) (-15 -1248 (|#1| |#1|)) (-15 -1248 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| |#1|)) (-15 -1437 (|#2| |#1| |#2|)) (-15 -1376 ((-388 |#1|) |#1|)) (-15 -1851 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -1673 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2736 ((-388 (-1070 |#1|)) (-1070 |#1|))) (-15 -2899 ((-3 (-583 (-1070 |#1|)) "failed") (-583 (-1070 |#1|)) (-1070 |#1|))) (-15 -4128 (|#1| |#1| (-989))) (-15 -1357 ((-583 (-989)) |#1|)) (-15 -3916 ((-703) |#1| (-583 (-989)))) (-15 -3916 ((-703) |#1|)) (-15 -1336 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1336 (|#1| |#1| (-989) (-703))) (-15 -3876 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3876 ((-703) |#1| (-989))) (-15 -3382 ((-3 (-989) "failed") |#1|)) (-15 -3625 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3625 ((-703) |#1| (-989))) (-15 -3232 ((-989) |#1|)) (-15 -1837 ((-3 (-989) "failed") |#1|)) (-15 -2254 (|#1| (-989))) (-15 -2049 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2049 (|#1| |#1| (-989) |#1|)) (-15 -2049 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2049 (|#1| |#1| (-989) |#2|)) (-15 -2049 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2049 (|#1| |#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| (-265 |#1|))) (-15 -2049 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3625 ((-703) |#1|)) (-15 -1336 (|#1| |#2| (-703))) (-15 -3232 ((-517) |#1|)) (-15 -1837 ((-3 (-517) "failed") |#1|)) (-15 -3232 ((-377 (-517)) |#1|)) (-15 -1837 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2254 (|#1| |#2|)) (-15 -1837 ((-3 |#2| "failed") |#1|)) (-15 -3232 (|#2| |#1|)) (-15 -3876 ((-703) |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -1248 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1248 (|#1| |#1| (-989) (-703))) (-15 -1248 (|#1| |#1| (-583 (-989)))) (-15 -1248 (|#1| |#1| (-989))) (-15 -2254 (|#1| (-517))) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1364 (((-1154 |#1|) $ (-703)) 238)) (-1357 (((-583 (-989)) $) 110)) (-1255 (($ (-1070 |#1|)) 236)) (-2374 (((-1070 $) $ (-989)) 125) (((-1070 |#1|) $) 124)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2239 (($ $) 88 (|has| |#1| (-509)))) (-3531 (((-107) $) 90 (|has| |#1| (-509)))) (-3916 (((-703) $) 112) (((-703) $ (-583 (-989))) 111)) (-2646 (((-3 $ "failed") $ $) 19)) (-1844 (($ $ $) 223 (|has| |#1| (-509)))) (-1851 (((-388 (-1070 $)) (-1070 $)) 100 (|has| |#1| (-831)))) (-2377 (($ $) 98 (|has| |#1| (-421)))) (-2674 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2899 (((-3 (-583 (-1070 $)) "failed") (-583 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-831)))) (-2448 (((-107) $ $) 208 (|has| |#1| (-333)))) (-3983 (($ $ (-703)) 231)) (-2958 (($ $ (-703)) 230)) (-1781 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) 136)) (-3232 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) (((-989) $) 135)) (-3167 (($ $ $ (-989)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2532 (($ $ $) 212 (|has| |#1| (-333)))) (-1221 (($ $) 154)) (-2749 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 (-517))) (|:| |vec| (-1154 (-517)))) (-623 $) (-1154 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3534 (-623 |#1|)) (|:| |vec| (-1154 |#1|))) (-623 $) (-1154 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 211 (|has| |#1| (-333)))) (-1414 (($ $ $) 229)) (-3466 (($ $ $) 220 (|has| |#1| (-509)))) (-3064 (((-2 (|:| -1965 |#1|) (|:| -2317 $) (|:| -2240 $)) $ $) 219 (|has| |#1| (-509)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-2038 (($ $) 176 (|has| |#1| (-421))) (($ $ (-989)) 105 (|has| |#1| (-421)))) (-1206 (((-583 $) $) 109)) (-3083 (((-107) $) 96 (|has| |#1| (-831)))) (-2083 (($ $ |#1| (-703) $) 172)) (-3975 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3730 (((-703) $ $) 224 (|has| |#1| (-509)))) (-3469 (((-107) $) 31)) (-3604 (((-703) $) 169)) (-3326 (((-3 $ "failed") $) 204 (|has| |#1| (-1050)))) (-1347 (($ (-1070 |#1|) (-989)) 117) (($ (-1070 $) (-989)) 116)) (-3699 (($ $ (-703)) 235)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-3284 (((-583 $) $) 126)) (-2029 (((-107) $) 152)) (-1336 (($ |#1| (-703)) 153) (($ $ (-989) (-703)) 119) (($ $ (-583 (-989)) (-583 (-703))) 118)) (-3431 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $ (-989)) 120) (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 233)) (-3876 (((-703) $) 170) (((-703) $ (-989)) 122) (((-583 (-703)) $ (-583 (-989))) 121)) (-4055 (($ $ $) 79 (|has| |#1| (-779)))) (-3105 (($ $ $) 78 (|has| |#1| (-779)))) (-3602 (($ (-1 (-703) (-703)) $) 171)) (-1939 (($ (-1 |#1| |#1|) $) 151)) (-3145 (((-1070 |#1|) $) 237)) (-3382 (((-3 (-989) "failed") $) 123)) (-1687 (($ $) 149)) (-1193 ((|#1| $) 148)) (-1360 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1277 (((-1057) $) 9)) (-2116 (((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703)) 232)) (-3789 (((-3 (-583 $) "failed") $) 114)) (-1674 (((-3 (-583 $) "failed") $) 115)) (-3106 (((-3 (-2 (|:| |var| (-989)) (|:| -3010 (-703))) "failed") $) 113)) (-3563 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-3680 (($) 203 (|has| |#1| (-1050)) CONST)) (-3214 (((-1021) $) 10)) (-1656 (((-107) $) 166)) (-1671 ((|#1| $) 167)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 95 (|has| |#1| (-421)))) (-1387 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2736 (((-388 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-831)))) (-1673 (((-388 (-1070 $)) (-1070 $)) 101 (|has| |#1| (-831)))) (-1376 (((-388 $) $) 99 (|has| |#1| (-831)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 213 (|has| |#1| (-333)))) (-2483 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-2049 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-989) |#1|) 141) (($ $ (-583 (-989)) (-583 |#1|)) 140) (($ $ (-989) $) 139) (($ $ (-583 (-989)) (-583 $)) 138)) (-3196 (((-703) $) 209 (|has| |#1| (-333)))) (-1437 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-1730 (((-3 $ "failed") $ (-703)) 234)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 210 (|has| |#1| (-333)))) (-3383 (($ $ (-989)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-1248 (($ $ (-989)) 42) (($ $ (-583 (-989))) 41) (($ $ (-989) (-703)) 40) (($ $ (-583 (-989)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1074)) 250 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 249 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 248 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 247 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3625 (((-703) $) 150) (((-703) $ (-989)) 130) (((-583 (-703)) $ (-583 (-989))) 129)) (-3667 (((-814 (-349)) $) 82 (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4128 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-989)) 106 (|has| |#1| (-421)))) (-1643 (((-3 (-1154 $) "failed") (-623 $)) 104 (-4032 (|has| $ (-132)) (|has| |#1| (-831))))) (-2472 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-989)) 137) (($ (-377 (-517))) 72 (-3782 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3165 (((-583 |#1|) $) 168)) (-4104 ((|#1| $ (-703)) 155) (($ $ (-989) (-703)) 128) (($ $ (-583 (-989)) (-583 (-703))) 127)) (-2486 (((-3 $ "failed") $) 73 (-3782 (-4032 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-1217 (((-703)) 29)) (-2829 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2673 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-989)) 38) (($ $ (-583 (-989))) 37) (($ $ (-989) (-703)) 36) (($ $ (-583 (-989)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1074)) 246 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074))) 245 (|has| |#1| (-822 (-1074)))) (($ $ (-1074) (-703)) 244 (|has| |#1| (-822 (-1074)))) (($ $ (-583 (-1074)) (-583 (-703))) 243 (|has| |#1| (-822 (-1074)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1600 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 6)) (-1585 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1678 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1131 |#1|) (-1185) (-961)) (T -1131))
-((-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-5 *2 (-1070 *3)))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-961)) (-4 *1 (-1131 *3)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-1730 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *3)))) (-2116 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *4)))) (-3983 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-2958 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-1414 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)))) (-1248 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2472 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2472 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3466 (*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3064 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1965 *3) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *3)))) (-1781 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1131 *3)))) (-1437 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))))
-(-13 (-871 |t#1| (-703) (-989)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -1364 ((-1154 |t#1|) $ (-703))) (-15 -3145 ((-1070 |t#1|) $)) (-15 -1255 ($ (-1070 |t#1|))) (-15 -3699 ($ $ (-703))) (-15 -1730 ((-3 $ "failed") $ (-703))) (-15 -3431 ((-2 (|:| -2317 $) (|:| -2240 $)) $ $)) (-15 -2116 ((-2 (|:| -2317 $) (|:| -2240 $)) $ (-703))) (-15 -3983 ($ $ (-703))) (-15 -2958 ($ $ (-703))) (-15 -1414 ($ $ $)) (-15 -1248 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1050)) (-6 (-1050)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3383 (|t#1| $)) (-15 -3167 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -1437 ((-377 $) (-377 $) (-377 $))) (-15 -3730 ((-703) $ $)) (-15 -1844 ($ $ $)) (-15 -2472 ((-3 $ "failed") $ $)) (-15 -2472 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -3466 ($ $ $)) (-15 -3064 ((-2 (|:| -1965 |t#1|) (|:| -2317 $) (|:| -2240 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (-15 -1781 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4179) (-15 -1437 (|t#1| (-377 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -3563 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| (-703)) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3782 (|has| |#1| (-831)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 (-989) |#1|) . T) ((-478 (-989) $) . T) ((-478 $ $) . T) ((-509) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-989)) . T) ((-822 (-1074)) |has| |#1| (-822 (-1074))) ((-808 (-349)) -12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349)))) ((-808 (-517)) -12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))) ((-871 |#1| (-703) (-989)) . T) ((-831) |has| |#1| (-831)) ((-842) |has| |#1| (-333)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-989)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1050) |has| |#1| (-1050)) ((-1113) |has| |#1| (-831)))
-((-1357 (((-583 (-989)) $) 28)) (-1221 (($ $) 25)) (-1336 (($ |#2| |#3|) NIL) (($ $ (-989) |#3|) 22) (($ $ (-583 (-989)) (-583 |#3|)) 20)) (-1687 (($ $) 14)) (-1193 ((|#2| $) 12)) (-3625 ((|#3| $) 10)))
-(((-1132 |#1| |#2| |#3|) (-10 -8 (-15 -1357 ((-583 (-989)) |#1|)) (-15 -1336 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1336 (|#1| |#1| (-989) |#3|)) (-15 -1221 (|#1| |#1|)) (-15 -1336 (|#1| |#2| |#3|)) (-15 -3625 (|#3| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -1193 (|#2| |#1|))) (-1133 |#2| |#3|) (-961) (-724)) (T -1132))
-NIL
-(-10 -8 (-15 -1357 ((-583 (-989)) |#1|)) (-15 -1336 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1336 (|#1| |#1| (-989) |#3|)) (-15 -1221 (|#1| |#1|)) (-15 -1336 (|#1| |#2| |#3|)) (-15 -3625 (|#3| |#1|)) (-15 -1687 (|#1| |#1|)) (-15 -1193 (|#2| |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-1378 (((-1055 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-2761 (((-107) $) 73)) (-3730 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3469 (((-107) $) 31)) (-3699 (($ $ (-843)) 101)) (-2029 (((-107) $) 62)) (-1336 (($ |#1| |#2|) 61) (($ $ (-989) |#2|) 76) (($ $ (-583 (-989)) (-583 |#2|)) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2204 (($ $ |#2|) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1437 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1015)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3625 ((|#2| $) 64)) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-4104 ((|#1| $ |#2|) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3405 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1133 |#1| |#2|) (-1185) (-961) (-724)) (T -1133))
-((-1378 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1437 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1074)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3730 (*1 *2 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1935 (*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1935 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3405 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2254 (*2 (-1074)))) (-4 *2 (-961)))) (-2204 (*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-2049 (*1 *2 *1 *3) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3)))))
-(-13 (-890 |t#1| |t#2| (-989)) (-10 -8 (-15 -1378 ((-1055 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1437 (|t#1| $ |t#2|)) (-15 -3518 ((-1074) $)) (-15 -2984 (|t#1| $)) (-15 -3699 ($ $ (-843))) (-15 -3730 (|t#2| $)) (-15 -3730 (|t#2| $ |t#2|)) (-15 -1935 ($ $ |t#2|)) (-15 -1935 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2254 (|t#1| (-1074)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3405 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2204 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-822 (-1074))) (-6 (-822 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2049 ((-1055 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1015)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| |#2| (-989)) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-2377 ((|#2| |#2|) 12)) (-2674 (((-388 |#2|) |#2|) 14)) (-1306 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -2674 ((-388 |#2|) |#2|)) (-15 -2377 (|#2| |#2|)) (-15 -1306 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1131 |#1|) (-509) (-10 -8 (-15 -1387 ($ $ $))))) (T -1134))
-((-1306 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1387 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1134 *3 *4)))) (-2377 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1387 ($ $ $))))))) (-2674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-1131 *4) (-509) (-10 -8 (-15 -1387 ($ $ $))))))))
-(-10 -7 (-15 -2674 ((-388 |#2|) |#2|)) (-15 -2377 (|#2| |#2|)) (-15 -1306 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
-((-1939 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23)))
-(((-1135 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1939 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-961) (-961) (-1074) (-1074) |#1| |#2|) (T -1135))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1135 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))))
-(-10 -7 (-15 -1939 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-2725 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 162 (|has| |#1| (-333)))) (-2674 (((-388 $) $) 163 (|has| |#1| (-333)))) (-1386 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) 153 (|has| |#1| (-333)))) (-2705 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1533 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-2532 (($ $ $) 157 (|has| |#1| (-333)))) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 156 (|has| |#1| (-333)))) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3083 (((-107) $) 164 (|has| |#1| (-333)))) (-2761 (((-107) $) 73)) (-2665 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-2029 (((-107) $) 62)) (-1336 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1875 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1360 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1277 (((-1057) $) 9)) (-1639 (($ $) 165 (|has| |#1| (-333)))) (-3563 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3782 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1387 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1376 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 158 (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2643 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) 154 (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 155 (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3625 (((-377 (-517)) $) 64)) (-1543 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-1584 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1557 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1136 |#1|) (-1185) (-961)) (T -1136))
-((-4016 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1136 *4)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1136 *3)) (-4 *3 (-961)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-3563 (*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1133 |t#1| (-377 (-517))) (-10 -8 (-15 -4016 ($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -3699 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $)) (IF (|has| |t#1| (-15 -3563 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1357 ((-583 (-1074)) |t#1|))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-918)) (-6 (-1095))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-377 (-517))) . T))
-((-2778 (((-107) $) 12)) (-1837 (((-3 |#3| "failed") $) 17)) (-3232 ((|#3| $) 14)))
-(((-1137 |#1| |#2| |#3|) (-10 -8 (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2778 ((-107) |#1|))) (-1138 |#2| |#3|) (-961) (-1115 |#2|)) (T -1137))
-NIL
-(-10 -8 (-15 -3232 (|#3| |#1|)) (-15 -1837 ((-3 |#3| "failed") |#1|)) (-15 -2778 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-2725 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 162 (|has| |#1| (-333)))) (-2674 (((-388 $) $) 163 (|has| |#1| (-333)))) (-1386 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) 153 (|has| |#1| (-333)))) (-2705 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1533 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#2| "failed") $) 183)) (-3232 ((|#2| $) 182)) (-2532 (($ $ $) 157 (|has| |#1| (-333)))) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-4140 (((-377 (-517)) $) 180)) (-2509 (($ $ $) 156 (|has| |#1| (-333)))) (-1594 (($ (-377 (-517)) |#2|) 181)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3083 (((-107) $) 164 (|has| |#1| (-333)))) (-2761 (((-107) $) 73)) (-2665 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-2029 (((-107) $) 62)) (-1336 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1875 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1360 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3818 ((|#2| $) 179)) (-1225 (((-3 |#2| "failed") $) 177)) (-1579 ((|#2| $) 178)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 165 (|has| |#1| (-333)))) (-3563 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 169 (-3782 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 150 (|has| |#1| (-333)))) (-1387 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1376 (((-388 $) $) 161 (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 158 (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2643 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) 154 (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 155 (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3625 (((-377 (-517)) $) 64)) (-1543 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-1584 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1557 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1138 |#1| |#2|) (-1185) (-961) (-1115 |t#1|)) (T -1138))
-((-3625 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1138 *3 *2)) (-4 *2 (-1115 *3)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1138 *4 *3)) (-4 *3 (-1115 *4)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))) (-1225 (*1 *2 *1) (|partial| -12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
-(-13 (-1136 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1594 ($ (-377 (-517)) |t#2|)) (-15 -4140 ((-377 (-517)) $)) (-15 -3818 (|t#2| $)) (-15 -3625 ((-377 (-517)) $)) (-15 -2254 ($ |t#2|)) (-15 -1579 (|t#2| $)) (-15 -1225 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3782 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1113) |has| |#1| (-333)) ((-1133 |#1| (-377 (-517))) . T) ((-1136 |#1|) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 96)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-2725 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1533 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL)) (-3232 ((|#2| $) NIL)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) 79)) (-4140 (((-377 (-517)) $) 12)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1594 (($ (-377 (-517)) |#2|) 10)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-2761 (((-107) $) 68)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) 120) (($ $ (-377 (-517))) 118)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-377 (-517))) 31) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) 115)) (-1875 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3818 ((|#2| $) 11)) (-1225 (((-3 |#2| "failed") $) 41)) (-1579 ((|#2| $) 42)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) 93 (|has| |#1| (-333)))) (-3563 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 140 (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095)))))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) 112)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3625 (((-377 (-517)) $) 16)) (-1543 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 110)) (-2254 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) 99)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) 117)) (-2984 ((|#1| $) 98)) (-1584 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 21 T CONST)) (-2411 (($) 17 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) 66)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1663 (($ $) 131) (($ $ $) 72)) (-1645 (($ $ $) 70)) (** (($ $ (-843)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1139 |#1| |#2|) (-1138 |#1| |#2|) (-961) (-1115 |#1|)) (T -1139))
-NIL
-(-1138 |#1| |#2|)
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 11)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) NIL (|has| |#1| (-509)))) (-1935 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-1378 (((-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $) NIL (|has| |#1| (-333)))) (-2674 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2448 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-703) (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-1119 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 22)) (-3232 (((-1119 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2532 (($ $ $) NIL (|has| |#1| (-333)))) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-4140 (((-377 (-517)) $) 57)) (-2509 (($ $ $) NIL (|has| |#1| (-333)))) (-1594 (($ (-377 (-517)) (-1119 |#1| |#2| |#3|)) NIL)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3083 (((-107) $) NIL (|has| |#1| (-333)))) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3469 (((-107) $) NIL)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-377 (-517))) 29) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1360 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3818 (((-1119 |#1| |#2| |#3|) $) 60)) (-1225 (((-3 (-1119 |#1| |#2| |#3|) "failed") $) NIL)) (-1579 (((-1119 |#1| |#2| |#3|) $) NIL)) (-1277 (((-1057) $) NIL)) (-1639 (($ $) NIL (|has| |#1| (-333)))) (-3563 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) NIL (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-333)))) (-1387 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1376 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3082 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) NIL (|has| |#1| (-333)))) (-2204 (($ $ (-377 (-517))) NIL)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1681 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3196 (((-703) $) NIL (|has| |#1| (-333)))) (-1437 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) NIL (|has| |#1| (-333)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1150 |#2|)) 37)) (-3625 (((-377 (-517)) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) NIL)) (-2254 (((-787) $) 87) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1119 |#1| |#2| |#3|)) 16) (($ (-1147 |#1| |#2| |#3|)) 17) (($ (-1150 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-4104 ((|#1| $ (-377 (-517))) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 12)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2398 (($) 31 T CONST)) (-2411 (($) 26 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 33)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1140 |#1| |#2| |#3|) (-13 (-1138 |#1| (-1119 |#1| |#2| |#3|)) (-952 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1140))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1138 |#1| (-1119 |#1| |#2| |#3|)) (-952 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 32)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL)) (-2239 (($ $) NIL)) (-3531 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 (-517) "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-3 (-1140 |#2| |#3| |#4|) "failed") $) 20)) (-3232 (((-517) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-1140 |#2| |#3| |#4|) $) NIL)) (-1221 (($ $) 33)) (-3775 (((-3 $ "failed") $) 25)) (-2038 (($ $) NIL (|has| (-1140 |#2| |#3| |#4|) (-421)))) (-2083 (($ $ (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) 11)) (-2029 (((-107) $) NIL)) (-1336 (($ (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-3876 (((-289 |#2| |#3| |#4|) $) NIL)) (-3602 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-1939 (($ (-1 (-1140 |#2| |#3| |#4|) (-1140 |#2| |#3| |#4|)) $) NIL)) (-1672 (((-3 (-772 |#2|) "failed") $) 72)) (-1687 (($ $) NIL)) (-1193 (((-1140 |#2| |#3| |#4|) $) 18)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-1656 (((-107) $) NIL)) (-1671 (((-1140 |#2| |#3| |#4|) $) NIL)) (-2483 (((-3 $ "failed") $ (-1140 |#2| |#3| |#4|)) NIL (|has| (-1140 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-1701 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $) 55)) (-3625 (((-289 |#2| |#3| |#4|) $) 14)) (-4128 (((-1140 |#2| |#3| |#4|) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-421)))) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1140 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3782 (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1140 |#2| |#3| |#4|) (-952 (-377 (-517))))))) (-3165 (((-583 (-1140 |#2| |#3| |#4|)) $) NIL)) (-4104 (((-1140 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-2486 (((-3 $ "failed") $) NIL (|has| (-1140 |#2| |#3| |#4|) (-132)))) (-1217 (((-703)) NIL)) (-2829 (($ $ $ (-703)) NIL (|has| (-1140 |#2| |#3| |#4|) (-156)))) (-2673 (((-107) $ $) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 60 T CONST)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ (-1140 |#2| |#3| |#4|)) NIL (|has| (-1140 |#2| |#3| |#4|) (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1140 |#2| |#3| |#4|)) NIL) (($ (-1140 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1140 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
-(((-1141 |#1| |#2| |#3| |#4|) (-13 (-296 (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -1672 ((-3 (-772 |#2|) "failed") $)) (-15 -1701 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $)))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1095) (-400 |#1|)) (-1074) |#2|) (T -1141))
-((-1672 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))) (-1701 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1057)))) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
-(-13 (-296 (-1140 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -1672 ((-3 (-772 |#2|) "failed") $)) (-15 -1701 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1057))) "failed") $))))
-((-3207 ((|#2| $) 28)) (-3026 ((|#2| $) 18)) (-2811 (($ $) 35)) (-1422 (($ $ (-517)) 63)) (-3552 (((-107) $ (-703)) 32)) (-3967 ((|#2| $ |#2|) 60)) (-2619 ((|#2| $ |#2|) 58)) (-2412 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-2973 (($ $ (-583 $)) 59)) (-3013 ((|#2| $) 17)) (-1761 (($ $) NIL) (($ $ (-703)) 41)) (-3883 (((-583 $) $) 25)) (-4082 (((-107) $ $) 49)) (-2629 (((-107) $ (-703)) 31)) (-2026 (((-107) $ (-703)) 30)) (-2284 (((-107) $) 27)) (-2067 ((|#2| $) 23) (($ $ (-703)) 45)) (-1437 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1985 (((-107) $) 21)) (-2849 (($ $) 38)) (-3825 (($ $) 64)) (-2077 (((-703) $) 40)) (-2334 (($ $) 39)) (-2455 (($ $ $) 57) (($ |#2| $) NIL)) (-2125 (((-583 $) $) 26)) (-1534 (((-107) $ $) 47)) (-2290 (((-703) $) 34)))
-(((-1142 |#1| |#2|) (-10 -8 (-15 -1422 (|#1| |#1| (-517))) (-15 -2412 (|#2| |#1| "last" |#2|)) (-15 -2619 (|#2| |#1| |#2|)) (-15 -2412 (|#1| |#1| "rest" |#1|)) (-15 -2412 (|#2| |#1| "first" |#2|)) (-15 -3825 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -3026 (|#2| |#1|)) (-15 -3013 (|#2| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2067 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "last")) (-15 -2067 (|#2| |#1|)) (-15 -1761 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| "rest")) (-15 -1761 (|#1| |#1|)) (-15 -1437 (|#2| |#1| "first")) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -3967 (|#2| |#1| |#2|)) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -2973 (|#1| |#1| (-583 |#1|))) (-15 -4082 ((-107) |#1| |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3207 (|#2| |#1|)) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703)))) (-1143 |#2|) (-1109)) (T -1142))
-NIL
-(-10 -8 (-15 -1422 (|#1| |#1| (-517))) (-15 -2412 (|#2| |#1| "last" |#2|)) (-15 -2619 (|#2| |#1| |#2|)) (-15 -2412 (|#1| |#1| "rest" |#1|)) (-15 -2412 (|#2| |#1| "first" |#2|)) (-15 -3825 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2077 ((-703) |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -3026 (|#2| |#1|)) (-15 -3013 (|#2| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2067 (|#1| |#1| (-703))) (-15 -1437 (|#2| |#1| "last")) (-15 -2067 (|#2| |#1|)) (-15 -1761 (|#1| |#1| (-703))) (-15 -1437 (|#1| |#1| "rest")) (-15 -1761 (|#1| |#1|)) (-15 -1437 (|#2| |#1| "first")) (-15 -2455 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -3967 (|#2| |#1| |#2|)) (-15 -2412 (|#2| |#1| "value" |#2|)) (-15 -2973 (|#1| |#1| (-583 |#1|))) (-15 -4082 ((-107) |#1| |#1|)) (-15 -1985 ((-107) |#1|)) (-15 -1437 (|#2| |#1| "value")) (-15 -3207 (|#2| |#1|)) (-15 -2284 ((-107) |#1|)) (-15 -3883 ((-583 |#1|) |#1|)) (-15 -2125 ((-583 |#1|) |#1|)) (-15 -1534 ((-107) |#1| |#1|)) (-15 -2290 ((-703) |#1|)) (-15 -3552 ((-107) |#1| (-703))) (-15 -2629 ((-107) |#1| (-703))) (-15 -2026 ((-107) |#1| (-703))))
-((-1587 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3207 ((|#1| $) 48)) (-3026 ((|#1| $) 65)) (-2811 (($ $) 67)) (-1422 (($ $ (-517)) 52 (|has| $ (-6 -4184)))) (-3552 (((-107) $ (-703)) 8)) (-3967 ((|#1| $ |#1|) 39 (|has| $ (-6 -4184)))) (-1326 (($ $ $) 56 (|has| $ (-6 -4184)))) (-2619 ((|#1| $ |#1|) 54 (|has| $ (-6 -4184)))) (-4013 ((|#1| $ |#1|) 58 (|has| $ (-6 -4184)))) (-2412 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4184))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4184))) (($ $ "rest" $) 55 (|has| $ (-6 -4184))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4184)))) (-2973 (($ $ (-583 $)) 41 (|has| $ (-6 -4184)))) (-3013 ((|#1| $) 66)) (-2706 (($) 7 T CONST)) (-1761 (($ $) 73) (($ $ (-703)) 71)) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-3883 (((-583 $) $) 50)) (-4082 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2629 (((-107) $ (-703)) 9)) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35)) (-2026 (((-107) $ (-703)) 10)) (-2281 (((-583 |#1|) $) 45)) (-2284 (((-107) $) 49)) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2067 ((|#1| $) 70) (($ $ (-703)) 68)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 76) (($ $ (-703)) 74)) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3792 (((-517) $ $) 44)) (-1985 (((-107) $) 46)) (-2849 (($ $) 62)) (-3825 (($ $) 59 (|has| $ (-6 -4184)))) (-2077 (((-703) $) 63)) (-2334 (($ $) 64)) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2435 (($ $) 13)) (-1819 (($ $ $) 61 (|has| $ (-6 -4184))) (($ $ |#1|) 60 (|has| $ (-6 -4184)))) (-2455 (($ $ $) 78) (($ |#1| $) 77)) (-2254 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2125 (((-583 $) $) 51)) (-2432 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1534 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1143 |#1|) (-1185) (-1109)) (T -1143))
-((-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2455 (*1 *1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1750 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-1761 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-1761 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2334 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) (-2849 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1819 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1819 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-3825 (*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-4013 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2412 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1326 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2412 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) (-2619 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-2412 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) (-1422 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))))
-(-13 (-926 |t#1|) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2455 ($ |t#1| $)) (-15 -1750 (|t#1| $)) (-15 -1437 (|t#1| $ "first")) (-15 -1750 ($ $ (-703))) (-15 -1761 ($ $)) (-15 -1437 ($ $ "rest")) (-15 -1761 ($ $ (-703))) (-15 -2067 (|t#1| $)) (-15 -1437 (|t#1| $ "last")) (-15 -2067 ($ $ (-703))) (-15 -2811 ($ $)) (-15 -3013 (|t#1| $)) (-15 -3026 (|t#1| $)) (-15 -2334 ($ $)) (-15 -2077 ((-703) $)) (-15 -2849 ($ $)) (IF (|has| $ (-6 -4184)) (PROGN (-15 -1819 ($ $ $)) (-15 -1819 ($ $ |t#1|)) (-15 -3825 ($ $)) (-15 -4013 (|t#1| $ |t#1|)) (-15 -2412 (|t#1| $ "first" |t#1|)) (-15 -1326 ($ $ $)) (-15 -2412 ($ $ "rest" $)) (-15 -2619 (|t#1| $ |t#1|)) (-15 -2412 (|t#1| $ "last" |t#1|)) (-15 -1422 ($ $ (-517)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1109) . T))
-((-1939 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1146 |#1|) (-1146 |#2|)) (T -1144))
-((-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6 *4 *2)) (-4 *4 (-1146 *5)))))
-(-10 -7 (-15 -1939 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2778 (((-107) $) 15)) (-2725 (($ $) 90)) (-2602 (($ $) 66)) (-2705 (($ $) 86)) (-2580 (($ $) 62)) (-1533 (($ $) 94)) (-2626 (($ $) 70)) (-1875 (($ $) 60)) (-2643 (($ $) 58)) (-1543 (($ $) 96)) (-2638 (($ $) 72)) (-2735 (($ $) 92)) (-2614 (($ $) 68)) (-2714 (($ $) 88)) (-2590 (($ $) 64)) (-2254 (((-787) $) 46) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1584 (($ $) 102)) (-2670 (($ $) 78)) (-1557 (($ $) 98)) (-2651 (($ $) 74)) (-1614 (($ $) 106)) (-2688 (($ $) 82)) (-3756 (($ $) 108)) (-2698 (($ $) 84)) (-1599 (($ $) 104)) (-2678 (($ $) 80)) (-1570 (($ $) 100)) (-2660 (($ $) 76)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-377 (-517))) 56)))
-(((-1145 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2602 (|#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -2714 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1875 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2778 ((-107) |#1|)) (-15 -2254 ((-787) |#1|))) (-1146 |#2|) (-961)) (T -1145))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2602 (|#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -2714 (|#1| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1533 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -1570 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1875 (|#1| |#1|)) (-15 -2643 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2254 (|#1| |#2|)) (-15 -2254 (|#1| |#1|)) (-15 -2254 (|#1| (-377 (-517)))) (-15 -2254 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2778 ((-107) |#1|)) (-15 -2254 ((-787) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-1357 (((-583 (-989)) $) 74)) (-3518 (((-1074) $) 103)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2239 (($ $) 52 (|has| |#1| (-509)))) (-3531 (((-107) $) 54 (|has| |#1| (-509)))) (-1935 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-1378 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-2725 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) 19)) (-1386 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1055 |#1|)) 153)) (-1533 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) 17 T CONST)) (-1221 (($ $) 60)) (-3775 (((-3 $ "failed") $) 34)) (-1204 (($ $) 152)) (-1523 (((-874 |#1|) $ (-703)) 150) (((-874 |#1|) $ (-703) (-703)) 149)) (-2761 (((-107) $) 73)) (-2665 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $) 100) (((-703) $ (-703)) 99)) (-3469 (((-107) $) 31)) (-2003 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3699 (($ $ (-843)) 101)) (-3766 (($ (-1 |#1| (-517)) $) 151)) (-2029 (((-107) $) 62)) (-1336 (($ |#1| (-703)) 61) (($ $ (-989) (-703)) 76) (($ $ (-583 (-989)) (-583 (-703))) 75)) (-1939 (($ (-1 |#1| |#1|) $) 63)) (-1875 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) 65)) (-1193 ((|#1| $) 66)) (-1277 (((-1057) $) 9)) (-3563 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 146 (-3782 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1095)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3214 (((-1021) $) 10)) (-2204 (($ $ (-703)) 95)) (-2483 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2643 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1437 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1015)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074) (-703)) 88 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1074))) 87 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074)) 86 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-3625 (((-703) $) 64)) (-1543 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 72)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3165 (((-1055 |#1|) $) 154)) (-4104 ((|#1| $ (-703)) 59)) (-2486 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1217 (((-703)) 29)) (-2984 ((|#1| $) 102)) (-1584 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1557 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074) (-703)) 92 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1074))) 91 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1074)) 90 (-12 (|has| |#1| (-822 (-1074))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
-(((-1146 |#1|) (-1185) (-961)) (T -1146))
-((-4016 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-5 *2 (-1055 *3)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) (-1204 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1146 *3)) (-4 *3 (-961)))) (-1523 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (-1523 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-3563 (*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
-(-13 (-1133 |t#1| (-703)) (-10 -8 (-15 -4016 ($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -3165 ((-1055 |t#1|) $)) (-15 -4016 ($ (-1055 |t#1|))) (-15 -1204 ($ $)) (-15 -3766 ($ (-1 |t#1| (-517)) $)) (-15 -1523 ((-874 |t#1|) $ (-703))) (-15 -1523 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3563 ($ $)) (IF (|has| |t#1| (-15 -3563 (|t#1| |t#1| (-1074)))) (IF (|has| |t#1| (-15 -1357 ((-583 (-1074)) |t#1|))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1095)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -3563 ($ $ (-1074))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-918)) (-6 (-1095))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1015)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1074)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074)))) ((-890 |#1| (-703) (-989)) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3782 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1095) |has| |#1| (-37 (-377 (-517)))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1133 |#1| (-703)) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-1357 (((-583 (-989)) $) NIL)) (-3518 (((-1074) $) 86)) (-3828 (((-1128 |#2| |#1|) $ (-703)) 73)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2239 (($ $) NIL (|has| |#1| (-509)))) (-3531 (((-107) $) 135 (|has| |#1| (-509)))) (-1935 (($ $ (-703)) 120) (($ $ (-703) (-703)) 122)) (-1378 (((-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-2725 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2602 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2646 (((-3 $ "failed") $ $) NIL)) (-1386 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2705 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2580 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4016 (($ (-1055 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1055 |#1|)) NIL)) (-1533 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2626 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2706 (($) NIL T CONST)) (-1308 (($ $) 126)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1204 (($ $) 133)) (-1523 (((-874 |#1|) $ (-703)) 63) (((-874 |#1|) $ (-703) (-703)) 65)) (-2761 (((-107) $) NIL)) (-2665 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3730 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-3469 (((-107) $) NIL)) (-1927 (($ $) 110)) (-2003 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3656 (($ (-517) (-517) $) 128)) (-3699 (($ $ (-843)) 132)) (-3766 (($ (-1 |#1| (-517)) $) 104)) (-2029 (((-107) $) NIL)) (-1336 (($ |#1| (-703)) 15) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1939 (($ (-1 |#1| |#1|) $) 92)) (-1875 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1687 (($ $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-4155 (($ $) 108)) (-3062 (($ $) 106)) (-2090 (($ (-517) (-517) $) 130)) (-3563 (($ $) 143 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1074)) 149 (-3782 (-12 (|has| |#1| (-15 -3563 (|#1| |#1| (-1074)))) (|has| |#1| (-15 -1357 ((-583 (-1074)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1095))))) (($ $ (-1150 |#2|)) 144 (|has| |#1| (-37 (-377 (-517)))))) (-3214 (((-1021) $) NIL)) (-2863 (($ $ (-517) (-517)) 114)) (-2204 (($ $ (-703)) 116)) (-2483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2643 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3042 (($ $) 112)) (-2049 (((-1055 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1437 ((|#1| $ (-703)) 89) (($ $ $) 124 (|has| (-703) (-1015)))) (-1248 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) 101 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1150 |#2|)) 97)) (-3625 (((-703) $) NIL)) (-1543 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2638 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2714 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2590 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1486 (($ $) 118)) (-2254 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 141 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1128 |#2| |#1|)) 79) (($ (-1150 |#2|)) 20)) (-3165 (((-1055 |#1|) $) NIL)) (-4104 ((|#1| $ (-703)) 88)) (-2486 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1217 (((-703)) NIL)) (-2984 ((|#1| $) 87)) (-1584 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2673 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1557 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2651 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1614 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2688 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3405 ((|#1| $ (-703)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2254 (|#1| (-1074))))))) (-3756 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2678 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1570 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2660 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 17 T CONST)) (-2411 (($) 13 T CONST)) (-2738 (($ $ (-583 (-1074)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-583 (-1074))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-1074)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1074))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1534 (((-107) $ $) NIL)) (-1678 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) 100)) (-1645 (($ $ $) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 138 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
-(((-1147 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2254 ($ (-1128 |#2| |#1|))) (-15 -3828 ((-1128 |#2| |#1|) $ (-703))) (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (-15 -3062 ($ $)) (-15 -4155 ($ $)) (-15 -1927 ($ $)) (-15 -3042 ($ $)) (-15 -2863 ($ $ (-517) (-517))) (-15 -1308 ($ $)) (-15 -3656 ($ (-517) (-517) $)) (-15 -2090 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|))) (-961) (-1074) |#1|) (T -1147))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-3828 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-1248 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-4155 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-1927 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-3042 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-2863 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))) (-3656 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-2090 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(-13 (-1146 |#1|) (-10 -8 (-15 -2254 ($ (-1128 |#2| |#1|))) (-15 -3828 ((-1128 |#2| |#1|) $ (-703))) (-15 -2254 ($ (-1150 |#2|))) (-15 -1248 ($ $ (-1150 |#2|))) (-15 -3062 ($ $)) (-15 -4155 ($ $)) (-15 -1927 ($ $)) (-15 -3042 ($ $)) (-15 -2863 ($ $ (-517) (-517))) (-15 -1308 ($ $)) (-15 -3656 ($ (-517) (-517) $)) (-15 -2090 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3563 ($ $ (-1150 |#2|))) |%noBranch|)))
-((-1755 (((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-1389 (((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2630 (((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|)) 13)) (-3996 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2746 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3335 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-2187 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-4157 ((|#2| |#2| |#2|) 43)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -2630 ((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|))) (-15 -1389 ((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1755 ((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -4157 (|#2| |#2| |#2|)) (-15 -2746 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3996 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3335 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2187 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1146 |#1|)) (T -1148))
-((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1146 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1148 *5 *6)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1146 *5)) (-5 *1 (-1148 *5 *2)))) (-3996 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-4157 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1146 *3)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-583 (-1055 *4)))) (-5 *1 (-1148 *4 *5)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
-(-10 -7 (-15 -2630 ((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|))) (-15 -1389 ((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1755 ((-1 (-1055 |#1|) (-583 (-1055 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -4157 (|#2| |#2| |#2|)) (-15 -2746 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3996 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3335 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2187 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
-((-3836 ((|#2| |#4| (-703)) 30)) (-2395 ((|#4| |#2|) 25)) (-3403 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-3156 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
-(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2395 (|#4| |#2|)) (-15 -3836 (|#2| |#4| (-703))) (-15 -3156 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3403 (|#4| (-377 |#2|))) |%noBranch|)) (-961) (-1131 |#1|) (-593 |#2|) (-1146 |#1|)) (T -1149))
-((-3403 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-3156 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1131 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1149 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1146 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-1149 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1146 *5)))) (-2395 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1131 *4)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(-10 -7 (-15 -2395 (|#4| |#2|)) (-15 -3836 (|#2| |#4| (-703))) (-15 -3156 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3403 (|#4| (-377 |#2|))) |%noBranch|))
-((-1587 (((-107) $ $) NIL)) (-3518 (((-1074)) 12)) (-1277 (((-1057) $) 17)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 11) (((-1074) $) 8)) (-1534 (((-107) $ $) 14)))
-(((-1150 |#1|) (-13 (-1003) (-557 (-1074)) (-10 -8 (-15 -2254 ((-1074) $)) (-15 -3518 ((-1074))))) (-1074)) (T -1150))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))) (-3518 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))))
-(-13 (-1003) (-557 (-1074)) (-10 -8 (-15 -2254 ((-1074) $)) (-15 -3518 ((-1074)))))
-((-3597 (($ (-703)) 16)) (-2719 (((-623 |#2|) $ $) 37)) (-2140 ((|#2| $) 46)) (-1631 ((|#2| $) 45)) (-1369 ((|#2| $ $) 33)) (-1843 (($ $ $) 42)) (-1663 (($ $) 20) (($ $ $) 26)) (-1645 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1151 |#1| |#2|) (-10 -8 (-15 -2140 (|#2| |#1|)) (-15 -1631 (|#2| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2719 ((-623 |#2|) |#1| |#1|)) (-15 -1369 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -3597 (|#1| (-703))) (-15 -1645 (|#1| |#1| |#1|))) (-1152 |#2|) (-1109)) (T -1151))
-NIL
-(-10 -8 (-15 -2140 (|#2| |#1|)) (-15 -1631 (|#2| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2719 ((-623 |#2|) |#1| |#1|)) (-15 -1369 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -3597 (|#1| (-703))) (-15 -1645 (|#1| |#1| |#1|)))
-((-1587 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3597 (($ (-703)) 112 (|has| |#1| (-23)))) (-2787 (((-1159) $ (-517) (-517)) 40 (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4184))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4184))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) 8)) (-2412 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) 58 (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4183)))) (-2706 (($) 7 T CONST)) (-3182 (($ $) 90 (|has| $ (-6 -4184)))) (-3173 (($ $) 100)) (-1783 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2050 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) 51)) (-2624 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) 30 (|has| $ (-6 -4183)))) (-2719 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3475 (($ (-703) |#1|) 69)) (-2629 (((-107) $ (-703)) 9)) (-1739 (((-517) $) 43 (|has| (-517) (-779)))) (-4055 (($ $ $) 87 (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) 29 (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-3920 (((-517) $) 44 (|has| (-517) (-779)))) (-3105 (($ $ $) 86 (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2140 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-2026 (((-107) $ (-703)) 10)) (-1631 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-1277 (((-1057) $) 22 (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-2950 (((-583 (-517)) $) 46)) (-4093 (((-107) (-517) $) 47)) (-3214 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1750 ((|#1| $) 42 (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2880 (($ $ |#1|) 41 (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) 14)) (-3865 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) 48)) (-1596 (((-107) $) 11)) (-2756 (($) 12)) (-1437 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1122 (-517))) 63)) (-1369 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3726 (($ $ (-517)) 62) (($ $ (-1122 (-517))) 61)) (-1843 (($ $ $) 104 (|has| |#1| (-961)))) (-3223 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4183))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4183))))) (-2878 (($ $ $ (-517)) 91 (|has| $ (-6 -4184)))) (-2435 (($ $) 13)) (-3667 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 70)) (-2455 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2254 (((-787) $) 20 (|has| |#1| (-1003)))) (-2258 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1571 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1534 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1585 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1558 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1663 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1645 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2290 (((-703) $) 6 (|has| $ (-6 -4183)))))
-(((-1152 |#1|) (-1185) (-1109)) (T -1152))
-((-1645 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-25)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1152 *3)) (-4 *3 (-23)) (-4 *3 (-1109)))) (-1663 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) (-1663 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) (-1369 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (-2719 (*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-961)) (-5 *2 (-623 *3)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1645 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3597 ($ (-703))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1663 ($ $)) (-15 -1663 ($ $ $)) (-15 * ($ (-517) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -1369 (|t#1| $ $)) (-15 -2719 ((-623 |t#1|) $ $)) (-15 -1843 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-961)) (PROGN (-15 -1631 (|t#1| $)) (-15 -2140 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3782 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1109) . T))
-((-3014 (((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|) 13)) (-1292 ((|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|) 15)) (-1939 (((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|)) 28) (((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)) 18)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -3014 ((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1939 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|))) (-15 -1939 ((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|)))) (-1109) (-1109)) (T -1153))
-((-1939 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) (-1292 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1153 *5 *2)))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1154 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1154 *5)) (-5 *1 (-1153 *6 *5)))))
-(-10 -7 (-15 -3014 ((-1154 |#2|) (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1292 (|#2| (-1 |#2| |#1| |#2|) (-1154 |#1|) |#2|)) (-15 -1939 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|))) (-15 -1939 ((-3 (-1154 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1154 |#1|))))
-((-1587 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3597 (($ (-703)) NIL (|has| |#1| (-23)))) (-1237 (($ (-583 |#1|)) 9)) (-2787 (((-1159) $ (-517) (-517)) NIL (|has| $ (-6 -4184)))) (-3753 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3500 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4184))) (($ $) NIL (-12 (|has| $ (-6 -4184)) (|has| |#1| (-779))))) (-4044 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3552 (((-107) $ (-703)) NIL)) (-2412 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184))) ((|#1| $ (-1122 (-517)) |#1|) NIL (|has| $ (-6 -4184)))) (-3555 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2706 (($) NIL T CONST)) (-3182 (($ $) NIL (|has| $ (-6 -4184)))) (-3173 (($ $) NIL)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2050 (($ |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1292 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4183))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4183)))) (-3705 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4184)))) (-3537 ((|#1| $ (-517)) NIL)) (-2624 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3240 (((-583 |#1|) $) 15 (|has| $ (-6 -4183)))) (-2719 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3475 (($ (-703) |#1|) NIL)) (-2629 (((-107) $ (-703)) NIL)) (-1739 (((-517) $) NIL (|has| (-517) (-779)))) (-4055 (($ $ $) NIL (|has| |#1| (-779)))) (-1676 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2332 (((-583 |#1|) $) NIL (|has| $ (-6 -4183)))) (-1653 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3920 (((-517) $) NIL (|has| (-517) (-779)))) (-3105 (($ $ $) NIL (|has| |#1| (-779)))) (-3696 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2140 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-2026 (((-107) $ (-703)) NIL)) (-1631 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-1277 (((-1057) $) NIL (|has| |#1| (-1003)))) (-2636 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2950 (((-583 (-517)) $) NIL)) (-4093 (((-107) (-517) $) NIL)) (-3214 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1750 ((|#1| $) NIL (|has| (-517) (-779)))) (-3222 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2880 (($ $ |#1|) NIL (|has| $ (-6 -4184)))) (-3029 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-2349 (((-107) $ $) NIL)) (-3865 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-3949 (((-583 |#1|) $) NIL)) (-1596 (((-107) $) NIL)) (-2756 (($) NIL)) (-1437 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1369 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3726 (($ $ (-517)) NIL) (($ $ (-1122 (-517))) NIL)) (-1843 (($ $ $) NIL (|has| |#1| (-961)))) (-3223 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#1| (-1003))))) (-2878 (($ $ $ (-517)) NIL (|has| $ (-6 -4184)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2272 (($ (-583 |#1|)) 8)) (-2455 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2254 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2258 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4183)))) (-1600 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1571 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1534 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1585 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1558 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1663 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1645 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1154 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -1237 ($ (-583 |#1|))))) (-1109)) (T -1154))
-((-1237 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1154 *3)))))
-(-13 (-1152 |#1|) (-10 -8 (-15 -1237 ($ (-583 |#1|)))))
-((-1587 (((-107) $ $) NIL)) (-2817 (((-1057) $ (-1057)) 87) (((-1057) $ (-1057) (-1057)) 85) (((-1057) $ (-1057) (-583 (-1057))) 84)) (-4084 (($) 56)) (-2545 (((-1159) $ (-437) (-843)) 42)) (-3016 (((-1159) $ (-843) (-1057)) 70) (((-1159) $ (-843) (-797)) 71)) (-2471 (((-1159) $ (-843) (-349) (-349)) 45)) (-4154 (((-1159) $ (-1057)) 66)) (-1442 (((-1159) $ (-843) (-1057)) 75)) (-2221 (((-1159) $ (-843) (-349) (-349)) 46)) (-4151 (((-1159) $ (-843) (-843)) 43)) (-2806 (((-1159) $) 67)) (-3703 (((-1159) $ (-843) (-1057)) 74)) (-1856 (((-1159) $ (-437) (-843)) 30)) (-1235 (((-1159) $ (-843) (-1057)) 73)) (-1512 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-2605 (((-1159) $ (-703) (-703)) 40)) (-1520 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-1277 (((-1057) $) NIL)) (-3458 (((-517) $) 37)) (-3214 (((-1021) $) NIL)) (-2895 (((-1154 (-3 (-437) "undefined")) $) 36)) (-1883 (((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1235 (-517)) (|:| -2914 (-517)) (|:| |spline| (-517)) (|:| -4141 (-517)) (|:| |axesColor| (-797)) (|:| -3016 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-3657 (((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-2887 (((-583 (-865 (-199))) $) NIL)) (-2269 (((-437) $ (-843)) 32)) (-1473 (((-1159) $ (-703) (-703) (-843) (-843)) 39)) (-3180 (((-1159) $ (-1057)) 76)) (-2914 (((-1159) $ (-843) (-1057)) 72)) (-2254 (((-787) $) 82)) (-1219 (((-1159) $) 77)) (-4141 (((-1159) $ (-843) (-1057)) 68) (((-1159) $ (-843) (-797)) 69)) (-1534 (((-107) $ $) NIL)))
-(((-1155) (-13 (-1003) (-10 -8 (-15 -2887 ((-583 (-865 (-199))) $)) (-15 -4084 ($)) (-15 -1520 ($ $)) (-15 -1512 ((-583 (-236)) $)) (-15 -1512 ($ $ (-583 (-236)))) (-15 -1520 ($ (-437) (-583 (-236)))) (-15 -3657 ((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1883 ((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1235 (-517)) (|:| -2914 (-517)) (|:| |spline| (-517)) (|:| -4141 (-517)) (|:| |axesColor| (-797)) (|:| -3016 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2895 ((-1154 (-3 (-437) "undefined")) $)) (-15 -4154 ((-1159) $ (-1057))) (-15 -1856 ((-1159) $ (-437) (-843))) (-15 -2269 ((-437) $ (-843))) (-15 -4141 ((-1159) $ (-843) (-1057))) (-15 -4141 ((-1159) $ (-843) (-797))) (-15 -3016 ((-1159) $ (-843) (-1057))) (-15 -3016 ((-1159) $ (-843) (-797))) (-15 -1235 ((-1159) $ (-843) (-1057))) (-15 -3703 ((-1159) $ (-843) (-1057))) (-15 -2914 ((-1159) $ (-843) (-1057))) (-15 -3180 ((-1159) $ (-1057))) (-15 -1219 ((-1159) $)) (-15 -1473 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2221 ((-1159) $ (-843) (-349) (-349))) (-15 -2471 ((-1159) $ (-843) (-349) (-349))) (-15 -1442 ((-1159) $ (-843) (-1057))) (-15 -2605 ((-1159) $ (-703) (-703))) (-15 -2545 ((-1159) $ (-437) (-843))) (-15 -4151 ((-1159) $ (-843) (-843))) (-15 -2817 ((-1057) $ (-1057))) (-15 -2817 ((-1057) $ (-1057) (-1057))) (-15 -2817 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -2806 ((-1159) $)) (-15 -3458 ((-517) $)) (-15 -2254 ((-787) $))))) (T -1155))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1155)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1155)))) (-4084 (*1 *1) (-5 *1 (-1155))) (-1520 (*1 *1 *1) (-5 *1 (-1155))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1520 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) (-3657 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1235 (-517)) (|:| -2914 (-517)) (|:| |spline| (-517)) (|:| -4141 (-517)) (|:| |axesColor| (-797)) (|:| -3016 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1155)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1154 (-3 (-437) "undefined"))) (-5 *1 (-1155)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1856 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2269 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1155)))) (-4141 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-4141 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3016 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3016 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3703 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2914 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3180 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1219 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1473 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2221 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2471 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-1442 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2605 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2545 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-4151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) (-2817 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2817 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2817 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1155)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
-(-13 (-1003) (-10 -8 (-15 -2887 ((-583 (-865 (-199))) $)) (-15 -4084 ($)) (-15 -1520 ($ $)) (-15 -1512 ((-583 (-236)) $)) (-15 -1512 ($ $ (-583 (-236)))) (-15 -1520 ($ (-437) (-583 (-236)))) (-15 -3657 ((-1159) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -1883 ((-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1235 (-517)) (|:| -2914 (-517)) (|:| |spline| (-517)) (|:| -4141 (-517)) (|:| |axesColor| (-797)) (|:| -3016 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2895 ((-1154 (-3 (-437) "undefined")) $)) (-15 -4154 ((-1159) $ (-1057))) (-15 -1856 ((-1159) $ (-437) (-843))) (-15 -2269 ((-437) $ (-843))) (-15 -4141 ((-1159) $ (-843) (-1057))) (-15 -4141 ((-1159) $ (-843) (-797))) (-15 -3016 ((-1159) $ (-843) (-1057))) (-15 -3016 ((-1159) $ (-843) (-797))) (-15 -1235 ((-1159) $ (-843) (-1057))) (-15 -3703 ((-1159) $ (-843) (-1057))) (-15 -2914 ((-1159) $ (-843) (-1057))) (-15 -3180 ((-1159) $ (-1057))) (-15 -1219 ((-1159) $)) (-15 -1473 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2221 ((-1159) $ (-843) (-349) (-349))) (-15 -2471 ((-1159) $ (-843) (-349) (-349))) (-15 -1442 ((-1159) $ (-843) (-1057))) (-15 -2605 ((-1159) $ (-703) (-703))) (-15 -2545 ((-1159) $ (-437) (-843))) (-15 -4151 ((-1159) $ (-843) (-843))) (-15 -2817 ((-1057) $ (-1057))) (-15 -2817 ((-1057) $ (-1057) (-1057))) (-15 -2817 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -2806 ((-1159) $)) (-15 -3458 ((-517) $)) (-15 -2254 ((-787) $))))
-((-1587 (((-107) $ $) NIL)) (-2669 (((-1159) $ (-349)) 138) (((-1159) $ (-349) (-349) (-349)) 139)) (-2817 (((-1057) $ (-1057)) 146) (((-1057) $ (-1057) (-1057)) 144) (((-1057) $ (-1057) (-583 (-1057))) 143)) (-1485 (($) 49)) (-2365 (((-1159) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1159) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1159) $ (-349) (-349)) 116) (((-1159) $ (-349) (-349) (-349)) 123)) (-3025 (((-349)) 96) (((-349) (-349)) 97)) (-2840 (((-349)) 91) (((-349) (-349)) 93)) (-3093 (((-349)) 94) (((-349) (-349)) 95)) (-3332 (((-349)) 100) (((-349) (-349)) 101)) (-2054 (((-349)) 98) (((-349) (-349)) 99)) (-2471 (((-1159) $ (-349) (-349)) 140)) (-4154 (((-1159) $ (-1057)) 124)) (-1817 (((-1034 (-199)) $) 50) (($ $ (-1034 (-199))) 51)) (-3136 (((-1159) $ (-1057)) 152)) (-3938 (((-1159) $ (-1057)) 153)) (-3521 (((-1159) $ (-349) (-349)) 122) (((-1159) $ (-517) (-517)) 137)) (-4151 (((-1159) $ (-843) (-843)) 130)) (-2806 (((-1159) $) 110)) (-3547 (((-1159) $ (-1057)) 151)) (-2444 (((-1159) $ (-1057)) 107)) (-1512 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-2605 (((-1159) $ (-703) (-703)) 129)) (-1605 (((-1159) $ (-703) (-865 (-199))) 158)) (-3704 (($ $) 56) (($ (-1034 (-199)) (-1057)) 57) (($ (-1034 (-199)) (-583 (-236))) 58)) (-1911 (((-1159) $ (-349) (-349) (-349)) 104)) (-1277 (((-1057) $) NIL)) (-3458 (((-517) $) 102)) (-4052 (((-1159) $ (-349)) 141)) (-4040 (((-1159) $ (-349)) 156)) (-3214 (((-1021) $) NIL)) (-2852 (((-1159) $ (-349)) 155)) (-2044 (((-1159) $ (-1057)) 109)) (-1473 (((-1159) $ (-703) (-703) (-843) (-843)) 128)) (-3298 (((-1159) $ (-1057)) 106)) (-3180 (((-1159) $ (-1057)) 108)) (-4097 (((-1159) $ (-142) (-142)) 127)) (-2254 (((-787) $) 135)) (-1219 (((-1159) $) 111)) (-3611 (((-1159) $ (-1057)) 154)) (-4141 (((-1159) $ (-1057)) 105)) (-1534 (((-107) $ $) NIL)))
-(((-1156) (-13 (-1003) (-10 -8 (-15 -2840 ((-349))) (-15 -2840 ((-349) (-349))) (-15 -3093 ((-349))) (-15 -3093 ((-349) (-349))) (-15 -3025 ((-349))) (-15 -3025 ((-349) (-349))) (-15 -2054 ((-349))) (-15 -2054 ((-349) (-349))) (-15 -3332 ((-349))) (-15 -3332 ((-349) (-349))) (-15 -1485 ($)) (-15 -3704 ($ $)) (-15 -3704 ($ (-1034 (-199)) (-1057))) (-15 -3704 ($ (-1034 (-199)) (-583 (-236)))) (-15 -1817 ((-1034 (-199)) $)) (-15 -1817 ($ $ (-1034 (-199)))) (-15 -1605 ((-1159) $ (-703) (-865 (-199)))) (-15 -1512 ((-583 (-236)) $)) (-15 -1512 ($ $ (-583 (-236)))) (-15 -2605 ((-1159) $ (-703) (-703))) (-15 -4151 ((-1159) $ (-843) (-843))) (-15 -4154 ((-1159) $ (-1057))) (-15 -1473 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2365 ((-1159) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2365 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2365 ((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2365 ((-1159) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2365 ((-1159) $ (-349) (-349))) (-15 -2365 ((-1159) $ (-349) (-349) (-349))) (-15 -3180 ((-1159) $ (-1057))) (-15 -4141 ((-1159) $ (-1057))) (-15 -3298 ((-1159) $ (-1057))) (-15 -2444 ((-1159) $ (-1057))) (-15 -2044 ((-1159) $ (-1057))) (-15 -3521 ((-1159) $ (-349) (-349))) (-15 -3521 ((-1159) $ (-517) (-517))) (-15 -2669 ((-1159) $ (-349))) (-15 -2669 ((-1159) $ (-349) (-349) (-349))) (-15 -2471 ((-1159) $ (-349) (-349))) (-15 -3547 ((-1159) $ (-1057))) (-15 -2852 ((-1159) $ (-349))) (-15 -4040 ((-1159) $ (-349))) (-15 -3136 ((-1159) $ (-1057))) (-15 -3938 ((-1159) $ (-1057))) (-15 -3611 ((-1159) $ (-1057))) (-15 -1911 ((-1159) $ (-349) (-349) (-349))) (-15 -4052 ((-1159) $ (-349))) (-15 -2806 ((-1159) $)) (-15 -4097 ((-1159) $ (-142) (-142))) (-15 -2817 ((-1057) $ (-1057))) (-15 -2817 ((-1057) $ (-1057) (-1057))) (-15 -2817 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -1219 ((-1159) $)) (-15 -3458 ((-517) $))))) (T -1156))
-((-2840 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3093 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3025 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-2054 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3332 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-3332 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) (-1485 (*1 *1) (-5 *1 (-1156))) (-3704 (*1 *1 *1) (-5 *1 (-1156))) (-3704 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1057)) (-5 *1 (-1156)))) (-3704 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1156)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) (-1605 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) (-2605 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4151 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1473 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2365 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1156)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2365 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2365 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2365 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3180 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3521 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3521 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2669 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2669 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2471 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3547 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3938 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-1911 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))) (-4097 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1159)) (-5 *1 (-1156)))) (-2817 (*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) (-2817 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) (-2817 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1156)))) (-1219 (*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1156)))))
-(-13 (-1003) (-10 -8 (-15 -2840 ((-349))) (-15 -2840 ((-349) (-349))) (-15 -3093 ((-349))) (-15 -3093 ((-349) (-349))) (-15 -3025 ((-349))) (-15 -3025 ((-349) (-349))) (-15 -2054 ((-349))) (-15 -2054 ((-349) (-349))) (-15 -3332 ((-349))) (-15 -3332 ((-349) (-349))) (-15 -1485 ($)) (-15 -3704 ($ $)) (-15 -3704 ($ (-1034 (-199)) (-1057))) (-15 -3704 ($ (-1034 (-199)) (-583 (-236)))) (-15 -1817 ((-1034 (-199)) $)) (-15 -1817 ($ $ (-1034 (-199)))) (-15 -1605 ((-1159) $ (-703) (-865 (-199)))) (-15 -1512 ((-583 (-236)) $)) (-15 -1512 ($ $ (-583 (-236)))) (-15 -2605 ((-1159) $ (-703) (-703))) (-15 -4151 ((-1159) $ (-843) (-843))) (-15 -4154 ((-1159) $ (-1057))) (-15 -1473 ((-1159) $ (-703) (-703) (-843) (-843))) (-15 -2365 ((-1159) $ (-349) (-349) (-349) (-349) (-349))) (-15 -2365 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -2365 ((-1159) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -2365 ((-1159) $ (-517) (-517) (-349) (-349) (-349))) (-15 -2365 ((-1159) $ (-349) (-349))) (-15 -2365 ((-1159) $ (-349) (-349) (-349))) (-15 -3180 ((-1159) $ (-1057))) (-15 -4141 ((-1159) $ (-1057))) (-15 -3298 ((-1159) $ (-1057))) (-15 -2444 ((-1159) $ (-1057))) (-15 -2044 ((-1159) $ (-1057))) (-15 -3521 ((-1159) $ (-349) (-349))) (-15 -3521 ((-1159) $ (-517) (-517))) (-15 -2669 ((-1159) $ (-349))) (-15 -2669 ((-1159) $ (-349) (-349) (-349))) (-15 -2471 ((-1159) $ (-349) (-349))) (-15 -3547 ((-1159) $ (-1057))) (-15 -2852 ((-1159) $ (-349))) (-15 -4040 ((-1159) $ (-349))) (-15 -3136 ((-1159) $ (-1057))) (-15 -3938 ((-1159) $ (-1057))) (-15 -3611 ((-1159) $ (-1057))) (-15 -1911 ((-1159) $ (-349) (-349) (-349))) (-15 -4052 ((-1159) $ (-349))) (-15 -2806 ((-1159) $)) (-15 -4097 ((-1159) $ (-142) (-142))) (-15 -2817 ((-1057) $ (-1057))) (-15 -2817 ((-1057) $ (-1057) (-1057))) (-15 -2817 ((-1057) $ (-1057) (-583 (-1057)))) (-15 -1219 ((-1159) $)) (-15 -3458 ((-517) $))))
-((-3433 (((-583 (-1057)) (-583 (-1057))) 94) (((-583 (-1057))) 89)) (-3870 (((-583 (-1057))) 87)) (-2445 (((-583 (-843)) (-583 (-843))) 62) (((-583 (-843))) 59)) (-3435 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2321 (((-1159)) 64)) (-2997 (((-843) (-843)) 80) (((-843)) 79)) (-3947 (((-843) (-843)) 78) (((-843)) 77)) (-3108 (((-797) (-797)) 74) (((-797)) 73)) (-2963 (((-199)) 84) (((-199) (-349)) 86)) (-3748 (((-843)) 81) (((-843) (-843)) 82)) (-3215 (((-843) (-843)) 76) (((-843)) 75)) (-3717 (((-797) (-797)) 68) (((-797)) 66)) (-1264 (((-797) (-797)) 70) (((-797)) 69)) (-2147 (((-797) (-797)) 72) (((-797)) 71)))
-(((-1157) (-10 -7 (-15 -3717 ((-797))) (-15 -3717 ((-797) (-797))) (-15 -1264 ((-797))) (-15 -1264 ((-797) (-797))) (-15 -2147 ((-797))) (-15 -2147 ((-797) (-797))) (-15 -3108 ((-797))) (-15 -3108 ((-797) (-797))) (-15 -3215 ((-843))) (-15 -3215 ((-843) (-843))) (-15 -3435 ((-583 (-703)))) (-15 -3435 ((-583 (-703)) (-583 (-703)))) (-15 -2445 ((-583 (-843)))) (-15 -2445 ((-583 (-843)) (-583 (-843)))) (-15 -2321 ((-1159))) (-15 -3433 ((-583 (-1057)))) (-15 -3433 ((-583 (-1057)) (-583 (-1057)))) (-15 -3870 ((-583 (-1057)))) (-15 -3947 ((-843))) (-15 -2997 ((-843))) (-15 -3947 ((-843) (-843))) (-15 -2997 ((-843) (-843))) (-15 -3748 ((-843) (-843))) (-15 -3748 ((-843))) (-15 -2963 ((-199) (-349))) (-15 -2963 ((-199))))) (T -1157))
-((-2963 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1157)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1157)))) (-3748 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-2997 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3947 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3870 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-3433 (*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) (-2321 (*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1157)))) (-2445 (*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) (-2445 (*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) (-3435 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3215 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3108 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-2147 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-1264 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-1264 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3717 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) (-3717 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
-(-10 -7 (-15 -3717 ((-797))) (-15 -3717 ((-797) (-797))) (-15 -1264 ((-797))) (-15 -1264 ((-797) (-797))) (-15 -2147 ((-797))) (-15 -2147 ((-797) (-797))) (-15 -3108 ((-797))) (-15 -3108 ((-797) (-797))) (-15 -3215 ((-843))) (-15 -3215 ((-843) (-843))) (-15 -3435 ((-583 (-703)))) (-15 -3435 ((-583 (-703)) (-583 (-703)))) (-15 -2445 ((-583 (-843)))) (-15 -2445 ((-583 (-843)) (-583 (-843)))) (-15 -2321 ((-1159))) (-15 -3433 ((-583 (-1057)))) (-15 -3433 ((-583 (-1057)) (-583 (-1057)))) (-15 -3870 ((-583 (-1057)))) (-15 -3947 ((-843))) (-15 -2997 ((-843))) (-15 -3947 ((-843) (-843))) (-15 -2997 ((-843) (-843))) (-15 -3748 ((-843) (-843))) (-15 -3748 ((-843))) (-15 -2963 ((-199) (-349))) (-15 -2963 ((-199))))
-((-1468 (((-437) (-583 (-583 (-865 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-865 (-199))))) 16) (((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 15)) (-1973 (((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236))) 23) (((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 22)) (-2254 (((-1155) (-437)) 34)))
-(((-1158) (-10 -7 (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1973 ((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1973 ((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2254 ((-1155) (-437))))) (T -1158))
-((-2254 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1973 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1158)))) (-1468 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))))
-(-10 -7 (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -1468 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1973 ((-1155) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1973 ((-1155) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2254 ((-1155) (-437))))
-((-2720 (($) 7)) (-2254 (((-787) $) 10)))
-(((-1159) (-10 -8 (-15 -2720 ($)) (-15 -2254 ((-787) $)))) (T -1159))
-((-2254 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) (-2720 (*1 *1) (-5 *1 (-1159))))
-(-10 -8 (-15 -2720 ($)) (-15 -2254 ((-787) $)))
-((-1678 (($ $ |#2|) 10)))
-(((-1160 |#1| |#2|) (-10 -8 (-15 -1678 (|#1| |#1| |#2|))) (-1161 |#2|) (-333)) (T -1160))
-NIL
-(-10 -8 (-15 -1678 (|#1| |#1| |#2|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2232 (((-125)) 28)) (-2254 (((-787) $) 11)) (-2398 (($) 18 T CONST)) (-1534 (((-107) $ $) 6)) (-1678 (($ $ |#1|) 29)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1161 |#1|) (-1185) (-333)) (T -1161))
-((-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-333)))) (-2232 (*1 *2) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(-13 (-650 |t#1|) (-10 -8 (-15 -1678 ($ $ |t#1|)) (-15 -2232 ((-125)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
-((-1858 (((-583 (-1104 |#1|)) (-1074) (-1104 |#1|)) 78)) (-3851 (((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|))) 57)) (-2474 (((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|))) 68)) (-2715 (((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703)) 59)) (-3205 (((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074)) 27)) (-3993 (((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703)) 58)))
-(((-1162 |#1|) (-10 -7 (-15 -2715 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -3993 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -3851 ((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|)))) (-15 -3205 ((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074))) (-15 -1858 ((-583 (-1104 |#1|)) (-1074) (-1104 |#1|))) (-15 -2474 ((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|))))) (-333)) (T -1162))
-((-2474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1104 *6)) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1162 *6)) (-5 *5 (-1055 *4)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-583 (-1104 *5))) (-5 *1 (-1162 *5)) (-5 *4 (-1104 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 (-1070 (-874 *4)) (-874 *4))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-1055 (-1055 (-874 *5)))) (-5 *1 (-1162 *5)) (-5 *4 (-1055 (-874 *5))))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
-(-10 -7 (-15 -2715 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -3993 ((-1 (-1055 (-874 |#1|)) (-1055 (-874 |#1|))) (-703))) (-15 -3851 ((-1055 (-1055 (-874 |#1|))) (-1074) (-1055 (-874 |#1|)))) (-15 -3205 ((-1 (-1070 (-874 |#1|)) (-874 |#1|)) (-1074))) (-15 -1858 ((-583 (-1104 |#1|)) (-1074) (-1104 |#1|))) (-15 -2474 ((-1 (-1055 (-1104 |#1|)) (-1055 (-1104 |#1|))) (-703) (-1104 |#1|) (-1055 (-1104 |#1|)))))
-((-2591 (((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-1866 (((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
-(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1131 |#1|) (-1131 |#2|) (-379 |#2| |#3|)) (T -1163))
-((-2591 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1163 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-1866 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2080 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(-10 -7 (-15 -1866 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -2591 ((-2 (|:| -2080 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 41)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) NIL)) (-3469 (((-107) $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2254 (((-787) $) 62) (($ (-517)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-1217 (((-703)) NIL)) (-1732 (((-1159) (-703)) 16)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 26 T CONST)) (-2411 (($) 65 T CONST)) (-1534 (((-107) $ $) 67)) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1663 (($ $) 69) (($ $ $) NIL)) (-1645 (($ $ $) 45)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-1164 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2254 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1678 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2254 ($ |#4|)) (-15 -1732 ((-1159) (-703))))) (-961) (-779) (-725) (-871 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1164))
-((-2254 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1678 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1164 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2254 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1159)) (-5 *1 (-1164 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2254 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1678 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2254 ($ |#4|)) (-15 -1732 ((-1159) (-703)))))
-((-1587 (((-107) $ $) NIL)) (-1698 (((-583 (-2 (|:| -1219 $) (|:| -1602 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3258 (((-583 $) (-583 |#4|)) 87)) (-1357 (((-583 |#3|) $) NIL)) (-2799 (((-107) $) NIL)) (-3741 (((-107) $) NIL (|has| |#1| (-509)))) (-2300 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2802 ((|#4| |#4| $) NIL)) (-4044 (((-2 (|:| |under| $) (|:| -2908 $) (|:| |upper| $)) $ |#3|) NIL)) (-3552 (((-107) $ (-703)) NIL)) (-3555 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2706 (($) NIL T CONST)) (-1190 (((-107) $) NIL (|has| |#1| (-509)))) (-2212 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4058 (((-107) $ $) NIL (|has| |#1| (-509)))) (-4021 (((-107) $) NIL (|has| |#1| (-509)))) (-1323 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-3381 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-509)))) (-2468 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1837 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3232 (($ (-583 |#4|)) NIL)) (-1761 (((-3 $ "failed") $) 69)) (-3896 ((|#4| |#4| $) 74)) (-1783 (($ $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-2050 (($ |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2240 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2169 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-3797 ((|#4| |#4| $) NIL)) (-1292 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4183))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4183))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1218 (((-2 (|:| -1219 (-583 |#4|)) (|:| -1602 (-583 |#4|))) $) NIL)) (-3240 (((-583 |#4|) $) NIL (|has| $ (-6 -4183)))) (-2919 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2877 ((|#3| $) 75)) (-2629 (((-107) $ (-703)) NIL)) (-2332 (((-583 |#4|) $) 28 (|has| $ (-6 -4183)))) (-1653 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003))))) (-4049 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-583 |#4|)) 34)) (-3696 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4184)))) (-1939 (($ (-1 |#4| |#4|) $) NIL)) (-2402 (((-583 |#3|) $) NIL)) (-1694 (((-107) |#3| $) NIL)) (-2026 (((-107) $ (-703)) NIL)) (-1277 (((-1057) $) NIL)) (-2067 (((-3 |#4| "failed") $) NIL)) (-2825 (((-583 |#4|) $) 49)) (-1966 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4083 ((|#4| |#4| $) 73)) (-3706 (((-107) $ $) 84)) (-2238 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2844 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1382 ((|#4| |#4| $) NIL)) (-3214 (((-1021) $) NIL)) (-1750 (((-3 |#4| "failed") $) 68)) (-3222 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2463 (((-3 $ "failed") $ |#4|) NIL)) (-2204 (($ $ |#4|) NIL)) (-3029 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2049 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-2349 (((-107) $ $) NIL)) (-1596 (((-107) $) 66)) (-2756 (($) 41)) (-3625 (((-703) $) NIL)) (-3223 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4183)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-2435 (($ $) NIL)) (-3667 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2272 (($ (-583 |#4|)) NIL)) (-1491 (($ $ |#3|) NIL)) (-2583 (($ $ |#3|) NIL)) (-2202 (($ $) NIL)) (-3788 (($ $ |#3|) NIL)) (-2254 (((-787) $) NIL) (((-583 |#4|) $) 56)) (-1444 (((-703) $) NIL (|has| |#3| (-338)))) (-1815 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-583 |#4|)) 40)) (-2328 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-583 $) (-583 |#4|)) 65)) (-1257 (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -1261 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1874 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2258 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4183)))) (-4060 (((-583 |#3|) $) NIL)) (-1892 (((-107) |#3| $) NIL)) (-1534 (((-107) $ $) NIL)) (-2290 (((-703) $) NIL (|has| $ (-6 -4183)))))
-(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4049 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4049 ((-3 $ "failed") (-583 |#4|))) (-15 -1815 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1815 ((-3 $ "failed") (-583 |#4|))) (-15 -2328 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2328 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1165))
-((-4049 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))) (-4049 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) (-1815 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))) (-1815 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) (-2328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1165 *6 *7 *8 *9))) (-5 *1 (-1165 *6 *7 *8 *9)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1165 *4 *5 *6 *7))) (-5 *1 (-1165 *4 *5 *6 *7)))))
-(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4049 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4049 ((-3 $ "failed") (-583 |#4|))) (-15 -1815 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1815 ((-3 $ "failed") (-583 |#4|))) (-15 -2328 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2328 ((-583 $) (-583 |#4|)))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2646 (((-3 $ "failed") $ $) 19)) (-2706 (($) 17 T CONST)) (-3775 (((-3 $ "failed") $) 34)) (-3469 (((-107) $) 31)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1166 |#1|) (-1185) (-961)) (T -1166))
-((-2254 (*1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -2254 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3556 (((-583 |#1|) $) 45)) (-3985 (($ $ (-703)) 39)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3776 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-2706 (($) NIL T CONST)) (-2760 (($ $ $) 61) (($ $ (-751 |#1|)) 48) (($ $ |#1|) 52)) (-1837 (((-3 (-751 |#1|) "failed") $) NIL)) (-3232 (((-751 |#1|) $) NIL)) (-1221 (($ $) 32)) (-3775 (((-3 $ "failed") $) NIL)) (-1984 (((-107) $) NIL)) (-3673 (($ $) NIL)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ (-751 |#1|) |#2|) 31)) (-3372 (($ $) 33)) (-3894 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-3027 (((-751 |#1|) $) NIL)) (-2117 (((-751 |#1|) $) 34)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-4091 (($ $ $) 60) (($ $ (-751 |#1|)) 50) (($ $ |#1|) 54)) (-1802 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1687 (((-751 |#1|) $) 28)) (-1193 ((|#2| $) 30)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3625 (((-703) $) 36)) (-2207 (((-107) $) 40)) (-2497 ((|#2| $) NIL)) (-2254 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-751 |#1|)) NIL)) (-1965 ((|#2| $ $) 63) ((|#2| $ (-751 |#1|)) NIL)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2398 (($) 12 T CONST)) (-2411 (($) 14 T CONST)) (-1503 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1534 (((-107) $ $) 38)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1167 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1173 |#1| |#2|)) (-779) (-961)) (T -1167))
-NIL
-(-13 (-352 |#2| (-751 |#1|)) (-1173 |#1| |#2|))
-((-1875 ((|#3| |#3| (-703)) 23)) (-2643 ((|#3| |#3| (-703)) 28)) (-2343 ((|#3| |#3| |#3| (-703)) 29)))
-(((-1168 |#1| |#2| |#3|) (-10 -7 (-15 -2643 (|#3| |#3| (-703))) (-15 -1875 (|#3| |#3| (-703))) (-15 -2343 (|#3| |#3| |#3| (-703)))) (-13 (-961) (-650 (-377 (-517)))) (-779) (-1173 |#2| |#1|)) (T -1168))
-((-2343 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) (-2643 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))))
-(-10 -7 (-15 -2643 (|#3| |#3| (-703))) (-15 -1875 (|#3| |#3| (-703))) (-15 -2343 (|#3| |#3| |#3| (-703))))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-3556 (((-583 |#1|) $) 40)) (-2646 (((-3 $ "failed") $ $) 19)) (-3776 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-2706 (($) 17 T CONST)) (-2760 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1837 (((-3 (-751 |#1|) "failed") $) 64)) (-3232 (((-751 |#1|) $) 63)) (-3775 (((-3 $ "failed") $) 34)) (-1984 (((-107) $) 45)) (-3673 (($ $) 44)) (-3469 (((-107) $) 31)) (-2029 (((-107) $) 50)) (-3838 (($ (-751 |#1|) |#2|) 51)) (-3372 (($ $) 49)) (-3894 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-3027 (((-751 |#1|) $) 61)) (-1939 (($ (-1 |#2| |#2|) $) 41)) (-4091 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-2207 (((-107) $) 47)) (-2497 ((|#2| $) 46)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1965 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1169 |#1| |#2|) (-1185) (-779) (-961)) (T -1169))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1965 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1169 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1965 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-4091 (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-4091 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2760 (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2760 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-961)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3372 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2254 (*1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3776 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(-13 (-961) (-1166 |t#2|) (-952 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3027 ((-751 |t#1|) $)) (-15 -3894 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1965 (|t#2| $ (-751 |t#1|))) (-15 -1965 (|t#2| $ $)) (-15 -4091 ($ $ |t#1|)) (-15 -4091 ($ $ (-751 |t#1|))) (-15 -4091 ($ $ $)) (-15 -2760 ($ $ |t#1|)) (-15 -2760 ($ $ (-751 |t#1|))) (-15 -2760 ($ $ $)) (-15 -3838 ($ (-751 |t#1|) |t#2|)) (-15 -2029 ((-107) $)) (-15 -3372 ($ $)) (-15 -2254 ($ |t#1|)) (-15 -2207 ((-107) $)) (-15 -2497 (|t#2| $)) (-15 -1984 ((-107) $)) (-15 -3673 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3776 ($ $ $)) (-15 -3776 ($ $ (-703)))) |%noBranch|) (-15 -1939 ($ (-1 |t#2| |t#2|) $)) (-15 -3556 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4176)) (-6 -4176) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1166 |#2|) . T))
-((-3065 (((-107) $) 13)) (-1892 (((-107) $) 12)) (-2415 (($ $) 17) (($ $ (-703)) 18)))
-(((-1170 |#1| |#2|) (-10 -8 (-15 -2415 (|#1| |#1| (-703))) (-15 -2415 (|#1| |#1|)) (-15 -3065 ((-107) |#1|)) (-15 -1892 ((-107) |#1|))) (-1171 |#2|) (-333)) (T -1170))
-NIL
-(-10 -8 (-15 -2415 (|#1| |#1| (-703))) (-15 -2415 (|#1| |#1|)) (-15 -3065 ((-107) |#1|)) (-15 -1892 ((-107) |#1|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-2726 (((-2 (|:| -1346 $) (|:| -4170 $) (|:| |associate| $)) $) 41)) (-2239 (($ $) 40)) (-3531 (((-107) $) 38)) (-3065 (((-107) $) 94)) (-3877 (((-703)) 90)) (-2646 (((-3 $ "failed") $ $) 19)) (-2377 (($ $) 73)) (-2674 (((-388 $) $) 72)) (-2448 (((-107) $ $) 59)) (-2706 (($) 17 T CONST)) (-1837 (((-3 |#1| "failed") $) 101)) (-3232 ((|#1| $) 100)) (-2532 (($ $ $) 55)) (-3775 (((-3 $ "failed") $) 34)) (-2509 (($ $ $) 56)) (-2299 (((-2 (|:| -1965 (-583 $)) (|:| -3244 $)) (-583 $)) 51)) (-2616 (($ $ (-703)) 87 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3083 (((-107) $) 71)) (-3730 (((-765 (-843)) $) 84 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3469 (((-107) $) 31)) (-2047 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1360 (($ $ $) 46) (($ (-583 $)) 45)) (-1277 (((-1057) $) 9)) (-1639 (($ $) 70)) (-2368 (((-107) $) 93)) (-3214 (((-1021) $) 10)) (-3875 (((-1070 $) (-1070 $) (-1070 $)) 44)) (-1387 (($ $ $) 48) (($ (-583 $)) 47)) (-1376 (((-388 $) $) 74)) (-4110 (((-765 (-843))) 91)) (-3082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3244 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2483 (((-3 $ "failed") $ $) 42)) (-1681 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3196 (((-703) $) 58)) (-2816 (((-2 (|:| -2317 $) (|:| -2240 $)) $ $) 57)) (-3459 (((-3 (-703) "failed") $ $) 85 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2232 (((-125)) 99)) (-3625 (((-765 (-843)) $) 92)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-2486 (((-3 $ "failed") $) 83 (-3782 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1217 (((-703)) 29)) (-2673 (((-107) $ $) 39)) (-1892 (((-107) $) 95)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-2415 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1534 (((-107) $ $) 6)) (-1678 (($ $ $) 64) (($ $ |#1|) 98)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1171 |#1|) (-1185) (-333)) (T -1171))
-((-1892 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-4110 (*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3877 (*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-2415 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
-(-13 (-333) (-952 |t#1|) (-1161 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |%noBranch|) (-15 -1892 ((-107) $)) (-15 -3065 ((-107) $)) (-15 -2368 ((-107) $)) (-15 -3625 ((-765 (-843)) $)) (-15 -4110 ((-765 (-843)))) (-15 -3877 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -2415 ($ $)) (-15 -2415 ($ $ (-703)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3782 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3782 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1113) . T) ((-1161 |#1|) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3556 (((-583 |#1|) $) 84)) (-3985 (($ $ (-703)) 87)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3776 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-2706 (($) NIL T CONST)) (-2760 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1837 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-815 |#1|) "failed") $) NIL)) (-3232 (((-751 |#1|) $) NIL) (((-815 |#1|) $) NIL)) (-1221 (($ $) 86)) (-3775 (((-3 $ "failed") $) NIL)) (-1984 (((-107) $) 75)) (-3673 (($ $) 79)) (-1509 (($ $ $ (-703)) 88)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ (-751 |#1|) |#2|) NIL) (($ (-815 |#1|) |#2|) 25)) (-3372 (($ $) 101)) (-3894 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3027 (((-751 |#1|) $) NIL)) (-2117 (((-751 |#1|) $) NIL)) (-1939 (($ (-1 |#2| |#2|) $) NIL)) (-4091 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1875 (($ $ (-703)) 95 (|has| |#2| (-650 (-377 (-517)))))) (-1802 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1687 (((-815 |#1|) $) 69)) (-1193 ((|#2| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2643 (($ $ (-703)) 92 (|has| |#2| (-650 (-377 (-517)))))) (-3625 (((-703) $) 85)) (-2207 (((-107) $) 70)) (-2497 ((|#2| $) 74)) (-2254 (((-787) $) 56) (($ (-517)) NIL) (($ |#2|) 50) (($ (-751 |#1|)) NIL) (($ |#1|) 58) (($ (-815 |#1|)) NIL) (($ (-601 |#1| |#2|)) 42) (((-1167 |#1| |#2|) $) 63) (((-1176 |#1| |#2|) $) 68)) (-3165 (((-583 |#2|) $) NIL)) (-4104 ((|#2| $ (-815 |#1|)) NIL)) (-1965 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 21 T CONST)) (-2411 (($) 24 T CONST)) (-1503 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3942 (((-3 (-601 |#1| |#2|) "failed") $) 100)) (-1534 (((-107) $ $) 64)) (-1663 (($ $) 94) (($ $ $) 93)) (-1645 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-815 |#1|)) NIL)))
-(((-1172 |#1| |#2|) (-13 (-1173 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2254 ($ (-601 |#1| |#2|))) (-15 -2254 ((-1167 |#1| |#2|) $)) (-15 -2254 ((-1176 |#1| |#2|) $)) (-15 -3942 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1509 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2643 ($ $ (-703))) (-15 -1875 ($ $ (-703)))) |%noBranch|))) (-779) (-156)) (T -1172))
-((-2254 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1172 *3 *4)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3942 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1509 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2643 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(-13 (-1173 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2254 ($ (-601 |#1| |#2|))) (-15 -2254 ((-1167 |#1| |#2|) $)) (-15 -2254 ((-1176 |#1| |#2|) $)) (-15 -3942 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1509 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2643 ($ $ (-703))) (-15 -1875 ($ $ (-703)))) |%noBranch|)))
-((-1587 (((-107) $ $) 7)) (-2778 (((-107) $) 16)) (-3556 (((-583 |#1|) $) 40)) (-3985 (($ $ (-703)) 73)) (-2646 (((-3 $ "failed") $ $) 19)) (-3776 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-2706 (($) 17 T CONST)) (-2760 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1837 (((-3 (-751 |#1|) "failed") $) 64)) (-3232 (((-751 |#1|) $) 63)) (-3775 (((-3 $ "failed") $) 34)) (-1984 (((-107) $) 45)) (-3673 (($ $) 44)) (-3469 (((-107) $) 31)) (-2029 (((-107) $) 50)) (-3838 (($ (-751 |#1|) |#2|) 51)) (-3372 (($ $) 49)) (-3894 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-3027 (((-751 |#1|) $) 61)) (-2117 (((-751 |#1|) $) 75)) (-1939 (($ (-1 |#2| |#2|) $) 41)) (-4091 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1277 (((-1057) $) 9)) (-3214 (((-1021) $) 10)) (-3625 (((-703) $) 74)) (-2207 (((-107) $) 47)) (-2497 ((|#2| $) 46)) (-2254 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1965 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1217 (((-703)) 29)) (-2196 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2398 (($) 18 T CONST)) (-2411 (($) 30 T CONST)) (-1534 (((-107) $ $) 6)) (-1663 (($ $) 22) (($ $ $) 21)) (-1645 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1173 |#1| |#2|) (-1185) (-779) (-961)) (T -1173))
-((-2117 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3985 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(-13 (-1169 |t#1| |t#2|) (-10 -8 (-15 -2117 ((-751 |t#1|) $)) (-15 -3625 ((-703) $)) (-15 -3985 ($ $ (-703)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1166 |#2|) . T) ((-1169 |#1| |#2|) . T))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3556 (((-583 (-1074)) $) NIL)) (-2857 (($ (-1167 (-1074) |#1|)) NIL)) (-3985 (($ $ (-703)) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3776 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-2706 (($) NIL T CONST)) (-2760 (($ $ (-1074)) NIL) (($ $ (-751 (-1074))) NIL) (($ $ $) NIL)) (-1837 (((-3 (-751 (-1074)) "failed") $) NIL)) (-3232 (((-751 (-1074)) $) NIL)) (-3775 (((-3 $ "failed") $) NIL)) (-1984 (((-107) $) NIL)) (-3673 (($ $) NIL)) (-3469 (((-107) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ (-751 (-1074)) |#1|) NIL)) (-3372 (($ $) NIL)) (-3894 (((-2 (|:| |k| (-751 (-1074))) (|:| |c| |#1|)) $) NIL)) (-3027 (((-751 (-1074)) $) NIL)) (-2117 (((-751 (-1074)) $) NIL)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-4091 (($ $ (-1074)) NIL) (($ $ (-751 (-1074))) NIL) (($ $ $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3523 (((-1167 (-1074) |#1|) $) NIL)) (-3625 (((-703) $) NIL)) (-2207 (((-107) $) NIL)) (-2497 ((|#1| $) NIL)) (-2254 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1074))) NIL) (($ (-1074)) NIL)) (-1965 ((|#1| $ (-751 (-1074))) NIL) ((|#1| $ $) NIL)) (-1217 (((-703)) NIL)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) NIL T CONST)) (-2199 (((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $) NIL)) (-2411 (($) NIL T CONST)) (-1534 (((-107) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1074) $) NIL)))
-(((-1174 |#1|) (-13 (-1173 (-1074) |#1|) (-10 -8 (-15 -3523 ((-1167 (-1074) |#1|) $)) (-15 -2857 ($ (-1167 (-1074) |#1|))) (-15 -2199 ((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $)))) (-961)) (T -1174))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1167 (-1074) *3)) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-1167 (-1074) *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1074)) (|:| |c| (-1174 *3))))) (-5 *1 (-1174 *3)) (-4 *3 (-961)))))
-(-13 (-1173 (-1074) |#1|) (-10 -8 (-15 -3523 ((-1167 (-1074) |#1|) $)) (-15 -2857 ($ (-1167 (-1074) |#1|))) (-15 -2199 ((-583 (-2 (|:| |k| (-1074)) (|:| |c| $))) $))))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-2646 (((-3 $ "failed") $ $) NIL)) (-2706 (($) NIL T CONST)) (-1837 (((-3 |#2| "failed") $) NIL)) (-3232 ((|#2| $) NIL)) (-1221 (($ $) NIL)) (-3775 (((-3 $ "failed") $) 34)) (-1984 (((-107) $) 29)) (-3673 (($ $) 30)) (-3469 (((-107) $) NIL)) (-3604 (((-703) $) NIL)) (-3284 (((-583 $) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ |#2| |#1|) NIL)) (-3027 ((|#2| $) 19)) (-2117 ((|#2| $) 16)) (-1939 (($ (-1 |#1| |#1|) $) NIL)) (-1802 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1687 ((|#2| $) NIL)) (-1193 ((|#1| $) NIL)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-2207 (((-107) $) 27)) (-2497 ((|#1| $) 28)) (-2254 (((-787) $) 53) (($ (-517)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-3165 (((-583 |#1|) $) NIL)) (-4104 ((|#1| $ |#2|) NIL)) (-1965 ((|#1| $ |#2|) 24)) (-1217 (((-703)) 14)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 25 T CONST)) (-2411 (($) 11 T CONST)) (-1503 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1534 (((-107) $ $) 26)) (-1678 (($ $ |#1|) 55 (|has| |#1| (-333)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-1645 (($ $ $) 42)) (** (($ $ (-843)) NIL) (($ $ (-703)) 44)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2290 (((-703) $) 15)))
-(((-1175 |#1| |#2|) (-13 (-961) (-1166 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2290 ((-703) $)) (-15 -2254 ($ |#2|)) (-15 -2117 (|#2| $)) (-15 -3027 (|#2| $)) (-15 -1221 ($ $)) (-15 -1965 (|#1| $ |#2|)) (-15 -2207 ((-107) $)) (-15 -2497 (|#1| $)) (-15 -1984 ((-107) $)) (-15 -3673 ($ $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1678 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4176)) (-6 -4176) |%noBranch|) (IF (|has| |#1| (-6 -4180)) (-6 -4180) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|))) (-961) (-775)) (T -1175))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1221 (*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-775)))) (-2254 (*1 *1 *2) (-12 (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-2117 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))) (-3027 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))) (-1965 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-2497 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(-13 (-961) (-1166 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2290 ((-703) $)) (-15 -2254 ($ |#2|)) (-15 -2117 (|#2| $)) (-15 -3027 (|#2| $)) (-15 -1221 ($ $)) (-15 -1965 (|#1| $ |#2|)) (-15 -2207 ((-107) $)) (-15 -2497 (|#1| $)) (-15 -1984 ((-107) $)) (-15 -3673 ($ $)) (-15 -1939 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1678 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4176)) (-6 -4176) |%noBranch|) (IF (|has| |#1| (-6 -4180)) (-6 -4180) |%noBranch|) (IF (|has| |#1| (-6 -4181)) (-6 -4181) |%noBranch|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) NIL)) (-3556 (((-583 |#1|) $) 119)) (-2857 (($ (-1167 |#1| |#2|)) 43)) (-3985 (($ $ (-703)) 31)) (-2646 (((-3 $ "failed") $ $) NIL)) (-3776 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-703)) 45 (|has| |#2| (-156)))) (-2706 (($) NIL T CONST)) (-2760 (($ $ |#1|) 101) (($ $ (-751 |#1|)) 102) (($ $ $) 25)) (-1837 (((-3 (-751 |#1|) "failed") $) NIL)) (-3232 (((-751 |#1|) $) NIL)) (-3775 (((-3 $ "failed") $) 109)) (-1984 (((-107) $) 104)) (-3673 (($ $) 105)) (-3469 (((-107) $) NIL)) (-2029 (((-107) $) NIL)) (-3838 (($ (-751 |#1|) |#2|) 19)) (-3372 (($ $) NIL)) (-3894 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3027 (((-751 |#1|) $) 110)) (-2117 (((-751 |#1|) $) 113)) (-1939 (($ (-1 |#2| |#2|) $) 118)) (-4091 (($ $ |#1|) 99) (($ $ (-751 |#1|)) 100) (($ $ $) 55)) (-1277 (((-1057) $) NIL)) (-3214 (((-1021) $) NIL)) (-3523 (((-1167 |#1| |#2|) $) 83)) (-3625 (((-703) $) 116)) (-2207 (((-107) $) 69)) (-2497 ((|#2| $) 27)) (-2254 (((-787) $) 62) (($ (-517)) 76) (($ |#2|) 73) (($ (-751 |#1|)) 17) (($ |#1|) 72)) (-1965 ((|#2| $ (-751 |#1|)) 103) ((|#2| $ $) 26)) (-1217 (((-703)) 107)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 14 T CONST)) (-2199 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-2411 (($) 28 T CONST)) (-1534 (((-107) $ $) 13)) (-1663 (($ $) 87) (($ $ $) 90)) (-1645 (($ $ $) 54)) (** (($ $ (-843)) NIL) (($ $ (-703)) 48)) (* (($ (-843) $) NIL) (($ (-703) $) 46) (($ (-517) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81)))
-(((-1176 |#1| |#2|) (-13 (-1173 |#1| |#2|) (-10 -8 (-15 -3523 ((-1167 |#1| |#2|) $)) (-15 -2857 ($ (-1167 |#1| |#2|))) (-15 -2199 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-961)) (T -1176))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1176 *3 *4)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1176 *3 *4))))) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(-13 (-1173 |#1| |#2|) (-10 -8 (-15 -3523 ((-1167 |#1| |#2|) $)) (-15 -2857 ($ (-1167 |#1| |#2|))) (-15 -2199 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1970 (((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517)) 15) (((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|))) 11)))
-(((-1177 |#1|) (-10 -7 (-15 -1970 ((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|)))) (-15 -1970 ((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517)))) (-1109)) (T -1177))
-((-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1055 *5)) (-583 (-1055 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1055 *5))) (-5 *1 (-1177 *5)) (-4 *5 (-1109)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -1970 ((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|)))) (-15 -1970 ((-583 (-1055 |#1|)) (-1 (-583 (-1055 |#1|)) (-583 (-1055 |#1|))) (-517))))
-((-1868 (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 145) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 144) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 143) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 142) (((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-958 |#1| |#2|)) 127)) (-2538 (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|))) 70) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107)) 69) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107)) 68)) (-2674 (((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|)) 59)) (-1246 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 112) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 111) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 110) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 109) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 104)) (-2594 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 117) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 116) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 115) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 114)) (-3667 (((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 96) (((-1070 (-939 (-377 |#1|))) (-1070 |#1|)) 87) (((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 94) (((-874 (-939 (-377 |#1|))) (-874 |#1|)) 92) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 32)))
-(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2674 ((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3667 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3667 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3667 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3667 ((-1070 (-939 (-377 |#1|))) (-1070 |#1|))) (-15 -3667 ((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-937)) (-583 (-1074)) (-583 (-1074))) (T -1178))
-((-3667 (*1 *2 *3) (-12 (-5 *3 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1070 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1246 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-1868 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-1868 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1868 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1868 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) (-2538 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))))
-(-10 -7 (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -2538 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -1868 ((-583 (-2 (|:| -3614 (-1070 |#1|)) (|:| -3589 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -1246 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2594 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2674 ((-583 (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3667 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3667 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3667 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3667 ((-1070 (-939 (-377 |#1|))) (-1070 |#1|))) (-15 -3667 ((-583 (-712 |#1| (-789 |#3|))) (-1045 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
-((-3473 (((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|) 17)) (-3375 (((-107) (-1154 |#1|)) 11)) (-4127 (((-3 (-1154 (-517)) "failed") (-1154 |#1|)) 14)))
-(((-1179 |#1|) (-10 -7 (-15 -3375 ((-107) (-1154 |#1|))) (-15 -4127 ((-3 (-1154 (-517)) "failed") (-1154 |#1|))) (-15 -3473 ((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|))) (-579 (-517))) (T -1179))
-((-3473 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-377 (-517)))) (-5 *1 (-1179 *4)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-517))) (-5 *1 (-1179 *4)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1179 *4)))))
-(-10 -7 (-15 -3375 ((-107) (-1154 |#1|))) (-15 -4127 ((-3 (-1154 (-517)) "failed") (-1154 |#1|))) (-15 -3473 ((-3 (-1154 (-377 (-517))) "failed") (-1154 |#1|) |#1|)))
-((-1587 (((-107) $ $) NIL)) (-2778 (((-107) $) 11)) (-2646 (((-3 $ "failed") $ $) NIL)) (-1719 (((-703)) 8)) (-2706 (($) NIL T CONST)) (-3775 (((-3 $ "failed") $) 43)) (-4100 (($) 36)) (-3469 (((-107) $) NIL)) (-3326 (((-3 $ "failed") $) 29)) (-4034 (((-843) $) 15)) (-1277 (((-1057) $) NIL)) (-3680 (($) 25 T CONST)) (-3544 (($ (-843)) 37)) (-3214 (((-1021) $) NIL)) (-3667 (((-517) $) 13)) (-2254 (((-787) $) 22) (($ (-517)) 19)) (-1217 (((-703)) 9)) (-2196 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2398 (($) 23 T CONST)) (-2411 (($) 24 T CONST)) (-1534 (((-107) $ $) 27)) (-1663 (($ $) 38) (($ $ $) 35)) (-1645 (($ $ $) 26)) (** (($ $ (-843)) NIL) (($ $ (-703)) 40)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
-(((-1180 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1050)) (-843)) (T -1180))
-NIL
-(-13 (-156) (-338) (-558 (-517)) (-1050))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-1185 3125904 3125909 3125914 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3125889 3125894 3125899 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3125874 3125879 3125884 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3125859 3125864 3125869 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3125844 3125849 3125854 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1180 3124974 3125719 3125796 "ZMOD" 3125801 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1179 3124084 3124248 3124457 "ZLINDEP" 3124806 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1178 3113488 3115233 3117185 "ZDSOLVE" 3122233 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1177 3112734 3112875 3113064 "YSTREAM" 3113334 NIL YSTREAM (NIL T) -7 NIL NIL) (-1176 3110503 3112039 3112242 "XRPOLY" 3112577 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1175 3106965 3108294 3108876 "XPR" 3109967 NIL XPR (NIL T T) -8 NIL NIL) (-1174 3104679 3106300 3106503 "XPOLY" 3106796 NIL XPOLY (NIL T) -8 NIL NIL) (-1173 3102492 3103870 3103925 "XPOLYC" 3104210 NIL XPOLYC (NIL T T) -9 NIL 3104323) (-1172 3098864 3101009 3101397 "XPBWPOLY" 3102150 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1171 3094744 3097057 3097100 "XF" 3097721 NIL XF (NIL T) -9 NIL 3098120) (-1170 3094365 3094453 3094622 "XF-" 3094627 NIL XF- (NIL T T) -8 NIL NIL) (-1169 3089744 3091043 3091098 "XFALG" 3093246 NIL XFALG (NIL T T) -9 NIL 3094033) (-1168 3088881 3088985 3089189 "XEXPPKG" 3089636 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1167 3086979 3088732 3088827 "XDPOLY" 3088832 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1166 3085857 3086467 3086510 "XALG" 3086572 NIL XALG (NIL T) -9 NIL 3086691) (-1165 3079333 3083841 3084334 "WUTSET" 3085449 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1164 3077145 3077952 3078303 "WP" 3079115 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1163 3076031 3076229 3076524 "WFFINTBS" 3076942 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1162 3073935 3074362 3074824 "WEIER" 3075603 NIL WEIER (NIL T) -7 NIL NIL) (-1161 3073083 3073507 3073550 "VSPACE" 3073686 NIL VSPACE (NIL T) -9 NIL 3073760) (-1160 3072921 3072948 3073039 "VSPACE-" 3073044 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1159 3072667 3072710 3072781 "VOID" 3072872 T VOID (NIL) -8 NIL NIL) (-1158 3070803 3071162 3071568 "VIEW" 3072283 T VIEW (NIL) -7 NIL NIL) (-1157 3067228 3067866 3068603 "VIEWDEF" 3070088 T VIEWDEF (NIL) -7 NIL NIL) (-1156 3056567 3058776 3060949 "VIEW3D" 3065077 T VIEW3D (NIL) -8 NIL NIL) (-1155 3048849 3050478 3052057 "VIEW2D" 3055010 T VIEW2D (NIL) -8 NIL NIL) (-1154 3044258 3048619 3048711 "VECTOR" 3048792 NIL VECTOR (NIL T) -8 NIL NIL) (-1153 3042835 3043094 3043412 "VECTOR2" 3043988 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1152 3036377 3040623 3040667 "VECTCAT" 3041655 NIL VECTCAT (NIL T) -9 NIL 3042239) (-1151 3035391 3035645 3036035 "VECTCAT-" 3036040 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1150 3034872 3035042 3035162 "VARIABLE" 3035306 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1149 3033707 3033861 3034122 "UTSODETL" 3034698 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1148 3031147 3031607 3032131 "UTSODE" 3033248 NIL UTSODE (NIL T T) -7 NIL NIL) (-1147 3022995 3028787 3029275 "UTS" 3030716 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1146 3014293 3019655 3019698 "UTSCAT" 3020799 NIL UTSCAT (NIL T) -9 NIL 3021556) (-1145 3011649 3012364 3013352 "UTSCAT-" 3013357 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1144 3011280 3011323 3011454 "UTS2" 3011600 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1143 3005555 3008120 3008164 "URAGG" 3010234 NIL URAGG (NIL T) -9 NIL 3010956) (-1142 3002494 3003357 3004480 "URAGG-" 3004485 NIL URAGG- (NIL T T) -8 NIL NIL) (-1141 2998180 3001111 3001582 "UPXSSING" 3002158 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1140 2990074 2997301 2997581 "UPXS" 2997957 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1139 2983106 2989979 2990050 "UPXSCONS" 2990055 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1138 2973334 2980161 2980223 "UPXSCCA" 2980872 NIL UPXSCCA (NIL T T) -9 NIL 2981113) (-1137 2972973 2973058 2973231 "UPXSCCA-" 2973236 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1136 2963123 2969723 2969766 "UPXSCAT" 2970409 NIL UPXSCAT (NIL T) -9 NIL 2971017) (-1135 2962557 2962636 2962813 "UPXS2" 2963038 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1134 2961211 2961464 2961815 "UPSQFREE" 2962300 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1133 2955059 2958111 2958166 "UPSCAT" 2959315 NIL UPSCAT (NIL T T) -9 NIL 2960088) (-1132 2954273 2954477 2954800 "UPSCAT-" 2954805 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1131 2940346 2948343 2948386 "UPOLYC" 2950464 NIL UPOLYC (NIL T) -9 NIL 2951684) (-1130 2931739 2934143 2937268 "UPOLYC-" 2937273 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1129 2931370 2931413 2931544 "UPOLYC2" 2931690 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1128 2922829 2930939 2931076 "UP" 2931280 NIL UP (NIL NIL T) -8 NIL NIL) (-1127 2922172 2922279 2922442 "UPMP" 2922718 NIL UPMP (NIL T T) -7 NIL NIL) (-1126 2921725 2921806 2921945 "UPDIVP" 2922085 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1125 2920293 2920542 2920858 "UPDECOMP" 2921474 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1124 2919528 2919640 2919825 "UPCDEN" 2920177 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1123 2919051 2919120 2919267 "UP2" 2919453 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1122 2917576 2918262 2918536 "UNISEG" 2918812 NIL UNISEG (NIL T) -8 NIL NIL) (-1121 2916791 2916918 2917123 "UNISEG2" 2917419 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1120 2915851 2916031 2916257 "UNIFACT" 2916607 NIL UNIFACT (NIL T) -7 NIL NIL) (-1119 2899750 2915032 2915282 "ULS" 2915658 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1118 2887718 2899655 2899726 "ULSCONS" 2899731 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1117 2870421 2882431 2882493 "ULSCCAT" 2883205 NIL ULSCCAT (NIL T T) -9 NIL 2883501) (-1116 2869472 2869717 2870104 "ULSCCAT-" 2870109 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1115 2859415 2865929 2865972 "ULSCAT" 2866828 NIL ULSCAT (NIL T) -9 NIL 2867558) (-1114 2858849 2858928 2859105 "ULS2" 2859330 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1113 2857246 2858213 2858244 "UFD" 2858456 T UFD (NIL) -9 NIL 2858570) (-1112 2857040 2857086 2857181 "UFD-" 2857186 NIL UFD- (NIL T) -8 NIL NIL) (-1111 2856122 2856305 2856521 "UDVO" 2856846 T UDVO (NIL) -7 NIL NIL) (-1110 2853938 2854347 2854818 "UDPO" 2855686 NIL UDPO (NIL T) -7 NIL NIL) (-1109 2853870 2853875 2853906 "TYPE" 2853911 T TYPE (NIL) -9 NIL NIL) (-1108 2852841 2853043 2853283 "TWOFACT" 2853664 NIL TWOFACT (NIL T) -7 NIL NIL) (-1107 2851779 2852116 2852379 "TUPLE" 2852613 NIL TUPLE (NIL T) -8 NIL NIL) (-1106 2849470 2849989 2850528 "TUBETOOL" 2851262 T TUBETOOL (NIL) -7 NIL NIL) (-1105 2848319 2848524 2848765 "TUBE" 2849263 NIL TUBE (NIL T) -8 NIL NIL) (-1104 2843043 2847297 2847579 "TS" 2848071 NIL TS (NIL T) -8 NIL NIL) (-1103 2831746 2835838 2835935 "TSETCAT" 2841169 NIL TSETCAT (NIL T T T T) -9 NIL 2842700) (-1102 2826482 2828079 2829969 "TSETCAT-" 2829974 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1101 2820745 2821591 2822533 "TRMANIP" 2825618 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1100 2820186 2820249 2820412 "TRIMAT" 2820677 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1099 2817992 2818229 2818592 "TRIGMNIP" 2819935 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1098 2817511 2817624 2817655 "TRIGCAT" 2817868 T TRIGCAT (NIL) -9 NIL NIL) (-1097 2817180 2817259 2817400 "TRIGCAT-" 2817405 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1096 2814085 2816040 2816320 "TREE" 2816935 NIL TREE (NIL T) -8 NIL NIL) (-1095 2813358 2813886 2813917 "TRANFUN" 2813952 T TRANFUN (NIL) -9 NIL 2814018) (-1094 2812637 2812828 2813108 "TRANFUN-" 2813113 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1093 2812441 2812473 2812534 "TOPSP" 2812598 T TOPSP (NIL) -7 NIL NIL) (-1092 2811793 2811908 2812061 "TOOLSIGN" 2812322 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1091 2810454 2810970 2811209 "TEXTFILE" 2811576 T TEXTFILE (NIL) -8 NIL NIL) (-1090 2808319 2808833 2809271 "TEX" 2810038 T TEX (NIL) -8 NIL NIL) (-1089 2808100 2808131 2808203 "TEX1" 2808282 NIL TEX1 (NIL T) -7 NIL NIL) (-1088 2807748 2807811 2807901 "TEMUTL" 2808032 T TEMUTL (NIL) -7 NIL NIL) (-1087 2805902 2806182 2806507 "TBCMPPK" 2807471 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1086 2797560 2803820 2803877 "TBAGG" 2804277 NIL TBAGG (NIL T T) -9 NIL 2804488) (-1085 2792630 2794118 2795872 "TBAGG-" 2795877 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1084 2792014 2792121 2792266 "TANEXP" 2792519 NIL TANEXP (NIL T) -7 NIL NIL) (-1083 2785527 2791871 2791964 "TABLE" 2791969 NIL TABLE (NIL T T) -8 NIL NIL) (-1082 2784940 2785038 2785176 "TABLEAU" 2785424 NIL TABLEAU (NIL T) -8 NIL NIL) (-1081 2779548 2780768 2782016 "TABLBUMP" 2783726 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1080 2776011 2776706 2777489 "SYSSOLP" 2778799 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1079 2774593 2774841 2775146 "SYNTAX" 2775728 T SYNTAX (NIL) -8 NIL NIL) (-1078 2771727 2772335 2772973 "SYMTAB" 2773977 T SYMTAB (NIL) -8 NIL NIL) (-1077 2766976 2767878 2768861 "SYMS" 2770766 T SYMS (NIL) -8 NIL NIL) (-1076 2764209 2766436 2766665 "SYMPOLY" 2766781 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1075 2763729 2763804 2763926 "SYMFUNC" 2764121 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1074 2759707 2760966 2761788 "SYMBOL" 2762929 T SYMBOL (NIL) -8 NIL NIL) (-1073 2753246 2754935 2756655 "SWITCH" 2758009 T SWITCH (NIL) -8 NIL NIL) (-1072 2746479 2752073 2752375 "SUTS" 2753001 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1071 2738372 2745600 2745880 "SUPXS" 2746256 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1070 2729905 2737993 2738118 "SUP" 2738281 NIL SUP (NIL T) -8 NIL NIL) (-1069 2729064 2729191 2729408 "SUPFRACF" 2729773 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1068 2728689 2728748 2728859 "SUP2" 2728999 NIL SUP2 (NIL T T) -7 NIL NIL) (-1067 2727115 2727387 2727747 "SUMRF" 2728390 NIL SUMRF (NIL T) -7 NIL NIL) (-1066 2726436 2726501 2726698 "SUMFS" 2727037 NIL SUMFS (NIL T T) -7 NIL NIL) (-1065 2710375 2725617 2725867 "SULS" 2726243 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1064 2709697 2709900 2710040 "SUCH" 2710283 NIL SUCH (NIL T T) -8 NIL NIL) (-1063 2703624 2704636 2705594 "SUBSPACE" 2708785 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1062 2703054 2703144 2703308 "SUBRESP" 2703512 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1061 2696423 2697719 2699030 "STTF" 2701790 NIL STTF (NIL T) -7 NIL NIL) (-1060 2690596 2691716 2692863 "STTFNC" 2695323 NIL STTFNC (NIL T) -7 NIL NIL) (-1059 2681947 2683814 2685607 "STTAYLOR" 2688837 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1058 2675203 2681811 2681894 "STRTBL" 2681899 NIL STRTBL (NIL T) -8 NIL NIL) (-1057 2670594 2675158 2675189 "STRING" 2675194 T STRING (NIL) -8 NIL NIL) (-1056 2665452 2669937 2669968 "STRICAT" 2670027 T STRICAT (NIL) -9 NIL 2670089) (-1055 2658173 2662975 2663595 "STREAM" 2664867 NIL STREAM (NIL T) -8 NIL NIL) (-1054 2657683 2657760 2657904 "STREAM3" 2658090 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1053 2656665 2656848 2657083 "STREAM2" 2657496 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1052 2656353 2656405 2656498 "STREAM1" 2656607 NIL STREAM1 (NIL T) -7 NIL NIL) (-1051 2655369 2655550 2655781 "STINPROD" 2656169 NIL STINPROD (NIL T) -7 NIL NIL) (-1050 2654947 2655131 2655162 "STEP" 2655242 T STEP (NIL) -9 NIL 2655320) (-1049 2648502 2654846 2654923 "STBL" 2654928 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1048 2643674 2647721 2647765 "STAGG" 2647918 NIL STAGG (NIL T) -9 NIL 2648007) (-1047 2641376 2641978 2642850 "STAGG-" 2642855 NIL STAGG- (NIL T T) -8 NIL NIL) (-1046 2639574 2641146 2641238 "STACK" 2641319 NIL STACK (NIL T) -8 NIL NIL) (-1045 2632305 2637721 2638176 "SREGSET" 2639204 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1044 2624745 2626113 2627625 "SRDCMPK" 2630911 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1043 2617688 2622155 2622186 "SRAGG" 2623489 T SRAGG (NIL) -9 NIL 2624097) (-1042 2616705 2616960 2617339 "SRAGG-" 2617344 NIL SRAGG- (NIL T) -8 NIL NIL) (-1041 2611154 2615624 2616051 "SQMATRIX" 2616324 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1040 2604912 2607874 2608600 "SPLTREE" 2610500 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1039 2600902 2601568 2602214 "SPLNODE" 2604338 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1038 2599948 2600181 2600212 "SPFCAT" 2600656 T SPFCAT (NIL) -9 NIL NIL) (-1037 2598685 2598895 2599159 "SPECOUT" 2599706 T SPECOUT (NIL) -7 NIL NIL) (-1036 2598446 2598486 2598555 "SPADPRSR" 2598638 T SPADPRSR (NIL) -7 NIL NIL) (-1035 2590468 2592215 2592258 "SPACEC" 2596581 NIL SPACEC (NIL T) -9 NIL 2598397) (-1034 2588640 2590401 2590449 "SPACE3" 2590454 NIL SPACE3 (NIL T) -8 NIL NIL) (-1033 2587392 2587563 2587854 "SORTPAK" 2588445 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1032 2585448 2585751 2586169 "SOLVETRA" 2587056 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1031 2584459 2584681 2584955 "SOLVESER" 2585221 NIL SOLVESER (NIL T) -7 NIL NIL) (-1030 2579679 2580560 2581562 "SOLVERAD" 2583511 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1029 2575494 2576103 2576832 "SOLVEFOR" 2579046 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1028 2569793 2574845 2574942 "SNTSCAT" 2574947 NIL SNTSCAT (NIL T T T T) -9 NIL 2575017) (-1027 2563898 2568124 2568514 "SMTS" 2569483 NIL SMTS (NIL T T T) -8 NIL NIL) (-1026 2558308 2563787 2563863 "SMP" 2563868 NIL SMP (NIL T T) -8 NIL NIL) (-1025 2556467 2556768 2557166 "SMITH" 2558005 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1024 2549431 2553627 2553730 "SMATCAT" 2555070 NIL SMATCAT (NIL NIL T T T) -9 NIL 2555619) (-1023 2546372 2547195 2548372 "SMATCAT-" 2548377 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1022 2544091 2545608 2545652 "SKAGG" 2545913 NIL SKAGG (NIL T) -9 NIL 2546048) (-1021 2540149 2543195 2543473 "SINT" 2543835 T SINT (NIL) -8 NIL NIL) (-1020 2539921 2539959 2540025 "SIMPAN" 2540105 T SIMPAN (NIL) -7 NIL NIL) (-1019 2538759 2538980 2539255 "SIGNRF" 2539680 NIL SIGNRF (NIL T) -7 NIL NIL) (-1018 2537568 2537719 2538009 "SIGNEF" 2538588 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1017 2535258 2535712 2536218 "SHP" 2537109 NIL SHP (NIL T NIL) -7 NIL NIL) (-1016 2529117 2535159 2535235 "SHDP" 2535240 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1015 2528606 2528798 2528829 "SGROUP" 2528981 T SGROUP (NIL) -9 NIL 2529068) (-1014 2528376 2528428 2528532 "SGROUP-" 2528537 NIL SGROUP- (NIL T) -8 NIL NIL) (-1013 2525212 2525909 2526632 "SGCF" 2527675 T SGCF (NIL) -7 NIL NIL) (-1012 2519610 2524662 2524759 "SFRTCAT" 2524764 NIL SFRTCAT (NIL T T T T) -9 NIL 2524802) (-1011 2513070 2514085 2515219 "SFRGCD" 2518593 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1010 2506236 2507307 2508491 "SFQCMPK" 2512003 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1009 2505858 2505947 2506057 "SFORT" 2506177 NIL SFORT (NIL T T) -8 NIL NIL) (-1008 2505003 2505698 2505819 "SEXOF" 2505824 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1007 2504137 2504884 2504952 "SEX" 2504957 T SEX (NIL) -8 NIL NIL) (-1006 2498913 2499602 2499698 "SEXCAT" 2503469 NIL SEXCAT (NIL T T T T T) -9 NIL 2504088) (-1005 2496093 2498847 2498895 "SET" 2498900 NIL SET (NIL T) -8 NIL NIL) (-1004 2494344 2494806 2495111 "SETMN" 2495834 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1003 2493951 2494077 2494108 "SETCAT" 2494225 T SETCAT (NIL) -9 NIL 2494309) (-1002 2493731 2493783 2493882 "SETCAT-" 2493887 NIL SETCAT- (NIL T) -8 NIL NIL) (-1001 2490118 2492192 2492236 "SETAGG" 2493106 NIL SETAGG (NIL T) -9 NIL 2493446) (-1000 2489576 2489692 2489929 "SETAGG-" 2489934 NIL SETAGG- (NIL T T) -8 NIL NIL) (-999 2488786 2489079 2489139 "SEGXCAT" 2489422 NIL SEGXCAT (NIL T T) -9 NIL 2489541) (-998 2487848 2488458 2488636 "SEG" 2488641 NIL SEG (NIL T) -8 NIL NIL) (-997 2486765 2486978 2487020 "SEGCAT" 2487593 NIL SEGCAT (NIL T) -9 NIL 2487831) (-996 2485827 2486155 2486351 "SEGBIND" 2486602 NIL SEGBIND (NIL T) -8 NIL NIL) (-995 2485459 2485516 2485625 "SEGBIND2" 2485764 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-994 2484694 2484817 2485016 "SEG2" 2485306 NIL SEG2 (NIL T T) -7 NIL NIL) (-993 2484133 2484631 2484676 "SDVAR" 2484681 NIL SDVAR (NIL T) -8 NIL NIL) (-992 2476439 2483912 2484036 "SDPOL" 2484041 NIL SDPOL (NIL T) -8 NIL NIL) (-991 2475038 2475304 2475621 "SCPKG" 2476154 NIL SCPKG (NIL T) -7 NIL NIL) (-990 2474265 2474398 2474575 "SCACHE" 2474893 NIL SCACHE (NIL T) -7 NIL NIL) (-989 2473708 2474029 2474112 "SAOS" 2474202 T SAOS (NIL) -8 NIL NIL) (-988 2473276 2473311 2473482 "SAERFFC" 2473667 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-987 2467172 2473175 2473253 "SAE" 2473258 NIL SAE (NIL T T NIL) -8 NIL NIL) (-986 2466768 2466803 2466960 "SAEFACT" 2467131 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-985 2465094 2465408 2465807 "RURPK" 2466434 NIL RURPK (NIL T NIL) -7 NIL NIL) (-984 2463747 2464024 2464331 "RULESET" 2464930 NIL RULESET (NIL T T T) -8 NIL NIL) (-983 2460955 2461458 2461919 "RULE" 2463429 NIL RULE (NIL T T T) -8 NIL NIL) (-982 2460597 2460752 2460833 "RULECOLD" 2460907 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-981 2455489 2456283 2457199 "RSETGCD" 2459796 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-980 2444803 2449855 2449950 "RSETCAT" 2454015 NIL RSETCAT (NIL T T T T) -9 NIL 2455112) (-979 2442734 2443273 2444093 "RSETCAT-" 2444098 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-978 2435164 2436539 2438055 "RSDCMPK" 2441333 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-977 2433181 2433622 2433695 "RRCC" 2434771 NIL RRCC (NIL T T) -9 NIL 2435115) (-976 2432535 2432709 2432985 "RRCC-" 2432990 NIL RRCC- (NIL T T T) -8 NIL NIL) (-975 2406854 2416479 2416544 "RPOLCAT" 2427046 NIL RPOLCAT (NIL T T T) -9 NIL 2430204) (-974 2398358 2400696 2403814 "RPOLCAT-" 2403819 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-973 2389436 2396588 2397068 "ROUTINE" 2397898 T ROUTINE (NIL) -8 NIL NIL) (-972 2386141 2388992 2389139 "ROMAN" 2389309 T ROMAN (NIL) -8 NIL NIL) (-971 2384427 2385012 2385269 "ROIRC" 2385947 NIL ROIRC (NIL T T) -8 NIL NIL) (-970 2380784 2383088 2383117 "RNS" 2383413 T RNS (NIL) -9 NIL 2383683) (-969 2379298 2379681 2380212 "RNS-" 2380285 NIL RNS- (NIL T) -8 NIL NIL) (-968 2378723 2379131 2379160 "RNG" 2379165 T RNG (NIL) -9 NIL 2379186) (-967 2378120 2378482 2378523 "RMODULE" 2378583 NIL RMODULE (NIL T) -9 NIL 2378625) (-966 2376972 2377066 2377396 "RMCAT2" 2378021 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-965 2373686 2376155 2376476 "RMATRIX" 2376707 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-964 2366682 2368916 2369029 "RMATCAT" 2372338 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2373320) (-963 2366061 2366208 2366511 "RMATCAT-" 2366516 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-962 2365631 2365706 2365832 "RINTERP" 2365980 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-961 2364681 2365245 2365274 "RING" 2365384 T RING (NIL) -9 NIL 2365478) (-960 2364476 2364520 2364614 "RING-" 2364619 NIL RING- (NIL T) -8 NIL NIL) (-959 2363328 2363564 2363819 "RIDIST" 2364241 T RIDIST (NIL) -7 NIL NIL) (-958 2354650 2362802 2363005 "RGCHAIN" 2363177 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-957 2351655 2352269 2352937 "RF" 2354014 NIL RF (NIL T) -7 NIL NIL) (-956 2351304 2351367 2351468 "RFFACTOR" 2351586 NIL RFFACTOR (NIL T) -7 NIL NIL) (-955 2351032 2351067 2351162 "RFFACT" 2351263 NIL RFFACT (NIL T) -7 NIL NIL) (-954 2349162 2349526 2349906 "RFDIST" 2350672 T RFDIST (NIL) -7 NIL NIL) (-953 2348620 2348712 2348872 "RETSOL" 2349064 NIL RETSOL (NIL T T) -7 NIL NIL) (-952 2348212 2348292 2348334 "RETRACT" 2348524 NIL RETRACT (NIL T) -9 NIL NIL) (-951 2348064 2348089 2348173 "RETRACT-" 2348178 NIL RETRACT- (NIL T T) -8 NIL NIL) (-950 2340934 2347721 2347846 "RESULT" 2347959 T RESULT (NIL) -8 NIL NIL) (-949 2339519 2340208 2340405 "RESRING" 2340837 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-948 2339159 2339208 2339304 "RESLATC" 2339456 NIL RESLATC (NIL T) -7 NIL NIL) (-947 2338868 2338902 2339007 "REPSQ" 2339118 NIL REPSQ (NIL T) -7 NIL NIL) (-946 2336299 2336879 2337479 "REP" 2338288 T REP (NIL) -7 NIL NIL) (-945 2336000 2336034 2336143 "REPDB" 2336258 NIL REPDB (NIL T) -7 NIL NIL) (-944 2329945 2331324 2332544 "REP2" 2334812 NIL REP2 (NIL T) -7 NIL NIL) (-943 2326351 2327032 2327837 "REP1" 2329172 NIL REP1 (NIL T) -7 NIL NIL) (-942 2319097 2324512 2324964 "REGSET" 2325982 NIL REGSET (NIL T T T T) -8 NIL NIL) (-941 2317918 2318253 2318501 "REF" 2318882 NIL REF (NIL T) -8 NIL NIL) (-940 2317299 2317402 2317567 "REDORDER" 2317802 NIL REDORDER (NIL T T) -7 NIL NIL) (-939 2313268 2316533 2316754 "RECLOS" 2317130 NIL RECLOS (NIL T) -8 NIL NIL) (-938 2312325 2312506 2312719 "REALSOLV" 2313075 T REALSOLV (NIL) -7 NIL NIL) (-937 2312172 2312213 2312242 "REAL" 2312247 T REAL (NIL) -9 NIL 2312282) (-936 2308663 2309465 2310347 "REAL0Q" 2311337 NIL REAL0Q (NIL T) -7 NIL NIL) (-935 2304274 2305262 2306321 "REAL0" 2307644 NIL REAL0 (NIL T) -7 NIL NIL) (-934 2303682 2303754 2303959 "RDIV" 2304196 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-933 2302755 2302929 2303140 "RDIST" 2303504 NIL RDIST (NIL T) -7 NIL NIL) (-932 2301359 2301646 2302015 "RDETRS" 2302463 NIL RDETRS (NIL T T) -7 NIL NIL) (-931 2299180 2299634 2300169 "RDETR" 2300901 NIL RDETR (NIL T T) -7 NIL NIL) (-930 2297796 2298074 2298475 "RDEEFS" 2298896 NIL RDEEFS (NIL T T) -7 NIL NIL) (-929 2296296 2296602 2297031 "RDEEF" 2297484 NIL RDEEF (NIL T T) -7 NIL NIL) (-928 2290521 2293453 2293482 "RCFIELD" 2294759 T RCFIELD (NIL) -9 NIL 2295489) (-927 2288590 2289094 2289787 "RCFIELD-" 2289860 NIL RCFIELD- (NIL T) -8 NIL NIL) (-926 2284921 2286706 2286748 "RCAGG" 2287819 NIL RCAGG (NIL T) -9 NIL 2288284) (-925 2284552 2284646 2284806 "RCAGG-" 2284811 NIL RCAGG- (NIL T T) -8 NIL NIL) (-924 2283897 2284008 2284170 "RATRET" 2284436 NIL RATRET (NIL T) -7 NIL NIL) (-923 2283454 2283521 2283640 "RATFACT" 2283825 NIL RATFACT (NIL T) -7 NIL NIL) (-922 2282769 2282889 2283039 "RANDSRC" 2283324 T RANDSRC (NIL) -7 NIL NIL) (-921 2282506 2282550 2282621 "RADUTIL" 2282718 T RADUTIL (NIL) -7 NIL NIL) (-920 2275513 2281249 2281566 "RADIX" 2282221 NIL RADIX (NIL NIL) -8 NIL NIL) (-919 2267083 2275357 2275485 "RADFF" 2275490 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-918 2266734 2266809 2266838 "RADCAT" 2266995 T RADCAT (NIL) -9 NIL NIL) (-917 2266519 2266567 2266664 "RADCAT-" 2266669 NIL RADCAT- (NIL T) -8 NIL NIL) (-916 2264676 2266294 2266383 "QUEUE" 2266463 NIL QUEUE (NIL T) -8 NIL NIL) (-915 2261173 2264613 2264658 "QUAT" 2264663 NIL QUAT (NIL T) -8 NIL NIL) (-914 2260811 2260854 2260981 "QUATCT2" 2261124 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-913 2254557 2257937 2257978 "QUATCAT" 2258757 NIL QUATCAT (NIL T) -9 NIL 2259522) (-912 2250701 2251738 2253125 "QUATCAT-" 2253219 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-911 2248227 2249785 2249827 "QUAGG" 2250202 NIL QUAGG (NIL T) -9 NIL 2250377) (-910 2247152 2247625 2247797 "QFORM" 2248099 NIL QFORM (NIL NIL T) -8 NIL NIL) (-909 2238401 2243659 2243700 "QFCAT" 2244358 NIL QFCAT (NIL T) -9 NIL 2245351) (-908 2233973 2235174 2236765 "QFCAT-" 2236859 NIL QFCAT- (NIL T T) -8 NIL NIL) (-907 2233611 2233654 2233781 "QFCAT2" 2233924 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2233071 2233181 2233311 "QEQUAT" 2233501 T QEQUAT (NIL) -8 NIL NIL) (-905 2226257 2227328 2228510 "QCMPACK" 2232004 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-904 2223833 2224254 2224682 "QALGSET" 2225912 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-903 2223078 2223252 2223484 "QALGSET2" 2223653 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-902 2221769 2221992 2222309 "PWFFINTB" 2222851 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-901 2219957 2220125 2220478 "PUSHVAR" 2221583 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-900 2215874 2216928 2216970 "PTRANFN" 2218854 NIL PTRANFN (NIL T) -9 NIL NIL) (-899 2214286 2214577 2214898 "PTPACK" 2215585 NIL PTPACK (NIL T) -7 NIL NIL) (-898 2213922 2213979 2214086 "PTFUNC2" 2214223 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-897 2208401 2212736 2212777 "PTCAT" 2213145 NIL PTCAT (NIL T) -9 NIL 2213307) (-896 2208059 2208094 2208218 "PSQFR" 2208360 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-895 2206654 2206952 2207286 "PSEUDLIN" 2207757 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-894 2193462 2195826 2198149 "PSETPK" 2204414 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-893 2186548 2189262 2189357 "PSETCAT" 2192338 NIL PSETCAT (NIL T T T T) -9 NIL 2193152) (-892 2184386 2185020 2185839 "PSETCAT-" 2185844 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-891 2183743 2183905 2183934 "PSCURVE" 2184199 T PSCURVE (NIL) -9 NIL 2184363) (-890 2180147 2181673 2181738 "PSCAT" 2182574 NIL PSCAT (NIL T T T) -9 NIL 2182814) (-889 2179211 2179427 2179826 "PSCAT-" 2179831 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-888 2177864 2178496 2178710 "PRTITION" 2179017 T PRTITION (NIL) -8 NIL NIL) (-887 2166962 2169168 2171356 "PRS" 2175726 NIL PRS (NIL T T) -7 NIL NIL) (-886 2164826 2166312 2166353 "PRQAGG" 2166536 NIL PRQAGG (NIL T) -9 NIL 2166638) (-885 2158600 2162992 2163812 "PRODUCT" 2164052 NIL PRODUCT (NIL T T) -8 NIL NIL) (-884 2155876 2158060 2158293 "PR" 2158411 NIL PR (NIL T T) -8 NIL NIL) (-883 2155672 2155704 2155763 "PRINT" 2155837 T PRINT (NIL) -7 NIL NIL) (-882 2155012 2155129 2155281 "PRIMES" 2155552 NIL PRIMES (NIL T) -7 NIL NIL) (-881 2153077 2153478 2153944 "PRIMELT" 2154591 NIL PRIMELT (NIL T) -7 NIL NIL) (-880 2152808 2152856 2152885 "PRIMCAT" 2153008 T PRIMCAT (NIL) -9 NIL NIL) (-879 2148969 2152746 2152791 "PRIMARR" 2152796 NIL PRIMARR (NIL T) -8 NIL NIL) (-878 2147976 2148154 2148382 "PRIMARR2" 2148787 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2147619 2147675 2147786 "PREASSOC" 2147914 NIL PREASSOC (NIL T T) -7 NIL NIL) (-876 2147099 2147230 2147259 "PPCURVE" 2147462 T PPCURVE (NIL) -9 NIL 2147596) (-875 2144458 2144857 2145449 "POLYROOT" 2146680 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-874 2138364 2144064 2144223 "POLY" 2144331 NIL POLY (NIL T) -8 NIL NIL) (-873 2137749 2137807 2138040 "POLYLIFT" 2138300 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-872 2134034 2134483 2135111 "POLYCATQ" 2137294 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-871 2121027 2126424 2126489 "POLYCAT" 2129974 NIL POLYCAT (NIL T T T) -9 NIL 2131901) (-870 2114478 2116339 2118722 "POLYCAT-" 2118727 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-869 2114067 2114135 2114254 "POLY2UP" 2114404 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-868 2113703 2113760 2113867 "POLY2" 2114004 NIL POLY2 (NIL T T) -7 NIL NIL) (-867 2112388 2112627 2112903 "POLUTIL" 2113477 NIL POLUTIL (NIL T T) -7 NIL NIL) (-866 2110750 2111027 2111357 "POLTOPOL" 2112110 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-865 2106279 2110687 2110732 "POINT" 2110737 NIL POINT (NIL T) -8 NIL NIL) (-864 2104466 2104823 2105198 "PNTHEORY" 2105924 T PNTHEORY (NIL) -7 NIL NIL) (-863 2102894 2103191 2103600 "PMTOOLS" 2104164 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-862 2102487 2102565 2102682 "PMSYM" 2102810 NIL PMSYM (NIL T) -7 NIL NIL) (-861 2101997 2102066 2102240 "PMQFCAT" 2102412 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-860 2101352 2101462 2101618 "PMPRED" 2101874 NIL PMPRED (NIL T) -7 NIL NIL) (-859 2100748 2100834 2100995 "PMPREDFS" 2101253 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-858 2099394 2099602 2099986 "PMPLCAT" 2100510 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-857 2098926 2099005 2099157 "PMLSAGG" 2099309 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-856 2098403 2098479 2098659 "PMKERNEL" 2098844 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-855 2098020 2098095 2098208 "PMINS" 2098322 NIL PMINS (NIL T) -7 NIL NIL) (-854 2097450 2097519 2097734 "PMFS" 2097945 NIL PMFS (NIL T T T) -7 NIL NIL) (-853 2096681 2096799 2097003 "PMDOWN" 2097327 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-852 2095844 2096003 2096185 "PMASS" 2096519 T PMASS (NIL) -7 NIL NIL) (-851 2095118 2095229 2095392 "PMASSFS" 2095730 NIL PMASSFS (NIL T T) -7 NIL NIL) (-850 2094777 2094844 2094937 "PLOTTOOL" 2095045 T PLOTTOOL (NIL) -7 NIL NIL) (-849 2089478 2090644 2091771 "PLOT" 2093670 T PLOT (NIL) -8 NIL NIL) (-848 2085351 2086366 2087271 "PLOT3D" 2088593 T PLOT3D (NIL) -8 NIL NIL) (-847 2084275 2084449 2084681 "PLOT1" 2085158 NIL PLOT1 (NIL T) -7 NIL NIL) (-846 2059670 2064341 2069192 "PLEQN" 2079541 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-845 2058988 2059110 2059290 "PINTERP" 2059535 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-844 2058681 2058728 2058831 "PINTERPA" 2058935 NIL PINTERPA (NIL T T) -7 NIL NIL) (-843 2057908 2058475 2058568 "PI" 2058608 T PI (NIL) -8 NIL NIL) (-842 2056299 2057284 2057313 "PID" 2057495 T PID (NIL) -9 NIL 2057629) (-841 2056024 2056061 2056149 "PICOERCE" 2056256 NIL PICOERCE (NIL T) -7 NIL NIL) (-840 2055345 2055483 2055659 "PGROEB" 2055880 NIL PGROEB (NIL T) -7 NIL NIL) (-839 2050932 2051746 2052651 "PGE" 2054460 T PGE (NIL) -7 NIL NIL) (-838 2049056 2049302 2049668 "PGCD" 2050649 NIL PGCD (NIL T T T T) -7 NIL NIL) (-837 2048394 2048497 2048658 "PFRPAC" 2048940 NIL PFRPAC (NIL T) -7 NIL NIL) (-836 2045009 2046942 2047295 "PFR" 2048073 NIL PFR (NIL T) -8 NIL NIL) (-835 2043398 2043642 2043967 "PFOTOOLS" 2044756 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-834 2041931 2042170 2042521 "PFOQ" 2043155 NIL PFOQ (NIL T T T) -7 NIL NIL) (-833 2040408 2040620 2040982 "PFO" 2041715 NIL PFO (NIL T T T T T) -7 NIL NIL) (-832 2036931 2040297 2040366 "PF" 2040371 NIL PF (NIL NIL) -8 NIL NIL) (-831 2034359 2035640 2035669 "PFECAT" 2036254 T PFECAT (NIL) -9 NIL 2036638) (-830 2033804 2033958 2034172 "PFECAT-" 2034177 NIL PFECAT- (NIL T) -8 NIL NIL) (-829 2032408 2032659 2032960 "PFBRU" 2033553 NIL PFBRU (NIL T T) -7 NIL NIL) (-828 2030275 2030626 2031058 "PFBR" 2032059 NIL PFBR (NIL T T T T) -7 NIL NIL) (-827 2026127 2027651 2028327 "PERM" 2029632 NIL PERM (NIL T) -8 NIL NIL) (-826 2021394 2022334 2023204 "PERMGRP" 2025290 NIL PERMGRP (NIL T) -8 NIL NIL) (-825 2019464 2020457 2020499 "PERMCAT" 2020945 NIL PERMCAT (NIL T) -9 NIL 2021250) (-824 2019119 2019160 2019283 "PERMAN" 2019417 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-823 2016565 2018688 2018819 "PENDTREE" 2019021 NIL PENDTREE (NIL T) -8 NIL NIL) (-822 2014637 2015415 2015457 "PDRING" 2016114 NIL PDRING (NIL T) -9 NIL 2016399) (-821 2013740 2013958 2014320 "PDRING-" 2014325 NIL PDRING- (NIL T T) -8 NIL NIL) (-820 2010882 2011632 2012323 "PDEPROB" 2013069 T PDEPROB (NIL) -8 NIL NIL) (-819 2008453 2008949 2009498 "PDEPACK" 2010353 T PDEPACK (NIL) -7 NIL NIL) (-818 2007365 2007555 2007806 "PDECOMP" 2008252 NIL PDECOMP (NIL T T) -7 NIL NIL) (-817 2004976 2005791 2005820 "PDECAT" 2006605 T PDECAT (NIL) -9 NIL 2007316) (-816 2004729 2004762 2004851 "PCOMP" 2004937 NIL PCOMP (NIL T T) -7 NIL NIL) (-815 2002936 2003532 2003828 "PBWLB" 2004459 NIL PBWLB (NIL T) -8 NIL NIL) (-814 1995445 1997013 1998349 "PATTERN" 2001621 NIL PATTERN (NIL T) -8 NIL NIL) (-813 1995077 1995134 1995243 "PATTERN2" 1995382 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-812 1992834 1993222 1993679 "PATTERN1" 1994666 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-811 1990229 1990783 1991264 "PATRES" 1992399 NIL PATRES (NIL T T) -8 NIL NIL) (-810 1989793 1989860 1989992 "PATRES2" 1990156 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-809 1987690 1988090 1988495 "PATMATCH" 1989462 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-808 1987226 1987409 1987451 "PATMAB" 1987558 NIL PATMAB (NIL T) -9 NIL 1987641) (-807 1985771 1986080 1986338 "PATLRES" 1987031 NIL PATLRES (NIL T T T) -8 NIL NIL) (-806 1985316 1985439 1985481 "PATAB" 1985486 NIL PATAB (NIL T) -9 NIL 1985658) (-805 1982797 1983329 1983902 "PARTPERM" 1984763 T PARTPERM (NIL) -7 NIL NIL) (-804 1982418 1982481 1982583 "PARSURF" 1982728 NIL PARSURF (NIL T) -8 NIL NIL) (-803 1982050 1982107 1982216 "PARSU2" 1982355 NIL PARSU2 (NIL T T) -7 NIL NIL) (-802 1981671 1981734 1981836 "PARSCURV" 1981981 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1981303 1981360 1981469 "PARSC2" 1981608 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980942 1981000 1981097 "PARPCURV" 1981239 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1980574 1980631 1980740 "PARPC2" 1980879 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1980094 1980180 1980299 "PAN2EXPR" 1980475 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978900 1979215 1979443 "PALETTE" 1979886 T PALETTE (NIL) -8 NIL NIL) (-796 1972750 1978159 1978353 "PADICRC" 1978755 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965958 1972096 1972280 "PADICRAT" 1972598 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1964262 1965895 1965940 "PADIC" 1965945 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1961466 1963040 1963081 "PADICCT" 1963662 NIL PADICCT (NIL NIL) -9 NIL 1963944) (-792 1960423 1960623 1960891 "PADEPAC" 1961253 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1959635 1959768 1959974 "PADE" 1960285 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1957646 1958478 1958793 "OWP" 1959403 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956755 1957251 1957423 "OVAR" 1957514 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1956019 1956140 1956301 "OUT" 1956614 T OUT (NIL) -7 NIL NIL) (-787 1945065 1947244 1949414 "OUTFORM" 1953869 T OUTFORM (NIL) -8 NIL NIL) (-786 1944473 1944794 1944883 "OSI" 1944996 T OSI (NIL) -8 NIL NIL) (-785 1943218 1943445 1943730 "ORTHPOL" 1944220 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1940589 1942879 1943017 "OREUP" 1943161 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937985 1940282 1940408 "ORESUP" 1940531 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1935520 1936020 1936580 "OREPCTO" 1937474 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1929429 1931635 1931676 "OREPCAT" 1933997 NIL OREPCAT (NIL T) -9 NIL 1935100) (-780 1926577 1927359 1928416 "OREPCAT-" 1928421 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925754 1926026 1926055 "ORDSET" 1926364 T ORDSET (NIL) -9 NIL 1926528) (-778 1925273 1925395 1925588 "ORDSET-" 1925593 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923886 1924687 1924716 "ORDRING" 1924918 T ORDRING (NIL) -9 NIL 1925042) (-776 1923531 1923625 1923769 "ORDRING-" 1923774 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922906 1923387 1923416 "ORDMON" 1923421 T ORDMON (NIL) -9 NIL 1923442) (-774 1922068 1922215 1922410 "ORDFUNS" 1922755 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1921579 1921938 1921967 "ORDFIN" 1921972 T ORDFIN (NIL) -9 NIL 1921993) (-772 1918091 1920165 1920574 "ORDCOMP" 1921203 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1917357 1917484 1917670 "ORDCOMP2" 1917951 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913865 1914747 1915584 "OPTPROB" 1916540 T OPTPROB (NIL) -8 NIL NIL) (-769 1910707 1911336 1912030 "OPTPACK" 1913191 T OPTPACK (NIL) -7 NIL NIL) (-768 1908432 1909168 1909197 "OPTCAT" 1910012 T OPTCAT (NIL) -9 NIL 1910658) (-767 1908200 1908239 1908305 "OPQUERY" 1908386 T OPQUERY (NIL) -7 NIL NIL) (-766 1905336 1906527 1907027 "OP" 1907732 NIL OP (NIL T) -8 NIL NIL) (-765 1902101 1904133 1904502 "ONECOMP" 1905000 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1901406 1901521 1901695 "ONECOMP2" 1901973 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900825 1900931 1901061 "OMSERVER" 1901296 T OMSERVER (NIL) -7 NIL NIL) (-762 1897713 1900265 1900306 "OMSAGG" 1900367 NIL OMSAGG (NIL T) -9 NIL 1900431) (-761 1896336 1896599 1896881 "OMPKG" 1897451 T OMPKG (NIL) -7 NIL NIL) (-760 1895765 1895868 1895897 "OM" 1896196 T OM (NIL) -9 NIL NIL) (-759 1894304 1895317 1895485 "OMLO" 1895646 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1893234 1893381 1893607 "OMEXPR" 1894130 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1892552 1892780 1892916 "OMERR" 1893118 T OMERR (NIL) -8 NIL NIL) (-756 1891730 1891973 1892133 "OMERRK" 1892412 T OMERRK (NIL) -8 NIL NIL) (-755 1891208 1891407 1891515 "OMENC" 1891642 T OMENC (NIL) -8 NIL NIL) (-754 1885103 1886288 1887459 "OMDEV" 1890057 T OMDEV (NIL) -8 NIL NIL) (-753 1884172 1884343 1884537 "OMCONN" 1884929 T OMCONN (NIL) -8 NIL NIL) (-752 1882787 1883773 1883802 "OINTDOM" 1883807 T OINTDOM (NIL) -9 NIL 1883828) (-751 1878549 1879779 1880494 "OFMONOID" 1882104 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877987 1878486 1878531 "ODVAR" 1878536 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1875112 1877484 1877669 "ODR" 1877862 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1867418 1874891 1875015 "ODPOL" 1875020 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1861247 1867290 1867395 "ODP" 1867400 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1860013 1860228 1860503 "ODETOOLS" 1861021 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856982 1857638 1858354 "ODESYS" 1859346 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851886 1852794 1853817 "ODERTRIC" 1856057 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1851312 1851394 1851588 "ODERED" 1851798 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1848214 1848762 1849437 "ODERAT" 1850735 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1845182 1845646 1846242 "ODEPRRIC" 1847743 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1843053 1843620 1844129 "ODEPROB" 1844693 T ODEPROB (NIL) -8 NIL NIL) (-739 1839585 1840068 1840714 "ODEPRIM" 1842532 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838838 1838940 1839198 "ODEPAL" 1839477 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1835040 1835821 1836675 "ODEPACK" 1838004 T ODEPACK (NIL) -7 NIL NIL) (-736 1834077 1834184 1834412 "ODEINT" 1834929 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1828178 1829603 1831050 "ODEIFTBL" 1832650 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1823522 1824308 1825266 "ODEEF" 1827337 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822859 1822948 1823177 "ODECONST" 1823427 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1821016 1821649 1821678 "ODECAT" 1822281 T ODECAT (NIL) -9 NIL 1822810) (-731 1817888 1820728 1820847 "OCT" 1820929 NIL OCT (NIL T) -8 NIL NIL) (-730 1817526 1817569 1817696 "OCTCT2" 1817839 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1812359 1814797 1814838 "OC" 1815934 NIL OC (NIL T) -9 NIL 1816791) (-728 1809586 1810334 1811324 "OC-" 1811418 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808964 1809406 1809435 "OCAMON" 1809440 T OCAMON (NIL) -9 NIL 1809461) (-726 1808417 1808824 1808853 "OASGP" 1808858 T OASGP (NIL) -9 NIL 1808878) (-725 1807704 1808167 1808196 "OAMONS" 1808236 T OAMONS (NIL) -9 NIL 1808279) (-724 1807144 1807551 1807580 "OAMON" 1807585 T OAMON (NIL) -9 NIL 1807605) (-723 1806448 1806940 1806969 "OAGROUP" 1806974 T OAGROUP (NIL) -9 NIL 1806994) (-722 1806138 1806188 1806276 "NUMTUBE" 1806392 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1799711 1801229 1802765 "NUMQUAD" 1804622 T NUMQUAD (NIL) -7 NIL NIL) (-720 1795467 1796455 1797480 "NUMODE" 1798706 T NUMODE (NIL) -7 NIL NIL) (-719 1792882 1793724 1793753 "NUMINT" 1794666 T NUMINT (NIL) -9 NIL 1795418) (-718 1791830 1792027 1792245 "NUMFMT" 1792684 T NUMFMT (NIL) -7 NIL NIL) (-717 1778209 1781146 1783676 "NUMERIC" 1789339 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1772609 1777661 1777756 "NTSCAT" 1777761 NIL NTSCAT (NIL T T T T) -9 NIL 1777799) (-715 1771803 1771968 1772161 "NTPOLFN" 1772448 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1759659 1768645 1769455 "NSUP" 1771025 NIL NSUP (NIL T) -8 NIL NIL) (-713 1759295 1759352 1759459 "NSUP2" 1759596 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1749257 1759074 1759204 "NSMP" 1759209 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1747689 1747990 1748347 "NREP" 1748945 NIL NREP (NIL T) -7 NIL NIL) (-710 1746280 1746532 1746890 "NPCOEF" 1747432 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1745346 1745461 1745677 "NORMRETR" 1746161 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1743399 1743689 1744096 "NORMPK" 1745054 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1743084 1743112 1743236 "NORMMA" 1743365 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742911 1743041 1743070 "NONE" 1743075 T NONE (NIL) -8 NIL NIL) (-705 1742700 1742729 1742798 "NONE1" 1742875 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1742185 1742247 1742432 "NODE1" 1742632 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1740479 1741348 1741603 "NNI" 1741950 T NNI (NIL) -8 NIL NIL) (-702 1738899 1739212 1739576 "NLINSOL" 1740147 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1735091 1736052 1736968 "NIPROB" 1738003 T NIPROB (NIL) -8 NIL NIL) (-700 1733848 1734082 1734384 "NFINTBAS" 1734853 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1732556 1732787 1733068 "NCODIV" 1733616 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1732318 1732355 1732430 "NCNTFRAC" 1732513 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1730498 1730862 1731282 "NCEP" 1731943 NIL NCEP (NIL T) -7 NIL NIL) (-696 1729409 1730148 1730177 "NASRING" 1730287 T NASRING (NIL) -9 NIL 1730361) (-695 1729204 1729248 1729342 "NASRING-" 1729347 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1728357 1728856 1728885 "NARNG" 1729002 T NARNG (NIL) -9 NIL 1729093) (-693 1728049 1728116 1728250 "NARNG-" 1728255 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726928 1727135 1727370 "NAGSP" 1727834 T NAGSP (NIL) -7 NIL NIL) (-691 1718352 1719998 1721633 "NAGS" 1725313 T NAGS (NIL) -7 NIL NIL) (-690 1716916 1717220 1717547 "NAGF07" 1718045 T NAGF07 (NIL) -7 NIL NIL) (-689 1711498 1712778 1714074 "NAGF04" 1715640 T NAGF04 (NIL) -7 NIL NIL) (-688 1704530 1706128 1707745 "NAGF02" 1709901 T NAGF02 (NIL) -7 NIL NIL) (-687 1699794 1700884 1701991 "NAGF01" 1703443 T NAGF01 (NIL) -7 NIL NIL) (-686 1693454 1695012 1696589 "NAGE04" 1698237 T NAGE04 (NIL) -7 NIL NIL) (-685 1684695 1686798 1688910 "NAGE02" 1691362 T NAGE02 (NIL) -7 NIL NIL) (-684 1680688 1681625 1682579 "NAGE01" 1683761 T NAGE01 (NIL) -7 NIL NIL) (-683 1678495 1679026 1679581 "NAGD03" 1680153 T NAGD03 (NIL) -7 NIL NIL) (-682 1670281 1672200 1674145 "NAGD02" 1676570 T NAGD02 (NIL) -7 NIL NIL) (-681 1664140 1665553 1666981 "NAGD01" 1668873 T NAGD01 (NIL) -7 NIL NIL) (-680 1660397 1661207 1662032 "NAGC06" 1663335 T NAGC06 (NIL) -7 NIL NIL) (-679 1658874 1659203 1659556 "NAGC05" 1660064 T NAGC05 (NIL) -7 NIL NIL) (-678 1658258 1658375 1658517 "NAGC02" 1658752 T NAGC02 (NIL) -7 NIL NIL) (-677 1657319 1657876 1657917 "NAALG" 1657996 NIL NAALG (NIL T) -9 NIL 1658057) (-676 1657154 1657183 1657273 "NAALG-" 1657278 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1651104 1652212 1653399 "MULTSQFR" 1656050 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1650423 1650498 1650682 "MULTFACT" 1651016 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1643564 1647475 1647528 "MTSCAT" 1648588 NIL MTSCAT (NIL T T) -9 NIL 1649102) (-672 1643276 1643330 1643422 "MTHING" 1643504 NIL MTHING (NIL T) -7 NIL NIL) (-671 1643068 1643101 1643161 "MSYSCMD" 1643236 T MSYSCMD (NIL) -7 NIL NIL) (-670 1639180 1641823 1642143 "MSET" 1642781 NIL MSET (NIL T) -8 NIL NIL) (-669 1636275 1638741 1638783 "MSETAGG" 1638788 NIL MSETAGG (NIL T) -9 NIL 1638822) (-668 1632131 1633673 1634414 "MRING" 1635578 NIL MRING (NIL T T) -8 NIL NIL) (-667 1631701 1631768 1631897 "MRF2" 1632058 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1631319 1631354 1631498 "MRATFAC" 1631660 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628931 1629226 1629657 "MPRFF" 1631024 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622951 1628786 1628882 "MPOLY" 1628887 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1622441 1622476 1622684 "MPCPF" 1622910 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621957 1622000 1622183 "MPC3" 1622392 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1621158 1621239 1621458 "MPC2" 1621872 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1619459 1619796 1620186 "MONOTOOL" 1620818 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1618583 1618918 1618947 "MONOID" 1619224 T MONOID (NIL) -9 NIL 1619396) (-658 1617961 1618124 1618367 "MONOID-" 1618372 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608894 1614880 1614940 "MONOGEN" 1615614 NIL MONOGEN (NIL T T) -9 NIL 1616070) (-656 1606112 1606847 1607847 "MONOGEN-" 1607966 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604971 1605391 1605420 "MONADWU" 1605812 T MONADWU (NIL) -9 NIL 1606050) (-654 1604343 1604502 1604750 "MONADWU-" 1604755 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603728 1603946 1603975 "MONAD" 1604182 T MONAD (NIL) -9 NIL 1604294) (-652 1603413 1603491 1603623 "MONAD-" 1603628 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601664 1602326 1602605 "MOEBIUS" 1603166 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1601057 1601435 1601476 "MODULE" 1601481 NIL MODULE (NIL T) -9 NIL 1601507) (-649 1600625 1600721 1600911 "MODULE-" 1600916 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1598296 1598991 1599317 "MODRING" 1600450 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1595252 1596417 1596934 "MODOP" 1597828 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1593439 1593891 1594232 "MODMONOM" 1595051 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1583157 1591643 1592065 "MODMON" 1593067 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1580283 1582001 1582277 "MODFIELD" 1583032 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579809 1579852 1580031 "MMAP" 1580234 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1578045 1578822 1578863 "MLO" 1579280 NIL MLO (NIL T) -9 NIL 1579521) (-641 1575412 1575927 1576529 "MLIFT" 1577526 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574803 1574887 1575041 "MKUCFUNC" 1575323 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1574402 1574472 1574595 "MKRECORD" 1574726 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1573450 1573611 1573839 "MKFUNC" 1574213 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572838 1572942 1573098 "MKFLCFN" 1573333 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1572264 1572631 1572720 "MKCHSET" 1572782 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1571541 1571643 1571828 "MKBCFUNC" 1572157 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1568225 1571095 1571231 "MINT" 1571425 T MINT (NIL) -8 NIL NIL) (-633 1567037 1567280 1567557 "MHROWRED" 1567980 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1562308 1565482 1565906 "MFLOAT" 1566633 T MFLOAT (NIL) -8 NIL NIL) (-631 1561665 1561741 1561912 "MFINFACT" 1562220 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1558012 1558851 1559726 "MESH" 1560810 T MESH (NIL) -7 NIL NIL) (-629 1556402 1556714 1557067 "MDDFACT" 1557699 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1553250 1555561 1555603 "MDAGG" 1555858 NIL MDAGG (NIL T) -9 NIL 1556001) (-627 1542948 1552543 1552750 "MCMPLX" 1553063 T MCMPLX (NIL) -8 NIL NIL) (-626 1542089 1542235 1542435 "MCDEN" 1542797 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539979 1540249 1540629 "MCALCFN" 1541819 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1537601 1538124 1538685 "MATSTOR" 1539450 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1533615 1536976 1537223 "MATRIX" 1537386 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1529384 1530088 1530824 "MATLIN" 1532972 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1519587 1522719 1522796 "MATCAT" 1527634 NIL MATCAT (NIL T T T) -9 NIL 1529051) (-620 1515952 1516965 1518320 "MATCAT-" 1518325 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1514554 1514707 1515038 "MATCAT2" 1515787 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512666 1512990 1513374 "MAPPKG3" 1514229 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1511647 1511820 1512042 "MAPPKG2" 1512490 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1510146 1510430 1510757 "MAPPKG1" 1511353 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509757 1509815 1509938 "MAPHACK3" 1510082 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1509349 1509410 1509524 "MAPHACK2" 1509689 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508787 1508890 1509032 "MAPHACK1" 1509240 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506895 1507489 1507792 "MAGMA" 1508516 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1503376 1505139 1505599 "M3D" 1506468 NIL M3D (NIL T) -8 NIL NIL) (-610 1497534 1501743 1501785 "LZSTAGG" 1502567 NIL LZSTAGG (NIL T) -9 NIL 1502862) (-609 1493508 1494665 1496122 "LZSTAGG-" 1496127 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1490624 1491401 1491887 "LWORD" 1493054 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483784 1490395 1490529 "LSQM" 1490534 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1483008 1483147 1483375 "LSPP" 1483639 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480820 1481121 1481577 "LSMP" 1482697 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1477599 1478273 1479003 "LSMP1" 1480122 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1471522 1476764 1476806 "LSAGG" 1476868 NIL LSAGG (NIL T) -9 NIL 1476946) (-602 1468217 1469141 1470354 "LSAGG-" 1470359 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465843 1467361 1467610 "LPOLY" 1468012 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1465425 1465510 1465633 "LPEFRAC" 1465752 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463772 1464519 1464772 "LO" 1465257 NIL LO (NIL T T T) -8 NIL NIL) (-598 1463425 1463537 1463566 "LOGIC" 1463677 T LOGIC (NIL) -9 NIL 1463757) (-597 1463287 1463310 1463381 "LOGIC-" 1463386 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1462480 1462620 1462813 "LODOOPS" 1463143 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459898 1462397 1462462 "LODO" 1462467 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1458444 1458679 1459030 "LODOF" 1459645 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454863 1457299 1457340 "LODOCAT" 1457772 NIL LODOCAT (NIL T) -9 NIL 1457983) (-592 1454597 1454655 1454781 "LODOCAT-" 1454786 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451911 1454438 1454556 "LODO2" 1454561 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1449340 1451848 1451893 "LODO1" 1451898 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1448203 1448368 1448679 "LODEEF" 1449163 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1443486 1446330 1446372 "LNAGG" 1447319 NIL LNAGG (NIL T) -9 NIL 1447763) (-587 1442633 1442847 1443189 "LNAGG-" 1443194 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438798 1439560 1440198 "LMOPS" 1442049 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1438195 1438557 1438598 "LMODULE" 1438658 NIL LMODULE (NIL T) -9 NIL 1438700) (-584 1435447 1437840 1437963 "LMDICT" 1438105 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1428674 1434393 1434691 "LIST" 1435182 NIL LIST (NIL T) -8 NIL NIL) (-582 1428199 1428273 1428412 "LIST3" 1428594 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1427206 1427384 1427612 "LIST2" 1428017 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1425340 1425652 1426051 "LIST2MAP" 1426853 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1424052 1424732 1424773 "LINEXP" 1425026 NIL LINEXP (NIL T) -9 NIL 1425174) (-578 1422699 1422959 1423256 "LINDEP" 1423804 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1419466 1420185 1420962 "LIMITRF" 1421954 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417747 1418041 1418456 "LIMITPS" 1419161 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1412202 1417258 1417486 "LIE" 1417568 NIL LIE (NIL T T) -8 NIL NIL) (-574 1411252 1411695 1411736 "LIECAT" 1411876 NIL LIECAT (NIL T) -9 NIL 1412027) (-573 1411093 1411120 1411208 "LIECAT-" 1411213 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1403717 1410542 1410707 "LIB" 1410948 T LIB (NIL) -8 NIL NIL) (-571 1399354 1400235 1401170 "LGROBP" 1402834 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1397224 1397497 1397858 "LF" 1399076 NIL LF (NIL T T) -7 NIL NIL) (-569 1396064 1396755 1396784 "LFCAT" 1396991 T LFCAT (NIL) -9 NIL 1397130) (-568 1392976 1393602 1394288 "LEXTRIPK" 1395430 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1389682 1390546 1391049 "LEXP" 1392556 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1388080 1388393 1388794 "LEADCDET" 1389364 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1387276 1387350 1387577 "LAZM3PK" 1388001 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1382193 1385355 1385892 "LAUPOL" 1386789 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381760 1381804 1381971 "LAPLACE" 1382143 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1379688 1380861 1381112 "LA" 1381593 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378750 1379344 1379385 "LALG" 1379446 NIL LALG (NIL T) -9 NIL 1379504) (-560 1378465 1378524 1378659 "LALG-" 1378664 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1377375 1377562 1377859 "KOVACIC" 1378265 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1377209 1377233 1377275 "KONVERT" 1377337 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1377043 1377067 1377109 "KOERCE" 1377171 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374777 1375537 1375930 "KERNEL" 1376682 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1374279 1374360 1374490 "KERNEL2" 1374691 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367894 1372576 1372631 "KDAGG" 1373008 NIL KDAGG (NIL T T) -9 NIL 1373214) (-553 1367423 1367547 1367752 "KDAGG-" 1367757 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360598 1367084 1367239 "KAFILE" 1367301 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1355053 1360109 1360337 "JORDAN" 1360419 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1351358 1353258 1353313 "IXAGG" 1354242 NIL IXAGG (NIL T T) -9 NIL 1354701) (-549 1350277 1350583 1351002 "IXAGG-" 1351007 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345868 1350199 1350258 "IVECTOR" 1350263 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344634 1344871 1345137 "ITUPLE" 1345635 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1343070 1343247 1343553 "ITRIGMNP" 1344456 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341815 1342019 1342302 "ITFUN3" 1342846 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1341447 1341504 1341613 "ITFUN2" 1341752 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1339249 1340320 1340617 "ITAYLOR" 1341182 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1328241 1333435 1334594 "ISUPS" 1338122 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1327349 1327488 1327723 "ISUMP" 1328089 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322613 1327150 1327229 "ISTRING" 1327302 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321826 1321907 1322122 "IRURPK" 1322527 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320762 1320963 1321203 "IRSN" 1321606 T IRSN (NIL) -7 NIL NIL) (-537 1318797 1319152 1319587 "IRRF2F" 1320400 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318544 1318582 1318658 "IRREDFFX" 1318753 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1317159 1317418 1317717 "IROOT" 1318277 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313797 1314848 1315538 "IR" 1316501 NIL IR (NIL T) -8 NIL NIL) (-533 1311410 1311905 1312471 "IR2" 1313275 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1310486 1310599 1310819 "IR2F" 1311293 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1310277 1310311 1310371 "IPRNTPK" 1310446 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306831 1310166 1310235 "IPF" 1310240 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1305148 1306756 1306813 "IPADIC" 1306818 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304647 1304705 1304894 "INVLAPLA" 1305084 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1294296 1296649 1299035 "INTTR" 1302311 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290644 1291385 1292248 "INTTOOLS" 1293482 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1290230 1290321 1290438 "INTSLPE" 1290547 T INTSLPE (NIL) -7 NIL NIL) (-524 1288180 1290153 1290212 "INTRVL" 1290217 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285787 1286299 1286873 "INTRF" 1287665 NIL INTRF (NIL T) -7 NIL NIL) (-522 1285202 1285299 1285440 "INTRET" 1285685 NIL INTRET (NIL T) -7 NIL NIL) (-521 1283204 1283593 1284062 "INTRAT" 1284810 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1280437 1281020 1281645 "INTPM" 1282689 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1277146 1277745 1278489 "INTPAF" 1279823 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1272429 1273365 1274390 "INTPACK" 1276141 T INTPACK (NIL) -7 NIL NIL) (-517 1269283 1272158 1272285 "INT" 1272322 T INT (NIL) -8 NIL NIL) (-516 1268535 1268687 1268895 "INTHERTR" 1269125 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267974 1268054 1268242 "INTHERAL" 1268449 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265820 1266263 1266720 "INTHEORY" 1267537 T INTHEORY (NIL) -7 NIL NIL) (-513 1257143 1258763 1260541 "INTG0" 1264172 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237740 1242524 1247328 "INTFTBL" 1252359 T INTFTBL (NIL) -8 NIL NIL) (-511 1236989 1237127 1237300 "INTFACT" 1237599 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1234380 1234826 1235389 "INTEF" 1236543 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232841 1233590 1233619 "INTDOM" 1233920 T INTDOM (NIL) -9 NIL 1234127) (-508 1232210 1232384 1232626 "INTDOM-" 1232631 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228702 1230634 1230689 "INTCAT" 1231488 NIL INTCAT (NIL T) -9 NIL 1231807) (-506 1228175 1228277 1228405 "INTBIT" 1228594 T INTBIT (NIL) -7 NIL NIL) (-505 1226850 1227004 1227317 "INTALG" 1228020 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1226307 1226397 1226567 "INTAF" 1226754 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219773 1226117 1226257 "INTABL" 1226262 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214723 1217452 1217481 "INS" 1218449 T INS (NIL) -9 NIL 1219130) (-501 1211963 1212734 1213708 "INS-" 1213781 NIL INS- (NIL T) -8 NIL NIL) (-500 1210742 1210969 1211266 "INPSIGN" 1211716 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209860 1209977 1210174 "INPRODPF" 1210622 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208754 1208871 1209108 "INPRODFF" 1209740 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207754 1207906 1208166 "INNMFACT" 1208590 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206951 1207048 1207236 "INMODGCD" 1207653 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1205460 1205704 1206028 "INFSP" 1206696 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204644 1204761 1204944 "INFPROD0" 1205340 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201654 1202813 1203304 "INFORM" 1204161 T INFORM (NIL) -8 NIL NIL) (-492 1201264 1201324 1201422 "INFORM1" 1201589 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200787 1200876 1200990 "INFINITY" 1201170 T INFINITY (NIL) -7 NIL NIL) (-490 1199405 1199653 1199974 "INEP" 1200535 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198681 1199302 1199367 "INDE" 1199372 NIL INDE (NIL T) -8 NIL NIL) (-488 1198245 1198313 1198430 "INCRMAPS" 1198608 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1193556 1194481 1195425 "INBFF" 1197333 NIL INBFF (NIL T) -7 NIL NIL) (-486 1190057 1193401 1193504 "IMATRIX" 1193509 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188769 1188892 1189207 "IMATQF" 1189913 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186989 1187216 1187553 "IMATLIN" 1188525 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181615 1186913 1186971 "ILIST" 1186976 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1179574 1181475 1181588 "IIARRAY2" 1181593 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174942 1179485 1179549 "IFF" 1179554 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169991 1174234 1174422 "IFARRAY" 1174799 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1169198 1169895 1169968 "IFAMON" 1169973 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168781 1168846 1168901 "IEVALAB" 1169108 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1168456 1168524 1168684 "IEVALAB-" 1168689 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1168114 1168370 1168433 "IDPO" 1168438 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1167391 1168003 1168078 "IDPOAMS" 1168083 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166725 1167280 1167355 "IDPOAM" 1167360 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165810 1166060 1166114 "IDPC" 1166527 NIL IDPC (NIL T T) -9 NIL 1166676) (-472 1165306 1165702 1165775 "IDPAM" 1165780 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164709 1165198 1165271 "IDPAG" 1165276 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160964 1161812 1162707 "IDECOMP" 1163866 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153838 1154887 1155934 "IDEAL" 1160000 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1153002 1153114 1153313 "ICDEN" 1153722 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1152101 1152482 1152629 "ICARD" 1152875 T ICARD (NIL) -8 NIL NIL) (-466 1150173 1150486 1150889 "IBPTOOLS" 1151778 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145787 1149793 1149906 "IBITS" 1150092 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1142510 1143086 1143781 "IBATOOL" 1145204 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1140290 1140751 1141284 "IBACHIN" 1142045 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1138173 1140136 1140239 "IARRAY2" 1140244 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1134332 1138099 1138156 "IARRAY1" 1138161 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1128272 1132750 1133228 "IAN" 1133874 T IAN (NIL) -8 NIL NIL) (-459 1127783 1127840 1128013 "IALGFACT" 1128209 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1127310 1127423 1127452 "HYPCAT" 1127659 T HYPCAT (NIL) -9 NIL NIL) (-457 1126848 1126965 1127151 "HYPCAT-" 1127156 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1123527 1124858 1124900 "HOAGG" 1125881 NIL HOAGG (NIL T) -9 NIL 1126560) (-455 1122121 1122520 1123046 "HOAGG-" 1123051 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115952 1121562 1121728 "HEXADEC" 1121975 T HEXADEC (NIL) -8 NIL NIL) (-453 1114700 1114922 1115185 "HEUGCD" 1115729 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113803 1114537 1114667 "HELLFDIV" 1114672 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1112037 1113580 1113668 "HEAP" 1113747 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105910 1111952 1112014 "HDP" 1112019 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099622 1105547 1105698 "HDMP" 1105811 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098947 1099086 1099250 "HB" 1099478 T HB (NIL) -7 NIL NIL) (-447 1092456 1098793 1098897 "HASHTBL" 1098902 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1090209 1092084 1092263 "HACKPI" 1092297 T HACKPI (NIL) -8 NIL NIL) (-445 1085905 1090063 1090175 "GTSET" 1090180 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1079443 1085783 1085881 "GSTBL" 1085886 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071679 1078479 1078743 "GSERIES" 1079234 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070701 1071154 1071183 "GROUP" 1071444 T GROUP (NIL) -9 NIL 1071603) (-441 1069817 1070040 1070384 "GROUP-" 1070389 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1068186 1068505 1068892 "GROEBSOL" 1069494 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1067126 1067388 1067440 "GRMOD" 1067969 NIL GRMOD (NIL T T) -9 NIL 1068137) (-438 1066894 1066930 1067058 "GRMOD-" 1067063 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1062234 1063256 1064253 "GRIMAGE" 1065917 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060701 1060961 1061285 "GRDEF" 1061930 T GRDEF (NIL) -7 NIL NIL) (-435 1060145 1060261 1060402 "GRAY" 1060580 T GRAY (NIL) -7 NIL NIL) (-434 1059378 1059758 1059810 "GRALG" 1059963 NIL GRALG (NIL T T) -9 NIL 1060055) (-433 1059039 1059112 1059275 "GRALG-" 1059280 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055847 1058628 1058804 "GPOLSET" 1058946 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1055203 1055260 1055517 "GOSPER" 1055784 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050962 1051641 1052167 "GMODPOL" 1054902 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049967 1050151 1050389 "GHENSEL" 1050774 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1044033 1044876 1045902 "GENUPS" 1049051 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043730 1043781 1043870 "GENUFACT" 1043976 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1043142 1043219 1043384 "GENPGCD" 1043648 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1042616 1042651 1042864 "GENMFACT" 1043101 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1041184 1041439 1041746 "GENEEZ" 1042359 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1035058 1040797 1040958 "GDMP" 1041107 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1024437 1028829 1029935 "GCNAALG" 1034041 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022858 1023730 1023759 "GCDDOM" 1024014 T GCDDOM (NIL) -9 NIL 1024171) (-420 1022328 1022455 1022670 "GCDDOM-" 1022675 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1021000 1021185 1021489 "GB" 1022107 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1009620 1011946 1014338 "GBINTERN" 1018691 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1007457 1007749 1008170 "GBF" 1009295 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1006238 1006403 1006670 "GBEUCLID" 1007273 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1005587 1005712 1005861 "GAUSSFAC" 1006109 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003964 1004266 1004579 "GALUTIL" 1005306 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1002281 1002555 1002878 "GALPOLYU" 1003691 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999670 999960 1000365 "GALFACTU" 1001978 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 991476 992975 994583 "GALFACT" 998102 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988863 989521 989550 "FVFUN" 990706 T FVFUN (NIL) -9 NIL 991426) (-409 988128 988310 988339 "FVC" 988630 T FVC (NIL) -9 NIL 988813) (-408 987770 987925 988006 "FUNCTION" 988080 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 985440 985991 986480 "FT" 987301 T FT (NIL) -8 NIL NIL) (-406 984258 984741 984944 "FTEM" 985257 T FTEM (NIL) -8 NIL NIL) (-405 982523 982811 983213 "FSUPFACT" 983950 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980920 981209 981541 "FST" 982211 T FST (NIL) -8 NIL NIL) (-403 980095 980201 980395 "FSRED" 980802 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978774 979029 979383 "FSPRMELT" 979810 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975859 976297 976796 "FSPECF" 978337 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 958185 966742 966783 "FS" 970621 NIL FS (NIL T) -9 NIL 972903) (-399 946835 949825 953881 "FS-" 954178 NIL FS- (NIL T T) -8 NIL NIL) (-398 946351 946405 946581 "FSINT" 946776 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944632 945344 945647 "FSERIES" 946130 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943650 943766 943996 "FSCINT" 944512 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939884 942594 942636 "FSAGG" 943006 NIL FSAGG (NIL T) -9 NIL 943265) (-394 937646 938247 939043 "FSAGG-" 939138 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936688 936831 937058 "FSAGG2" 937499 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 934347 934626 935179 "FS2UPS" 936406 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933933 933976 934129 "FS2" 934298 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932793 932964 933272 "FS2EXPXP" 933758 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 932219 932334 932486 "FRUTIL" 932673 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923640 927718 929074 "FR" 930895 NIL FR (NIL T) -8 NIL NIL) (-387 918716 921359 921400 "FRNAALG" 922796 NIL FRNAALG (NIL T) -9 NIL 923403) (-386 914395 915465 916740 "FRNAALG-" 917490 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 914033 914076 914203 "FRNAAF2" 914346 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 912398 912890 913184 "FRMOD" 913846 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 910121 910789 911105 "FRIDEAL" 912189 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 909320 909407 909694 "FRIDEAL2" 910028 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 908577 908985 909027 "FRETRCT" 909032 NIL FRETRCT (NIL T) -9 NIL 909203) (-380 907689 907920 908271 "FRETRCT-" 908276 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904898 906118 906178 "FRAMALG" 907060 NIL FRAMALG (NIL T T) -9 NIL 907352) (-378 903031 903487 904117 "FRAMALG-" 904340 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896933 902506 902782 "FRAC" 902787 NIL FRAC (NIL T) -8 NIL NIL) (-376 896569 896626 896733 "FRAC2" 896870 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 896205 896262 896369 "FR2" 896506 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890831 893744 893773 "FPS" 894892 T FPS (NIL) -9 NIL 895448) (-373 890280 890389 890553 "FPS-" 890699 NIL FPS- (NIL T) -8 NIL NIL) (-372 887681 889378 889407 "FPC" 889632 T FPC (NIL) -9 NIL 889774) (-371 887474 887514 887611 "FPC-" 887616 NIL FPC- (NIL T) -8 NIL NIL) (-370 886352 886962 887004 "FPATMAB" 887009 NIL FPATMAB (NIL T) -9 NIL 887161) (-369 884052 884528 884954 "FPARFRAC" 885989 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 879447 879944 880626 "FORTRAN" 883484 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 877163 877663 878202 "FORT" 878928 T FORT (NIL) -7 NIL NIL) (-366 874838 875400 875429 "FORTFN" 876489 T FORTFN (NIL) -9 NIL 877113) (-365 874601 874651 874680 "FORTCAT" 874739 T FORTCAT (NIL) -9 NIL 874801) (-364 872661 873144 873543 "FORMULA" 874222 T FORMULA (NIL) -8 NIL NIL) (-363 872449 872479 872548 "FORMULA1" 872625 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871972 872024 872197 "FORDER" 872391 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 871068 871232 871425 "FOP" 871799 T FOP (NIL) -7 NIL NIL) (-360 869676 870348 870522 "FNLA" 870950 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 868344 868733 868762 "FNCAT" 869334 T FNCAT (NIL) -9 NIL 869627) (-358 867910 868303 868331 "FNAME" 868336 T FNAME (NIL) -8 NIL NIL) (-357 866569 867542 867571 "FMTC" 867576 T FMTC (NIL) -9 NIL 867611) (-356 862887 864094 864722 "FMONOID" 865974 NIL FMONOID (NIL T) -8 NIL NIL) (-355 862107 862630 862778 "FM" 862783 NIL FM (NIL T T) -8 NIL NIL) (-354 859530 860176 860205 "FMFUN" 861349 T FMFUN (NIL) -9 NIL 862057) (-353 858798 858979 859008 "FMC" 859298 T FMC (NIL) -9 NIL 859480) (-352 856027 856861 856915 "FMCAT" 858097 NIL FMCAT (NIL T T) -9 NIL 858591) (-351 854922 855795 855894 "FM1" 855972 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852696 853112 853606 "FLOATRP" 854473 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 846183 850352 850982 "FLOAT" 852086 T FLOAT (NIL) -8 NIL NIL) (-348 843621 844121 844699 "FLOATCP" 845650 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 842409 843257 843298 "FLINEXP" 843303 NIL FLINEXP (NIL T) -9 NIL 843396) (-346 841564 841799 842126 "FLINEXP-" 842131 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840640 840784 841008 "FLASORT" 841416 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837858 838700 838753 "FLALG" 839980 NIL FLALG (NIL T T) -9 NIL 840447) (-343 831645 835341 835383 "FLAGG" 836645 NIL FLAGG (NIL T) -9 NIL 837297) (-342 830371 830710 831200 "FLAGG-" 831205 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 829413 829556 829783 "FLAGG2" 830224 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 826385 827403 827463 "FINRALG" 828591 NIL FINRALG (NIL T T) -9 NIL 829099) (-339 825545 825774 826113 "FINRALG-" 826118 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824951 825164 825193 "FINITE" 825389 T FINITE (NIL) -9 NIL 825496) (-337 817410 819571 819612 "FINAALG" 823279 NIL FINAALG (NIL T) -9 NIL 824732) (-336 812751 813792 814936 "FINAALG-" 816315 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 812146 812506 812609 "FILE" 812681 NIL FILE (NIL T) -8 NIL NIL) (-334 810830 811142 811197 "FILECAT" 811881 NIL FILECAT (NIL T T) -9 NIL 812097) (-333 808645 810201 810230 "FIELD" 810270 T FIELD (NIL) -9 NIL 810350) (-332 807265 807650 808161 "FIELD-" 808166 NIL FIELD- (NIL T) -8 NIL NIL) (-331 805080 805902 806248 "FGROUP" 806952 NIL FGROUP (NIL T) -8 NIL NIL) (-330 804170 804334 804554 "FGLMICPK" 804912 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799972 804095 804152 "FFX" 804157 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799573 799634 799769 "FFSLPE" 799905 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795569 796345 797141 "FFPOLY" 798809 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 795073 795109 795318 "FFPOLY2" 795527 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790895 794992 795055 "FFP" 795060 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 786263 790806 790870 "FF" 790875 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 781359 785606 785796 "FFNBX" 786117 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 776269 780494 780752 "FFNBP" 781213 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770872 775553 775764 "FFNB" 776102 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769704 769902 770217 "FFINTBAS" 770669 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765880 768120 768149 "FFIELDC" 768769 T FFIELDC (NIL) -9 NIL 769145) (-318 764543 764913 765410 "FFIELDC-" 765415 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 764113 764158 764282 "FFHOM" 764485 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761811 762295 762812 "FFF" 763628 NIL FFF (NIL T) -7 NIL NIL) (-315 757399 761553 761654 "FFCGX" 761754 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 753001 757131 757238 "FFCGP" 757342 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 748154 752728 752836 "FFCG" 752937 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729951 739074 739161 "FFCAT" 744326 NIL FFCAT (NIL T T T) -9 NIL 745813) (-311 725149 726196 727510 "FFCAT-" 728740 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724560 724603 724838 "FFCAT2" 725100 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713760 717550 718767 "FEXPR" 723415 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712759 713194 713236 "FEVALAB" 713320 NIL FEVALAB (NIL T) -9 NIL 713581) (-307 711918 712128 712466 "FEVALAB-" 712471 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710511 711301 711504 "FDIV" 711817 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707577 708292 708408 "FDIVCAT" 709976 NIL FDIVCAT (NIL T T T T) -9 NIL 710413) (-304 707339 707366 707536 "FDIVCAT-" 707541 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706559 706646 706923 "FDIV2" 707246 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 705252 705509 705796 "FCPAK1" 706292 T FCPAK1 (NIL) -7 NIL NIL) (-301 704380 704752 704893 "FCOMP" 705143 NIL FCOMP (NIL T) -8 NIL NIL) (-300 688020 691432 694992 "FC" 700840 T FC (NIL) -8 NIL NIL) (-299 680568 684614 684655 "FAXF" 686457 NIL FAXF (NIL T) -9 NIL 687148) (-298 677847 678502 679327 "FAXF-" 679792 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672953 677223 677399 "FARRAY" 677704 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668296 670367 670420 "FAMR" 671432 NIL FAMR (NIL T T) -9 NIL 671892) (-295 667187 667489 667923 "FAMR-" 667928 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666383 667109 667162 "FAMONOID" 667167 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 664215 664899 664953 "FAMONC" 665894 NIL FAMONC (NIL T T) -9 NIL 666279) (-292 662907 663969 664106 "FAGROUP" 664111 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660710 661029 661431 "FACUTIL" 662588 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659809 659994 660216 "FACTFUNC" 660520 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 652132 659060 659272 "EXPUPXS" 659665 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649631 650167 650749 "EXPRTUBE" 651570 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645825 646417 647154 "EXPRODE" 648970 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630987 644484 644910 "EXPR" 645431 NIL EXPR (NIL T) -8 NIL NIL) (-285 625415 626002 626814 "EXPR2UPS" 630285 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 625051 625108 625215 "EXPR2" 625352 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616405 624188 624483 "EXPEXPAN" 624889 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 616232 616362 616391 "EXIT" 616396 T EXIT (NIL) -8 NIL NIL) (-281 615859 615921 616034 "EVALCYC" 616164 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615399 615517 615559 "EVALAB" 615729 NIL EVALAB (NIL T) -9 NIL 615833) (-279 614880 615002 615223 "EVALAB-" 615228 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612342 613654 613683 "EUCDOM" 614238 T EUCDOM (NIL) -9 NIL 614588) (-277 610747 611189 611779 "EUCDOM-" 611784 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598360 601099 603830 "ESTOOLS" 608036 T ESTOOLS (NIL) -7 NIL NIL) (-275 597996 598053 598160 "ESTOOLS2" 598297 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597747 597789 597869 "ESTOOLS1" 597948 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591684 593408 593437 "ES" 596201 T ES (NIL) -9 NIL 597607) (-272 586632 587918 589735 "ES-" 589899 NIL ES- (NIL T) -8 NIL NIL) (-271 583039 583791 584563 "ESCONT" 585880 T ESCONT (NIL) -7 NIL NIL) (-270 582784 582816 582898 "ESCONT1" 583001 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582459 582509 582609 "ES2" 582728 NIL ES2 (NIL T T) -7 NIL NIL) (-268 582089 582147 582256 "ES1" 582395 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581305 581434 581610 "ERROR" 581933 T ERROR (NIL) -7 NIL NIL) (-266 574820 581164 581255 "EQTBL" 581260 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 567257 570138 571585 "EQ" 573406 NIL -3126 (NIL T) -8 NIL NIL) (-264 566889 566946 567055 "EQ2" 567194 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 562181 563227 564320 "EP" 565828 NIL EP (NIL T) -7 NIL NIL) (-262 561340 561904 561933 "ENTIRER" 561938 T ENTIRER (NIL) -9 NIL 561983) (-261 557796 559295 559665 "EMR" 561139 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556939 557124 557179 "ELTAGG" 557559 NIL ELTAGG (NIL T T) -9 NIL 557770) (-259 556658 556720 556861 "ELTAGG-" 556866 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556446 556475 556530 "ELTAB" 556614 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555572 555718 555917 "ELFUTS" 556297 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555313 555369 555398 "ELEMFUN" 555503 T ELEMFUN (NIL) -9 NIL NIL) (-255 555183 555204 555272 "ELEMFUN-" 555277 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 550077 553280 553322 "ELAGG" 554262 NIL ELAGG (NIL T) -9 NIL 554725) (-253 548362 548796 549459 "ELAGG-" 549464 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 541230 543029 543856 "EFUPXS" 547638 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534680 536481 537291 "EFULS" 540506 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 532111 532469 532947 "EFSTRUC" 534312 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 521183 522748 524308 "EF" 530626 NIL EF (NIL T T) -7 NIL NIL) (-248 520284 520668 520817 "EAB" 521054 T EAB (NIL) -8 NIL NIL) (-247 519497 520243 520271 "E04UCFA" 520276 T E04UCFA (NIL) -8 NIL NIL) (-246 518710 519456 519484 "E04NAFA" 519489 T E04NAFA (NIL) -8 NIL NIL) (-245 517923 518669 518697 "E04MBFA" 518702 T E04MBFA (NIL) -8 NIL NIL) (-244 517136 517882 517910 "E04JAFA" 517915 T E04JAFA (NIL) -8 NIL NIL) (-243 516351 517095 517123 "E04GCFA" 517128 T E04GCFA (NIL) -8 NIL NIL) (-242 515566 516310 516338 "E04FDFA" 516343 T E04FDFA (NIL) -8 NIL NIL) (-241 514779 515525 515553 "E04DGFA" 515558 T E04DGFA (NIL) -8 NIL NIL) (-240 508965 510309 511671 "E04AGNT" 513437 T E04AGNT (NIL) -7 NIL NIL) (-239 507691 508171 508212 "DVARCAT" 508687 NIL DVARCAT (NIL T) -9 NIL 508885) (-238 506895 507107 507421 "DVARCAT-" 507426 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499757 506697 506824 "DSMP" 506829 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494583 495714 496778 "DROPT" 498713 T DROPT (NIL) -8 NIL NIL) (-235 494248 494307 494405 "DROPT1" 494518 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489370 490494 491629 "DROPT0" 493133 T DROPT0 (NIL) -7 NIL NIL) (-233 487715 488040 488426 "DRAWPT" 489004 T DRAWPT (NIL) -7 NIL NIL) (-232 482390 483289 484344 "DRAW" 486713 NIL DRAW (NIL T) -7 NIL NIL) (-231 482031 482082 482198 "DRAWHACK" 482333 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480776 481041 481328 "DRAWCX" 481764 T DRAWCX (NIL) -7 NIL NIL) (-229 480294 480362 480512 "DRAWCURV" 480702 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470898 472820 474899 "DRAWCFUN" 478235 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467717 469593 469635 "DQAGG" 470264 NIL DQAGG (NIL T) -9 NIL 470537) (-226 456176 462914 462997 "DPOLCAT" 464835 NIL DPOLCAT (NIL T T T T) -9 NIL 465379) (-225 451016 452362 454319 "DPOLCAT-" 454324 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 445100 450878 450975 "DPMO" 450980 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 439087 444881 445047 "DPMM" 445052 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438849 438900 438974 "DOMAIN" 439033 T DOMAIN (NIL) -8 NIL NIL) (-221 432561 438486 438637 "DMP" 438750 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 432161 432217 432361 "DLP" 432499 NIL DLP (NIL T) -7 NIL NIL) (-219 425811 431262 431489 "DLIST" 431966 NIL DLIST (NIL T) -8 NIL NIL) (-218 422663 424666 424708 "DLAGG" 425258 NIL DLAGG (NIL T) -9 NIL 425487) (-217 421325 422017 422046 "DIVRING" 422196 T DIVRING (NIL) -9 NIL 422304) (-216 420313 420566 420959 "DIVRING-" 420964 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 418415 418772 419178 "DISPLAY" 419927 T DISPLAY (NIL) -7 NIL NIL) (-214 412310 418329 418392 "DIRPROD" 418397 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 411158 411361 411626 "DIRPROD2" 412103 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400791 406790 406844 "DIRPCAT" 407252 NIL DIRPCAT (NIL NIL T) -9 NIL 408079) (-211 398117 398759 399640 "DIRPCAT-" 399977 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 397404 397564 397750 "DIOSP" 397951 T DIOSP (NIL) -7 NIL NIL) (-209 394112 396316 396358 "DIOPS" 396792 NIL DIOPS (NIL T) -9 NIL 397021) (-208 393661 393775 393966 "DIOPS-" 393971 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392532 393170 393199 "DIFRING" 393386 T DIFRING (NIL) -9 NIL 393495) (-206 392178 392255 392407 "DIFRING-" 392412 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389967 391249 391290 "DIFEXT" 391649 NIL DIFEXT (NIL T) -9 NIL 391942) (-204 388253 388681 389346 "DIFEXT-" 389351 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385581 387785 387827 "DIAGG" 387832 NIL DIAGG (NIL T) -9 NIL 387852) (-202 384965 385122 385374 "DIAGG-" 385379 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 380436 383924 384201 "DHMATRIX" 384734 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 376048 376957 377967 "DFSFUN" 379446 T DFSFUN (NIL) -7 NIL NIL) (-199 370834 374762 375127 "DFLOAT" 375703 T DFLOAT (NIL) -8 NIL NIL) (-198 369067 369348 369743 "DFINTTLS" 370542 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 366100 367102 367500 "DERHAM" 368734 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363955 365875 365964 "DEQUEUE" 366044 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 363173 363306 363501 "DEGRED" 363817 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359589 360330 361178 "DEFINTRF" 362405 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 357128 357595 358191 "DEFINTEF" 359110 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350959 356569 356735 "DECIMAL" 356982 T DECIMAL (NIL) -8 NIL NIL) (-191 348471 348929 349435 "DDFACT" 350503 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 348067 348110 348261 "DBLRESP" 348422 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345777 346111 346480 "DBASE" 347825 NIL DBASE (NIL T) -8 NIL NIL) (-188 344912 345736 345764 "D03FAFA" 345769 T D03FAFA (NIL) -8 NIL NIL) (-187 344048 344871 344899 "D03EEFA" 344904 T D03EEFA (NIL) -8 NIL NIL) (-186 341998 342464 342953 "D03AGNT" 343579 T D03AGNT (NIL) -7 NIL NIL) (-185 341316 341957 341985 "D02EJFA" 341990 T D02EJFA (NIL) -8 NIL NIL) (-184 340634 341275 341303 "D02CJFA" 341308 T D02CJFA (NIL) -8 NIL NIL) (-183 339952 340593 340621 "D02BHFA" 340626 T D02BHFA (NIL) -8 NIL NIL) (-182 339270 339911 339939 "D02BBFA" 339944 T D02BBFA (NIL) -8 NIL NIL) (-181 332469 334056 335662 "D02AGNT" 337684 T D02AGNT (NIL) -7 NIL NIL) (-180 330250 330769 331312 "D01WGTS" 331946 T D01WGTS (NIL) -7 NIL NIL) (-179 329357 330209 330237 "D01TRNS" 330242 T D01TRNS (NIL) -8 NIL NIL) (-178 328464 329316 329344 "D01GBFA" 329349 T D01GBFA (NIL) -8 NIL NIL) (-177 327571 328423 328451 "D01FCFA" 328456 T D01FCFA (NIL) -8 NIL NIL) (-176 326678 327530 327558 "D01ASFA" 327563 T D01ASFA (NIL) -8 NIL NIL) (-175 325785 326637 326665 "D01AQFA" 326670 T D01AQFA (NIL) -8 NIL NIL) (-174 324892 325744 325772 "D01APFA" 325777 T D01APFA (NIL) -8 NIL NIL) (-173 323999 324851 324879 "D01ANFA" 324884 T D01ANFA (NIL) -8 NIL NIL) (-172 323106 323958 323986 "D01AMFA" 323991 T D01AMFA (NIL) -8 NIL NIL) (-171 322213 323065 323093 "D01ALFA" 323098 T D01ALFA (NIL) -8 NIL NIL) (-170 321320 322172 322200 "D01AKFA" 322205 T D01AKFA (NIL) -8 NIL NIL) (-169 320427 321279 321307 "D01AJFA" 321312 T D01AJFA (NIL) -8 NIL NIL) (-168 313759 315301 316853 "D01AGNT" 318895 T D01AGNT (NIL) -7 NIL NIL) (-167 313096 313224 313376 "CYCLOTOM" 313627 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309831 310544 311271 "CYCLES" 312389 T CYCLES (NIL) -7 NIL NIL) (-165 309143 309277 309448 "CVMP" 309692 NIL CVMP (NIL T) -7 NIL NIL) (-164 306925 307182 307557 "CTRIGMNP" 308871 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 306299 306398 306551 "CSTTOOLS" 306822 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 302098 302755 303513 "CRFP" 305611 NIL CRFP (NIL T T) -7 NIL NIL) (-161 301145 301330 301558 "CRAPACK" 301902 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300529 300630 300834 "CPMATCH" 301021 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 300254 300282 300388 "CPIMA" 300495 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296618 297290 298008 "COORDSYS" 299589 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292479 294621 295113 "CONTFRAC" 296158 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291632 292196 292225 "COMRING" 292230 T COMRING (NIL) -9 NIL 292281) (-155 290713 290990 291174 "COMPPROP" 291468 T COMPPROP (NIL) -8 NIL NIL) (-154 290374 290409 290537 "COMPLPAT" 290672 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 280355 290183 290292 "COMPLEX" 290297 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279991 280048 280155 "COMPLEX2" 280292 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279709 279744 279842 "COMPFACT" 279950 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263972 274266 274307 "COMPCAT" 275309 NIL COMPCAT (NIL T) -9 NIL 276702) (-149 253488 256411 260038 "COMPCAT-" 260394 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 253219 253247 253349 "COMMUPC" 253454 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 253014 253047 253106 "COMMONOP" 253180 T COMMONOP (NIL) -7 NIL NIL) (-146 252597 252765 252852 "COMM" 252947 T COMM (NIL) -8 NIL NIL) (-145 251851 252043 252072 "COMBOPC" 252408 T COMBOPC (NIL) -9 NIL 252581) (-144 250747 250957 251199 "COMBINAT" 251641 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246953 247524 248162 "COMBF" 250171 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245739 246069 246304 "COLOR" 246738 T COLOR (NIL) -8 NIL NIL) (-141 245379 245426 245551 "CMPLXRT" 245686 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240937 241951 243017 "CLIP" 244333 T CLIP (NIL) -7 NIL NIL) (-139 239275 240045 240283 "CLIF" 240765 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235503 237421 237463 "CLAGG" 238392 NIL CLAGG (NIL T) -9 NIL 238928) (-137 233925 234382 234965 "CLAGG-" 234970 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233469 233554 233694 "CINTSLPE" 233834 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230970 231441 231989 "CHVAR" 232997 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 230192 230756 230785 "CHARZ" 230790 T CHARZ (NIL) -9 NIL 230804) (-133 229946 229986 230064 "CHARPOL" 230146 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 229052 229649 229678 "CHARNZ" 229725 T CHARNZ (NIL) -9 NIL 229780) (-131 227075 227742 228077 "CHAR" 228737 T CHAR (NIL) -8 NIL NIL) (-130 226800 226861 226890 "CFCAT" 227001 T CFCAT (NIL) -9 NIL NIL) (-129 226045 226156 226338 "CDEN" 226684 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 222037 225198 225478 "CCLASS" 225785 T CCLASS (NIL) -8 NIL NIL) (-127 217090 218066 218819 "CARTEN" 221340 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 216198 216346 216567 "CARTEN2" 216937 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 214495 215350 215606 "CARD" 215962 T CARD (NIL) -8 NIL NIL) (-124 213867 214195 214224 "CACHSET" 214356 T CACHSET (NIL) -9 NIL 214433) (-123 213363 213659 213688 "CABMON" 213738 T CABMON (NIL) -9 NIL 213794) (-122 210926 213055 213162 "BTREE" 213289 NIL BTREE (NIL T) -8 NIL NIL) (-121 208430 210574 210696 "BTOURN" 210836 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205854 207901 207943 "BTCAT" 208011 NIL BTCAT (NIL T) -9 NIL 208088) (-119 205521 205601 205750 "BTCAT-" 205755 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200711 204582 204611 "BTAGG" 204867 T BTAGG (NIL) -9 NIL 205046) (-117 200134 200278 200508 "BTAGG-" 200513 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 197184 199412 199627 "BSTREE" 199951 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196322 196448 196632 "BRILL" 197040 NIL BRILL (NIL T) -7 NIL NIL) (-114 193029 195050 195092 "BRAGG" 195741 NIL BRAGG (NIL T) -9 NIL 195998) (-113 191558 191964 192519 "BRAGG-" 192524 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184766 190904 191088 "BPADICRT" 191406 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 183070 184703 184748 "BPADIC" 184753 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182770 182800 182913 "BOUNDZRO" 183034 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 178285 179376 180243 "BOP" 181923 T BOP (NIL) -8 NIL NIL) (-108 175906 176350 176870 "BOP1" 177798 NIL BOP1 (NIL T) -7 NIL NIL) (-107 174259 174949 175243 "BOOLEAN" 175632 T BOOLEAN (NIL) -8 NIL NIL) (-106 173625 174003 174056 "BMODULE" 174061 NIL BMODULE (NIL T T) -9 NIL 174125) (-105 169435 173423 173496 "BITS" 173572 T BITS (NIL) -8 NIL NIL) (-104 168532 168967 169119 "BINFILE" 169303 T BINFILE (NIL) -8 NIL NIL) (-103 162367 167976 168141 "BINARY" 168387 T BINARY (NIL) -8 NIL NIL) (-102 160200 161622 161664 "BGAGG" 161924 NIL BGAGG (NIL T) -9 NIL 162061) (-101 160031 160063 160154 "BGAGG-" 160159 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 159129 159415 159620 "BFUNCT" 159846 T BFUNCT (NIL) -8 NIL NIL) (-99 157830 158008 158293 "BEZOUT" 158953 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154361 156690 157018 "BBTREE" 157533 NIL BBTREE (NIL T) -8 NIL NIL) (-97 154098 154151 154178 "BASTYPE" 154295 T BASTYPE (NIL) -9 NIL NIL) (-96 153954 153982 154052 "BASTYPE-" 154057 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153392 153468 153618 "BALFACT" 153865 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152214 152811 152996 "AUTOMOR" 153237 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151939 151944 151971 "ATTREG" 151976 T ATTREG (NIL) -9 NIL NIL) (-92 150218 150636 150988 "ATTRBUT" 151605 T ATTRBUT (NIL) -8 NIL NIL) (-91 149753 149866 149893 "ATRIG" 150094 T ATRIG (NIL) -9 NIL NIL) (-90 149562 149603 149690 "ATRIG-" 149695 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147765 149338 149426 "ASTACK" 149505 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146270 146567 146932 "ASSOCEQ" 147447 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145302 145929 146053 "ASP9" 146177 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 145066 145250 145289 "ASP8" 145294 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143936 144671 144813 "ASP80" 144955 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142835 143571 143703 "ASP7" 143835 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141791 142512 142630 "ASP78" 142748 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140762 141471 141588 "ASP77" 141705 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139677 140400 140531 "ASP74" 140662 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138578 139312 139444 "ASP73" 139576 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137533 138255 138373 "ASP6" 138491 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136482 137210 137328 "ASP55" 137446 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135432 136156 136275 "ASP50" 136394 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134520 135133 135243 "ASP4" 135353 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133608 134221 134331 "ASP49" 134441 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132393 133147 133315 "ASP42" 133497 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131171 131926 132096 "ASP41" 132280 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 130123 130848 130966 "ASP35" 131084 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129888 130071 130110 "ASP34" 130115 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129625 129692 129768 "ASP33" 129843 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128521 129260 129392 "ASP31" 129524 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128286 128469 128508 "ASP30" 128513 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 128021 128090 128166 "ASP29" 128241 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127786 127969 128008 "ASP28" 128013 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127551 127734 127773 "ASP27" 127778 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126635 127249 127360 "ASP24" 127471 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125552 126276 126406 "ASP20" 126536 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124640 125253 125363 "ASP1" 125473 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123584 124314 124433 "ASP19" 124552 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 123321 123388 123464 "ASP12" 123539 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 122174 122920 123064 "ASP10" 123208 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 120079 122018 122109 "ARRAY2" 122114 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115901 119727 119841 "ARRAY1" 119996 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114933 115106 115327 "ARRAY12" 115724 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 109298 111163 111239 "ARR2CAT" 113869 NIL ARR2CAT (NIL T T T) -9 NIL 114627) (-54 106732 107476 108430 "ARR2CAT-" 108435 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105492 105642 105945 "APPRULE" 106570 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105145 105193 105311 "APPLYORE" 105438 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104119 104410 104605 "ANY" 104968 T ANY (NIL) -8 NIL NIL) (-50 103397 103520 103677 "ANY1" 103993 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100929 101847 102172 "ANTISYM" 103122 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100756 100888 100915 "ANON" 100920 T ANON (NIL) -8 NIL NIL) (-47 94833 99301 99752 "AN" 100323 T AN (NIL) -8 NIL NIL) (-46 91139 92537 92588 "AMR" 93327 NIL AMR (NIL T T) -9 NIL 93926) (-45 90252 90473 90835 "AMR-" 90840 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74814 90169 90230 "ALIST" 90235 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71651 74408 74577 "ALGSC" 74732 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68207 68761 69368 "ALGPKG" 71091 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67484 67585 67769 "ALGMFACT" 68093 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63233 63914 64568 "ALGMANIP" 67008 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54552 62859 63009 "ALGFF" 63166 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52738 53348 53387 "ALGEBRA" 53447 NIL ALGEBRA (NIL T) -9 NIL 53505) (-36 52456 52515 52647 "ALGEBRA-" 52652 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34177 49902 49955 "ALAGG" 50091 NIL ALAGG (NIL T T) -9 NIL 50252) (-34 33712 33825 33852 "AHYP" 34053 T AHYP (NIL) -9 NIL NIL) (-33 32642 32890 32917 "AGG" 33416 T AGG (NIL) -9 NIL 33695) (-32 32076 32238 32452 "AGG-" 32457 NIL AGG- (NIL T) -8 NIL NIL) (-31 29763 30181 30598 "AF" 31719 NIL AF (NIL T T) -7 NIL NIL) (-30 29041 29295 29449 "ACPLOT" 29627 T ACPLOT (NIL) -8 NIL NIL) (-29 18460 26406 26458 "ACFS" 27169 NIL ACFS (NIL T) -9 NIL 27408) (-28 16474 16964 17739 "ACFS-" 17744 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12694 14650 14677 "ACF" 15556 T ACF (NIL) -9 NIL 15968) (-26 11398 11732 12225 "ACF-" 12230 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11192 "ABELSG" 11284 T ABELSG (NIL) -9 NIL 11349) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10232 10493 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9896 9980 10118 "ABELMON-" 10123 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9230 9576 9603 "ABELGRP" 9728 T ABELGRP (NIL) -9 NIL 9810) (-20 8693 8822 9038 "ABELGRP-" 9043 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-2317 (((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|)) 37)) (-3971 (((-517) (-1129 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2490 (((-517) (-1129 |#2| |#1|)) 54)) (-1399 (((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|)) 45)) (-3343 (((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|)) 56 (|has| |#1| (-421)))) (-1731 (((-583 |#1|) (-1129 |#2| |#1|) (-1129 |#2| |#1|)) 48)) (-1686 (((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|)) 53)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -2317 ((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1399 ((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1731 ((-583 |#1|) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1686 ((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -2490 ((-517) (-1129 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3343 ((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -3971 ((-517) (-1129 |#2| |#1|)))) |%noBranch|)) (-752) (-1075)) (T -1018))
+((-3971 (*1 *2 *3) (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))) (-3343 (*1 *2 *3 *3) (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))) (-1686 (*1 *2 *3 *3) (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))) (-1731 (*1 *2 *3 *3) (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *4 *5)))) (-1399 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-583 (-1129 *5 *4))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-1129 *5 *4)))) (-2317 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-583 (-1129 *5 *4))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-1129 *5 *4)))))
+(-10 -7 (-15 -2317 ((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1399 ((-583 (-1129 |#2| |#1|)) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1731 ((-583 |#1|) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -1686 ((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -2490 ((-517) (-1129 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3343 ((-517) (-1129 |#2| |#1|) (-1129 |#2| |#1|))) (-15 -3971 ((-517) (-1129 |#2| |#1|)))) |%noBranch|))
+((-1323 (((-3 (-517) "failed") |#2| (-1075) |#2| (-1058)) 16) (((-3 (-517) "failed") |#2| (-1075) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
+(((-1019 |#1| |#2|) (-10 -7 (-15 -1323 ((-3 (-517) "failed") |#2|)) (-15 -1323 ((-3 (-517) "failed") |#2| (-1075) (-772 |#2|))) (-15 -1323 ((-3 (-517) "failed") |#2| (-1075) |#2| (-1058)))) (-13 (-509) (-779) (-953 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1096) (-400 |#1|))) (T -1019))
+((-1323 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-1058)) (-4 *6 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1019 *6 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))))) (-1323 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1019 *6 *3)))) (-1323 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1019 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))))
+(-10 -7 (-15 -1323 ((-3 (-517) "failed") |#2|)) (-15 -1323 ((-3 (-517) "failed") |#2| (-1075) (-772 |#2|))) (-15 -1323 ((-3 (-517) "failed") |#2| (-1075) |#2| (-1058))))
+((-1323 (((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)) (-1058)) 34) (((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-772 (-377 (-875 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-875 |#1|))) 12)))
+(((-1020 |#1|) (-10 -7 (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)))) (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-772 (-377 (-875 |#1|))))) (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)) (-1058)))) (-421)) (T -1020))
+((-1323 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-1075)) (-5 *5 (-1058)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1020 *6)))) (-1323 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-772 (-377 (-875 *6)))) (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1020 *6)))) (-1323 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1020 *4)))))
+(-10 -7 (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)))) (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-772 (-377 (-875 |#1|))))) (-15 -1323 ((-3 (-517) "failed") (-377 (-875 |#1|)) (-1075) (-377 (-875 |#1|)) (-1058))))
+((-1934 (((-286 (-517)) (-47)) 11)))
+(((-1021) (-10 -7 (-15 -1934 ((-286 (-517)) (-47))))) (T -1021))
+((-1934 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1021)))))
+(-10 -7 (-15 -1934 ((-286 (-517)) (-47))))
+((-2118 (((-107) $ $) NIL)) (-3621 (($ $) 41)) (-2033 (((-107) $) 65)) (-2292 (($ $ $) 48)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 84)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1732 (($ $ $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1448 (($ $ $ $) 74)) (-3088 (($ $) NIL)) (-1581 (((-388 $) $) NIL)) (-3998 (((-107) $ $) NIL)) (-1323 (((-517) $) NIL)) (-2140 (($ $ $) 71)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL)) (-3388 (((-517) $) NIL)) (-2378 (($ $ $) 59)) (-2306 (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3163 (((-3 $ "failed") $) NIL)) (-2253 (((-3 (-377 (-517)) "failed") $) NIL)) (-1654 (((-107) $) NIL)) (-3652 (((-377 (-517)) $) NIL)) (-2200 (($) 81) (($ $) 82)) (-2354 (($ $ $) 58)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL)) (-2963 (((-107) $) NIL)) (-2171 (($ $ $ $) NIL)) (-3101 (($ $ $) 79)) (-3523 (((-107) $) NIL)) (-1298 (($ $ $) NIL)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL)) (-1865 (((-107) $) 66)) (-1623 (((-107) $) 64)) (-2477 (($ $) 42)) (-3572 (((-3 $ "failed") $) NIL)) (-1469 (((-107) $) 75)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1431 (($ $ $ $) 72)) (-3456 (($ $ $) 68) (($) 39)) (-4082 (($ $ $) 67) (($) 38)) (-2634 (($ $) NIL)) (-3680 (($ $) 70)) (-2330 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1895 (((-1058) $) NIL)) (-2825 (($ $ $) NIL)) (-2585 (($) NIL T CONST)) (-4004 (($ $) 50)) (-4123 (((-1022) $) NIL) (($ $) 69)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL)) (-2368 (($ $ $) 62) (($ (-583 $)) NIL)) (-3012 (($ $) NIL)) (-3866 (((-388 $) $) NIL)) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL)) (-2327 (((-3 $ "failed") $ $) NIL)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2085 (((-107) $) NIL)) (-4094 (((-703) $) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 61)) (-2059 (($ $ (-703)) NIL) (($ $) NIL)) (-2916 (($ $) 51)) (-2460 (($ $) NIL)) (-3357 (((-517) $) 32) (((-493) $) NIL) (((-815 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2269 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-2950 (((-703)) NIL)) (-4012 (((-107) $ $) NIL)) (-3972 (($ $ $) NIL)) (-3984 (($) 37)) (-2914 (((-107) $ $) NIL)) (-3359 (($ $ $ $) 73)) (-2339 (($ $) 63)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3815 (($ $ $) 44)) (-3608 (($) 35 T CONST)) (-3914 (($ $ $) 47)) (-3617 (($) 36 T CONST)) (-1964 (((-1058) $) 21) (((-1058) $ (-107)) 23) (((-1161) (-754) $) 24) (((-1161) (-754) $ (-107)) 25)) (-3925 (($ $) 45)) (-3340 (($ $ (-703)) NIL) (($ $) NIL)) (-3900 (($ $ $) 46)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 40)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 49)) (-3803 (($ $ $) 43)) (-1691 (($ $) 52) (($ $ $) 54)) (-1677 (($ $ $) 53)) (** (($ $ (-844)) NIL) (($ $ (-703)) 57)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
+(((-1022) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4177) (-6 -4182) (-6 -4178) (-15 -4082 ($)) (-15 -3456 ($)) (-15 -2477 ($ $)) (-15 -3621 ($ $)) (-15 -3803 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -3925 ($ $)) (-15 -3900 ($ $ $)) (-15 -3914 ($ $ $))))) (T -1022))
+((-3815 (*1 *1 *1 *1) (-5 *1 (-1022))) (-3803 (*1 *1 *1 *1) (-5 *1 (-1022))) (-3621 (*1 *1 *1) (-5 *1 (-1022))) (-4082 (*1 *1) (-5 *1 (-1022))) (-3456 (*1 *1) (-5 *1 (-1022))) (-2477 (*1 *1 *1) (-5 *1 (-1022))) (-2292 (*1 *1 *1 *1) (-5 *1 (-1022))) (-3925 (*1 *1 *1) (-5 *1 (-1022))) (-3900 (*1 *1 *1 *1) (-5 *1 (-1022))) (-3914 (*1 *1 *1 *1) (-5 *1 (-1022))))
+(-13 (-502) (-598) (-760) (-10 -8 (-6 -4177) (-6 -4182) (-6 -4178) (-15 -4082 ($)) (-15 -3456 ($)) (-15 -2477 ($ $)) (-15 -3621 ($ $)) (-15 -3803 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -3925 ($ $)) (-15 -3900 ($ $ $)) (-15 -3914 ($ $ $))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-2551 ((|#1| $) 44)) (-2670 (((-107) $ (-703)) 8)) (-1681 (($) 7 T CONST)) (-1426 ((|#1| |#1| $) 46)) (-3751 ((|#1| $) 45)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-2431 ((|#1| $) 39)) (-2704 (($ |#1| $) 40)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-1785 ((|#1| $) 41)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-3143 (((-703) $) 43)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) 42)) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1023 |#1|) (-1187) (-1110)) (T -1023))
+((-1426 (*1 *2 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4190) (-15 -1426 (|t#1| |t#1| $)) (-15 -3751 (|t#1| $)) (-15 -2551 (|t#1| $)) (-15 -3143 ((-703) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-2008 ((|#3| $) 76)) (-3226 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3388 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-2306 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL) (((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 $) (-1156 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-2059 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3338 ((|#3| $) 78)) (-3146 ((|#4| $) 32)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-844)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
+(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -3338 (|#3| |#1|)) (-15 -2008 (|#3| |#1|)) (-15 -3146 (|#4| |#1|)) (-15 -2306 ((-623 |#3|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2269 (|#1| |#3|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2269 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2269 ((-787) |#1|))) (-1025 |#2| |#3| |#4| |#5|) (-703) (-962) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1024))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -3338 (|#3| |#1|)) (-15 -2008 (|#3| |#1|)) (-15 -3146 (|#4| |#1|)) (-15 -2306 ((-623 |#3|) (-623 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 |#3|)) (|:| |vec| (-1156 |#3|))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 |#1|) (-1156 |#1|))) (-15 -2306 ((-623 (-517)) (-623 |#1|))) (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2269 (|#1| |#3|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-517) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2059 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2269 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2008 ((|#2| $) 72)) (-1572 (((-107) $) 112)) (-1250 (((-3 $ "failed") $ $) 19)) (-1793 (((-107) $) 110)) (-2670 (((-107) $ (-703)) 102)) (-3583 (($ |#2|) 75)) (-1681 (($) 17 T CONST)) (-1680 (($ $) 129 (|has| |#2| (-278)))) (-3766 ((|#3| $ (-517)) 124)) (-3226 (((-3 (-517) "failed") $) 86 (|has| |#2| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-953 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3388 (((-517) $) 87 (|has| |#2| (-953 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-953 (-377 (-517))))) ((|#2| $) 80)) (-2306 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3163 (((-3 $ "failed") $) 34)) (-3736 (((-703) $) 130 (|has| |#2| (-509)))) (-2563 ((|#2| $ (-517) (-517)) 122)) (-1535 (((-583 |#2|) $) 95 (|has| $ (-6 -4190)))) (-1865 (((-107) $) 31)) (-3805 (((-703) $) 131 (|has| |#2| (-509)))) (-3794 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1420 (((-703) $) 118)) (-1434 (((-703) $) 119)) (-2361 (((-107) $ (-703)) 103)) (-2924 ((|#2| $) 67 (|has| |#2| (-6 (-4192 "*"))))) (-2380 (((-517) $) 114)) (-3442 (((-517) $) 116)) (-2898 (((-583 |#2|) $) 94 (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-1977 (((-517) $) 115)) (-3996 (((-517) $) 117)) (-2369 (($ (-583 (-583 |#2|))) 109)) (-2744 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-1548 (((-583 (-583 |#2|)) $) 120)) (-4043 (((-107) $ (-703)) 104)) (-1895 (((-1058) $) 9)) (-1368 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-4123 (((-1022) $) 10)) (-2327 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-3480 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) 108)) (-3270 (((-107) $) 105)) (-1529 (($) 106)) (-2607 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-2059 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1075)) (-583 (-703))) 44 (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) 43 (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) 42 (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) 41 (|has| |#2| (-823 (-1075)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-3338 ((|#2| $) 71)) (-3289 (($ (-583 |#2|)) 74)) (-2434 (((-107) $) 111)) (-3146 ((|#3| $) 73)) (-4126 ((|#2| $) 68 (|has| |#2| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4190))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 107)) (-2708 ((|#4| $ (-517)) 125)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-953 (-377 (-517))))) (($ |#2|) 82)) (-2950 (((-703)) 29)) (-3160 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4190)))) (-3515 (((-107) $) 113)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1075)) (-583 (-703))) 48 (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) 47 (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) 46 (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) 45 (|has| |#2| (-823 (-1075)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3533 (((-703) $) 101 (|has| $ (-6 -4190)))))
+(((-1025 |#1| |#2| |#3| |#4|) (-1187) (-703) (-962) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1025))
+((-3583 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-962)) (-4 *1 (-1025 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-1025 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-962)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1025 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))) (-1368 (*1 *1 *1) (|partial| -12 (-4 *1 (-1025 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1025 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
+(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -3583 ($ |t#2|)) (-15 -3289 ($ (-583 |t#2|))) (-15 -3146 (|t#3| $)) (-15 -2008 (|t#2| $)) (-15 -3338 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4192 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -4126 (|t#2| $)) (-15 -2924 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -1368 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4192 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3745 (|has| |#2| (-156)) (|has| |#2| (-6 (-4192 "*")))) ((-659) . T) ((-823 (-1075)) |has| |#2| (-823 (-1075))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-953 (-377 (-517))) |has| |#2| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#2| (-953 (-517))) ((-953 |#2|) . T) ((-968 |#2|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1110) . T))
+((-2285 ((|#4| |#4|) 68)) (-2114 ((|#4| |#4|) 63)) (-1766 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|) 76)) (-3748 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-3423 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
+(((-1026 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2114 (|#4| |#4|)) (-15 -3423 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2285 (|#4| |#4|)) (-15 -3748 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1026))
+((-1766 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4)))) (-5 *1 (-1026 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1026 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1026 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1026 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1026 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -2114 (|#4| |#4|)) (-15 -3423 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2285 (|#4| |#4|)) (-15 -3748 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2062 (-583 |#3|))) |#4| |#3|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 17)) (-2096 (((-583 |#2|) $) 159)) (-1440 (((-1071 $) $ |#2|) 53) (((-1071 |#1|) $) 42)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 109 (|has| |#1| (-509)))) (-2729 (($ $) 111 (|has| |#1| (-509)))) (-2566 (((-107) $) 113 (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) 156) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3388 ((|#1| $) 154) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) ((|#2| $) NIL)) (-2272 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-2371 (($ $) 197)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) 81)) (-2186 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-489 |#2|) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#1| (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#1| (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-1865 (((-107) $) 19)) (-1942 (((-703) $) 26)) (-2086 (($ (-1071 |#1|) |#2|) 47) (($ (-1071 $) |#2|) 63)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) 31)) (-2077 (($ |#1| (-489 |#2|)) 70) (($ $ |#2| (-703)) 51) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ |#2|) NIL)) (-2210 (((-489 |#2|) $) 186) (((-703) $ |#2|) 187) (((-583 (-703)) $ (-583 |#2|)) 188)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) 121)) (-1512 (((-3 |#2| "failed") $) 161)) (-2333 (($ $) 196)) (-2345 ((|#1| $) 36)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| |#2|) (|:| -2356 (-703))) "failed") $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) 32)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 139 (|has| |#1| (-421)))) (-2368 (($ (-583 $)) 144 (|has| |#1| (-421))) (($ $ $) 131 (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#1| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-832)))) (-2327 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-509)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-583 |#2|) (-583 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-583 |#2|) (-583 $)) 176)) (-4032 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2059 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2769 (((-489 |#2|) $) 182) (((-703) $ |#2|) 178) (((-583 (-703)) $ (-583 |#2|)) 180)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| |#1| (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| |#1| (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#1| $) 127 (|has| |#1| (-421))) (($ $ |#2|) 130 (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-2269 (((-787) $) 150) (($ (-517)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-2907 (((-583 |#1|) $) 153)) (-3952 ((|#1| $ (-489 |#2|)) 72) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 78)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) 116 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 101) (($ $ (-703)) 103)) (-3608 (($) 12 T CONST)) (-3617 (($) 14 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 96)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 125 (|has| |#1| (-333)))) (-1691 (($ $) 84) (($ $ $) 94)) (-1677 (($ $ $) 48)) (** (($ $ (-844)) 102) (($ $ (-703)) 99)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 87) (($ $ $) 64) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1027 |#1| |#2|) (-872 |#1| (-489 |#2|) |#2|) (-962) (-779)) (T -1027))
+NIL
+(-872 |#1| (-489 |#2|) |#2|)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 |#2|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-1646 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 114 (|has| |#1| (-37 (-377 (-517)))))) (-1669 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2912 (((-875 |#1|) $ (-703)) NIL) (((-875 |#1|) $ (-703) (-703)) NIL)) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1960 (((-107) $) NIL)) (-2077 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 58) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-1518 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2773 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-2640 (($ $ (-703)) 15)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3868 (($ $) 110 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (($ $ |#2| $) 96) (($ $ (-583 |#2|) (-583 $)) 89) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2059 (($ $ |#2|) 99) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2769 (((-489 |#2|) $) NIL)) (-1455 (((-1 (-1056 |#3|) |#3|) (-583 |#2|) (-583 (-1056 |#3|))) 79)) (-1682 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 17)) (-2269 (((-787) $) 180) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 65) (($ |#3|) 63)) (-3952 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-1721 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2822 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 18 T CONST)) (-3617 (($) 10 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) 182 (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 61)) (** (($ $ (-844)) NIL) (($ $ (-703)) 70) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 102 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 60) (($ $ (-377 (-517))) 107 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 105 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1028 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -3952 (|#3| $ (-703))) (-15 -2269 ($ |#2|)) (-15 -2269 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1455 ((-1 (-1056 |#3|) |#3|) (-583 |#2|) (-583 (-1056 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $ |#2| |#1|)) (-15 -2773 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-779) (-872 |#1| (-489 |#2|) |#2|)) (T -1028))
+((-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-872 *4 (-489 *5) *5)) (-5 *1 (-1028 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-779)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-779)) (-5 *1 (-1028 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-5 *1 (-1028 *3 *4 *2)) (-4 *2 (-872 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-5 *1 (-1028 *3 *4 *2)) (-4 *2 (-872 *3 (-489 *4) *4)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1056 *7))) (-4 *6 (-779)) (-4 *7 (-872 *5 (-489 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1056 *7) *7)) (-5 *1 (-1028 *5 *6 *7)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-4 *2 (-779)) (-5 *1 (-1028 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2)))) (-2773 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1028 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-962)) (-4 *3 (-779)) (-5 *1 (-1028 *4 *3 *5)) (-4 *5 (-872 *4 (-489 *3) *3)))))
+(-13 (-673 |#1| |#2|) (-10 -8 (-15 -3952 (|#3| $ (-703))) (-15 -2269 ($ |#2|)) (-15 -2269 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1455 ((-1 (-1056 |#3|) |#3|) (-583 |#2|) (-583 (-1056 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $ |#2| |#1|)) (-15 -2773 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2118 (((-107) $ $) 7)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) 85)) (-2283 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) 101) (((-107) $) 97)) (-2675 ((|#4| |#4| $) 92)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 126)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 79)) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2437 (((-3 $ "failed") $) 82)) (-1358 ((|#4| |#4| $) 89)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1808 ((|#4| |#4| $) 87)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) 105)) (-3554 (((-107) |#4| $) 136)) (-3203 (((-107) |#4| $) 133)) (-1867 (((-107) |#4| $) 137) (((-107) $) 134)) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) 104) (((-107) $) 103)) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 127)) (-1445 (((-3 |#4| "failed") $) 83)) (-2577 (((-583 $) |#4| $) 129)) (-3115 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3257 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-3622 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3778 (((-583 |#4|) $) 107)) (-3015 (((-107) |#4| $) 99) (((-107) $) 95)) (-4014 ((|#4| |#4| $) 90)) (-1837 (((-107) $ $) 110)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) 100) (((-107) $) 96)) (-3422 ((|#4| |#4| $) 91)) (-4123 (((-1022) $) 10)) (-2427 (((-3 |#4| "failed") $) 84)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3760 (((-3 $ "failed") $ |#4|) 78)) (-2640 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-2769 (((-703) $) 106)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-3345 (($ $) 88)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1659 (((-703) $) 76 (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2094 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) 81)) (-3427 (((-107) |#4| $) 135)) (-3980 (((-107) |#3| $) 80)) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-1029 |#1| |#2| |#3| |#4|) (-1187) (-421) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -1029))
+NIL
+(-13 (-1013 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-894 |#1| |#2| |#3| |#4|) . T) ((-981 |#1| |#2| |#3| |#4|) . T) ((-1004) . T) ((-1013 |#1| |#2| |#3| |#4|) . T) ((-1104 |#1| |#2| |#3| |#4|) . T) ((-1110) . T))
+((-2064 (((-583 |#2|) |#1|) 12)) (-3239 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-2558 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-2101 ((|#2| |#1|) 42)) (-2058 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2889 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-4066 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1208 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3620 ((|#2| |#2| |#2| |#2|) 39)) (-2341 ((|#2| |#2| |#2|) 38)) (-2779 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1030 |#1| |#2|) (-10 -7 (-15 -2064 ((-583 |#2|) |#1|)) (-15 -2101 (|#2| |#1|)) (-15 -2058 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -2558 ((-583 |#2|) |#1|)) (-15 -4066 ((-583 |#2|) |#1|)) (-15 -3239 ((-583 |#2|) |#1|)) (-15 -2889 ((-583 |#2|) |#2| |#2|)) (-15 -2558 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -4066 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3239 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2341 (|#2| |#2| |#2|)) (-15 -3620 (|#2| |#2| |#2| |#2|)) (-15 -2779 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1208 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1132 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1030))
+((-1208 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))) (-2779 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))) (-3620 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))) (-2341 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))) (-3239 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))) (-4066 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))) (-2558 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))) (-2889 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))) (-3239 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4)))) (-4066 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4)))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1030 *3 *5)) (-4 *3 (-1132 *5)))) (-2101 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -2064 ((-583 |#2|) |#1|)) (-15 -2101 (|#2| |#1|)) (-15 -2058 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -2558 ((-583 |#2|) |#1|)) (-15 -4066 ((-583 |#2|) |#1|)) (-15 -3239 ((-583 |#2|) |#1|)) (-15 -2889 ((-583 |#2|) |#2| |#2|)) (-15 -2558 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -4066 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3239 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2341 (|#2| |#2| |#2|)) (-15 -3620 (|#2| |#2| |#2| |#2|)) (-15 -2779 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1208 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3912 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|))))) 95) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|)))) 92) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1075))) 90) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|)))) 76) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1075)) 77) (((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|))) 71) (((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1075)) 60)) (-3124 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075))) 88) (((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1075)) 43)) (-3828 (((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1075)) 98) (((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075)) 97)))
+(((-1031 |#1|) (-10 -7 (-15 -3912 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075)))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -3124 ((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1075))) (-15 -3124 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3828 ((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -3828 ((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1075)))) (-13 (-278) (-779) (-134))) (T -1031))
+((-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1065 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1065 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1031 *5)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1031 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1031 *4)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-875 *5))))) (-5 *4 (-583 (-1075))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1031 *4)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1031 *4)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1031 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1031 *4)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1031 *5)))))
+(-10 -7 (-15 -3912 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)) (-1075))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-377 (-875 |#1|)))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -3912 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-875 |#1|))))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-875 |#1|))))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075)))) (-15 -3912 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -3124 ((-583 (-286 |#1|)) (-377 (-875 |#1|)) (-1075))) (-15 -3124 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -3828 ((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -3828 ((-1065 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-875 |#1|)) (-1075))))
+((-1417 (((-377 (-1071 (-286 |#1|))) (-1156 (-286 |#1|)) (-377 (-1071 (-286 |#1|))) (-517)) 27)) (-3788 (((-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|)))) 39)))
+(((-1032 |#1|) (-10 -7 (-15 -3788 ((-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))))) (-15 -1417 ((-377 (-1071 (-286 |#1|))) (-1156 (-286 |#1|)) (-377 (-1071 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1032))
+((-1417 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1071 (-286 *5)))) (-5 *3 (-1156 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1032 *5)))) (-3788 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1071 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1032 *3)))))
+(-10 -7 (-15 -3788 ((-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))) (-377 (-1071 (-286 |#1|))))) (-15 -1417 ((-377 (-1071 (-286 |#1|))) (-1156 (-286 |#1|)) (-377 (-1071 (-286 |#1|))) (-517))))
+((-2064 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1075))) 217) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1075)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1075)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
+(((-1033 |#1|) (-10 -7 (-15 -2064 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1075))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1075))) (-15 -2064 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1075))))) (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (T -1033))
+((-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1075))) (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-286 *5)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-265 (-286 *5))))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)) (-5 *3 (-265 (-286 *4))))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)) (-5 *3 (-286 *4)))))
+(-10 -7 (-15 -2064 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1075))) (-15 -2064 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1075))) (-15 -2064 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1075)))))
+((-1604 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-2215 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
+(((-1034 |#1| |#2|) (-10 -7 (-15 -2215 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1604 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -2215 (|#2| |#2|)) (-15 -1604 (|#2| |#2|))) |%noBranch|)) (-1110) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4190) (-6 -4191)))) (T -1034))
+((-1604 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1110)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4190) (-6 -4191)))))) (-2215 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1110)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4190) (-6 -4191)))))) (-1604 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-1034 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4190) (-6 -4191)))))) (-2215 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-1034 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4190) (-6 -4191)))))))
+(-10 -7 (-15 -2215 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1604 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -2215 (|#2| |#2|)) (-15 -1604 (|#2| |#2|))) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-2673 (((-1064 3 |#1|) $) 106)) (-1230 (((-107) $) 72)) (-3759 (($ $ (-583 (-866 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-866 |#1|))) 74) (((-583 (-866 |#1|)) $) 73)) (-1922 (((-107) $) 41)) (-3414 (($ $ (-866 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-866 |#1|)) 47) (((-866 |#1|) $) 45)) (-3970 (((-2 (|:| -3954 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 104)) (-1926 (((-703) $) 26)) (-3821 (((-703) $) 25)) (-3961 (($ $ (-703) (-866 |#1|)) 39)) (-3358 (((-107) $) 82)) (-2497 (($ $ (-583 (-583 (-866 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-866 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-866 |#1|)))) 86) (($ (-583 (-583 (-866 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-866 |#1|))) $) 84)) (-3798 (($ (-583 $)) 28) (($ $ $) 29)) (-2843 (((-583 (-155)) $) 102)) (-2782 (((-583 (-866 |#1|)) $) 97)) (-1663 (((-583 (-583 (-155))) $) 101)) (-2680 (((-583 (-583 (-583 (-866 |#1|)))) $) NIL)) (-4049 (((-583 (-583 (-583 (-703)))) $) 99)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2473 (((-703) $ (-583 (-866 |#1|))) 37)) (-1679 (((-107) $) 54)) (-1894 (($ $ (-583 (-866 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-866 |#1|))) 57) (((-583 (-866 |#1|)) $) 55)) (-1228 (($) 23) (($ (-1064 3 |#1|)) 24)) (-2460 (($ $) 35)) (-2659 (((-583 $) $) 34)) (-3682 (($ (-583 $)) 31)) (-4097 (((-583 $) $) 33)) (-2269 (((-787) $) 110)) (-4039 (((-107) $) 64)) (-3835 (($ $ (-583 (-866 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-866 |#1|))) 67) (((-583 (-866 |#1|)) $) 65)) (-1492 (($ $) 105)) (-1583 (((-107) $ $) NIL)))
+(((-1035 |#1|) (-1036 |#1|) (-962)) (T -1035))
+NIL
+(-1036 |#1|)
+((-2118 (((-107) $ $) 7)) (-2673 (((-1064 3 |#1|) $) 13)) (-1230 (((-107) $) 29)) (-3759 (($ $ (-583 (-866 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-866 |#1|))) 31) (((-583 (-866 |#1|)) $) 30)) (-1922 (((-107) $) 44)) (-3414 (($ $ (-866 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-866 |#1|)) 46) (((-866 |#1|) $) 45)) (-3970 (((-2 (|:| -3954 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-1926 (((-703) $) 58)) (-3821 (((-703) $) 59)) (-3961 (($ $ (-703) (-866 |#1|)) 50)) (-3358 (((-107) $) 21)) (-2497 (($ $ (-583 (-583 (-866 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-866 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-866 |#1|)))) 24) (($ (-583 (-583 (-866 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-866 |#1|))) $) 22)) (-3798 (($ (-583 $)) 57) (($ $ $) 56)) (-2843 (((-583 (-155)) $) 16)) (-2782 (((-583 (-866 |#1|)) $) 20)) (-1663 (((-583 (-583 (-155))) $) 17)) (-2680 (((-583 (-583 (-583 (-866 |#1|)))) $) 18)) (-4049 (((-583 (-583 (-583 (-703)))) $) 19)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2473 (((-703) $ (-583 (-866 |#1|))) 51)) (-1679 (((-107) $) 39)) (-1894 (($ $ (-583 (-866 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-866 |#1|))) 41) (((-583 (-866 |#1|)) $) 40)) (-1228 (($) 61) (($ (-1064 3 |#1|)) 60)) (-2460 (($ $) 52)) (-2659 (((-583 $) $) 53)) (-3682 (($ (-583 $)) 55)) (-4097 (((-583 $) $) 54)) (-2269 (((-787) $) 11)) (-4039 (((-107) $) 34)) (-3835 (($ $ (-583 (-866 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-866 |#1|))) 36) (((-583 (-866 |#1|)) $) 35)) (-1492 (($ $) 14)) (-1583 (((-107) $ $) 6)))
+(((-1036 |#1|) (-1187) (-962)) (T -1036))
+((-2269 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-787)))) (-1228 (*1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))) (-1228 (*1 *1 *2) (-12 (-5 *2 (-1064 3 *3)) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-703)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3798 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-4097 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)))) (-2460 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))) (-2473 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-866 *4))) (-4 *1 (-1036 *4)) (-4 *4 (-962)) (-5 *2 (-703)))) (-3961 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-866 *4)) (-4 *1 (-1036 *4)) (-4 *4 (-962)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-866 *3)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))) (-1894 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-1894 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3))))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3))))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3))))) (-1230 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))) (-2497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-866 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1036 *5)) (-4 *5 (-962)))) (-2497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1036 *5)) (-4 *5 (-962)))) (-2497 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *1 (-1036 *4)) (-4 *4 (-962)))) (-2497 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1036 *4)) (-4 *4 (-962)))) (-2497 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 *3)))) (-4 *3 (-962)) (-4 *1 (-1036 *3)))) (-2497 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *4 (-962)) (-4 *1 (-1036 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-583 (-866 *3)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3))))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-583 (-583 (-866 *3))))))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-583 (-155)))))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-155))))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3954 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-1492 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-1064 3 *3)))))
+(-13 (-1004) (-10 -8 (-15 -1228 ($)) (-15 -1228 ($ (-1064 3 |t#1|))) (-15 -3821 ((-703) $)) (-15 -1926 ((-703) $)) (-15 -3798 ($ (-583 $))) (-15 -3798 ($ $ $)) (-15 -3682 ($ (-583 $))) (-15 -4097 ((-583 $) $)) (-15 -2659 ((-583 $) $)) (-15 -2460 ($ $)) (-15 -2473 ((-703) $ (-583 (-866 |t#1|)))) (-15 -3961 ($ $ (-703) (-866 |t#1|))) (-15 -3414 ($ $ (-866 |t#1|))) (-15 -3414 ($ $ (-583 |t#1|))) (-15 -3414 ($ $ (-703))) (-15 -3414 ($ (-866 |t#1|))) (-15 -3414 ((-866 |t#1|) $)) (-15 -1922 ((-107) $)) (-15 -1894 ($ $ (-583 (-866 |t#1|)))) (-15 -1894 ($ $ (-583 (-583 |t#1|)))) (-15 -1894 ($ (-583 (-866 |t#1|)))) (-15 -1894 ((-583 (-866 |t#1|)) $)) (-15 -1679 ((-107) $)) (-15 -3835 ($ $ (-583 (-866 |t#1|)))) (-15 -3835 ($ $ (-583 (-583 |t#1|)))) (-15 -3835 ($ (-583 (-866 |t#1|)))) (-15 -3835 ((-583 (-866 |t#1|)) $)) (-15 -4039 ((-107) $)) (-15 -3759 ($ $ (-583 (-866 |t#1|)))) (-15 -3759 ($ $ (-583 (-583 |t#1|)))) (-15 -3759 ($ (-583 (-866 |t#1|)))) (-15 -3759 ((-583 (-866 |t#1|)) $)) (-15 -1230 ((-107) $)) (-15 -2497 ($ $ (-583 (-583 (-866 |t#1|))) (-583 (-155)) (-155))) (-15 -2497 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -2497 ($ $ (-583 (-583 (-866 |t#1|))) (-107) (-107))) (-15 -2497 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -2497 ($ (-583 (-583 (-866 |t#1|))))) (-15 -2497 ($ (-583 (-583 (-866 |t#1|))) (-107) (-107))) (-15 -2497 ((-583 (-583 (-866 |t#1|))) $)) (-15 -3358 ((-107) $)) (-15 -2782 ((-583 (-866 |t#1|)) $)) (-15 -4049 ((-583 (-583 (-583 (-703)))) $)) (-15 -2680 ((-583 (-583 (-583 (-866 |t#1|)))) $)) (-15 -1663 ((-583 (-583 (-155))) $)) (-15 -2843 ((-583 (-155)) $)) (-15 -3970 ((-2 (|:| -3954 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -1492 ($ $)) (-15 -2673 ((-1064 3 |t#1|) $)) (-15 -2269 ((-787) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-2644 (((-583 (-1080)) (-1058)) 8)))
+(((-1037) (-10 -7 (-15 -2644 ((-583 (-1080)) (-1058))))) (T -1037))
+((-2644 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-583 (-1080))) (-5 *1 (-1037)))))
+(-10 -7 (-15 -2644 ((-583 (-1080)) (-1058))))
+((-3157 (((-1161) (-583 (-787))) 23) (((-1161) (-787)) 22)) (-2274 (((-1161) (-583 (-787))) 21) (((-1161) (-787)) 20)) (-1897 (((-1161) (-583 (-787))) 19) (((-1161) (-787)) 11) (((-1161) (-1058) (-787)) 17)))
+(((-1038) (-10 -7 (-15 -1897 ((-1161) (-1058) (-787))) (-15 -1897 ((-1161) (-787))) (-15 -2274 ((-1161) (-787))) (-15 -3157 ((-1161) (-787))) (-15 -1897 ((-1161) (-583 (-787)))) (-15 -2274 ((-1161) (-583 (-787)))) (-15 -3157 ((-1161) (-583 (-787)))))) (T -1038))
+((-3157 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-1058)) (-5 *4 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038)))))
+(-10 -7 (-15 -1897 ((-1161) (-1058) (-787))) (-15 -1897 ((-1161) (-787))) (-15 -2274 ((-1161) (-787))) (-15 -3157 ((-1161) (-787))) (-15 -1897 ((-1161) (-583 (-787)))) (-15 -2274 ((-1161) (-583 (-787)))) (-15 -3157 ((-1161) (-583 (-787)))))
+((-1841 (($ $ $) 10)) (-4125 (($ $) 9)) (-2184 (($ $ $) 13)) (-1987 (($ $ $) 15)) (-1794 (($ $ $) 12)) (-1726 (($ $ $) 14)) (-3513 (($ $) 17)) (-2605 (($ $) 16)) (-2339 (($ $) 6)) (-1350 (($ $ $) 11) (($ $) 7)) (-3196 (($ $ $) 8)))
+(((-1039) (-1187)) (T -1039))
+((-3513 (*1 *1 *1) (-4 *1 (-1039))) (-2605 (*1 *1 *1) (-4 *1 (-1039))) (-1987 (*1 *1 *1 *1) (-4 *1 (-1039))) (-1726 (*1 *1 *1 *1) (-4 *1 (-1039))) (-2184 (*1 *1 *1 *1) (-4 *1 (-1039))) (-1794 (*1 *1 *1 *1) (-4 *1 (-1039))) (-1350 (*1 *1 *1 *1) (-4 *1 (-1039))) (-1841 (*1 *1 *1 *1) (-4 *1 (-1039))) (-4125 (*1 *1 *1) (-4 *1 (-1039))) (-3196 (*1 *1 *1 *1) (-4 *1 (-1039))) (-1350 (*1 *1 *1) (-4 *1 (-1039))) (-2339 (*1 *1 *1) (-4 *1 (-1039))))
+(-13 (-10 -8 (-15 -2339 ($ $)) (-15 -1350 ($ $)) (-15 -3196 ($ $ $)) (-15 -4125 ($ $)) (-15 -1841 ($ $ $)) (-15 -1350 ($ $ $)) (-15 -1794 ($ $ $)) (-15 -2184 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -1987 ($ $ $)) (-15 -2605 ($ $)) (-15 -3513 ($ $))))
+((-2118 (((-107) $ $) 41)) (-3119 ((|#1| $) 15)) (-1403 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-1569 (((-107) $) 17)) (-1993 (($ $ |#1|) 28)) (-3071 (($ $ (-107)) 30)) (-3246 (($ $) 31)) (-3930 (($ $ |#2|) 29)) (-1895 (((-1058) $) NIL)) (-1303 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-4123 (((-1022) $) NIL)) (-3270 (((-107) $) 14)) (-1529 (($) 10)) (-2460 (($ $) 27)) (-2286 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3831 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-2389 ((|#2| $) 16)) (-2269 (((-787) $) 50)) (-1583 (((-107) $ $) 39)))
+(((-1040 |#1| |#2|) (-13 (-1004) (-10 -8 (-15 -1529 ($)) (-15 -3270 ((-107) $)) (-15 -3119 (|#1| $)) (-15 -2389 (|#2| $)) (-15 -1569 ((-107) $)) (-15 -2286 ($ |#1| |#2| (-107))) (-15 -2286 ($ |#1| |#2|)) (-15 -2286 ($ (-2 (|:| |val| |#1|) (|:| -3831 |#2|)))) (-15 -2286 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|))))) (-15 -2286 ((-583 $) |#1| (-583 |#2|))) (-15 -2460 ($ $)) (-15 -1993 ($ $ |#1|)) (-15 -3930 ($ $ |#2|)) (-15 -3071 ($ $ (-107))) (-15 -3246 ($ $)) (-15 -1303 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -1403 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1004) (-33)) (-13 (-1004) (-33))) (T -1040))
+((-1529 (*1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))) (-3119 (*1 *2 *1) (-12 (-4 *2 (-13 (-1004) (-33))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-13 (-1004) (-33))))) (-2389 (*1 *2 *1) (-12 (-4 *2 (-13 (-1004) (-33))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1004) (-33))))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))) (-2286 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-2286 (*1 *1 *2 *3) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3831 *4))) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1040 *3 *4)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3831 *5)))) (-4 *4 (-13 (-1004) (-33))) (-4 *5 (-13 (-1004) (-33))) (-5 *2 (-583 (-1040 *4 *5))) (-5 *1 (-1040 *4 *5)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1004) (-33))) (-5 *2 (-583 (-1040 *3 *5))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-13 (-1004) (-33))))) (-2460 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-1993 (*1 *1 *1 *2) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-3930 (*1 *1 *1 *2) (-12 (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1004) (-33))) (-4 *2 (-13 (-1004) (-33))))) (-3071 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))) (-3246 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-1303 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1004) (-33))) (-4 *6 (-13 (-1004) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))) (-1403 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1004) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)) (-4 *4 (-13 (-1004) (-33))))))
+(-13 (-1004) (-10 -8 (-15 -1529 ($)) (-15 -3270 ((-107) $)) (-15 -3119 (|#1| $)) (-15 -2389 (|#2| $)) (-15 -1569 ((-107) $)) (-15 -2286 ($ |#1| |#2| (-107))) (-15 -2286 ($ |#1| |#2|)) (-15 -2286 ($ (-2 (|:| |val| |#1|) (|:| -3831 |#2|)))) (-15 -2286 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|))))) (-15 -2286 ((-583 $) |#1| (-583 |#2|))) (-15 -2460 ($ $)) (-15 -1993 ($ $ |#1|)) (-15 -3930 ($ $ |#2|)) (-15 -3071 ($ $ (-107))) (-15 -3246 ($ $)) (-15 -1303 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -1403 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
+((-2118 (((-107) $ $) NIL (|has| (-1040 |#1| |#2|) (-1004)))) (-3119 (((-1040 |#1| |#2|) $) 25)) (-3689 (($ $) 76)) (-2970 (((-107) (-1040 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 85)) (-2703 (($ $ $ (-583 (-1040 |#1| |#2|))) 90) (($ $ $ (-583 (-1040 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 91)) (-2670 (((-107) $ (-703)) NIL)) (-2482 (((-1040 |#1| |#2|) $ (-1040 |#1| |#2|)) 43 (|has| $ (-6 -4191)))) (-2443 (((-1040 |#1| |#2|) $ "value" (-1040 |#1| |#2|)) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-2470 (((-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|))) $) 80)) (-3593 (($ (-1040 |#1| |#2|) $) 39)) (-1422 (($ (-1040 |#1| |#2|) $) 31)) (-1535 (((-583 (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 51)) (-1764 (((-107) (-1040 |#1| |#2|) $) 82)) (-1528 (((-107) $ $) NIL (|has| (-1040 |#1| |#2|) (-1004)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 (-1040 |#1| |#2|)) $) 55 (|has| $ (-6 -4190)))) (-4008 (((-107) (-1040 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-1040 |#1| |#2|) (-1004))))) (-2744 (($ (-1 (-1040 |#1| |#2|) (-1040 |#1| |#2|)) $) 47 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-1040 |#1| |#2|) (-1040 |#1| |#2|)) $) 46)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 (-1040 |#1| |#2|)) $) 53)) (-4141 (((-107) $) 42)) (-1895 (((-1058) $) NIL (|has| (-1040 |#1| |#2|) (-1004)))) (-4123 (((-1022) $) NIL (|has| (-1040 |#1| |#2|) (-1004)))) (-1661 (((-3 $ "failed") $) 75)) (-3480 (((-107) (-1 (-107) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-1040 |#1| |#2|)))) NIL (-12 (|has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1004)))) (($ $ (-265 (-1040 |#1| |#2|))) NIL (-12 (|has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1004)))) (($ $ (-1040 |#1| |#2|) (-1040 |#1| |#2|)) NIL (-12 (|has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1004)))) (($ $ (-583 (-1040 |#1| |#2|)) (-583 (-1040 |#1| |#2|))) NIL (-12 (|has| (-1040 |#1| |#2|) (-280 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1004))))) (-3180 (((-107) $ $) 50)) (-3270 (((-107) $) 22)) (-1529 (($) 24)) (-2607 (((-1040 |#1| |#2|) $ "value") NIL)) (-2093 (((-517) $ $) NIL)) (-1657 (((-107) $) 44)) (-4135 (((-703) (-1 (-107) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -4190))) (((-703) (-1040 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-1040 |#1| |#2|) (-1004))))) (-2460 (($ $) 49)) (-2286 (($ (-1040 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1040 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-1923 (((-583 |#2|) $) 81)) (-2269 (((-787) $) 73 (|has| (-1040 |#1| |#2|) (-557 (-787))))) (-1497 (((-583 $) $) 28)) (-2198 (((-107) $ $) NIL (|has| (-1040 |#1| |#2|) (-1004)))) (-3160 (((-107) (-1 (-107) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 64 (|has| (-1040 |#1| |#2|) (-1004)))) (-3533 (((-703) $) 58 (|has| $ (-6 -4190)))))
+(((-1041 |#1| |#2|) (-13 (-927 (-1040 |#1| |#2|)) (-10 -8 (-6 -4191) (-6 -4190) (-15 -1661 ((-3 $ "failed") $)) (-15 -3689 ($ $)) (-15 -2286 ($ (-1040 |#1| |#2|))) (-15 -2286 ($ |#1| |#2| (-583 $))) (-15 -2286 ($ |#1| |#2| (-583 (-1040 |#1| |#2|)))) (-15 -2286 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1923 ((-583 |#2|) $)) (-15 -2470 ((-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|))) $)) (-15 -1764 ((-107) (-1040 |#1| |#2|) $)) (-15 -2970 ((-107) (-1040 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1422 ($ (-1040 |#1| |#2|) $)) (-15 -3593 ($ (-1040 |#1| |#2|) $)) (-15 -2703 ($ $ $ (-583 (-1040 |#1| |#2|)))) (-15 -2703 ($ $ $ (-583 (-1040 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1004) (-33)) (-13 (-1004) (-33))) (T -1041))
+((-1661 (*1 *1 *1) (|partial| -12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-3689 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))) (-2286 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1041 *2 *3))) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))))) (-2286 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1040 *2 *3))) (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33))) (-5 *1 (-1041 *2 *3)))) (-2286 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1004) (-33))) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33))))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4)))) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))) (-1764 (*1 *2 *3 *1) (-12 (-5 *3 (-1040 *4 *5)) (-4 *4 (-13 (-1004) (-33))) (-4 *5 (-13 (-1004) (-33))) (-5 *2 (-107)) (-5 *1 (-1041 *4 *5)))) (-2970 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1040 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1004) (-33))) (-4 *6 (-13 (-1004) (-33))) (-5 *2 (-107)) (-5 *1 (-1041 *5 *6)))) (-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))) (-3593 (*1 *1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))) (-2703 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1040 *3 *4))) (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))) (-2703 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1040 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1004) (-33))) (-4 *5 (-13 (-1004) (-33))) (-5 *1 (-1041 *4 *5)))))
+(-13 (-927 (-1040 |#1| |#2|)) (-10 -8 (-6 -4191) (-6 -4190) (-15 -1661 ((-3 $ "failed") $)) (-15 -3689 ($ $)) (-15 -2286 ($ (-1040 |#1| |#2|))) (-15 -2286 ($ |#1| |#2| (-583 $))) (-15 -2286 ($ |#1| |#2| (-583 (-1040 |#1| |#2|)))) (-15 -2286 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1923 ((-583 |#2|) $)) (-15 -2470 ((-583 (-2 (|:| |val| |#1|) (|:| -3831 |#2|))) $)) (-15 -1764 ((-107) (-1040 |#1| |#2|) $)) (-15 -2970 ((-107) (-1040 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1422 ($ (-1040 |#1| |#2|) $)) (-15 -3593 ($ (-1040 |#1| |#2|) $)) (-15 -2703 ($ $ $ (-583 (-1040 |#1| |#2|)))) (-15 -2703 ($ $ $ (-583 (-1040 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1670 (($ $) NIL)) (-2008 ((|#2| $) NIL)) (-1572 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2578 (($ (-623 |#2|)) 45)) (-1793 (((-107) $) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-3583 (($ |#2|) 9)) (-1681 (($) NIL T CONST)) (-1680 (($ $) 58 (|has| |#2| (-278)))) (-3766 (((-214 |#1| |#2|) $ (-517)) 31)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) ((|#2| $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) 72)) (-3736 (((-703) $) 60 (|has| |#2| (-509)))) (-2563 ((|#2| $ (-517) (-517)) NIL)) (-1535 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-1865 (((-107) $) NIL)) (-3805 (((-703) $) 62 (|has| |#2| (-509)))) (-3794 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1420 (((-703) $) NIL)) (-1434 (((-703) $) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-2924 ((|#2| $) 56 (|has| |#2| (-6 (-4192 "*"))))) (-2380 (((-517) $) NIL)) (-3442 (((-517) $) NIL)) (-2898 (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1977 (((-517) $) NIL)) (-3996 (((-517) $) NIL)) (-2369 (($ (-583 (-583 |#2|))) 26)) (-2744 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1548 (((-583 (-583 |#2|)) $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1368 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-4123 (((-1022) $) NIL)) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3480 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-2059 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3338 ((|#2| $) NIL)) (-3289 (($ (-583 |#2|)) 40)) (-2434 (((-107) $) NIL)) (-3146 (((-214 |#1| |#2|) $) NIL)) (-4126 ((|#2| $) 54 (|has| |#2| (-6 (-4192 "*"))))) (-4135 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-2460 (($ $) NIL)) (-3357 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-2708 (((-214 |#1| |#2|) $ (-517)) 33)) (-2269 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-953 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-2950 (((-703)) 17)) (-3160 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3515 (((-107) $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 11 T CONST)) (-3617 (($) 14 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1042 |#1| |#2|) (-13 (-1025 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1670 ($ $)) (-15 -2578 ($ (-623 |#2|))) (-15 -2269 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4192 "*"))) (-6 -4179) |%noBranch|) (IF (|has| |#2| (-6 (-4192 "*"))) (IF (|has| |#2| (-6 -4187)) (-6 -4187) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-703) (-962)) (T -1042))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1042 *3 *4)) (-14 *3 (-703)) (-4 *4 (-962)))) (-1670 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-14 *2 (-703)) (-4 *3 (-962)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-962)) (-5 *1 (-1042 *3 *4)) (-14 *3 (-703)))))
+(-13 (-1025 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1670 ($ $)) (-15 -2578 ($ (-623 |#2|))) (-15 -2269 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4192 "*"))) (-6 -4179) |%noBranch|) (IF (|has| |#2| (-6 (-4192 "*"))) (IF (|has| |#2| (-6 -4187)) (-6 -4187) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|)))
+((-1611 (($ $) 19)) (-2859 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-2568 (((-107) $ $) 24)) (-1929 (($ $) 17)) (-2607 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1123 (-517))) NIL) (($ $ $) 29)) (-2269 (($ (-131)) 27) (((-787) $) NIL)))
+(((-1043 |#1|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| (-128))) (-15 -2859 (|#1| |#1| (-131))) (-15 -2269 (|#1| (-131))) (-15 -2568 ((-107) |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -2607 ((-131) |#1| (-517))) (-15 -2607 ((-131) |#1| (-517) (-131)))) (-1044)) (T -1043))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| (-128))) (-15 -2859 (|#1| |#1| (-131))) (-15 -2269 (|#1| (-131))) (-15 -2568 ((-107) |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -2607 ((-131) |#1| (-517))) (-15 -2607 ((-131) |#1| (-517) (-131))))
+((-2118 (((-107) $ $) 19 (|has| (-131) (-1004)))) (-2212 (($ $) 120)) (-1611 (($ $) 121)) (-2859 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-2549 (((-107) $ $) 118)) (-3139 (((-107) $ $ (-517)) 117)) (-2975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-3560 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-3613 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4191))) (((-131) $ (-1123 (-517)) (-131)) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2905 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-3230 (($ $ (-1123 (-517)) $) 114)) (-2453 (($ $) 78 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ (-131) $) 77 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4190)))) (-1521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4190)))) (-2757 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4191)))) (-2563 (((-131) $ (-517)) 51)) (-2568 (((-107) $ $) 119)) (-1211 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1004))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1004))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1535 (((-583 (-131)) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) (-131)) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| (-131) (-779)))) (-3798 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2898 (((-583 (-131)) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| (-131) (-779)))) (-1449 (((-107) $ $ (-131)) 115)) (-1935 (((-703) $ $ (-131)) 116)) (-2744 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1637 (($ $) 122)) (-1929 (($ $) 123)) (-4043 (((-107) $ (-703)) 10)) (-2918 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1895 (((-1058) $) 22 (|has| (-131) (-1004)))) (-1745 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| (-131) (-1004)))) (-2427 (((-131) $) 42 (|has| (-517) (-779)))) (-2999 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3191 (($ $ (-131)) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1831 (((-583 (-131)) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1123 (-517))) 63) (($ $ $) 102)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4190))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2286 (($ (-583 (-131))) 70)) (-4108 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (($ (-131)) 111) (((-787) $) 18 (|has| (-131) (-557 (-787))))) (-3160 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1617 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 20 (|has| (-131) (-1004)))) (-1629 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1607 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1044) (-1187)) (T -1044))
+((-1929 (*1 *1 *1) (-4 *1 (-1044))) (-1637 (*1 *1 *1) (-4 *1 (-1044))) (-1611 (*1 *1 *1) (-4 *1 (-1044))) (-2212 (*1 *1 *1) (-4 *1 (-1044))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-107)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-107)))) (-3139 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-517)) (-5 *2 (-107)))) (-1935 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1449 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3230 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-1123 (-517))))) (-1211 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-517)))) (-1211 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1044)))) (-2975 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1044)))) (-2975 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1044)))) (-2859 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))) (-2859 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128)))) (-2918 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))) (-2918 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128)))) (-2905 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))) (-2905 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128)))) (-2607 (*1 *1 *1 *1) (-4 *1 (-1044))))
+(-13 (-19 (-131)) (-10 -8 (-15 -1929 ($ $)) (-15 -1637 ($ $)) (-15 -1611 ($ $)) (-15 -2212 ($ $)) (-15 -2568 ((-107) $ $)) (-15 -2549 ((-107) $ $)) (-15 -3139 ((-107) $ $ (-517))) (-15 -1935 ((-703) $ $ (-131))) (-15 -1449 ((-107) $ $ (-131))) (-15 -3230 ($ $ (-1123 (-517)) $)) (-15 -1211 ((-517) $ $ (-517))) (-15 -1211 ((-517) (-128) $ (-517))) (-15 -2269 ($ (-131))) (-15 -2975 ((-583 $) $ (-131))) (-15 -2975 ((-583 $) $ (-128))) (-15 -2859 ($ $ (-131))) (-15 -2859 ($ $ (-128))) (-15 -2918 ($ $ (-131))) (-15 -2918 ($ $ (-128))) (-15 -2905 ($ $ (-131))) (-15 -2905 ($ $ (-128))) (-15 -2607 ($ $ $))))
+(((-33) . T) ((-97) -3745 (|has| (-131) (-1004)) (|has| (-131) (-779))) ((-557 (-787)) -3745 (|has| (-131) (-1004)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))) ((-588 #0#) . T) ((-19 #0#) . T) ((-779) |has| (-131) (-779)) ((-1004) -3745 (|has| (-131) (-1004)) (|has| (-131) (-779))) ((-1110) . T))
+((-2488 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703)) 94)) (-1452 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703)) 53)) (-2615 (((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703)) 85)) (-2012 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2041 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2582 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3357 (((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) 80)) (-3884 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|) 52)) (-1908 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-1045 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1908 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2012 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3884 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -2488 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703))) (-15 -3357 ((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -2615 ((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703)))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|) (-1013 |#1| |#2| |#3| |#4|)) (T -1045))
+((-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9)))) (-5 *4 (-703)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1161)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1013 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1058)) (-5 *1 (-1045 *4 *5 *6 *7 *8)))) (-2488 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3831 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3831 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-1013 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1045 *7 *8 *9 *10 *11)))) (-2582 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-2582 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-2041 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) (-2041 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *7 *8 *9 *3 *4)) (-4 *4 (-1013 *7 *8 *9 *3)))) (-1452 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-1452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) (-3884 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1908 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2012 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3884 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -1452 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5| (-703))) (-15 -2041 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) |#4| |#5|)) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2582 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -2488 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))))) (-703))) (-15 -3357 ((-1058) (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|)))) (-15 -2615 ((-1161) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3831 |#5|))) (-703))))
+((-2118 (((-107) $ $) NIL)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2283 (((-583 $) (-583 |#4|)) 110) (((-583 $) (-583 |#4|) (-107)) 111) (((-583 $) (-583 |#4|) (-107) (-107)) 109) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 112)) (-2096 (((-583 |#3|) $) NIL)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2675 ((|#4| |#4| $) NIL)) (-3088 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| $) 84)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 62)) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) 26 (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2259 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3388 (($ (-583 |#4|)) NIL)) (-2437 (((-3 $ "failed") $) 39)) (-1358 ((|#4| |#4| $) 65)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1808 ((|#4| |#4| $) NIL)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) NIL)) (-3554 (((-107) |#4| $) NIL)) (-3203 (((-107) |#4| $) NIL)) (-1867 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2718 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 124)) (-1535 (((-583 |#4|) $) 16 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3834 ((|#3| $) 33)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#4|) $) 17 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-2744 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 21)) (-1310 (((-583 |#3|) $) NIL)) (-1234 (((-107) |#3| $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1398 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-2337 (((-583 (-2 (|:| |val| |#4|) (|:| -3831 $))) |#4| |#4| $) 103)) (-1445 (((-3 |#4| "failed") $) 37)) (-2577 (((-583 $) |#4| $) 88)) (-3115 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3784 (((-583 (-2 (|:| |val| (-107)) (|:| -3831 $))) |#4| $) 98) (((-107) |#4| $) 53)) (-3257 (((-583 $) |#4| $) 107) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 108) (((-583 $) |#4| (-583 $)) NIL)) (-2781 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 119)) (-3622 (($ |#4| $) 75) (($ (-583 |#4|) $) 76) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 74)) (-3778 (((-583 |#4|) $) NIL)) (-3015 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4014 ((|#4| |#4| $) NIL)) (-1837 (((-107) $ $) NIL)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3422 ((|#4| |#4| $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-3 |#4| "failed") $) 35)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3760 (((-3 $ "failed") $ |#4|) 48)) (-2640 (($ $ |#4|) NIL) (((-583 $) |#4| $) 90) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 86)) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 15)) (-1529 (($) 13)) (-2769 (((-703) $) NIL)) (-4135 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) 12)) (-3357 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 20)) (-2654 (($ $ |#3|) 42)) (-2054 (($ $ |#3|) 44)) (-3345 (($ $) NIL)) (-2530 (($ $ |#3|) NIL)) (-2269 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1659 (((-703) $) NIL (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2094 (((-583 $) |#4| $) 54) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) NIL)) (-3427 (((-107) |#4| $) NIL)) (-3980 (((-107) |#3| $) 61)) (-1583 (((-107) $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1013 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3622 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2781 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2718 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -1046))
+((-3622 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-2283 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-2283 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-2781 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-2718 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-1013 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3622 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -2283 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -2781 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2718 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2551 ((|#1| $) 34)) (-2864 (($ (-583 |#1|)) 39)) (-2670 (((-107) $ (-703)) NIL)) (-1681 (($) NIL T CONST)) (-1426 ((|#1| |#1| $) 36)) (-3751 ((|#1| $) 32)) (-1535 (((-583 |#1|) $) 18 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 22)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2431 ((|#1| $) 35)) (-2704 (($ |#1| $) 37)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1785 ((|#1| $) 33)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 31)) (-1529 (($) 38)) (-3143 (((-703) $) 29)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 27)) (-2269 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-4155 (($ (-583 |#1|)) NIL)) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 17 (|has| |#1| (-1004)))) (-3533 (((-703) $) 30 (|has| $ (-6 -4190)))))
+(((-1047 |#1|) (-13 (-1023 |#1|) (-10 -8 (-15 -2864 ($ (-583 |#1|))))) (-1110)) (T -1047))
+((-2864 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1047 *3)))))
+(-13 (-1023 |#1|) (-10 -8 (-15 -2864 ($ (-583 |#1|)))))
+((-2443 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1123 (-517)) |#2|) 44) ((|#2| $ (-517) |#2|) 41)) (-1655 (((-107) $) 12)) (-2744 (($ (-1 |#2| |#2|) $) 39)) (-2427 ((|#2| $) NIL) (($ $ (-703)) 17)) (-3191 (($ $ |#2|) 40)) (-3392 (((-107) $) 11)) (-2607 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1123 (-517))) 31) ((|#2| $ (-517)) 23) ((|#2| $ (-517) |#2|) NIL)) (-1718 (($ $ $) 47) (($ $ |#2|) NIL)) (-4108 (($ $ $) 33) (($ |#2| $) NIL) (($ (-583 $)) 36) (($ $ |#2|) NIL)))
+(((-1048 |#1| |#2|) (-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -3392 ((-107) |#1|)) (-15 -2443 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -3191 (|#1| |#1| |#2|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -4108 (|#1| (-583 |#1|))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -2443 (|#2| |#1| (-1123 (-517)) |#2|)) (-15 -2443 (|#2| |#1| "last" |#2|)) (-15 -2443 (|#1| |#1| "rest" |#1|)) (-15 -2443 (|#2| |#1| "first" |#2|)) (-15 -1718 (|#1| |#1| |#2|)) (-15 -1718 (|#1| |#1| |#1|)) (-15 -2607 (|#2| |#1| "last")) (-15 -2607 (|#1| |#1| "rest")) (-15 -2427 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "first")) (-15 -2427 (|#2| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -2607 (|#2| |#1| "value")) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|))) (-1049 |#2|) (-1110)) (T -1048))
+NIL
+(-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -3392 ((-107) |#1|)) (-15 -2443 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517) |#2|)) (-15 -2607 (|#2| |#1| (-517))) (-15 -3191 (|#1| |#1| |#2|)) (-15 -4108 (|#1| |#1| |#2|)) (-15 -4108 (|#1| (-583 |#1|))) (-15 -2607 (|#1| |#1| (-1123 (-517)))) (-15 -2443 (|#2| |#1| (-1123 (-517)) |#2|)) (-15 -2443 (|#2| |#1| "last" |#2|)) (-15 -2443 (|#1| |#1| "rest" |#1|)) (-15 -2443 (|#2| |#1| "first" |#2|)) (-15 -1718 (|#1| |#1| |#2|)) (-15 -1718 (|#1| |#1| |#1|)) (-15 -2607 (|#2| |#1| "last")) (-15 -2607 (|#1| |#1| "rest")) (-15 -2427 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "first")) (-15 -2427 (|#2| |#1|)) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -2607 (|#2| |#1| "value")) (-15 -2744 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2584 ((|#1| $) 65)) (-1540 (($ $) 67)) (-1478 (((-1161) $ (-517) (-517)) 97 (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 52 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-3953 (($ $ $) 56 (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) 54 (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 58 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4191))) (($ $ "rest" $) 55 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 117 (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4190)))) (-2574 ((|#1| $) 66)) (-1681 (($) 7 T CONST)) (-2437 (($ $) 73) (($ $ (-703)) 71)) (-2453 (($ $) 99 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4190))) (($ |#1| $) 100 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2757 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) 108)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 95 (|has| (-517) (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 94 (|has| (-517) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1445 ((|#1| $) 70) (($ $ (-703)) 68)) (-1745 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-4121 (((-583 (-517)) $) 92)) (-3536 (((-107) (-517) $) 91)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 76) (($ $ (-703)) 74)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3191 (($ $ |#1|) 96 (|has| $ (-6 -4191)))) (-3392 (((-107) $) 84)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 90)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1123 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2093 (((-517) $ $) 44)) (-3726 (($ $ (-1123 (-517))) 114) (($ $ (-517)) 113)) (-1657 (((-107) $) 46)) (-3769 (($ $) 62)) (-1457 (($ $) 59 (|has| $ (-6 -4191)))) (-3277 (((-703) $) 63)) (-2573 (($ $) 64)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-3357 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 107)) (-1718 (($ $ $) 61 (|has| $ (-6 -4191))) (($ $ |#1|) 60 (|has| $ (-6 -4191)))) (-4108 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1049 |#1|) (-1187) (-1110)) (T -1049))
+((-3392 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(-13 (-1144 |t#1|) (-588 |t#1|) (-10 -8 (-15 -3392 ((-107) $)) (-15 -1655 ((-107) $))))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T) ((-1144 |#1|) . T))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) NIL)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1050 |#1| |#2| |#3|) (-1087 |#1| |#2|) (-1004) (-1004) |#2|) (T -1050))
+NIL
+(-1087 |#1| |#2|)
+((-2118 (((-107) $ $) 7)) (-3572 (((-3 $ "failed") $) 13)) (-1895 (((-1058) $) 9)) (-2585 (($) 14 T CONST)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11)) (-1583 (((-107) $ $) 6)))
+(((-1051) (-1187)) (T -1051))
+((-2585 (*1 *1) (-4 *1 (-1051))) (-3572 (*1 *1 *1) (|partial| -4 *1 (-1051))))
+(-13 (-1004) (-10 -8 (-15 -2585 ($) -1384) (-15 -3572 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1004) . T))
+((-3858 (((-1056 |#1|) (-1056 |#1|)) 17)) (-1847 (((-1056 |#1|) (-1056 |#1|)) 13)) (-3579 (((-1056 |#1|) (-1056 |#1|) (-517) (-517)) 20)) (-2852 (((-1056 |#1|) (-1056 |#1|)) 15)))
+(((-1052 |#1|) (-10 -7 (-15 -1847 ((-1056 |#1|) (-1056 |#1|))) (-15 -2852 ((-1056 |#1|) (-1056 |#1|))) (-15 -3858 ((-1056 |#1|) (-1056 |#1|))) (-15 -3579 ((-1056 |#1|) (-1056 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1052))
+((-3579 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1052 *4)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1052 *3)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1052 *3)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1052 *3)))))
+(-10 -7 (-15 -1847 ((-1056 |#1|) (-1056 |#1|))) (-15 -2852 ((-1056 |#1|) (-1056 |#1|))) (-15 -3858 ((-1056 |#1|) (-1056 |#1|))) (-15 -3579 ((-1056 |#1|) (-1056 |#1|) (-517) (-517))))
+((-4108 (((-1056 |#1|) (-1056 (-1056 |#1|))) 15)))
+(((-1053 |#1|) (-10 -7 (-15 -4108 ((-1056 |#1|) (-1056 (-1056 |#1|))))) (-1110)) (T -1053))
+((-4108 (*1 *2 *3) (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1053 *4)) (-4 *4 (-1110)))))
+(-10 -7 (-15 -4108 ((-1056 |#1|) (-1056 (-1056 |#1|)))))
+((-2499 (((-1056 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|)) 25)) (-1521 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|)) 26)) (-3308 (((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)) 16)))
+(((-1054 |#1| |#2|) (-10 -7 (-15 -3308 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|))) (-15 -2499 ((-1056 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|))) (-15 -1521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|)))) (-1110) (-1110)) (T -1054))
+((-1521 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1056 *5)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-1054 *5 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1056 *6)) (-4 *6 (-1110)) (-4 *3 (-1110)) (-5 *2 (-1056 *3)) (-5 *1 (-1054 *6 *3)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1056 *6)) (-5 *1 (-1054 *5 *6)))))
+(-10 -7 (-15 -3308 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|))) (-15 -2499 ((-1056 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|))) (-15 -1521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1056 |#1|))))
+((-3308 (((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-1056 |#2|)) 21)))
+(((-1055 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-1056 |#2|)))) (-1110) (-1110) (-1110)) (T -1055))
+((-3308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1056 *6)) (-5 *5 (-1056 *7)) (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8)) (-5 *1 (-1055 *6 *7 *8)))))
+(-10 -7 (-15 -3308 ((-1056 |#3|) (-1 |#3| |#1| |#2|) (-1056 |#1|) (-1056 |#2|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) NIL)) (-2584 ((|#1| $) NIL)) (-1540 (($ $) 49)) (-1478 (((-1161) $ (-517) (-517)) 74 (|has| $ (-6 -4191)))) (-4137 (($ $ (-517)) 108 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-3000 (((-787) $) 38 (|has| |#1| (-1004)))) (-1720 (((-107)) 39 (|has| |#1| (-1004)))) (-2482 ((|#1| $ |#1|) NIL (|has| $ (-6 -4191)))) (-3953 (($ $ $) 96 (|has| $ (-6 -4191))) (($ $ (-517) $) 118)) (-2452 ((|#1| $ |#1|) 105 (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 100 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4191))) (($ $ "rest" $) 104 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 87 (|has| $ (-6 -4191))) ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 56)) (-2574 ((|#1| $) NIL)) (-1681 (($) NIL T CONST)) (-4076 (($ $) 14)) (-2437 (($ $) 29) (($ $ (-703)) 86)) (-2621 (((-107) (-583 |#1|) $) 113 (|has| |#1| (-1004)))) (-2216 (($ (-583 |#1|)) 110)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) 55)) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1535 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2263 (((-1161) (-517) $) 117 (|has| |#1| (-1004)))) (-4080 (((-703) $) 115)) (-1345 (((-583 $) $) NIL)) (-1528 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4043 (((-107) $ (-703)) NIL)) (-1938 (((-583 |#1|) $) NIL)) (-4141 (((-107) $) NIL)) (-2234 (($ $) 88)) (-1930 (((-107) $) 13)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1445 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1745 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) 72)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2264 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-3016 ((|#1| $) 10)) (-2427 ((|#1| $) 28) (($ $ (-703)) 47)) (-3645 (((-2 (|:| |cycle?| (-107)) (|:| -4023 (-703)) (|:| |period| (-703))) (-703) $) 25)) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2304 (($ (-1 (-107) |#1|) $) 122)) (-2313 (($ (-1 (-107) |#1|) $) 123)) (-3191 (($ $ |#1|) 66 (|has| $ (-6 -4191)))) (-2640 (($ $ (-517)) 32)) (-3392 (((-107) $) 70)) (-2479 (((-107) $) 12)) (-2900 (((-107) $) 114)) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 20)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) 15)) (-1529 (($) 41)) (-2607 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1123 (-517))) NIL) ((|#1| $ (-517)) 52) ((|#1| $ (-517) |#1|) NIL)) (-2093 (((-517) $ $) 46)) (-3726 (($ $ (-1123 (-517))) NIL) (($ $ (-517)) NIL)) (-3258 (($ (-1 $)) 45)) (-1657 (((-107) $) 67)) (-3769 (($ $) 68)) (-1457 (($ $) 97 (|has| $ (-6 -4191)))) (-3277 (((-703) $) NIL)) (-2573 (($ $) NIL)) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 42)) (-3357 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 51)) (-2993 (($ |#1| $) 95)) (-1718 (($ $ $) 98 (|has| $ (-6 -4191))) (($ $ |#1|) 99 (|has| $ (-6 -4191)))) (-4108 (($ $ $) 76) (($ |#1| $) 43) (($ (-583 $)) 81) (($ $ |#1|) 75)) (-3478 (($ $) 48)) (-2269 (($ (-583 |#1|)) 109) (((-787) $) 40 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) NIL)) (-2198 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 112 (|has| |#1| (-1004)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1056 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4191) (-15 -2269 ($ (-583 |#1|))) (-15 -2216 ($ (-583 |#1|))) (IF (|has| |#1| (-1004)) (-15 -2621 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -3645 ((-2 (|:| |cycle?| (-107)) (|:| -4023 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3258 ($ (-1 $))) (-15 -2993 ($ |#1| $)) (IF (|has| |#1| (-1004)) (PROGN (-15 -2263 ((-1161) (-517) $)) (-15 -3000 ((-787) $)) (-15 -1720 ((-107)))) |%noBranch|) (-15 -3953 ($ $ (-517) $)) (-15 -2264 ($ (-1 |#1|))) (-15 -2264 ($ (-1 |#1| |#1|) |#1|)) (-15 -2304 ($ (-1 (-107) |#1|) $)) (-15 -2313 ($ (-1 (-107) |#1|) $)))) (-1110)) (T -1056))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))) (-2621 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-4 *4 (-1110)) (-5 *2 (-107)) (-5 *1 (-1056 *4)))) (-3645 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -4023 (-703)) (|:| |period| (-703)))) (-5 *1 (-1056 *4)) (-4 *4 (-1110)) (-5 *3 (-703)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-1 (-1056 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-1110)))) (-2993 (*1 *1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1110)))) (-2263 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1056 *4)) (-4 *4 (-1004)) (-4 *4 (-1110)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1056 *3)) (-4 *3 (-1004)) (-4 *3 (-1110)))) (-1720 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1056 *3)) (-4 *3 (-1004)) (-4 *3 (-1110)))) (-3953 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1056 *3)) (-4 *3 (-1110)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))) (-2264 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))) (-2304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))))
+(-13 (-610 |#1|) (-10 -8 (-6 -4191) (-15 -2269 ($ (-583 |#1|))) (-15 -2216 ($ (-583 |#1|))) (IF (|has| |#1| (-1004)) (-15 -2621 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -3645 ((-2 (|:| |cycle?| (-107)) (|:| -4023 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3258 ($ (-1 $))) (-15 -2993 ($ |#1| $)) (IF (|has| |#1| (-1004)) (PROGN (-15 -2263 ((-1161) (-517) $)) (-15 -3000 ((-787) $)) (-15 -1720 ((-107)))) |%noBranch|) (-15 -3953 ($ $ (-517) $)) (-15 -2264 ($ (-1 |#1|))) (-15 -2264 ($ (-1 |#1| |#1|) |#1|)) (-15 -2304 ($ (-1 (-107) |#1|) $)) (-15 -2313 ($ (-1 (-107) |#1|) $))))
+((-2118 (((-107) $ $) 19)) (-2212 (($ $) 120)) (-1611 (($ $) 121)) (-2859 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-2549 (((-107) $ $) 118)) (-3139 (((-107) $ $ (-517)) 117)) (-1517 (($ (-517)) 127)) (-2975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-3560 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-3613 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4191))) (((-131) $ (-1123 (-517)) (-131)) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-2905 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-3230 (($ $ (-1123 (-517)) $) 114)) (-2453 (($ $) 78 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ (-131) $) 77 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4190)))) (-1521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4190)))) (-2757 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4191)))) (-2563 (((-131) $ (-517)) 51)) (-2568 (((-107) $ $) 119)) (-1211 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1004))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1004))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1535 (((-583 (-131)) $) 30 (|has| $ (-6 -4190)))) (-3211 (($ (-703) (-131)) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| (-131) (-779)))) (-3798 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2898 (((-583 (-131)) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| (-131) (-779)))) (-1449 (((-107) $ $ (-131)) 115)) (-1935 (((-703) $ $ (-131)) 116)) (-2744 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1637 (($ $) 122)) (-1929 (($ $) 123)) (-4043 (((-107) $ (-703)) 10)) (-2918 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-1895 (((-1058) $) 22)) (-1745 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21)) (-2427 (((-131) $) 42 (|has| (-517) (-779)))) (-2999 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3191 (($ $ (-131)) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1831 (((-583 (-131)) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1123 (-517))) 63) (($ $ $) 102)) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-4135 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4190))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2286 (($ (-583 (-131))) 70)) (-4108 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (($ (-131)) 111) (((-787) $) 18)) (-3160 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4190)))) (-1964 (((-1058) $) 131) (((-1058) $ (-107)) 130) (((-1161) (-754) $) 129) (((-1161) (-754) $ (-107)) 128)) (-1641 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1617 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 20)) (-1629 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1607 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1057) (-1187)) (T -1057))
+((-1517 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1057)))))
+(-13 (-1044) (-1004) (-760) (-10 -8 (-15 -1517 ($ (-517)))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))) ((-588 #0#) . T) ((-19 #0#) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1004) . T) ((-1044) . T) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2212 (($ $) NIL)) (-1611 (($ $) NIL)) (-2859 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-2549 (((-107) $ $) NIL)) (-3139 (((-107) $ $ (-517)) NIL)) (-1517 (($ (-517)) 7)) (-2975 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-3560 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-3613 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| (-131) (-779))))) (-2162 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4191))) (((-131) $ (-1123 (-517)) (-131)) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-2905 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-3230 (($ $ (-1123 (-517)) $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1422 (($ (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4190))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4190)))) (-2757 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4191)))) (-2563 (((-131) $ (-517)) NIL)) (-2568 (((-107) $ $) NIL)) (-1211 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1004))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1004))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1535 (((-583 (-131)) $) NIL (|has| $ (-6 -4190)))) (-3211 (($ (-703) (-131)) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| (-131) (-779)))) (-3798 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2898 (((-583 (-131)) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| (-131) (-779)))) (-1449 (((-107) $ $ (-131)) NIL)) (-1935 (((-703) $ $ (-131)) NIL)) (-2744 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1637 (($ $) NIL)) (-1929 (($ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-2918 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1895 (((-1058) $) NIL)) (-1745 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-131) $) NIL (|has| (-517) (-779)))) (-2999 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3191 (($ $ (-131)) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-1831 (((-583 (-131)) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1123 (-517))) NIL) (($ $ $) NIL)) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-4135 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-131) (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2286 (($ (-583 (-131))) NIL)) (-4108 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (($ (-131)) NIL) (((-787) $) NIL)) (-3160 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4190)))) (-1964 (((-1058) $) 18) (((-1058) $ (-107)) 20) (((-1161) (-754) $) 21) (((-1161) (-754) $ (-107)) 22)) (-1641 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1617 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1607 (((-107) $ $) NIL (|has| (-131) (-779)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1058) (-1057)) (T -1058))
+NIL
+(-1057)
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)) (|has| |#1| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-1478 (((-1161) $ (-1058) (-1058)) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-1058) |#1|) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#1| "failed") (-1058) $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#1| "failed") (-1058) $) NIL)) (-1422 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-1058) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-1058)) NIL)) (-1535 (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2898 (((-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-1058) $) NIL (|has| (-1058) (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)) (|has| |#1| (-1004))))) (-1881 (((-583 (-1058)) $) NIL)) (-3472 (((-107) (-1058) $) NIL)) (-2431 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-4121 (((-583 (-1058)) $) NIL)) (-3536 (((-107) (-1058) $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)) (|has| |#1| (-1004))))) (-2427 ((|#1| $) NIL (|has| (-1058) (-779)))) (-2999 (((-3 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) "failed") (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL (-12 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-280 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-1058)) NIL) ((|#1| $ (-1058) |#1|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-557 (-787))) (|has| |#1| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 (-1058)) (|:| -1860 |#1|)) (-1004)) (|has| |#1| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1059 |#1|) (-13 (-1087 (-1058) |#1|) (-10 -7 (-6 -4190))) (-1004)) (T -1059))
+NIL
+(-13 (-1087 (-1058) |#1|) (-10 -7 (-6 -4190)))
+((-1801 (((-1056 |#1|) (-1056 |#1|)) 77)) (-3163 (((-3 (-1056 |#1|) "failed") (-1056 |#1|)) 37)) (-2511 (((-1056 |#1|) (-377 (-517)) (-1056 |#1|)) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3664 (((-1056 |#1|) |#1| (-1056 |#1|)) 121 (|has| |#1| (-333)))) (-3281 (((-1056 |#1|) (-1056 |#1|)) 90)) (-3353 (((-1056 (-517)) (-517)) 57)) (-3084 (((-1056 |#1|) (-1056 (-1056 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-3553 (((-1056 |#1|) (-517) (-517) (-1056 |#1|)) 95)) (-2423 (((-1056 |#1|) |#1| (-517)) 45)) (-2888 (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 60)) (-1567 (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 119 (|has| |#1| (-333)))) (-3360 (((-1056 |#1|) |#1| (-1 (-1056 |#1|))) 107 (|has| |#1| (-37 (-377 (-517)))))) (-3830 (((-1056 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1056 |#1|))) 120 (|has| |#1| (-333)))) (-1688 (((-1056 |#1|) (-1056 |#1|)) 89)) (-2413 (((-1056 |#1|) (-1056 |#1|)) 76)) (-3740 (((-1056 |#1|) (-517) (-517) (-1056 |#1|)) 96)) (-1518 (((-1056 |#1|) |#1| (-1056 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1454 (((-1056 (-517)) (-517)) 56)) (-1418 (((-1056 |#1|) |#1|) 59)) (-3714 (((-1056 |#1|) (-1056 |#1|) (-517) (-517)) 92)) (-3445 (((-1056 |#1|) (-1 |#1| (-517)) (-1056 |#1|)) 66)) (-2327 (((-3 (-1056 |#1|) "failed") (-1056 |#1|) (-1056 |#1|)) 35)) (-1633 (((-1056 |#1|) (-1056 |#1|)) 91)) (-3522 (((-1056 |#1|) (-1056 |#1|) |#1|) 71)) (-1748 (((-1056 |#1|) (-1056 |#1|)) 62)) (-2603 (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 72)) (-2269 (((-1056 |#1|) |#1|) 67)) (-1773 (((-1056 |#1|) (-1056 (-1056 |#1|))) 82)) (-1703 (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 36)) (-1691 (((-1056 |#1|) (-1056 |#1|)) 21) (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 23)) (-1677 (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 17)) (* (((-1056 |#1|) (-1056 |#1|) |#1|) 29) (((-1056 |#1|) |#1| (-1056 |#1|)) 26) (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 27)))
+(((-1060 |#1|) (-10 -7 (-15 -1677 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1691 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1691 ((-1056 |#1|) (-1056 |#1|))) (-15 * ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 * ((-1056 |#1|) |#1| (-1056 |#1|))) (-15 * ((-1056 |#1|) (-1056 |#1|) |#1|)) (-15 -2327 ((-3 (-1056 |#1|) "failed") (-1056 |#1|) (-1056 |#1|))) (-15 -1703 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -3163 ((-3 (-1056 |#1|) "failed") (-1056 |#1|))) (-15 -2423 ((-1056 |#1|) |#1| (-517))) (-15 -1454 ((-1056 (-517)) (-517))) (-15 -3353 ((-1056 (-517)) (-517))) (-15 -1418 ((-1056 |#1|) |#1|)) (-15 -2888 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1748 ((-1056 |#1|) (-1056 |#1|))) (-15 -3445 ((-1056 |#1|) (-1 |#1| (-517)) (-1056 |#1|))) (-15 -2269 ((-1056 |#1|) |#1|)) (-15 -3522 ((-1056 |#1|) (-1056 |#1|) |#1|)) (-15 -2603 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -2413 ((-1056 |#1|) (-1056 |#1|))) (-15 -1801 ((-1056 |#1|) (-1056 |#1|))) (-15 -1773 ((-1056 |#1|) (-1056 (-1056 |#1|)))) (-15 -1688 ((-1056 |#1|) (-1056 |#1|))) (-15 -3281 ((-1056 |#1|) (-1056 |#1|))) (-15 -1633 ((-1056 |#1|) (-1056 |#1|))) (-15 -3714 ((-1056 |#1|) (-1056 |#1|) (-517) (-517))) (-15 -3553 ((-1056 |#1|) (-517) (-517) (-1056 |#1|))) (-15 -3740 ((-1056 |#1|) (-517) (-517) (-1056 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ((-1056 |#1|) |#1| (-1056 |#1|))) (-15 -3360 ((-1056 |#1|) |#1| (-1 (-1056 |#1|)))) (-15 -3084 ((-1056 |#1|) (-1056 (-1056 |#1|)))) (-15 -2511 ((-1056 |#1|) (-377 (-517)) (-1056 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1567 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -3830 ((-1056 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1056 |#1|)))) (-15 -3664 ((-1056 |#1|) |#1| (-1056 |#1|)))) |%noBranch|)) (-962)) (T -1060))
+((-3664 (*1 *2 *3 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-333)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-3830 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1056 *4))) (-4 *4 (-333)) (-4 *4 (-962)) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4)))) (-1567 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-333)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2511 (*1 *2 *3 *2) (-12 (-5 *2 (-1056 *4)) (-4 *4 (-37 *3)) (-4 *4 (-962)) (-5 *3 (-377 (-517))) (-5 *1 (-1060 *4)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-962)))) (-3360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1056 *3))) (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-3740 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962)) (-5 *1 (-1060 *4)))) (-3553 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962)) (-5 *1 (-1060 *4)))) (-3714 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962)) (-5 *1 (-1060 *4)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-962)))) (-1801 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2603 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-962)))) (-3445 (*1 *2 *3 *2) (-12 (-5 *2 (-1056 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-962)) (-5 *1 (-1060 *4)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1418 (*1 *2 *3) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-962)))) (-3353 (*1 *2 *3) (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-1060 *4)) (-4 *4 (-962)) (-5 *3 (-517)))) (-1454 (*1 *2 *3) (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-1060 *4)) (-4 *4 (-962)) (-5 *3 (-517)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-962)))) (-3163 (*1 *2 *2) (|partial| -12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1703 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-2327 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1691 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1691 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(-10 -7 (-15 -1677 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1691 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1691 ((-1056 |#1|) (-1056 |#1|))) (-15 * ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 * ((-1056 |#1|) |#1| (-1056 |#1|))) (-15 * ((-1056 |#1|) (-1056 |#1|) |#1|)) (-15 -2327 ((-3 (-1056 |#1|) "failed") (-1056 |#1|) (-1056 |#1|))) (-15 -1703 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -3163 ((-3 (-1056 |#1|) "failed") (-1056 |#1|))) (-15 -2423 ((-1056 |#1|) |#1| (-517))) (-15 -1454 ((-1056 (-517)) (-517))) (-15 -3353 ((-1056 (-517)) (-517))) (-15 -1418 ((-1056 |#1|) |#1|)) (-15 -2888 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1748 ((-1056 |#1|) (-1056 |#1|))) (-15 -3445 ((-1056 |#1|) (-1 |#1| (-517)) (-1056 |#1|))) (-15 -2269 ((-1056 |#1|) |#1|)) (-15 -3522 ((-1056 |#1|) (-1056 |#1|) |#1|)) (-15 -2603 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -2413 ((-1056 |#1|) (-1056 |#1|))) (-15 -1801 ((-1056 |#1|) (-1056 |#1|))) (-15 -1773 ((-1056 |#1|) (-1056 (-1056 |#1|)))) (-15 -1688 ((-1056 |#1|) (-1056 |#1|))) (-15 -3281 ((-1056 |#1|) (-1056 |#1|))) (-15 -1633 ((-1056 |#1|) (-1056 |#1|))) (-15 -3714 ((-1056 |#1|) (-1056 |#1|) (-517) (-517))) (-15 -3553 ((-1056 |#1|) (-517) (-517) (-1056 |#1|))) (-15 -3740 ((-1056 |#1|) (-517) (-517) (-1056 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ((-1056 |#1|) |#1| (-1056 |#1|))) (-15 -3360 ((-1056 |#1|) |#1| (-1 (-1056 |#1|)))) (-15 -3084 ((-1056 |#1|) (-1056 (-1056 |#1|)))) (-15 -2511 ((-1056 |#1|) (-377 (-517)) (-1056 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -1567 ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -3830 ((-1056 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1056 |#1|)))) (-15 -3664 ((-1056 |#1|) |#1| (-1056 |#1|)))) |%noBranch|))
+((-1646 (((-1056 |#1|) (-1056 |#1|)) 57)) (-1493 (((-1056 |#1|) (-1056 |#1|)) 39)) (-1622 (((-1056 |#1|) (-1056 |#1|)) 53)) (-1470 (((-1056 |#1|) (-1056 |#1|)) 35)) (-1669 (((-1056 |#1|) (-1056 |#1|)) 60)) (-1519 (((-1056 |#1|) (-1056 |#1|)) 42)) (-1225 (((-1056 |#1|) (-1056 |#1|)) 31)) (-3868 (((-1056 |#1|) (-1056 |#1|)) 27)) (-1682 (((-1056 |#1|) (-1056 |#1|)) 61)) (-1532 (((-1056 |#1|) (-1056 |#1|)) 43)) (-1656 (((-1056 |#1|) (-1056 |#1|)) 58)) (-1506 (((-1056 |#1|) (-1056 |#1|)) 40)) (-1632 (((-1056 |#1|) (-1056 |#1|)) 55)) (-1482 (((-1056 |#1|) (-1056 |#1|)) 37)) (-1721 (((-1056 |#1|) (-1056 |#1|)) 65)) (-1575 (((-1056 |#1|) (-1056 |#1|)) 47)) (-1695 (((-1056 |#1|) (-1056 |#1|)) 63)) (-1547 (((-1056 |#1|) (-1056 |#1|)) 45)) (-3487 (((-1056 |#1|) (-1056 |#1|)) 68)) (-1599 (((-1056 |#1|) (-1056 |#1|)) 50)) (-2822 (((-1056 |#1|) (-1056 |#1|)) 69)) (-1612 (((-1056 |#1|) (-1056 |#1|)) 51)) (-1735 (((-1056 |#1|) (-1056 |#1|)) 67)) (-1588 (((-1056 |#1|) (-1056 |#1|)) 49)) (-1708 (((-1056 |#1|) (-1056 |#1|)) 66)) (-1561 (((-1056 |#1|) (-1056 |#1|)) 48)) (** (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 33)))
+(((-1061 |#1|) (-10 -7 (-15 -3868 ((-1056 |#1|) (-1056 |#1|))) (-15 -1225 ((-1056 |#1|) (-1056 |#1|))) (-15 ** ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1470 ((-1056 |#1|) (-1056 |#1|))) (-15 -1482 ((-1056 |#1|) (-1056 |#1|))) (-15 -1493 ((-1056 |#1|) (-1056 |#1|))) (-15 -1506 ((-1056 |#1|) (-1056 |#1|))) (-15 -1519 ((-1056 |#1|) (-1056 |#1|))) (-15 -1532 ((-1056 |#1|) (-1056 |#1|))) (-15 -1547 ((-1056 |#1|) (-1056 |#1|))) (-15 -1561 ((-1056 |#1|) (-1056 |#1|))) (-15 -1575 ((-1056 |#1|) (-1056 |#1|))) (-15 -1588 ((-1056 |#1|) (-1056 |#1|))) (-15 -1599 ((-1056 |#1|) (-1056 |#1|))) (-15 -1612 ((-1056 |#1|) (-1056 |#1|))) (-15 -1622 ((-1056 |#1|) (-1056 |#1|))) (-15 -1632 ((-1056 |#1|) (-1056 |#1|))) (-15 -1646 ((-1056 |#1|) (-1056 |#1|))) (-15 -1656 ((-1056 |#1|) (-1056 |#1|))) (-15 -1669 ((-1056 |#1|) (-1056 |#1|))) (-15 -1682 ((-1056 |#1|) (-1056 |#1|))) (-15 -1695 ((-1056 |#1|) (-1056 |#1|))) (-15 -1708 ((-1056 |#1|) (-1056 |#1|))) (-15 -1721 ((-1056 |#1|) (-1056 |#1|))) (-15 -1735 ((-1056 |#1|) (-1056 |#1|))) (-15 -3487 ((-1056 |#1|) (-1056 |#1|))) (-15 -2822 ((-1056 |#1|) (-1056 |#1|)))) (-37 (-377 (-517)))) (T -1061))
+((-2822 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-1225 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
+(-10 -7 (-15 -3868 ((-1056 |#1|) (-1056 |#1|))) (-15 -1225 ((-1056 |#1|) (-1056 |#1|))) (-15 ** ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -1470 ((-1056 |#1|) (-1056 |#1|))) (-15 -1482 ((-1056 |#1|) (-1056 |#1|))) (-15 -1493 ((-1056 |#1|) (-1056 |#1|))) (-15 -1506 ((-1056 |#1|) (-1056 |#1|))) (-15 -1519 ((-1056 |#1|) (-1056 |#1|))) (-15 -1532 ((-1056 |#1|) (-1056 |#1|))) (-15 -1547 ((-1056 |#1|) (-1056 |#1|))) (-15 -1561 ((-1056 |#1|) (-1056 |#1|))) (-15 -1575 ((-1056 |#1|) (-1056 |#1|))) (-15 -1588 ((-1056 |#1|) (-1056 |#1|))) (-15 -1599 ((-1056 |#1|) (-1056 |#1|))) (-15 -1612 ((-1056 |#1|) (-1056 |#1|))) (-15 -1622 ((-1056 |#1|) (-1056 |#1|))) (-15 -1632 ((-1056 |#1|) (-1056 |#1|))) (-15 -1646 ((-1056 |#1|) (-1056 |#1|))) (-15 -1656 ((-1056 |#1|) (-1056 |#1|))) (-15 -1669 ((-1056 |#1|) (-1056 |#1|))) (-15 -1682 ((-1056 |#1|) (-1056 |#1|))) (-15 -1695 ((-1056 |#1|) (-1056 |#1|))) (-15 -1708 ((-1056 |#1|) (-1056 |#1|))) (-15 -1721 ((-1056 |#1|) (-1056 |#1|))) (-15 -1735 ((-1056 |#1|) (-1056 |#1|))) (-15 -3487 ((-1056 |#1|) (-1056 |#1|))) (-15 -2822 ((-1056 |#1|) (-1056 |#1|))))
+((-1646 (((-1056 |#1|) (-1056 |#1|)) 100)) (-1493 (((-1056 |#1|) (-1056 |#1|)) 64)) (-2934 (((-2 (|:| -1622 (-1056 |#1|)) (|:| -1632 (-1056 |#1|))) (-1056 |#1|)) 96)) (-1622 (((-1056 |#1|) (-1056 |#1|)) 97)) (-2422 (((-2 (|:| -1470 (-1056 |#1|)) (|:| -1482 (-1056 |#1|))) (-1056 |#1|)) 53)) (-1470 (((-1056 |#1|) (-1056 |#1|)) 54)) (-1669 (((-1056 |#1|) (-1056 |#1|)) 102)) (-1519 (((-1056 |#1|) (-1056 |#1|)) 71)) (-1225 (((-1056 |#1|) (-1056 |#1|)) 39)) (-3868 (((-1056 |#1|) (-1056 |#1|)) 36)) (-1682 (((-1056 |#1|) (-1056 |#1|)) 103)) (-1532 (((-1056 |#1|) (-1056 |#1|)) 72)) (-1656 (((-1056 |#1|) (-1056 |#1|)) 101)) (-1506 (((-1056 |#1|) (-1056 |#1|)) 67)) (-1632 (((-1056 |#1|) (-1056 |#1|)) 98)) (-1482 (((-1056 |#1|) (-1056 |#1|)) 55)) (-1721 (((-1056 |#1|) (-1056 |#1|)) 111)) (-1575 (((-1056 |#1|) (-1056 |#1|)) 86)) (-1695 (((-1056 |#1|) (-1056 |#1|)) 105)) (-1547 (((-1056 |#1|) (-1056 |#1|)) 82)) (-3487 (((-1056 |#1|) (-1056 |#1|)) 115)) (-1599 (((-1056 |#1|) (-1056 |#1|)) 90)) (-2822 (((-1056 |#1|) (-1056 |#1|)) 117)) (-1612 (((-1056 |#1|) (-1056 |#1|)) 92)) (-1735 (((-1056 |#1|) (-1056 |#1|)) 113)) (-1588 (((-1056 |#1|) (-1056 |#1|)) 88)) (-1708 (((-1056 |#1|) (-1056 |#1|)) 107)) (-1561 (((-1056 |#1|) (-1056 |#1|)) 84)) (** (((-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) 40)))
+(((-1062 |#1|) (-10 -7 (-15 -3868 ((-1056 |#1|) (-1056 |#1|))) (-15 -1225 ((-1056 |#1|) (-1056 |#1|))) (-15 ** ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -2422 ((-2 (|:| -1470 (-1056 |#1|)) (|:| -1482 (-1056 |#1|))) (-1056 |#1|))) (-15 -1470 ((-1056 |#1|) (-1056 |#1|))) (-15 -1482 ((-1056 |#1|) (-1056 |#1|))) (-15 -1493 ((-1056 |#1|) (-1056 |#1|))) (-15 -1506 ((-1056 |#1|) (-1056 |#1|))) (-15 -1519 ((-1056 |#1|) (-1056 |#1|))) (-15 -1532 ((-1056 |#1|) (-1056 |#1|))) (-15 -1547 ((-1056 |#1|) (-1056 |#1|))) (-15 -1561 ((-1056 |#1|) (-1056 |#1|))) (-15 -1575 ((-1056 |#1|) (-1056 |#1|))) (-15 -1588 ((-1056 |#1|) (-1056 |#1|))) (-15 -1599 ((-1056 |#1|) (-1056 |#1|))) (-15 -1612 ((-1056 |#1|) (-1056 |#1|))) (-15 -2934 ((-2 (|:| -1622 (-1056 |#1|)) (|:| -1632 (-1056 |#1|))) (-1056 |#1|))) (-15 -1622 ((-1056 |#1|) (-1056 |#1|))) (-15 -1632 ((-1056 |#1|) (-1056 |#1|))) (-15 -1646 ((-1056 |#1|) (-1056 |#1|))) (-15 -1656 ((-1056 |#1|) (-1056 |#1|))) (-15 -1669 ((-1056 |#1|) (-1056 |#1|))) (-15 -1682 ((-1056 |#1|) (-1056 |#1|))) (-15 -1695 ((-1056 |#1|) (-1056 |#1|))) (-15 -1708 ((-1056 |#1|) (-1056 |#1|))) (-15 -1721 ((-1056 |#1|) (-1056 |#1|))) (-15 -1735 ((-1056 |#1|) (-1056 |#1|))) (-15 -3487 ((-1056 |#1|) (-1056 |#1|))) (-15 -2822 ((-1056 |#1|) (-1056 |#1|)))) (-37 (-377 (-517)))) (T -1062))
+((-2822 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1622 (-1056 *4)) (|:| -1632 (-1056 *4)))) (-5 *1 (-1062 *4)) (-5 *3 (-1056 *4)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1532 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1470 (-1056 *4)) (|:| -1482 (-1056 *4)))) (-5 *1 (-1062 *4)) (-5 *3 (-1056 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-1225 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1062 *3)))))
+(-10 -7 (-15 -3868 ((-1056 |#1|) (-1056 |#1|))) (-15 -1225 ((-1056 |#1|) (-1056 |#1|))) (-15 ** ((-1056 |#1|) (-1056 |#1|) (-1056 |#1|))) (-15 -2422 ((-2 (|:| -1470 (-1056 |#1|)) (|:| -1482 (-1056 |#1|))) (-1056 |#1|))) (-15 -1470 ((-1056 |#1|) (-1056 |#1|))) (-15 -1482 ((-1056 |#1|) (-1056 |#1|))) (-15 -1493 ((-1056 |#1|) (-1056 |#1|))) (-15 -1506 ((-1056 |#1|) (-1056 |#1|))) (-15 -1519 ((-1056 |#1|) (-1056 |#1|))) (-15 -1532 ((-1056 |#1|) (-1056 |#1|))) (-15 -1547 ((-1056 |#1|) (-1056 |#1|))) (-15 -1561 ((-1056 |#1|) (-1056 |#1|))) (-15 -1575 ((-1056 |#1|) (-1056 |#1|))) (-15 -1588 ((-1056 |#1|) (-1056 |#1|))) (-15 -1599 ((-1056 |#1|) (-1056 |#1|))) (-15 -1612 ((-1056 |#1|) (-1056 |#1|))) (-15 -2934 ((-2 (|:| -1622 (-1056 |#1|)) (|:| -1632 (-1056 |#1|))) (-1056 |#1|))) (-15 -1622 ((-1056 |#1|) (-1056 |#1|))) (-15 -1632 ((-1056 |#1|) (-1056 |#1|))) (-15 -1646 ((-1056 |#1|) (-1056 |#1|))) (-15 -1656 ((-1056 |#1|) (-1056 |#1|))) (-15 -1669 ((-1056 |#1|) (-1056 |#1|))) (-15 -1682 ((-1056 |#1|) (-1056 |#1|))) (-15 -1695 ((-1056 |#1|) (-1056 |#1|))) (-15 -1708 ((-1056 |#1|) (-1056 |#1|))) (-15 -1721 ((-1056 |#1|) (-1056 |#1|))) (-15 -1735 ((-1056 |#1|) (-1056 |#1|))) (-15 -3487 ((-1056 |#1|) (-1056 |#1|))) (-15 -2822 ((-1056 |#1|) (-1056 |#1|))))
+((-1889 (((-880 |#2|) |#2| |#2|) 36)) (-2186 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
+(((-1063 |#1| |#2|) (-10 -7 (-15 -1889 ((-880 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2186 (|#2| |#2| |#1|)) |%noBranch|)) (-509) (-1132 |#1|)) (T -1063))
+((-2186 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1063 *3 *2)) (-4 *2 (-1132 *3)))) (-1889 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-880 *3)) (-5 *1 (-1063 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -1889 ((-880 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -2186 (|#2| |#2| |#1|)) |%noBranch|))
+((-2118 (((-107) $ $) NIL)) (-1861 (($ $ (-583 (-703))) 67)) (-2673 (($) 26)) (-2821 (($ $) 42)) (-1862 (((-583 $) $) 51)) (-2323 (((-107) $) 16)) (-2936 (((-583 (-866 |#2|)) $) 74)) (-2049 (($ $) 68)) (-1231 (((-703) $) 37)) (-3211 (($) 25)) (-4143 (($ $ (-583 (-703)) (-866 |#2|)) 60) (($ $ (-583 (-703)) (-703)) 61) (($ $ (-703) (-866 |#2|)) 63)) (-3798 (($ $ $) 48) (($ (-583 $)) 50)) (-3278 (((-703) $) 75)) (-4141 (((-107) $) 15)) (-1895 (((-1058) $) NIL)) (-3841 (((-107) $) 18)) (-4123 (((-1022) $) NIL)) (-2105 (((-155) $) 73)) (-3067 (((-866 |#2|) $) 69)) (-3611 (((-703) $) 70)) (-2982 (((-107) $) 72)) (-3386 (($ $ (-583 (-703)) (-155)) 66)) (-1709 (($ $) 43)) (-2269 (((-787) $) 85)) (-1202 (($ $ (-583 (-703)) (-107)) 65)) (-1497 (((-583 $) $) 11)) (-3295 (($ $ (-703)) 36)) (-1200 (($ $) 32)) (-3402 (($ $ $ (-866 |#2|) (-703)) 56)) (-1315 (($ $ (-866 |#2|)) 55)) (-1776 (($ $ (-583 (-703)) (-866 |#2|)) 54) (($ $ (-583 (-703)) (-703)) 58) (((-703) $ (-866 |#2|)) 59)) (-1583 (((-107) $ $) 79)))
+(((-1064 |#1| |#2|) (-13 (-1004) (-10 -8 (-15 -4141 ((-107) $)) (-15 -2323 ((-107) $)) (-15 -3841 ((-107) $)) (-15 -3211 ($)) (-15 -2673 ($)) (-15 -1200 ($ $)) (-15 -3295 ($ $ (-703))) (-15 -1497 ((-583 $) $)) (-15 -1231 ((-703) $)) (-15 -2821 ($ $)) (-15 -1709 ($ $)) (-15 -3798 ($ $ $)) (-15 -3798 ($ (-583 $))) (-15 -1862 ((-583 $) $)) (-15 -1776 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -1315 ($ $ (-866 |#2|))) (-15 -3402 ($ $ $ (-866 |#2|) (-703))) (-15 -4143 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -1776 ($ $ (-583 (-703)) (-703))) (-15 -4143 ($ $ (-583 (-703)) (-703))) (-15 -1776 ((-703) $ (-866 |#2|))) (-15 -4143 ($ $ (-703) (-866 |#2|))) (-15 -1202 ($ $ (-583 (-703)) (-107))) (-15 -3386 ($ $ (-583 (-703)) (-155))) (-15 -1861 ($ $ (-583 (-703)))) (-15 -3067 ((-866 |#2|) $)) (-15 -3611 ((-703) $)) (-15 -2982 ((-107) $)) (-15 -2105 ((-155) $)) (-15 -3278 ((-703) $)) (-15 -2049 ($ $)) (-15 -2936 ((-583 (-866 |#2|)) $)))) (-844) (-962)) (T -1064))
+((-4141 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-3211 (*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-2673 (*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-1200 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-3295 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-1231 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-2821 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-1709 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-3798 (*1 *1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-1776 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-962)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))) (-1315 (*1 *1 *1 *2) (-12 (-5 *2 (-866 *4)) (-4 *4 (-962)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)))) (-3402 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-866 *5)) (-5 *3 (-703)) (-4 *5 (-962)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))) (-4143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-962)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))) (-1776 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)) (-4 *5 (-962)))) (-4143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)) (-4 *5 (-962)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-962)) (-5 *2 (-703)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))) (-4143 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-866 *5)) (-4 *5 (-962)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))) (-1202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)) (-4 *5 (-962)))) (-3386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)) (-4 *5 (-962)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-866 *4)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))) (-2049 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-583 (-866 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844)) (-4 *4 (-962)))))
+(-13 (-1004) (-10 -8 (-15 -4141 ((-107) $)) (-15 -2323 ((-107) $)) (-15 -3841 ((-107) $)) (-15 -3211 ($)) (-15 -2673 ($)) (-15 -1200 ($ $)) (-15 -3295 ($ $ (-703))) (-15 -1497 ((-583 $) $)) (-15 -1231 ((-703) $)) (-15 -2821 ($ $)) (-15 -1709 ($ $)) (-15 -3798 ($ $ $)) (-15 -3798 ($ (-583 $))) (-15 -1862 ((-583 $) $)) (-15 -1776 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -1315 ($ $ (-866 |#2|))) (-15 -3402 ($ $ $ (-866 |#2|) (-703))) (-15 -4143 ($ $ (-583 (-703)) (-866 |#2|))) (-15 -1776 ($ $ (-583 (-703)) (-703))) (-15 -4143 ($ $ (-583 (-703)) (-703))) (-15 -1776 ((-703) $ (-866 |#2|))) (-15 -4143 ($ $ (-703) (-866 |#2|))) (-15 -1202 ($ $ (-583 (-703)) (-107))) (-15 -3386 ($ $ (-583 (-703)) (-155))) (-15 -1861 ($ $ (-583 (-703)))) (-15 -3067 ((-866 |#2|) $)) (-15 -3611 ((-703) $)) (-15 -2982 ((-107) $)) (-15 -2105 ((-155) $)) (-15 -3278 ((-703) $)) (-15 -2049 ($ $)) (-15 -2936 ((-583 (-866 |#2|)) $))))
+((-2118 (((-107) $ $) NIL)) (-2513 ((|#2| $) 11)) (-2505 ((|#1| $) 10)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2286 (($ |#1| |#2|) 9)) (-2269 (((-787) $) 16)) (-1583 (((-107) $ $) NIL)))
+(((-1065 |#1| |#2|) (-13 (-1004) (-10 -8 (-15 -2286 ($ |#1| |#2|)) (-15 -2505 (|#1| $)) (-15 -2513 (|#2| $)))) (-1004) (-1004)) (T -1065))
+((-2286 (*1 *1 *2 *3) (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-2505 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1004)))) (-2513 (*1 *2 *1) (-12 (-4 *2 (-1004)) (-5 *1 (-1065 *3 *2)) (-4 *3 (-1004)))))
+(-13 (-1004) (-10 -8 (-15 -2286 ($ |#1| |#2|)) (-15 -2505 (|#1| $)) (-15 -2513 (|#2| $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-1073 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 11)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2729 (($ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2566 (((-107) $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3509 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3950 (((-1073 |#1| |#2| |#3|) $) 36)) (-1244 (((-3 (-1073 |#1| |#2| |#3|) "failed") $) 29)) (-2144 (((-1073 |#1| |#2| |#3|) $) 30)) (-1646 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-1323 (((-517) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-1073 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1075) "failed") $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))))) (-3388 (((-1073 |#1| |#2| |#3|) $) 131) (((-1075) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))))) (-1675 (($ $) 34) (($ (-517) $) 35)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-1073 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-1073 |#1| |#2| |#3|))) (|:| |vec| (-1156 (-1073 |#1| |#2| |#3|)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3163 (((-3 $ "failed") $) 48)) (-1388 (((-377 (-875 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-2200 (($) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-3523 (((-107) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2098 (((-107) $) 25)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-809 (-517))) (|has| |#1| (-333)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-809 (-349))) (|has| |#1| (-333))))) (-2053 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL (|has| |#1| (-333)))) (-3824 (((-1073 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3572 (((-3 $ "failed") $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-333))))) (-1469 (((-107) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2588 (($ $ (-844)) NIL)) (-3843 (($ (-1 |#1| (-517)) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-517)) 18) (($ $ (-990) (-517)) NIL) (($ $ (-583 (-990)) (-583 (-517))) NIL)) (-3456 (($ $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4082 (($ $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1225 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2153 (($ (-517) (-1073 |#1| |#2| |#3|)) 33)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-333))) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1288 (($ $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2309 (((-1073 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-517)) 145)) (-2327 (((-3 $ "failed") $ $) 49 (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1075) (-1073 |#1| |#2| |#3|)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-478 (-1075) (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 (-1073 |#1| |#2| |#3|))) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-478 (-1075) (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1073 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1073 |#1| |#2| |#3|))) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073 |#1| |#2| |#3|)) (-583 (-1073 |#1| |#2| |#3|))) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-280 (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1016))) (($ $ (-1073 |#1| |#2| |#3|)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-258 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-1 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1152 |#2|)) 51) (($ $ (-703)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-3596 (($ $) NIL (|has| |#1| (-333)))) (-2097 (((-1073 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-2769 (((-517) $) 37)) (-1682 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3357 (((-493) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-938)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-938)) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1073 |#1| |#2| |#3|)) 27) (($ (-1152 |#2|)) 23) (($ (-1075)) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (($ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-3952 ((|#1| $ (-517)) 68)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 12)) (-3475 (((-1073 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1721 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1695 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2339 (($ $) NIL (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 20 T CONST)) (-3617 (($) 16 T CONST)) (-3340 (($ $ (-1 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-1641 (((-107) $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1617 (((-107) $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1607 (((-107) $ $) NIL (-3745 (-12 (|has| (-1073 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1073 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1073 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 21)) (** (($ $ (-844)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1073 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1073 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1066 |#1| |#2| |#3|) (-13 (-1118 |#1| (-1073 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1066))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1118 |#1| (-1073 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-3452 ((|#2| |#2| (-997 |#2|)) 26) ((|#2| |#2| (-1075)) 28)))
+(((-1067 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2| (-1075))) (-15 -3452 (|#2| |#2| (-997 |#2|)))) (-13 (-509) (-779) (-953 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1096))) (T -1067))
+((-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1096))) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1067 *4 *2)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1067 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1096))))))
+(-10 -7 (-15 -3452 (|#2| |#2| (-1075))) (-15 -3452 (|#2| |#2| (-997 |#2|))))
+((-3452 (((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-997 (-377 (-875 |#1|)))) 30) (((-377 (-875 |#1|)) (-875 |#1|) (-997 (-875 |#1|))) 44) (((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1075)) 32) (((-377 (-875 |#1|)) (-875 |#1|) (-1075)) 36)))
+(((-1068 |#1|) (-10 -7 (-15 -3452 ((-377 (-875 |#1|)) (-875 |#1|) (-1075))) (-15 -3452 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1075))) (-15 -3452 ((-377 (-875 |#1|)) (-875 |#1|) (-997 (-875 |#1|)))) (-15 -3452 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-997 (-377 (-875 |#1|)))))) (-13 (-509) (-779) (-953 (-517)))) (T -1068))
+((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5))) (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1068 *5)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-875 *5))) (-5 *3 (-875 *5)) (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1068 *5)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-3 (-377 (-875 *5)) (-286 *5))) (-5 *1 (-1068 *5)) (-5 *3 (-377 (-875 *5))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-377 (-875 *5))) (-5 *1 (-1068 *5)) (-5 *3 (-875 *5)))))
+(-10 -7 (-15 -3452 ((-377 (-875 |#1|)) (-875 |#1|) (-1075))) (-15 -3452 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-1075))) (-15 -3452 ((-377 (-875 |#1|)) (-875 |#1|) (-997 (-875 |#1|)))) (-15 -3452 ((-3 (-377 (-875 |#1|)) (-286 |#1|)) (-377 (-875 |#1|)) (-997 (-377 (-875 |#1|))))))
+((-3308 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 13)))
+(((-1069 |#1| |#2|) (-10 -7 (-15 -3308 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)))) (-962) (-962)) (T -1069))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6)))))
+(-10 -7 (-15 -3308 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))))
+((-1581 (((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|))) 50)) (-3866 (((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|))) 51)))
+(((-1070 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3866 ((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|)))) (-15 -1581 ((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|))))) (-725) (-779) (-421) (-872 |#3| |#1| |#2|)) (T -1070))
+((-1581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 (-377 *7)))) (-5 *1 (-1070 *4 *5 *6 *7)) (-5 *3 (-1071 (-377 *7))))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 (-377 *7)))) (-5 *1 (-1070 *4 *5 *6 *7)) (-5 *3 (-1071 (-377 *7))))))
+(-10 -7 (-15 -3866 ((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|)))) (-15 -1581 ((-388 (-1071 (-377 |#4|))) (-1071 (-377 |#4|)))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 30)) (-2099 (((-1156 |#1|) $ (-703)) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3673 (($ (-1071 |#1|)) NIL)) (-1440 (((-1071 $) $ (-990)) 59) (((-1071 |#1|) $) 48)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) 133 (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-990))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1784 (($ $ $) 127 (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) 72 (|has| |#1| (-832)))) (-3088 (($ $) NIL (|has| |#1| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 92 (|has| |#1| (-832)))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-3753 (($ $ (-703)) 42)) (-2046 (($ $ (-703)) 43)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-990) "failed") $) NIL)) (-3388 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-990) $) NIL)) (-2272 (($ $ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $ $) 129 (|has| |#1| (-156)))) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) 57)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-1352 (($ $ $) 105)) (-3443 (($ $ $) NIL (|has| |#1| (-509)))) (-2165 (((-2 (|:| -1580 |#1|) (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2186 (($ $) 134 (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-703) $) 46)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-990) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-990) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-1927 (((-787) $ (-787)) 118)) (-2053 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1865 (((-107) $) 32)) (-1942 (((-703) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#1| (-1051)))) (-2086 (($ (-1071 |#1|) (-990)) 50) (($ (-1071 $) (-990)) 66)) (-2588 (($ $ (-703)) 34)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) 64) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-990)) NIL) (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 122)) (-2210 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-3200 (($ (-1 (-703) (-703)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1998 (((-1071 |#1|) $) NIL)) (-1512 (((-3 (-990) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) 53)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1895 (((-1058) $) NIL)) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) 41)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-990)) (|:| -2356 (-703))) "failed") $) NIL)) (-1518 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) NIL (|has| |#1| (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) 33)) (-2319 ((|#1| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 80 (|has| |#1| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 136 (|has| |#1| (-421)))) (-2714 (($ $ (-703) |#1| $) 100)) (-1510 (((-388 (-1071 $)) (-1071 $)) 78 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 77 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 85 (|has| |#1| (-832)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-990) |#1|) NIL) (($ $ (-583 (-990)) (-583 |#1|)) NIL) (($ $ (-990) $) NIL) (($ $ (-583 (-990)) (-583 $)) NIL)) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-1596 (((-3 $ "failed") $ (-703)) 37)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 139 (|has| |#1| (-333)))) (-4032 (($ $ (-990)) NIL (|has| |#1| (-156))) ((|#1| $) 125 (|has| |#1| (-156)))) (-2059 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2769 (((-703) $) 55) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-990) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) 131 (|has| |#1| (-421))) (($ $ (-990)) NIL (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-832))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2269 (((-787) $) 119) (($ (-517)) NIL) (($ |#1|) 54) (($ (-990)) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 15) (($ $ (-703)) 16)) (-3608 (($) 17 T CONST)) (-3617 (($) 18 T CONST)) (-3340 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) 97)) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 140 (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 67)) (** (($ $ (-844)) 14) (($ $ (-703)) 12)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
+(((-1071 |#1|) (-13 (-1132 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-787))) (-15 -2714 ($ $ (-703) |#1| $)))) (-962)) (T -1071))
+((-1927 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1071 *3)) (-4 *3 (-962)))) (-2714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1071 *3)) (-4 *3 (-962)))))
+(-13 (-1132 |#1|) (-10 -8 (-15 -1927 ((-787) $ (-787))) (-15 -2714 ($ $ (-703) |#1| $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 11)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-1066 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1073 |#1| |#2| |#3|) "failed") $) 35)) (-3388 (((-1066 |#1| |#2| |#3|) $) NIL) (((-1073 |#1| |#2| |#3|) $) NIL)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2599 (((-377 (-517)) $) 55)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2164 (($ (-377 (-517)) (-1066 |#1| |#2| |#3|)) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-377 (-517))) 19) (($ $ (-990) (-377 (-517))) NIL) (($ $ (-583 (-990)) (-583 (-377 (-517)))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3627 (((-1066 |#1| |#2| |#3|) $) 40)) (-3255 (((-3 (-1066 |#1| |#2| |#3|) "failed") $) NIL)) (-2153 (((-1066 |#1| |#2| |#3|) $) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1152 |#2|)) 37)) (-2769 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1066 |#1| |#2| |#3|)) 29) (($ (-1073 |#1| |#2| |#3|)) 30) (($ (-1152 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 12)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 21 T CONST)) (-3617 (($) 16 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 23)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1072 |#1| |#2| |#3|) (-13 (-1139 |#1| (-1066 |#1| |#2| |#3|)) (-953 (-1073 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1072))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1139 |#1| (-1066 |#1| |#2| |#3|)) (-953 (-1073 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 125)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 116)) (-1301 (((-1129 |#2| |#1|) $ (-703)) 63)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-703)) 79) (($ $ (-703) (-703)) 76)) (-3349 (((-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 102)) (-1646 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 115) (($ (-1056 |#1|)) 110)) (-1669 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) 23)) (-1714 (($ $) 26)) (-2912 (((-875 |#1|) $ (-703)) 75) (((-875 |#1|) $ (-703) (-703)) 77)) (-2098 (((-107) $) 120)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $) 122) (((-703) $ (-703)) 124)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) NIL)) (-3843 (($ (-1 |#1| (-517)) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) 13) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-1518 (($ $) 129 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2640 (($ $ (-703)) 15)) (-2327 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-3868 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2607 ((|#1| $ (-703)) 119) (($ $ $) 128 (|has| (-703) (-1016)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1152 |#2|)) 29)) (-2769 (((-703) $) NIL)) (-1682 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) 201) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 126 (|has| |#1| (-156))) (($ (-1129 |#2| |#1|)) 51) (($ (-1152 |#2|)) 32)) (-2907 (((-1056 |#1|) $) 98)) (-3952 ((|#1| $ (-703)) 118)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 54)) (-1721 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 17 T CONST)) (-3617 (($) 19 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) 194)) (-1677 (($ $ $) 31)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 198 (|has| |#1| (-333))) (($ $ $) 134 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 137 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1073 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-10 -8 (-15 -2269 ($ (-1129 |#2| |#1|))) (-15 -1301 ((-1129 |#2| |#1|) $ (-703))) (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1073))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1129 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-1073 *3 *4 *5)))) (-1301 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1129 *5 *4)) (-5 *1 (-1073 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1075)) (-14 *6 *4))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1147 |#1|) (-10 -8 (-15 -2269 ($ (-1129 |#2| |#1|))) (-15 -1301 ((-1129 |#2| |#1|) $ (-703))) (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2269 (((-787) $) 22) (($ (-1075)) 24)) (-3745 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3734 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-3296 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-3284 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-3271 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-3264 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3219 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
+(((-1074) (-13 (-557 (-787)) (-10 -8 (-15 -2269 ($ (-1075))) (-15 -3296 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3271 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3284 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3745 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3219 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3734 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3734 ($ $))))) (T -1074))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1074)))) (-3296 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3271 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3284 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3264 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3745 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3219 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3734 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074)))) (-5 *1 (-1074)))) (-3734 (*1 *1 *1) (-5 *1 (-1074))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2269 ($ (-1075))) (-15 -3296 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3271 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3284 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3745 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3219 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3734 ($ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3734 ($ $))))
+((-2118 (((-107) $ $) NIL)) (-2662 (($ $ (-583 (-787))) 58)) (-2622 (($ $ (-583 (-787))) 56)) (-1517 (((-1058) $) 82)) (-3691 (((-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-1789 (((-107) $) 21)) (-2841 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-1681 (($) 123 T CONST)) (-3096 (((-1161)) 104)) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 65) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 71)) (-3211 (($) 93) (($ $) 99)) (-2987 (($ $) 81)) (-3456 (($ $ $) NIL)) (-4082 (($ $ $) NIL)) (-2322 (((-583 $) $) 105)) (-1895 (((-1058) $) 88)) (-4123 (((-1022) $) NIL)) (-2607 (($ $ (-583 (-787))) 57)) (-3357 (((-493) $) 45) (((-1075) $) 46) (((-815 (-517)) $) 75) (((-815 (-349)) $) 73)) (-2269 (((-787) $) 52) (($ (-1058)) 47)) (-2233 (($ $ (-583 (-787))) 59)) (-1964 (((-1058) $) 33) (((-1058) $ (-107)) 34) (((-1161) (-754) $) 35) (((-1161) (-754) $ (-107)) 36)) (-1641 (((-107) $ $) NIL)) (-1617 (((-107) $ $) NIL)) (-1583 (((-107) $ $) 48)) (-1629 (((-107) $ $) NIL)) (-1607 (((-107) $ $) 49)))
+(((-1075) (-13 (-779) (-558 (-493)) (-760) (-558 (-1075)) (-558 (-815 (-517))) (-558 (-815 (-349))) (-809 (-517)) (-809 (-349)) (-10 -8 (-15 -3211 ($)) (-15 -3211 ($ $)) (-15 -3096 ((-1161))) (-15 -2269 ($ (-1058))) (-15 -2987 ($ $)) (-15 -1789 ((-107) $)) (-15 -3691 ((-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2841 ($ $ (-583 (-583 (-787))))) (-15 -2841 ($ $ (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -2622 ($ $ (-583 (-787)))) (-15 -2662 ($ $ (-583 (-787)))) (-15 -2233 ($ $ (-583 (-787)))) (-15 -2607 ($ $ (-583 (-787)))) (-15 -1517 ((-1058) $)) (-15 -2322 ((-583 $) $)) (-15 -1681 ($) -1384)))) (T -1075))
+((-3211 (*1 *1) (-5 *1 (-1075))) (-3211 (*1 *1 *1) (-5 *1 (-1075))) (-3096 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1075)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1075)))) (-2987 (*1 *1 *1) (-5 *1 (-1075))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1075)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1075)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1075)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1075)))) (-2622 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1075)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1075)))) (-1681 (*1 *1) (-5 *1 (-1075))))
+(-13 (-779) (-558 (-493)) (-760) (-558 (-1075)) (-558 (-815 (-517))) (-558 (-815 (-349))) (-809 (-517)) (-809 (-349)) (-10 -8 (-15 -3211 ($)) (-15 -3211 ($ $)) (-15 -3096 ((-1161))) (-15 -2269 ($ (-1058))) (-15 -2987 ($ $)) (-15 -1789 ((-107) $)) (-15 -3691 ((-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2841 ($ $ (-583 (-583 (-787))))) (-15 -2841 ($ $ (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -2622 ($ $ (-583 (-787)))) (-15 -2662 ($ $ (-583 (-787)))) (-15 -2233 ($ $ (-583 (-787)))) (-15 -2607 ($ $ (-583 (-787)))) (-15 -1517 ((-1058) $)) (-15 -2322 ((-583 $) $)) (-15 -1681 ($) -1384)))
+((-3712 (((-1156 |#1|) |#1| (-844)) 16) (((-1156 |#1|) (-583 |#1|)) 20)))
+(((-1076 |#1|) (-10 -7 (-15 -3712 ((-1156 |#1|) (-583 |#1|))) (-15 -3712 ((-1156 |#1|) |#1| (-844)))) (-962)) (T -1076))
+((-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-1156 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-962)) (-5 *2 (-1156 *4)) (-5 *1 (-1076 *4)))))
+(-10 -7 (-15 -3712 ((-1156 |#1|) (-583 |#1|))) (-15 -3712 ((-1156 |#1|) |#1| (-844))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| |#1| (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-953 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3388 (((-517) $) NIL (|has| |#1| (-953 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-953 (-377 (-517))))) ((|#1| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-421)))) (-2027 (($ $ |#1| (-889) $) NIL)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-889)) NIL)) (-2210 (((-889) $) NIL)) (-3200 (($ (-1 (-889) (-889)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#1| $) NIL)) (-2714 (($ $ (-889) |#1| $) NIL (-12 (|has| (-889) (-123)) (|has| |#1| (-509))))) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2769 (((-889) $) NIL)) (-2035 ((|#1| $) NIL (|has| |#1| (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3745 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-953 (-377 (-517))))))) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ (-889)) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 9 T CONST)) (-3617 (($) 14 T CONST)) (-1583 (((-107) $ $) 16)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 19)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1077 |#1|) (-13 (-296 |#1| (-889)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-889) (-123)) (-15 -2714 ($ $ (-889) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|))) (-962)) (T -1077))
+((-2714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-889)) (-4 *2 (-123)) (-5 *1 (-1077 *3)) (-4 *3 (-509)) (-4 *3 (-962)))))
+(-13 (-296 |#1| (-889)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-889) (-123)) (-15 -2714 ($ $ (-889) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|)))
+((-1904 (((-1079) (-1075) $) 24)) (-1722 (($) 28)) (-3837 (((-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-1075) $) 21)) (-3918 (((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")) $) 40) (((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) 41) (((-1161) (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) 42)) (-2343 (((-1161) (-1075)) 57)) (-1241 (((-1161) (-1075) $) 54) (((-1161) (-1075)) 55) (((-1161)) 56)) (-3165 (((-1161) (-1075)) 36)) (-4127 (((-1075)) 35)) (-1529 (($) 33)) (-3874 (((-407) (-1075) (-407) (-1075) $) 44) (((-407) (-583 (-1075)) (-407) (-1075) $) 48) (((-407) (-1075) (-407)) 45) (((-407) (-1075) (-407) (-1075)) 49)) (-1668 (((-1075)) 34)) (-2269 (((-787) $) 27)) (-1277 (((-1161)) 29) (((-1161) (-1075)) 32)) (-2498 (((-583 (-1075)) (-1075) $) 23)) (-3105 (((-1161) (-1075) (-583 (-1075)) $) 37) (((-1161) (-1075) (-583 (-1075))) 38) (((-1161) (-583 (-1075))) 39)))
+(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -1722 ($)) (-15 -1277 ((-1161))) (-15 -1277 ((-1161) (-1075))) (-15 -3874 ((-407) (-1075) (-407) (-1075) $)) (-15 -3874 ((-407) (-583 (-1075)) (-407) (-1075) $)) (-15 -3874 ((-407) (-1075) (-407))) (-15 -3874 ((-407) (-1075) (-407) (-1075))) (-15 -3165 ((-1161) (-1075))) (-15 -1668 ((-1075))) (-15 -4127 ((-1075))) (-15 -3105 ((-1161) (-1075) (-583 (-1075)) $)) (-15 -3105 ((-1161) (-1075) (-583 (-1075)))) (-15 -3105 ((-1161) (-583 (-1075)))) (-15 -3918 ((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")) $)) (-15 -3918 ((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")))) (-15 -3918 ((-1161) (-3 (|:| |fst| (-404)) (|:| -2043 "void")))) (-15 -1241 ((-1161) (-1075) $)) (-15 -1241 ((-1161) (-1075))) (-15 -1241 ((-1161))) (-15 -2343 ((-1161) (-1075))) (-15 -1529 ($)) (-15 -3837 ((-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-1075) $)) (-15 -2498 ((-583 (-1075)) (-1075) $)) (-15 -1904 ((-1079) (-1075) $))))) (T -1078))
+((-1722 (*1 *1) (-5 *1 (-1078))) (-1277 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1277 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3874 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3874 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1075))) (-5 *4 (-1075)) (-5 *1 (-1078)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3874 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1668 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))) (-4127 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))) (-3105 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3918 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1241 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1241 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1078)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))) (-1529 (*1 *1) (-5 *1 (-1078))) (-3837 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *1 (-1078)))) (-2498 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1078)) (-5 *3 (-1075)))) (-1904 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1079)) (-5 *1 (-1078)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1722 ($)) (-15 -1277 ((-1161))) (-15 -1277 ((-1161) (-1075))) (-15 -3874 ((-407) (-1075) (-407) (-1075) $)) (-15 -3874 ((-407) (-583 (-1075)) (-407) (-1075) $)) (-15 -3874 ((-407) (-1075) (-407))) (-15 -3874 ((-407) (-1075) (-407) (-1075))) (-15 -3165 ((-1161) (-1075))) (-15 -1668 ((-1075))) (-15 -4127 ((-1075))) (-15 -3105 ((-1161) (-1075) (-583 (-1075)) $)) (-15 -3105 ((-1161) (-1075) (-583 (-1075)))) (-15 -3105 ((-1161) (-583 (-1075)))) (-15 -3918 ((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")) $)) (-15 -3918 ((-1161) (-1075) (-3 (|:| |fst| (-404)) (|:| -2043 "void")))) (-15 -3918 ((-1161) (-3 (|:| |fst| (-404)) (|:| -2043 "void")))) (-15 -1241 ((-1161) (-1075) $)) (-15 -1241 ((-1161) (-1075))) (-15 -1241 ((-1161))) (-15 -2343 ((-1161) (-1075))) (-15 -1529 ($)) (-15 -3837 ((-3 (|:| |fst| (-404)) (|:| -2043 "void")) (-1075) $)) (-15 -2498 ((-583 (-1075)) (-1075) $)) (-15 -1904 ((-1079) (-1075) $))))
+((-2117 (((-583 (-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517))))))))) $) 57)) (-3795 (((-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517)))))))) (-404) $) 40)) (-1844 (($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-407))))) 15)) (-2343 (((-1161) $) 65)) (-3204 (((-583 (-1075)) $) 20)) (-1997 (((-1008) $) 53)) (-2805 (((-407) (-1075) $) 27)) (-3493 (((-583 (-1075)) $) 30)) (-1529 (($) 17)) (-3874 (((-407) (-583 (-1075)) (-407) $) 25) (((-407) (-1075) (-407) $) 24)) (-2269 (((-787) $) 9) (((-1084 (-1075) (-407)) $) 11)))
+(((-1079) (-13 (-557 (-787)) (-10 -8 (-15 -2269 ((-1084 (-1075) (-407)) $)) (-15 -1529 ($)) (-15 -3874 ((-407) (-583 (-1075)) (-407) $)) (-15 -3874 ((-407) (-1075) (-407) $)) (-15 -2805 ((-407) (-1075) $)) (-15 -3204 ((-583 (-1075)) $)) (-15 -3795 ((-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517)))))))) (-404) $)) (-15 -3493 ((-583 (-1075)) $)) (-15 -2117 ((-583 (-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517))))))))) $)) (-15 -1997 ((-1008) $)) (-15 -2343 ((-1161) $)) (-15 -1844 ($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-407))))))))) (T -1079))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1075) (-407))) (-5 *1 (-1079)))) (-1529 (*1 *1) (-5 *1 (-1079))) (-3874 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1075))) (-5 *1 (-1079)))) (-3874 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1079)))) (-2805 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-407)) (-5 *1 (-1079)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1079)))) (-3795 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517))))))))) (-5 *1 (-1079)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1079)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517)))))))))) (-5 *1 (-1079)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1079)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1079)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-407))))) (-5 *1 (-1079)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2269 ((-1084 (-1075) (-407)) $)) (-15 -1529 ($)) (-15 -3874 ((-407) (-583 (-1075)) (-407) $)) (-15 -3874 ((-407) (-1075) (-407) $)) (-15 -2805 ((-407) (-1075) $)) (-15 -3204 ((-583 (-1075)) $)) (-15 -3795 ((-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517)))))))) (-404) $)) (-15 -3493 ((-583 (-1075)) $)) (-15 -2117 ((-583 (-583 (-3 (|:| -2987 (-1075)) (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517))))))))) $)) (-15 -1997 ((-1008) $)) (-15 -2343 ((-1161) $)) (-15 -1844 ($ (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-407))))))))
+((-2537 (((-107) $) 39)) (-2091 (((-3 (-517) (-199) (-1075) (-1058) $) $) 47)) (-1461 (((-583 $) $) 50)) (-3357 (((-1008) $) 19) (($ (-1008)) 20)) (-2269 (((-787) $) NIL) (((-517) $) 23) (((-199) $) 26) (((-1075) $) 29) (((-1058) $) 32)) (-2273 (((-107) $ (|[\|\|]| (-517))) 9) (((-107) $ (|[\|\|]| (-199))) 12) (((-107) $ (|[\|\|]| (-1075))) 18) (((-107) $ (|[\|\|]| (-1058))) 15)) (-1705 (($ (-1075) (-583 $)) 36) (($ $ (-583 $)) 37)) (-2489 (($ (-517)) 22) (($ (-199)) 25) (($ (-1075)) 28) (($ (-1058)) 31)))
+(((-1080) (-13 (-1151) (-557 (-787)) (-10 -8 (-15 -3357 ((-1008) $)) (-15 -3357 ($ (-1008))) (-15 -2489 ($ (-517))) (-15 -2269 ((-517) $)) (-15 -2489 ($ (-199))) (-15 -2269 ((-199) $)) (-15 -2489 ($ (-1075))) (-15 -2269 ((-1075) $)) (-15 -2489 ($ (-1058))) (-15 -2269 ((-1058) $)) (-15 -1705 ($ (-1075) (-583 $))) (-15 -1705 ($ $ (-583 $))) (-15 -2537 ((-107) $)) (-15 -2091 ((-3 (-517) (-199) (-1075) (-1058) $) $)) (-15 -1461 ((-583 $) $)) (-15 -2273 ((-107) $ (|[\|\|]| (-517)))) (-15 -2273 ((-107) $ (|[\|\|]| (-199)))) (-15 -2273 ((-107) $ (|[\|\|]| (-1075)))) (-15 -2273 ((-107) $ (|[\|\|]| (-1058))))))) (T -1080))
+((-3357 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1080)))) (-3357 (*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-1080)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1080)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1080)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1080)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1080)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1080)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1080)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1080)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1080)))) (-1705 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-1080))) (-5 *1 (-1080)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1080))) (-5 *1 (-1080)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1080)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1075) (-1058) (-1080))) (-5 *1 (-1080)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-583 (-1080))) (-5 *1 (-1080)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1080)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1080)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-107)) (-5 *1 (-1080)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-107)) (-5 *1 (-1080)))))
+(-13 (-1151) (-557 (-787)) (-10 -8 (-15 -3357 ((-1008) $)) (-15 -3357 ($ (-1008))) (-15 -2489 ($ (-517))) (-15 -2269 ((-517) $)) (-15 -2489 ($ (-199))) (-15 -2269 ((-199) $)) (-15 -2489 ($ (-1075))) (-15 -2269 ((-1075) $)) (-15 -2489 ($ (-1058))) (-15 -2269 ((-1058) $)) (-15 -1705 ($ (-1075) (-583 $))) (-15 -1705 ($ $ (-583 $))) (-15 -2537 ((-107) $)) (-15 -2091 ((-3 (-517) (-199) (-1075) (-1058) $) $)) (-15 -1461 ((-583 $) $)) (-15 -2273 ((-107) $ (|[\|\|]| (-517)))) (-15 -2273 ((-107) $ (|[\|\|]| (-199)))) (-15 -2273 ((-107) $ (|[\|\|]| (-1075)))) (-15 -2273 ((-107) $ (|[\|\|]| (-1058))))))
+((-3933 (((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075))) 55)) (-2064 (((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|)))) 67) (((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|))) 63) (((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075)) 68) (((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075)) 62) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|))))) 92) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|)))) 91) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075))) 93) (((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1075))) 90)))
+(((-1081 |#1|) (-10 -7 (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))))) (-15 -3933 ((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075))))) (-509)) (T -1081))
+((-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-875 *5)))) (-5 *1 (-1081 *5)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4))))) (-5 *1 (-1081 *4)) (-5 *3 (-265 (-377 (-875 *4)))))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4))))) (-5 *1 (-1081 *4)) (-5 *3 (-377 (-875 *4))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1081 *5)) (-5 *3 (-265 (-377 (-875 *5)))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1081 *5)) (-5 *3 (-377 (-875 *5))))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-265 (-377 (-875 *4))))))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1081 *4)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1075))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1081 *5)) (-5 *3 (-583 (-265 (-377 (-875 *5))))))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1081 *5)))))
+(-10 -7 (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))) (-583 (-1075)))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-377 (-875 |#1|))))) (-15 -2064 ((-583 (-583 (-265 (-377 (-875 |#1|))))) (-583 (-265 (-377 (-875 |#1|)))))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)) (-1075))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))) (-1075))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-377 (-875 |#1|)))) (-15 -2064 ((-583 (-265 (-377 (-875 |#1|)))) (-265 (-377 (-875 |#1|))))) (-15 -3933 ((-583 (-583 (-875 |#1|))) (-583 (-377 (-875 |#1|))) (-583 (-1075)))))
+((-1921 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-3173 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-1252 (((-1083 (-583 |#1|)) (-583 |#1|)) 34)) (-1602 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-1347 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-4009 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-1989 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-1368 (((-583 |#1|) (-583 |#1|)) 31)) (-3648 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-4139 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-3083 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-1658 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-1351 (((-583 (-583 |#1|)) (-1083 (-583 |#1|))) 41)))
+(((-1082 |#1|) (-10 -7 (-15 -3083 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -4139 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3648 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1921 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1658 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1351 ((-583 (-583 |#1|)) (-1083 (-583 |#1|)))) (-15 -3173 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -1252 ((-1083 (-583 |#1|)) (-583 |#1|))) (-15 -1989 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -1602 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -1368 ((-583 |#1|) (-583 |#1|))) (-15 -4009 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1347 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1082))
+((-1347 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1082 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-4009 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1082 *6)) (-5 *4 (-583 *5)))) (-1368 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1082 *3)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1082 *4)) (-5 *3 (-583 *4)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1082 *3)))) (-1252 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1083 (-583 *4))) (-5 *1 (-1082 *4)) (-5 *3 (-583 *4)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1082 *4)) (-5 *3 (-583 (-583 *4))))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1083 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1082 *4)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1082 *4)) (-4 *4 (-779)))) (-1921 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1082 *4)))) (-3648 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1082 *4)))) (-4139 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1082 *5)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1082 *6)) (-5 *5 (-583 *4)))))
+(-10 -7 (-15 -3083 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -4139 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3648 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1921 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1658 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -1351 ((-583 (-583 |#1|)) (-1083 (-583 |#1|)))) (-15 -3173 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -1252 ((-1083 (-583 |#1|)) (-583 |#1|))) (-15 -1989 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -1602 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -1368 ((-583 |#1|) (-583 |#1|))) (-15 -4009 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1347 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
+((-3849 (($ (-583 (-583 |#1|))) 9)) (-1548 (((-583 (-583 |#1|)) $) 10)) (-2269 (((-787) $) 25)))
+(((-1083 |#1|) (-10 -8 (-15 -3849 ($ (-583 (-583 |#1|)))) (-15 -1548 ((-583 (-583 |#1|)) $)) (-15 -2269 ((-787) $))) (-1004)) (T -1083))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1083 *3)) (-4 *3 (-1004)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1004)))) (-3849 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-1083 *3)))))
+(-10 -8 (-15 -3849 ($ (-583 (-583 |#1|)))) (-15 -1548 ((-583 (-583 |#1|)) $)) (-15 -2269 ((-787) $)))
+((-2118 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3201 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-1478 (((-1161) $ |#1| |#1|) NIL (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#2| $ |#1| |#2|) NIL)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) NIL)) (-1681 (($) NIL T CONST)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) NIL)) (-3735 ((|#1| $) NIL (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-583 |#2|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-3979 ((|#1| $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-1881 (((-583 |#1|) $) NIL)) (-3472 (((-107) |#1| $) NIL)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-4121 (((-583 |#1|) $) NIL)) (-3536 (((-107) |#1| $) NIL)) (-4123 (((-1022) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-2427 ((|#2| $) NIL (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL)) (-3191 (($ $ |#2|) NIL (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1494 (($) NIL) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) NIL (-12 (|has| $ (-6 -4190)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-2269 (((-787) $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) NIL)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) NIL (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) NIL (-3745 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| |#2| (-1004))))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1084 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190))) (-1004) (-1004)) (T -1084))
+NIL
+(-13 (-1087 |#1| |#2|) (-10 -7 (-6 -4190)))
+((-1614 ((|#1| (-583 |#1|)) 32)) (-3305 ((|#1| |#1| (-517)) 18)) (-1903 (((-1071 |#1|) |#1| (-844)) 15)))
+(((-1085 |#1|) (-10 -7 (-15 -1614 (|#1| (-583 |#1|))) (-15 -1903 ((-1071 |#1|) |#1| (-844))) (-15 -3305 (|#1| |#1| (-517)))) (-333)) (T -1085))
+((-3305 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1085 *2)) (-4 *2 (-333)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *4 (-844)) (-5 *2 (-1071 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-333)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1085 *2)) (-4 *2 (-333)))))
+(-10 -7 (-15 -1614 (|#1| (-583 |#1|))) (-15 -1903 ((-1071 |#1|) |#1| (-844))) (-15 -3305 (|#1| |#1| (-517))))
+((-3201 (($) 10) (($ (-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)))) 14)) (-3593 (($ (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1535 (((-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-2744 (($ (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3308 (($ (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2431 (((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) 53)) (-2704 (($ (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) 16)) (-4121 (((-583 |#2|) $) 19)) (-3536 (((-107) |#2| $) 58)) (-2999 (((-3 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) "failed") (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) 57)) (-1785 (((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) 62)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 66)) (-1831 (((-583 |#3|) $) 43)) (-2607 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) NIL) (((-703) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 67)) (-2269 (((-787) $) 27)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1583 (((-107) $ $) 48)))
+(((-1086 |#1| |#2| |#3|) (-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3201 (|#1| (-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))))) (-15 -3201 (|#1|)) (-15 -3308 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2744 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1535 ((-583 |#3|) |#1|)) (-15 -4135 ((-703) |#3| |#1|)) (-15 -2607 (|#3| |#1| |#2| |#3|)) (-15 -2607 (|#3| |#1| |#2|)) (-15 -1831 ((-583 |#3|) |#1|)) (-15 -3536 ((-107) |#2| |#1|)) (-15 -4121 ((-583 |#2|) |#1|)) (-15 -3593 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3593 (|#1| (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3593 (|#1| (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -2999 ((-3 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) "failed") (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -2431 ((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -2704 (|#1| (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -1785 ((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -4135 ((-703) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -1535 ((-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -4135 ((-703) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3480 ((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3160 ((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -2744 (|#1| (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3308 (|#1| (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|))) (-1087 |#2| |#3|) (-1004) (-1004)) (T -1086))
+NIL
+(-10 -8 (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3308 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3201 (|#1| (-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))))) (-15 -3201 (|#1|)) (-15 -3308 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2744 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3160 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3480 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4135 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1535 ((-583 |#3|) |#1|)) (-15 -4135 ((-703) |#3| |#1|)) (-15 -2607 (|#3| |#1| |#2| |#3|)) (-15 -2607 (|#3| |#1| |#2|)) (-15 -1831 ((-583 |#3|) |#1|)) (-15 -3536 ((-107) |#2| |#1|)) (-15 -4121 ((-583 |#2|) |#1|)) (-15 -3593 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3593 (|#1| (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3593 (|#1| (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -2999 ((-3 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) "failed") (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -2431 ((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -2704 (|#1| (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -1785 ((-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -4135 ((-703) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) |#1|)) (-15 -1535 ((-583 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -4135 ((-703) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3480 ((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3160 ((-107) (-1 (-107) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -2744 (|#1| (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)) (-15 -3308 (|#1| (-1 (-2 (|:| -2581 |#2|) (|:| -1860 |#3|)) (-2 (|:| -2581 |#2|) (|:| -1860 |#3|))) |#1|)))
+((-2118 (((-107) $ $) 19 (-3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3201 (($) 72) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 71)) (-1478 (((-1161) $ |#1| |#1|) 99 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#2| $ |#1| |#2|) 73)) (-3042 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 45 (|has| $ (-6 -4190)))) (-2324 (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 55 (|has| $ (-6 -4190)))) (-3562 (((-3 |#2| "failed") |#1| $) 61)) (-1681 (($) 7 T CONST)) (-2453 (($ $) 58 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190))))) (-3593 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 47 (|has| $ (-6 -4190))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 46 (|has| $ (-6 -4190))) (((-3 |#2| "failed") |#1| $) 62)) (-1422 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 54 (|has| $ (-6 -4190)))) (-1521 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 56 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 53 (|has| $ (-6 -4190))) (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 52 (|has| $ (-6 -4190)))) (-2757 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4191)))) (-2563 ((|#2| $ |#1|) 88)) (-1535 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 30 (|has| $ (-6 -4190))) (((-583 |#2|) $) 79 (|has| $ (-6 -4190)))) (-2361 (((-107) $ (-703)) 9)) (-3735 ((|#1| $) 96 (|has| |#1| (-779)))) (-2898 (((-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 29 (|has| $ (-6 -4190))) (((-583 |#2|) $) 80 (|has| $ (-6 -4190)))) (-4008 (((-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190))))) (-3979 ((|#1| $) 95 (|has| |#1| (-779)))) (-2744 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 34 (|has| $ (-6 -4191))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4191)))) (-3308 (($ (-1 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4043 (((-107) $ (-703)) 10)) (-1895 (((-1058) $) 22 (-3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-1881 (((-583 |#1|) $) 63)) (-3472 (((-107) |#1| $) 64)) (-2431 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 39)) (-2704 (($ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 40)) (-4121 (((-583 |#1|) $) 93)) (-3536 (((-107) |#1| $) 92)) (-4123 (((-1022) $) 21 (-3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-2427 ((|#2| $) 97 (|has| |#1| (-779)))) (-2999 (((-3 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) "failed") (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 51)) (-3191 (($ $ |#2|) 98 (|has| $ (-6 -4191)))) (-1785 (((-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 41)) (-3480 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 32 (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))))) 26 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-265 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 25 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) 24 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 23 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4190)) (|has| |#2| (-1004))))) (-1831 (((-583 |#2|) $) 91)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1494 (($) 49) (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 48)) (-4135 (((-703) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 31 (|has| $ (-6 -4190))) (((-703) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| $ (-6 -4190)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4190)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 59 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))))) (-2286 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 50)) (-2269 (((-787) $) 18 (-3745 (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787)))))) (-4155 (($ (-583 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) 42)) (-3160 (((-107) (-1 (-107) (-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) $) 33 (|has| $ (-6 -4190))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (-3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1087 |#1| |#2|) (-1187) (-1004) (-1004)) (T -1087))
+((-2443 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))) (-3201 (*1 *1) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))) (-3201 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2581 *3) (|:| -1860 *4)))) (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *1 (-1087 *3 *4)))) (-3308 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1087 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))))
+(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2443 (|t#2| $ |t#1| |t#2|)) (-15 -3201 ($)) (-15 -3201 ($ (-583 (-2 (|:| -2581 |t#1|) (|:| -1860 |t#2|))))) (-15 -3308 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2581 |#1|) (|:| -1860 |#2|))) . T) ((-97) -3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-557 (-787)) -3745 (|has| |#2| (-1004)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-456 #0#) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-280 (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)))) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1004))) ((-554 |#1| |#2|) . T) ((-1004) -3745 (|has| |#2| (-1004)) (|has| (-2 (|:| -2581 |#1|) (|:| -1860 |#2|)) (-1004))) ((-1110) . T))
+((-3727 (((-107)) 24)) (-1943 (((-1161) (-1058)) 26)) (-3234 (((-107)) 36)) (-2939 (((-1161)) 34)) (-2602 (((-1161) (-1058) (-1058)) 25)) (-1254 (((-107)) 37)) (-2704 (((-1161) |#1| |#2|) 44)) (-2812 (((-1161)) 20)) (-3916 (((-3 |#2| "failed") |#1|) 42)) (-3185 (((-1161)) 35)))
+(((-1088 |#1| |#2|) (-10 -7 (-15 -2812 ((-1161))) (-15 -2602 ((-1161) (-1058) (-1058))) (-15 -1943 ((-1161) (-1058))) (-15 -2939 ((-1161))) (-15 -3185 ((-1161))) (-15 -3727 ((-107))) (-15 -3234 ((-107))) (-15 -1254 ((-107))) (-15 -3916 ((-3 |#2| "failed") |#1|)) (-15 -2704 ((-1161) |#1| |#2|))) (-1004) (-1004)) (T -1088))
+((-2704 (*1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-3916 (*1 *2 *3) (|partial| -12 (-4 *2 (-1004)) (-5 *1 (-1088 *3 *2)) (-4 *3 (-1004)))) (-1254 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-3234 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-3727 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-3185 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-2939 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1088 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004)))) (-2602 (*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1088 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004)))) (-2812 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004)))))
+(-10 -7 (-15 -2812 ((-1161))) (-15 -2602 ((-1161) (-1058) (-1058))) (-15 -1943 ((-1161) (-1058))) (-15 -2939 ((-1161))) (-15 -3185 ((-1161))) (-15 -3727 ((-107))) (-15 -3234 ((-107))) (-15 -1254 ((-107))) (-15 -3916 ((-3 |#2| "failed") |#1|)) (-15 -2704 ((-1161) |#1| |#2|)))
+((-2972 (((-1058) (-1058)) 18)) (-1924 (((-51) (-1058)) 21)))
+(((-1089) (-10 -7 (-15 -1924 ((-51) (-1058))) (-15 -2972 ((-1058) (-1058))))) (T -1089))
+((-2972 (*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1089)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-1089)))))
+(-10 -7 (-15 -1924 ((-51) (-1058))) (-15 -2972 ((-1058) (-1058))))
+((-2269 (((-1091) |#1|) 11)))
+(((-1090 |#1|) (-10 -7 (-15 -2269 ((-1091) |#1|))) (-1004)) (T -1090))
+((-2269 (*1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1090 *3)) (-4 *3 (-1004)))))
+(-10 -7 (-15 -2269 ((-1091) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2876 (((-583 (-1058)) $) 33)) (-3591 (((-583 (-1058)) $ (-583 (-1058))) 36)) (-4019 (((-583 (-1058)) $ (-583 (-1058))) 35)) (-2600 (((-583 (-1058)) $ (-583 (-1058))) 37)) (-2860 (((-583 (-1058)) $) 32)) (-3211 (($) 22)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3453 (((-583 (-1058)) $) 34)) (-1756 (((-1161) $ (-517)) 29) (((-1161) $) 30)) (-3357 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2269 (((-787) $) 39) (($ (-787)) 24)) (-1583 (((-107) $ $) NIL)))
+(((-1091) (-13 (-1004) (-10 -8 (-15 -2269 ($ (-787))) (-15 -3357 ($ (-787) (-517))) (-15 -3357 ($ (-787) (-517) (-787))) (-15 -1756 ((-1161) $ (-517))) (-15 -1756 ((-1161) $)) (-15 -3453 ((-583 (-1058)) $)) (-15 -2876 ((-583 (-1058)) $)) (-15 -3211 ($)) (-15 -2860 ((-583 (-1058)) $)) (-15 -2600 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -3591 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -4019 ((-583 (-1058)) $ (-583 (-1058))))))) (T -1091))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1091)))) (-3357 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1091)))) (-3357 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1091)))) (-1756 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1091)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1091)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))) (-3211 (*1 *1) (-5 *1 (-1091))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))) (-2600 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))) (-3591 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(-13 (-1004) (-10 -8 (-15 -2269 ($ (-787))) (-15 -3357 ($ (-787) (-517))) (-15 -3357 ($ (-787) (-517) (-787))) (-15 -1756 ((-1161) $ (-517))) (-15 -1756 ((-1161) $)) (-15 -3453 ((-583 (-1058)) $)) (-15 -2876 ((-583 (-1058)) $)) (-15 -3211 ($)) (-15 -2860 ((-583 (-1058)) $)) (-15 -2600 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -3591 ((-583 (-1058)) $ (-583 (-1058)))) (-15 -4019 ((-583 (-1058)) $ (-583 (-1058))))))
+((-2118 (((-107) $ $) NIL)) (-3800 (((-1058) $ (-1058)) 15) (((-1058) $) 14)) (-3252 (((-1058) $ (-1058)) 13)) (-2150 (($ $ (-1058)) NIL)) (-3488 (((-3 (-1058) "failed") $) 11)) (-2580 (((-1058) $) 8)) (-2866 (((-3 (-1058) "failed") $) 12)) (-2608 (((-1058) $) 9)) (-3674 (($ (-358)) NIL) (($ (-358) (-1058)) NIL)) (-2987 (((-358) $) NIL)) (-1895 (((-1058) $) NIL)) (-2023 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-4007 (((-107) $) 17)) (-2269 (((-787) $) NIL)) (-1513 (($ $) NIL)) (-1583 (((-107) $ $) NIL)))
+(((-1092) (-13 (-334 (-358) (-1058)) (-10 -8 (-15 -3800 ((-1058) $ (-1058))) (-15 -3800 ((-1058) $)) (-15 -2580 ((-1058) $)) (-15 -3488 ((-3 (-1058) "failed") $)) (-15 -2866 ((-3 (-1058) "failed") $)) (-15 -4007 ((-107) $))))) (T -1092))
+((-3800 (*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1092)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1092)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1092)))) (-3488 (*1 *2 *1) (|partial| -12 (-5 *2 (-1058)) (-5 *1 (-1092)))) (-2866 (*1 *2 *1) (|partial| -12 (-5 *2 (-1058)) (-5 *1 (-1092)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1092)))))
+(-13 (-334 (-358) (-1058)) (-10 -8 (-15 -3800 ((-1058) $ (-1058))) (-15 -3800 ((-1058) $)) (-15 -2580 ((-1058) $)) (-15 -3488 ((-3 (-1058) "failed") $)) (-15 -2866 ((-3 (-1058) "failed") $)) (-15 -4007 ((-107) $))))
+((-1323 (((-3 (-517) "failed") |#1|) 19)) (-1432 (((-3 (-517) "failed") |#1|) 13)) (-2185 (((-517) (-1058)) 28)))
+(((-1093 |#1|) (-10 -7 (-15 -1323 ((-3 (-517) "failed") |#1|)) (-15 -1432 ((-3 (-517) "failed") |#1|)) (-15 -2185 ((-517) (-1058)))) (-962)) (T -1093))
+((-2185 (*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-517)) (-5 *1 (-1093 *4)) (-4 *4 (-962)))) (-1432 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1093 *3)) (-4 *3 (-962)))) (-1323 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1093 *3)) (-4 *3 (-962)))))
+(-10 -7 (-15 -1323 ((-3 (-517) "failed") |#1|)) (-15 -1432 ((-3 (-517) "failed") |#1|)) (-15 -2185 ((-517) (-1058))))
+((-4131 (((-1035 (-199))) 8)))
+(((-1094) (-10 -7 (-15 -4131 ((-1035 (-199)))))) (T -1094))
+((-4131 (*1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1094)))))
+(-10 -7 (-15 -4131 ((-1035 (-199)))))
+((-2115 (($) 11)) (-1721 (($ $) 35)) (-1695 (($ $) 33)) (-1547 (($ $) 25)) (-3487 (($ $) 17)) (-2822 (($ $) 15)) (-1735 (($ $) 19)) (-1588 (($ $) 30)) (-1708 (($ $) 34)) (-1561 (($ $) 29)))
+(((-1095 |#1|) (-10 -8 (-15 -2115 (|#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1561 (|#1| |#1|))) (-1096)) (T -1095))
+NIL
+(-10 -8 (-15 -2115 (|#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)))
+((-1646 (($ $) 26)) (-1493 (($ $) 11)) (-1622 (($ $) 27)) (-1470 (($ $) 10)) (-1669 (($ $) 28)) (-1519 (($ $) 9)) (-2115 (($) 16)) (-1225 (($ $) 19)) (-3868 (($ $) 18)) (-1682 (($ $) 29)) (-1532 (($ $) 8)) (-1656 (($ $) 30)) (-1506 (($ $) 7)) (-1632 (($ $) 31)) (-1482 (($ $) 6)) (-1721 (($ $) 20)) (-1575 (($ $) 32)) (-1695 (($ $) 21)) (-1547 (($ $) 33)) (-3487 (($ $) 22)) (-1599 (($ $) 34)) (-2822 (($ $) 23)) (-1612 (($ $) 35)) (-1735 (($ $) 24)) (-1588 (($ $) 36)) (-1708 (($ $) 25)) (-1561 (($ $) 37)) (** (($ $ $) 17)))
+(((-1096) (-1187)) (T -1096))
+((-2115 (*1 *1) (-4 *1 (-1096))))
+(-13 (-1099) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2115 ($))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1099) . T))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3119 ((|#1| $) 17)) (-1236 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-2670 (((-107) $ (-703)) 47)) (-2482 ((|#1| $ |#1|) 14 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 13 (|has| $ (-6 -4191)))) (-1681 (($) NIL T CONST)) (-1535 (((-583 |#1|) $) 51 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 42)) (-1528 (((-107) $ $) 33 (|has| |#1| (-1004)))) (-2361 (((-107) $ (-703)) 40)) (-2898 (((-583 |#1|) $) 52 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 50 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2744 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 22)) (-4043 (((-107) $ (-703)) 39)) (-1938 (((-583 |#1|) $) 37)) (-4141 (((-107) $) 36)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-3480 (((-107) (-1 (-107) |#1|) $) 49 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 74)) (-3270 (((-107) $) 9)) (-1529 (($) 10)) (-2607 ((|#1| $ "value") NIL)) (-2093 (((-517) $ $) 32)) (-3915 (((-583 $) $) 58)) (-1951 (((-107) $ $) 76)) (-1979 (((-583 $) $) 71)) (-3720 (($ $) 72)) (-1657 (((-107) $) 55)) (-4135 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4190))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2460 (($ $) 57)) (-2269 (((-787) $) 60 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 12)) (-2198 (((-107) $ $) 29 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 28 (|has| |#1| (-1004)))) (-3533 (((-703) $) 38 (|has| $ (-6 -4190)))))
+(((-1097 |#1|) (-13 (-927 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -1236 ($ |#1| (-583 $))) (-15 -1236 ($ (-583 |#1|))) (-15 -1236 ($ |#1|)) (-15 -1657 ((-107) $)) (-15 -3720 ($ $)) (-15 -1979 ((-583 $) $)) (-15 -1951 ((-107) $ $)) (-15 -3915 ((-583 $) $)))) (-1004)) (T -1097))
+((-1657 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))) (-1236 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1097 *2))) (-5 *1 (-1097 *2)) (-4 *2 (-1004)))) (-1236 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-1097 *3)))) (-1236 (*1 *1 *2) (-12 (-5 *1 (-1097 *2)) (-4 *2 (-1004)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-4 *2 (-1004)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-583 (-1097 *3))) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-583 (-1097 *3))) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))))
+(-13 (-927 |#1|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -1236 ($ |#1| (-583 $))) (-15 -1236 ($ (-583 |#1|))) (-15 -1236 ($ |#1|)) (-15 -1657 ((-107) $)) (-15 -3720 ($ $)) (-15 -1979 ((-583 $) $)) (-15 -1951 ((-107) $ $)) (-15 -3915 ((-583 $) $))))
+((-1493 (($ $) 15)) (-1519 (($ $) 12)) (-1532 (($ $) 10)) (-1506 (($ $) 17)))
+(((-1098 |#1|) (-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1493 (|#1| |#1|))) (-1099)) (T -1098))
+NIL
+(-10 -8 (-15 -1506 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)))
+((-1493 (($ $) 11)) (-1470 (($ $) 10)) (-1519 (($ $) 9)) (-1532 (($ $) 8)) (-1506 (($ $) 7)) (-1482 (($ $) 6)))
+(((-1099) (-1187)) (T -1099))
+((-1493 (*1 *1 *1) (-4 *1 (-1099))) (-1470 (*1 *1 *1) (-4 *1 (-1099))) (-1519 (*1 *1 *1) (-4 *1 (-1099))) (-1532 (*1 *1 *1) (-4 *1 (-1099))) (-1506 (*1 *1 *1) (-4 *1 (-1099))) (-1482 (*1 *1 *1) (-4 *1 (-1099))))
+(-13 (-10 -8 (-15 -1482 ($ $)) (-15 -1506 ($ $)) (-15 -1532 ($ $)) (-15 -1519 ($ $)) (-15 -1470 ($ $)) (-15 -1493 ($ $))))
+((-3973 ((|#2| |#2|) 85)) (-4020 (((-107) |#2|) 25)) (-3891 ((|#2| |#2|) 29)) (-3904 ((|#2| |#2|) 31)) (-3410 ((|#2| |#2| (-1075)) 79) ((|#2| |#2|) 80)) (-2524 (((-153 |#2|) |#2|) 27)) (-3774 ((|#2| |#2| (-1075)) 81) ((|#2| |#2|) 82)))
+(((-1100 |#1| |#2|) (-10 -7 (-15 -3410 (|#2| |#2|)) (-15 -3410 (|#2| |#2| (-1075))) (-15 -3774 (|#2| |#2|)) (-15 -3774 (|#2| |#2| (-1075))) (-15 -3973 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -4020 ((-107) |#2|)) (-15 -2524 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-953 (-517)) (-579 (-517))) (-13 (-27) (-1096) (-400 |#1|))) (T -1100))
+((-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1100 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1100 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *4))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))) (-3410 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))) (-3410 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517)))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))))
+(-10 -7 (-15 -3410 (|#2| |#2|)) (-15 -3410 (|#2| |#2| (-1075))) (-15 -3774 (|#2| |#2|)) (-15 -3774 (|#2| |#2| (-1075))) (-15 -3973 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -4020 ((-107) |#2|)) (-15 -2524 ((-153 |#2|) |#2|)))
+((-3158 ((|#4| |#4| |#1|) 27)) (-1256 ((|#4| |#4| |#1|) 28)))
+(((-1101 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3158 (|#4| |#4| |#1|)) (-15 -1256 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1101))
+((-1256 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1101 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3158 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1101 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -3158 (|#4| |#4| |#1|)) (-15 -1256 (|#4| |#4| |#1|)))
+((-4003 ((|#2| |#2|) 132)) (-2564 ((|#2| |#2|) 129)) (-4132 ((|#2| |#2|) 120)) (-2569 ((|#2| |#2|) 117)) (-3451 ((|#2| |#2|) 125)) (-1578 ((|#2| |#2|) 113)) (-2017 ((|#2| |#2|) 42)) (-2733 ((|#2| |#2|) 93)) (-1934 ((|#2| |#2|) 73)) (-2627 ((|#2| |#2|) 127)) (-4075 ((|#2| |#2|) 115)) (-3274 ((|#2| |#2|) 137)) (-3624 ((|#2| |#2|) 135)) (-2732 ((|#2| |#2|) 136)) (-3215 ((|#2| |#2|) 134)) (-2661 ((|#2| |#2|) 146)) (-3905 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-815 |#1|))) (|has| |#2| (-809 |#1|)) (|has| |#1| (-558 (-815 |#1|))) (|has| |#1| (-809 |#1|))))) (-1299 ((|#2| |#2|) 74)) (-1842 ((|#2| |#2|) 138)) (-2294 ((|#2| |#2|) 139)) (-1201 ((|#2| |#2|) 126)) (-2088 ((|#2| |#2|) 114)) (-3254 ((|#2| |#2|) 133)) (-3006 ((|#2| |#2|) 131)) (-1936 ((|#2| |#2|) 121)) (-3129 ((|#2| |#2|) 119)) (-3150 ((|#2| |#2|) 123)) (-3117 ((|#2| |#2|) 111)))
+(((-1102 |#1| |#2|) (-10 -7 (-15 -2294 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -3117 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -1201 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (IF (|has| |#1| (-809 |#1|)) (IF (|has| |#1| (-558 (-815 |#1|))) (IF (|has| |#2| (-558 (-815 |#1|))) (IF (|has| |#2| (-809 |#1|)) (-15 -3905 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1096))) (T -1102))
+((-3905 (*1 *2 *2) (-12 (-4 *3 (-558 (-815 *3))) (-4 *3 (-809 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-558 (-815 *3))) (-4 *2 (-809 *3)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3215 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3006 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3129 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2569 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1201 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3150 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-3117 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-400 *3) (-1096))))))
+(-10 -7 (-15 -2294 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -3117 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -1201 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -2569 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (IF (|has| |#1| (-809 |#1|)) (IF (|has| |#1| (-558 (-815 |#1|))) (IF (|has| |#2| (-558 (-815 |#1|))) (IF (|has| |#2| (-809 |#1|)) (-15 -3905 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1759 (((-107) |#5| $) 60) (((-107) $) 102)) (-2675 ((|#5| |#5| $) 75)) (-2324 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2276 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 73)) (-3226 (((-3 $ "failed") (-583 |#5|)) 126)) (-2437 (((-3 $ "failed") $) 112)) (-1358 ((|#5| |#5| $) 94)) (-3100 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 31)) (-1808 ((|#5| |#5| $) 98)) (-1521 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 69)) (-3709 (((-2 (|:| -1723 (-583 |#5|)) (|:| -3674 (-583 |#5|))) $) 55)) (-3091 (((-107) |#5| $) 58) (((-107) $) 103)) (-3834 ((|#4| $) 108)) (-1445 (((-3 |#5| "failed") $) 110)) (-3778 (((-583 |#5|) $) 49)) (-3015 (((-107) |#5| $) 67) (((-107) $) 107)) (-4014 ((|#5| |#5| $) 81)) (-1837 (((-107) $ $) 27)) (-3974 (((-107) |#5| $) 63) (((-107) $) 105)) (-3422 ((|#5| |#5| $) 78)) (-2427 (((-3 |#5| "failed") $) 109)) (-2640 (($ $ |#5|) 127)) (-2769 (((-703) $) 52)) (-2286 (($ (-583 |#5|)) 124)) (-2654 (($ $ |#4|) 122)) (-2054 (($ $ |#4|) 121)) (-3345 (($ $) 120)) (-2269 (((-787) $) NIL) (((-583 |#5|) $) 113)) (-1659 (((-703) $) 130)) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 45)) (-2953 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 100)) (-3693 (((-583 |#4|) $) 115)) (-3980 (((-107) |#4| $) 118)) (-1583 (((-107) $ $) 19)))
+(((-1103 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1659 ((-703) |#1|)) (-15 -2640 (|#1| |#1| |#5|)) (-15 -2324 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3980 ((-107) |#4| |#1|)) (-15 -3693 ((-583 |#4|) |#1|)) (-15 -2437 ((-3 |#1| "failed") |#1|)) (-15 -1445 ((-3 |#5| "failed") |#1|)) (-15 -2427 ((-3 |#5| "failed") |#1|)) (-15 -1808 (|#5| |#5| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1358 (|#5| |#5| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -3422 (|#5| |#5| |#1|)) (-15 -2675 (|#5| |#5| |#1|)) (-15 -2276 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3015 ((-107) |#1|)) (-15 -3974 ((-107) |#1|)) (-15 -1759 ((-107) |#1|)) (-15 -2953 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3015 ((-107) |#5| |#1|)) (-15 -3974 ((-107) |#5| |#1|)) (-15 -1759 ((-107) |#5| |#1|)) (-15 -3100 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3091 ((-107) |#1|)) (-15 -3091 ((-107) |#5| |#1|)) (-15 -3709 ((-2 (|:| -1723 (-583 |#5|)) (|:| -3674 (-583 |#5|))) |#1|)) (-15 -2769 ((-703) |#1|)) (-15 -3778 ((-583 |#5|) |#1|)) (-15 -1994 ((-3 (-2 (|:| |bas| |#1|) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1994 ((-3 (-2 (|:| |bas| |#1|) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1837 ((-107) |#1| |#1|)) (-15 -2654 (|#1| |#1| |#4|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -3834 (|#4| |#1|)) (-15 -3226 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2269 ((-583 |#5|) |#1|)) (-15 -2286 (|#1| (-583 |#5|))) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2324 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-1104 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-976 |#2| |#3| |#4|)) (T -1103))
+NIL
+(-10 -8 (-15 -1659 ((-703) |#1|)) (-15 -2640 (|#1| |#1| |#5|)) (-15 -2324 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3980 ((-107) |#4| |#1|)) (-15 -3693 ((-583 |#4|) |#1|)) (-15 -2437 ((-3 |#1| "failed") |#1|)) (-15 -1445 ((-3 |#5| "failed") |#1|)) (-15 -2427 ((-3 |#5| "failed") |#1|)) (-15 -1808 (|#5| |#5| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -1358 (|#5| |#5| |#1|)) (-15 -4014 (|#5| |#5| |#1|)) (-15 -3422 (|#5| |#5| |#1|)) (-15 -2675 (|#5| |#5| |#1|)) (-15 -2276 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3015 ((-107) |#1|)) (-15 -3974 ((-107) |#1|)) (-15 -1759 ((-107) |#1|)) (-15 -2953 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3015 ((-107) |#5| |#1|)) (-15 -3974 ((-107) |#5| |#1|)) (-15 -1759 ((-107) |#5| |#1|)) (-15 -3100 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3091 ((-107) |#1|)) (-15 -3091 ((-107) |#5| |#1|)) (-15 -3709 ((-2 (|:| -1723 (-583 |#5|)) (|:| -3674 (-583 |#5|))) |#1|)) (-15 -2769 ((-703) |#1|)) (-15 -3778 ((-583 |#5|) |#1|)) (-15 -1994 ((-3 (-2 (|:| |bas| |#1|) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1994 ((-3 (-2 (|:| |bas| |#1|) (|:| -2551 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1837 ((-107) |#1| |#1|)) (-15 -2654 (|#1| |#1| |#4|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -3834 (|#4| |#1|)) (-15 -3226 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2269 ((-583 |#5|) |#1|)) (-15 -2286 (|#1| (-583 |#5|))) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2324 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2269 ((-787) |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2118 (((-107) $ $) 7)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) 85)) (-2283 (((-583 $) (-583 |#4|)) 86)) (-2096 (((-583 |#3|) $) 33)) (-3494 (((-107) $) 26)) (-4062 (((-107) $) 17 (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) 101) (((-107) $) 97)) (-2675 ((|#4| |#4| $) 92)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) 27)) (-2670 (((-107) $ (-703)) 44)) (-2324 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) 79)) (-1681 (($) 45 T CONST)) (-2737 (((-107) $) 22 (|has| |#1| (-509)))) (-2871 (((-107) $ $) 24 (|has| |#1| (-509)))) (-2819 (((-107) $ $) 23 (|has| |#1| (-509)))) (-1219 (((-107) $) 25 (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2259 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) 36)) (-3388 (($ (-583 |#4|)) 35)) (-2437 (((-3 $ "failed") $) 82)) (-1358 ((|#4| |#4| $) 89)) (-2453 (($ $) 68 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1808 ((|#4| |#4| $) 87)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) 105)) (-1535 (((-583 |#4|) $) 52 (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) 104) (((-107) $) 103)) (-3834 ((|#3| $) 34)) (-2361 (((-107) $ (-703)) 43)) (-2898 (((-583 |#4|) $) 53 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) 47)) (-1310 (((-583 |#3|) $) 32)) (-1234 (((-107) |#3| $) 31)) (-4043 (((-107) $ (-703)) 42)) (-1895 (((-1058) $) 9)) (-1445 (((-3 |#4| "failed") $) 83)) (-3778 (((-583 |#4|) $) 107)) (-3015 (((-107) |#4| $) 99) (((-107) $) 95)) (-4014 ((|#4| |#4| $) 90)) (-1837 (((-107) $ $) 110)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) 100) (((-107) $) 96)) (-3422 ((|#4| |#4| $) 91)) (-4123 (((-1022) $) 10)) (-2427 (((-3 |#4| "failed") $) 84)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3760 (((-3 $ "failed") $ |#4|) 78)) (-2640 (($ $ |#4|) 77)) (-3480 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) 38)) (-3270 (((-107) $) 41)) (-1529 (($) 40)) (-2769 (((-703) $) 106)) (-4135 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1004)) (|has| $ (-6 -4190)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4190)))) (-2460 (($ $) 39)) (-3357 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) 60)) (-2654 (($ $ |#3|) 28)) (-2054 (($ $ |#3|) 30)) (-3345 (($ $) 88)) (-2530 (($ $ |#3|) 29)) (-2269 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1659 (((-703) $) 76 (|has| |#3| (-338)))) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3160 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) 81)) (-3980 (((-107) |#3| $) 80)) (-1583 (((-107) $ $) 6)) (-3533 (((-703) $) 46 (|has| $ (-6 -4190)))))
+(((-1104 |#1| |#2| |#3| |#4|) (-1187) (-509) (-725) (-779) (-976 |t#1| |t#2| |t#3|)) (T -1104))
+((-1837 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-1994 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2551 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1104 *5 *6 *7 *8)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2551 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1104 *6 *7 *8 *9)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-703)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-2 (|:| -1723 (-583 *6)) (|:| -3674 (-583 *6)))))) (-3091 (*1 *2 *3 *1) (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-3100 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1104 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-107)))) (-1759 (*1 *2 *3 *1) (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3974 (*1 *2 *3 *1) (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-3015 (*1 *2 *3 *1) (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1104 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))) (-1521 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1104 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-976 *5 *6 *7)))) (-2276 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1104 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)))) (-2675 (*1 *2 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-3422 (*1 *2 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-4014 (*1 *2 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-1358 (*1 *2 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-1104 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-976 *2 *3 *4)))) (-1808 (*1 *2 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1104 *4 *5 *6 *7)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1723 *1) (|:| -3674 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1104 *4 *5 *6 *7)))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-1445 (*1 *2 *1) (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-2437 (*1 *1 *1) (|partial| -12 (-4 *1 (-1104 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-976 *2 *3 *4)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3980 (*1 *2 *3 *1) (-12 (-4 *1 (-1104 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-107)))) (-2324 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1104 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-976 *4 *5 *3)))) (-3760 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-2640 (*1 *1 *1 *2) (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(-13 (-894 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4190) (-6 -4191) (-15 -1837 ((-107) $ $)) (-15 -1994 ((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1994 ((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3778 ((-583 |t#4|) $)) (-15 -2769 ((-703) $)) (-15 -3709 ((-2 (|:| -1723 (-583 |t#4|)) (|:| -3674 (-583 |t#4|))) $)) (-15 -3091 ((-107) |t#4| $)) (-15 -3091 ((-107) $)) (-15 -3100 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -1759 ((-107) |t#4| $)) (-15 -3974 ((-107) |t#4| $)) (-15 -3015 ((-107) |t#4| $)) (-15 -2953 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -1759 ((-107) $)) (-15 -3974 ((-107) $)) (-15 -3015 ((-107) $)) (-15 -1521 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2276 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2675 (|t#4| |t#4| $)) (-15 -3422 (|t#4| |t#4| $)) (-15 -4014 (|t#4| |t#4| $)) (-15 -1358 (|t#4| |t#4| $)) (-15 -3345 ($ $)) (-15 -1808 (|t#4| |t#4| $)) (-15 -2283 ((-583 $) (-583 |t#4|))) (-15 -3507 ((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |t#4|)))) (-583 |t#4|))) (-15 -2427 ((-3 |t#4| "failed") $)) (-15 -1445 ((-3 |t#4| "failed") $)) (-15 -2437 ((-3 $ "failed") $)) (-15 -3693 ((-583 |t#3|) $)) (-15 -3980 ((-107) |t#3| $)) (-15 -2324 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3760 ((-3 $ "failed") $ |t#4|)) (-15 -2640 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -1659 ((-703) $)) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))) ((-894 |#1| |#2| |#3| |#4|) . T) ((-1004) . T) ((-1110) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-1075)) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2912 (((-875 |#1|) $ (-703)) 17) (((-875 |#1|) $ (-703) (-703)) NIL)) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $ (-1075)) NIL) (((-703) $ (-1075) (-703)) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1960 (((-107) $) NIL)) (-2077 (($ $ (-583 (-1075)) (-583 (-489 (-1075)))) NIL) (($ $ (-1075) (-489 (-1075))) NIL) (($ |#1| (-489 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-1518 (($ $ (-1075)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2773 (($ (-1 $) (-1075) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2640 (($ $ (-703)) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (($ $ (-1075) $) NIL) (($ $ (-583 (-1075)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2059 (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-2769 (((-489 (-1075)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1075)) NIL) (($ (-875 |#1|)) NIL)) (-3952 ((|#1| $ (-489 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (((-875 |#1|) $ (-703)) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) NIL T CONST)) (-3340 (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1105 |#1|) (-13 (-673 |#1| (-1075)) (-10 -8 (-15 -3952 ((-875 |#1|) $ (-703))) (-15 -2269 ($ (-1075))) (-15 -2269 ($ (-875 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $ (-1075) |#1|)) (-15 -2773 ($ (-1 $) (-1075) |#1|))) |%noBranch|))) (-962)) (T -1105))
+((-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-875 *4)) (-5 *1 (-1105 *4)) (-4 *4 (-962)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1105 *3)) (-4 *3 (-962)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-5 *1 (-1105 *3)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *1 (-1105 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)))) (-2773 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1105 *4))) (-5 *3 (-1075)) (-5 *1 (-1105 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-962)))))
+(-13 (-673 |#1| (-1075)) (-10 -8 (-15 -3952 ((-875 |#1|) $ (-703))) (-15 -2269 ($ (-1075))) (-15 -2269 ($ (-875 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $ (-1075) |#1|)) (-15 -2773 ($ (-1 $) (-1075) |#1|))) |%noBranch|)))
+((-2683 (($ |#1| (-583 (-583 (-866 (-199)))) (-107)) 16)) (-3960 (((-107) $ (-107)) 15)) (-2807 (((-107) $) 14)) (-1450 (((-583 (-583 (-866 (-199)))) $) 10)) (-1404 ((|#1| $) 8)) (-1487 (((-107) $) 12)))
+(((-1106 |#1|) (-10 -8 (-15 -1404 (|#1| $)) (-15 -1450 ((-583 (-583 (-866 (-199)))) $)) (-15 -1487 ((-107) $)) (-15 -2807 ((-107) $)) (-15 -3960 ((-107) $ (-107))) (-15 -2683 ($ |#1| (-583 (-583 (-866 (-199)))) (-107)))) (-892)) (T -1106))
+((-2683 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-107)) (-5 *1 (-1106 *2)) (-4 *2 (-892)))) (-3960 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-1106 *3)) (-4 *3 (-892)))) (-1404 (*1 *2 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-892)))))
+(-10 -8 (-15 -1404 (|#1| $)) (-15 -1450 ((-583 (-583 (-866 (-199)))) $)) (-15 -1487 ((-107) $)) (-15 -2807 ((-107) $)) (-15 -3960 ((-107) $ (-107))) (-15 -2683 ($ |#1| (-583 (-583 (-866 (-199)))) (-107))))
+((-2531 (((-866 (-199)) (-866 (-199))) 25)) (-3414 (((-866 (-199)) (-199) (-199) (-199) (-199)) 10)) (-1370 (((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199)))) 37)) (-3989 (((-199) (-866 (-199)) (-866 (-199))) 21)) (-2579 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 22)) (-2408 (((-583 (-583 (-199))) (-517)) 31)) (-1691 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 20)) (-1677 (((-866 (-199)) (-866 (-199)) (-866 (-199))) 19)) (* (((-866 (-199)) (-199) (-866 (-199))) 18)))
+(((-1107) (-10 -7 (-15 -3414 ((-866 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-866 (-199)) (-199) (-866 (-199)))) (-15 -1677 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -1691 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -3989 ((-199) (-866 (-199)) (-866 (-199)))) (-15 -2579 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -2531 ((-866 (-199)) (-866 (-199)))) (-15 -2408 ((-583 (-583 (-199))) (-517))) (-15 -1370 ((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199))))))) (T -1107))
+((-1370 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-866 *4))) (-5 *1 (-1107)) (-5 *3 (-866 *4)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1107)))) (-2531 (*1 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)))) (-2579 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)))) (-3989 (*1 *2 *3 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-1107)))) (-1691 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-866 (-199))) (-5 *3 (-199)) (-5 *1 (-1107)))) (-3414 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)) (-5 *3 (-199)))))
+(-10 -7 (-15 -3414 ((-866 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-866 (-199)) (-199) (-866 (-199)))) (-15 -1677 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -1691 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -3989 ((-199) (-866 (-199)) (-866 (-199)))) (-15 -2579 ((-866 (-199)) (-866 (-199)) (-866 (-199)))) (-15 -2531 ((-866 (-199)) (-866 (-199)))) (-15 -2408 ((-583 (-583 (-199))) (-517))) (-15 -1370 ((-583 (-866 (-199))) (-866 (-199)) (-866 (-199)) (-866 (-199)) (-199) (-583 (-583 (-199))))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2324 ((|#1| $ (-703)) 13)) (-3680 (((-703) $) 12)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2269 (((-880 |#1|) $) 10) (($ (-880 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1583 (((-107) $ $) 16 (|has| |#1| (-1004)))))
+(((-1108 |#1|) (-13 (-557 (-880 |#1|)) (-10 -8 (-15 -2269 ($ (-880 |#1|))) (-15 -2324 (|#1| $ (-703))) (-15 -3680 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|))) (-1110)) (T -1108))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-1110)) (-5 *1 (-1108 *3)))) (-2324 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1108 *2)) (-4 *2 (-1110)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1108 *3)) (-4 *3 (-1110)))))
+(-13 (-557 (-880 |#1|)) (-10 -8 (-15 -2269 ($ (-880 |#1|))) (-15 -2324 (|#1| $ (-703))) (-15 -3680 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|)))
+((-3275 (((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)) (-517)) 79)) (-3090 (((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|))) 73)) (-2893 (((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|))) 58)))
+(((-1109 |#1|) (-10 -7 (-15 -3090 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)))) (-15 -2893 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)))) (-15 -3275 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)) (-517)))) (-319)) (T -1109))
+((-3275 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1071 (-1071 *5)))) (-5 *1 (-1109 *5)) (-5 *3 (-1071 (-1071 *5))))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1071 (-1071 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1071 (-1071 *4))))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1071 (-1071 *4)))) (-5 *1 (-1109 *4)) (-5 *3 (-1071 (-1071 *4))))))
+(-10 -7 (-15 -3090 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)))) (-15 -2893 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)))) (-15 -3275 ((-388 (-1071 (-1071 |#1|))) (-1071 (-1071 |#1|)) (-517))))
+NIL
+(((-1110) (-1187)) (T -1110))
+NIL
+(-13 (-10 -7 (-6 -2180)))
+((-1786 (((-107)) 15)) (-4110 (((-1161) (-583 |#1|) (-583 |#1|)) 19) (((-1161) (-583 |#1|)) 20)) (-2361 (((-107) |#1| |#1|) 31 (|has| |#1| (-779)))) (-4043 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 27) (((-3 (-107) "failed") |#1| |#1|) 25)) (-3459 ((|#1| (-583 |#1|)) 32 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 28)) (-3892 (((-2 (|:| -3704 (-583 |#1|)) (|:| -2312 (-583 |#1|)))) 17)))
+(((-1111 |#1|) (-10 -7 (-15 -4110 ((-1161) (-583 |#1|))) (-15 -4110 ((-1161) (-583 |#1|) (-583 |#1|))) (-15 -3892 ((-2 (|:| -3704 (-583 |#1|)) (|:| -2312 (-583 |#1|))))) (-15 -4043 ((-3 (-107) "failed") |#1| |#1|)) (-15 -4043 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3459 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1786 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3459 (|#1| (-583 |#1|))) (-15 -2361 ((-107) |#1| |#1|))) |%noBranch|)) (-1004)) (T -1111))
+((-2361 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-779)) (-4 *3 (-1004)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-779)) (-5 *1 (-1111 *2)))) (-1786 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-1004)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1111 *2)) (-4 *2 (-1004)))) (-4043 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1004)) (-5 *2 (-107)) (-5 *1 (-1111 *3)))) (-4043 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-1004)))) (-3892 (*1 *2) (-12 (-5 *2 (-2 (|:| -3704 (-583 *3)) (|:| -2312 (-583 *3)))) (-5 *1 (-1111 *3)) (-4 *3 (-1004)))) (-4110 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-5 *2 (-1161)) (-5 *1 (-1111 *4)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-5 *2 (-1161)) (-5 *1 (-1111 *4)))))
+(-10 -7 (-15 -4110 ((-1161) (-583 |#1|))) (-15 -4110 ((-1161) (-583 |#1|) (-583 |#1|))) (-15 -3892 ((-2 (|:| -3704 (-583 |#1|)) (|:| -2312 (-583 |#1|))))) (-15 -4043 ((-3 (-107) "failed") |#1| |#1|)) (-15 -4043 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -3459 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1786 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -3459 (|#1| (-583 |#1|))) (-15 -2361 ((-107) |#1| |#1|))) |%noBranch|))
+((-1490 (((-1161) (-583 (-1075)) (-583 (-1075))) 12) (((-1161) (-583 (-1075))) 10)) (-1965 (((-1161)) 13)) (-2750 (((-2 (|:| -2312 (-583 (-1075))) (|:| -3704 (-583 (-1075))))) 17)))
+(((-1112) (-10 -7 (-15 -1490 ((-1161) (-583 (-1075)))) (-15 -1490 ((-1161) (-583 (-1075)) (-583 (-1075)))) (-15 -2750 ((-2 (|:| -2312 (-583 (-1075))) (|:| -3704 (-583 (-1075)))))) (-15 -1965 ((-1161))))) (T -1112))
+((-1965 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1112)))) (-2750 (*1 *2) (-12 (-5 *2 (-2 (|:| -2312 (-583 (-1075))) (|:| -3704 (-583 (-1075))))) (-5 *1 (-1112)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1112)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1112)))))
+(-10 -7 (-15 -1490 ((-1161) (-583 (-1075)))) (-15 -1490 ((-1161) (-583 (-1075)) (-583 (-1075)))) (-15 -2750 ((-2 (|:| -2312 (-583 (-1075))) (|:| -3704 (-583 (-1075)))))) (-15 -1965 ((-1161))))
+((-3088 (($ $) 16)) (-2963 (((-107) $) 23)))
+(((-1113 |#1|) (-10 -8 (-15 -3088 (|#1| |#1|)) (-15 -2963 ((-107) |#1|))) (-1114)) (T -1113))
+NIL
+(-10 -8 (-15 -3088 (|#1| |#1|)) (-15 -2963 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 51)) (-1581 (((-388 $) $) 52)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-2963 (((-107) $) 53)) (-1865 (((-107) $) 31)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3866 (((-388 $) $) 50)) (-2327 (((-3 $ "failed") $ $) 42)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-1114) (-1187)) (T -1114))
+((-2963 (*1 *2 *1) (-12 (-4 *1 (-1114)) (-5 *2 (-107)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1114)))) (-3088 (*1 *1 *1) (-4 *1 (-1114))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1114)))))
+(-13 (-421) (-10 -8 (-15 -2963 ((-107) $)) (-15 -1581 ((-388 $) $)) (-15 -3088 ($ $)) (-15 -3866 ((-388 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3308 (((-1120 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1120 |#1| |#3| |#5|)) 23)))
+(((-1115 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3308 ((-1120 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1120 |#1| |#3| |#5|)))) (-962) (-962) (-1075) (-1075) |#1| |#2|) (T -1115))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1120 *6 *8 *10)) (-5 *1 (-1115 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1075)))))
+(-10 -7 (-15 -3308 ((-1120 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1120 |#1| |#3| |#5|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1646 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 162 (|has| |#1| (-333)))) (-1581 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3879 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1622 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1669 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-2378 (($ $ $) 157 (|has| |#1| (-333)))) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-1388 (((-377 (-875 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2963 (((-107) $) 164 (|has| |#1| (-333)))) (-2098 (((-107) $) 73)) (-2115 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) 101)) (-3843 (($ (-1 |#1| (-517)) $) 173)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1960 (((-107) $) 62)) (-2077 (($ |#1| (-517)) 61) (($ $ (-990) (-517)) 76) (($ $ (-583 (-990)) (-583 (-517))) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-1225 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-2330 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 165 (|has| |#1| (-333)))) (-1518 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 169 (-3745 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1096)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 150 (|has| |#1| (-333)))) (-2368 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3866 (((-388 $) $) 161 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 158 (|has| |#1| (-333)))) (-2640 (($ $ (-517)) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3868 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-4094 (((-703) $) 154 (|has| |#1| (-333)))) (-2607 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 155 (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1075) (-703)) 88 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075))) 87 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1075)) 86 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-2769 (((-517) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3952 ((|#1| $ (-517)) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-1721 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1695 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1075) (-703)) 92 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075))) 91 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1075)) 90 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1116 |#1|) (-1187) (-962)) (T -1116))
+((-3431 (*1 *1 *2) (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1116 *3)))) (-3843 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1116 *3)) (-4 *3 (-962)))) (-1388 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1116 *4)) (-4 *4 (-962)) (-4 *4 (-509)) (-5 *2 (-377 (-875 *4))))) (-1388 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1116 *4)) (-4 *4 (-962)) (-4 *4 (-509)) (-5 *2 (-377 (-875 *4))))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517)))))) (-1518 (*1 *1 *1 *2) (-3745 (-12 (-5 *2 (-1075)) (-4 *1 (-1116 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1116 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -2096 ((-583 *2) *3))) (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1134 |t#1| (-517)) (-10 -8 (-15 -3431 ($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3843 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -1388 ((-377 (-875 |t#1|)) $ (-517))) (-15 -1388 ((-377 (-875 |t#1|)) $ (-517) (-517)))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $)) (IF (|has| |t#1| (-15 -1518 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -2096 ((-583 (-1075)) |t#1|))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1096)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1096))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1016)) ((-262) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))) ((-891 |#1| #0# (-990)) . T) ((-843) |has| |#1| (-333)) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-968 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))) ((-1114) |has| |#1| (-333)) ((-1134 |#1| #0#) . T))
+((-2033 (((-107) $) 12)) (-3226 (((-3 |#3| "failed") $) 17) (((-3 (-1075) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3388 ((|#3| $) 14) (((-1075) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
+(((-1117 |#1| |#2| |#3|) (-10 -8 (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2033 ((-107) |#1|))) (-1118 |#2| |#3|) (-962) (-1147 |#2|)) (T -1117))
+NIL
+(-10 -8 (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3388 ((-1075) |#1|)) (-15 -3226 ((-3 (-1075) "failed") |#1|)) (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2033 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3297 ((|#2| $) 231 (-3992 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-3950 ((|#2| $) 267)) (-1244 (((-3 |#2| "failed") $) 263)) (-2144 ((|#2| $) 264)) (-1646 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-2121 (((-388 (-1071 $)) (-1071 $)) 240 (-3992 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3088 (($ $) 162 (|has| |#1| (-333)))) (-1581 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3879 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 237 (-3992 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3998 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1622 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1323 (((-517) $) 249 (-3992 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1669 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-3992 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-3992 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-1075) "failed") $) 242 (-3992 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333))))) (-3388 ((|#2| $) 269) (((-517) $) 260 (-3992 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-3992 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-1075) $) 243 (-3992 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333))))) (-1675 (($ $) 266) (($ (-517) $) 265)) (-2378 (($ $ $) 157 (|has| |#1| (-333)))) (-2371 (($ $) 60)) (-2306 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 219 (-3992 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-3992 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3163 (((-3 $ "failed") $) 34)) (-1388 (((-377 (-875 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2200 (($) 233 (-3992 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2963 (((-107) $) 164 (|has| |#1| (-333)))) (-3523 (((-107) $) 247 (-3992 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2098 (((-107) $) 73)) (-2115 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 225 (-3992 (|has| |#2| (-809 (-349))) (|has| |#1| (-333)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 224 (-3992 (|has| |#2| (-809 (-517))) (|has| |#1| (-333))))) (-2053 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1865 (((-107) $) 31)) (-3967 (($ $) 229 (|has| |#1| (-333)))) (-3824 ((|#2| $) 227 (|has| |#1| (-333)))) (-1484 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3572 (((-3 $ "failed") $) 261 (-3992 (|has| |#2| (-1051)) (|has| |#1| (-333))))) (-1469 (((-107) $) 248 (-3992 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2588 (($ $ (-844)) 101)) (-3843 (($ (-1 |#1| (-517)) $) 173)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1960 (((-107) $) 62)) (-2077 (($ |#1| (-517)) 61) (($ $ (-990) (-517)) 76) (($ $ (-583 (-990)) (-583 (-517))) 75)) (-3456 (($ $ $) 251 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4082 (($ $ $) 252 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3308 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1225 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-2330 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-2153 (($ (-517) |#2|) 268)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 165 (|has| |#1| (-333)))) (-1518 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 169 (-3745 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1096)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2585 (($) 262 (-3992 (|has| |#2| (-1051)) (|has| |#1| (-333))) CONST)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 150 (|has| |#1| (-333)))) (-2368 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1288 (($ $) 232 (-3992 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2309 ((|#2| $) 235 (-3992 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1510 (((-388 (-1071 $)) (-1071 $)) 238 (-3992 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-4071 (((-388 (-1071 $)) (-1071 $)) 239 (-3992 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3866 (((-388 $) $) 161 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 158 (|has| |#1| (-333)))) (-2640 (($ $ (-517)) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3868 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1075) |#2|) 212 (-3992 (|has| |#2| (-478 (-1075) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 |#2|)) 211 (-3992 (|has| |#2| (-478 (-1075) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-3992 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-3992 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-3992 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-3992 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-4094 (((-703) $) 154 (|has| |#1| (-333)))) (-2607 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1016))) (($ $ |#2|) 206 (-3992 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 155 (|has| |#1| (-333)))) (-2059 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3745 (-3992 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3745 (-3992 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) 89 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1075) (-703)) 88 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1075))) 87 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1075)) 86 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-3596 (($ $) 230 (|has| |#1| (-333)))) (-2097 ((|#2| $) 228 (|has| |#1| (-333)))) (-2769 (((-517) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3357 (((-199) $) 246 (-3992 (|has| |#2| (-938)) (|has| |#1| (-333)))) (((-349) $) 245 (-3992 (|has| |#2| (-938)) (|has| |#1| (-333)))) (((-493) $) 244 (-3992 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-815 (-349)) $) 223 (-3992 (|has| |#2| (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) 222 (-3992 (|has| |#2| (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 236 (-3992 (-3992 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#1| (-333))))) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1075)) 241 (-3992 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3952 ((|#1| $ (-517)) 59)) (-2650 (((-3 $ "failed") $) 48 (-3745 (-3992 (-3745 (|has| |#2| (-132)) (-3992 (|has| $ (-132)) (|has| |#2| (-832)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-3475 ((|#2| $) 234 (-3992 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1721 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1695 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2339 (($ $) 250 (-3992 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3745 (-3992 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3745 (-3992 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) 93 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1075) (-703)) 92 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1075))) 91 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1075)) 90 (-3745 (-3992 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1641 (((-107) $ $) 254 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1617 (((-107) $ $) 255 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 253 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1607 (((-107) $ $) 256 (-3992 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1118 |#1| |#2|) (-1187) (-962) (-1147 |t#1|)) (T -1118))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1147 *3)) (-5 *2 (-517)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-1118 *3 *2)) (-4 *2 (-1147 *3)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-962)) (-4 *1 (-1118 *4 *3)) (-4 *3 (-1147 *4)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1147 *3)))) (-1675 (*1 *1 *1) (-12 (-4 *1 (-1118 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1147 *2)))) (-1675 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1118 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1147 *3)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1147 *3)))) (-1244 (*1 *2 *1) (|partial| -12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1147 *3)))))
+(-13 (-1116 |t#1|) (-953 |t#2|) (-10 -8 (-15 -2153 ($ (-517) |t#2|)) (-15 -2769 ((-517) $)) (-15 -3950 (|t#2| $)) (-15 -1675 ($ $)) (-15 -1675 ($ (-517) $)) (-15 -2269 ($ |t#2|)) (-15 -2144 (|t#2| $)) (-15 -1244 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-910 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-938))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-938))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-815 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1016)) ((-262) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1075) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1075) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-823 (-1075)) -3745 (-12 (|has| |#1| (-333)) (|has| |#2| (-823 (-1075)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))) ((-809 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-349)))) ((-809 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-809 (-517)))) ((-807 |#2|) |has| |#1| (-333)) ((-832) -12 (|has| |#1| (-333)) (|has| |#2| (-832))) ((-891 |#1| #0# (-990)) . T) ((-843) |has| |#1| (-333)) ((-910 |#2|) |has| |#1| (-333)) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-938) -12 (|has| |#1| (-333)) (|has| |#2| (-938))) ((-953 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-517)))) ((-953 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-517)))) ((-953 (-1075)) -12 (|has| |#1| (-333)) (|has| |#2| (-953 (-1075)))) ((-953 |#2|) . T) ((-968 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-333)) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) -12 (|has| |#1| (-333)) (|has| |#2| (-1051))) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))) ((-1110) |has| |#1| (-333)) ((-1114) |has| |#1| (-333)) ((-1116 |#1|) . T) ((-1134 |#1| #0#) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 70)) (-3297 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 88)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-3950 ((|#2| $) 11)) (-1244 (((-3 |#2| "failed") $) 30)) (-2144 ((|#2| $) 31)) (-1646 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1323 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1669 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-1075) "failed") $) NIL (-12 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333))))) (-3388 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-953 (-517))) (|has| |#1| (-333)))) (((-1075) $) NIL (-12 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333))))) (-1675 (($ $) 61) (($ (-517) $) 24)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-2306 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3163 (((-3 $ "failed") $) 77)) (-1388 (((-377 (-875 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-2200 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-3523 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2098 (((-107) $) 64)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| |#2| (-809 (-349))) (|has| |#1| (-333)))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| |#2| (-809 (-517))) (|has| |#1| (-333))))) (-2053 (((-517) $) 93) (((-517) $ (-517)) 95)) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL (|has| |#1| (-333)))) (-3824 ((|#2| $) 151 (|has| |#1| (-333)))) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3572 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-333))))) (-1469 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2588 (($ $ (-844)) 136)) (-3843 (($ (-1 |#1| (-517)) $) 132)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-517)) 19) (($ $ (-990) (-517)) NIL) (($ $ (-583 (-990)) (-583 (-517))) NIL)) (-3456 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4082 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3308 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1225 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2153 (($ (-517) |#2|) 10)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 145 (|has| |#1| (-333)))) (-1518 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 219 (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096)))))) (-2585 (($) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-333))) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1288 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2309 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-517)) 126)) (-2327 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1075) |#2|) NIL (-12 (|has| |#2| (-478 (-1075) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1075) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1016))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3745 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) 140 (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-3596 (($ $) NIL (|has| |#1| (-333)))) (-2097 ((|#2| $) 152 (|has| |#1| (-333)))) (-2769 (((-517) $) 12)) (-1682 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3357 (((-199) $) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| |#2| (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| |#2| (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832)) (|has| |#1| (-333))))) (-3478 (($ $) 124)) (-2269 (((-787) $) 243) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1075)) NIL (-12 (|has| |#2| (-953 (-1075))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-517)) 74)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2950 (((-703)) 142)) (-3567 ((|#1| $) 90)) (-3475 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1721 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2339 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 13 T CONST)) (-3617 (($) 17 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3745 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3745 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#2| (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-1641 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1617 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) 63)) (-1629 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1607 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1691 (($ $) 213) (($ $ $) 68)) (-1677 (($ $ $) 66)) (** (($ $ (-844)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1119 |#1| |#2|) (-1118 |#1| |#2|) (-962) (-1147 |#1|)) (T -1119))
+NIL
+(-1118 |#1| |#2|)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3297 (((-1148 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 10)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2729 (($ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2566 (((-107) $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3509 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-3349 (((-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3950 (((-1148 |#1| |#2| |#3|) $) NIL)) (-1244 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) NIL)) (-2144 (((-1148 |#1| |#2| |#3|) $) NIL)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1323 (((-517) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3431 (($ (-1056 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))))) (-3388 (((-1148 |#1| |#2| |#3|) $) NIL) (((-1075) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))))) (-1675 (($ $) NIL) (($ (-517) $) NIL)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-1148 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-1148 |#1| |#2| |#3|))) (|:| |vec| (-1156 (-1148 |#1| |#2| |#3|)))) (-623 $) (-1156 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3163 (((-3 $ "failed") $) NIL)) (-1388 (((-377 (-875 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-875 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-2200 (($) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-3523 (((-107) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2399 (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-809 (-517))) (|has| |#1| (-333)))) (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-809 (-349))) (|has| |#1| (-333))))) (-2053 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-1865 (((-107) $) NIL)) (-3967 (($ $) NIL (|has| |#1| (-333)))) (-3824 (((-1148 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3572 (((-3 $ "failed") $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-333))))) (-1469 (((-107) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2588 (($ $ (-844)) NIL)) (-3843 (($ (-1 |#1| (-517)) $) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-517)) 17) (($ $ (-990) (-517)) NIL) (($ $ (-583 (-990)) (-583 (-517))) NIL)) (-3456 (($ $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4082 (($ $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2153 (($ (-517) (-1148 |#1| |#2| |#3|)) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-333))) CONST)) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1288 (($ $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2309 (((-1148 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-517)) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1075) (-1148 |#1| |#2| |#3|)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-478 (-1075) (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1075)) (-583 (-1148 |#1| |#2| |#3|))) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-478 (-1075) (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1148 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1148 |#1| |#2| |#3|))) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1148 |#1| |#2| |#3|)) (-583 (-1148 |#1| |#2| |#3|))) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-280 (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1016))) (($ $ (-1148 |#1| |#2| |#3|)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-258 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-1 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1152 |#2|)) 24) (($ $ (-703)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-3596 (($ $) NIL (|has| |#1| (-333)))) (-2097 (((-1148 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2769 (((-517) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3357 (((-493) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-938)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-938)) (|has| |#1| (-333)))) (((-815 (-349)) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-558 (-815 (-349)))) (|has| |#1| (-333)))) (((-815 (-517)) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-558 (-815 (-517)))) (|has| |#1| (-333))))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1148 |#1| |#2| |#3|)) NIL) (($ (-1152 |#2|)) 22) (($ (-1075)) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-1075))) (|has| |#1| (-333)))) (($ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-953 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-3952 ((|#1| $ (-517)) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 11)) (-3475 (((-1148 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-832)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2339 (($ $) NIL (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 19 T CONST)) (-3617 (($) 15 T CONST)) (-3340 (($ $ (-1 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075) (-703)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-583 (-1075))) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075)))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-823 (-1075))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-823 (-1075))))))) (-1641 (((-107) $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1617 (((-107) $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1607 (((-107) $ $) NIL (-3745 (-12 (|has| (-1148 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1148 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1148 |#1| |#2| |#3|) (-1148 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1148 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1148 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1120 |#1| |#2| |#3|) (-13 (-1118 |#1| (-1148 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1120))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1118 |#1| (-1148 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2952 (((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107)) 10)) (-1625 (((-388 |#1|) |#1|) 21)) (-3866 (((-388 |#1|) |#1|) 20)))
+(((-1121 |#1|) (-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1|)) (-15 -2952 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107)))) (-1132 (-517))) (T -1121))
+((-2952 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517))))))) (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))) (-1625 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))) (-3866 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))))
+(-10 -7 (-15 -3866 ((-388 |#1|) |#1|)) (-15 -1625 ((-388 |#1|) |#1|)) (-15 -2952 ((-2 (|:| |contp| (-517)) (|:| -1878 (-583 (-2 (|:| |irr| |#1|) (|:| -2220 (-517)))))) |#1| (-107))))
+((-3308 (((-1056 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 23 (|has| |#1| (-777))) (((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 17)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -3308 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) (IF (|has| |#1| (-777)) (-15 -3308 ((-1056 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) |%noBranch|)) (-1110) (-1110)) (T -1122))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-777)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1056 *6)) (-5 *1 (-1122 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1123 *6)) (-5 *1 (-1122 *5 *6)))))
+(-10 -7 (-15 -3308 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) (IF (|has| |#1| (-777)) (-15 -3308 ((-1056 |#2|) (-1 |#2| |#1|) (-1123 |#1|))) |%noBranch|))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-2209 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3308 (((-1056 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3704 ((|#1| $) 14)) (-2157 ((|#1| $) 10)) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-2167 (((-517) $) 18)) (-2312 ((|#1| $) 17)) (-2174 ((|#1| $) 11)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-1774 (((-107) $) 16)) (-2294 (((-1056 |#1|) $) 38 (|has| |#1| (-777))) (((-1056 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3357 (($ |#1|) 25)) (-2269 (($ (-999 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1004)))) (-1605 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1326 (($ $ (-517)) 13)) (-1583 (((-107) $ $) 27 (|has| |#1| (-1004)))))
+(((-1123 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -1605 ($ |#1|)) (-15 -2209 ($ |#1|)) (-15 -2269 ($ (-999 |#1|))) (-15 -1774 ((-107) $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1000 |#1| (-1056 |#1|))) |%noBranch|))) (-1110)) (T -1123))
+((-1605 (*1 *1 *2) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1110)))) (-2209 (*1 *1 *2) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1110)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-1110)) (-5 *1 (-1123 *3)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1123 *3)) (-4 *3 (-1110)))))
+(-13 (-998 |#1|) (-10 -8 (-15 -1605 ($ |#1|)) (-15 -2209 ($ |#1|)) (-15 -2269 ($ (-999 |#1|))) (-15 -1774 ((-107) $)) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1000 |#1| (-1056 |#1|))) |%noBranch|)))
+((-3308 (((-1129 |#3| |#4|) (-1 |#4| |#2|) (-1129 |#1| |#2|)) 15)))
+(((-1124 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 ((-1129 |#3| |#4|) (-1 |#4| |#2|) (-1129 |#1| |#2|)))) (-1075) (-962) (-1075) (-962)) (T -1124))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1129 *5 *6)) (-14 *5 (-1075)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1129 *7 *8)) (-5 *1 (-1124 *5 *6 *7 *8)) (-14 *7 (-1075)))))
+(-10 -7 (-15 -3308 ((-1129 |#3| |#4|) (-1 |#4| |#2|) (-1129 |#1| |#2|))))
+((-1383 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2222 ((|#1| |#3|) 13)) (-2158 ((|#3| |#3|) 19)))
+(((-1125 |#1| |#2| |#3|) (-10 -7 (-15 -2222 (|#1| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-910 |#1|) (-1132 |#2|)) (T -1125))
+((-1383 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-910 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1125 *4 *5 *3)) (-4 *3 (-1132 *5)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-910 *3)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-1132 *4)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-1125 *2 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -2222 (|#1| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -1383 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3471 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-3058 (((-3 |#2| "failed") |#2| (-703)) 30)) (-2959 (((-3 (-2 (|:| -3286 |#2|) (|:| -3298 |#2|)) "failed") |#2|) 43)) (-1522 (((-583 |#2|) |#2|) 45)) (-3335 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1126 |#1| |#2|) (-10 -7 (-15 -3058 ((-3 |#2| "failed") |#2| (-703))) (-15 -3471 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3335 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2959 ((-3 (-2 (|:| -3286 |#2|) (|:| -3298 |#2|)) "failed") |#2|)) (-15 -1522 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1132 |#1|)) (T -1126))
+((-1522 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1132 *4)))) (-2959 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3286 *3) (|:| -3298 *3))) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1132 *4)))) (-3335 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1132 *3)))) (-3471 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1132 *4)))) (-3058 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1132 *4)))))
+(-10 -7 (-15 -3058 ((-3 |#2| "failed") |#2| (-703))) (-15 -3471 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3335 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2959 ((-3 (-2 (|:| -3286 |#2|) (|:| -3298 |#2|)) "failed") |#2|)) (-15 -1522 ((-583 |#2|) |#2|)))
+((-2075 (((-3 (-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -2075 ((-3 (-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) "failed") |#2| |#2|))) (-509) (-1132 |#1|)) (T -1127))
+((-2075 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-1127 *4 *3)) (-4 *3 (-1132 *4)))))
+(-10 -7 (-15 -2075 ((-3 (-2 (|:| -2525 |#2|) (|:| -1451 |#2|)) "failed") |#2| |#2|)))
+((-2616 ((|#2| |#2| |#2|) 19)) (-2890 ((|#2| |#2| |#2|) 30)) (-3272 ((|#2| |#2| |#2| (-703) (-703)) 36)))
+(((-1128 |#1| |#2|) (-10 -7 (-15 -2616 (|#2| |#2| |#2|)) (-15 -2890 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2| |#2| (-703) (-703)))) (-962) (-1132 |#1|)) (T -1128))
+((-3272 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-962)) (-5 *1 (-1128 *4 *2)) (-4 *2 (-1132 *4)))) (-2890 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1132 *3)))) (-2616 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1132 *3)))))
+(-10 -7 (-15 -2616 (|#2| |#2| |#2|)) (-15 -2890 (|#2| |#2| |#2|)) (-15 -3272 (|#2| |#2| |#2| (-703) (-703))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2099 (((-1156 |#2|) $ (-703)) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3673 (($ (-1071 |#2|)) NIL)) (-1440 (((-1071 $) $ (-990)) NIL) (((-1071 |#2|) $) NIL)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2729 (($ $) NIL (|has| |#2| (-509)))) (-2566 (((-107) $) NIL (|has| |#2| (-509)))) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-990))) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1784 (($ $ $) NIL (|has| |#2| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3088 (($ $) NIL (|has| |#2| (-421)))) (-1581 (((-388 $) $) NIL (|has| |#2| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3998 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3753 (($ $ (-703)) NIL)) (-2046 (($ $ (-703)) NIL)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-953 (-517)))) (((-3 (-990) "failed") $) NIL)) (-3388 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-953 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-953 (-517)))) (((-990) $) NIL)) (-2272 (($ $ $ (-990)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2378 (($ $ $) NIL (|has| |#2| (-333)))) (-2371 (($ $) NIL)) (-2306 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#2|)) (|:| |vec| (-1156 |#2|))) (-623 $) (-1156 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2354 (($ $ $) NIL (|has| |#2| (-333)))) (-1352 (($ $ $) NIL)) (-3443 (($ $ $) NIL (|has| |#2| (-509)))) (-2165 (((-2 (|:| -1580 |#2|) (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2186 (($ $) NIL (|has| |#2| (-421))) (($ $ (-990)) NIL (|has| |#2| (-421)))) (-2358 (((-583 $) $) NIL)) (-2963 (((-107) $) NIL (|has| |#2| (-832)))) (-2027 (($ $ |#2| (-703) $) NIL)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) NIL (-12 (|has| (-990) (-809 (-349))) (|has| |#2| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) NIL (-12 (|has| (-990) (-809 (-517))) (|has| |#2| (-809 (-517)))))) (-2053 (((-703) $ $) NIL (|has| |#2| (-509)))) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3572 (((-3 $ "failed") $) NIL (|has| |#2| (-1051)))) (-2086 (($ (-1071 |#2|) (-990)) NIL) (($ (-1071 $) (-990)) NIL)) (-2588 (($ $ (-703)) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2077 (($ |#2| (-703)) 17) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-990)) NIL) (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL)) (-2210 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3456 (($ $ $) NIL (|has| |#2| (-779)))) (-4082 (($ $ $) NIL (|has| |#2| (-779)))) (-3200 (($ (-1 (-703) (-703)) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1998 (((-1071 |#2|) $) NIL)) (-1512 (((-3 (-990) "failed") $) NIL)) (-2333 (($ $) NIL)) (-2345 ((|#2| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1895 (((-1058) $) NIL)) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) NIL)) (-3807 (((-3 (-583 $) "failed") $) NIL)) (-2875 (((-3 (-583 $) "failed") $) NIL)) (-1812 (((-3 (-2 (|:| |var| (-990)) (|:| -2356 (-703))) "failed") $) NIL)) (-1518 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2585 (($) NIL (|has| |#2| (-1051)) CONST)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 ((|#2| $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#2| (-421)))) (-2368 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2714 (($ $ (-703) |#2| $) NIL)) (-1510 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) NIL (|has| |#2| (-832)))) (-3866 (((-388 $) $) NIL (|has| |#2| (-832)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#2| (-333)))) (-2327 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3522 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-990) |#2|) NIL) (($ $ (-583 (-990)) (-583 |#2|)) NIL) (($ $ (-990) $) NIL) (($ $ (-583 (-990)) (-583 $)) NIL)) (-4094 (((-703) $) NIL (|has| |#2| (-333)))) (-2607 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-1596 (((-3 $ "failed") $ (-703)) NIL)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#2| (-333)))) (-4032 (($ $ (-990)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2059 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2769 (((-703) $) NIL) (((-703) $ (-990)) NIL) (((-583 (-703)) $ (-583 (-990))) NIL)) (-3357 (((-815 (-349)) $) NIL (-12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#2| (-558 (-815 (-349)))))) (((-815 (-517)) $) NIL (-12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#2| (-558 (-815 (-517)))))) (((-493) $) NIL (-12 (|has| (-990) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-2035 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-990)) NIL (|has| |#2| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-832))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2269 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-990)) NIL) (($ (-1152 |#1|)) 19) (($ (-377 (-517))) NIL (-3745 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-953 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-703)) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2650 (((-3 $ "failed") $) NIL (-3745 (-12 (|has| $ (-132)) (|has| |#2| (-832))) (|has| |#2| (-132))))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2914 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-3617 (($) 14 T CONST)) (-3340 (($ $ (-990)) NIL) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1075)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1075) (-703)) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) NIL (|has| |#2| (-823 (-1075)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1641 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL)) (-1629 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1703 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1129 |#1| |#2|) (-13 (-1132 |#2|) (-10 -8 (-15 -2269 ($ (-1152 |#1|))) (-15 -2714 ($ $ (-703) |#2| $)))) (-1075) (-962)) (T -1129))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *3)) (-14 *3 (-1075)) (-5 *1 (-1129 *3 *4)) (-4 *4 (-962)))) (-2714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1129 *4 *3)) (-14 *4 (-1075)) (-4 *3 (-962)))))
+(-13 (-1132 |#2|) (-10 -8 (-15 -2269 ($ (-1152 |#1|))) (-15 -2714 ($ $ (-703) |#2| $))))
+((-3308 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1132 |#1|) (-962) (-1132 |#3|)) (T -1130))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1132 *6)) (-5 *1 (-1130 *5 *4 *6 *2)) (-4 *4 (-1132 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2099 (((-1156 |#2|) $ (-703)) 113)) (-2096 (((-583 (-990)) $) 15)) (-3673 (($ (-1071 |#2|)) 66)) (-2629 (((-703) $) NIL) (((-703) $ (-583 (-990))) 18)) (-2121 (((-388 (-1071 $)) (-1071 $)) 184)) (-3088 (($ $) 174)) (-1581 (((-388 $) $) 172)) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 81)) (-3753 (($ $ (-703)) 70)) (-2046 (($ $ (-703)) 72)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3226 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-990) "failed") $) NIL)) (-3388 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-990) $) NIL)) (-3443 (($ $ $) 150)) (-2165 (((-2 (|:| -1580 |#2|) (|:| -2525 $) (|:| -1451 $)) $ $) 152)) (-2053 (((-703) $ $) 169)) (-3572 (((-3 $ "failed") $) 122)) (-2077 (($ |#2| (-703)) NIL) (($ $ (-990) (-703)) 46) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-2210 (((-703) $) NIL) (((-703) $ (-990)) 41) (((-583 (-703)) $ (-583 (-990))) 42)) (-1998 (((-1071 |#2|) $) 58)) (-1512 (((-3 (-990) "failed") $) 39)) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) 69)) (-1518 (($ $) 195)) (-2585 (($) 118)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 181)) (-1510 (((-388 (-1071 $)) (-1071 $)) 87)) (-4071 (((-388 (-1071 $)) (-1071 $)) 85)) (-3866 (((-388 $) $) 105)) (-3522 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-990) |#2|) 31) (($ $ (-583 (-990)) (-583 |#2|)) 28) (($ $ (-990) $) 25) (($ $ (-583 (-990)) (-583 $)) 23)) (-4094 (((-703) $) 187)) (-2607 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 186) (((-377 $) $ (-377 $)) 168)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 190)) (-2059 (($ $ (-990)) 139) (($ $ (-583 (-990))) NIL) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1075)) NIL) (($ $ (-583 (-1075))) NIL) (($ $ (-1075) (-703)) NIL) (($ $ (-583 (-1075)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2769 (((-703) $) NIL) (((-703) $ (-990)) 16) (((-583 (-703)) $ (-583 (-990))) 20)) (-2035 ((|#2| $) NIL) (($ $ (-990)) 124)) (-3682 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-990)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-1131 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -2607 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -4094 ((-703) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 -2607 (|#2| (-377 |#1|) |#2|)) (-15 -1862 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2165 ((-2 (|:| -1580 |#2|) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -3443 (|#1| |#1| |#1|)) (-15 -3682 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2053 ((-703) |#1| |#1|)) (-15 -2607 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2046 (|#1| |#1| (-703))) (-15 -3753 (|#1| |#1| (-703))) (-15 -1405 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| (-703))) (-15 -3673 (|#1| (-1071 |#2|))) (-15 -1998 ((-1071 |#2|) |#1|)) (-15 -2099 ((-1156 |#2|) |#1| (-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2607 (|#2| |#1| |#2|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2121 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2035 (|#1| |#1| (-990))) (-15 -2096 ((-583 (-990)) |#1|)) (-15 -2629 ((-703) |#1| (-583 (-990)))) (-15 -2629 ((-703) |#1|)) (-15 -2077 (|#1| |#1| (-583 (-990)) (-583 (-703)))) (-15 -2077 (|#1| |#1| (-990) (-703))) (-15 -2210 ((-583 (-703)) |#1| (-583 (-990)))) (-15 -2210 ((-703) |#1| (-990))) (-15 -1512 ((-3 (-990) "failed") |#1|)) (-15 -2769 ((-583 (-703)) |#1| (-583 (-990)))) (-15 -2769 ((-703) |#1| (-990))) (-15 -3388 ((-990) |#1|)) (-15 -3226 ((-3 (-990) "failed") |#1|)) (-15 -2269 (|#1| (-990))) (-15 -3522 (|#1| |#1| (-583 (-990)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-990) |#1|)) (-15 -3522 (|#1| |#1| (-583 (-990)) (-583 |#2|))) (-15 -3522 (|#1| |#1| (-990) |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2769 ((-703) |#1|)) (-15 -2077 (|#1| |#2| (-703))) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2059 (|#1| |#1| (-583 (-990)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-990) (-703))) (-15 -2059 (|#1| |#1| (-583 (-990)))) (-15 -2059 (|#1| |#1| (-990))) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|))) (-1132 |#2|) (-962)) (T -1131))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2793 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1581 ((-388 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2585 (|#1|)) (-15 -3572 ((-3 |#1| "failed") |#1|)) (-15 -2607 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -4094 ((-703) |#1|)) (-15 -2928 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -1518 (|#1| |#1|)) (-15 -2607 (|#2| (-377 |#1|) |#2|)) (-15 -1862 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2165 ((-2 (|:| -1580 |#2|) (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| |#1|)) (-15 -3443 (|#1| |#1| |#1|)) (-15 -3682 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2053 ((-703) |#1| |#1|)) (-15 -2607 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2046 (|#1| |#1| (-703))) (-15 -3753 (|#1| |#1| (-703))) (-15 -1405 ((-2 (|:| -2525 |#1|) (|:| -1451 |#1|)) |#1| (-703))) (-15 -3673 (|#1| (-1071 |#2|))) (-15 -1998 ((-1071 |#2|) |#1|)) (-15 -2099 ((-1156 |#2|) |#1| (-703))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2059 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-1075) (-703))) (-15 -2059 (|#1| |#1| (-583 (-1075)))) (-15 -2059 (|#1| |#1| (-1075))) (-15 -2059 (|#1| |#1|)) (-15 -2059 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2607 (|#2| |#1| |#2|)) (-15 -3866 ((-388 |#1|) |#1|)) (-15 -2121 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -4071 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -1510 ((-388 (-1071 |#1|)) (-1071 |#1|))) (-15 -2387 ((-3 (-583 (-1071 |#1|)) "failed") (-583 (-1071 |#1|)) (-1071 |#1|))) (-15 -2035 (|#1| |#1| (-990))) (-15 -2096 ((-583 (-990)) |#1|)) (-15 -2629 ((-703) |#1| (-583 (-990)))) (-15 -2629 ((-703) |#1|)) (-15 -2077 (|#1| |#1| (-583 (-990)) (-583 (-703)))) (-15 -2077 (|#1| |#1| (-990) (-703))) (-15 -2210 ((-583 (-703)) |#1| (-583 (-990)))) (-15 -2210 ((-703) |#1| (-990))) (-15 -1512 ((-3 (-990) "failed") |#1|)) (-15 -2769 ((-583 (-703)) |#1| (-583 (-990)))) (-15 -2769 ((-703) |#1| (-990))) (-15 -3388 ((-990) |#1|)) (-15 -3226 ((-3 (-990) "failed") |#1|)) (-15 -2269 (|#1| (-990))) (-15 -3522 (|#1| |#1| (-583 (-990)) (-583 |#1|))) (-15 -3522 (|#1| |#1| (-990) |#1|)) (-15 -3522 (|#1| |#1| (-583 (-990)) (-583 |#2|))) (-15 -3522 (|#1| |#1| (-990) |#2|)) (-15 -3522 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3522 (|#1| |#1| |#1| |#1|)) (-15 -3522 (|#1| |#1| (-265 |#1|))) (-15 -3522 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2769 ((-703) |#1|)) (-15 -2077 (|#1| |#2| (-703))) (-15 -3388 ((-517) |#1|)) (-15 -3226 ((-3 (-517) "failed") |#1|)) (-15 -3388 ((-377 (-517)) |#1|)) (-15 -3226 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2269 (|#1| |#2|)) (-15 -3226 ((-3 |#2| "failed") |#1|)) (-15 -3388 (|#2| |#1|)) (-15 -2210 ((-703) |#1|)) (-15 -2035 (|#2| |#1|)) (-15 -2059 (|#1| |#1| (-583 (-990)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-990) (-703))) (-15 -2059 (|#1| |#1| (-583 (-990)))) (-15 -2059 (|#1| |#1| (-990))) (-15 -2269 (|#1| (-517))) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2099 (((-1156 |#1|) $ (-703)) 238)) (-2096 (((-583 (-990)) $) 110)) (-3673 (($ (-1071 |#1|)) 236)) (-1440 (((-1071 $) $ (-990)) 125) (((-1071 |#1|) $) 124)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2729 (($ $) 88 (|has| |#1| (-509)))) (-2566 (((-107) $) 90 (|has| |#1| (-509)))) (-2629 (((-703) $) 112) (((-703) $ (-583 (-990))) 111)) (-1250 (((-3 $ "failed") $ $) 19)) (-1784 (($ $ $) 223 (|has| |#1| (-509)))) (-2121 (((-388 (-1071 $)) (-1071 $)) 100 (|has| |#1| (-832)))) (-3088 (($ $) 98 (|has| |#1| (-421)))) (-1581 (((-388 $) $) 97 (|has| |#1| (-421)))) (-2387 (((-3 (-583 (-1071 $)) "failed") (-583 (-1071 $)) (-1071 $)) 103 (|has| |#1| (-832)))) (-3998 (((-107) $ $) 208 (|has| |#1| (-333)))) (-3753 (($ $ (-703)) 231)) (-2046 (($ $ (-703)) 230)) (-1862 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-953 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-953 (-517)))) (((-3 (-990) "failed") $) 136)) (-3388 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-953 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-953 (-517)))) (((-990) $) 135)) (-2272 (($ $ $ (-990)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2378 (($ $ $) 212 (|has| |#1| (-333)))) (-2371 (($ $) 154)) (-2306 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 (-517))) (|:| |vec| (-1156 (-517)))) (-623 $) (-1156 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2831 (-623 |#1|)) (|:| |vec| (-1156 |#1|))) (-623 $) (-1156 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 211 (|has| |#1| (-333)))) (-1352 (($ $ $) 229)) (-3443 (($ $ $) 220 (|has| |#1| (-509)))) (-2165 (((-2 (|:| -1580 |#1|) (|:| -2525 $) (|:| -1451 $)) $ $) 219 (|has| |#1| (-509)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-2186 (($ $) 176 (|has| |#1| (-421))) (($ $ (-990)) 105 (|has| |#1| (-421)))) (-2358 (((-583 $) $) 109)) (-2963 (((-107) $) 96 (|has| |#1| (-832)))) (-2027 (($ $ |#1| (-703) $) 172)) (-2399 (((-812 (-349) $) $ (-815 (-349)) (-812 (-349) $)) 84 (-12 (|has| (-990) (-809 (-349))) (|has| |#1| (-809 (-349))))) (((-812 (-517) $) $ (-815 (-517)) (-812 (-517) $)) 83 (-12 (|has| (-990) (-809 (-517))) (|has| |#1| (-809 (-517)))))) (-2053 (((-703) $ $) 224 (|has| |#1| (-509)))) (-1865 (((-107) $) 31)) (-1942 (((-703) $) 169)) (-3572 (((-3 $ "failed") $) 204 (|has| |#1| (-1051)))) (-2086 (($ (-1071 |#1|) (-990)) 117) (($ (-1071 $) (-990)) 116)) (-2588 (($ $ (-703)) 235)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-3370 (((-583 $) $) 126)) (-1960 (((-107) $) 152)) (-2077 (($ |#1| (-703)) 153) (($ $ (-990) (-703)) 119) (($ $ (-583 (-990)) (-583 (-703))) 118)) (-2760 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $ (-990)) 120) (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 233)) (-2210 (((-703) $) 170) (((-703) $ (-990)) 122) (((-583 (-703)) $ (-583 (-990))) 121)) (-3456 (($ $ $) 79 (|has| |#1| (-779)))) (-4082 (($ $ $) 78 (|has| |#1| (-779)))) (-3200 (($ (-1 (-703) (-703)) $) 171)) (-3308 (($ (-1 |#1| |#1|) $) 151)) (-1998 (((-1071 |#1|) $) 237)) (-1512 (((-3 (-990) "failed") $) 123)) (-2333 (($ $) 149)) (-2345 ((|#1| $) 148)) (-2330 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1895 (((-1058) $) 9)) (-1405 (((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703)) 232)) (-3807 (((-3 (-583 $) "failed") $) 114)) (-2875 (((-3 (-583 $) "failed") $) 115)) (-1812 (((-3 (-2 (|:| |var| (-990)) (|:| -2356 (-703))) "failed") $) 113)) (-1518 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2585 (($) 203 (|has| |#1| (-1051)) CONST)) (-4123 (((-1022) $) 10)) (-2308 (((-107) $) 166)) (-2319 ((|#1| $) 167)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 95 (|has| |#1| (-421)))) (-2368 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-1510 (((-388 (-1071 $)) (-1071 $)) 102 (|has| |#1| (-832)))) (-4071 (((-388 (-1071 $)) (-1071 $)) 101 (|has| |#1| (-832)))) (-3866 (((-388 $) $) 99 (|has| |#1| (-832)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 213 (|has| |#1| (-333)))) (-2327 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-3522 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-990) |#1|) 141) (($ $ (-583 (-990)) (-583 |#1|)) 140) (($ $ (-990) $) 139) (($ $ (-583 (-990)) (-583 $)) 138)) (-4094 (((-703) $) 209 (|has| |#1| (-333)))) (-2607 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-1596 (((-3 $ "failed") $ (-703)) 234)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 210 (|has| |#1| (-333)))) (-4032 (($ $ (-990)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2059 (($ $ (-990)) 42) (($ $ (-583 (-990))) 41) (($ $ (-990) (-703)) 40) (($ $ (-583 (-990)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1075)) 250 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 249 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 248 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 247 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2769 (((-703) $) 150) (((-703) $ (-990)) 130) (((-583 (-703)) $ (-583 (-990))) 129)) (-3357 (((-815 (-349)) $) 82 (-12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349)))))) (((-815 (-517)) $) 81 (-12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517)))))) (((-493) $) 80 (-12 (|has| (-990) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-2035 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-990)) 106 (|has| |#1| (-421)))) (-3024 (((-3 (-1156 $) "failed") (-623 $)) 104 (-3992 (|has| $ (-132)) (|has| |#1| (-832))))) (-3682 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-990)) 137) (($ (-377 (-517))) 72 (-3745 (|has| |#1| (-953 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-2907 (((-583 |#1|) $) 168)) (-3952 ((|#1| $ (-703)) 155) (($ $ (-990) (-703)) 128) (($ $ (-583 (-990)) (-583 (-703))) 127)) (-2650 (((-3 $ "failed") $) 73 (-3745 (-3992 (|has| $ (-132)) (|has| |#1| (-832))) (|has| |#1| (-132))))) (-2950 (((-703)) 29)) (-3510 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2914 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-990)) 38) (($ $ (-583 (-990))) 37) (($ $ (-990) (-703)) 36) (($ $ (-583 (-990)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1075)) 246 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075))) 245 (|has| |#1| (-823 (-1075)))) (($ $ (-1075) (-703)) 244 (|has| |#1| (-823 (-1075)))) (($ $ (-583 (-1075)) (-583 (-703))) 243 (|has| |#1| (-823 (-1075)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1641 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 6)) (-1629 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1703 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1132 |#1|) (-1187) (-962)) (T -1132))
+((-2099 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1132 *4)) (-4 *4 (-962)) (-5 *2 (-1156 *4)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-5 *2 (-1071 *3)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-962)) (-4 *1 (-1132 *3)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))) (-1596 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))) (-2760 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-1132 *3)))) (-1405 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-1132 *4)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))) (-1352 (*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)))) (-2059 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-156)))) (-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-156)))) (-2607 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-4 *3 (-509)))) (-2053 (*1 *2 *1 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))) (-3682 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))) (-3682 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-4 *3 (-509)))) (-3443 (*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1580 *3) (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-1132 *3)))) (-1862 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1132 *3)))) (-2607 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517)))))))
+(-13 (-872 |t#1| (-703) (-990)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -2099 ((-1156 |t#1|) $ (-703))) (-15 -1998 ((-1071 |t#1|) $)) (-15 -3673 ($ (-1071 |t#1|))) (-15 -2588 ($ $ (-703))) (-15 -1596 ((-3 $ "failed") $ (-703))) (-15 -2760 ((-2 (|:| -2525 $) (|:| -1451 $)) $ $)) (-15 -1405 ((-2 (|:| -2525 $) (|:| -1451 $)) $ (-703))) (-15 -3753 ($ $ (-703))) (-15 -2046 ($ $ (-703))) (-15 -1352 ($ $ $)) (-15 -2059 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -4032 (|t#1| $)) (-15 -2272 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -2607 ((-377 $) (-377 $) (-377 $))) (-15 -2053 ((-703) $ $)) (-15 -1784 ($ $ $)) (-15 -3682 ((-3 $ "failed") $ $)) (-15 -3682 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -3443 ($ $ $)) (-15 -2165 ((-2 (|:| -1580 |t#1|) (|:| -2525 $) (|:| -1451 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (-15 -1862 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4186) (-15 -2607 (|t#1| (-377 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -1518 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-990) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-815 (-349))) -12 (|has| (-990) (-558 (-815 (-349)))) (|has| |#1| (-558 (-815 (-349))))) ((-558 (-815 (-517))) -12 (|has| (-990) (-558 (-815 (-517)))) (|has| |#1| (-558 (-815 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| #0#) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3745 (|has| |#1| (-832)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 #2=(-990) |#1|) . T) ((-478 #2# $) . T) ((-478 $ $) . T) ((-509) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-823 #2#) . T) ((-823 (-1075)) |has| |#1| (-823 (-1075))) ((-809 (-349)) -12 (|has| (-990) (-809 (-349))) (|has| |#1| (-809 (-349)))) ((-809 (-517)) -12 (|has| (-990) (-809 (-517))) (|has| |#1| (-809 (-517)))) ((-872 |#1| #0# #2#) . T) ((-832) |has| |#1| (-832)) ((-843) |has| |#1| (-333)) ((-953 (-377 (-517))) |has| |#1| (-953 (-377 (-517)))) ((-953 (-517)) |has| |#1| (-953 (-517))) ((-953 #2#) . T) ((-953 |#1|) . T) ((-968 #1#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-832)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1051) |has| |#1| (-1051)) ((-1114) |has| |#1| (-832)))
+((-2096 (((-583 (-990)) $) 28)) (-2371 (($ $) 25)) (-2077 (($ |#2| |#3|) NIL) (($ $ (-990) |#3|) 22) (($ $ (-583 (-990)) (-583 |#3|)) 20)) (-2333 (($ $) 14)) (-2345 ((|#2| $) 12)) (-2769 ((|#3| $) 10)))
+(((-1133 |#1| |#2| |#3|) (-10 -8 (-15 -2096 ((-583 (-990)) |#1|)) (-15 -2077 (|#1| |#1| (-583 (-990)) (-583 |#3|))) (-15 -2077 (|#1| |#1| (-990) |#3|)) (-15 -2371 (|#1| |#1|)) (-15 -2077 (|#1| |#2| |#3|)) (-15 -2769 (|#3| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2345 (|#2| |#1|))) (-1134 |#2| |#3|) (-962) (-724)) (T -1133))
+NIL
+(-10 -8 (-15 -2096 ((-583 (-990)) |#1|)) (-15 -2077 (|#1| |#1| (-583 (-990)) (-583 |#3|))) (-15 -2077 (|#1| |#1| (-990) |#3|)) (-15 -2371 (|#1| |#1|)) (-15 -2077 (|#1| |#2| |#3|)) (-15 -2769 (|#3| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2345 (|#2| |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3349 (((-1056 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-2098 (((-107) $) 73)) (-2053 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1865 (((-107) $) 31)) (-2588 (($ $ (-844)) 101)) (-1960 (((-107) $) 62)) (-2077 (($ |#1| |#2|) 61) (($ $ (-990) |#2|) 76) (($ $ (-583 (-990)) (-583 |#2|)) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2640 (($ $ |#2|) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2607 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1016)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1075) (-703)) 88 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1075))) 87 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1075)) 86 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2769 ((|#2| $) 64)) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3952 ((|#1| $ |#2|) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2202 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1075) (-703)) 92 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1075))) 91 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1075)) 90 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1134 |#1| |#2|) (-1187) (-962) (-724)) (T -1134))
+((-3349 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-1056 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2607 (*1 *2 *1 *3) (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (-5 *2 (-1075)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-2053 (*1 *2 *1 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-3509 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-2202 (*1 *2 *1 *3) (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2269 (*2 (-1075)))) (-4 *2 (-962)))) (-2640 (*1 *1 *1 *2) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))) (-3522 (*1 *2 *1 *3) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1056 *3)))))
+(-13 (-891 |t#1| |t#2| (-990)) (-10 -8 (-15 -3349 ((-1056 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2607 (|t#1| $ |t#2|)) (-15 -3750 ((-1075) $)) (-15 -3567 (|t#1| $)) (-15 -2588 ($ $ (-844))) (-15 -2053 (|t#2| $)) (-15 -2053 (|t#2| $ |t#2|)) (-15 -3509 ($ $ |t#2|)) (-15 -3509 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2269 (|t#1| (-1075)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2202 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2640 ($ $ |t#2|)) (IF (|has| |t#2| (-1016)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-823 (-1075))) (-6 (-823 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3522 ((-1056 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1016)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-823 (-1075)))) ((-891 |#1| |#2| (-990)) . T) ((-968 #0#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-3088 ((|#2| |#2|) 12)) (-1581 (((-388 |#2|) |#2|) 14)) (-4061 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
+(((-1135 |#1| |#2|) (-10 -7 (-15 -1581 ((-388 |#2|) |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -4061 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1132 |#1|) (-509) (-10 -8 (-15 -2368 ($ $ $))))) (T -1135))
+((-4061 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1132 *3) (-509) (-10 -8 (-15 -2368 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1135 *3 *4)))) (-3088 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-13 (-1132 *3) (-509) (-10 -8 (-15 -2368 ($ $ $))))))) (-1581 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-13 (-1132 *4) (-509) (-10 -8 (-15 -2368 ($ $ $))))))))
+(-10 -7 (-15 -1581 ((-388 |#2|) |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -4061 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
+((-3308 (((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)) 23)))
+(((-1136 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3308 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|)))) (-962) (-962) (-1075) (-1075) |#1| |#2|) (T -1136))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1136 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1075)))))
+(-10 -7 (-15 -3308 ((-1141 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1141 |#1| |#3| |#5|))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1646 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 162 (|has| |#1| (-333)))) (-1581 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3879 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1622 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1669 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-2378 (($ $ $) 157 (|has| |#1| (-333)))) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2963 (((-107) $) 164 (|has| |#1| (-333)))) (-2098 (((-107) $) 73)) (-2115 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) 101) (($ $ (-377 (-517))) 171)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1960 (((-107) $) 62)) (-2077 (($ |#1| (-377 (-517))) 61) (($ $ (-990) (-377 (-517))) 76) (($ $ (-583 (-990)) (-583 (-377 (-517)))) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-1225 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-2330 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1895 (((-1058) $) 9)) (-2298 (($ $) 165 (|has| |#1| (-333)))) (-1518 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 169 (-3745 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1096)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 150 (|has| |#1| (-333)))) (-2368 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3866 (((-388 $) $) 161 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 158 (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3868 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) 154 (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 155 (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075) (-703)) 88 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1075))) 87 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075)) 86 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-2769 (((-377 (-517)) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-1721 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1695 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075) (-703)) 92 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1075))) 91 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075)) 90 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1137 |#1|) (-1187) (-962)) (T -1137))
+((-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1137 *4)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1137 *3)) (-4 *3 (-962)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517)))))) (-1518 (*1 *1 *1 *2) (-3745 (-12 (-5 *2 (-1075)) (-4 *1 (-1137 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1137 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -2096 ((-583 *2) *3))) (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1134 |t#1| (-377 (-517))) (-10 -8 (-15 -3431 ($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -2588 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $)) (IF (|has| |t#1| (-15 -1518 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -2096 ((-583 (-1075)) |t#1|))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1096)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1096))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1016)) ((-262) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))) ((-891 |#1| #0# (-990)) . T) ((-843) |has| |#1| (-333)) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-968 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))) ((-1114) |has| |#1| (-333)) ((-1134 |#1| #0#) . T))
+((-2033 (((-107) $) 12)) (-3226 (((-3 |#3| "failed") $) 17)) (-3388 ((|#3| $) 14)))
+(((-1138 |#1| |#2| |#3|) (-10 -8 (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2033 ((-107) |#1|))) (-1139 |#2| |#3|) (-962) (-1116 |#2|)) (T -1138))
+NIL
+(-10 -8 (-15 -3388 (|#3| |#1|)) (-15 -3226 ((-3 |#3| "failed") |#1|)) (-15 -2033 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1646 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 162 (|has| |#1| (-333)))) (-1581 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3879 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1622 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1669 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#2| "failed") $) 183)) (-3388 ((|#2| $) 182)) (-2378 (($ $ $) 157 (|has| |#1| (-333)))) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-2599 (((-377 (-517)) $) 180)) (-2354 (($ $ $) 156 (|has| |#1| (-333)))) (-2164 (($ (-377 (-517)) |#2|) 181)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2963 (((-107) $) 164 (|has| |#1| (-333)))) (-2098 (((-107) $) 73)) (-2115 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) 101) (($ $ (-377 (-517))) 171)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-1960 (((-107) $) 62)) (-2077 (($ |#1| (-377 (-517))) 61) (($ $ (-990) (-377 (-517))) 76) (($ $ (-583 (-990)) (-583 (-377 (-517)))) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-1225 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-2330 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3627 ((|#2| $) 179)) (-3255 (((-3 |#2| "failed") $) 177)) (-2153 ((|#2| $) 178)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 165 (|has| |#1| (-333)))) (-1518 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 169 (-3745 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1096)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 150 (|has| |#1| (-333)))) (-2368 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3866 (((-388 $) $) 161 (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 158 (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3868 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) 154 (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 155 (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075) (-703)) 88 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1075))) 87 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075)) 86 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-2769 (((-377 (-517)) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-1721 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1695 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075) (-703)) 92 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1075))) 91 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1075)) 90 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1139 |#1| |#2|) (-1187) (-962) (-1116 |t#1|)) (T -1139))
+((-2769 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1116 *3)) (-5 *2 (-377 (-517))))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-1139 *3 *2)) (-4 *2 (-1116 *3)))) (-2164 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-962)) (-4 *1 (-1139 *4 *3)) (-4 *3 (-1116 *4)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1116 *3)) (-5 *2 (-377 (-517))))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1116 *3)))) (-2153 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1116 *3)))) (-3255 (*1 *2 *1) (|partial| -12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1116 *3)))))
+(-13 (-1137 |t#1|) (-953 |t#2|) (-10 -8 (-15 -2164 ($ (-377 (-517)) |t#2|)) (-15 -2599 ((-377 (-517)) $)) (-15 -3627 (|t#2| $)) (-15 -2769 ((-377 (-517)) $)) (-15 -2269 ($ |t#2|)) (-15 -2153 (|t#2| $)) (-15 -3255 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1016)) ((-262) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075)))) ((-891 |#1| #0# (-990)) . T) ((-843) |has| |#1| (-333)) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-953 |#2|) . T) ((-968 #1#) -3745 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))) ((-1114) |has| |#1| (-333)) ((-1134 |#1| #0#) . T) ((-1137 |#1|) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 96)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1646 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1669 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL)) (-3388 ((|#2| $) NIL)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) 79)) (-2599 (((-377 (-517)) $) 12)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2164 (($ (-377 (-517)) |#2|) 10)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2098 (((-107) $) 68)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) 120) (($ $ (-377 (-517))) 118)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-377 (-517))) 31) (($ $ (-990) (-377 (-517))) NIL) (($ $ (-583 (-990)) (-583 (-377 (-517)))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) 115)) (-1225 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3627 ((|#2| $) 11)) (-3255 (((-3 |#2| "failed") $) 41)) (-2153 ((|#2| $) 42)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) 93 (|has| |#1| (-333)))) (-1518 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 140 (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096)))))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) 112)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-2769 (((-377 (-517)) $) 16)) (-1682 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 110)) (-2269 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) 99)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) 117)) (-3567 ((|#1| $) 98)) (-1721 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 21 T CONST)) (-3617 (($) 17 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) 66)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1691 (($ $) 131) (($ $ $) 72)) (-1677 (($ $ $) 70)) (** (($ $ (-844)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1140 |#1| |#2|) (-1139 |#1| |#2|) (-962) (-1116 |#1|)) (T -1140))
+NIL
+(-1139 |#1| |#2|)
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 11)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) NIL (|has| |#1| (-509)))) (-3509 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3349 (((-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3088 (($ $) NIL (|has| |#1| (-333)))) (-1581 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3998 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-703) (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-1120 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1148 |#1| |#2| |#3|) "failed") $) 22)) (-3388 (((-1120 |#1| |#2| |#3|) $) NIL) (((-1148 |#1| |#2| |#3|) $) NIL)) (-2378 (($ $ $) NIL (|has| |#1| (-333)))) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-2599 (((-377 (-517)) $) 57)) (-2354 (($ $ $) NIL (|has| |#1| (-333)))) (-2164 (($ (-377 (-517)) (-1120 |#1| |#2| |#3|)) NIL)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2963 (((-107) $) NIL (|has| |#1| (-333)))) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1865 (((-107) $) NIL)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) NIL) (($ $ (-377 (-517))) NIL)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-377 (-517))) 29) (($ $ (-990) (-377 (-517))) NIL) (($ $ (-583 (-990)) (-583 (-377 (-517)))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-2330 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3627 (((-1120 |#1| |#2| |#3|) $) 60)) (-3255 (((-3 (-1120 |#1| |#2| |#3|) "failed") $) NIL)) (-2153 (((-1120 |#1| |#2| |#3|) $) NIL)) (-1895 (((-1058) $) NIL)) (-2298 (($ $) NIL (|has| |#1| (-333)))) (-1518 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) NIL (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) NIL (|has| |#1| (-333)))) (-2368 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3866 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1334 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) NIL (|has| |#1| (-333)))) (-2640 (($ $ (-377 (-517))) NIL)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1456 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-4094 (((-703) $) NIL (|has| |#1| (-333)))) (-2607 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1016)))) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) NIL (|has| |#1| (-333)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1152 |#2|)) 37)) (-2769 (((-377 (-517)) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) NIL)) (-2269 (((-787) $) 88) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1120 |#1| |#2| |#3|)) 16) (($ (-1148 |#1| |#2| |#3|)) 17) (($ (-1152 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-3952 ((|#1| $ (-377 (-517))) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 12)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3608 (($) 31 T CONST)) (-3617 (($) 26 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 33)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1141 |#1| |#2| |#3|) (-13 (-1139 |#1| (-1120 |#1| |#2| |#3|)) (-953 (-1148 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1141))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1139 |#1| (-1120 |#1| |#2| |#3|)) (-953 (-1148 |#1| |#2| |#3|)) (-10 -8 (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 32)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL)) (-2729 (($ $) NIL)) (-2566 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 (-517) "failed") $) NIL (|has| (-1141 |#2| |#3| |#4|) (-953 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1141 |#2| |#3| |#4|) (-953 (-377 (-517))))) (((-3 (-1141 |#2| |#3| |#4|) "failed") $) 20)) (-3388 (((-517) $) NIL (|has| (-1141 |#2| |#3| |#4|) (-953 (-517)))) (((-377 (-517)) $) NIL (|has| (-1141 |#2| |#3| |#4|) (-953 (-377 (-517))))) (((-1141 |#2| |#3| |#4|) $) NIL)) (-2371 (($ $) 33)) (-3163 (((-3 $ "failed") $) 25)) (-2186 (($ $) NIL (|has| (-1141 |#2| |#3| |#4|) (-421)))) (-2027 (($ $ (-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) 11)) (-1960 (((-107) $) NIL)) (-2077 (($ (-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-2210 (((-289 |#2| |#3| |#4|) $) NIL)) (-3200 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-3308 (($ (-1 (-1141 |#2| |#3| |#4|) (-1141 |#2| |#3| |#4|)) $) NIL)) (-2297 (((-3 (-772 |#2|) "failed") $) 73)) (-2333 (($ $) NIL)) (-2345 (((-1141 |#2| |#3| |#4|) $) 18)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2308 (((-107) $) NIL)) (-2319 (((-1141 |#2| |#3| |#4|) $) NIL)) (-2327 (((-3 $ "failed") $ (-1141 |#2| |#3| |#4|)) NIL (|has| (-1141 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-2761 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1141 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1058))) "failed") $) 56)) (-2769 (((-289 |#2| |#3| |#4|) $) 14)) (-2035 (((-1141 |#2| |#3| |#4|) $) NIL (|has| (-1141 |#2| |#3| |#4|) (-421)))) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1141 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3745 (|has| (-1141 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1141 |#2| |#3| |#4|) (-953 (-377 (-517))))))) (-2907 (((-583 (-1141 |#2| |#3| |#4|)) $) NIL)) (-3952 (((-1141 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-2650 (((-3 $ "failed") $) NIL (|has| (-1141 |#2| |#3| |#4|) (-132)))) (-2950 (((-703)) NIL)) (-3510 (($ $ $ (-703)) NIL (|has| (-1141 |#2| |#3| |#4|) (-156)))) (-2914 (((-107) $ $) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 61 T CONST)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ (-1141 |#2| |#3| |#4|)) NIL (|has| (-1141 |#2| |#3| |#4|) (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1141 |#2| |#3| |#4|)) NIL) (($ (-1141 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1141 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1141 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
+(((-1142 |#1| |#2| |#3| |#4|) (-13 (-296 (-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -2297 ((-3 (-772 |#2|) "failed") $)) (-15 -2761 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1141 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1058))) "failed") $)))) (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1096) (-400 |#1|)) (-1075) |#2|) (T -1142))
+((-2297 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075)) (-14 *6 *4))) (-2761 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1141 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1058)))) (-5 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075)) (-14 *6 *4))))
+(-13 (-296 (-1141 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -2297 ((-3 (-772 |#2|) "failed") $)) (-15 -2761 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1141 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1058))) "failed") $))))
+((-3119 ((|#2| $) 29)) (-2584 ((|#2| $) 18)) (-1540 (($ $) 36)) (-4137 (($ $ (-517)) 64)) (-2670 (((-107) $ (-703)) 33)) (-2482 ((|#2| $ |#2|) 61)) (-2452 ((|#2| $ |#2|) 59)) (-2443 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1374 (($ $ (-583 $)) 60)) (-2574 ((|#2| $) 17)) (-2437 (($ $) NIL) (($ $ (-703)) 42)) (-1345 (((-583 $) $) 26)) (-1528 (((-107) $ $) 50)) (-2361 (((-107) $ (-703)) 32)) (-4043 (((-107) $ (-703)) 31)) (-4141 (((-107) $) 28)) (-1445 ((|#2| $) 24) (($ $ (-703)) 46)) (-2607 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1657 (((-107) $) 22)) (-3769 (($ $) 39)) (-1457 (($ $) 65)) (-3277 (((-703) $) 41)) (-2573 (($ $) 40)) (-4108 (($ $ $) 58) (($ |#2| $) NIL)) (-1497 (((-583 $) $) 27)) (-1583 (((-107) $ $) 48)) (-3533 (((-703) $) 35)))
+(((-1143 |#1| |#2|) (-10 -8 (-15 -4137 (|#1| |#1| (-517))) (-15 -2443 (|#2| |#1| "last" |#2|)) (-15 -2452 (|#2| |#1| |#2|)) (-15 -2443 (|#1| |#1| "rest" |#1|)) (-15 -2443 (|#2| |#1| "first" |#2|)) (-15 -1457 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3277 ((-703) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2584 (|#2| |#1|)) (-15 -2574 (|#2| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "last")) (-15 -1445 (|#2| |#1|)) (-15 -2437 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| "rest")) (-15 -2437 (|#1| |#1|)) (-15 -2607 (|#2| |#1| "first")) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -2482 (|#2| |#1| |#2|)) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -1374 (|#1| |#1| (-583 |#1|))) (-15 -1528 ((-107) |#1| |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -3119 (|#2| |#1|)) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703)))) (-1144 |#2|) (-1110)) (T -1143))
+NIL
+(-10 -8 (-15 -4137 (|#1| |#1| (-517))) (-15 -2443 (|#2| |#1| "last" |#2|)) (-15 -2452 (|#2| |#1| |#2|)) (-15 -2443 (|#1| |#1| "rest" |#1|)) (-15 -2443 (|#2| |#1| "first" |#2|)) (-15 -1457 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3277 ((-703) |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -2584 (|#2| |#1|)) (-15 -2574 (|#2| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1445 (|#1| |#1| (-703))) (-15 -2607 (|#2| |#1| "last")) (-15 -1445 (|#2| |#1|)) (-15 -2437 (|#1| |#1| (-703))) (-15 -2607 (|#1| |#1| "rest")) (-15 -2437 (|#1| |#1|)) (-15 -2607 (|#2| |#1| "first")) (-15 -4108 (|#1| |#2| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -2482 (|#2| |#1| |#2|)) (-15 -2443 (|#2| |#1| "value" |#2|)) (-15 -1374 (|#1| |#1| (-583 |#1|))) (-15 -1528 ((-107) |#1| |#1|)) (-15 -1657 ((-107) |#1|)) (-15 -2607 (|#2| |#1| "value")) (-15 -3119 (|#2| |#1|)) (-15 -4141 ((-107) |#1|)) (-15 -1345 ((-583 |#1|) |#1|)) (-15 -1497 ((-583 |#1|) |#1|)) (-15 -1583 ((-107) |#1| |#1|)) (-15 -3533 ((-703) |#1|)) (-15 -2670 ((-107) |#1| (-703))) (-15 -2361 ((-107) |#1| (-703))) (-15 -4043 ((-107) |#1| (-703))))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3119 ((|#1| $) 48)) (-2584 ((|#1| $) 65)) (-1540 (($ $) 67)) (-4137 (($ $ (-517)) 52 (|has| $ (-6 -4191)))) (-2670 (((-107) $ (-703)) 8)) (-2482 ((|#1| $ |#1|) 39 (|has| $ (-6 -4191)))) (-3953 (($ $ $) 56 (|has| $ (-6 -4191)))) (-2452 ((|#1| $ |#1|) 54 (|has| $ (-6 -4191)))) (-1312 ((|#1| $ |#1|) 58 (|has| $ (-6 -4191)))) (-2443 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4191))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4191))) (($ $ "rest" $) 55 (|has| $ (-6 -4191))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4191)))) (-1374 (($ $ (-583 $)) 41 (|has| $ (-6 -4191)))) (-2574 ((|#1| $) 66)) (-1681 (($) 7 T CONST)) (-2437 (($ $) 73) (($ $ (-703)) 71)) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-1345 (((-583 $) $) 50)) (-1528 (((-107) $ $) 42 (|has| |#1| (-1004)))) (-2361 (((-107) $ (-703)) 9)) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35)) (-4043 (((-107) $ (-703)) 10)) (-1938 (((-583 |#1|) $) 45)) (-4141 (((-107) $) 49)) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1445 ((|#1| $) 70) (($ $ (-703)) 68)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 76) (($ $ (-703)) 74)) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2093 (((-517) $ $) 44)) (-1657 (((-107) $) 46)) (-3769 (($ $) 62)) (-1457 (($ $) 59 (|has| $ (-6 -4191)))) (-3277 (((-703) $) 63)) (-2573 (($ $) 64)) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2460 (($ $) 13)) (-1718 (($ $ $) 61 (|has| $ (-6 -4191))) (($ $ |#1|) 60 (|has| $ (-6 -4191)))) (-4108 (($ $ $) 78) (($ |#1| $) 77)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1497 (((-583 $) $) 51)) (-2198 (((-107) $ $) 43 (|has| |#1| (-1004)))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1144 |#1|) (-1187) (-1110)) (T -1144))
+((-4108 (*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-4108 (*1 *1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2427 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110)))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1144 *3)) (-4 *3 (-1110)))) (-2437 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110)))) (-1445 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-1445 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2573 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-1718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-1718 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-1457 (*1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-1312 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2443 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-3953 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *3)) (-4 *3 (-1110)))) (-2452 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-2443 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4191)) (-4 *1 (-1144 *3)) (-4 *3 (-1110)))))
+(-13 (-927 |t#1|) (-10 -8 (-15 -4108 ($ $ $)) (-15 -4108 ($ |t#1| $)) (-15 -2427 (|t#1| $)) (-15 -2607 (|t#1| $ "first")) (-15 -2427 ($ $ (-703))) (-15 -2437 ($ $)) (-15 -2607 ($ $ "rest")) (-15 -2437 ($ $ (-703))) (-15 -1445 (|t#1| $)) (-15 -2607 (|t#1| $ "last")) (-15 -1445 ($ $ (-703))) (-15 -1540 ($ $)) (-15 -2574 (|t#1| $)) (-15 -2584 (|t#1| $)) (-15 -2573 ($ $)) (-15 -3277 ((-703) $)) (-15 -3769 ($ $)) (IF (|has| $ (-6 -4191)) (PROGN (-15 -1718 ($ $ $)) (-15 -1718 ($ $ |t#1|)) (-15 -1457 ($ $)) (-15 -1312 (|t#1| $ |t#1|)) (-15 -2443 (|t#1| $ "first" |t#1|)) (-15 -3953 ($ $ $)) (-15 -2443 ($ $ "rest" $)) (-15 -2452 (|t#1| $ |t#1|)) (-15 -2443 (|t#1| $ "last" |t#1|)) (-15 -4137 ($ $ (-517)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1004)) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-927 |#1|) . T) ((-1004) |has| |#1| (-1004)) ((-1110) . T))
+((-3308 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1147 |#1|) (-1147 |#2|)) (T -1145))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1147 *6)) (-5 *1 (-1145 *5 *6 *4 *2)) (-4 *4 (-1147 *5)))))
+(-10 -7 (-15 -3308 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2033 (((-107) $) 15)) (-1646 (($ $) 91)) (-1493 (($ $) 67)) (-1622 (($ $) 87)) (-1470 (($ $) 63)) (-1669 (($ $) 95)) (-1519 (($ $) 71)) (-1225 (($ $) 61)) (-3868 (($ $) 59)) (-1682 (($ $) 97)) (-1532 (($ $) 73)) (-1656 (($ $) 93)) (-1506 (($ $) 69)) (-1632 (($ $) 89)) (-1482 (($ $) 65)) (-2269 (((-787) $) 47) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1721 (($ $) 103)) (-1575 (($ $) 79)) (-1695 (($ $) 99)) (-1547 (($ $) 75)) (-3487 (($ $) 107)) (-1599 (($ $) 83)) (-2822 (($ $) 109)) (-1612 (($ $) 85)) (-1735 (($ $) 105)) (-1588 (($ $) 81)) (-1708 (($ $) 101)) (-1561 (($ $) 77)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-377 (-517))) 57)))
+(((-1146 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1493 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1225 (|#1| |#1|)) (-15 -3868 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2033 ((-107) |#1|)) (-15 -2269 ((-787) |#1|))) (-1147 |#2|) (-962)) (T -1146))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1493 (|#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1708 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1225 (|#1| |#1|)) (-15 -3868 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#2|)) (-15 -2269 (|#1| |#1|)) (-15 -2269 (|#1| (-377 (-517)))) (-15 -2269 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-844))) (-15 -2033 ((-107) |#1|)) (-15 -2269 ((-787) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-2096 (((-583 (-990)) $) 74)) (-3750 (((-1075) $) 103)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2729 (($ $) 52 (|has| |#1| (-509)))) (-2566 (((-107) $) 54 (|has| |#1| (-509)))) (-3509 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-3349 (((-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1646 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) 19)) (-3879 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1056 |#1|)) 153)) (-1669 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) 17 T CONST)) (-2371 (($ $) 60)) (-3163 (((-3 $ "failed") $) 34)) (-1714 (($ $) 152)) (-2912 (((-875 |#1|) $ (-703)) 150) (((-875 |#1|) $ (-703) (-703)) 149)) (-2098 (((-107) $) 73)) (-2115 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $) 100) (((-703) $ (-703)) 99)) (-1865 (((-107) $) 31)) (-1484 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2588 (($ $ (-844)) 101)) (-3843 (($ (-1 |#1| (-517)) $) 151)) (-1960 (((-107) $) 62)) (-2077 (($ |#1| (-703)) 61) (($ $ (-990) (-703)) 76) (($ $ (-583 (-990)) (-583 (-703))) 75)) (-3308 (($ (-1 |#1| |#1|) $) 63)) (-1225 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) 65)) (-2345 ((|#1| $) 66)) (-1895 (((-1058) $) 9)) (-1518 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 146 (-3745 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-881)) (|has| |#1| (-1096)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4123 (((-1022) $) 10)) (-2640 (($ $ (-703)) 95)) (-2327 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3868 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3522 (((-1056 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2607 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1016)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) 89 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1075) (-703)) 88 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1075))) 87 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1075)) 86 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-2769 (((-703) $) 64)) (-1682 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 72)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2907 (((-1056 |#1|) $) 154)) (-3952 ((|#1| $ (-703)) 59)) (-2650 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2950 (((-703)) 29)) (-3567 ((|#1| $) 102)) (-1721 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1695 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) 93 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1075) (-703)) 92 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1075))) 91 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1075)) 90 (-12 (|has| |#1| (-823 (-1075))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1147 |#1|) (-1187) (-962)) (T -1147))
+((-3431 (*1 *1 *2) (-12 (-5 *2 (-1056 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1147 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-962)) (-5 *2 (-1056 *3)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-4 *1 (-1147 *3)))) (-1714 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)))) (-3843 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1147 *3)) (-4 *3 (-962)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1147 *4)) (-4 *4 (-962)) (-5 *2 (-875 *4)))) (-2912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1147 *4)) (-4 *4 (-962)) (-5 *2 (-875 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)) (-4 *2 (-333)))) (-1518 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517)))))) (-1518 (*1 *1 *1 *2) (-3745 (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -2096 ((-583 *2) *3))) (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1134 |t#1| (-703)) (-10 -8 (-15 -3431 ($ (-1056 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -2907 ((-1056 |t#1|) $)) (-15 -3431 ($ (-1056 |t#1|))) (-15 -1714 ($ $)) (-15 -3843 ($ (-1 |t#1| (-517)) $)) (-15 -2912 ((-875 |t#1|) $ (-703))) (-15 -2912 ((-875 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1518 ($ $)) (IF (|has| |t#1| (-15 -1518 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -2096 ((-583 (-1075)) |t#1|))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1096)) (IF (|has| |t#1| (-881)) (IF (|has| |t#1| (-29 (-517))) (-15 -1518 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-919)) (-6 (-1096))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1016)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-823 (-1075)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075)))) ((-891 |#1| #0# (-990)) . T) ((-919) |has| |#1| (-37 (-377 (-517)))) ((-968 #1#) |has| |#1| (-37 (-377 (-517)))) ((-968 |#1|) . T) ((-968 $) -3745 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1096) |has| |#1| (-37 (-377 (-517)))) ((-1099) |has| |#1| (-37 (-377 (-517)))) ((-1134 |#1| #0#) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-2096 (((-583 (-990)) $) NIL)) (-3750 (((-1075) $) 87)) (-1301 (((-1129 |#2| |#1|) $ (-703)) 73)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2729 (($ $) NIL (|has| |#1| (-509)))) (-2566 (((-107) $) 136 (|has| |#1| (-509)))) (-3509 (($ $ (-703)) 121) (($ $ (-703) (-703)) 123)) (-3349 (((-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1646 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1493 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1250 (((-3 $ "failed") $ $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1470 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3431 (($ (-1056 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1056 |#1|)) NIL)) (-1669 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1519 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1681 (($) NIL T CONST)) (-1801 (($ $) 127)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-1714 (($ $) 134)) (-2912 (((-875 |#1|) $ (-703)) 63) (((-875 |#1|) $ (-703) (-703)) 65)) (-2098 (((-107) $) NIL)) (-2115 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2053 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-1865 (((-107) $) NIL)) (-3281 (($ $) 111)) (-1484 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3553 (($ (-517) (-517) $) 129)) (-2588 (($ $ (-844)) 133)) (-3843 (($ (-1 |#1| (-517)) $) 105)) (-1960 (((-107) $) NIL)) (-2077 (($ |#1| (-703)) 15) (($ $ (-990) (-703)) NIL) (($ $ (-583 (-990)) (-583 (-703))) NIL)) (-3308 (($ (-1 |#1| |#1|) $) 93)) (-1225 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2333 (($ $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-1688 (($ $) 109)) (-2413 (($ $) 107)) (-3740 (($ (-517) (-517) $) 131)) (-1518 (($ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1075)) 150 (-3745 (-12 (|has| |#1| (-15 -1518 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -2096 ((-583 (-1075)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-881)) (|has| |#1| (-1096))))) (($ $ (-1152 |#2|)) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4123 (((-1022) $) NIL)) (-3714 (($ $ (-517) (-517)) 115)) (-2640 (($ $ (-703)) 117)) (-2327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3868 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1633 (($ $) 113)) (-3522 (((-1056 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2607 ((|#1| $ (-703)) 90) (($ $ $) 125 (|has| (-703) (-1016)))) (-2059 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) 102 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1152 |#2|)) 98)) (-2769 (((-703) $) NIL)) (-1682 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1532 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1656 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1632 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3478 (($ $) 119)) (-2269 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 142 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1129 |#2| |#1|)) 80) (($ (-1152 |#2|)) 20)) (-2907 (((-1056 |#1|) $) NIL)) (-3952 ((|#1| $ (-703)) 89)) (-2650 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2950 (((-703)) NIL)) (-3567 ((|#1| $) 88)) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2914 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1547 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3487 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2202 ((|#1| $ (-703)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2269 (|#1| (-1075))))))) (-2822 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1735 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1708 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1561 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 17 T CONST)) (-3617 (($) 13 T CONST)) (-3340 (($ $ (-583 (-1075)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-583 (-1075))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-1075)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-823 (-1075))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1583 (((-107) $ $) NIL)) (-1703 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) 101)) (-1677 (($ $ $) 18)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 139 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1148 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-10 -8 (-15 -2269 ($ (-1129 |#2| |#1|))) (-15 -1301 ((-1129 |#2| |#1|) $ (-703))) (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (-15 -2413 ($ $)) (-15 -1688 ($ $)) (-15 -3281 ($ $)) (-15 -1633 ($ $)) (-15 -3714 ($ $ (-517) (-517))) (-15 -1801 ($ $)) (-15 -3553 ($ (-517) (-517) $)) (-15 -3740 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|))) (-962) (-1075) |#1|) (T -1148))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1129 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-1148 *3 *4 *5)))) (-1301 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1129 *5 *4)) (-5 *1 (-1148 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1075)) (-14 *6 *4))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075)) (-14 *4 *2))) (-1688 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075)) (-14 *4 *2))) (-3281 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075)) (-14 *4 *2))) (-1633 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075)) (-14 *4 *2))) (-3714 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3))) (-1801 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075)) (-14 *4 *2))) (-3553 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3))) (-3740 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1075)) (-14 *5 *3))) (-1518 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(-13 (-1147 |#1|) (-10 -8 (-15 -2269 ($ (-1129 |#2| |#1|))) (-15 -1301 ((-1129 |#2| |#1|) $ (-703))) (-15 -2269 ($ (-1152 |#2|))) (-15 -2059 ($ $ (-1152 |#2|))) (-15 -2413 ($ $)) (-15 -1688 ($ $)) (-15 -3281 ($ $)) (-15 -1633 ($ $)) (-15 -3714 ($ $ (-517) (-517))) (-15 -1801 ($ $)) (-15 -3553 ($ (-517) (-517) $)) (-15 -3740 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -1518 ($ $ (-1152 |#2|))) |%noBranch|)))
+((-2715 (((-1 (-1056 |#1|) (-583 (-1056 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-3872 (((-1 (-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4027 (((-1 (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2|)) 13)) (-2799 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3366 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3851 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-2411 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-2765 ((|#2| |#2| |#2|) 43)))
+(((-1149 |#1| |#2|) (-10 -7 (-15 -4027 ((-1 (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2|))) (-15 -3872 ((-1 (-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2715 ((-1 (-1056 |#1|) (-583 (-1056 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -2765 (|#2| |#2| |#2|)) (-15 -3366 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2799 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3851 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2411 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1147 |#1|)) (T -1149))
+((-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1147 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1149 *5 *6)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1147 *5)) (-5 *1 (-1149 *5 *2)))) (-2799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-1149 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-1149 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-2765 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1147 *3)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1147 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1056 *4) (-583 (-1056 *4)))) (-5 *1 (-1149 *4 *5)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1056 *4) (-1056 *4) (-1056 *4))) (-5 *1 (-1149 *4 *5)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1056 *4) (-1056 *4))) (-5 *1 (-1149 *4 *5)))))
+(-10 -7 (-15 -4027 ((-1 (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2|))) (-15 -3872 ((-1 (-1056 |#1|) (-1056 |#1|) (-1056 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2715 ((-1 (-1056 |#1|) (-583 (-1056 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -2765 (|#2| |#2| |#2|)) (-15 -3366 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2799 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3851 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2411 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
+((-1769 ((|#2| |#4| (-703)) 30)) (-1558 ((|#4| |#2|) 25)) (-4038 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2745 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
+(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1558 (|#4| |#2|)) (-15 -1769 (|#2| |#4| (-703))) (-15 -2745 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -4038 (|#4| (-377 |#2|))) |%noBranch|)) (-962) (-1132 |#1|) (-593 |#2|) (-1147 |#1|)) (T -1150))
+((-4038 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-509)) (-4 *4 (-962)) (-4 *2 (-1147 *4)) (-5 *1 (-1150 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1132 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1150 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1147 *4)))) (-1769 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-962)) (-4 *2 (-1132 *5)) (-5 *1 (-1150 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1147 *5)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1132 *4)) (-4 *2 (-1147 *4)) (-5 *1 (-1150 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(-10 -7 (-15 -1558 (|#4| |#2|)) (-15 -1769 (|#2| |#4| (-703))) (-15 -2745 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -4038 (|#4| (-377 |#2|))) |%noBranch|))
+NIL
+(((-1151) (-1187)) (T -1151))
+NIL
+(-13 (-10 -7 (-6 -2180)))
+((-2118 (((-107) $ $) NIL)) (-3750 (((-1075)) 12)) (-1895 (((-1058) $) 17)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 11) (((-1075) $) 8)) (-1583 (((-107) $ $) 14)))
+(((-1152 |#1|) (-13 (-1004) (-557 (-1075)) (-10 -8 (-15 -2269 ((-1075) $)) (-15 -3750 ((-1075))))) (-1075)) (T -1152))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1152 *3)) (-14 *3 *2))) (-3750 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1152 *3)) (-14 *3 *2))))
+(-13 (-1004) (-557 (-1075)) (-10 -8 (-15 -2269 ((-1075) $)) (-15 -3750 ((-1075)))))
+((-3875 (($ (-703)) 16)) (-2688 (((-623 |#2|) $ $) 37)) (-2961 ((|#2| $) 46)) (-3680 ((|#2| $) 45)) (-3989 ((|#2| $ $) 33)) (-2579 (($ $ $) 42)) (-1691 (($ $) 20) (($ $ $) 26)) (-1677 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1153 |#1| |#2|) (-10 -8 (-15 -2961 (|#2| |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -2688 ((-623 |#2|) |#1| |#1|)) (-15 -3989 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -3875 (|#1| (-703))) (-15 -1677 (|#1| |#1| |#1|))) (-1154 |#2|) (-1110)) (T -1153))
+NIL
+(-10 -8 (-15 -2961 (|#2| |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -2688 ((-623 |#2|) |#1| |#1|)) (-15 -3989 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -3875 (|#1| (-703))) (-15 -1677 (|#1| |#1| |#1|)))
+((-2118 (((-107) $ $) 19 (|has| |#1| (-1004)))) (-3875 (($ (-703)) 112 (|has| |#1| (-23)))) (-1478 (((-1161) $ (-517) (-517)) 40 (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4191))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4191))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) 8)) (-2443 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) 58 (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4190)))) (-1681 (($) 7 T CONST)) (-1407 (($ $) 90 (|has| $ (-6 -4191)))) (-1905 (($ $) 100)) (-2453 (($ $) 78 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) 51)) (-1211 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) 30 (|has| $ (-6 -4190)))) (-2688 (((-623 |#1|) $ $) 105 (|has| |#1| (-962)))) (-3211 (($ (-703) |#1|) 69)) (-2361 (((-107) $ (-703)) 9)) (-3735 (((-517) $) 43 (|has| (-517) (-779)))) (-3456 (($ $ $) 87 (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-3979 (((-517) $) 44 (|has| (-517) (-779)))) (-4082 (($ $ $) 86 (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2961 ((|#1| $) 102 (-12 (|has| |#1| (-962)) (|has| |#1| (-919))))) (-4043 (((-107) $ (-703)) 10)) (-3680 ((|#1| $) 103 (-12 (|has| |#1| (-962)) (|has| |#1| (-919))))) (-1895 (((-1058) $) 22 (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-4121 (((-583 (-517)) $) 46)) (-3536 (((-107) (-517) $) 47)) (-4123 (((-1022) $) 21 (|has| |#1| (-1004)))) (-2427 ((|#1| $) 42 (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3191 (($ $ |#1|) 41 (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) 14)) (-3669 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) 48)) (-3270 (((-107) $) 11)) (-1529 (($) 12)) (-2607 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1123 (-517))) 63)) (-3989 ((|#1| $ $) 106 (|has| |#1| (-962)))) (-3726 (($ $ (-517)) 62) (($ $ (-1123 (-517))) 61)) (-2579 (($ $ $) 104 (|has| |#1| (-962)))) (-4135 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4190))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1004)) (|has| $ (-6 -4190))))) (-2790 (($ $ $ (-517)) 91 (|has| $ (-6 -4191)))) (-2460 (($ $) 13)) (-3357 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 70)) (-4108 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2269 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1617 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 20 (|has| |#1| (-1004)))) (-1629 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1607 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1691 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1677 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3533 (((-703) $) 6 (|has| $ (-6 -4190)))))
+(((-1154 |#1|) (-1187) (-1110)) (T -1154))
+((-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-25)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1154 *3)) (-4 *3 (-23)) (-4 *3 (-1110)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-21)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1154 *3)) (-4 *3 (-1110)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-659)))) (-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-962)))) (-2688 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1110)) (-4 *3 (-962)) (-5 *2 (-623 *3)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-962)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-919)) (-4 *2 (-962)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-919)) (-4 *2 (-962)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1677 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3875 ($ (-703))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 * ($ (-517) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3989 (|t#1| $ $)) (-15 -2688 ((-623 |t#1|) $ $)) (-15 -2579 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3680 (|t#1| $)) (-15 -2961 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-557 (-787)) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1004) -3745 (|has| |#1| (-1004)) (|has| |#1| (-779))) ((-1110) . T))
+((-2499 (((-1156 |#2|) (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|) 13)) (-1521 ((|#2| (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|) 15)) (-3308 (((-3 (-1156 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1156 |#1|)) 28) (((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|)) 18)))
+(((-1155 |#1| |#2|) (-10 -7 (-15 -2499 ((-1156 |#2|) (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|)) (-15 -3308 ((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|))) (-15 -3308 ((-3 (-1156 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1156 |#1|)))) (-1110) (-1110)) (T -1155))
+((-3308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1156 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1156 *6)) (-5 *1 (-1155 *5 *6)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1156 *6)) (-5 *1 (-1155 *5 *6)))) (-1521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1156 *5)) (-4 *5 (-1110)) (-4 *2 (-1110)) (-5 *1 (-1155 *5 *2)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1156 *6)) (-4 *6 (-1110)) (-4 *5 (-1110)) (-5 *2 (-1156 *5)) (-5 *1 (-1155 *6 *5)))))
+(-10 -7 (-15 -2499 ((-1156 |#2|) (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|)) (-15 -1521 (|#2| (-1 |#2| |#1| |#2|) (-1156 |#1|) |#2|)) (-15 -3308 ((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|))) (-15 -3308 ((-3 (-1156 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1156 |#1|))))
+((-2118 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-3875 (($ (-703)) NIL (|has| |#1| (-23)))) (-2047 (($ (-583 |#1|)) 9)) (-1478 (((-1161) $ (-517) (-517)) NIL (|has| $ (-6 -4191)))) (-3560 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-3613 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4191))) (($ $) NIL (-12 (|has| $ (-6 -4191)) (|has| |#1| (-779))))) (-2162 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2670 (((-107) $ (-703)) NIL)) (-2443 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191))) ((|#1| $ (-1123 (-517)) |#1|) NIL (|has| $ (-6 -4191)))) (-2324 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1681 (($) NIL T CONST)) (-1407 (($ $) NIL (|has| $ (-6 -4191)))) (-1905 (($ $) NIL)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4190))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4190)))) (-2757 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4191)))) (-2563 ((|#1| $ (-517)) NIL)) (-1211 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1004))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1004)))) (-1535 (((-583 |#1|) $) 15 (|has| $ (-6 -4190)))) (-2688 (((-623 |#1|) $ $) NIL (|has| |#1| (-962)))) (-3211 (($ (-703) |#1|) NIL)) (-2361 (((-107) $ (-703)) NIL)) (-3735 (((-517) $) NIL (|has| (-517) (-779)))) (-3456 (($ $ $) NIL (|has| |#1| (-779)))) (-3798 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2898 (((-583 |#1|) $) NIL (|has| $ (-6 -4190)))) (-4008 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-3979 (((-517) $) NIL (|has| (-517) (-779)))) (-4082 (($ $ $) NIL (|has| |#1| (-779)))) (-2744 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2961 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-4043 (((-107) $ (-703)) NIL)) (-3680 ((|#1| $) NIL (-12 (|has| |#1| (-919)) (|has| |#1| (-962))))) (-1895 (((-1058) $) NIL (|has| |#1| (-1004)))) (-1745 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-4121 (((-583 (-517)) $) NIL)) (-3536 (((-107) (-517) $) NIL)) (-4123 (((-1022) $) NIL (|has| |#1| (-1004)))) (-2427 ((|#1| $) NIL (|has| (-517) (-779)))) (-2999 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3191 (($ $ |#1|) NIL (|has| $ (-6 -4191)))) (-3480 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3669 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-1831 (((-583 |#1|) $) NIL)) (-3270 (((-107) $) NIL)) (-1529 (($) NIL)) (-2607 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-3989 ((|#1| $ $) NIL (|has| |#1| (-962)))) (-3726 (($ $ (-517)) NIL) (($ $ (-1123 (-517))) NIL)) (-2579 (($ $ $) NIL (|has| |#1| (-962)))) (-4135 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#1| (-1004))))) (-2790 (($ $ $ (-517)) NIL (|has| $ (-6 -4191)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2286 (($ (-583 |#1|)) 8)) (-4108 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2269 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3160 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4190)))) (-1641 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1617 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-1004)))) (-1629 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1607 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1691 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1677 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1156 |#1|) (-13 (-1154 |#1|) (-10 -8 (-15 -2047 ($ (-583 |#1|))))) (-1110)) (T -1156))
+((-2047 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1156 *3)))))
+(-13 (-1154 |#1|) (-10 -8 (-15 -2047 ($ (-583 |#1|)))))
+((-2118 (((-107) $ $) NIL)) (-1671 (((-1058) $ (-1058)) 87) (((-1058) $ (-1058) (-1058)) 85) (((-1058) $ (-1058) (-583 (-1058))) 84)) (-1650 (($) 56)) (-2533 (((-1161) $ (-437) (-844)) 42)) (-2471 (((-1161) $ (-844) (-1058)) 70) (((-1161) $ (-844) (-797)) 71)) (-3189 (((-1161) $ (-844) (-349) (-349)) 45)) (-3092 (((-1161) $ (-1058)) 66)) (-1985 (((-1161) $ (-844) (-1058)) 75)) (-3383 (((-1161) $ (-844) (-349) (-349)) 46)) (-2141 (((-1161) $ (-844) (-844)) 43)) (-1648 (((-1161) $) 67)) (-3987 (((-1161) $ (-844) (-1058)) 74)) (-1966 (((-1161) $ (-437) (-844)) 30)) (-3954 (((-1161) $ (-844) (-1058)) 73)) (-2594 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-1975 (((-1161) $ (-703) (-703)) 40)) (-3217 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-1895 (((-1058) $) NIL)) (-2581 (((-517) $) 37)) (-4123 (((-1022) $) NIL)) (-3679 (((-1156 (-3 (-437) "undefined")) $) 36)) (-3292 (((-1156 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3954 (-517)) (|:| -1372 (-517)) (|:| |spline| (-517)) (|:| -4000 (-517)) (|:| |axesColor| (-797)) (|:| -2471 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-2809 (((-1161) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-3694 (((-583 (-866 (-199))) $) NIL)) (-1281 (((-437) $ (-844)) 32)) (-3056 (((-1161) $ (-703) (-703) (-844) (-844)) 39)) (-1462 (((-1161) $ (-1058)) 76)) (-1372 (((-1161) $ (-844) (-1058)) 72)) (-2269 (((-787) $) 82)) (-1723 (((-1161) $) 77)) (-4000 (((-1161) $ (-844) (-1058)) 68) (((-1161) $ (-844) (-797)) 69)) (-1583 (((-107) $ $) NIL)))
+(((-1157) (-13 (-1004) (-10 -8 (-15 -3694 ((-583 (-866 (-199))) $)) (-15 -1650 ($)) (-15 -3217 ($ $)) (-15 -2594 ((-583 (-236)) $)) (-15 -2594 ($ $ (-583 (-236)))) (-15 -3217 ($ (-437) (-583 (-236)))) (-15 -2809 ((-1161) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -3292 ((-1156 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3954 (-517)) (|:| -1372 (-517)) (|:| |spline| (-517)) (|:| -4000 (-517)) (|:| |axesColor| (-797)) (|:| -2471 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -3679 ((-1156 (-3 (-437) "undefined")) $)) (-15 -3092 ((-1161) $ (-1058))) (-15 -1966 ((-1161) $ (-437) (-844))) (-15 -1281 ((-437) $ (-844))) (-15 -4000 ((-1161) $ (-844) (-1058))) (-15 -4000 ((-1161) $ (-844) (-797))) (-15 -2471 ((-1161) $ (-844) (-1058))) (-15 -2471 ((-1161) $ (-844) (-797))) (-15 -3954 ((-1161) $ (-844) (-1058))) (-15 -3987 ((-1161) $ (-844) (-1058))) (-15 -1372 ((-1161) $ (-844) (-1058))) (-15 -1462 ((-1161) $ (-1058))) (-15 -1723 ((-1161) $)) (-15 -3056 ((-1161) $ (-703) (-703) (-844) (-844))) (-15 -3383 ((-1161) $ (-844) (-349) (-349))) (-15 -3189 ((-1161) $ (-844) (-349) (-349))) (-15 -1985 ((-1161) $ (-844) (-1058))) (-15 -1975 ((-1161) $ (-703) (-703))) (-15 -2533 ((-1161) $ (-437) (-844))) (-15 -2141 ((-1161) $ (-844) (-844))) (-15 -1671 ((-1058) $ (-1058))) (-15 -1671 ((-1058) $ (-1058) (-1058))) (-15 -1671 ((-1058) $ (-1058) (-583 (-1058)))) (-15 -1648 ((-1161) $)) (-15 -2581 ((-517) $)) (-15 -2269 ((-787) $))))) (T -1157))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1157)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-583 (-866 (-199)))) (-5 *1 (-1157)))) (-1650 (*1 *1) (-5 *1 (-1157))) (-3217 (*1 *1 *1) (-5 *1 (-1157))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1157)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1157)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1157)))) (-2809 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-844)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1156 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3954 (-517)) (|:| -1372 (-517)) (|:| |spline| (-517)) (|:| -4000 (-517)) (|:| |axesColor| (-797)) (|:| -2471 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1157)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1156 (-3 (-437) "undefined"))) (-5 *1 (-1157)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1966 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-437)) (-5 *1 (-1157)))) (-4000 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-4000 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-2471 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-2471 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3954 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3987 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1372 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3056 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3383 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-3189 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1985 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-2533 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-2141 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))) (-1671 (*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1157)))) (-1671 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1157)))) (-1671 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-1157)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1157)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1157)))))
+(-13 (-1004) (-10 -8 (-15 -3694 ((-583 (-866 (-199))) $)) (-15 -1650 ($)) (-15 -3217 ($ $)) (-15 -2594 ((-583 (-236)) $)) (-15 -2594 ($ $ (-583 (-236)))) (-15 -3217 ($ (-437) (-583 (-236)))) (-15 -2809 ((-1161) $ (-844) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -3292 ((-1156 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3954 (-517)) (|:| -1372 (-517)) (|:| |spline| (-517)) (|:| -4000 (-517)) (|:| |axesColor| (-797)) (|:| -2471 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -3679 ((-1156 (-3 (-437) "undefined")) $)) (-15 -3092 ((-1161) $ (-1058))) (-15 -1966 ((-1161) $ (-437) (-844))) (-15 -1281 ((-437) $ (-844))) (-15 -4000 ((-1161) $ (-844) (-1058))) (-15 -4000 ((-1161) $ (-844) (-797))) (-15 -2471 ((-1161) $ (-844) (-1058))) (-15 -2471 ((-1161) $ (-844) (-797))) (-15 -3954 ((-1161) $ (-844) (-1058))) (-15 -3987 ((-1161) $ (-844) (-1058))) (-15 -1372 ((-1161) $ (-844) (-1058))) (-15 -1462 ((-1161) $ (-1058))) (-15 -1723 ((-1161) $)) (-15 -3056 ((-1161) $ (-703) (-703) (-844) (-844))) (-15 -3383 ((-1161) $ (-844) (-349) (-349))) (-15 -3189 ((-1161) $ (-844) (-349) (-349))) (-15 -1985 ((-1161) $ (-844) (-1058))) (-15 -1975 ((-1161) $ (-703) (-703))) (-15 -2533 ((-1161) $ (-437) (-844))) (-15 -2141 ((-1161) $ (-844) (-844))) (-15 -1671 ((-1058) $ (-1058))) (-15 -1671 ((-1058) $ (-1058) (-1058))) (-15 -1671 ((-1058) $ (-1058) (-583 (-1058)))) (-15 -1648 ((-1161) $)) (-15 -2581 ((-517) $)) (-15 -2269 ((-787) $))))
+((-2118 (((-107) $ $) NIL)) (-3603 (((-1161) $ (-349)) 138) (((-1161) $ (-349) (-349) (-349)) 139)) (-1671 (((-1058) $ (-1058)) 146) (((-1058) $ (-1058) (-1058)) 144) (((-1058) $ (-1058) (-583 (-1058))) 143)) (-4100 (($) 49)) (-1485 (((-1161) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1161) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1161) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1161) $ (-349) (-349)) 116) (((-1161) $ (-349) (-349) (-349)) 123)) (-1749 (((-349)) 96) (((-349) (-349)) 97)) (-2468 (((-349)) 91) (((-349) (-349)) 93)) (-2946 (((-349)) 94) (((-349) (-349)) 95)) (-1747 (((-349)) 100) (((-349) (-349)) 101)) (-2506 (((-349)) 98) (((-349) (-349)) 99)) (-3189 (((-1161) $ (-349) (-349)) 140)) (-3092 (((-1161) $ (-1058)) 124)) (-2673 (((-1035 (-199)) $) 50) (($ $ (-1035 (-199))) 51)) (-2552 (((-1161) $ (-1058)) 152)) (-3988 (((-1161) $ (-1058)) 153)) (-4078 (((-1161) $ (-349) (-349)) 122) (((-1161) $ (-517) (-517)) 137)) (-2141 (((-1161) $ (-844) (-844)) 130)) (-1648 (((-1161) $) 110)) (-4124 (((-1161) $ (-1058)) 151)) (-3931 (((-1161) $ (-1058)) 107)) (-2594 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-1975 (((-1161) $ (-703) (-703)) 129)) (-3961 (((-1161) $ (-703) (-866 (-199))) 158)) (-3017 (($ $) 56) (($ (-1035 (-199)) (-1058)) 57) (($ (-1035 (-199)) (-583 (-236))) 58)) (-4005 (((-1161) $ (-349) (-349) (-349)) 104)) (-1895 (((-1058) $) NIL)) (-2581 (((-517) $) 102)) (-2930 (((-1161) $ (-349)) 141)) (-1830 (((-1161) $ (-349)) 156)) (-4123 (((-1022) $) NIL)) (-4116 (((-1161) $ (-349)) 155)) (-1297 (((-1161) $ (-1058)) 109)) (-3056 (((-1161) $ (-703) (-703) (-844) (-844)) 128)) (-2483 (((-1161) $ (-1058)) 106)) (-1462 (((-1161) $ (-1058)) 108)) (-3650 (((-1161) $ (-142) (-142)) 127)) (-2269 (((-787) $) 135)) (-1723 (((-1161) $) 111)) (-3364 (((-1161) $ (-1058)) 154)) (-4000 (((-1161) $ (-1058)) 105)) (-1583 (((-107) $ $) NIL)))
+(((-1158) (-13 (-1004) (-10 -8 (-15 -2468 ((-349))) (-15 -2468 ((-349) (-349))) (-15 -2946 ((-349))) (-15 -2946 ((-349) (-349))) (-15 -1749 ((-349))) (-15 -1749 ((-349) (-349))) (-15 -2506 ((-349))) (-15 -2506 ((-349) (-349))) (-15 -1747 ((-349))) (-15 -1747 ((-349) (-349))) (-15 -4100 ($)) (-15 -3017 ($ $)) (-15 -3017 ($ (-1035 (-199)) (-1058))) (-15 -3017 ($ (-1035 (-199)) (-583 (-236)))) (-15 -2673 ((-1035 (-199)) $)) (-15 -2673 ($ $ (-1035 (-199)))) (-15 -3961 ((-1161) $ (-703) (-866 (-199)))) (-15 -2594 ((-583 (-236)) $)) (-15 -2594 ($ $ (-583 (-236)))) (-15 -1975 ((-1161) $ (-703) (-703))) (-15 -2141 ((-1161) $ (-844) (-844))) (-15 -3092 ((-1161) $ (-1058))) (-15 -3056 ((-1161) $ (-703) (-703) (-844) (-844))) (-15 -1485 ((-1161) $ (-349) (-349) (-349) (-349) (-349))) (-15 -1485 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -1485 ((-1161) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -1485 ((-1161) $ (-517) (-517) (-349) (-349) (-349))) (-15 -1485 ((-1161) $ (-349) (-349))) (-15 -1485 ((-1161) $ (-349) (-349) (-349))) (-15 -1462 ((-1161) $ (-1058))) (-15 -4000 ((-1161) $ (-1058))) (-15 -2483 ((-1161) $ (-1058))) (-15 -3931 ((-1161) $ (-1058))) (-15 -1297 ((-1161) $ (-1058))) (-15 -4078 ((-1161) $ (-349) (-349))) (-15 -4078 ((-1161) $ (-517) (-517))) (-15 -3603 ((-1161) $ (-349))) (-15 -3603 ((-1161) $ (-349) (-349) (-349))) (-15 -3189 ((-1161) $ (-349) (-349))) (-15 -4124 ((-1161) $ (-1058))) (-15 -4116 ((-1161) $ (-349))) (-15 -1830 ((-1161) $ (-349))) (-15 -2552 ((-1161) $ (-1058))) (-15 -3988 ((-1161) $ (-1058))) (-15 -3364 ((-1161) $ (-1058))) (-15 -4005 ((-1161) $ (-349) (-349) (-349))) (-15 -2930 ((-1161) $ (-349))) (-15 -1648 ((-1161) $)) (-15 -3650 ((-1161) $ (-142) (-142))) (-15 -1671 ((-1058) $ (-1058))) (-15 -1671 ((-1058) $ (-1058) (-1058))) (-15 -1671 ((-1058) $ (-1058) (-583 (-1058)))) (-15 -1723 ((-1161) $)) (-15 -2581 ((-517) $))))) (T -1158))
+((-2468 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-2946 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-1749 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-2506 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-1747 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))) (-4100 (*1 *1) (-5 *1 (-1158))) (-3017 (*1 *1 *1) (-5 *1 (-1158))) (-3017 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-1058)) (-5 *1 (-1158)))) (-3017 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1158)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1158)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1158)))) (-3961 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-866 (-199))) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158)))) (-1975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2141 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3056 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1485 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1158)))) (-1485 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1485 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1485 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1485 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4000 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3931 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3603 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3603 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3189 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1830 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2552 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3988 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3364 (*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-4005 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1158)))) (-3650 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1161)) (-5 *1 (-1158)))) (-1671 (*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1158)))) (-1671 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1158)))) (-1671 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-1158)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1158)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1158)))))
+(-13 (-1004) (-10 -8 (-15 -2468 ((-349))) (-15 -2468 ((-349) (-349))) (-15 -2946 ((-349))) (-15 -2946 ((-349) (-349))) (-15 -1749 ((-349))) (-15 -1749 ((-349) (-349))) (-15 -2506 ((-349))) (-15 -2506 ((-349) (-349))) (-15 -1747 ((-349))) (-15 -1747 ((-349) (-349))) (-15 -4100 ($)) (-15 -3017 ($ $)) (-15 -3017 ($ (-1035 (-199)) (-1058))) (-15 -3017 ($ (-1035 (-199)) (-583 (-236)))) (-15 -2673 ((-1035 (-199)) $)) (-15 -2673 ($ $ (-1035 (-199)))) (-15 -3961 ((-1161) $ (-703) (-866 (-199)))) (-15 -2594 ((-583 (-236)) $)) (-15 -2594 ($ $ (-583 (-236)))) (-15 -1975 ((-1161) $ (-703) (-703))) (-15 -2141 ((-1161) $ (-844) (-844))) (-15 -3092 ((-1161) $ (-1058))) (-15 -3056 ((-1161) $ (-703) (-703) (-844) (-844))) (-15 -1485 ((-1161) $ (-349) (-349) (-349) (-349) (-349))) (-15 -1485 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -1485 ((-1161) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -1485 ((-1161) $ (-517) (-517) (-349) (-349) (-349))) (-15 -1485 ((-1161) $ (-349) (-349))) (-15 -1485 ((-1161) $ (-349) (-349) (-349))) (-15 -1462 ((-1161) $ (-1058))) (-15 -4000 ((-1161) $ (-1058))) (-15 -2483 ((-1161) $ (-1058))) (-15 -3931 ((-1161) $ (-1058))) (-15 -1297 ((-1161) $ (-1058))) (-15 -4078 ((-1161) $ (-349) (-349))) (-15 -4078 ((-1161) $ (-517) (-517))) (-15 -3603 ((-1161) $ (-349))) (-15 -3603 ((-1161) $ (-349) (-349) (-349))) (-15 -3189 ((-1161) $ (-349) (-349))) (-15 -4124 ((-1161) $ (-1058))) (-15 -4116 ((-1161) $ (-349))) (-15 -1830 ((-1161) $ (-349))) (-15 -2552 ((-1161) $ (-1058))) (-15 -3988 ((-1161) $ (-1058))) (-15 -3364 ((-1161) $ (-1058))) (-15 -4005 ((-1161) $ (-349) (-349) (-349))) (-15 -2930 ((-1161) $ (-349))) (-15 -1648 ((-1161) $)) (-15 -3650 ((-1161) $ (-142) (-142))) (-15 -1671 ((-1058) $ (-1058))) (-15 -1671 ((-1058) $ (-1058) (-1058))) (-15 -1671 ((-1058) $ (-1058) (-583 (-1058)))) (-15 -1723 ((-1161) $)) (-15 -2581 ((-517) $))))
+((-1609 (((-583 (-1058)) (-583 (-1058))) 94) (((-583 (-1058))) 89)) (-3028 (((-583 (-1058))) 87)) (-1516 (((-583 (-844)) (-583 (-844))) 62) (((-583 (-844))) 59)) (-2716 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2463 (((-1161)) 64)) (-2583 (((-844) (-844)) 80) (((-844)) 79)) (-4134 (((-844) (-844)) 78) (((-844)) 77)) (-2412 (((-797) (-797)) 74) (((-797)) 73)) (-1737 (((-199)) 84) (((-199) (-349)) 86)) (-2314 (((-844)) 81) (((-844) (-844)) 82)) (-1909 (((-844) (-844)) 76) (((-844)) 75)) (-2440 (((-797) (-797)) 68) (((-797)) 66)) (-3449 (((-797) (-797)) 70) (((-797)) 69)) (-1212 (((-797) (-797)) 72) (((-797)) 71)))
+(((-1159) (-10 -7 (-15 -2440 ((-797))) (-15 -2440 ((-797) (-797))) (-15 -3449 ((-797))) (-15 -3449 ((-797) (-797))) (-15 -1212 ((-797))) (-15 -1212 ((-797) (-797))) (-15 -2412 ((-797))) (-15 -2412 ((-797) (-797))) (-15 -1909 ((-844))) (-15 -1909 ((-844) (-844))) (-15 -2716 ((-583 (-703)))) (-15 -2716 ((-583 (-703)) (-583 (-703)))) (-15 -1516 ((-583 (-844)))) (-15 -1516 ((-583 (-844)) (-583 (-844)))) (-15 -2463 ((-1161))) (-15 -1609 ((-583 (-1058)))) (-15 -1609 ((-583 (-1058)) (-583 (-1058)))) (-15 -3028 ((-583 (-1058)))) (-15 -4134 ((-844))) (-15 -2583 ((-844))) (-15 -4134 ((-844) (-844))) (-15 -2583 ((-844) (-844))) (-15 -2314 ((-844) (-844))) (-15 -2314 ((-844))) (-15 -1737 ((-199) (-349))) (-15 -1737 ((-199))))) (T -1159))
+((-1737 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1159)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1159)))) (-2314 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-2583 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-4134 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-3028 (*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159)))) (-1609 (*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159)))) (-2463 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1159)))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1159)))) (-1516 (*1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1159)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1159)))) (-2716 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1159)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-1909 (*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-2412 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-1212 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-1212 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-3449 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-2440 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))) (-2440 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))))
+(-10 -7 (-15 -2440 ((-797))) (-15 -2440 ((-797) (-797))) (-15 -3449 ((-797))) (-15 -3449 ((-797) (-797))) (-15 -1212 ((-797))) (-15 -1212 ((-797) (-797))) (-15 -2412 ((-797))) (-15 -2412 ((-797) (-797))) (-15 -1909 ((-844))) (-15 -1909 ((-844) (-844))) (-15 -2716 ((-583 (-703)))) (-15 -2716 ((-583 (-703)) (-583 (-703)))) (-15 -1516 ((-583 (-844)))) (-15 -1516 ((-583 (-844)) (-583 (-844)))) (-15 -2463 ((-1161))) (-15 -1609 ((-583 (-1058)))) (-15 -1609 ((-583 (-1058)) (-583 (-1058)))) (-15 -3028 ((-583 (-1058)))) (-15 -4134 ((-844))) (-15 -2583 ((-844))) (-15 -4134 ((-844) (-844))) (-15 -2583 ((-844) (-844))) (-15 -2314 ((-844) (-844))) (-15 -2314 ((-844))) (-15 -1737 ((-199) (-349))) (-15 -1737 ((-199))))
+((-3646 (((-437) (-583 (-583 (-866 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-866 (-199))))) 16) (((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236))) 15)) (-1621 (((-1157) (-583 (-583 (-866 (-199)))) (-583 (-236))) 23) (((-1157) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236))) 22)) (-2269 (((-1157) (-437)) 34)))
+(((-1160) (-10 -7 (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))))) (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -1621 ((-1157) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -1621 ((-1157) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2269 ((-1157) (-437))))) (T -1160))
+((-2269 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1157)) (-5 *1 (-1160)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-1160)))) (-1621 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-1160)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1160)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-437)) (-5 *1 (-1160)))) (-3646 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797)) (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1160)))))
+(-10 -7 (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))))) (-15 -3646 ((-437) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -1621 ((-1157) (-583 (-583 (-866 (-199)))) (-797) (-797) (-844) (-583 (-236)))) (-15 -1621 ((-1157) (-583 (-583 (-866 (-199)))) (-583 (-236)))) (-15 -2269 ((-1157) (-437))))
+((-2043 (($) 7)) (-2269 (((-787) $) 10)))
+(((-1161) (-10 -8 (-15 -2043 ($)) (-15 -2269 ((-787) $)))) (T -1161))
+((-2269 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1161)))) (-2043 (*1 *1) (-5 *1 (-1161))))
+(-10 -8 (-15 -2043 ($)) (-15 -2269 ((-787) $)))
+((-1703 (($ $ |#2|) 10)))
+(((-1162 |#1| |#2|) (-10 -8 (-15 -1703 (|#1| |#1| |#2|))) (-1163 |#2|) (-333)) (T -1162))
+NIL
+(-10 -8 (-15 -1703 (|#1| |#1| |#2|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-1880 (((-125)) 28)) (-2269 (((-787) $) 11)) (-3608 (($) 18 T CONST)) (-1583 (((-107) $ $) 6)) (-1703 (($ $ |#1|) 29)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1163 |#1|) (-1187) (-333)) (T -1163))
+((-1703 (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-333)))) (-1880 (*1 *2) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(-13 (-650 |t#1|) (-10 -8 (-15 -1703 ($ $ |t#1|)) (-15 -1880 ((-125)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-968 |#1|) . T) ((-1004) . T))
+((-2528 (((-583 (-1105 |#1|)) (-1075) (-1105 |#1|)) 78)) (-3192 (((-1056 (-1056 (-875 |#1|))) (-1075) (-1056 (-875 |#1|))) 57)) (-4002 (((-1 (-1056 (-1105 |#1|)) (-1056 (-1105 |#1|))) (-703) (-1105 |#1|) (-1056 (-1105 |#1|))) 68)) (-2690 (((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703)) 59)) (-4033 (((-1 (-1071 (-875 |#1|)) (-875 |#1|)) (-1075)) 27)) (-3333 (((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703)) 58)))
+(((-1164 |#1|) (-10 -7 (-15 -2690 ((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703))) (-15 -3333 ((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703))) (-15 -3192 ((-1056 (-1056 (-875 |#1|))) (-1075) (-1056 (-875 |#1|)))) (-15 -4033 ((-1 (-1071 (-875 |#1|)) (-875 |#1|)) (-1075))) (-15 -2528 ((-583 (-1105 |#1|)) (-1075) (-1105 |#1|))) (-15 -4002 ((-1 (-1056 (-1105 |#1|)) (-1056 (-1105 |#1|))) (-703) (-1105 |#1|) (-1056 (-1105 |#1|))))) (-333)) (T -1164))
+((-4002 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1105 *6)) (-5 *2 (-1 (-1056 *4) (-1056 *4))) (-5 *1 (-1164 *6)) (-5 *5 (-1056 *4)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-4 *5 (-333)) (-5 *2 (-583 (-1105 *5))) (-5 *1 (-1164 *5)) (-5 *4 (-1105 *5)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 (-1071 (-875 *4)) (-875 *4))) (-5 *1 (-1164 *4)) (-4 *4 (-333)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-4 *5 (-333)) (-5 *2 (-1056 (-1056 (-875 *5)))) (-5 *1 (-1164 *5)) (-5 *4 (-1056 (-875 *5))))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1056 (-875 *4)) (-1056 (-875 *4)))) (-5 *1 (-1164 *4)) (-4 *4 (-333)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1056 (-875 *4)) (-1056 (-875 *4)))) (-5 *1 (-1164 *4)) (-4 *4 (-333)))))
+(-10 -7 (-15 -2690 ((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703))) (-15 -3333 ((-1 (-1056 (-875 |#1|)) (-1056 (-875 |#1|))) (-703))) (-15 -3192 ((-1056 (-1056 (-875 |#1|))) (-1075) (-1056 (-875 |#1|)))) (-15 -4033 ((-1 (-1071 (-875 |#1|)) (-875 |#1|)) (-1075))) (-15 -2528 ((-583 (-1105 |#1|)) (-1075) (-1105 |#1|))) (-15 -4002 ((-1 (-1056 (-1105 |#1|)) (-1056 (-1105 |#1|))) (-703) (-1105 |#1|) (-1056 (-1105 |#1|)))))
+((-4146 (((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-3057 (((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
+(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1132 |#1|) (-1132 |#2|) (-379 |#2| |#3|)) (T -1165))
+((-4146 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 *3)) (-5 *2 (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1165 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-3057 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 *4)) (-5 *2 (-2 (|:| -2062 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(-10 -7 (-15 -3057 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4146 ((-2 (|:| -2062 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 42)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) NIL)) (-1865 (((-107) $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2269 (((-787) $) 63) (($ (-517)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-156)))) (-2950 (((-703)) NIL)) (-1316 (((-1161) (-703)) 16)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 27 T CONST)) (-3617 (($) 66 T CONST)) (-1583 (((-107) $ $) 68)) (-1703 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1691 (($ $) 70) (($ $ $) NIL)) (-1677 (($ $ $) 46)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-1166 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2269 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1703 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2269 ($ |#4|)) (-15 -1316 ((-1161) (-703))))) (-962) (-779) (-725) (-872 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1166))
+((-2269 (*1 *2 *1) (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-1166 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1703 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-962)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1166 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2269 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1166 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-872 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-962)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1161)) (-5 *1 (-1166 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-872 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(-13 (-962) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2269 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1703 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2269 ($ |#4|)) (-15 -1316 ((-1161) (-703)))))
+((-2118 (((-107) $ $) NIL)) (-3507 (((-583 (-2 (|:| -1723 $) (|:| -3674 (-583 |#4|)))) (-583 |#4|)) NIL)) (-2283 (((-583 $) (-583 |#4|)) 88)) (-2096 (((-583 |#3|) $) NIL)) (-3494 (((-107) $) NIL)) (-4062 (((-107) $) NIL (|has| |#1| (-509)))) (-1759 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2675 ((|#4| |#4| $) NIL)) (-2162 (((-2 (|:| |under| $) (|:| -2309 $) (|:| |upper| $)) $ |#3|) NIL)) (-2670 (((-107) $ (-703)) NIL)) (-2324 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1681 (($) NIL T CONST)) (-2737 (((-107) $) NIL (|has| |#1| (-509)))) (-2871 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2819 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1219 (((-107) $) NIL (|has| |#1| (-509)))) (-2276 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 28)) (-2259 (((-583 |#4|) (-583 |#4|) $) 25 (|has| |#1| (-509)))) (-1825 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3226 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3388 (($ (-583 |#4|)) NIL)) (-2437 (((-3 $ "failed") $) 70)) (-1358 ((|#4| |#4| $) 75)) (-2453 (($ $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-1451 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3100 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1808 ((|#4| |#4| $) NIL)) (-1521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4190))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4190))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-3709 (((-2 (|:| -1723 (-583 |#4|)) (|:| -3674 (-583 |#4|))) $) NIL)) (-1535 (((-583 |#4|) $) NIL (|has| $ (-6 -4190)))) (-3091 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3834 ((|#3| $) 76)) (-2361 (((-107) $ (-703)) NIL)) (-2898 (((-583 |#4|) $) 29 (|has| $ (-6 -4190)))) (-4008 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004))))) (-3651 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-583 |#4|)) 35)) (-2744 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4191)))) (-3308 (($ (-1 |#4| |#4|) $) NIL)) (-1310 (((-583 |#3|) $) NIL)) (-1234 (((-107) |#3| $) NIL)) (-4043 (((-107) $ (-703)) NIL)) (-1895 (((-1058) $) NIL)) (-1445 (((-3 |#4| "failed") $) NIL)) (-3778 (((-583 |#4|) $) 50)) (-3015 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4014 ((|#4| |#4| $) 74)) (-1837 (((-107) $ $) 85)) (-2188 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3974 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3422 ((|#4| |#4| $) NIL)) (-4123 (((-1022) $) NIL)) (-2427 (((-3 |#4| "failed") $) 69)) (-2999 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3760 (((-3 $ "failed") $ |#4|) NIL)) (-2640 (($ $ |#4|) NIL)) (-3480 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3522 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1004))))) (-3180 (((-107) $ $) NIL)) (-3270 (((-107) $) 67)) (-1529 (($) 42)) (-2769 (((-703) $) NIL)) (-4135 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4190)) (|has| |#4| (-1004)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-2460 (($ $) NIL)) (-3357 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2286 (($ (-583 |#4|)) NIL)) (-2654 (($ $ |#3|) NIL)) (-2054 (($ $ |#3|) NIL)) (-3345 (($ $) NIL)) (-2530 (($ $ |#3|) NIL)) (-2269 (((-787) $) NIL) (((-583 |#4|) $) 57)) (-1659 (((-703) $) NIL (|has| |#3| (-338)))) (-2635 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-583 |#4|)) 41)) (-2660 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-583 $) (-583 |#4|)) 66)) (-1994 (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2551 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2953 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3160 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4190)))) (-3693 (((-583 |#3|) $) NIL)) (-3980 (((-107) |#3| $) NIL)) (-1583 (((-107) $ $) NIL)) (-3533 (((-703) $) NIL (|has| $ (-6 -4190)))))
+(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1104 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3651 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-3 $ "failed") (-583 |#4|))) (-15 -2635 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2635 ((-3 $ "failed") (-583 |#4|))) (-15 -2660 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2660 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-976 |#1| |#2| |#3|)) (T -1167))
+((-3651 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3651 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1167 *3 *4 *5 *6)))) (-2635 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1167 *5 *6 *7 *8)))) (-2635 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1167 *3 *4 *5 *6)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1167 *6 *7 *8 *9))) (-5 *1 (-1167 *6 *7 *8 *9)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1167 *4 *5 *6 *7))) (-5 *1 (-1167 *4 *5 *6 *7)))))
+(-13 (-1104 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3651 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-3 $ "failed") (-583 |#4|))) (-15 -2635 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2635 ((-3 $ "failed") (-583 |#4|))) (-15 -2660 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2660 ((-583 $) (-583 |#4|)))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1250 (((-3 $ "failed") $ $) 19)) (-1681 (($) 17 T CONST)) (-3163 (((-3 $ "failed") $) 34)) (-1865 (((-107) $) 31)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1168 |#1|) (-1187) (-962)) (T -1168))
+((-2269 (*1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-106 |t#1| |t#1|) (-10 -8 (-15 -2269 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-968 |#1|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3365 (((-583 |#1|) $) 45)) (-1843 (($ $ (-703)) 39)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-1681 (($) NIL T CONST)) (-3397 (($ $ $) 62) (($ $ (-751 |#1|)) 49) (($ $ |#1|) 53)) (-3226 (((-3 (-751 |#1|) "failed") $) NIL)) (-3388 (((-751 |#1|) $) NIL)) (-2371 (($ $) 32)) (-3163 (((-3 $ "failed") $) NIL)) (-3589 (((-107) $) NIL)) (-4026 (($ $) NIL)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ (-751 |#1|) |#2|) 31)) (-1213 (($ $) 33)) (-1349 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-1346 (((-751 |#1|) $) NIL)) (-3151 (((-751 |#1|) $) 34)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1896 (($ $ $) 61) (($ $ (-751 |#1|)) 51) (($ $ |#1|) 55)) (-1296 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2333 (((-751 |#1|) $) 28)) (-2345 ((|#2| $) 30)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2769 (((-703) $) 36)) (-3474 (((-107) $) 40)) (-1384 ((|#2| $) NIL)) (-2269 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-751 |#1|)) NIL)) (-1580 ((|#2| $ $) 64) ((|#2| $ (-751 |#1|)) NIL)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (-3608 (($) 12 T CONST)) (-3617 (($) 14 T CONST)) (-2858 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1583 (((-107) $ $) 38)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-844)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1169 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1175 |#1| |#2|)) (-779) (-962)) (T -1169))
+NIL
+(-13 (-352 |#2| (-751 |#1|)) (-1175 |#1| |#2|))
+((-1225 ((|#3| |#3| (-703)) 23)) (-3868 ((|#3| |#3| (-703)) 28)) (-3486 ((|#3| |#3| |#3| (-703)) 29)))
+(((-1170 |#1| |#2| |#3|) (-10 -7 (-15 -3868 (|#3| |#3| (-703))) (-15 -1225 (|#3| |#3| (-703))) (-15 -3486 (|#3| |#3| |#3| (-703)))) (-13 (-962) (-650 (-377 (-517)))) (-779) (-1175 |#2| |#1|)) (T -1170))
+((-3486 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4)))) (-3868 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4)))))
+(-10 -7 (-15 -3868 (|#3| |#3| (-703))) (-15 -1225 (|#3| |#3| (-703))) (-15 -3486 (|#3| |#3| |#3| (-703))))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3365 (((-583 |#1|) $) 40)) (-1250 (((-3 $ "failed") $ $) 19)) (-2997 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-1681 (($) 17 T CONST)) (-3397 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3226 (((-3 (-751 |#1|) "failed") $) 64)) (-3388 (((-751 |#1|) $) 63)) (-3163 (((-3 $ "failed") $) 34)) (-3589 (((-107) $) 45)) (-4026 (($ $) 44)) (-1865 (((-107) $) 31)) (-1960 (((-107) $) 50)) (-2423 (($ (-751 |#1|) |#2|) 51)) (-1213 (($ $) 49)) (-1349 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1346 (((-751 |#1|) $) 61)) (-3308 (($ (-1 |#2| |#2|) $) 41)) (-1896 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-3474 (((-107) $) 47)) (-1384 ((|#2| $) 46)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1580 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1171 |#1| |#2|) (-1187) (-779) (-962)) (T -1171))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-751 *3)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1580 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1171 *4 *2)) (-4 *4 (-779)) (-4 *2 (-962)))) (-1580 (*1 *2 *1 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-1896 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))) (-1896 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))) (-3397 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1171 *4 *3)) (-4 *3 (-962)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-107)))) (-1213 (*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-2269 (*1 *1 *2) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-107)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-107)))) (-4026 (*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))) (-2997 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)) (-4 *3 (-156)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-4 *4 (-156)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-583 *3)))))
+(-13 (-962) (-1168 |t#2|) (-953 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1346 ((-751 |t#1|) $)) (-15 -1349 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1580 (|t#2| $ (-751 |t#1|))) (-15 -1580 (|t#2| $ $)) (-15 -1896 ($ $ |t#1|)) (-15 -1896 ($ $ (-751 |t#1|))) (-15 -1896 ($ $ $)) (-15 -3397 ($ $ |t#1|)) (-15 -3397 ($ $ (-751 |t#1|))) (-15 -3397 ($ $ $)) (-15 -2423 ($ (-751 |t#1|) |t#2|)) (-15 -1960 ((-107) $)) (-15 -1213 ($ $)) (-15 -2269 ($ |t#1|)) (-15 -3474 ((-107) $)) (-15 -1384 (|t#2| $)) (-15 -3589 ((-107) $)) (-15 -4026 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -2997 ($ $ $)) (-15 -2997 ($ $ (-703)))) |%noBranch|) (-15 -3308 ($ (-1 |t#2| |t#2|) $)) (-15 -3365 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4183)) (-6 -4183) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-953 (-751 |#1|)) . T) ((-968 |#2|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1168 |#2|) . T))
+((-3825 (((-107) $) 14)) (-3980 (((-107) $) 13)) (-1739 (($ $) 18) (($ $ (-703)) 19)))
+(((-1172 |#1| |#2|) (-10 -8 (-15 -1739 (|#1| |#1| (-703))) (-15 -1739 (|#1| |#1|)) (-15 -3825 ((-107) |#1|)) (-15 -3980 ((-107) |#1|))) (-1173 |#2|) (-333)) (T -1172))
+NIL
+(-10 -8 (-15 -1739 (|#1| |#1| (-703))) (-15 -1739 (|#1| |#1|)) (-15 -3825 ((-107) |#1|)) (-15 -3980 ((-107) |#1|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-1799 (((-2 (|:| -1875 $) (|:| -4177 $) (|:| |associate| $)) $) 41)) (-2729 (($ $) 40)) (-2566 (((-107) $) 38)) (-3825 (((-107) $) 94)) (-2495 (((-703)) 90)) (-1250 (((-3 $ "failed") $ $) 19)) (-3088 (($ $) 73)) (-1581 (((-388 $) $) 72)) (-3998 (((-107) $ $) 59)) (-1681 (($) 17 T CONST)) (-3226 (((-3 |#1| "failed") $) 101)) (-3388 ((|#1| $) 100)) (-2378 (($ $ $) 55)) (-3163 (((-3 $ "failed") $) 34)) (-2354 (($ $ $) 56)) (-2776 (((-2 (|:| -1580 (-583 $)) (|:| -1317 $)) (-583 $)) 51)) (-2464 (($ $ (-703)) 87 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2963 (((-107) $) 71)) (-2053 (((-765 (-844)) $) 84 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1865 (((-107) $) 31)) (-2832 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2330 (($ $ $) 46) (($ (-583 $)) 45)) (-1895 (((-1058) $) 9)) (-2298 (($ $) 70)) (-1214 (((-107) $) 93)) (-4123 (((-1022) $) 10)) (-2793 (((-1071 $) (-1071 $) (-1071 $)) 44)) (-2368 (($ $ $) 48) (($ (-583 $)) 47)) (-3866 (((-388 $) $) 74)) (-2370 (((-765 (-844))) 91)) (-1334 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1317 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2327 (((-3 $ "failed") $ $) 42)) (-1456 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-4094 (((-703) $) 58)) (-2928 (((-2 (|:| -2525 $) (|:| -1451 $)) $ $) 57)) (-1496 (((-3 (-703) "failed") $ $) 85 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1880 (((-125)) 99)) (-2769 (((-765 (-844)) $) 92)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-2650 (((-3 $ "failed") $) 83 (-3745 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2950 (((-703)) 29)) (-2914 (((-107) $ $) 39)) (-3980 (((-107) $) 95)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1739 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1583 (((-107) $ $) 6)) (-1703 (($ $ $) 64) (($ $ |#1|) 98)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1173 |#1|) (-1187) (-333)) (T -1173))
+((-3980 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1214 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))) (-2370 (*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))) (-2495 (*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-1739 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
+(-13 (-333) (-953 |t#1|) (-1163 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |%noBranch|) (-15 -3980 ((-107) $)) (-15 -3825 ((-107) $)) (-15 -1214 ((-107) $)) (-15 -2769 ((-765 (-844)) $)) (-15 -2370 ((-765 (-844)))) (-15 -2495 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -1739 ($ $)) (-15 -1739 ($ $ (-703)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3745 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3745 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-843) . T) ((-953 |#1|) . T) ((-968 #0#) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1114) . T) ((-1163 |#1|) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3365 (((-583 |#1|) $) 85)) (-1843 (($ $ (-703)) 88)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-1681 (($) NIL T CONST)) (-3397 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-3226 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-816 |#1|) "failed") $) NIL)) (-3388 (((-751 |#1|) $) NIL) (((-816 |#1|) $) NIL)) (-2371 (($ $) 87)) (-3163 (((-3 $ "failed") $) NIL)) (-3589 (((-107) $) 76)) (-4026 (($ $) 80)) (-3544 (($ $ $ (-703)) 89)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ (-751 |#1|) |#2|) NIL) (($ (-816 |#1|) |#2|) 26)) (-1213 (($ $) 102)) (-1349 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1346 (((-751 |#1|) $) NIL)) (-3151 (((-751 |#1|) $) NIL)) (-3308 (($ (-1 |#2| |#2|) $) NIL)) (-1896 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1225 (($ $ (-703)) 96 (|has| |#2| (-650 (-377 (-517)))))) (-1296 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2333 (((-816 |#1|) $) 70)) (-2345 ((|#2| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3868 (($ $ (-703)) 93 (|has| |#2| (-650 (-377 (-517)))))) (-2769 (((-703) $) 86)) (-3474 (((-107) $) 71)) (-1384 ((|#2| $) 75)) (-2269 (((-787) $) 57) (($ (-517)) NIL) (($ |#2|) 51) (($ (-751 |#1|)) NIL) (($ |#1|) 59) (($ (-816 |#1|)) NIL) (($ (-601 |#1| |#2|)) 43) (((-1169 |#1| |#2|) $) 64) (((-1178 |#1| |#2|) $) 69)) (-2907 (((-583 |#2|) $) NIL)) (-3952 ((|#2| $ (-816 |#1|)) NIL)) (-1580 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 21 T CONST)) (-3617 (($) 25 T CONST)) (-2858 (((-583 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1796 (((-3 (-601 |#1| |#2|) "failed") $) 101)) (-1583 (((-107) $ $) 65)) (-1691 (($ $) 95) (($ $ $) 94)) (-1677 (($ $ $) 20)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-816 |#1|)) NIL)))
+(((-1174 |#1| |#2|) (-13 (-1175 |#1| |#2|) (-352 |#2| (-816 |#1|)) (-10 -8 (-15 -2269 ($ (-601 |#1| |#2|))) (-15 -2269 ((-1169 |#1| |#2|) $)) (-15 -2269 ((-1178 |#1| |#2|) $)) (-15 -1796 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3544 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3868 ($ $ (-703))) (-15 -1225 ($ $ (-703)))) |%noBranch|))) (-779) (-156)) (T -1174))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1174 *3 *4)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1796 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3544 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1225 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(-13 (-1175 |#1| |#2|) (-352 |#2| (-816 |#1|)) (-10 -8 (-15 -2269 ($ (-601 |#1| |#2|))) (-15 -2269 ((-1169 |#1| |#2|) $)) (-15 -2269 ((-1178 |#1| |#2|) $)) (-15 -1796 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3544 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3868 ($ $ (-703))) (-15 -1225 ($ $ (-703)))) |%noBranch|)))
+((-2118 (((-107) $ $) 7)) (-2033 (((-107) $) 16)) (-3365 (((-583 |#1|) $) 40)) (-1843 (($ $ (-703)) 73)) (-1250 (((-3 $ "failed") $ $) 19)) (-2997 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-1681 (($) 17 T CONST)) (-3397 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3226 (((-3 (-751 |#1|) "failed") $) 64)) (-3388 (((-751 |#1|) $) 63)) (-3163 (((-3 $ "failed") $) 34)) (-3589 (((-107) $) 45)) (-4026 (($ $) 44)) (-1865 (((-107) $) 31)) (-1960 (((-107) $) 50)) (-2423 (($ (-751 |#1|) |#2|) 51)) (-1213 (($ $) 49)) (-1349 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1346 (((-751 |#1|) $) 61)) (-3151 (((-751 |#1|) $) 75)) (-3308 (($ (-1 |#2| |#2|) $) 41)) (-1896 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-1895 (((-1058) $) 9)) (-4123 (((-1022) $) 10)) (-2769 (((-703) $) 74)) (-3474 (((-107) $) 47)) (-1384 ((|#2| $) 46)) (-2269 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1580 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2950 (((-703)) 29)) (-2813 (($ $ (-844)) 26) (($ $ (-703)) 33)) (-3608 (($) 18 T CONST)) (-3617 (($) 30 T CONST)) (-1583 (((-107) $ $) 6)) (-1691 (($ $) 22) (($ $ $) 21)) (-1677 (($ $ $) 14)) (** (($ $ (-844)) 25) (($ $ (-703)) 32)) (* (($ (-844) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1175 |#1| |#2|) (-1187) (-779) (-962)) (T -1175))
+((-3151 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-751 *3)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *2 (-703)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))))
+(-13 (-1171 |t#1| |t#2|) (-10 -8 (-15 -3151 ((-751 |t#1|) $)) (-15 -2769 ((-703) $)) (-15 -1843 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-953 (-751 |#1|)) . T) ((-968 |#2|) . T) ((-962) . T) ((-969) . T) ((-1016) . T) ((-1004) . T) ((-1168 |#2|) . T) ((-1171 |#1| |#2|) . T))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3365 (((-583 (-1075)) $) NIL)) (-1849 (($ (-1169 (-1075) |#1|)) NIL)) (-1843 (($ $ (-703)) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-1681 (($) NIL T CONST)) (-3397 (($ $ (-1075)) NIL) (($ $ (-751 (-1075))) NIL) (($ $ $) NIL)) (-3226 (((-3 (-751 (-1075)) "failed") $) NIL)) (-3388 (((-751 (-1075)) $) NIL)) (-3163 (((-3 $ "failed") $) NIL)) (-3589 (((-107) $) NIL)) (-4026 (($ $) NIL)) (-1865 (((-107) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ (-751 (-1075)) |#1|) NIL)) (-1213 (($ $) NIL)) (-1349 (((-2 (|:| |k| (-751 (-1075))) (|:| |c| |#1|)) $) NIL)) (-1346 (((-751 (-1075)) $) NIL)) (-3151 (((-751 (-1075)) $) NIL)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1896 (($ $ (-1075)) NIL) (($ $ (-751 (-1075))) NIL) (($ $ $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2294 (((-1169 (-1075) |#1|) $) NIL)) (-2769 (((-703) $) NIL)) (-3474 (((-107) $) NIL)) (-1384 ((|#1| $) NIL)) (-2269 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1075))) NIL) (($ (-1075)) NIL)) (-1580 ((|#1| $ (-751 (-1075))) NIL) ((|#1| $ $) NIL)) (-2950 (((-703)) NIL)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) NIL T CONST)) (-1910 (((-583 (-2 (|:| |k| (-1075)) (|:| |c| $))) $) NIL)) (-3617 (($) NIL T CONST)) (-1583 (((-107) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) NIL)) (** (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1075) $) NIL)))
+(((-1176 |#1|) (-13 (-1175 (-1075) |#1|) (-10 -8 (-15 -2294 ((-1169 (-1075) |#1|) $)) (-15 -1849 ($ (-1169 (-1075) |#1|))) (-15 -1910 ((-583 (-2 (|:| |k| (-1075)) (|:| |c| $))) $)))) (-962)) (T -1176))
+((-2294 (*1 *2 *1) (-12 (-5 *2 (-1169 (-1075) *3)) (-5 *1 (-1176 *3)) (-4 *3 (-962)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-1169 (-1075) *3)) (-4 *3 (-962)) (-5 *1 (-1176 *3)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1075)) (|:| |c| (-1176 *3))))) (-5 *1 (-1176 *3)) (-4 *3 (-962)))))
+(-13 (-1175 (-1075) |#1|) (-10 -8 (-15 -2294 ((-1169 (-1075) |#1|) $)) (-15 -1849 ($ (-1169 (-1075) |#1|))) (-15 -1910 ((-583 (-2 (|:| |k| (-1075)) (|:| |c| $))) $))))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-1250 (((-3 $ "failed") $ $) NIL)) (-1681 (($) NIL T CONST)) (-3226 (((-3 |#2| "failed") $) NIL)) (-3388 ((|#2| $) NIL)) (-2371 (($ $) NIL)) (-3163 (((-3 $ "failed") $) 35)) (-3589 (((-107) $) 30)) (-4026 (($ $) 31)) (-1865 (((-107) $) NIL)) (-1942 (((-703) $) NIL)) (-3370 (((-583 $) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ |#2| |#1|) NIL)) (-1346 ((|#2| $) 19)) (-3151 ((|#2| $) 16)) (-3308 (($ (-1 |#1| |#1|) $) NIL)) (-1296 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2333 ((|#2| $) NIL)) (-2345 ((|#1| $) NIL)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-3474 (((-107) $) 27)) (-1384 ((|#1| $) 28)) (-2269 (((-787) $) 54) (($ (-517)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2907 (((-583 |#1|) $) NIL)) (-3952 ((|#1| $ |#2|) NIL)) (-1580 ((|#1| $ |#2|) 24)) (-2950 (((-703)) 14)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 25 T CONST)) (-3617 (($) 11 T CONST)) (-2858 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1583 (((-107) $ $) 26)) (-1703 (($ $ |#1|) 56 (|has| |#1| (-333)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-1677 (($ $ $) 43)) (** (($ $ (-844)) NIL) (($ $ (-703)) 45)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3533 (((-703) $) 15)))
+(((-1177 |#1| |#2|) (-13 (-962) (-1168 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3533 ((-703) $)) (-15 -2269 ($ |#2|)) (-15 -3151 (|#2| $)) (-15 -1346 (|#2| $)) (-15 -2371 ($ $)) (-15 -1580 (|#1| $ |#2|)) (-15 -3474 ((-107) $)) (-15 -1384 (|#1| $)) (-15 -3589 ((-107) $)) (-15 -4026 ($ $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1703 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4183)) (-6 -4183) |%noBranch|) (IF (|has| |#1| (-6 -4187)) (-6 -4187) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|))) (-962) (-775)) (T -1177))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1177 *3 *4)) (-4 *4 (-775)))) (-2269 (*1 *1 *2) (-12 (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)) (-4 *2 (-775)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962)) (-4 *4 (-775)))) (-3151 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)))) (-1346 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)))) (-1580 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-775)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962)) (-4 *4 (-775)))) (-1384 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-775)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962)) (-4 *4 (-775)))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))) (-1703 (*1 *1 *1 *2) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-333)) (-4 *2 (-962)) (-4 *3 (-775)))))
+(-13 (-962) (-1168 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3533 ((-703) $)) (-15 -2269 ($ |#2|)) (-15 -3151 (|#2| $)) (-15 -1346 (|#2| $)) (-15 -2371 ($ $)) (-15 -1580 (|#1| $ |#2|)) (-15 -3474 ((-107) $)) (-15 -1384 (|#1| $)) (-15 -3589 ((-107) $)) (-15 -4026 ($ $)) (-15 -3308 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1703 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4183)) (-6 -4183) |%noBranch|) (IF (|has| |#1| (-6 -4187)) (-6 -4187) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) NIL)) (-3365 (((-583 |#1|) $) 120)) (-1849 (($ (-1169 |#1| |#2|)) 44)) (-1843 (($ $ (-703)) 32)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2997 (($ $ $) 48 (|has| |#2| (-156))) (($ $ (-703)) 46 (|has| |#2| (-156)))) (-1681 (($) NIL T CONST)) (-3397 (($ $ |#1|) 102) (($ $ (-751 |#1|)) 103) (($ $ $) 25)) (-3226 (((-3 (-751 |#1|) "failed") $) NIL)) (-3388 (((-751 |#1|) $) NIL)) (-3163 (((-3 $ "failed") $) 110)) (-3589 (((-107) $) 105)) (-4026 (($ $) 106)) (-1865 (((-107) $) NIL)) (-1960 (((-107) $) NIL)) (-2423 (($ (-751 |#1|) |#2|) 19)) (-1213 (($ $) NIL)) (-1349 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1346 (((-751 |#1|) $) 111)) (-3151 (((-751 |#1|) $) 114)) (-3308 (($ (-1 |#2| |#2|) $) 119)) (-1896 (($ $ |#1|) 100) (($ $ (-751 |#1|)) 101) (($ $ $) 56)) (-1895 (((-1058) $) NIL)) (-4123 (((-1022) $) NIL)) (-2294 (((-1169 |#1| |#2|) $) 84)) (-2769 (((-703) $) 117)) (-3474 (((-107) $) 70)) (-1384 ((|#2| $) 28)) (-2269 (((-787) $) 63) (($ (-517)) 77) (($ |#2|) 74) (($ (-751 |#1|)) 17) (($ |#1|) 73)) (-1580 ((|#2| $ (-751 |#1|)) 104) ((|#2| $ $) 27)) (-2950 (((-703)) 108)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 14 T CONST)) (-1910 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3617 (($) 29 T CONST)) (-1583 (((-107) $ $) 13)) (-1691 (($ $) 88) (($ $ $) 91)) (-1677 (($ $ $) 55)) (** (($ $ (-844)) NIL) (($ $ (-703)) 49)) (* (($ (-844) $) NIL) (($ (-703) $) 47) (($ (-517) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1178 |#1| |#2|) (-13 (-1175 |#1| |#2|) (-10 -8 (-15 -2294 ((-1169 |#1| |#2|) $)) (-15 -1849 ($ (-1169 |#1| |#2|))) (-15 -1910 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-962)) (T -1178))
+((-2294 (*1 *2 *1) (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)) (-5 *1 (-1178 *3 *4)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1178 *3 *4))))) (-5 *1 (-1178 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))))
+(-13 (-1175 |#1| |#2|) (-10 -8 (-15 -2294 ((-1169 |#1| |#2|) $)) (-15 -1849 ($ (-1169 |#1| |#2|))) (-15 -1910 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2010 (((-583 (-1056 |#1|)) (-1 (-583 (-1056 |#1|)) (-583 (-1056 |#1|))) (-517)) 15) (((-1056 |#1|) (-1 (-1056 |#1|) (-1056 |#1|))) 11)))
+(((-1179 |#1|) (-10 -7 (-15 -2010 ((-1056 |#1|) (-1 (-1056 |#1|) (-1056 |#1|)))) (-15 -2010 ((-583 (-1056 |#1|)) (-1 (-583 (-1056 |#1|)) (-583 (-1056 |#1|))) (-517)))) (-1110)) (T -1179))
+((-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1056 *5)) (-583 (-1056 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1056 *5))) (-5 *1 (-1179 *5)) (-4 *5 (-1110)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1 (-1056 *4) (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1110)))))
+(-10 -7 (-15 -2010 ((-1056 |#1|) (-1 (-1056 |#1|) (-1056 |#1|)))) (-15 -2010 ((-583 (-1056 |#1|)) (-1 (-583 (-1056 |#1|)) (-583 (-1056 |#1|))) (-517))))
+((-2352 (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|))) 146) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107)) 145) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107)) 144) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107)) 143) (((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-959 |#1| |#2|)) 128)) (-2135 (((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|))) 71) (((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107)) 70) (((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107)) 69)) (-1581 (((-583 (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-959 |#1| |#2|)) 60)) (-3630 (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|))) 113) (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107)) 112) (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107)) 111) (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107)) 110) (((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|)) 105)) (-1956 (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|))) 118) (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107)) 117) (((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107)) 116) (((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|)) 115)) (-3357 (((-583 (-712 |#1| (-789 |#3|))) (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 97) (((-1071 (-940 (-377 |#1|))) (-1071 |#1|)) 88) (((-875 (-940 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 95) (((-875 (-940 (-377 |#1|))) (-875 |#1|)) 93) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 33)))
+(((-1180 |#1| |#2| |#3|) (-10 -7 (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107))) (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-959 |#1| |#2|))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -1581 ((-583 (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-959 |#1| |#2|))) (-15 -3357 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3357 ((-875 (-940 (-377 |#1|))) (-875 |#1|))) (-15 -3357 ((-875 (-940 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3357 ((-1071 (-940 (-377 |#1|))) (-1071 |#1|))) (-15 -3357 ((-583 (-712 |#1| (-789 |#3|))) (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-938)) (-583 (-1075)) (-583 (-1075))) (T -1180))
+((-3357 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1071 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-1071 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *6 (-583 (-1075))) (-5 *2 (-875 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-875 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-1046 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-1956 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-3630 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-3630 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4)))))) (-5 *1 (-1180 *4 *5 *6)) (-5 *3 (-583 (-875 *4))) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5)))))) (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-2352 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5)))))) (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-2352 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5)))))) (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5))) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4)))))) (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-959 *4 *5))) (-5 *1 (-1180 *4 *5 *6)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))) (-2135 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938))) (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-1180 *5 *6 *7)) (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075))))))
+(-10 -7 (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)) (-107))) (-15 -2135 ((-583 (-959 |#1| |#2|)) (-583 (-875 |#1|)))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-959 |#1| |#2|))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)) (-107))) (-15 -2352 ((-583 (-2 (|:| -4101 (-1071 |#1|)) (|:| -3369 (-583 (-875 |#1|))))) (-583 (-875 |#1|)))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -3630 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-959 |#1| |#2|))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107) (-107))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)) (-107))) (-15 -1956 ((-583 (-583 (-940 (-377 |#1|)))) (-583 (-875 |#1|)))) (-15 -1581 ((-583 (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-959 |#1| |#2|))) (-15 -3357 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3357 ((-875 (-940 (-377 |#1|))) (-875 |#1|))) (-15 -3357 ((-875 (-940 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3357 ((-1071 (-940 (-377 |#1|))) (-1071 |#1|))) (-15 -3357 ((-583 (-712 |#1| (-789 |#3|))) (-1046 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
+((-4052 (((-3 (-1156 (-377 (-517))) "failed") (-1156 |#1|) |#1|) 17)) (-1871 (((-107) (-1156 |#1|)) 11)) (-4161 (((-3 (-1156 (-517)) "failed") (-1156 |#1|)) 14)))
+(((-1181 |#1|) (-10 -7 (-15 -1871 ((-107) (-1156 |#1|))) (-15 -4161 ((-3 (-1156 (-517)) "failed") (-1156 |#1|))) (-15 -4052 ((-3 (-1156 (-377 (-517))) "failed") (-1156 |#1|) |#1|))) (-579 (-517))) (T -1181))
+((-4052 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1156 (-377 (-517)))) (-5 *1 (-1181 *4)))) (-4161 (*1 *2 *3) (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1156 (-517))) (-5 *1 (-1181 *4)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1181 *4)))))
+(-10 -7 (-15 -1871 ((-107) (-1156 |#1|))) (-15 -4161 ((-3 (-1156 (-517)) "failed") (-1156 |#1|))) (-15 -4052 ((-3 (-1156 (-377 (-517))) "failed") (-1156 |#1|) |#1|)))
+((-2118 (((-107) $ $) NIL)) (-2033 (((-107) $) 11)) (-1250 (((-3 $ "failed") $ $) NIL)) (-2397 (((-703)) 8)) (-1681 (($) NIL T CONST)) (-3163 (((-3 $ "failed") $) 43)) (-2200 (($) 36)) (-1865 (((-107) $) NIL)) (-3572 (((-3 $ "failed") $) 29)) (-2031 (((-844) $) 15)) (-1895 (((-1058) $) NIL)) (-2585 (($) 25 T CONST)) (-2810 (($ (-844)) 37)) (-4123 (((-1022) $) NIL)) (-3357 (((-517) $) 13)) (-2269 (((-787) $) 22) (($ (-517)) 19)) (-2950 (((-703)) 9)) (-2813 (($ $ (-844)) NIL) (($ $ (-703)) NIL)) (-3608 (($) 23 T CONST)) (-3617 (($) 24 T CONST)) (-1583 (((-107) $ $) 27)) (-1691 (($ $) 38) (($ $ $) 35)) (-1677 (($ $ $) 26)) (** (($ $ (-844)) NIL) (($ $ (-703)) 40)) (* (($ (-844) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
+(((-1182 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1051)) (-844)) (T -1182))
+NIL
+(-13 (-156) (-338) (-558 (-517)) (-1051))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-1187 3125627 3125632 3125637 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3125612 3125617 3125622 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3125597 3125602 3125607 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3125582 3125587 3125592 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3125567 3125572 3125577 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1182 3124697 3125442 3125519 "ZMOD" 3125524 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1181 3123807 3123971 3124180 "ZLINDEP" 3124529 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1180 3113211 3114956 3116908 "ZDSOLVE" 3121956 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1179 3112457 3112598 3112787 "YSTREAM" 3113057 NIL YSTREAM (NIL T) -7 NIL NIL) (-1178 3110225 3111762 3111965 "XRPOLY" 3112300 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1177 3106687 3108016 3108598 "XPR" 3109689 NIL XPR (NIL T T) -8 NIL NIL) (-1176 3104401 3106022 3106225 "XPOLY" 3106518 NIL XPOLY (NIL T) -8 NIL NIL) (-1175 3102214 3103592 3103647 "XPOLYC" 3103932 NIL XPOLYC (NIL T T) -9 NIL 3104045) (-1174 3098586 3100731 3101119 "XPBWPOLY" 3101872 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1173 3094513 3096826 3096869 "XF" 3097490 NIL XF (NIL T) -9 NIL 3097889) (-1172 3094134 3094222 3094391 "XF-" 3094396 NIL XF- (NIL T T) -8 NIL NIL) (-1171 3089513 3090812 3090867 "XFALG" 3093015 NIL XFALG (NIL T T) -9 NIL 3093802) (-1170 3088650 3088754 3088958 "XEXPPKG" 3089405 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1169 3086748 3088501 3088596 "XDPOLY" 3088601 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1168 3085626 3086236 3086279 "XALG" 3086341 NIL XALG (NIL T) -9 NIL 3086460) (-1167 3079102 3083610 3084103 "WUTSET" 3085218 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1166 3076914 3077721 3078072 "WP" 3078884 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1165 3075800 3075998 3076293 "WFFINTBS" 3076711 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1164 3073704 3074131 3074593 "WEIER" 3075372 NIL WEIER (NIL T) -7 NIL NIL) (-1163 3072852 3073276 3073319 "VSPACE" 3073455 NIL VSPACE (NIL T) -9 NIL 3073529) (-1162 3072690 3072717 3072808 "VSPACE-" 3072813 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1161 3072436 3072479 3072550 "VOID" 3072641 T VOID (NIL) -8 NIL NIL) (-1160 3070572 3070931 3071337 "VIEW" 3072052 T VIEW (NIL) -7 NIL NIL) (-1159 3066997 3067635 3068372 "VIEWDEF" 3069857 T VIEWDEF (NIL) -7 NIL NIL) (-1158 3056336 3058545 3060718 "VIEW3D" 3064846 T VIEW3D (NIL) -8 NIL NIL) (-1157 3048618 3050247 3051826 "VIEW2D" 3054779 T VIEW2D (NIL) -8 NIL NIL) (-1156 3044027 3048388 3048480 "VECTOR" 3048561 NIL VECTOR (NIL T) -8 NIL NIL) (-1155 3042604 3042863 3043181 "VECTOR2" 3043757 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1154 3036143 3040395 3040439 "VECTCAT" 3041427 NIL VECTCAT (NIL T) -9 NIL 3042011) (-1153 3035157 3035411 3035801 "VECTCAT-" 3035806 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1152 3034638 3034808 3034928 "VARIABLE" 3035072 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1151 3034570 3034575 3034606 "UTYPE" 3034611 T UTYPE (NIL) -9 NIL NIL) (-1150 3033405 3033559 3033820 "UTSODETL" 3034396 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1149 3030845 3031305 3031829 "UTSODE" 3032946 NIL UTSODE (NIL T T) -7 NIL NIL) (-1148 3022692 3028485 3028973 "UTS" 3030414 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1147 3014040 3019402 3019445 "UTSCAT" 3020546 NIL UTSCAT (NIL T) -9 NIL 3021303) (-1146 3011396 3012111 3013099 "UTSCAT-" 3013104 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1145 3011027 3011070 3011201 "UTS2" 3011347 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1144 3005302 3007867 3007911 "URAGG" 3009981 NIL URAGG (NIL T) -9 NIL 3010703) (-1143 3002241 3003104 3004227 "URAGG-" 3004232 NIL URAGG- (NIL T T) -8 NIL NIL) (-1142 2997927 3000858 3001329 "UPXSSING" 3001905 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1141 2989821 2997048 2997328 "UPXS" 2997704 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1140 2982853 2989726 2989797 "UPXSCONS" 2989802 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1139 2973145 2979972 2980034 "UPXSCCA" 2980683 NIL UPXSCCA (NIL T T) -9 NIL 2980924) (-1138 2972784 2972869 2973042 "UPXSCCA-" 2973047 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1137 2962998 2969598 2969641 "UPXSCAT" 2970284 NIL UPXSCAT (NIL T) -9 NIL 2970892) (-1136 2962432 2962511 2962688 "UPXS2" 2962913 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1135 2961086 2961339 2961690 "UPSQFREE" 2962175 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1134 2954981 2958033 2958088 "UPSCAT" 2959237 NIL UPSCAT (NIL T T) -9 NIL 2960010) (-1133 2954195 2954399 2954722 "UPSCAT-" 2954727 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1132 2940327 2948324 2948367 "UPOLYC" 2950445 NIL UPOLYC (NIL T) -9 NIL 2951665) (-1131 2931720 2934124 2937249 "UPOLYC-" 2937254 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1130 2931351 2931394 2931525 "UPOLYC2" 2931671 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1129 2922810 2930920 2931057 "UP" 2931261 NIL UP (NIL NIL T) -8 NIL NIL) (-1128 2922153 2922260 2922423 "UPMP" 2922699 NIL UPMP (NIL T T) -7 NIL NIL) (-1127 2921706 2921787 2921926 "UPDIVP" 2922066 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1126 2920274 2920523 2920839 "UPDECOMP" 2921455 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1125 2919509 2919621 2919806 "UPCDEN" 2920158 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1124 2919032 2919101 2919248 "UP2" 2919434 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1123 2917555 2918241 2918516 "UNISEG" 2918792 NIL UNISEG (NIL T) -8 NIL NIL) (-1122 2916770 2916897 2917102 "UNISEG2" 2917398 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1121 2915830 2916010 2916236 "UNIFACT" 2916586 NIL UNIFACT (NIL T) -7 NIL NIL) (-1120 2899729 2915011 2915261 "ULS" 2915637 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1119 2887697 2899634 2899705 "ULSCONS" 2899710 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1118 2870450 2882460 2882522 "ULSCCAT" 2883234 NIL ULSCCAT (NIL T T) -9 NIL 2883530) (-1117 2869501 2869746 2870133 "ULSCCAT-" 2870138 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1116 2859494 2866008 2866051 "ULSCAT" 2866907 NIL ULSCAT (NIL T) -9 NIL 2867637) (-1115 2858928 2859007 2859184 "ULS2" 2859409 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1114 2857325 2858292 2858323 "UFD" 2858535 T UFD (NIL) -9 NIL 2858649) (-1113 2857119 2857165 2857260 "UFD-" 2857265 NIL UFD- (NIL T) -8 NIL NIL) (-1112 2856201 2856384 2856600 "UDVO" 2856925 T UDVO (NIL) -7 NIL NIL) (-1111 2854017 2854426 2854897 "UDPO" 2855765 NIL UDPO (NIL T) -7 NIL NIL) (-1110 2853949 2853954 2853985 "TYPE" 2853990 T TYPE (NIL) -9 NIL NIL) (-1109 2852920 2853122 2853362 "TWOFACT" 2853743 NIL TWOFACT (NIL T) -7 NIL NIL) (-1108 2851858 2852195 2852458 "TUPLE" 2852692 NIL TUPLE (NIL T) -8 NIL NIL) (-1107 2849549 2850068 2850607 "TUBETOOL" 2851341 T TUBETOOL (NIL) -7 NIL NIL) (-1106 2848398 2848603 2848844 "TUBE" 2849342 NIL TUBE (NIL T) -8 NIL NIL) (-1105 2843122 2847376 2847658 "TS" 2848150 NIL TS (NIL T) -8 NIL NIL) (-1104 2831825 2835917 2836014 "TSETCAT" 2841248 NIL TSETCAT (NIL T T T T) -9 NIL 2842779) (-1103 2826560 2828158 2830048 "TSETCAT-" 2830053 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1102 2820823 2821669 2822611 "TRMANIP" 2825696 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1101 2820264 2820327 2820490 "TRIMAT" 2820755 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1100 2818070 2818307 2818670 "TRIGMNIP" 2820013 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1099 2817589 2817702 2817733 "TRIGCAT" 2817946 T TRIGCAT (NIL) -9 NIL NIL) (-1098 2817258 2817337 2817478 "TRIGCAT-" 2817483 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1097 2814157 2816118 2816398 "TREE" 2817013 NIL TREE (NIL T) -8 NIL NIL) (-1096 2813430 2813958 2813989 "TRANFUN" 2814024 T TRANFUN (NIL) -9 NIL 2814090) (-1095 2812709 2812900 2813180 "TRANFUN-" 2813185 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1094 2812513 2812545 2812606 "TOPSP" 2812670 T TOPSP (NIL) -7 NIL NIL) (-1093 2811865 2811980 2812133 "TOOLSIGN" 2812394 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1092 2810526 2811042 2811281 "TEXTFILE" 2811648 T TEXTFILE (NIL) -8 NIL NIL) (-1091 2808391 2808905 2809343 "TEX" 2810110 T TEX (NIL) -8 NIL NIL) (-1090 2808172 2808203 2808275 "TEX1" 2808354 NIL TEX1 (NIL T) -7 NIL NIL) (-1089 2807820 2807883 2807973 "TEMUTL" 2808104 T TEMUTL (NIL) -7 NIL NIL) (-1088 2805974 2806254 2806579 "TBCMPPK" 2807543 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1087 2797862 2804134 2804191 "TBAGG" 2804591 NIL TBAGG (NIL T T) -9 NIL 2804802) (-1086 2792932 2794420 2796174 "TBAGG-" 2796179 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1085 2792316 2792423 2792568 "TANEXP" 2792821 NIL TANEXP (NIL T) -7 NIL NIL) (-1084 2785817 2792173 2792266 "TABLE" 2792271 NIL TABLE (NIL T T) -8 NIL NIL) (-1083 2785230 2785328 2785466 "TABLEAU" 2785714 NIL TABLEAU (NIL T) -8 NIL NIL) (-1082 2779838 2781058 2782306 "TABLBUMP" 2784016 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1081 2776301 2776996 2777779 "SYSSOLP" 2779089 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1080 2773291 2773804 2774427 "SYNTAX" 2775700 T SYNTAX (NIL) -8 NIL NIL) (-1079 2770425 2771033 2771671 "SYMTAB" 2772675 T SYMTAB (NIL) -8 NIL NIL) (-1078 2765674 2766576 2767559 "SYMS" 2769464 T SYMS (NIL) -8 NIL NIL) (-1077 2762907 2765134 2765363 "SYMPOLY" 2765479 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1076 2762427 2762502 2762624 "SYMFUNC" 2762819 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1075 2758405 2759664 2760486 "SYMBOL" 2761627 T SYMBOL (NIL) -8 NIL NIL) (-1074 2751944 2753633 2755353 "SWITCH" 2756707 T SWITCH (NIL) -8 NIL NIL) (-1073 2745177 2750771 2751073 "SUTS" 2751699 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1072 2737070 2744298 2744578 "SUPXS" 2744954 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1071 2728602 2736691 2736816 "SUP" 2736979 NIL SUP (NIL T) -8 NIL NIL) (-1070 2727761 2727888 2728105 "SUPFRACF" 2728470 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1069 2727386 2727445 2727556 "SUP2" 2727696 NIL SUP2 (NIL T T) -7 NIL NIL) (-1068 2725812 2726084 2726444 "SUMRF" 2727087 NIL SUMRF (NIL T) -7 NIL NIL) (-1067 2725133 2725198 2725395 "SUMFS" 2725734 NIL SUMFS (NIL T T) -7 NIL NIL) (-1066 2709072 2724314 2724564 "SULS" 2724940 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1065 2708394 2708597 2708737 "SUCH" 2708980 NIL SUCH (NIL T T) -8 NIL NIL) (-1064 2702321 2703333 2704291 "SUBSPACE" 2707482 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1063 2701751 2701841 2702005 "SUBRESP" 2702209 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1062 2695120 2696416 2697727 "STTF" 2700487 NIL STTF (NIL T) -7 NIL NIL) (-1061 2689293 2690413 2691560 "STTFNC" 2694020 NIL STTFNC (NIL T) -7 NIL NIL) (-1060 2680644 2682511 2684304 "STTAYLOR" 2687534 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1059 2673888 2680508 2680591 "STRTBL" 2680596 NIL STRTBL (NIL T) -8 NIL NIL) (-1058 2669279 2673843 2673874 "STRING" 2673879 T STRING (NIL) -8 NIL NIL) (-1057 2664167 2668652 2668683 "STRICAT" 2668742 T STRICAT (NIL) -9 NIL 2668804) (-1056 2656883 2661690 2662310 "STREAM" 2663582 NIL STREAM (NIL T) -8 NIL NIL) (-1055 2656393 2656470 2656614 "STREAM3" 2656800 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1054 2655375 2655558 2655793 "STREAM2" 2656206 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1053 2655063 2655115 2655208 "STREAM1" 2655317 NIL STREAM1 (NIL T) -7 NIL NIL) (-1052 2654079 2654260 2654491 "STINPROD" 2654879 NIL STINPROD (NIL T) -7 NIL NIL) (-1051 2653657 2653841 2653872 "STEP" 2653952 T STEP (NIL) -9 NIL 2654030) (-1050 2647200 2653556 2653633 "STBL" 2653638 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1049 2642375 2646422 2646466 "STAGG" 2646619 NIL STAGG (NIL T) -9 NIL 2646708) (-1048 2640077 2640679 2641551 "STAGG-" 2641556 NIL STAGG- (NIL T T) -8 NIL NIL) (-1047 2638272 2639847 2639939 "STACK" 2640020 NIL STACK (NIL T) -8 NIL NIL) (-1046 2631003 2636419 2636874 "SREGSET" 2637902 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1045 2623443 2624811 2626323 "SRDCMPK" 2629609 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1044 2616410 2620883 2620914 "SRAGG" 2622217 T SRAGG (NIL) -9 NIL 2622825) (-1043 2615427 2615682 2616061 "SRAGG-" 2616066 NIL SRAGG- (NIL T) -8 NIL NIL) (-1042 2609876 2614346 2614773 "SQMATRIX" 2615046 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1041 2603628 2606596 2607322 "SPLTREE" 2609222 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1040 2599618 2600284 2600930 "SPLNODE" 2603054 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1039 2598664 2598897 2598928 "SPFCAT" 2599372 T SPFCAT (NIL) -9 NIL NIL) (-1038 2597401 2597611 2597875 "SPECOUT" 2598422 T SPECOUT (NIL) -7 NIL NIL) (-1037 2597162 2597202 2597271 "SPADPRSR" 2597354 T SPADPRSR (NIL) -7 NIL NIL) (-1036 2589184 2590931 2590974 "SPACEC" 2595297 NIL SPACEC (NIL T) -9 NIL 2597113) (-1035 2587356 2589117 2589165 "SPACE3" 2589170 NIL SPACE3 (NIL T) -8 NIL NIL) (-1034 2586108 2586279 2586570 "SORTPAK" 2587161 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1033 2584164 2584467 2584885 "SOLVETRA" 2585772 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1032 2583175 2583397 2583671 "SOLVESER" 2583937 NIL SOLVESER (NIL T) -7 NIL NIL) (-1031 2578395 2579276 2580278 "SOLVERAD" 2582227 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1030 2574210 2574819 2575548 "SOLVEFOR" 2577762 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1029 2568509 2573561 2573658 "SNTSCAT" 2573663 NIL SNTSCAT (NIL T T T T) -9 NIL 2573733) (-1028 2562614 2566840 2567230 "SMTS" 2568199 NIL SMTS (NIL T T T) -8 NIL NIL) (-1027 2557025 2562503 2562579 "SMP" 2562584 NIL SMP (NIL T T) -8 NIL NIL) (-1026 2555184 2555485 2555883 "SMITH" 2556722 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1025 2548148 2552344 2552447 "SMATCAT" 2553787 NIL SMATCAT (NIL NIL T T T) -9 NIL 2554336) (-1024 2545089 2545912 2547089 "SMATCAT-" 2547094 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1023 2542802 2544325 2544369 "SKAGG" 2544630 NIL SKAGG (NIL T) -9 NIL 2544765) (-1022 2538860 2541906 2542184 "SINT" 2542546 T SINT (NIL) -8 NIL NIL) (-1021 2538632 2538670 2538736 "SIMPAN" 2538816 T SIMPAN (NIL) -7 NIL NIL) (-1020 2537470 2537691 2537966 "SIGNRF" 2538391 NIL SIGNRF (NIL T) -7 NIL NIL) (-1019 2536279 2536430 2536720 "SIGNEF" 2537299 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1018 2533969 2534423 2534929 "SHP" 2535820 NIL SHP (NIL T NIL) -7 NIL NIL) (-1017 2527822 2533870 2533946 "SHDP" 2533951 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1016 2527311 2527503 2527534 "SGROUP" 2527686 T SGROUP (NIL) -9 NIL 2527773) (-1015 2527081 2527133 2527237 "SGROUP-" 2527242 NIL SGROUP- (NIL T) -8 NIL NIL) (-1014 2523917 2524614 2525337 "SGCF" 2526380 T SGCF (NIL) -7 NIL NIL) (-1013 2518315 2523367 2523464 "SFRTCAT" 2523469 NIL SFRTCAT (NIL T T T T) -9 NIL 2523507) (-1012 2511775 2512790 2513924 "SFRGCD" 2517298 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1011 2504941 2506012 2507196 "SFQCMPK" 2510708 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1010 2504563 2504652 2504762 "SFORT" 2504882 NIL SFORT (NIL T T) -8 NIL NIL) (-1009 2503708 2504403 2504524 "SEXOF" 2504529 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1008 2502842 2503589 2503657 "SEX" 2503662 T SEX (NIL) -8 NIL NIL) (-1007 2497618 2498307 2498403 "SEXCAT" 2502174 NIL SEXCAT (NIL T T T T T) -9 NIL 2502793) (-1006 2494798 2497552 2497600 "SET" 2497605 NIL SET (NIL T) -8 NIL NIL) (-1005 2493049 2493511 2493816 "SETMN" 2494539 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1004 2492656 2492782 2492813 "SETCAT" 2492930 T SETCAT (NIL) -9 NIL 2493014) (-1003 2492436 2492488 2492587 "SETCAT-" 2492592 NIL SETCAT- (NIL T) -8 NIL NIL) (-1002 2488823 2490897 2490941 "SETAGG" 2491811 NIL SETAGG (NIL T) -9 NIL 2492151) (-1001 2488281 2488397 2488634 "SETAGG-" 2488639 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1000 2487486 2487779 2487841 "SEGXCAT" 2488127 NIL SEGXCAT (NIL T T) -9 NIL 2488246) (-999 2486546 2487156 2487335 "SEG" 2487340 NIL SEG (NIL T) -8 NIL NIL) (-998 2485463 2485676 2485718 "SEGCAT" 2486291 NIL SEGCAT (NIL T) -9 NIL 2486529) (-997 2484525 2484853 2485049 "SEGBIND" 2485300 NIL SEGBIND (NIL T) -8 NIL NIL) (-996 2484157 2484214 2484323 "SEGBIND2" 2484462 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-995 2483392 2483515 2483714 "SEG2" 2484004 NIL SEG2 (NIL T T) -7 NIL NIL) (-994 2482831 2483329 2483374 "SDVAR" 2483379 NIL SDVAR (NIL T) -8 NIL NIL) (-993 2475137 2482610 2482734 "SDPOL" 2482739 NIL SDPOL (NIL T) -8 NIL NIL) (-992 2473736 2474002 2474319 "SCPKG" 2474852 NIL SCPKG (NIL T) -7 NIL NIL) (-991 2472963 2473096 2473273 "SCACHE" 2473591 NIL SCACHE (NIL T) -7 NIL NIL) (-990 2472406 2472727 2472810 "SAOS" 2472900 T SAOS (NIL) -8 NIL NIL) (-989 2471974 2472009 2472180 "SAERFFC" 2472365 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-988 2465870 2471873 2471951 "SAE" 2471956 NIL SAE (NIL T T NIL) -8 NIL NIL) (-987 2465466 2465501 2465658 "SAEFACT" 2465829 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-986 2463792 2464106 2464505 "RURPK" 2465132 NIL RURPK (NIL T NIL) -7 NIL NIL) (-985 2462445 2462722 2463029 "RULESET" 2463628 NIL RULESET (NIL T T T) -8 NIL NIL) (-984 2459653 2460156 2460617 "RULE" 2462127 NIL RULE (NIL T T T) -8 NIL NIL) (-983 2459295 2459450 2459531 "RULECOLD" 2459605 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-982 2454187 2454981 2455897 "RSETGCD" 2458494 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-981 2443501 2448553 2448648 "RSETCAT" 2452713 NIL RSETCAT (NIL T T T T) -9 NIL 2453810) (-980 2441432 2441971 2442791 "RSETCAT-" 2442796 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-979 2433862 2435237 2436753 "RSDCMPK" 2440031 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-978 2431879 2432320 2432393 "RRCC" 2433469 NIL RRCC (NIL T T) -9 NIL 2433813) (-977 2431233 2431407 2431683 "RRCC-" 2431688 NIL RRCC- (NIL T T T) -8 NIL NIL) (-976 2405599 2415224 2415289 "RPOLCAT" 2425791 NIL RPOLCAT (NIL T T T) -9 NIL 2428949) (-975 2397103 2399441 2402559 "RPOLCAT-" 2402564 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-974 2388169 2395333 2395813 "ROUTINE" 2396643 T ROUTINE (NIL) -8 NIL NIL) (-973 2384874 2387725 2387872 "ROMAN" 2388042 T ROMAN (NIL) -8 NIL NIL) (-972 2383160 2383745 2384002 "ROIRC" 2384680 NIL ROIRC (NIL T T) -8 NIL NIL) (-971 2379564 2381868 2381897 "RNS" 2382193 T RNS (NIL) -9 NIL 2382463) (-970 2378078 2378461 2378992 "RNS-" 2379065 NIL RNS- (NIL T) -8 NIL NIL) (-969 2377503 2377911 2377940 "RNG" 2377945 T RNG (NIL) -9 NIL 2377966) (-968 2376900 2377262 2377303 "RMODULE" 2377363 NIL RMODULE (NIL T) -9 NIL 2377405) (-967 2375752 2375846 2376176 "RMCAT2" 2376801 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-966 2372466 2374935 2375256 "RMATRIX" 2375487 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-965 2365462 2367696 2367809 "RMATCAT" 2371118 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2372100) (-964 2364841 2364988 2365291 "RMATCAT-" 2365296 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-963 2364411 2364486 2364612 "RINTERP" 2364760 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-962 2363461 2364025 2364054 "RING" 2364164 T RING (NIL) -9 NIL 2364258) (-961 2363256 2363300 2363394 "RING-" 2363399 NIL RING- (NIL T) -8 NIL NIL) (-960 2362108 2362344 2362599 "RIDIST" 2363021 T RIDIST (NIL) -7 NIL NIL) (-959 2353430 2361582 2361785 "RGCHAIN" 2361957 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-958 2350435 2351049 2351717 "RF" 2352794 NIL RF (NIL T) -7 NIL NIL) (-957 2350084 2350147 2350248 "RFFACTOR" 2350366 NIL RFFACTOR (NIL T) -7 NIL NIL) (-956 2349812 2349847 2349942 "RFFACT" 2350043 NIL RFFACT (NIL T) -7 NIL NIL) (-955 2347942 2348306 2348686 "RFDIST" 2349452 T RFDIST (NIL) -7 NIL NIL) (-954 2347400 2347492 2347652 "RETSOL" 2347844 NIL RETSOL (NIL T T) -7 NIL NIL) (-953 2346992 2347072 2347114 "RETRACT" 2347304 NIL RETRACT (NIL T) -9 NIL NIL) (-952 2346844 2346869 2346953 "RETRACT-" 2346958 NIL RETRACT- (NIL T T) -8 NIL NIL) (-951 2339702 2346501 2346626 "RESULT" 2346739 T RESULT (NIL) -8 NIL NIL) (-950 2338287 2338976 2339173 "RESRING" 2339605 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-949 2337927 2337976 2338072 "RESLATC" 2338224 NIL RESLATC (NIL T) -7 NIL NIL) (-948 2337636 2337670 2337775 "REPSQ" 2337886 NIL REPSQ (NIL T) -7 NIL NIL) (-947 2335067 2335647 2336247 "REP" 2337056 T REP (NIL) -7 NIL NIL) (-946 2334768 2334802 2334911 "REPDB" 2335026 NIL REPDB (NIL T) -7 NIL NIL) (-945 2328713 2330092 2331312 "REP2" 2333580 NIL REP2 (NIL T) -7 NIL NIL) (-944 2325119 2325800 2326605 "REP1" 2327940 NIL REP1 (NIL T) -7 NIL NIL) (-943 2317865 2323280 2323732 "REGSET" 2324750 NIL REGSET (NIL T T T T) -8 NIL NIL) (-942 2316686 2317021 2317269 "REF" 2317650 NIL REF (NIL T) -8 NIL NIL) (-941 2316067 2316170 2316335 "REDORDER" 2316570 NIL REDORDER (NIL T T) -7 NIL NIL) (-940 2312036 2315301 2315522 "RECLOS" 2315898 NIL RECLOS (NIL T) -8 NIL NIL) (-939 2311093 2311274 2311487 "REALSOLV" 2311843 T REALSOLV (NIL) -7 NIL NIL) (-938 2310940 2310981 2311010 "REAL" 2311015 T REAL (NIL) -9 NIL 2311050) (-937 2307431 2308233 2309115 "REAL0Q" 2310105 NIL REAL0Q (NIL T) -7 NIL NIL) (-936 2303042 2304030 2305089 "REAL0" 2306412 NIL REAL0 (NIL T) -7 NIL NIL) (-935 2302450 2302522 2302727 "RDIV" 2302964 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-934 2301523 2301697 2301908 "RDIST" 2302272 NIL RDIST (NIL T) -7 NIL NIL) (-933 2300127 2300414 2300783 "RDETRS" 2301231 NIL RDETRS (NIL T T) -7 NIL NIL) (-932 2297948 2298402 2298937 "RDETR" 2299669 NIL RDETR (NIL T T) -7 NIL NIL) (-931 2296564 2296842 2297243 "RDEEFS" 2297664 NIL RDEEFS (NIL T T) -7 NIL NIL) (-930 2295064 2295370 2295799 "RDEEF" 2296252 NIL RDEEF (NIL T T) -7 NIL NIL) (-929 2289348 2292280 2292309 "RCFIELD" 2293586 T RCFIELD (NIL) -9 NIL 2294316) (-928 2287417 2287921 2288614 "RCFIELD-" 2288687 NIL RCFIELD- (NIL T) -8 NIL NIL) (-927 2283748 2285533 2285575 "RCAGG" 2286646 NIL RCAGG (NIL T) -9 NIL 2287111) (-926 2283379 2283473 2283633 "RCAGG-" 2283638 NIL RCAGG- (NIL T T) -8 NIL NIL) (-925 2282724 2282835 2282997 "RATRET" 2283263 NIL RATRET (NIL T) -7 NIL NIL) (-924 2282281 2282348 2282467 "RATFACT" 2282652 NIL RATFACT (NIL T) -7 NIL NIL) (-923 2281596 2281716 2281866 "RANDSRC" 2282151 T RANDSRC (NIL) -7 NIL NIL) (-922 2281333 2281377 2281448 "RADUTIL" 2281545 T RADUTIL (NIL) -7 NIL NIL) (-921 2274340 2280076 2280393 "RADIX" 2281048 NIL RADIX (NIL NIL) -8 NIL NIL) (-920 2265910 2274184 2274312 "RADFF" 2274317 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-919 2265561 2265636 2265665 "RADCAT" 2265822 T RADCAT (NIL) -9 NIL NIL) (-918 2265346 2265394 2265491 "RADCAT-" 2265496 NIL RADCAT- (NIL T) -8 NIL NIL) (-917 2263497 2265121 2265210 "QUEUE" 2265290 NIL QUEUE (NIL T) -8 NIL NIL) (-916 2259994 2263434 2263479 "QUAT" 2263484 NIL QUAT (NIL T) -8 NIL NIL) (-915 2259632 2259675 2259802 "QUATCT2" 2259945 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-914 2253425 2256805 2256846 "QUATCAT" 2257625 NIL QUATCAT (NIL T) -9 NIL 2258390) (-913 2249569 2250606 2251993 "QUATCAT-" 2252087 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-912 2247089 2248653 2248695 "QUAGG" 2249070 NIL QUAGG (NIL T) -9 NIL 2249245) (-911 2246014 2246487 2246659 "QFORM" 2246961 NIL QFORM (NIL NIL T) -8 NIL NIL) (-910 2237310 2242568 2242609 "QFCAT" 2243267 NIL QFCAT (NIL T) -9 NIL 2244260) (-909 2232882 2234083 2235674 "QFCAT-" 2235768 NIL QFCAT- (NIL T T) -8 NIL NIL) (-908 2232520 2232563 2232690 "QFCAT2" 2232833 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-907 2231980 2232090 2232220 "QEQUAT" 2232410 T QEQUAT (NIL) -8 NIL NIL) (-906 2225166 2226237 2227419 "QCMPACK" 2230913 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-905 2222742 2223163 2223591 "QALGSET" 2224821 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-904 2221987 2222161 2222393 "QALGSET2" 2222562 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-903 2220678 2220901 2221218 "PWFFINTB" 2221760 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-902 2218866 2219034 2219387 "PUSHVAR" 2220492 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-901 2214783 2215837 2215879 "PTRANFN" 2217763 NIL PTRANFN (NIL T) -9 NIL NIL) (-900 2213195 2213486 2213807 "PTPACK" 2214494 NIL PTPACK (NIL T) -7 NIL NIL) (-899 2212831 2212888 2212995 "PTFUNC2" 2213132 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-898 2207307 2211648 2211689 "PTCAT" 2212057 NIL PTCAT (NIL T) -9 NIL 2212219) (-897 2206965 2207000 2207124 "PSQFR" 2207266 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-896 2205560 2205858 2206192 "PSEUDLIN" 2206663 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-895 2192368 2194732 2197055 "PSETPK" 2203320 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-894 2185454 2188168 2188263 "PSETCAT" 2191244 NIL PSETCAT (NIL T T T T) -9 NIL 2192058) (-893 2183292 2183926 2184745 "PSETCAT-" 2184750 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-892 2182649 2182811 2182840 "PSCURVE" 2183105 T PSCURVE (NIL) -9 NIL 2183269) (-891 2179100 2180626 2180691 "PSCAT" 2181527 NIL PSCAT (NIL T T T) -9 NIL 2181767) (-890 2178164 2178380 2178779 "PSCAT-" 2178784 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-889 2176817 2177449 2177663 "PRTITION" 2177970 T PRTITION (NIL) -8 NIL NIL) (-888 2165915 2168121 2170309 "PRS" 2174679 NIL PRS (NIL T T) -7 NIL NIL) (-887 2163773 2165265 2165306 "PRQAGG" 2165489 NIL PRQAGG (NIL T) -9 NIL 2165591) (-886 2157547 2161939 2162759 "PRODUCT" 2162999 NIL PRODUCT (NIL T T) -8 NIL NIL) (-885 2154823 2157007 2157240 "PR" 2157358 NIL PR (NIL T T) -8 NIL NIL) (-884 2154619 2154651 2154710 "PRINT" 2154784 T PRINT (NIL) -7 NIL NIL) (-883 2153959 2154076 2154228 "PRIMES" 2154499 NIL PRIMES (NIL T) -7 NIL NIL) (-882 2152024 2152425 2152891 "PRIMELT" 2153538 NIL PRIMELT (NIL T) -7 NIL NIL) (-881 2151755 2151803 2151832 "PRIMCAT" 2151955 T PRIMCAT (NIL) -9 NIL NIL) (-880 2147916 2151693 2151738 "PRIMARR" 2151743 NIL PRIMARR (NIL T) -8 NIL NIL) (-879 2146923 2147101 2147329 "PRIMARR2" 2147734 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-878 2146566 2146622 2146733 "PREASSOC" 2146861 NIL PREASSOC (NIL T T) -7 NIL NIL) (-877 2146046 2146177 2146206 "PPCURVE" 2146409 T PPCURVE (NIL) -9 NIL 2146543) (-876 2143405 2143804 2144396 "POLYROOT" 2145627 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-875 2137311 2143011 2143170 "POLY" 2143278 NIL POLY (NIL T) -8 NIL NIL) (-874 2136696 2136754 2136987 "POLYLIFT" 2137247 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-873 2132981 2133430 2134058 "POLYCATQ" 2136241 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-872 2120021 2125418 2125483 "POLYCAT" 2128968 NIL POLYCAT (NIL T T T) -9 NIL 2130895) (-871 2113472 2115333 2117716 "POLYCAT-" 2117721 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-870 2113061 2113129 2113248 "POLY2UP" 2113398 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-869 2112697 2112754 2112861 "POLY2" 2112998 NIL POLY2 (NIL T T) -7 NIL NIL) (-868 2111382 2111621 2111897 "POLUTIL" 2112471 NIL POLUTIL (NIL T T) -7 NIL NIL) (-867 2109744 2110021 2110351 "POLTOPOL" 2111104 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-866 2105267 2109681 2109726 "POINT" 2109731 NIL POINT (NIL T) -8 NIL NIL) (-865 2103454 2103811 2104186 "PNTHEORY" 2104912 T PNTHEORY (NIL) -7 NIL NIL) (-864 2101882 2102179 2102588 "PMTOOLS" 2103152 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-863 2101475 2101553 2101670 "PMSYM" 2101798 NIL PMSYM (NIL T) -7 NIL NIL) (-862 2100985 2101054 2101228 "PMQFCAT" 2101400 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-861 2100340 2100450 2100606 "PMPRED" 2100862 NIL PMPRED (NIL T) -7 NIL NIL) (-860 2099736 2099822 2099983 "PMPREDFS" 2100241 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-859 2098382 2098590 2098974 "PMPLCAT" 2099498 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-858 2097914 2097993 2098145 "PMLSAGG" 2098297 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-857 2097391 2097467 2097647 "PMKERNEL" 2097832 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-856 2097008 2097083 2097196 "PMINS" 2097310 NIL PMINS (NIL T) -7 NIL NIL) (-855 2096438 2096507 2096722 "PMFS" 2096933 NIL PMFS (NIL T T T) -7 NIL NIL) (-854 2095669 2095787 2095991 "PMDOWN" 2096315 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-853 2094832 2094991 2095173 "PMASS" 2095507 T PMASS (NIL) -7 NIL NIL) (-852 2094106 2094217 2094380 "PMASSFS" 2094718 NIL PMASSFS (NIL T T) -7 NIL NIL) (-851 2093765 2093832 2093925 "PLOTTOOL" 2094033 T PLOTTOOL (NIL) -7 NIL NIL) (-850 2088466 2089632 2090759 "PLOT" 2092658 T PLOT (NIL) -8 NIL NIL) (-849 2084339 2085354 2086259 "PLOT3D" 2087581 T PLOT3D (NIL) -8 NIL NIL) (-848 2083263 2083437 2083669 "PLOT1" 2084146 NIL PLOT1 (NIL T) -7 NIL NIL) (-847 2058658 2063329 2068180 "PLEQN" 2078529 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-846 2057976 2058098 2058278 "PINTERP" 2058523 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-845 2057669 2057716 2057819 "PINTERPA" 2057923 NIL PINTERPA (NIL T T) -7 NIL NIL) (-844 2056896 2057463 2057556 "PI" 2057596 T PI (NIL) -8 NIL NIL) (-843 2055287 2056272 2056301 "PID" 2056483 T PID (NIL) -9 NIL 2056617) (-842 2055012 2055049 2055137 "PICOERCE" 2055244 NIL PICOERCE (NIL T) -7 NIL NIL) (-841 2054333 2054471 2054647 "PGROEB" 2054868 NIL PGROEB (NIL T) -7 NIL NIL) (-840 2049920 2050734 2051639 "PGE" 2053448 T PGE (NIL) -7 NIL NIL) (-839 2048044 2048290 2048656 "PGCD" 2049637 NIL PGCD (NIL T T T T) -7 NIL NIL) (-838 2047382 2047485 2047646 "PFRPAC" 2047928 NIL PFRPAC (NIL T) -7 NIL NIL) (-837 2043997 2045930 2046283 "PFR" 2047061 NIL PFR (NIL T) -8 NIL NIL) (-836 2042386 2042630 2042955 "PFOTOOLS" 2043744 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-835 2040919 2041158 2041509 "PFOQ" 2042143 NIL PFOQ (NIL T T T) -7 NIL NIL) (-834 2039396 2039608 2039970 "PFO" 2040703 NIL PFO (NIL T T T T T) -7 NIL NIL) (-833 2035919 2039285 2039354 "PF" 2039359 NIL PF (NIL NIL) -8 NIL NIL) (-832 2033347 2034628 2034657 "PFECAT" 2035242 T PFECAT (NIL) -9 NIL 2035626) (-831 2032792 2032946 2033160 "PFECAT-" 2033165 NIL PFECAT- (NIL T) -8 NIL NIL) (-830 2031396 2031647 2031948 "PFBRU" 2032541 NIL PFBRU (NIL T T) -7 NIL NIL) (-829 2029263 2029614 2030046 "PFBR" 2031047 NIL PFBR (NIL T T T T) -7 NIL NIL) (-828 2025115 2026639 2027315 "PERM" 2028620 NIL PERM (NIL T) -8 NIL NIL) (-827 2020381 2021322 2022192 "PERMGRP" 2024278 NIL PERMGRP (NIL T) -8 NIL NIL) (-826 2018451 2019444 2019486 "PERMCAT" 2019932 NIL PERMCAT (NIL T) -9 NIL 2020237) (-825 2018106 2018147 2018270 "PERMAN" 2018404 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-824 2015546 2017675 2017806 "PENDTREE" 2018008 NIL PENDTREE (NIL T) -8 NIL NIL) (-823 2013618 2014396 2014438 "PDRING" 2015095 NIL PDRING (NIL T) -9 NIL 2015380) (-822 2012721 2012939 2013301 "PDRING-" 2013306 NIL PDRING- (NIL T T) -8 NIL NIL) (-821 2009863 2010613 2011304 "PDEPROB" 2012050 T PDEPROB (NIL) -8 NIL NIL) (-820 2007434 2007930 2008479 "PDEPACK" 2009334 T PDEPACK (NIL) -7 NIL NIL) (-819 2006346 2006536 2006787 "PDECOMP" 2007233 NIL PDECOMP (NIL T T) -7 NIL NIL) (-818 2003957 2004772 2004801 "PDECAT" 2005586 T PDECAT (NIL) -9 NIL 2006297) (-817 2003710 2003743 2003832 "PCOMP" 2003918 NIL PCOMP (NIL T T) -7 NIL NIL) (-816 2001917 2002513 2002809 "PBWLB" 2003440 NIL PBWLB (NIL T) -8 NIL NIL) (-815 1994426 1995994 1997330 "PATTERN" 2000602 NIL PATTERN (NIL T) -8 NIL NIL) (-814 1994058 1994115 1994224 "PATTERN2" 1994363 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-813 1991815 1992203 1992660 "PATTERN1" 1993647 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-812 1989210 1989764 1990245 "PATRES" 1991380 NIL PATRES (NIL T T) -8 NIL NIL) (-811 1988774 1988841 1988973 "PATRES2" 1989137 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-810 1986671 1987071 1987476 "PATMATCH" 1988443 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-809 1986207 1986390 1986432 "PATMAB" 1986539 NIL PATMAB (NIL T) -9 NIL 1986622) (-808 1984752 1985061 1985319 "PATLRES" 1986012 NIL PATLRES (NIL T T T) -8 NIL NIL) (-807 1984297 1984420 1984462 "PATAB" 1984467 NIL PATAB (NIL T) -9 NIL 1984639) (-806 1981778 1982310 1982883 "PARTPERM" 1983744 T PARTPERM (NIL) -7 NIL NIL) (-805 1981399 1981462 1981564 "PARSURF" 1981709 NIL PARSURF (NIL T) -8 NIL NIL) (-804 1981031 1981088 1981197 "PARSU2" 1981336 NIL PARSU2 (NIL T T) -7 NIL NIL) (-803 1980795 1980835 1980902 "PARSER" 1980984 T PARSER (NIL) -7 NIL NIL) (-802 1980416 1980479 1980581 "PARSCURV" 1980726 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980048 1980105 1980214 "PARSC2" 1980353 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1979687 1979745 1979842 "PARPCURV" 1979984 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1979319 1979376 1979485 "PARPC2" 1979624 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1978839 1978925 1979044 "PAN2EXPR" 1979220 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1977645 1977960 1978188 "PALETTE" 1978631 T PALETTE (NIL) -8 NIL NIL) (-796 1971495 1976904 1977098 "PADICRC" 1977500 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1964703 1970841 1971025 "PADICRAT" 1971343 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963007 1964640 1964685 "PADIC" 1964690 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960211 1961785 1961826 "PADICCT" 1962407 NIL PADICCT (NIL NIL) -9 NIL 1962689) (-792 1959168 1959368 1959636 "PADEPAC" 1959998 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1958380 1958513 1958719 "PADE" 1959030 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1956391 1957223 1957538 "OWP" 1958148 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1955500 1955996 1956168 "OVAR" 1956259 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1954764 1954885 1955046 "OUT" 1955359 T OUT (NIL) -7 NIL NIL) (-787 1943810 1945989 1948159 "OUTFORM" 1952614 T OUTFORM (NIL) -8 NIL NIL) (-786 1943218 1943539 1943628 "OSI" 1943741 T OSI (NIL) -8 NIL NIL) (-785 1941963 1942190 1942475 "ORTHPOL" 1942965 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1939334 1941624 1941762 "OREUP" 1941906 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1936730 1939027 1939153 "ORESUP" 1939276 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934265 1934765 1935325 "OREPCTO" 1936219 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928174 1930380 1930421 "OREPCAT" 1932742 NIL OREPCAT (NIL T) -9 NIL 1933845) (-780 1925322 1926104 1927161 "OREPCAT-" 1927166 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1924499 1924771 1924800 "ORDSET" 1925109 T ORDSET (NIL) -9 NIL 1925273) (-778 1924018 1924140 1924333 "ORDSET-" 1924338 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1922631 1923432 1923461 "ORDRING" 1923663 T ORDRING (NIL) -9 NIL 1923787) (-776 1922276 1922370 1922514 "ORDRING-" 1922519 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1921651 1922132 1922161 "ORDMON" 1922166 T ORDMON (NIL) -9 NIL 1922187) (-774 1920813 1920960 1921155 "ORDFUNS" 1921500 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1920324 1920683 1920712 "ORDFIN" 1920717 T ORDFIN (NIL) -9 NIL 1920738) (-772 1916836 1918910 1919319 "ORDCOMP" 1919948 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916102 1916229 1916415 "ORDCOMP2" 1916696 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1912610 1913492 1914329 "OPTPROB" 1915285 T OPTPROB (NIL) -8 NIL NIL) (-769 1909452 1910081 1910775 "OPTPACK" 1911936 T OPTPACK (NIL) -7 NIL NIL) (-768 1907177 1907913 1907942 "OPTCAT" 1908757 T OPTCAT (NIL) -9 NIL 1909403) (-767 1906945 1906984 1907050 "OPQUERY" 1907131 T OPQUERY (NIL) -7 NIL NIL) (-766 1904081 1905272 1905772 "OP" 1906477 NIL OP (NIL T) -8 NIL NIL) (-765 1900846 1902878 1903247 "ONECOMP" 1903745 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900151 1900266 1900440 "ONECOMP2" 1900718 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1899570 1899676 1899806 "OMSERVER" 1900041 T OMSERVER (NIL) -7 NIL NIL) (-762 1896458 1899010 1899051 "OMSAGG" 1899112 NIL OMSAGG (NIL T) -9 NIL 1899176) (-761 1895081 1895344 1895626 "OMPKG" 1896196 T OMPKG (NIL) -7 NIL NIL) (-760 1894510 1894613 1894642 "OM" 1894941 T OM (NIL) -9 NIL NIL) (-759 1893049 1894062 1894230 "OMLO" 1894391 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1891979 1892126 1892352 "OMEXPR" 1892875 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1891297 1891525 1891661 "OMERR" 1891863 T OMERR (NIL) -8 NIL NIL) (-756 1890475 1890718 1890878 "OMERRK" 1891157 T OMERRK (NIL) -8 NIL NIL) (-755 1889953 1890152 1890260 "OMENC" 1890387 T OMENC (NIL) -8 NIL NIL) (-754 1883848 1885033 1886204 "OMDEV" 1888802 T OMDEV (NIL) -8 NIL NIL) (-753 1882917 1883088 1883282 "OMCONN" 1883674 T OMCONN (NIL) -8 NIL NIL) (-752 1881532 1882518 1882547 "OINTDOM" 1882552 T OINTDOM (NIL) -9 NIL 1882573) (-751 1877294 1878524 1879239 "OFMONOID" 1880849 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1876732 1877231 1877276 "ODVAR" 1877281 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1873857 1876229 1876414 "ODR" 1876607 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866163 1873636 1873760 "ODPOL" 1873765 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1859986 1866035 1866140 "ODP" 1866145 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1858752 1858967 1859242 "ODETOOLS" 1859760 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1855721 1856377 1857093 "ODESYS" 1858085 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1850625 1851533 1852556 "ODERTRIC" 1854796 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850051 1850133 1850327 "ODERED" 1850537 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1846953 1847501 1848176 "ODERAT" 1849474 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1843921 1844385 1844981 "ODEPRRIC" 1846482 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1841792 1842359 1842868 "ODEPROB" 1843432 T ODEPROB (NIL) -8 NIL NIL) (-739 1838324 1838807 1839453 "ODEPRIM" 1841271 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1837577 1837679 1837937 "ODEPAL" 1838216 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1833779 1834560 1835414 "ODEPACK" 1836743 T ODEPACK (NIL) -7 NIL NIL) (-736 1832816 1832923 1833151 "ODEINT" 1833668 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1826917 1828342 1829789 "ODEIFTBL" 1831389 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1822261 1823047 1824005 "ODEEF" 1826076 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1821598 1821687 1821916 "ODECONST" 1822166 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1819755 1820388 1820417 "ODECAT" 1821020 T ODECAT (NIL) -9 NIL 1821549) (-731 1816627 1819467 1819586 "OCT" 1819668 NIL OCT (NIL T) -8 NIL NIL) (-730 1816265 1816308 1816435 "OCTCT2" 1816578 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811098 1813536 1813577 "OC" 1814673 NIL OC (NIL T) -9 NIL 1815530) (-728 1808325 1809073 1810063 "OC-" 1810157 NIL OC- (NIL T T) -8 NIL NIL) (-727 1807703 1808145 1808174 "OCAMON" 1808179 T OCAMON (NIL) -9 NIL 1808200) (-726 1807156 1807563 1807592 "OASGP" 1807597 T OASGP (NIL) -9 NIL 1807617) (-725 1806443 1806906 1806935 "OAMONS" 1806975 T OAMONS (NIL) -9 NIL 1807018) (-724 1805883 1806290 1806319 "OAMON" 1806324 T OAMON (NIL) -9 NIL 1806344) (-723 1805187 1805679 1805708 "OAGROUP" 1805713 T OAGROUP (NIL) -9 NIL 1805733) (-722 1804877 1804927 1805015 "NUMTUBE" 1805131 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1798450 1799968 1801504 "NUMQUAD" 1803361 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794206 1795194 1796219 "NUMODE" 1797445 T NUMODE (NIL) -7 NIL NIL) (-719 1791621 1792463 1792492 "NUMINT" 1793405 T NUMINT (NIL) -9 NIL 1794157) (-718 1790569 1790766 1790984 "NUMFMT" 1791423 T NUMFMT (NIL) -7 NIL NIL) (-717 1776951 1779885 1782415 "NUMERIC" 1788078 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1771351 1776403 1776498 "NTSCAT" 1776503 NIL NTSCAT (NIL T T T T) -9 NIL 1776541) (-715 1770545 1770710 1770903 "NTPOLFN" 1771190 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1758401 1767387 1768197 "NSUP" 1769767 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758037 1758094 1758201 "NSUP2" 1758338 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1747999 1757816 1757946 "NSMP" 1757951 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1746431 1746732 1747089 "NREP" 1747687 NIL NREP (NIL T) -7 NIL NIL) (-710 1745022 1745274 1745632 "NPCOEF" 1746174 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744088 1744203 1744419 "NORMRETR" 1744903 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742141 1742431 1742838 "NORMPK" 1743796 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1741826 1741854 1741978 "NORMMA" 1742107 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1741653 1741783 1741812 "NONE" 1741817 T NONE (NIL) -8 NIL NIL) (-705 1741442 1741471 1741540 "NONE1" 1741617 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1740927 1740989 1741174 "NODE1" 1741374 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739220 1740090 1740345 "NNI" 1740692 T NNI (NIL) -8 NIL NIL) (-702 1737640 1737953 1738317 "NLINSOL" 1738888 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1733832 1734793 1735709 "NIPROB" 1736744 T NIPROB (NIL) -8 NIL NIL) (-700 1732589 1732823 1733125 "NFINTBAS" 1733594 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1731297 1731528 1731809 "NCODIV" 1732357 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731059 1731096 1731171 "NCNTFRAC" 1731254 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1729239 1729603 1730023 "NCEP" 1730684 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728150 1728889 1728918 "NASRING" 1729028 T NASRING (NIL) -9 NIL 1729102) (-695 1727945 1727989 1728083 "NASRING-" 1728088 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727098 1727597 1727626 "NARNG" 1727743 T NARNG (NIL) -9 NIL 1727834) (-693 1726790 1726857 1726991 "NARNG-" 1726996 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1725669 1725876 1726111 "NAGSP" 1726575 T NAGSP (NIL) -7 NIL NIL) (-691 1717093 1718739 1720374 "NAGS" 1724054 T NAGS (NIL) -7 NIL NIL) (-690 1715657 1715961 1716288 "NAGF07" 1716786 T NAGF07 (NIL) -7 NIL NIL) (-689 1710239 1711519 1712815 "NAGF04" 1714381 T NAGF04 (NIL) -7 NIL NIL) (-688 1703271 1704869 1706486 "NAGF02" 1708642 T NAGF02 (NIL) -7 NIL NIL) (-687 1698535 1699625 1700732 "NAGF01" 1702184 T NAGF01 (NIL) -7 NIL NIL) (-686 1692195 1693753 1695330 "NAGE04" 1696978 T NAGE04 (NIL) -7 NIL NIL) (-685 1683436 1685539 1687651 "NAGE02" 1690103 T NAGE02 (NIL) -7 NIL NIL) (-684 1679429 1680366 1681320 "NAGE01" 1682502 T NAGE01 (NIL) -7 NIL NIL) (-683 1677236 1677767 1678322 "NAGD03" 1678894 T NAGD03 (NIL) -7 NIL NIL) (-682 1669022 1670941 1672886 "NAGD02" 1675311 T NAGD02 (NIL) -7 NIL NIL) (-681 1662881 1664294 1665722 "NAGD01" 1667614 T NAGD01 (NIL) -7 NIL NIL) (-680 1659138 1659948 1660773 "NAGC06" 1662076 T NAGC06 (NIL) -7 NIL NIL) (-679 1657615 1657944 1658297 "NAGC05" 1658805 T NAGC05 (NIL) -7 NIL NIL) (-678 1656999 1657116 1657258 "NAGC02" 1657493 T NAGC02 (NIL) -7 NIL NIL) (-677 1656060 1656617 1656658 "NAALG" 1656737 NIL NAALG (NIL T) -9 NIL 1656798) (-676 1655895 1655924 1656014 "NAALG-" 1656019 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1649845 1650953 1652140 "MULTSQFR" 1654791 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649164 1649239 1649423 "MULTFACT" 1649757 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1642357 1646268 1646321 "MTSCAT" 1647381 NIL MTSCAT (NIL T T) -9 NIL 1647895) (-672 1642069 1642123 1642215 "MTHING" 1642297 NIL MTHING (NIL T) -7 NIL NIL) (-671 1641861 1641894 1641954 "MSYSCMD" 1642029 T MSYSCMD (NIL) -7 NIL NIL) (-670 1637973 1640616 1640936 "MSET" 1641574 NIL MSET (NIL T) -8 NIL NIL) (-669 1635068 1637534 1637576 "MSETAGG" 1637581 NIL MSETAGG (NIL T) -9 NIL 1637615) (-668 1630924 1632466 1633207 "MRING" 1634371 NIL MRING (NIL T T) -8 NIL NIL) (-667 1630494 1630561 1630690 "MRF2" 1630851 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630112 1630147 1630291 "MRATFAC" 1630453 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1627724 1628019 1628450 "MPRFF" 1629817 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1621744 1627579 1627675 "MPOLY" 1627680 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621234 1621269 1621477 "MPCPF" 1621703 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1620750 1620793 1620976 "MPC3" 1621185 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1619951 1620032 1620251 "MPC2" 1620665 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618252 1618589 1618979 "MONOTOOL" 1619611 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1617376 1617711 1617740 "MONOID" 1618017 T MONOID (NIL) -9 NIL 1618189) (-658 1616754 1616917 1617160 "MONOID-" 1617165 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1607734 1613720 1613780 "MONOGEN" 1614454 NIL MONOGEN (NIL T T) -9 NIL 1614910) (-656 1604952 1605687 1606687 "MONOGEN-" 1606806 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1603811 1604231 1604260 "MONADWU" 1604652 T MONADWU (NIL) -9 NIL 1604890) (-654 1603183 1603342 1603590 "MONADWU-" 1603595 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1602568 1602786 1602815 "MONAD" 1603022 T MONAD (NIL) -9 NIL 1603134) (-652 1602253 1602331 1602463 "MONAD-" 1602468 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1600504 1601166 1601445 "MOEBIUS" 1602006 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1599897 1600275 1600316 "MODULE" 1600321 NIL MODULE (NIL T) -9 NIL 1600347) (-649 1599465 1599561 1599751 "MODULE-" 1599756 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597136 1597831 1598157 "MODRING" 1599290 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594092 1595257 1595774 "MODOP" 1596668 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592279 1592731 1593072 "MODMONOM" 1593891 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1581997 1590483 1590905 "MODMON" 1591907 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579123 1580841 1581117 "MODFIELD" 1581872 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1578649 1578692 1578871 "MMAP" 1579074 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1576885 1577662 1577703 "MLO" 1578120 NIL MLO (NIL T) -9 NIL 1578361) (-641 1574252 1574767 1575369 "MLIFT" 1576366 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1573643 1573727 1573881 "MKUCFUNC" 1574163 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573242 1573312 1573435 "MKRECORD" 1573566 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572290 1572451 1572679 "MKFUNC" 1573053 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1571678 1571782 1571938 "MKFLCFN" 1572173 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571104 1571471 1571560 "MKCHSET" 1571622 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1570381 1570483 1570668 "MKBCFUNC" 1570997 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567065 1569935 1570071 "MINT" 1570265 T MINT (NIL) -8 NIL NIL) (-633 1565877 1566120 1566397 "MHROWRED" 1566820 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561148 1564322 1564746 "MFLOAT" 1565473 T MFLOAT (NIL) -8 NIL NIL) (-631 1560505 1560581 1560752 "MFINFACT" 1561060 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1556852 1557691 1558566 "MESH" 1559650 T MESH (NIL) -7 NIL NIL) (-629 1555242 1555554 1555907 "MDDFACT" 1556539 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552084 1554401 1554443 "MDAGG" 1554698 NIL MDAGG (NIL T) -9 NIL 1554841) (-627 1541782 1551377 1551584 "MCMPLX" 1551897 T MCMPLX (NIL) -8 NIL NIL) (-626 1540923 1541069 1541269 "MCDEN" 1541631 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1538813 1539083 1539463 "MCALCFN" 1540653 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1536435 1536958 1537519 "MATSTOR" 1538284 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1532443 1535810 1536057 "MATRIX" 1536220 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528213 1528916 1529652 "MATLIN" 1531800 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1518410 1521548 1521625 "MATCAT" 1526463 NIL MATCAT (NIL T T T) -9 NIL 1527880) (-620 1514775 1515788 1517143 "MATCAT-" 1517148 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1513377 1513530 1513861 "MATCAT2" 1514610 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1511489 1511813 1512197 "MAPPKG3" 1513052 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1510470 1510643 1510865 "MAPPKG2" 1511313 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1508969 1509253 1509580 "MAPPKG1" 1510176 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1508580 1508638 1508761 "MAPHACK3" 1508905 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508172 1508233 1508347 "MAPHACK2" 1508512 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1507610 1507713 1507855 "MAPHACK1" 1508063 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1505718 1506312 1506615 "MAGMA" 1507339 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502192 1503962 1504422 "M3D" 1505291 NIL M3D (NIL T) -8 NIL NIL) (-610 1496347 1500562 1500604 "LZSTAGG" 1501386 NIL LZSTAGG (NIL T) -9 NIL 1501681) (-609 1492320 1493478 1494935 "LZSTAGG-" 1494940 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1489436 1490213 1490699 "LWORD" 1491866 NIL LWORD (NIL T) -8 NIL NIL) (-607 1482596 1489207 1489341 "LSQM" 1489346 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1481820 1481959 1482187 "LSPP" 1482451 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1479632 1479933 1480389 "LSMP" 1481509 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1476411 1477085 1477815 "LSMP1" 1478934 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1470337 1475579 1475621 "LSAGG" 1475683 NIL LSAGG (NIL T) -9 NIL 1475761) (-602 1467032 1467956 1469169 "LSAGG-" 1469174 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1464658 1466176 1466425 "LPOLY" 1466827 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464240 1464325 1464448 "LPEFRAC" 1464567 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1462587 1463334 1463587 "LO" 1464072 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462240 1462352 1462381 "LOGIC" 1462492 T LOGIC (NIL) -9 NIL 1462572) (-597 1462102 1462125 1462196 "LOGIC-" 1462201 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1461295 1461435 1461628 "LODOOPS" 1461958 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1458713 1461212 1461277 "LODO" 1461282 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1457259 1457494 1457845 "LODOF" 1458460 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1453678 1456114 1456155 "LODOCAT" 1456587 NIL LODOCAT (NIL T) -9 NIL 1456798) (-592 1453412 1453470 1453596 "LODOCAT-" 1453601 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1450726 1453253 1453371 "LODO2" 1453376 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448155 1450663 1450708 "LODO1" 1450713 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447018 1447183 1447494 "LODEEF" 1447978 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1442304 1445148 1445190 "LNAGG" 1446137 NIL LNAGG (NIL T) -9 NIL 1446581) (-587 1441451 1441665 1442007 "LNAGG-" 1442012 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1437616 1438378 1439016 "LMOPS" 1440867 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437013 1437375 1437416 "LMODULE" 1437476 NIL LMODULE (NIL T) -9 NIL 1437518) (-584 1434259 1436658 1436781 "LMDICT" 1436923 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1427486 1433205 1433503 "LIST" 1433994 NIL LIST (NIL T) -8 NIL NIL) (-582 1427011 1427085 1427224 "LIST3" 1427406 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426018 1426196 1426424 "LIST2" 1426829 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424152 1424464 1424863 "LIST2MAP" 1425665 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1422864 1423544 1423585 "LINEXP" 1423838 NIL LINEXP (NIL T) -9 NIL 1423986) (-578 1421511 1421771 1422068 "LINDEP" 1422616 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1418278 1418997 1419774 "LIMITRF" 1420766 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1416558 1416853 1417268 "LIMITPS" 1417973 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411013 1416069 1416297 "LIE" 1416379 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410063 1410506 1410547 "LIECAT" 1410687 NIL LIECAT (NIL T) -9 NIL 1410838) (-573 1409904 1409931 1410019 "LIECAT-" 1410024 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1402516 1409353 1409518 "LIB" 1409759 T LIB (NIL) -8 NIL NIL) (-571 1398153 1399034 1399969 "LGROBP" 1401633 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396023 1396296 1396657 "LF" 1397875 NIL LF (NIL T T) -7 NIL NIL) (-569 1394863 1395554 1395583 "LFCAT" 1395790 T LFCAT (NIL) -9 NIL 1395929) (-568 1391775 1392401 1393087 "LEXTRIPK" 1394229 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1388481 1389345 1389848 "LEXP" 1391355 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1386879 1387192 1387593 "LEADCDET" 1388163 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386075 1386149 1386376 "LAZM3PK" 1386800 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1380991 1384154 1384691 "LAUPOL" 1385588 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1380558 1380602 1380769 "LAPLACE" 1380941 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1378486 1379659 1379910 "LA" 1380391 NIL LA (NIL T T T) -8 NIL NIL) (-561 1377548 1378142 1378183 "LALG" 1378244 NIL LALG (NIL T) -9 NIL 1378302) (-560 1377263 1377322 1377457 "LALG-" 1377462 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376173 1376360 1376657 "KOVACIC" 1377063 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376007 1376031 1376073 "KONVERT" 1376135 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1375841 1375865 1375907 "KOERCE" 1375969 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1373575 1374335 1374728 "KERNEL" 1375480 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373077 1373158 1373288 "KERNEL2" 1373489 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1366928 1371616 1371671 "KDAGG" 1372048 NIL KDAGG (NIL T T) -9 NIL 1372254) (-553 1366457 1366581 1366786 "KDAGG-" 1366791 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1359632 1366118 1366273 "KAFILE" 1366335 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354087 1359143 1359371 "JORDAN" 1359453 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350386 1352292 1352347 "IXAGG" 1353276 NIL IXAGG (NIL T T) -9 NIL 1353735) (-549 1349305 1349611 1350030 "IXAGG-" 1350035 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1344890 1349227 1349286 "IVECTOR" 1349291 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1343656 1343893 1344159 "ITUPLE" 1344657 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342092 1342269 1342575 "ITRIGMNP" 1343478 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1340837 1341041 1341324 "ITFUN3" 1341868 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1340469 1340526 1340635 "ITFUN2" 1340774 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338271 1339342 1339639 "ITAYLOR" 1340204 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327262 1332457 1333616 "ISUPS" 1337144 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326370 1326509 1326744 "ISUMP" 1327110 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1321634 1326171 1326250 "ISTRING" 1326323 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1320847 1320928 1321143 "IRURPK" 1321548 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1319783 1319984 1320224 "IRSN" 1320627 T IRSN (NIL) -7 NIL NIL) (-537 1317818 1318173 1318608 "IRRF2F" 1319421 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1317565 1317603 1317679 "IRREDFFX" 1317774 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316180 1316439 1316738 "IROOT" 1317298 NIL IROOT (NIL T) -7 NIL NIL) (-534 1312818 1313869 1314559 "IR" 1315522 NIL IR (NIL T) -8 NIL NIL) (-533 1310431 1310926 1311492 "IR2" 1312296 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1309507 1309620 1309840 "IR2F" 1310314 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309298 1309332 1309392 "IPRNTPK" 1309467 T IPRNTPK (NIL) -7 NIL NIL) (-530 1305852 1309187 1309256 "IPF" 1309261 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304169 1305777 1305834 "IPADIC" 1305839 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1303668 1303726 1303915 "INVLAPLA" 1304105 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293317 1295670 1298056 "INTTR" 1301332 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1289665 1290406 1291269 "INTTOOLS" 1292503 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289251 1289342 1289459 "INTSLPE" 1289568 T INTSLPE (NIL) -7 NIL NIL) (-524 1287201 1289174 1289233 "INTRVL" 1289238 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1284808 1285320 1285894 "INTRF" 1286686 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284223 1284320 1284461 "INTRET" 1284706 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282225 1282614 1283083 "INTRAT" 1283831 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1279458 1280041 1280666 "INTPM" 1281710 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276167 1276766 1277510 "INTPAF" 1278844 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1271450 1272386 1273411 "INTPACK" 1275162 T INTPACK (NIL) -7 NIL NIL) (-517 1268304 1271179 1271306 "INT" 1271343 T INT (NIL) -8 NIL NIL) (-516 1267556 1267708 1267916 "INTHERTR" 1268146 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1266995 1267075 1267263 "INTHERAL" 1267470 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1264841 1265284 1265741 "INTHEORY" 1266558 T INTHEORY (NIL) -7 NIL NIL) (-513 1256164 1257784 1259562 "INTG0" 1263193 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1236761 1241545 1246349 "INTFTBL" 1251380 T INTFTBL (NIL) -8 NIL NIL) (-511 1236010 1236148 1236321 "INTFACT" 1236620 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1233401 1233847 1234410 "INTEF" 1235564 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1231862 1232611 1232640 "INTDOM" 1232941 T INTDOM (NIL) -9 NIL 1233148) (-508 1231231 1231405 1231647 "INTDOM-" 1231652 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1227723 1229655 1229710 "INTCAT" 1230509 NIL INTCAT (NIL T) -9 NIL 1230828) (-506 1227196 1227298 1227426 "INTBIT" 1227615 T INTBIT (NIL) -7 NIL NIL) (-505 1225871 1226025 1226338 "INTALG" 1227041 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225328 1225418 1225588 "INTAF" 1225775 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1218782 1225138 1225278 "INTABL" 1225283 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1213732 1216461 1216490 "INS" 1217458 T INS (NIL) -9 NIL 1218139) (-501 1210972 1211743 1212717 "INS-" 1212790 NIL INS- (NIL T) -8 NIL NIL) (-500 1209751 1209978 1210275 "INPSIGN" 1210725 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1208869 1208986 1209183 "INPRODPF" 1209631 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1207763 1207880 1208117 "INPRODFF" 1208749 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1206763 1206915 1207175 "INNMFACT" 1207599 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1205960 1206057 1206245 "INMODGCD" 1206662 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1204469 1204713 1205037 "INFSP" 1205705 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1203653 1203770 1203953 "INFPROD0" 1204349 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1200663 1201822 1202313 "INFORM" 1203170 T INFORM (NIL) -8 NIL NIL) (-492 1200273 1200333 1200431 "INFORM1" 1200598 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1199796 1199885 1199999 "INFINITY" 1200179 T INFINITY (NIL) -7 NIL NIL) (-490 1198414 1198662 1198983 "INEP" 1199544 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1197690 1198311 1198376 "INDE" 1198381 NIL INDE (NIL T) -8 NIL NIL) (-488 1197254 1197322 1197439 "INCRMAPS" 1197617 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1192565 1193490 1194434 "INBFF" 1196342 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189060 1192410 1192513 "IMATRIX" 1192518 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1187772 1187895 1188210 "IMATQF" 1188916 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1185992 1186219 1186556 "IMATLIN" 1187528 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1180618 1185916 1185974 "ILIST" 1185979 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1178571 1180478 1180591 "IIARRAY2" 1180596 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1173939 1178482 1178546 "IFF" 1178551 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1168982 1173231 1173419 "IFARRAY" 1173796 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168189 1168886 1168959 "IFAMON" 1168964 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1167772 1167837 1167892 "IEVALAB" 1168099 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1167447 1167515 1167675 "IEVALAB-" 1167680 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167105 1167361 1167424 "IDPO" 1167429 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1166382 1166994 1167069 "IDPOAMS" 1167074 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1165716 1166271 1166346 "IDPOAM" 1166351 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1164801 1165051 1165105 "IDPC" 1165518 NIL IDPC (NIL T T) -9 NIL 1165667) (-472 1164297 1164693 1164766 "IDPAM" 1164771 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1163700 1164189 1164262 "IDPAG" 1164267 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1159955 1160803 1161698 "IDECOMP" 1162857 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1152829 1153878 1154925 "IDEAL" 1158991 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1151993 1152105 1152304 "ICDEN" 1152713 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151092 1151473 1151620 "ICARD" 1151866 T ICARD (NIL) -8 NIL NIL) (-466 1149164 1149477 1149880 "IBPTOOLS" 1150769 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1144778 1148784 1148897 "IBITS" 1149083 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1141501 1142077 1142772 "IBATOOL" 1144195 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139281 1139742 1140275 "IBACHIN" 1141036 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137158 1139127 1139230 "IARRAY2" 1139235 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133311 1137084 1137141 "IARRAY1" 1137146 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127250 1131729 1132207 "IAN" 1132853 T IAN (NIL) -8 NIL NIL) (-459 1126761 1126818 1126991 "IALGFACT" 1127187 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126288 1126401 1126430 "HYPCAT" 1126637 T HYPCAT (NIL) -9 NIL NIL) (-457 1125826 1125943 1126129 "HYPCAT-" 1126134 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1122505 1123836 1123878 "HOAGG" 1124859 NIL HOAGG (NIL T) -9 NIL 1125538) (-455 1121099 1121498 1122024 "HOAGG-" 1122029 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1114930 1120540 1120706 "HEXADEC" 1120953 T HEXADEC (NIL) -8 NIL NIL) (-453 1113678 1113900 1114163 "HEUGCD" 1114707 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1112781 1113515 1113645 "HELLFDIV" 1113650 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111009 1112558 1112646 "HEAP" 1112725 NIL HEAP (NIL T) -8 NIL NIL) (-450 1104876 1110924 1110986 "HDP" 1110991 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1098588 1104513 1104664 "HDMP" 1104777 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1097913 1098052 1098216 "HB" 1098444 T HB (NIL) -7 NIL NIL) (-447 1091410 1097759 1097863 "HASHTBL" 1097868 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089163 1091038 1091217 "HACKPI" 1091251 T HACKPI (NIL) -8 NIL NIL) (-445 1084859 1089017 1089129 "GTSET" 1089134 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1078385 1084737 1084835 "GSTBL" 1084840 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1070621 1077421 1077685 "GSERIES" 1078176 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1069643 1070096 1070125 "GROUP" 1070386 T GROUP (NIL) -9 NIL 1070545) (-441 1068759 1068982 1069326 "GROUP-" 1069331 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067128 1067447 1067834 "GROEBSOL" 1068436 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066068 1066330 1066382 "GRMOD" 1066911 NIL GRMOD (NIL T T) -9 NIL 1067079) (-438 1065836 1065872 1066000 "GRMOD-" 1066005 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061175 1062198 1063195 "GRIMAGE" 1064859 T GRIMAGE (NIL) -8 NIL NIL) (-436 1059642 1059902 1060226 "GRDEF" 1060871 T GRDEF (NIL) -7 NIL NIL) (-435 1059086 1059202 1059343 "GRAY" 1059521 T GRAY (NIL) -7 NIL NIL) (-434 1058319 1058699 1058751 "GRALG" 1058904 NIL GRALG (NIL T T) -9 NIL 1058996) (-433 1057980 1058053 1058216 "GRALG-" 1058221 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1054788 1057569 1057745 "GPOLSET" 1057887 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054144 1054201 1054458 "GOSPER" 1054725 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1049903 1050582 1051108 "GMODPOL" 1053843 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1048908 1049092 1049330 "GHENSEL" 1049715 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1042974 1043817 1044843 "GENUPS" 1047992 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1042671 1042722 1042811 "GENUFACT" 1042917 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042083 1042160 1042325 "GENPGCD" 1042589 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1041557 1041592 1041805 "GENMFACT" 1042042 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040125 1040380 1040687 "GENEEZ" 1041300 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1033999 1039738 1039899 "GDMP" 1040048 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1023381 1027770 1028876 "GCNAALG" 1032982 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1021802 1022674 1022703 "GCDDOM" 1022958 T GCDDOM (NIL) -9 NIL 1023115) (-420 1021272 1021399 1021614 "GCDDOM-" 1021619 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1019944 1020129 1020433 "GB" 1021051 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1008564 1010890 1013282 "GBINTERN" 1017635 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1006401 1006693 1007114 "GBF" 1008239 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005182 1005347 1005614 "GBEUCLID" 1006217 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1004531 1004656 1004805 "GAUSSFAC" 1005053 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1002908 1003210 1003523 "GALUTIL" 1004250 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001225 1001499 1001822 "GALPOLYU" 1002635 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 998614 998904 999309 "GALFACTU" 1000922 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 990420 991919 993527 "GALFACT" 997046 NIL GALFACT (NIL T) -7 NIL NIL) (-410 987807 988465 988494 "FVFUN" 989650 T FVFUN (NIL) -9 NIL 990370) (-409 987072 987254 987283 "FVC" 987574 T FVC (NIL) -9 NIL 987757) (-408 986714 986869 986950 "FUNCTION" 987024 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 984384 984935 985424 "FT" 986245 T FT (NIL) -8 NIL NIL) (-406 983202 983685 983888 "FTEM" 984201 T FTEM (NIL) -8 NIL NIL) (-405 981467 981755 982157 "FSUPFACT" 982894 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 979864 980153 980485 "FST" 981155 T FST (NIL) -8 NIL NIL) (-403 979039 979145 979339 "FSRED" 979746 NIL FSRED (NIL T T) -7 NIL NIL) (-402 977718 977973 978327 "FSPRMELT" 978754 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 974803 975241 975740 "FSPECF" 977281 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957176 965733 965774 "FS" 969612 NIL FS (NIL T) -9 NIL 971894) (-399 945826 948816 952872 "FS-" 953169 NIL FS- (NIL T T) -8 NIL NIL) (-398 945342 945396 945572 "FSINT" 945767 NIL FSINT (NIL T T) -7 NIL NIL) (-397 943623 944335 944638 "FSERIES" 945121 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 942641 942757 942987 "FSCINT" 943503 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 938875 941585 941627 "FSAGG" 941997 NIL FSAGG (NIL T) -9 NIL 942256) (-394 936637 937238 938034 "FSAGG-" 938129 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 935679 935822 936049 "FSAGG2" 936490 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 933338 933617 934170 "FS2UPS" 935397 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 932924 932967 933120 "FS2" 933289 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 931784 931955 932263 "FS2EXPXP" 932749 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931210 931325 931477 "FRUTIL" 931664 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 922631 926709 928065 "FR" 929886 NIL FR (NIL T) -8 NIL NIL) (-387 917707 920350 920391 "FRNAALG" 921787 NIL FRNAALG (NIL T) -9 NIL 922394) (-386 913386 914456 915731 "FRNAALG-" 916481 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913024 913067 913194 "FRNAAF2" 913337 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 911389 911881 912175 "FRMOD" 912837 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909112 909780 910096 "FRIDEAL" 911180 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 908311 908398 908685 "FRIDEAL2" 909019 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 907568 907976 908018 "FRETRCT" 908023 NIL FRETRCT (NIL T) -9 NIL 908194) (-380 906680 906911 907262 "FRETRCT-" 907267 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 903889 905109 905169 "FRAMALG" 906051 NIL FRAMALG (NIL T T) -9 NIL 906343) (-378 902022 902478 903108 "FRAMALG-" 903331 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 895924 901497 901773 "FRAC" 901778 NIL FRAC (NIL T) -8 NIL NIL) (-376 895560 895617 895724 "FRAC2" 895861 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895196 895253 895360 "FR2" 895497 NIL FR2 (NIL T T) -7 NIL NIL) (-374 889869 892782 892811 "FPS" 893930 T FPS (NIL) -9 NIL 894486) (-373 889318 889427 889591 "FPS-" 889737 NIL FPS- (NIL T) -8 NIL NIL) (-372 886766 888463 888492 "FPC" 888717 T FPC (NIL) -9 NIL 888859) (-371 886559 886599 886696 "FPC-" 886701 NIL FPC- (NIL T) -8 NIL NIL) (-370 885437 886047 886089 "FPATMAB" 886094 NIL FPATMAB (NIL T) -9 NIL 886246) (-369 883137 883613 884039 "FPARFRAC" 885074 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 878532 879029 879711 "FORTRAN" 882569 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876248 876748 877287 "FORT" 878013 T FORT (NIL) -7 NIL NIL) (-366 873923 874485 874514 "FORTFN" 875574 T FORTFN (NIL) -9 NIL 876198) (-365 873686 873736 873765 "FORTCAT" 873824 T FORTCAT (NIL) -9 NIL 873886) (-364 871746 872229 872628 "FORMULA" 873307 T FORMULA (NIL) -8 NIL NIL) (-363 871534 871564 871633 "FORMULA1" 871710 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871057 871109 871282 "FORDER" 871476 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870153 870317 870510 "FOP" 870884 T FOP (NIL) -7 NIL NIL) (-360 868761 869433 869607 "FNLA" 870035 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 867429 867818 867847 "FNCAT" 868419 T FNCAT (NIL) -9 NIL 868712) (-358 866995 867388 867416 "FNAME" 867421 T FNAME (NIL) -8 NIL NIL) (-357 865654 866627 866656 "FMTC" 866661 T FMTC (NIL) -9 NIL 866696) (-356 861972 863179 863807 "FMONOID" 865059 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861192 861715 861863 "FM" 861868 NIL FM (NIL T T) -8 NIL NIL) (-354 858615 859261 859290 "FMFUN" 860434 T FMFUN (NIL) -9 NIL 861142) (-353 857883 858064 858093 "FMC" 858383 T FMC (NIL) -9 NIL 858565) (-352 855112 855946 856000 "FMCAT" 857182 NIL FMCAT (NIL T T) -9 NIL 857676) (-351 854007 854880 854979 "FM1" 855057 NIL FM1 (NIL T T) -8 NIL NIL) (-350 851781 852197 852691 "FLOATRP" 853558 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845267 849437 850067 "FLOAT" 851171 T FLOAT (NIL) -8 NIL NIL) (-348 842705 843205 843783 "FLOATCP" 844734 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 841493 842341 842382 "FLINEXP" 842387 NIL FLINEXP (NIL T) -9 NIL 842480) (-346 840648 840883 841210 "FLINEXP-" 841215 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 839724 839868 840092 "FLASORT" 840500 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 836942 837784 837837 "FLALG" 839064 NIL FLALG (NIL T T) -9 NIL 839531) (-343 830726 834428 834470 "FLAGG" 835732 NIL FLAGG (NIL T) -9 NIL 836384) (-342 829452 829791 830281 "FLAGG-" 830286 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 828494 828637 828864 "FLAGG2" 829305 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825466 826484 826544 "FINRALG" 827672 NIL FINRALG (NIL T T) -9 NIL 828180) (-339 824626 824855 825194 "FINRALG-" 825199 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824032 824245 824274 "FINITE" 824470 T FINITE (NIL) -9 NIL 824577) (-337 816491 818652 818693 "FINAALG" 822360 NIL FINAALG (NIL T) -9 NIL 823813) (-336 811832 812873 814017 "FINAALG-" 815396 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811227 811587 811690 "FILE" 811762 NIL FILE (NIL T) -8 NIL NIL) (-334 809911 810223 810278 "FILECAT" 810962 NIL FILECAT (NIL T T) -9 NIL 811178) (-333 807773 809329 809358 "FIELD" 809398 T FIELD (NIL) -9 NIL 809478) (-332 806393 806778 807289 "FIELD-" 807294 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804208 805030 805376 "FGROUP" 806080 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803298 803462 803682 "FGLMICPK" 804040 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799100 803223 803280 "FFX" 803285 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 798701 798762 798897 "FFSLPE" 799033 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 794696 795473 796269 "FFPOLY" 797937 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794200 794236 794445 "FFPOLY2" 794654 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790022 794119 794182 "FFP" 794187 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785390 789933 789997 "FF" 790002 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 780486 784733 784923 "FFNBX" 785244 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775396 779621 779879 "FFNBP" 780340 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 769999 774680 774891 "FFNB" 775229 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 768831 769029 769344 "FFINTBAS" 769796 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765054 767294 767323 "FFIELDC" 767943 T FFIELDC (NIL) -9 NIL 768319) (-318 763717 764087 764584 "FFIELDC-" 764589 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763287 763332 763456 "FFHOM" 763659 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 760985 761469 761986 "FFF" 762802 NIL FFF (NIL T) -7 NIL NIL) (-315 756573 760727 760828 "FFCGX" 760928 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752175 756305 756412 "FFCGP" 756516 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747328 751902 752010 "FFCG" 752111 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729273 738396 738483 "FFCAT" 743648 NIL FFCAT (NIL T T T) -9 NIL 745135) (-311 724471 725518 726832 "FFCAT-" 728062 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 723882 723925 724160 "FFCAT2" 724422 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713082 716872 718089 "FEXPR" 722737 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712081 712516 712558 "FEVALAB" 712642 NIL FEVALAB (NIL T) -9 NIL 712903) (-307 711240 711450 711788 "FEVALAB-" 711793 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 709833 710623 710826 "FDIV" 711139 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 706899 707614 707730 "FDIVCAT" 709298 NIL FDIVCAT (NIL T T T T) -9 NIL 709735) (-304 706661 706688 706858 "FDIVCAT-" 706863 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 705881 705968 706245 "FDIV2" 706568 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704574 704831 705118 "FCPAK1" 705614 T FCPAK1 (NIL) -7 NIL NIL) (-301 703702 704074 704215 "FCOMP" 704465 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687342 690754 694314 "FC" 700162 T FC (NIL) -8 NIL NIL) (-299 679937 683983 684024 "FAXF" 685826 NIL FAXF (NIL T) -9 NIL 686517) (-298 677216 677871 678696 "FAXF-" 679161 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672316 676592 676768 "FARRAY" 677073 NIL FARRAY (NIL T) -8 NIL NIL) (-296 667706 669777 669830 "FAMR" 670842 NIL FAMR (NIL T T) -9 NIL 671302) (-295 666597 666899 667333 "FAMR-" 667338 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 665793 666519 666572 "FAMONOID" 666577 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663625 664309 664363 "FAMONC" 665304 NIL FAMONC (NIL T T) -9 NIL 665689) (-292 662317 663379 663516 "FAGROUP" 663521 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660120 660439 660841 "FACUTIL" 661998 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659219 659404 659626 "FACTFUNC" 659930 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651542 658470 658682 "EXPUPXS" 659075 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649041 649577 650159 "EXPRTUBE" 650980 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645235 645827 646564 "EXPRODE" 648380 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630397 643894 644320 "EXPR" 644841 NIL EXPR (NIL T) -8 NIL NIL) (-285 624825 625412 626224 "EXPR2UPS" 629695 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624461 624518 624625 "EXPR2" 624762 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 615815 623598 623893 "EXPEXPAN" 624299 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615642 615772 615801 "EXIT" 615806 T EXIT (NIL) -8 NIL NIL) (-281 615269 615331 615444 "EVALCYC" 615574 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 614809 614927 614969 "EVALAB" 615139 NIL EVALAB (NIL T) -9 NIL 615243) (-279 614290 614412 614633 "EVALAB-" 614638 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 611752 613064 613093 "EUCDOM" 613648 T EUCDOM (NIL) -9 NIL 613998) (-277 610157 610599 611189 "EUCDOM-" 611194 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 597770 600509 603240 "ESTOOLS" 607446 T ESTOOLS (NIL) -7 NIL NIL) (-275 597406 597463 597570 "ESTOOLS2" 597707 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597157 597199 597279 "ESTOOLS1" 597358 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591094 592818 592847 "ES" 595611 T ES (NIL) -9 NIL 597017) (-272 586042 587328 589145 "ES-" 589309 NIL ES- (NIL T) -8 NIL NIL) (-271 582449 583201 583973 "ESCONT" 585290 T ESCONT (NIL) -7 NIL NIL) (-270 582194 582226 582308 "ESCONT1" 582411 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 581869 581919 582019 "ES2" 582138 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581499 581557 581666 "ES1" 581805 NIL ES1 (NIL T T) -7 NIL NIL) (-267 580715 580844 581020 "ERROR" 581343 T ERROR (NIL) -7 NIL NIL) (-266 574218 580574 580665 "EQTBL" 580670 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 566655 569536 570983 "EQ" 572804 NIL -3219 (NIL T) -8 NIL NIL) (-264 566287 566344 566453 "EQ2" 566592 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561579 562625 563718 "EP" 565226 NIL EP (NIL T) -7 NIL NIL) (-262 560738 561302 561331 "ENTIRER" 561336 T ENTIRER (NIL) -9 NIL 561381) (-261 557194 558693 559063 "EMR" 560537 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556337 556522 556577 "ELTAGG" 556957 NIL ELTAGG (NIL T T) -9 NIL 557168) (-259 556056 556118 556259 "ELTAGG-" 556264 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 555844 555873 555928 "ELTAB" 556012 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 554970 555116 555315 "ELFUTS" 555695 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 554711 554767 554796 "ELEMFUN" 554901 T ELEMFUN (NIL) -9 NIL NIL) (-255 554581 554602 554670 "ELEMFUN-" 554675 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549472 552681 552723 "ELAGG" 553663 NIL ELAGG (NIL T) -9 NIL 554126) (-253 547757 548191 548854 "ELAGG-" 548859 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 540625 542424 543251 "EFUPXS" 547033 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534075 535876 536686 "EFULS" 539901 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531506 531864 532342 "EFSTRUC" 533707 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520578 522143 523703 "EF" 530021 NIL EF (NIL T T) -7 NIL NIL) (-248 519679 520063 520212 "EAB" 520449 T EAB (NIL) -8 NIL NIL) (-247 518892 519638 519666 "E04UCFA" 519671 T E04UCFA (NIL) -8 NIL NIL) (-246 518105 518851 518879 "E04NAFA" 518884 T E04NAFA (NIL) -8 NIL NIL) (-245 517318 518064 518092 "E04MBFA" 518097 T E04MBFA (NIL) -8 NIL NIL) (-244 516531 517277 517305 "E04JAFA" 517310 T E04JAFA (NIL) -8 NIL NIL) (-243 515746 516490 516518 "E04GCFA" 516523 T E04GCFA (NIL) -8 NIL NIL) (-242 514961 515705 515733 "E04FDFA" 515738 T E04FDFA (NIL) -8 NIL NIL) (-241 514174 514920 514948 "E04DGFA" 514953 T E04DGFA (NIL) -8 NIL NIL) (-240 508359 509704 511066 "E04AGNT" 512832 T E04AGNT (NIL) -7 NIL NIL) (-239 507085 507565 507606 "DVARCAT" 508081 NIL DVARCAT (NIL T) -9 NIL 508279) (-238 506289 506501 506815 "DVARCAT-" 506820 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499151 506091 506218 "DSMP" 506223 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 493977 495108 496172 "DROPT" 498107 T DROPT (NIL) -8 NIL NIL) (-235 493642 493701 493799 "DROPT1" 493912 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 488764 489888 491023 "DROPT0" 492527 T DROPT0 (NIL) -7 NIL NIL) (-233 487109 487434 487820 "DRAWPT" 488398 T DRAWPT (NIL) -7 NIL NIL) (-232 481784 482683 483738 "DRAW" 486107 NIL DRAW (NIL T) -7 NIL NIL) (-231 481425 481476 481592 "DRAWHACK" 481727 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480170 480435 480722 "DRAWCX" 481158 T DRAWCX (NIL) -7 NIL NIL) (-229 479688 479756 479906 "DRAWCURV" 480096 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470292 472214 474293 "DRAWCFUN" 477629 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467105 468987 469029 "DQAGG" 469658 NIL DQAGG (NIL T) -9 NIL 469931) (-226 455611 462349 462432 "DPOLCAT" 464270 NIL DPOLCAT (NIL T T T T) -9 NIL 464814) (-225 450451 451797 453754 "DPOLCAT-" 453759 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444535 450313 450410 "DPMO" 450415 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438522 444316 444482 "DPMM" 444487 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438155 438231 438329 "DOMAIN" 438444 T DOMAIN (NIL) -8 NIL NIL) (-221 431867 437792 437943 "DMP" 438056 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 431467 431523 431667 "DLP" 431805 NIL DLP (NIL T) -7 NIL NIL) (-219 425111 430568 430795 "DLIST" 431272 NIL DLIST (NIL T) -8 NIL NIL) (-218 421957 423966 424008 "DLAGG" 424558 NIL DLAGG (NIL T) -9 NIL 424787) (-217 420666 421358 421387 "DIVRING" 421537 T DIVRING (NIL) -9 NIL 421645) (-216 419654 419907 420300 "DIVRING-" 420305 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 417756 418113 418519 "DISPLAY" 419268 T DISPLAY (NIL) -7 NIL NIL) (-214 411645 417670 417733 "DIRPROD" 417738 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 410493 410696 410961 "DIRPROD2" 411438 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400123 406128 406182 "DIRPCAT" 406590 NIL DIRPCAT (NIL NIL T) -9 NIL 407417) (-211 397449 398091 398972 "DIRPCAT-" 399309 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 396736 396896 397082 "DIOSP" 397283 T DIOSP (NIL) -7 NIL NIL) (-209 393438 395648 395690 "DIOPS" 396124 NIL DIOPS (NIL T) -9 NIL 396353) (-208 392987 393101 393292 "DIOPS-" 393297 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 391858 392496 392525 "DIFRING" 392712 T DIFRING (NIL) -9 NIL 392821) (-206 391504 391581 391733 "DIFRING-" 391738 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389293 390575 390616 "DIFEXT" 390975 NIL DIFEXT (NIL T) -9 NIL 391268) (-204 387579 388007 388672 "DIFEXT-" 388677 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 384901 387111 387153 "DIAGG" 387158 NIL DIAGG (NIL T) -9 NIL 387178) (-202 384285 384442 384694 "DIAGG-" 384699 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 379750 383244 383521 "DHMATRIX" 384054 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375362 376271 377281 "DFSFUN" 378760 T DFSFUN (NIL) -7 NIL NIL) (-199 370148 374076 374441 "DFLOAT" 375017 T DFLOAT (NIL) -8 NIL NIL) (-198 368381 368662 369057 "DFINTTLS" 369856 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365414 366416 366814 "DERHAM" 368048 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363263 365189 365278 "DEQUEUE" 365358 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362481 362614 362809 "DEGRED" 363125 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 358897 359638 360486 "DEFINTRF" 361713 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356436 356903 357499 "DEFINTEF" 358418 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350267 355877 356043 "DECIMAL" 356290 T DECIMAL (NIL) -8 NIL NIL) (-191 347779 348237 348743 "DDFACT" 349811 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347375 347418 347569 "DBLRESP" 347730 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345085 345419 345788 "DBASE" 347133 NIL DBASE (NIL T) -8 NIL NIL) (-188 344220 345044 345072 "D03FAFA" 345077 T D03FAFA (NIL) -8 NIL NIL) (-187 343356 344179 344207 "D03EEFA" 344212 T D03EEFA (NIL) -8 NIL NIL) (-186 341306 341772 342261 "D03AGNT" 342887 T D03AGNT (NIL) -7 NIL NIL) (-185 340624 341265 341293 "D02EJFA" 341298 T D02EJFA (NIL) -8 NIL NIL) (-184 339942 340583 340611 "D02CJFA" 340616 T D02CJFA (NIL) -8 NIL NIL) (-183 339260 339901 339929 "D02BHFA" 339934 T D02BHFA (NIL) -8 NIL NIL) (-182 338578 339219 339247 "D02BBFA" 339252 T D02BBFA (NIL) -8 NIL NIL) (-181 331776 333364 334970 "D02AGNT" 336992 T D02AGNT (NIL) -7 NIL NIL) (-180 329557 330076 330619 "D01WGTS" 331253 T D01WGTS (NIL) -7 NIL NIL) (-179 328664 329516 329544 "D01TRNS" 329549 T D01TRNS (NIL) -8 NIL NIL) (-178 327771 328623 328651 "D01GBFA" 328656 T D01GBFA (NIL) -8 NIL NIL) (-177 326878 327730 327758 "D01FCFA" 327763 T D01FCFA (NIL) -8 NIL NIL) (-176 325985 326837 326865 "D01ASFA" 326870 T D01ASFA (NIL) -8 NIL NIL) (-175 325092 325944 325972 "D01AQFA" 325977 T D01AQFA (NIL) -8 NIL NIL) (-174 324199 325051 325079 "D01APFA" 325084 T D01APFA (NIL) -8 NIL NIL) (-173 323306 324158 324186 "D01ANFA" 324191 T D01ANFA (NIL) -8 NIL NIL) (-172 322413 323265 323293 "D01AMFA" 323298 T D01AMFA (NIL) -8 NIL NIL) (-171 321520 322372 322400 "D01ALFA" 322405 T D01ALFA (NIL) -8 NIL NIL) (-170 320627 321479 321507 "D01AKFA" 321512 T D01AKFA (NIL) -8 NIL NIL) (-169 319734 320586 320614 "D01AJFA" 320619 T D01AJFA (NIL) -8 NIL NIL) (-168 313066 314608 316160 "D01AGNT" 318202 T D01AGNT (NIL) -7 NIL NIL) (-167 312403 312531 312683 "CYCLOTOM" 312934 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309138 309851 310578 "CYCLES" 311696 T CYCLES (NIL) -7 NIL NIL) (-165 308450 308584 308755 "CVMP" 308999 NIL CVMP (NIL T) -7 NIL NIL) (-164 306232 306489 306864 "CTRIGMNP" 308178 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305606 305705 305858 "CSTTOOLS" 306129 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301405 302062 302820 "CRFP" 304918 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300452 300637 300865 "CRAPACK" 301209 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 299836 299937 300141 "CPMATCH" 300328 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299561 299589 299695 "CPIMA" 299802 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 295925 296597 297315 "COORDSYS" 298896 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 291786 293928 294420 "CONTFRAC" 295465 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 290939 291503 291532 "COMRING" 291537 T COMRING (NIL) -9 NIL 291588) (-155 290020 290297 290481 "COMPPROP" 290775 T COMPPROP (NIL) -8 NIL NIL) (-154 289681 289716 289844 "COMPLPAT" 289979 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 279662 289490 289599 "COMPLEX" 289604 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279298 279355 279462 "COMPLEX2" 279599 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279016 279051 279149 "COMPFACT" 279257 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263350 273644 273685 "COMPCAT" 274687 NIL COMPCAT (NIL T) -9 NIL 276080) (-149 252865 255789 259416 "COMPCAT-" 259772 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252596 252624 252726 "COMMUPC" 252831 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252391 252424 252483 "COMMONOP" 252557 T COMMONOP (NIL) -7 NIL NIL) (-146 251974 252142 252229 "COMM" 252324 T COMM (NIL) -8 NIL NIL) (-145 251228 251420 251449 "COMBOPC" 251785 T COMBOPC (NIL) -9 NIL 251958) (-144 250124 250334 250576 "COMBINAT" 251018 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246330 246901 247539 "COMBF" 249548 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245116 245446 245681 "COLOR" 246115 T COLOR (NIL) -8 NIL NIL) (-141 244756 244803 244928 "CMPLXRT" 245063 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240314 241328 242394 "CLIP" 243710 T CLIP (NIL) -7 NIL NIL) (-139 238652 239422 239660 "CLIF" 240142 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 234874 236798 236840 "CLAGG" 237769 NIL CLAGG (NIL T) -9 NIL 238305) (-137 233296 233753 234336 "CLAGG-" 234341 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 232840 232925 233065 "CINTSLPE" 233205 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230341 230812 231360 "CHVAR" 232368 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229563 230127 230156 "CHARZ" 230161 T CHARZ (NIL) -9 NIL 230175) (-133 229317 229357 229435 "CHARPOL" 229517 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228423 229020 229049 "CHARNZ" 229096 T CHARNZ (NIL) -9 NIL 229151) (-131 226446 227113 227448 "CHAR" 228108 T CHAR (NIL) -8 NIL NIL) (-130 226171 226232 226261 "CFCAT" 226372 T CFCAT (NIL) -9 NIL NIL) (-129 225416 225527 225709 "CDEN" 226055 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221408 224569 224849 "CCLASS" 225156 T CCLASS (NIL) -8 NIL NIL) (-127 216461 217437 218190 "CARTEN" 220711 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 215569 215717 215938 "CARTEN2" 216308 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 213866 214721 214977 "CARD" 215333 T CARD (NIL) -8 NIL NIL) (-124 213238 213566 213595 "CACHSET" 213727 T CACHSET (NIL) -9 NIL 213804) (-123 212734 213030 213059 "CABMON" 213109 T CABMON (NIL) -9 NIL 213165) (-122 210291 212426 212533 "BTREE" 212660 NIL BTREE (NIL T) -8 NIL NIL) (-121 207789 209939 210061 "BTOURN" 210201 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205207 207260 207302 "BTCAT" 207370 NIL BTCAT (NIL T) -9 NIL 207447) (-119 204874 204954 205103 "BTCAT-" 205108 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200094 203965 203994 "BTAGG" 204250 T BTAGG (NIL) -9 NIL 204429) (-117 199517 199661 199891 "BTAGG-" 199896 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196561 198795 199010 "BSTREE" 199334 NIL BSTREE (NIL T) -8 NIL NIL) (-115 195699 195825 196009 "BRILL" 196417 NIL BRILL (NIL T) -7 NIL NIL) (-114 192400 194427 194469 "BRAGG" 195118 NIL BRAGG (NIL T) -9 NIL 195375) (-113 190929 191335 191890 "BRAGG-" 191895 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184137 190275 190459 "BPADICRT" 190777 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182441 184074 184119 "BPADIC" 184124 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182141 182171 182284 "BOUNDZRO" 182405 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 177656 178747 179614 "BOP" 181294 T BOP (NIL) -8 NIL NIL) (-108 175277 175721 176241 "BOP1" 177169 NIL BOP1 (NIL T) -7 NIL NIL) (-107 173630 174320 174614 "BOOLEAN" 175003 T BOOLEAN (NIL) -8 NIL NIL) (-106 172996 173374 173427 "BMODULE" 173432 NIL BMODULE (NIL T T) -9 NIL 173496) (-105 168806 172794 172867 "BITS" 172943 T BITS (NIL) -8 NIL NIL) (-104 167903 168338 168490 "BINFILE" 168674 T BINFILE (NIL) -8 NIL NIL) (-103 161738 167347 167512 "BINARY" 167758 T BINARY (NIL) -8 NIL NIL) (-102 159565 160993 161035 "BGAGG" 161295 NIL BGAGG (NIL T) -9 NIL 161432) (-101 159396 159428 159519 "BGAGG-" 159524 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158494 158780 158985 "BFUNCT" 159211 T BFUNCT (NIL) -8 NIL NIL) (-99 157195 157373 157658 "BEZOUT" 158318 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153720 156055 156383 "BBTREE" 156898 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153457 153510 153537 "BASTYPE" 153654 T BASTYPE (NIL) -9 NIL NIL) (-96 153312 153341 153411 "BASTYPE-" 153416 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152750 152826 152976 "BALFACT" 153223 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151572 152169 152354 "AUTOMOR" 152595 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151297 151302 151329 "ATTREG" 151334 T ATTREG (NIL) -9 NIL NIL) (-92 149576 149994 150346 "ATTRBUT" 150963 T ATTRBUT (NIL) -8 NIL NIL) (-91 149111 149224 149251 "ATRIG" 149452 T ATRIG (NIL) -9 NIL NIL) (-90 148920 148961 149048 "ATRIG-" 149053 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147117 148696 148784 "ASTACK" 148863 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145622 145919 146284 "ASSOCEQ" 146799 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144654 145281 145405 "ASP9" 145529 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144418 144602 144641 "ASP8" 144646 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143288 144023 144165 "ASP80" 144307 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142187 142923 143055 "ASP7" 143187 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141143 141864 141982 "ASP78" 142100 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140114 140823 140940 "ASP77" 141057 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139029 139752 139883 "ASP74" 140014 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137930 138664 138796 "ASP73" 138928 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136885 137607 137725 "ASP6" 137843 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135834 136562 136680 "ASP55" 136798 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134784 135508 135627 "ASP50" 135746 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133872 134485 134595 "ASP4" 134705 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132960 133573 133683 "ASP49" 133793 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131745 132499 132667 "ASP42" 132849 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130523 131278 131448 "ASP41" 131632 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129475 130200 130318 "ASP35" 130436 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129240 129423 129462 "ASP34" 129467 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128977 129044 129120 "ASP33" 129195 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127873 128612 128744 "ASP31" 128876 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127638 127821 127860 "ASP30" 127865 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127373 127442 127518 "ASP29" 127593 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127138 127321 127360 "ASP28" 127365 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126903 127086 127125 "ASP27" 127130 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125987 126601 126712 "ASP24" 126823 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124904 125628 125758 "ASP20" 125888 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123992 124605 124715 "ASP1" 124825 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122936 123666 123785 "ASP19" 123904 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122673 122740 122816 "ASP12" 122891 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121526 122272 122416 "ASP10" 122560 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119425 121370 121461 "ARRAY2" 121466 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115241 119073 119187 "ARRAY1" 119342 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114273 114446 114667 "ARRAY12" 115064 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108632 110503 110579 "ARR2CAT" 113209 NIL ARR2CAT (NIL T T T) -9 NIL 113967) (-54 106066 106810 107764 "ARR2CAT-" 107769 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104826 104976 105279 "APPRULE" 105904 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104479 104527 104645 "APPLYORE" 104772 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103453 103744 103939 "ANY" 104302 T ANY (NIL) -8 NIL NIL) (-50 102731 102854 103011 "ANY1" 103327 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100263 101181 101506 "ANTISYM" 102456 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100090 100222 100249 "ANON" 100254 T ANON (NIL) -8 NIL NIL) (-47 94167 98635 99086 "AN" 99657 T AN (NIL) -8 NIL NIL) (-46 90520 91918 91969 "AMR" 92708 NIL AMR (NIL T T) -9 NIL 93307) (-45 89633 89854 90216 "AMR-" 90221 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74183 89550 89611 "ALIST" 89616 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71020 73777 73946 "ALGSC" 74101 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67576 68130 68737 "ALGPKG" 70460 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66853 66954 67138 "ALGMFACT" 67462 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62603 63283 63937 "ALGMANIP" 66377 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53922 62229 62379 "ALGFF" 62536 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53118 53249 53428 "ALGFACT" 53780 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52757 "ALGEBRA" 52817 NIL ALGEBRA (NIL T) -9 NIL 52875) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34086 49829 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33621 33734 33761 "AHYP" 33962 T AHYP (NIL) -9 NIL NIL) (-33 32551 32799 32826 "AGG" 33325 T AGG (NIL) -9 NIL 33604) (-32 31985 32147 32361 "AGG-" 32366 NIL AGG- (NIL T) -8 NIL NIL) (-31 29672 30090 30507 "AF" 31628 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29204 29358 "ACPLOT" 29536 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 52286a5f..132dc5eb 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,2981 +1,18036 @@
-(682278 . 3404712026)
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-753)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1146 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1095)))) ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))))
-(((*1 *2 *3) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1131 (-377 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1131 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-517))) (-5 *1 (-1179 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3623 *3) (|:| -3633 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1131 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
-(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1070 *3)))))
-(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1104 *4)) (-4 *4 (-961)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *1) (-4 *1 (-338))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-60 *3)) (-14 *3 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-67 *3)) (-14 *3 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-70 *3)) (-14 *3 (-1074)))) ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1159)))) ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-367)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-361)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
-(((*1 *1) (-5 *1 (-1155))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))))
-(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1159)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-361)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-300)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))))
-(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-2 (|:| |zeros| (-1055 (-199))) (|:| |ones| (-1055 (-199))) (|:| |singularities| (-1055 (-199))))) (-5 *1 (-100)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1074))))) (-5 *6 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *5 (-1077)) (-5 *3 (-1074)) (-5 *2 (-1007)) (-5 *1 (-367)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 (-407))))) (-5 *1 (-1078)))))
-(((*1 *1) (-12 (-4 *1 (-374)) (-2650 (|has| *1 (-6 -4174))) (-2650 (|has| *1 (-6 -4166))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1159)) (-5 *1 (-215)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2148 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1131 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2908 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1115 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1055 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1136 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-4 *1 (-1146 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1146 *3)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $))))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1131 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -3534 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
-(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1095) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
-(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1122 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1070 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1070 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1070 *12)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1078)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3534 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -3334 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-349)) (-5 *1 (-973)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1074))) (-5 *3 (-1074)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1062 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1465 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1070 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1074))) (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *2 (-1159)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1131 (-377 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1070 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-517)) (-5 *1 (-215)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1156)) (-5 *1 (-230)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
+(721460 . 3409262766)
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1132 *5))
+ (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-787)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517)))
+ (-5 *2 (-1156 (-517))) (-5 *1 (-1181 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1156 *4))
+ (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6))
+ (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1147 *5)) (-4 *6 (-1132 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1132 *3)) (-5 *1 (-369 *3 *2))
+ (-4 *3 (-13 (-333) (-134))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-102 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-683)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5))
+ (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1075)) (-14 *5 *3))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075))) (-4 *6 (-421))
+ (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333))
+ (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-1132 *3))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 *3))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-903 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 *3))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-1165 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-5 *3 (-866 *5)) (-4 *5 (-962))
+ (-5 *1 (-1064 *4 *5)) (-14 *4 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1064 *4 *5))
+ (-14 *4 (-844)) (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-962))
+ (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-196 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-227 *3))))
+ ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5))
+ (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1082 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (|has| *1 (-6 -4191)) (-4 *1 (-1144 *3))
+ (-4 *3 (-1110)))))
+(((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110))
+ (-4 *3 (-1004)) (-5 *2 (-703))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4))
+ (-4 *4 (-1110)) (-5 *2 (-703)))))
+(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (-4 *4 (-962))
+ (-5 *1 (-944 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844)) (-4 *4 (-962))
+ (-5 *1 (-944 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1094)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-512)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333))
+ (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
+ (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
+ (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199))))
+ ((*1 *1 *1) (-4 *1 (-502)))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1022)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110))
+ (-5 *2 (-583 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-962)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4))
+ (-4 *4 (-156)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-4 *2 (-1004))
+ (-5 *1 (-812 *4 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1156 *4))) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-583 (-1156 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-5 *2 (-1161))
+ (-5 *1 (-1111 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-5 *2 (-1161))
+ (-5 *1 (-1111 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1014)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-951)) (-5 *1 (-276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-951))) (-5 *2 (-951)) (-5 *1 (-276))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *1) (-5 *1 (-974)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1053 *4))
+ (-4 *4 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-889)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 (-153 (-517))))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517))))))
+ (-5 *4 (-583 (-1075))) (-5 *2 (-583 (-583 (-153 *5))))
+ (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *1) (-5 *1 (-1158))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2254 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-123))
+ (-4 *3 (-724)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-735)))))
+(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-406)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-5 *5 (-1 (-388 *7) *7))
+ (-4 *6 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *7 (-1132 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-5 *5 (-1 (-388 *7) *7))
+ (-4 *6 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *7 (-1132 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1132 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
+ (-4 *6 (-1132 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1132 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6))
+ (-4 *6 (-1132 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1132 *4))
+ (-5 *1 (-845 *4 *2)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1878 (-583 (-2 (|:| |irr| *10) (|:| -2220 (-517)))))))
+ (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278))
+ (-4 *10 (-872 *3 *9 *8)) (-4 *9 (-725))
+ (-5 *2
+ (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-583 (-1071 *3)))))
+ (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1071 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *2 (-583 (-1057))) (-5 *1 (-240)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3633 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
+(((*1 *1)
+ (-12 (-4 *1 (-374)) (-2477 (|has| *1 (-6 -4181)))
+ (-2477 (|has| *1 (-6 -4173)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (-4 *1 (-779)))
+ ((*1 *2 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779))))
+ ((*1 *1) (-5 *1 (-1022))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-4 *4 (-421))
+ (-5 *2 (-583 (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4)))))
+ (-5 *1 (-263 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-1071 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1071 *1))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-583 (-875 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-583 (-875 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-875 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-583 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-875 *4)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156))
+ (-14 *5 (-844)) (-14 *6 (-583 (-1075))) (-14 *7 (-1156 (-623 *4))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -1451 *1)))
+ (-4 *1 (-976 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -1451 *1)))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-999 (-199)))
+ (-5 *5 (-107)) (-5 *2 (-1158)) (-5 *1 (-230)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1132 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1156 *5)) (-4 *5 (-278))
+ (-4 *5 (-962)) (-5 *2 (-623 *5)) (-5 *1 (-945 *5)))))
+(((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-517))))
+ (-4 *4 (-13 (-1132 *3) (-509) (-10 -8 (-15 -2368 ($ $ $)))))
+ (-4 *3 (-509)) (-5 *1 (-1135 *3 *4)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 (-377 (-875 *6))))
+ (-5 *3 (-377 (-875 *6)))
+ (-4 *6 (-13 (-509) (-953 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-523 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-509))
+ (-5 *2 (-2 (|:| -2831 (-623 *5)) (|:| |vec| (-1156 (-583 (-844))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-107))
+ (-5 *1 (-812 *4 *5)) (-4 *5 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-815 *5)) (-4 *5 (-1004)) (-5 *2 (-107))
+ (-5 *1 (-813 *5 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1110)) (-5 *2 (-107)) (-5 *1 (-813 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *1)) (-5 *4 (-1075)) (-4 *1 (-27))
+ (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *1) (-5 *1 (-107))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517)))
+ (-5 *2 (-1156 (-377 (-517)))) (-5 *1 (-1181 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-583 (-1075))) (-4 *2 (-156))
+ (-4 *3 (-212 (-3533 *4) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *3))
+ (-2 (|:| -2810 *5) (|:| -2356 *3))))
+ (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779))
+ (-4 *7 (-872 *2 *3 (-789 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962))
+ (-5 *2 (-583 (-583 (-583 (-703))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-875 *5)) (-4 *5 (-962)) (-5 *2 (-221 *4 *5))
+ (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1075))))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1006 *4)) (-4 *4 (-1004)) (-5 *2 (-1 *4))
+ (-5 *1 (-934 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-960)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1004)) (-5 *2 (-107))
+ (-5 *1 (-1111 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-377 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-509))
+ (-4 *4 (-962)) (-4 *2 (-1147 *4)) (-5 *1 (-1150 *4 *5 *6 *2))
+ (-4 *6 (-593 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1 (-1071 (-875 *4)) (-875 *4)))
+ (-5 *1 (-1164 *4)) (-4 *4 (-333)))))
+(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1132 *2))
+ (-4 *2 (-156))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1132 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4))
+ (-4 *3 (-379 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1132 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4))
+ (-4 *4 (-379 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1161))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1110)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1147 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1056 *4) (-1056 *4)))
+ (-5 *1 (-1149 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-1004)) (-4 *3 (-823 *6))
+ (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3))
+ (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-493)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-107))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-107)) (-5 *1 (-1100 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))
+ (-4 *4 (-319)) (-5 *2 (-1161)) (-5 *1 (-487 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1713 *4))) (-5 *5 (-703))
+ (-4 *4 (-872 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-418 *6 *7 *8 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-971))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4))
+ (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5)
+ (|:| |f4| (-583 *5))))
+ (-5 *1 (-1082 *6)) (-5 *4 (-583 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110))
+ (-4 *3 (-1004)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-107))
+ (-5 *1 (-827 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-844)) (-5 *2 (-107)) (-5 *1 (-1005 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1092)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1105 *6))
+ (-5 *2 (-1 (-1056 *4) (-1056 *4))) (-5 *1 (-1164 *6))
+ (-5 *5 (-1056 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1075))) (-14 *5 (-703))
+ (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-517)) (-5 *5 (-1058)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-1156 *6)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-844)) (-5 *1 (-946 *2))
+ (-4 *2 (-13 (-1004) (-10 -8 (-15 -1677 ($ $ $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-1107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-962)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1132 *5))
+ (-5 *1 (-739 *5 *2 *3 *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1132 *5))
+ (-5 *1 (-739 *5 *2 *3 *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *6 (-593 (-377 *2))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))) ((*1 *1) (-4 *1 (-502)))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
+ ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-999 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
+ (-5 *1 (-276))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
+ (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725))
+ (-5 *2
+ (-2 (|:| |upol| (-1071 *8)) (|:| |Lval| (-583 *8))
+ (|:| |Lfact|
+ (-583 (-2 (|:| -3866 (-1071 *8)) (|:| -2356 (-517)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-675 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1104 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1110)) (-4 *2 (-1004))
+ (-4 *2 (-779)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-974)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $))
+ (-15 -2097 ((-1027 *4 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *4 (-556 $)))))))
+ (-4 *4 (-509)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-556 *2)))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $))
+ (-15 -2097 ((-1027 *4 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *4 (-556 $)))))))
+ (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))))
+(((*1 *1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960))
+ (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
+ (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962))
+ (-5 *2
+ (-2 (|:| -3954 (-703)) (|:| |curves| (-703))
+ (|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-333) (-134) (-953 (-517))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-933 *4 *5))
+ (-5 *3 (-377 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-388 *4)) (-4 *4 (-509)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-5 *3 (-866 *4)) (-4 *1 (-1036 *4))
+ (-4 *4 (-962))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-866 (-199))) (-5 *2 (-1161))
+ (-5 *1 (-1158)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *1) (-4 *1 (-319))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1056 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-962)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1075)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 (-844))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5))
+ (-14 *4 (-844)) (-14 *5 (-911 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4))
+ (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-123))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4))
+ (-4 *4 (-1132 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-962)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-962))
+ (-4 *2 (-779))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *2 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *2 (-872 *4 (-489 *5) *5))
+ (-5 *1 (-1028 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-875 *4)) (-5 *1 (-1105 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1147 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5)))
+ (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-496 *4 *2 *5 *6))
+ (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51))
+ (-5 *1 (-922)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107))
+ (-5 *1 (-608 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 *4))))
+ (-5 *1 (-812 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004))
+ (-4 *7 (-1004)) (-5 *2 (-583 *1)) (-4 *1 (-1007 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3))
+ (|:| |genIdeal| (-469 *3 *4 *5 *6))))
+ (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-168)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-509)) (-5 *2 (-583 (-583 (-875 *5)))) (-5 *1 (-1081 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *2 (-13 (-1004) (-33))))))
+(((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-982 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1132 *2)) (-4 *2 (-1114)) (-5 *1 (-135 *2 *4 *3))
+ (-4 *3 (-1132 (-377 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1132 *4)) (-5 *2 (-1161))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1132 (-377 *5))) (-14 *7 *6))))
+(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
+ ((*1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-868 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-880 (-1071 *4))) (-5 *1 (-327 *4))
+ (-5 *3 (-1071 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-199)))
+ (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
+ ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797))))
+ ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075))
+ (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *2 (-1161))
+ (-5 *1 (-1078))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1075))
+ (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *2 (-1161))
+ (-5 *1 (-1078)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1004)) (-5 *1 (-1088 *3 *2)) (-4 *3 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1097 *3))) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
+ ((*1 *1 *1 *1) (-5 *1 (-1022))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
+ (-5 *1 (-1031 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1031 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5))))
+ (-5 *1 (-1031 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-265 (-377 (-875 *4))))
+ (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4))))
+ (-5 *1 (-1031 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-377 (-875 *4))))
+ (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1031 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-875 *5))))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1031 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-265 (-377 (-875 *4)))))
+ (-4 *4 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1031 *4)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1110)) (-4 *1 (-212 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1004))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))
+ (-5 *2 (-583 (-984 *3 *4 *5))) (-5 *1 (-985 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-558 (-815 *3))) (-4 *3 (-809 *3))
+ (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-558 (-815 *3))) (-4 *2 (-809 *3))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-286 *4))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))
+ ((*1 *1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-703))
+ (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517))))))
+ (-5 *1 (-220 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
+ (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3704 (-583 *3)) (|:| -2312 (-583 *3))))
+ (-5 *1 (-1111 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-286 *4))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-300)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-844)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-951)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962))
+ (-4 *6 (-1132 *5)) (-5 *2 (-1071 (-1071 *7)))
+ (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1132 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333))
+ (-4 *7 (-1132 *6))
+ (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779))
+ (-4 *5 (-725)) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
+ ((*1 *1 *1) (-4 *1 (-919)))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-929))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-929))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-929))))
+(((*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *1) (-5 *1 (-512))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-703)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1154 *3)) (-4 *3 (-23)) (-4 *3 (-1110)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1075))) (-5 *4 (-1075))
+ (-5 *1 (-1078))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-407)) (-5 *3 (-1075)) (-5 *1 (-1079))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1075))) (-5 *1 (-1079)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1147 *4))
+ (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-1 (-1056 *4) (-1056 *4) (-1056 *4))) (-5 *1 (-1149 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-680)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-104)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1) (-4 *1 (-256)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5))
+ (-14 *5 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4))
+ (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1132 (-47)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725))
+ (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-872 (-47) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725))
+ (-4 *7 (-872 (-47) *6 *5)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3))
+ (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3))
+ (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415))
+ (-5 *3 (-153 (-517)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3))
+ (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509))
+ (-4 *3 (-872 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1071 *4))) (-5 *1 (-427 *4))
+ (-5 *3 (-1071 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3))
+ (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1132 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-388 (-1071 *7)) (-1071 *7)))
+ (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725))
+ (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3))
+ (-4 *3 (-872 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-388 (-1071 *7)) (-1071 *7)))
+ (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725))
+ (-4 *8 (-872 *7 *6 *5)) (-5 *2 (-388 (-1071 *8)))
+ (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1071 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5)) (-5 *2 (-583 (-590 (-377 *6))))
+ (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-583 (-590 (-377 *5))))
+ (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4)))
+ (-5 *1 (-608 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3))
+ (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319))
+ (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *5
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3))
+ (-4 *3 (-872 (-875 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *5 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *6 (-509))
+ (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3))
+ (-4 *3 (-872 (-377 (-875 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134)))
+ (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3))
+ (-4 *3 (-872 (-377 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134)))
+ (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3))
+ (-4 *3 (-872 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-924 *3))
+ (-4 *3 (-1132 (-377 (-517))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-956 *3))
+ (-4 *3 (-1132 (-377 (-875 (-517)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1132 (-377 (-517))))
+ (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4)))
+ (-5 *2 (-388 *3)) (-5 *1 (-987 *4 *5 *3)) (-4 *3 (-1132 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1132 (-377 (-875 (-517)))))
+ (-4 *5 (-13 (-333) (-134) (-657 (-377 (-875 (-517))) *4)))
+ (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1132 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 (-377 *7))))
+ (-5 *1 (-1070 *4 *5 *6 *7)) (-5 *3 (-1071 (-377 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1114))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850))
+ (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850))
+ (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-955)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1132 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-623 *4))
+ (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3))
+ (-5 *2 (-623 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1006 *3)) (-5 *1 (-828 *3)) (-4 *3 (-338))
+ (-4 *3 (-1004)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1052 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-962))
+ (-5 *1 (-647 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-766 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 *2))
+ (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
+ (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349))
+ (-5 *1 (-717 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-844))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-142))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096)))
+ (-5 *1 (-201 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-659))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1110)) (-4 *2 (-659))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-1016)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-1016)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-123))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-962)) (-4 *2 (-779))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156))
+ (-4 *6 (-212 (-3533 *3) (-703)))
+ (-14 *7
+ (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6))
+ (-2 (|:| -2810 *5) (|:| -2356 *6))))
+ (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779))
+ (-4 *2 (-872 *4 *6 (-789 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-493)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-969))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-618 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-343 *3))
+ (-4 *4 (-343 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *2 (-343 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-653)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-509))
+ (-5 *1 (-888 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-969))))
+ ((*1 *1 *1 *1) (-4 *1 (-1016)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-212 *3 *4))
+ (-4 *5 (-212 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1025 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4))
+ (-4 *2 (-212 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-5 *1 (-1028 *3 *4 *2))
+ (-4 *2 (-872 *3 (-489 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-866 (-199))) (-5 *3 (-199)) (-5 *1 (-1107))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-659))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-659))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-1154 *3)) (-4 *3 (-1110)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5))
+ (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1147 *5))
+ (-5 *1 (-1149 *5 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333))
+ (-4 *5 (-962)) (-5 *2 (-107)) (-5 *1 (-945 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-962))
+ (-5 *2 (-107)) (-5 *1 (-945 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1075))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-4 *4 (-13 (-29 *6) (-1096) (-881)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2062 (-583 *4))))
+ (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-333))
+ (-5 *2 (-107)) (-5 *1 (-604 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-107))
+ (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-962)) (-5 *1 (-542 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1116 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1147 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278))
+ (-5 *1 (-161 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *8))
+ (-5 *4
+ (-583
+ (-2 (|:| -2062 (-623 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-623 *7)))))
+ (-5 *5 (-703)) (-4 *8 (-1132 *7)) (-4 *7 (-1132 *6)) (-4 *6 (-319))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-623 *7))))
+ (-5 *1 (-463 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-999 (-199))) (-5 *2 (-850))
+ (-5 *1 (-848 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-5 *2 (-850)) (-5 *1 (-848 *3))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-850))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-999 (-199))) (-5 *1 (-850)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *3 (-583 (-517)))
+ (-5 *1 (-806)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1075))
+ (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void"))) (-5 *1 (-1078)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1004))
+ (-5 *1 (-613 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1004)) (-5 *1 (-616 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1005 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 *3))
+ (|:| |logand| (-1071 *3)))))
+ (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1056 *4))) (-4 *4 (-333))
+ (-4 *4 (-962)) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1058)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-875 *5)))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-1065 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
+ (-5 *1 (-1031 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134)))
+ (-5 *2 (-1065 (-583 (-286 *5)) (-583 (-265 (-286 *5)))))
+ (-5 *1 (-1031 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-981 *3 *4 *5 *6)) (-4 *2 (-1013 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-849)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4))
+ (-5 *2 (-1156 *6)) (-5 *1 (-383 *3 *4 *5 *6))
+ (-4 *6 (-13 (-379 *4 *5) (-953 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *3 (-779)) (-5 *2 (-1027 *3 (-556 *1)))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-659) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-659) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-583 *3)) (-5 *1 (-895 *4 *5 *6 *3))
+ (-4 *3 (-976 *4 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -1580 (-517)) (|:| |var| (-556 *1))))
+ (-4 *1 (-400 *3)))))
+(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-991 *3)) (-4 *3 (-124)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1096) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-134))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -1306 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1132 *7))
+ (-5 *3 (-377 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-527 *7 *8)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1110))
+ (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2272 *3) (|:| |coef1| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-844)) (-5 *1 (-411 *2))
+ (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-844)) (-5 *4 (-703)) (-5 *1 (-411 *2))
+ (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2))
+ (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
+ (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-844)) (-5 *4 (-583 (-703))) (-5 *5 (-703))
+ (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-388 *2)) (-4 *2 (-1132 *5))
+ (-5 *1 (-413 *5 *2)) (-4 *5 (-962)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-1071 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *4 (-556 $)) $))
+ (-15 -2097 ((-1027 *4 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *4 (-556 $))))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3))
+ (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $))
+ (-15 -2097 (*7 $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
+ (-5 *2 (-703)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-5 *2
+ (-2 (|:| |zeros| (-1056 (-199))) (|:| |ones| (-1056 (-199)))
+ (|:| |singularities| (-1056 (-199)))))
+ (-5 *1 (-100)))))
(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))))
-(((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1092))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1092)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4))
+ (-14 *3 (-844)) (-4 *4 (-962))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-583 (-999 (-199))))
+ (-5 *1 (-851)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-404))
+ (-5 *2
+ (-583
+ (-3 (|:| -2987 (-1075))
+ (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517)))))))))
+ (-5 *1 (-1079)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4191)) (-4 *4 (-333)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4191)) (-4 *4 (-509)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-4 *7 (-910 *4)) (-4 *8 (-343 *7))
+ (-4 *9 (-343 *7)) (-5 *2 (-583 *6))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *10 (-621 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
+ (-5 *2 (-583 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1132 (-153 *2))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1058)) (|:| -2987 (-1058))))
+ (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1004))
+ (-5 *1 (-613 *2)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-895 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-377 (-1071 (-286 *3)))) (-4 *3 (-13 (-509) (-779)))
+ (-5 *1 (-1032 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *1))))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1161)) (-5 *1 (-763)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1014)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1071 *1)) (-5 *3 (-1075)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *2)) (-5 *4 (-1075)) (-4 *2 (-400 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1071 *1)) (-5 *3 (-844)) (-4 *1 (-929))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1071 *1)) (-5 *3 (-844)) (-5 *4 (-787))
+ (-4 *1 (-929))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-844)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *1 (-978 *4 *2)) (-4 *2 (-1132 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1110))
+ (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-962))
+ (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1071 *9)))
+ (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703)))
+ (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-872 *9 *10 *11))
+ (-4 *10 (-725)) (-5 *2 (-583 (-1071 *12)))
+ (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1071 *12)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-942 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2368 (-714 *3)) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2368 *1) (|:| |coef2| *1)))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-999 (-199)))
+ (-5 *2 (-1158)) (-5 *1 (-230)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1)))
+ (-4 *1 (-781 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1075))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1075))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-951)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-907))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-997 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-1075))))
+ ((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1152 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1026 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-990))))
+(((*1 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832))
+ (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-832))
+ (-5 *1 (-829 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-832)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1132 *2)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *2 (-872 *4 *6 *5)) (-5 *1 (-847 *4 *5 *6 *2))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-680)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-4 *3 (-823 *5)) (-5 *2 (-1156 *3))
+ (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962))
+ (-5 *1 (-1060 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962))
+ (-14 *4 (-1075)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3779 (-583 *9)) (|:| -3831 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-906 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
+ (-4 *4 (-981 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3779 (-583 *9)) (|:| -3831 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-1011 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
+ (-4 *4 (-981 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
+ (-14 *4 *2) (-4 *5 (-156))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-844)) (-5 *1 (-149 *3 *4))
+ (-4 *3 (-150 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-844))))
+ ((*1 *2)
+ (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3))
+ (-5 *2 (-844))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-333))
+ (-5 *2 (-703)) (-5 *1 (-604 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191)))) (-5 *2 (-703))
+ (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3))
+ (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509))
+ (-5 *2 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1110)) (-4 *2 (-1004))
+ (-4 *2 (-779)))))
+(((*1 *1 *1) (-5 *1 (-1074)))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-923)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1129 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1075))
+ (-4 *5 (-333)) (-5 *1 (-846 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1071 *5))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-1075))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333))
+ (-5 *2 (-377 (-875 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1075)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1004))
+ (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1071 *3)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-4 *2 (-1004)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421))
+ (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
+ (-14 *4 (-583 (-1075))) (-5 *1 (-568 *3 *4)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962))
+ (-5 *1 (-1060 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962))
+ (-14 *4 (-1075)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1075)))
+ (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-962)) (-5 *2 (-1156 *4))
+ (-5 *1 (-1076 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-5 *2 (-1156 *3)) (-5 *1 (-1076 *3))
+ (-4 *3 (-962)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *2)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1723 (-583 *6)) (|:| -3674 (-583 *6)))))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5))
+ (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8))
+ (-5 *6 (-583 *8)) (-4 *8 (-400 *7))
+ (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8)))
+ (-4 *8 (-400 *7)) (-5 *5 (-265 *8))
+ (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6))
+ (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51))
+ (-5 *1 (-287 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3))
+ (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493))))
+ (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1110)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1161))
+ (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779))
+ (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278))
+ (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
+(((*1 *2)
+ (-12 (-4 *1 (-319))
+ (-5 *2 (-583 (-2 (|:| -3866 (-517)) (|:| -2356 (-517))))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-866 (-199)))) (-5 *1 (-1157)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2))
+ (-4 *3 (-13 (-779) (-509))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787)))
+ (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787)))
+ (|:| |args| (-583 (-787)))))
+ (-5 *1 (-1075)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-134) (-27) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-1071 (-377 *5))) (-5 *1 (-559 *4 *5))
+ (-5 *3 (-377 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-134) (-27) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-1071 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114))
+ (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509))
+ (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110))
+ (-14 *4 (-517)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
+ (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-517)) (-5 *1 (-215))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-517)) (-5 *1 (-215)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1132 *3)) (-4 *3 (-962))
+ (-4 *3 (-509))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4))))
+ ((*1 *1 *1) (-4 *1 (-502)))
+ ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1110)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1108 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-919))
+ (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1156 (-3 (-437) "undefined"))) (-5 *1 (-1157)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-972 (-940 *3) (-1071 (-940 *3))))
+ (-5 *1 (-940 *3)) (-4 *3 (-13 (-777) (-333) (-938))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3866 *3) (|:| -2769 *4))))
+ (-5 *1 (-629 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1004))
+ (-4 *4 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1071 *3)) (-4 *3 (-962)) (-4 *1 (-1132 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1014)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-689)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1004))
+ (-4 *3 (-1110)) (-4 *3 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-953 (-47)))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2 (-388 (-1071 (-47)))) (-5 *1 (-405 *4 *5 *3))
+ (-4 *3 (-1132 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1132 (-377 (-517))))
+ (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))
+ (-5 *1 (-836 *3 *4)) (-4 *4 (-1132 (-377 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3))
+ (-4 *3 (-1132 (-377 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *1 (-1060 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-421)) (-4 *4 (-779))
+ (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-1075))
+ (-4 *4 (-13 (-400 *7) (-27) (-1096)))
+ (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *3 (-1132 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3))
+ (-4 *5 (-593 (-377 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-377 *5))
+ (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-1132 *4))
+ (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5))
+ (-4 *4 (-1004)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-109)) (-4 *4 (-962)) (-5 *1 (-647 *4 *2))
+ (-4 *2 (-585 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4))
+ (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3779 *5))))
+ (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5))
+ (-4 *6 (-593 (-377 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
+ (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-925 *3)) (-4 *3 (-953 *2)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-1167 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1167 *5 *6 *7 *8)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-142)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779))
+ (-5 *1 (-1082 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797))
+ (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1160))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *2 (-437))
+ (-5 *1 (-1160))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-437)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-107)) (|:| -4023 (-703)) (|:| |period| (-703))))
+ (-5 *1 (-1056 *4)) (-4 *4 (-1110)) (-5 *3 (-703)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-517)))))
+ (-4 *2 (-509)) (-5 *1 (-388 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-517))
+ (|:| -1878 (-583 (-2 (|:| |irr| *4) (|:| -2220 (-517)))))))
+ (-4 *4 (-1132 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1071 *3) (-1071 *3)))
+ (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509)))
+ (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-278))
+ (-5 *2 (-377 (-388 (-875 *4)))) (-5 *1 (-957 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-875 (-517))))) (-5 *2 (-583 (-286 (-517))))
+ (-5 *1 (-947)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1132 *4))
+ (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-1132 (-153 *3))))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-583 (-1075)))
+ (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-939)) (-5 *5 (-349))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-583 (-940 (-377 *4)))))
+ (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1116 *3)))))
+(((*1 *1 *1) (-4 *1 (-793 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-943 *5 *6 *7 *3))) (-5 *1 (-943 *5 *6 *7 *3))
+ (-4 *3 (-976 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-981 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3))
+ (-4 *3 (-976 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
+(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655)))
+ ((*1 *1) (-4 *1 (-659)))
+ ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2062 (-583 *1))))
+ (-4 *1 (-337 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-422 *3 *4 *5 *6))
+ (|:| -2062 (-583 (-422 *3 *4 *5 *6)))))
+ (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))))
+ (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701)) (-5 *4 (-974))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))))
+ (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-719)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))
+ (|:| |extra| (-951))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-719)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))
+ (|:| |extra| (-951))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-732)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-740))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-737))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-740)) (-5 *4 (-974))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-737))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-768)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))
+ (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-768)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-770))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-974))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-818)) (-5 *3 (-974))
+ (-5 *4
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058))
+ (|:| |tol| (-199))))
+ (-5 *2 (-2 (|:| -3615 (-349)) (|:| |explanations| (-1058))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-821))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-820))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-821)) (-5 *4 (-974))
+ (-5 *2
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *1 (-820)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-343 *2)) (-4 *2 (-1110))
+ (-4 *2 (-779))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4191))
+ (-4 *1 (-343 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
+ (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
+ (-5 *1 (-181)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333))
+ (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1156 *5)))))
+ (-5 *1 (-896 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1156 *5)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-493)))
+ ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))))
(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1159)) (-5 *1 (-487 *4)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095))) (-5 *1 (-201 *3)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1109)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2290 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1106)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-1070 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-5 *5 (-377 (-1070 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1341 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1341 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1056)))) ((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-973)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-421)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-831)))))
-(((*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1159)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))))
-(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-1055 (-1055 (-874 *5)))) (-5 *1 (-1162 *5)) (-5 *4 (-1055 (-874 *5))))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1074))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2650 (-4 *3 (-952 (-1074)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2650 (-4 *3 (-952 (-1074)))) (-2650 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3178 (-349)))) (-5 *7 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1169 *4 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-1149 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1146 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| |gap| (-703)) (|:| -2317 (-714 *3)) (|:| -2240 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-531)))))
-(((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *2)) (-2 (|:| -3544 *5) (|:| -3010 *2)))) (-4 *2 (-212 (-2290 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1131 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1070 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1072 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1128 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1074)) (-14 *6 *4))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
-(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
-(((*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1154 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-692)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 (-377 *2)))
+ (-4 *2 (-1132 *4)) (-5 *1 (-311 *3 *4 *2 *5))
+ (-4 *3 (-312 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1114))
+ (-4 *4 (-1132 (-377 *2))) (-4 *2 (-1132 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6))
+ (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-997 (-875 (-517)))) (-5 *3 (-875 (-517)))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-997 (-875 (-517)))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1156 *6)) (-5 *4 (-1156 (-517))) (-5 *5 (-517))
+ (-4 *6 (-1004)) (-5 *2 (-1 *6)) (-5 *1 (-934 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-583 (-1071 *13))) (-5 *3 (-1071 *13))
+ (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
+ (-5 *7 (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| *13)))))
+ (-5 *8 (-583 (-703))) (-5 *9 (-1156 (-583 (-1071 *10))))
+ (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-872 *10 *11 *12))
+ (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-209 *3))
+ (-4 *3 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-209 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1004))
+ (-5 *1 (-670 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2))
+ (-4 *2 (-1004))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1004))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1004))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4)))
+ (-5 *1 (-108 *4)) (-4 *4 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-962))
+ (-5 *1 (-647 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-766 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-775)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| -3736 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-703))
+ (-5 *1 (-847 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-283 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))))
+ (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-14 *6 (-1075)) (-14 *7 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-953 (-517))) (-4 *3 (-13 (-779) (-509)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1071 *4)) (-5 *1 (-149 *3 *4))
+ (-4 *3 (-150 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-273))))
+ ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1071 *3))))
+ ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-978 *3 *2)) (-4 *3 (-13 (-777) (-333)))
+ (-4 *2 (-1132 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-703)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-962)) (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-719)) (-5 *2 (-951))
+ (-5 *3
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-719)) (-5 *2 (-951))
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199)))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3))
+ (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2))
+ (-4 *2 (-1147 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
+ (-4 *5 (-1132 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2))
+ (-4 *2 (-1147 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3)))
+ (-5 *1 (-499 *4 *2)) (-4 *2 (-1147 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1052 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-982 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-1022)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1051))))
+(((*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-349)) (-5 *1 (-974)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-951))
+ (-5 *1 (-689)))))
(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1154 *5))) (-5 *4 (-517)) (-5 *2 (-1154 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-5 *1 (-1073))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1341 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1057)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1159)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))))
-(((*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1115 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1146 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1070 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1074)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-57 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
-(((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1057)) (-5 *1 (-276)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-512)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1070 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1070 *1)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-4 *4 (-1131 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-215))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-1058))) (-5 *3 (-517)) (-5 *4 (-1058))
+ (-5 *1 (-215))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-875 (-517)))) (-5 *1 (-407))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-623 (-199))) (-5 *2 (-1008))
+ (-5 *1 (-692))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-623 (-517))) (-5 *2 (-1008))
+ (-5 *1 (-692)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 (-153 *4)) (-919) (-1096)))
+ (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-919) (-1096))))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-951))
+ (-5 *1 (-679)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-199) (-199) (-199)))
+ (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2
+ (|:| -2581
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1860
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-512)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-343 *3)) (-4 *3 (-1110)) (-4 *3 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1110))
+ (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-131))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1132 *4)) (-5 *1 (-739 *4 *2 *3 *5))
+ (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *5 (-593 (-377 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1132 *4)) (-5 *1 (-739 *4 *2 *5 *3))
+ (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *5 (-593 *2))
+ (-4 *3 (-593 (-377 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-738 *5 *6 *7 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-815 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1004))
+ (-4 *5 (-1110)) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-815 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1004))
+ (-4 *5 (-1110)) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-815 *5)) (-5 *3 (-583 (-1075)))
+ (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1004)) (-4 *6 (-1110))
+ (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1110)) (-4 *4 (-779))
+ (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1110)) (-4 *4 (-779))
+ (-5 *1 (-860 *4 *2 *5)) (-4 *2 (-400 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1110))
+ (-5 *2 (-286 (-517))) (-5 *1 (-861 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1110))
+ (-5 *2 (-286 (-517))) (-5 *1 (-861 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-1 (-107) (-583 *6)))
+ (-4 *6 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-5 *1 (-984 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1056 *4)) (-5 *3 (-517)) (-4 *4 (-962))
+ (-5 *1 (-1060 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-962))
+ (-14 *4 (-1075)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4185 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1154 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1156)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1057)) (-5 *1 (-1156)))) ((*1 *1 *1) (-5 *1 (-1156))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1136 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1842 (*7 $)) (-15 -1852 (*7 $)) (-15 -2254 ($ *7))))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1154 (-1154 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1154 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-5 *1 (-316 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2153 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2153 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1842 (*3 $)) (-15 -1852 (*3 $)) (-15 -2254 ($ *3))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *3 *2)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1) (-4 *1 (-1050))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *1 (-1077)))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1111)))))
-(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1131 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1074))) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *1 *2) (-3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-989)))) ((*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1057)) (-5 *1 (-1044 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1079)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1079)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1090)))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1070 (-939 (-377 *4)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1057)) (-5 *1 (-718)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-1113)) (-4 *5 (-1131 *3)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2080 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2080 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))))
-(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))))
-(((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2080 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
-(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1343 (-583 (-2 (|:| |irr| *10) (|:| -1436 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1070 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1070 *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))) ((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-950)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1154 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1115 *3)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1154 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 *5)) (-2650 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1154 (-377 *5))) (-5 *1 (-578 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3730 (-703)) (|:| -1245 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3730 (-703)) (|:| -1245 *6))) (-5 *1 (-834 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1074)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1131 *4)) (-5 *2 (-1154 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-240)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1106)) (-5 *3 (-865 *4)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517))))))))) (-5 *1 (-1078)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1070 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1159)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))))
-(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1159)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1152 *3)) (-4 *3 (-23)) (-4 *3 (-1109)))))
-(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1159)) (-5 *1 (-437)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1081 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1154 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1154 *5)) (-5 *1 (-991 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-199)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1074))) (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2153 (-583 *9)) (|:| -1341 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-997 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-143 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-145))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-962)) (-5 *2 (-1071 *6))
+ (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2272 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5))
+ (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-919) (-1096)))
+ (-4 *3 (-13 (-400 (-153 *4)) (-919) (-1096))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-941 *3 *2)) (-4 *2 (-593 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3779 *3) (|:| -1406 (-583 *5))))
+ (-5 *1 (-941 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-333)) (-4 *3 (-1132 *4)) (-4 *5 (-1132 (-377 *3)))
+ (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1132 *2))
+ (-4 *5 (-1132 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6))
+ (-4 *6 (-312 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-333)) (-4 *3 (-1132 *2)) (-4 *4 (-1132 (-377 *3)))
+ (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *1 (-305 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5))
+ (|:| |c2| (-377 *5)) (|:| |deg| (-703))))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-984 *3 *4 *5))) (-4 *3 (-1004))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))
+ (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
+ (-5 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110))
+ (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-107)) (-5 *1 (-271)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4190)) (-4 *1 (-33)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-775)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-583 (-590 (-377 *5))))
+ (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-207)) (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-239 *4))
+ (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725))
+ (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-583 (-703)))
+ (-5 *1 (-827 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1008)) (-5 *3 (-706)) (-5 *1 (-51)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-5 *1 (-906 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-5 *1 (-1011 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *4)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-377 *5)) (-4 *4 (-1114)) (-4 *5 (-1132 *4))
+ (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1077 (-377 (-517)))) (-5 *2 (-377 (-517)))
+ (-5 *1 (-166))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1075)))
+ (-5 *4 (-1156 (-286 (-199)))) (-5 *1 (-181))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1004))
+ (-4 *3 (-1110)) (-5 *1 (-265 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-280 *2)) (-4 *2 (-1004)) (-4 *2 (-1110))
+ (-5 *1 (-265 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1))))
+ (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-1 *1 (-583 *1))))
+ (-4 *1 (-273))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1077 (-377 (-517))))
+ (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5))
+ (-4 *4 (-779)) (-4 *5 (-156))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1)))
+ (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-703)))
+ (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779))
+ (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-583 (-703)))
+ (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779))
+ (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1075))
+ (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1075)) (-4 *1 (-400 *4)) (-4 *4 (-779))
+ (-4 *4 (-558 (-493)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-1075))) (-4 *1 (-400 *3)) (-4 *3 (-779))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779))
+ (-4 *3 (-558 (-493)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5))
+ (-4 *4 (-1004)) (-4 *5 (-1110))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1075)) (-4 *4 (-509))
+ (-5 *1 (-958 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1075))) (-5 *4 (-583 (-377 (-875 *5))))
+ (-5 *2 (-377 (-875 *5))) (-4 *5 (-509)) (-5 *1 (-958 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-265 (-377 (-875 *4)))) (-5 *2 (-377 (-875 *4)))
+ (-4 *4 (-509)) (-5 *1 (-958 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-265 (-377 (-875 *4))))) (-5 *2 (-377 (-875 *4)))
+ (-4 *4 (-509)) (-5 *1 (-958 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1056 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-333) (-134) (-953 (-517))))
+ (-4 *5 (-1132 *4))
+ (-5 *2 (-2 (|:| -1306 (-377 *5)) (|:| |coeff| (-377 *5))))
+ (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075))))
+ ((*1 *1 *1) (-4 *1 (-145))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1114)) (-4 *5 (-1132 *3)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338))
+ (-4 *6 (-962)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-945 *6))
+ (-5 *3 (-583 (-623 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-962))
+ (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-945 *4))
+ (-5 *3 (-583 (-623 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5))
+ (-5 *3 (-583 (-623 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-1161)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-5 *1 (-819 *2 *3))
+ (-4 *2 (-1132 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4))
+ (-4 *4 (-779))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-724)) (-4 *3 (-156)))))
+(((*1 *1 *1) (-4 *1 (-971)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| -1723 *1) (|:| -3674 (-583 *7)))))
+ (-5 *3 (-583 *7)) (-4 *1 (-1104 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3))
+ (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1013 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5))))))
+ (-5 *1 (-986 *5 *6)) (-5 *3 (-583 (-875 *5)))
+ (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4))))))
+ (-5 *1 (-986 *4 *5)) (-5 *3 (-583 (-875 *4)))
+ (-14 *5 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5))))))
+ (-5 *1 (-986 *5 *6)) (-5 *3 (-583 (-875 *5)))
+ (-14 *6 (-583 (-1075))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517))))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-872 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 *4) (-919) (-1096))) (-5 *1 (-546 *4 *2 *3))
+ (-4 *3 (-13 (-400 (-153 *4)) (-919) (-1096))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-4 *2 (-1004)) (-5 *1 (-615 *5 *6 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-583 (-1075))) (|:| |pred| (-51))))
+ (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1079)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-215)) (-5 *3 (-1058))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-215))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
+ (-5 *2 (-951)) (-5 *1 (-678)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1058)) (-5 *1 (-1092)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4)))))
(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
-(((*1 *1 *1) (-4 *1 (-793 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1131 *3)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1095) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1057)) (-4 *3 (-13 (-1095) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1057)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1095) (-880) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1057)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1074)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1115 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1136 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-3782 (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1095)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1074)) (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1357 ((-583 *2) *3))) (|has| *3 (-15 -3563 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5)) (|:| -2153 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -3534 (-623 *6)) (|:| |vec| (-1154 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1095) (-400 *6) (-10 -8 (-15 -2254 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1133 *3 *7) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1057)) (-4 *9 (-900 *8)) (-14 *10 (-1074)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-186)) (-5 *3 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1103 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *3 (-583 (-236)))
+ (-5 *1 (-234))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6))
+ (-14 *5 (-583 (-1075))) (-4 *6 (-421)) (-5 *2 (-1156 *6))
+ (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-5 *2 (-1156 *3)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1132 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2368 *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-2 (|:| |num| (-1156 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4))
+ (-4 *4 (-1110)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))
+ ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1) (-4 *1 (-793 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-724))
+ (-4 *4 (-779)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1)))
+ (-4 *1 (-781 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
+ ((*1 *1 *1) (-4 *1 (-971))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1177 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-775)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
+ (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-684)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1126 *4 *2)) (-4 *2 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725))
+ (-5 *2 (-583 (-377 (-875 *4)))) (-5 *1 (-847 *4 *5 *6 *7))
+ (-4 *7 (-872 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-905 (-377 (-517)) (-789 *3) (-214 *4 (-703))
+ (-221 *3 (-377 (-517)))))
+ (-14 *3 (-583 (-1075))) (-14 *4 (-703)) (-5 *1 (-904 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1132 (-517))))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-528 *4 *2))
+ (-4 *2 (-13 (-1096) (-881) (-1039) (-29 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-689)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
+ (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7))
+ (-4 *3 (-1132 *6)) (-4 *7 (-872 *6 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1111 *2))
+ (-4 *2 (-1004))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-779))
+ (-5 *1 (-1111 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1071 *1)) (-5 *3 (-1075)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-875 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3267 (-517)) (|:| -1878 (-583 *3))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *1)
+ (-12 (-4 *1 (-374)) (-2477 (|has| *1 (-6 -4181)))
+ (-2477 (|has| *1 (-6 -4173)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1022))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-327 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-999 *3)) (-4 *3 (-872 *7 *6 *4)) (-4 *6 (-725))
+ (-4 *4 (-779)) (-4 *7 (-509))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517))))
+ (-5 *1 (-541 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517))))
+ (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1067 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1096)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1096)))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1067 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *2 (-377 (-875 *5))) (-5 *1 (-1068 *5)) (-5 *3 (-875 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *2 (-3 (-377 (-875 *5)) (-286 *5))) (-5 *1 (-1068 *5))
+ (-5 *3 (-377 (-875 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-997 (-875 *5))) (-5 *3 (-875 *5))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-377 *3))
+ (-5 *1 (-1068 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-997 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)))) (-5 *2 (-3 *3 (-286 *5)))
+ (-5 *1 (-1068 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-889)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4))
+ (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333))
+ (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-962))
+ (-5 *1 (-1060 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-872 *4 *6 *5)) (-4 *4 (-421))
+ (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-905 *4 *5 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-973))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-973)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806))
+ (-5 *3 (-583 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806))
+ (-5 *3 (-583 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632))))
+ ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-632)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-951)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2062 (-583 *6)))
+ *7 *6))
+ (-4 *6 (-333)) (-4 *7 (-593 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1156 *6) "failed"))
+ (|:| -2062 (-583 (-1156 *6)))))
+ (-5 *1 (-745 *6 *7)) (-5 *4 (-1156 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *5))
+ (-4 *5 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-377 (-517)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517)))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6))
+ (-4 *6 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-517)))
+ (-4 *7 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-517)))
+ (-4 *3 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8))
+ (-5 *5 (-1123 (-377 (-517)))) (-5 *6 (-377 (-517)))
+ (-4 *8 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-377 (-517))))
+ (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *8)))
+ (-4 *8 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-4 *3 (-962)) (-5 *1 (-542 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-543 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-4 *3 (-962)) (-4 *1 (-1116 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-703))
+ (-5 *3 (-1056 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))
+ (-4 *4 (-962)) (-4 *1 (-1137 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-4 *1 (-1147 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1056 (-2 (|:| |k| (-703)) (|:| |c| *3))))
+ (-4 *3 (-962)) (-4 *1 (-1147 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1132 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199))))
+ (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-583 (-286 (-199))))
+ (|:| -2585 (-583 (-199)))))))
+ (-5 *2 (-583 (-1058))) (-5 *1 (-240)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1026 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096)))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517)))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *2 (-1161))
+ (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-898 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-866 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-962)) (-4 *1 (-1036 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)) (-5 *3 (-199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1058)) (-5 *1 (-718)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1004)) (-4 *6 (-1004))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1004)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-13 (-27) (-1096) (-400 (-153 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-1100 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-564 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3298 *4) (|:| |sol?| (-107)))
+ (-517) *4))
+ (-4 *4 (-333)) (-4 *5 (-1132 *4)) (-5 *1 (-527 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1075)))
+ (-4 *5 (-421))
+ (-5 *2
+ (-2 (|:| |gblist| (-583 (-221 *4 *5)))
+ (|:| |gvlist| (-583 (-517)))))
+ (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3)))
+ (|:| |vals| (-583 *3))))
+ (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(((*1 *2)
+ (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-313 *3 *4)) (-14 *3 (-844))
+ (-14 *4 (-844))))
+ ((*1 *2)
+ (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-1071 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-880 (-1022))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-844)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-377 (-875 *4))) (-5 *3 (-1075))
+ (-4 *4 (-13 (-509) (-953 (-517)) (-134))) (-5 *1 (-523 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-787))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-884)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *5 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *6 (-509))
+ (-5 *2 (-2 (|:| -1836 (-875 *6)) (|:| -1443 (-875 *6))))
+ (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-872 (-377 (-875 *6)) *4 *5)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-866 *5)) (-5 *3 (-703)) (-4 *5 (-962))
+ (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1132 *4)) (-5 *1 (-741 *4 *2 *3 *5))
+ (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *3 (-593 *2))
+ (-4 *5 (-593 (-377 *2))))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5))
+ (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1178 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751 *3)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-510 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1132 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 (-1156 (-517)))) (-5 *3 (-844)) (-5 *1 (-435)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2))
+ (-14 *4 (-583 *2)) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5))
+ (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-875 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-875 (-349))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-377 (-875 (-517))))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-377 (-875 (-349))))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-875 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-875 (-349)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-286 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-286 (-349)))) (-4 *1 (-410))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-583 (-999 (-772 (-199)))))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+ (-5 *1 (-701))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *1 (-740))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199))))
+ (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-583 (-286 (-199))))
+ (|:| -2585 (-583 (-199)))))))
+ (-5 *1 (-770))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058))
+ (|:| |tol| (-199))))
+ (-5 *1 (-821))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-894 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-37 (-377 (-517)))))
+ (-2477 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-502))) (-2477 (-4 *3 (-37 (-377 (-517)))))
+ (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-910 (-517)))) (-4 *3 (-37 (-377 (-517))))
+ (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))))
+ ((*1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
+ (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1064 *4 *5))
+ (-14 *4 (-844)) (-4 *5 (-962)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1071 *7)) (-4 *5 (-962))
+ (-4 *7 (-962)) (-4 *2 (-1132 *5)) (-5 *1 (-466 *5 *2 *6 *7))
+ (-4 *6 (-1132 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962))
+ (-4 *4 (-1132 *5)) (-5 *2 (-1071 *7)) (-5 *1 (-466 *5 *4 *6 *7))
+ (-4 *6 (-1132 *4)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1114))
+ (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-4 *1 (-826 *3)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1004))
+ (-4 *2 (-123)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-1004)) (-5 *2 (-583 *1))
+ (-4 *1 (-352 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-659))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-872 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-866 (-199)))) (-5 *1 (-236))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1156 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-1156 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1132 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1132 *4)) (-5 *2 (-1156 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1132 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3))
+ (-5 *2 (-1156 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333))
+ (-5 *2 (-1156 *5)) (-5 *1 (-992 *5)))))
+(((*1 *1) (-5 *1 (-974))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-1149 *4 *2))
+ (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1075))) (-5 *1 (-186))
+ (-5 *3 (-1075))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1075)))
+ (-5 *1 (-240))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-583 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1056 *3))) (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-815 *4))
+ (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1004)) (-4 *3 (-150 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-999 (-772 (-349)))))
+ (-5 *2 (-583 (-999 (-772 (-199))))) (-5 *1 (-276))))
+ ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3))
+ (-5 *2 (-1156 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509))
+ (-4 *3 (-779))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-493))))
+ ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-898 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-973))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5))
+ (-4 *5 (-558 (-1075))) (-4 *4 (-725)) (-4 *5 (-779))))
+ ((*1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
+ (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8)))
+ (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1058))
+ (-5 *1 (-979 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-990))))
+ ((*1 *1 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *2)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *2 (-1004)) (-4 *6 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *2 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *2 *4 *5 *6)) (-4 *3 (-1004)) (-4 *2 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8)))
+ (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1013 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1058))
+ (-5 *1 (-1045 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1080))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1091))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1091))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-712 *4 (-789 *5)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *5 (-583 (-1075)))
+ (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-875 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-712 *4 (-789 *6)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *6 (-583 (-1075)))
+ (-5 *2 (-875 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-1071 (-940 (-377 *4)))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1046 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938))) (-14 *6 (-583 (-1075)))
+ (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517)))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-866 (-199))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 (-199)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))
+ (-5 *2 (-951)) (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-1060 *4)) (-4 *4 (-962))
+ (-5 *3 (-517)))))
+(((*1 *2)
+ (-12 (-4 *3 (-962)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1132 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1071 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-319)) (-4 *2 (-962)) (-5 *1 (-645 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123))
+ (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| -1580 *3) (|:| -2423 *4))))
+ (-5 *1 (-668 *3 *4)) (-4 *3 (-962)) (-4 *4 (-659))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-1056 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3))
+ (-4 *3 (-13 (-333) (-134) (-953 (-517)))) (-5 *1 (-521 *3 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1075)) (-5 *1 (-300)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1104 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-976 *2 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752))
+ (-14 *5 (-1075)) (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-207)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3))
+ (-4 *3 (-1132 *2))))
+ ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4))
+ (-4 *4 (-1004))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1004)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-849))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-849))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-850))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-199))) (-5 *3 (-999 (-199)))
+ (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 *2)) (-4 *4 (-1132 *2))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123))
+ (-4 *2 (-1004))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-1004)) (-5 *1 (-586 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-1132 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703)))
+ (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1056 (-875 *4)) (-1056 (-875 *4))))
+ (-5 *1 (-1164 *4)) (-4 *4 (-333)))))
+(((*1 *2) (-12 (-5 *2 (-1047 (-1058))) (-5 *1 (-361)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4))
+ (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
+ (-4 *3 (-13 (-1096) (-29 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1132 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1132 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *1) (-5 *1 (-974))))
+(((*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-215)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1058)) (-5 *1 (-51)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *5 (-509))
+ (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-5 *1 (-902 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *6))
+ (-4 *6
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-4 *4 (-962)) (-4 *5 (-725)) (-5 *1 (-902 *4 *5 *6 *2))
+ (-4 *2 (-872 (-875 *4) *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-962))
+ (-5 *1 (-624 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1096)))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1110)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3))
+ (-4 *3 (-610 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-406)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114))
+ (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-724))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517))
+ (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156))
+ (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156))
+ (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-962) (-779)))
+ (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-5 *2 (-214 *5 *7))
+ (-5 *1 (-213 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-265 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1058)) (-5 *5 (-556 *6))
+ (-4 *6 (-273)) (-4 *2 (-1110)) (-5 *1 (-268 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273))
+ (-4 *2 (-273)) (-5 *1 (-269 *5 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779))
+ (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333))
+ (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
+ (-4 *9 (-333)) (-4 *10 (-1132 *9)) (-4 *11 (-1132 (-377 *10)))
+ (-5 *2 (-306 *9 *10 *11 *12))
+ (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-312 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1114)) (-4 *8 (-1114))
+ (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6))) (-4 *9 (-1132 *8))
+ (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1132 (-377 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1110)) (-4 *6 (-1110))
+ (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509))
+ (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509))
+ (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278))
+ (-4 *6 (-910 *5)) (-4 *7 (-1132 *6))
+ (-4 *8 (-13 (-379 *6 *7) (-953 *6))) (-4 *9 (-278))
+ (-4 *10 (-910 *9)) (-4 *11 (-1132 *10))
+ (-5 *2 (-383 *9 *10 *11 *12))
+ (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-379 *10 *11) (-953 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
+ (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-962) (-779)))
+ (-4 *6 (-13 (-962) (-779))) (-4 *2 (-400 *6))
+ (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004))
+ (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333))
+ (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -1306 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-333)) (-4 *6 (-333))
+ (-5 *2 (-2 (|:| -1306 *6) (|:| |coeff| *6)))
+ (-5 *1 (-533 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-333)) (-4 *6 (-333))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-533 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-547 *8))
+ (-5 *1 (-545 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1056 *6)) (-5 *5 (-547 *7))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8))
+ (-5 *1 (-545 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1056 *7))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8))
+ (-5 *1 (-545 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-583 *8))
+ (-5 *1 (-582 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962))
+ (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10))
+ (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7))
+ (-4 *9 (-343 *8)) (-4 *10 (-343 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962))
+ (-4 *8 (-962)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5))
+ (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509))
+ (-4 *6 (-1132 *5)) (-4 *2 (-1132 (-377 *8)))
+ (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1132 (-377 *6)))
+ (-4 *8 (-1132 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-779))
+ (-4 *6 (-725)) (-4 *2 (-872 *9 *7 *5))
+ (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725))
+ (-4 *4 (-872 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725))
+ (-4 *9 (-962)) (-4 *2 (-872 *9 *8 *6))
+ (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725))
+ (-4 *4 (-872 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7))
+ (-5 *1 (-667 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-668 *3 *4))
+ (-4 *4 (-659))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
+ (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *1 (-764 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-5 *1 (-771 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-812 *5 *6)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-812 *5 *7))
+ (-5 *1 (-811 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-5 *2 (-875 *6)) (-5 *1 (-869 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779))
+ (-4 *8 (-962)) (-4 *6 (-725))
+ (-4 *2
+ (-13 (-1004)
+ (-10 -8 (-15 -1677 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))))))
+ (-5 *1 (-874 *6 *7 *8 *5 *2)) (-4 *5 (-872 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-5 *2 (-866 *6)) (-5 *1 (-899 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-875 *4))) (-4 *4 (-962))
+ (-4 *2 (-872 (-875 *4) *5 *6)) (-4 *5 (-725))
+ (-4 *6
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-5 *1 (-902 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509))
+ (-4 *2 (-910 *6)) (-5 *1 (-908 *5 *6 *4 *2)) (-4 *4 (-910 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156))
+ (-4 *2 (-914 *6)) (-5 *1 (-915 *4 *5 *2 *6)) (-4 *4 (-914 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7))
+ (-4 *5 (-962)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962))
+ (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7))
+ (-4 *9 (-212 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12))
+ (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10))
+ (-4 *12 (-212 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-999 *6)) (-5 *1 (-995 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-777))
+ (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-583 *6))
+ (-5 *1 (-995 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-997 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-997 *6)) (-5 *1 (-996 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-777))
+ (-4 *2 (-1049 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-1056 *6)) (-5 *1 (-1054 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1056 *6)) (-5 *5 (-1056 *7))
+ (-4 *6 (-1110)) (-4 *7 (-1110)) (-4 *8 (-1110)) (-5 *2 (-1056 *8))
+ (-5 *1 (-1055 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1087 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1120 *6 *8 *10)) (-5 *1 (-1115 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1075))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-1123 *6)) (-5 *1 (-1122 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-777))
+ (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1056 *6))
+ (-5 *1 (-1122 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1129 *5 *6)) (-14 *5 (-1075))
+ (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1129 *7 *8))
+ (-5 *1 (-1124 *5 *6 *7 *8)) (-14 *7 (-1075))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-4 *2 (-1132 *6)) (-5 *1 (-1130 *5 *4 *6 *2)) (-4 *4 (-1132 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1141 *6 *8 *10)) (-5 *1 (-1136 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1075))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-4 *2 (-1147 *6)) (-5 *1 (-1145 *5 *6 *4 *2)) (-4 *4 (-1147 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-1110))
+ (-4 *6 (-1110)) (-5 *2 (-1156 *6)) (-5 *1 (-1155 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1156 *5))
+ (-4 *5 (-1110)) (-4 *6 (-1110)) (-5 *2 (-1156 *6))
+ (-5 *1 (-1155 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1177 *3 *4))
+ (-4 *4 (-775)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1004)) (-4 *2 (-823 *4)) (-5 *1 (-625 *4 *2 *5 *3))
+ (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1085 *2)) (-4 *2 (-333)))))
(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *3)) (-2 (|:| -3544 *2) (|:| -3010 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-1154 (-286 (-349)))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1057)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -2175 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3383 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-215)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1095))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1048 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))) ((*1 *2 *1) (-12 (-5 *2 (-1167 (-1074) *3)) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1074)))) ((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3633 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -4124 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-1004))))
+ ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-725)) (-4 *2 (-239 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
+ ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-517)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1075))) (-4 *4 (-421))
+ (-5 *1 (-841 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *2 (-1004)) (-4 *3 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1156
+ (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3954 (-517))
+ (|:| -1372 (-517)) (|:| |spline| (-517)) (|:| -4000 (-517))
+ (|:| |axesColor| (-797)) (|:| -2471 (-517))
+ (|:| |unitsColor| (-797)) (|:| |showing| (-517)))))
+ (-5 *1 (-1157)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-583 *3)) (-5 *5 (-844)) (-4 *3 (-1132 *4))
+ (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-962)) (-5 *1 (-623 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *4)) (-4 *4 (-962)) (-4 *1 (-1025 *3 *4 *5 *6))
+ (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1004)) (-5 *2 (-703)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4192 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
+ (-4 *2 (-962)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1132 *2))
+ (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075)))
+ (-4 *2 (-13 (-400 *5) (-27) (-1096)))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-377 (-517)))
+ (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5))
+ (-4 *5 (-13 (-779) (-509) (-953 (-517))))
+ (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-684)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1144 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-962)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1071 (-1071 *5))))
+ (-5 *1 (-1109 *5)) (-5 *3 (-1071 (-1071 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-962)) (-5 *1 (-1128 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107))
+ (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1071 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8))
+ (-4 *7 (-779)) (-4 *8 (-962)) (-4 *9 (-872 *8 *6 *7)) (-4 *6 (-725))
+ (-5 *2 (-1071 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-875 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *5))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *5))))))))))
+ (-5 *4 (-1058)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-872 *5 *7 *6))
+ (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333))
+ (-5 *2 (-703)) (-5 *1 (-868 *5 *6)) (-4 *6 (-1132 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1056 *4))) (-5 *1 (-257 *4 *5))
+ (-5 *3 (-1056 *4)) (-4 *5 (-1147 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-688)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1056 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-1110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4))
+ (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962))
+ (-4 *2 (-1116 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-962)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1132 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-888 *2 *4))
+ (-4 *4 (-1132 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110)) (-14 *4 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278))
+ (-4 *9 (-872 *8 *6 *7))
+ (-5 *2 (-2 (|:| -1713 (-1071 *9)) (|:| |polval| (-1071 *8))))
+ (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1071 *9)) (-5 *4 (-1071 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1005 *3 *4)) (-14 *3 (-844))
+ (-14 *4 (-844)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3))
+ (-4 *3 (-13 (-400 *4) (-919))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-847 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-107))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1110))
+ (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-875 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *4))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *4))))))))))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-997 (-875 (-517)))) (-5 *2 (-300))
+ (-5 *1 (-302))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-962)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-1123 (-517))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-13 (-421) (-134)))
+ (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1075))) (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-875 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-349))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-875 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5))
+ (-4 *5 (-953 (-517))) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-309 *3 *4 *5))
+ (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357))
+ (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1075)))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-377 (-875 (-517))))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-377 (-875 (-349))))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-875 (-517)))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-875 (-349)))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-377 (-875 (-517)))) (-4 *1 (-366))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-377 (-875 (-349)))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-875 (-349))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-377 (-875 (-517))))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-377 (-875 (-349))))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-875 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-875 (-349)))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-286 (-517)))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1156 (-286 (-349)))) (-4 *1 (-410))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1132 *5))
+ (-5 *2 (-1071 (-1071 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7))
+ (-4 *3 (-1132 *6)) (-14 *7 (-844))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *1 (-894 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-953 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (|partial| -3745
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-37 (-377 (-517)))))
+ (-2477 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-502))) (-2477 (-4 *3 (-37 (-377 (-517)))))
+ (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 *3))
+ (-12 (-2477 (-4 *3 (-910 (-517)))) (-4 *3 (-37 (-377 (-517))))
+ (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)))))
+ ((*1 *1 *2)
+ (|partial| -3745
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-2477 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517)))
+ (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))
+ (-12 (-5 *2 (-875 (-517))) (-4 *1 (-976 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))))
+ (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-875 (-377 (-517)))) (-4 *1 (-976 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1075))) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (-5 *1 (-847 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1161)) (-5 *1 (-788)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-286 (-517))) (|:| -1724 (-286 (-349)))
+ (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1074))))
+ (-5 *1 (-1074)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1157))))
+ ((*1 *1 *1) (-5 *1 (-1157))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1071 *3))
+ (-4 *3 (-13 (-400 *7) (-27) (-1096)))
+ (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1004))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
+ (-5 *6 (-377 (-1071 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1096)))
+ (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1156 (-1075))) (-5 *3 (-1156 (-422 *4 *5 *6 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-1156 (-623 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-422 *4 *5 *6 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-844))
+ (-14 *6 (-583 *2)) (-14 *7 (-1156 (-623 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075)))
+ (-14 *6 (-1156 (-623 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-1075))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-156)) (-14 *4 (-844)) (-14 *5 (-583 (-1075)))
+ (-14 *6 (-1156 (-623 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156))
+ (-14 *4 (-844)) (-14 *5 (-583 *2)) (-14 *6 (-1156 (-623 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-844))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-1156 (-623 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-703)) (-4 *3 (-1110)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1) (-5 *1 (-155)))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359))))
+ ((*1 *1) (-5 *1 (-364)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1004)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1004))
+ (-4 *4 (-603 *3))))
+ ((*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004))))
+ ((*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-5 *1 (-1075))) ((*1 *1) (-5 *1 (-1075)))
+ ((*1 *1) (-5 *1 (-1091))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-826 *3)) (-4 *3 (-1004)) (-5 *2 (-1006 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-1006 (-583 *4))) (-5 *1 (-827 *4))
+ (-5 *3 (-583 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-1006 (-1006 *4))) (-5 *1 (-827 *4))
+ (-5 *3 (-1006 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1006 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-4 *1 (-374))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *2 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1004)) (-5 *1 (-808 *2 *3 *4)) (-4 *2 (-1004))
+ (-4 *4 (-603 *3))))
+ ((*1 *1) (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-703))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1077 (-377 (-517))))
+ (-5 *1 (-166)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-680)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1079)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1058))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-951))
+ (-5 *1 (-683)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| -2581 *3) (|:| -1860 *4))))
+ (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *1 (-1087 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-724)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-377 (-517))) (-4 *4 (-953 (-517)))
+ (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-125)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-199)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3))
+ (-4 *5 (-1147 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1118 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3))
+ (-4 *5 (-1116 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1139 *4 *5))
+ (-4 *6 (-901 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-256)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *1) (-5 *1 (-349)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1016))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-517)) (-4 *4 (-319))
+ (-5 *1 (-487 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1004))
+ (-5 *1 (-616 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-962))
+ (-5 *1 (-624 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *3 (-962)) (-5 *1 (-647 *3 *4))
+ (-4 *4 (-585 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-962))
+ (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-962))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-377 (-517)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-844))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-1025 *3 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142))))
+ ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1156 (-1156 (-517)))) (-5 *1 (-435)))))
+(((*1 *1 *1 *1) (-5 *1 (-199)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *2))
+ (-2 (|:| -2810 *5) (|:| -2356 *2))))
+ (-4 *2 (-212 (-3533 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-779)) (-4 *7 (-872 *4 *2 (-789 *3))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-4 *5 (-333)) (-5 *2 (-1056 (-1056 (-875 *5))))
+ (-5 *1 (-1164 *5)) (-5 *4 (-1056 (-875 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1110)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1004))
+ (-4 *2 (-1110)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-962)) (-14 *3 (-583 (-1075)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779)))
+ (-14 *3 (-583 (-1075))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509))
+ (-4 *3 (-1110)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-331 (-109))) (-4 *2 (-962)) (-5 *1 (-647 *2 *4))
+ (-4 *4 (-585 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-962)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1058))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1056 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1014)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-189 *4))
+ (-4 *4
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $))
+ (-15 -3177 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-189 *3))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $))
+ (-15 -3177 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-467)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319))
+ (-4 *2
+ (-13 (-372)
+ (-10 -7 (-15 -2269 (*2 *4)) (-15 -2031 ((-844) *2))
+ (-15 -2062 ((-1156 *2) (-844))) (-15 -1739 (*2 *2)))))
+ (-5 *1 (-326 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1096) (-881))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4))))
+ (-5 *1 (-1082 *4)) (-5 *3 (-583 (-583 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-168))))
+ ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-271))))
+ ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1058)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-962))
+ (-5 *2 (-1156 (-1156 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1156 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3))
+ (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1132 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-812 *3 *5)) (-5 *1 (-808 *3 *4 *5))
+ (-4 *3 (-1004)) (-4 *5 (-603 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1056 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-844)) (-4 *3 (-333))
+ (-14 *4 (-911 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655)))
+ ((*1 *1 *1) (|partial| -4 *1 (-659)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-978 *3 *2)) (-4 *3 (-13 (-777) (-333)))
+ (-4 *2 (-1132 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4190)) (-4 *1 (-456 *4))
+ (-4 *4 (-1110)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1075))
+ (-5 *1 (-235 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1075)) (-5 *2 (-51))
+ (-5 *1 (-236)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1101 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1306 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-333)) (-4 *7 (-1132 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
+ (-2 (|:| -1306 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-44 (-1058) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491))))
+ ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-751 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-828 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4))
+ (-5 *1 (-944 *5)) (-4 *5 (-962))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-944 *4))
+ (-4 *4 (-962))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-828 (-517)))) (-5 *4 (-517))
+ (-5 *2 (-583 (-623 *4))) (-5 *1 (-944 *5)) (-4 *5 (-962))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517))))
+ (-5 *1 (-944 *4)) (-4 *4 (-962)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-212 *3 *4))
+ (-4 *2 (-212 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1161)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1110)) (-5 *2 (-703)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-813 *4 *3))
+ (-4 *3 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491))))
+ ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-517)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-517)) (-5 *5 (-1058)) (-5 *6 (-623 (-199)))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2272 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-929))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-929))))
+ ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-929)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-929))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-929))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-929)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1132 *4)) (-5 *2 (-583 *1))
+ (-4 *1 (-978 *4 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4)))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-888 *3 *2))
+ (-4 *2 (-1132 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5)))
+ (-5 *1 (-1031 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5))))
+ (-5 *1 (-1031 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-109))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-779)) (-5 *1 (-852 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-1058)) (-5 *2 (-286 (-517)))
+ (-5 *1 (-853)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3)
+ (-221 *3 (-377 (-517)))))
+ (-14 *3 (-583 (-1075))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-517))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
+ (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-907))))
+ ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1004) (-33))) (-5 *1 (-1040 *2 *3))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-414 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *4)) (-5 *3 (-844)) (|has| *4 (-6 (-4192 "*")))
+ (-4 *4 (-962)) (-5 *1 (-944 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-844))
+ (|has| *4 (-6 (-4192 "*"))) (-4 *4 (-962)) (-5 *1 (-944 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1)))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1075))))
+ (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *2)) (-4 *2 (-872 *3 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-5 *2 (-349)) (-5 *1 (-717 *3))
+ (-4 *3 (-558 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 *2))
+ (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2))
+ (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779))
+ (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
+ (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4))
+ (-4 *4 (-1132 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-267))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-282)) (-5 *1 (-267))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-282)) (-5 *1 (-267))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1058))) (-5 *3 (-1058)) (-5 *2 (-282))
+ (-5 *1 (-267)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-517)) (-5 *1 (-180)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1161))
+ (-5 *1 (-1078))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1161))
+ (-5 *1 (-1078)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-5 *2 (-1156 *3)) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1132 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1063 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1057)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1154 (-583 (-517)))) (-5 *1 (-448)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1096 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1096 *2))) (-5 *1 (-1096 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1109)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) ((*1 *1) (-5 *1 (-364))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1) (-5 *1 (-1074))) ((*1 *1) (-5 *1 (-1074))) ((*1 *1) (-5 *1 (-1090))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1341 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1341 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1154 (-377 (-517)))) (-5 *1 (-1179 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -2722 (-583 *3)) (|:| -2682 (-583 *3)))) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 *3) (|:| -1338 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1086 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1095))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2565 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1154 (-1154 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1043)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1074))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1064 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1128 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1074)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1070 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1074)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1074)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -1376 *3) (|:| -3625 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1104 *5 *6 *7 *3))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-107)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-944 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-962)) (-5 *1 (-944 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-944 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-962)) (-5 *1 (-944 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-377 (-875 *6)) (-1065 (-1075) (-875 *6))))
+ (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *6)))))
+ (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-875 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-377 (-875 *5)) (-1065 (-1075) (-875 *5))))
+ (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4))))
+ (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5)))))
+ (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1075)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-319))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517)))))))
+ (-5 *1 (-191 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-236))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1071 (-1071 *4))))
+ (-5 *1 (-1109 *4)) (-5 *3 (-1071 (-1071 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1056 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517))))
+ (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *1))))
+ (-4 *1 (-981 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1114)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-1135 *3 *2))
+ (-4 *2 (-13 (-1132 *3) (-509) (-10 -8 (-15 -2368 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4))))
+ (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1161)) (-5 *1 (-437)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-962)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6))
+ (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4))))
+ (-5 *1 (-1082 *6)) (-5 *5 (-583 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *3 (-583 (-236)))
+ (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-437)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1022)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 *4))) (-5 *3 (-1071 *4))
+ (-4 *4 (-832)) (-5 *1 (-600 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1004))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1004)) (-5 *1 (-98 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-951)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-905 *3 *4 *5 *2))
+ (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1004)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-1002 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *2)
+ (-12 (-5 *2 (-623 (-833 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-844))
+ (-14 *4 (-844))))
+ ((*1 *2)
+ (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
+ (-14 *4
+ (-3 (-1071 *3)
+ (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-844)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *2 (-1156 (-286 (-349))))
+ (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4))))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-866 *4)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *2 *1) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2 *3) (-12 (-5 *3 (-889)) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *3))
+ (-4 *3 (-1132 (-377 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-875 (-517)))))
+ (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134)))
+ (-5 *1 (-1126 *4 *2)) (-4 *2 (-1132 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1114)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1132 (-517)))
+ (-5 *2
+ (-2 (|:| -2062 (-623 (-517))) (|:| |basisDen| (-517))
+ (|:| |basisInv| (-623 (-517)))))
+ (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 *4))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-623 *4))))
+ (-5 *1 (-903 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 *4))
+ (-5 *2
+ (-2 (|:| -2062 (-623 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-623 *4))))
+ (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-265 (-765 *3)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-765 (-875 *5)))) (-4 *5 (-421))
+ (-5 *2 (-765 (-377 (-875 *5)))) (-5 *1 (-577 *5))
+ (-5 *3 (-377 (-875 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
+ (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-623 (-377 (-875 (-517)))))
+ (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-947)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
+ (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-558 (-815 (-517))))
+ (-4 *5 (-809 (-517)))
+ (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1075)) (-5 *4 (-772 *2)) (-4 *2 (-1039))
+ (-4 *2 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-558 (-815 (-517)))) (-4 *5 (-809 (-517)))
+ (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517))))
+ (-5 *1 (-520 *5 *2)))))
(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1157)))))
-(((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1157)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *3)))))
-(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3819 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1074)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))))
-(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-1154 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-718)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1095))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1066 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-874 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1067 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1067 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1067 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
-(((*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -3010 (-703)) (|:| -2984 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2254 (*2 (-1074)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *5 *6 *2)) (-4 *6 (-593 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *1 *1 *1) (-4 *1 (-725))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1387 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1387 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1131 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *6)) (-15 -1842 (*6 $)) (-15 -1852 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1074)) (-5 *1 (-957 *4)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1179 *4)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
-(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1074))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1095))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1095))))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1109)) (-5 *2 (-517)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1159)) (-5 *1 (-763)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1154 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2080 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1131 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -2080 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -2580 (-1055 *4)) (|:| -2590 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-517)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1074)) (-5 *5 (-1057)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -2533 *5)))) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -1376 *5) (|:| -3625 (-517))))) (-5 *4 (-517)) (-4 *5 (-1131 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))))
-(((*1 *1) (-5 *1 (-973))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1146 *5)) (-5 *1 (-1148 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1074)) (-5 *4 (-772 *2)) (-4 *2 (-1038)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1124 *3 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1050))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1074))) (|:| |inhom| (-3 (-583 (-1154 (-703))) "failed")) (|:| |hom| (-583 (-1154 (-703)))))) (-5 *1 (-210)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3633 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1131 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1070 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1131 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1082 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1081 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1074)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-953 (-517)))
+ (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1071 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-556 *1)) (-4 *1 (-962)) (-4 *1 (-273))
+ (-5 *2 (-1071 *1)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-812 *4 *5)) (-5 *3 (-812 *4 *6)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-603 *5)) (-5 *1 (-808 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2272 *3) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-209 *3))
+ (-4 *3 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *1) (-4 *1 (-273)))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-703)) (-5 *1 (-109))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-109))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-109)) (-5 *1 (-147))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4))
+ (-4 *4 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273))))
+ ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4))
+ (-4 *3 (-400 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4))
+ (-4 *4 (-400 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4))
+ (-4 *4 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-847 *4 *5 *6 *3))
+ (-4 *3 (-872 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-844)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-333)) (-14 *5 (-911 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *1 *1 *1) (-4 *1 (-442)))
+ ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-889)))
+ ((*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1156 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-832))
+ (-5 *2 (-1156 *1)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-976 *4 *5 *6))
+ (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-972 (-940 *4) (-1071 (-940 *4)))) (-5 *3 (-787))
+ (-5 *1 (-940 *4)) (-4 *4 (-13 (-777) (-333) (-938))))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199))
+ (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))
+ (-5 *2 (-377 (-517))) (-5 *1 (-936 *4)) (-4 *4 (-1132 (-517))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1132 *6))
+ (-4 *6 (-13 (-333) (-134) (-953 *4))) (-5 *4 (-517))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107))))
+ (|:| -3779
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-932 *6 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1158))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-1058)) (-5 *1 (-1158))))
+ ((*1 *1 *1) (-5 *1 (-1158))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-621 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1132 *4)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-690)))))
+(((*1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-527 *5 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-951))
+ (-5 *1 (-682)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-1071 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)) (-5 *3 (-517)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3))
+ (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-787)) (-5 *1 (-1056 *3)) (-4 *3 (-1004))
+ (-4 *3 (-1110)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2))
+ (-4 *2 (-1110)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7)))
+ (-4 *7 (-1132 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *6 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962)) (-4 *4 (-156))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))
+ (-4 *3 (-156)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-583 (-1075))) (-14 *5 (-703))
+ (-5 *2
+ (-583
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517))))))
+ (-5 *1 (-470 *4 *5))
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517))))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-1071 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *3 (-199))
+ (-5 *2 (-951)) (-5 *1 (-681)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1154 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-1004))))
+ ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-408 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-983 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1075))))
+(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6))
+ (|:| -1712 *6)))
+ (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-496 *4 *2 *5 *6))
+ (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3))))
+ (-5 *1 (-116 *3)) (-4 *3 (-779))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1096)))
+ (-4 *3 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *1 (-532 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-534 (-377 (-875 *3))))
+ (-4 *3 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *1 (-537 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -1386 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1156 *5)) (-4 *5 (-333)) (-4 *5 (-962))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1156 (-1156 *5))) (-4 *5 (-333)) (-4 *5 (-962))
+ (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-945 *5))
+ (-5 *3 (-583 (-623 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1044))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1044)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779)))
+ (-14 *4 (-583 (-1075))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1089)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1040 *5 *6)) (-5 *4 (-1 (-107) *6 *6))
+ (-4 *5 (-13 (-1004) (-33))) (-4 *6 (-13 (-1004) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1041 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1058)) (-5 *1 (-907))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-999 *4)) (-4 *4 (-1110))
+ (-5 *1 (-997 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-377 (-517)))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6))
+ (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-872 *3 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-883 *3)) (-4 *3 (-502))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1114)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *2)) (-4 *2 (-872 (-377 (-875 *6)) *5 *4))
+ (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $)))))
+ (-4 *6 (-509)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-919))
+ (-4 *2 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-509) (-134)))
+ (-5 *2 (-2 (|:| -3286 *3) (|:| -3298 *3))) (-5 *1 (-1126 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156))
+ (-4 *5 (-212 (-3533 *3) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *5))
+ (-2 (|:| -2810 *2) (|:| -2356 *5))))
+ (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-872 *4 *5 (-789 *3))))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1004)) (-4 *5 (-1004))
+ (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1103 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1074)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
-(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1154 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-3782 (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-2650 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-502))) (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3226 (-349)) (|:| |explanations| (-1057)))))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *1 (-819)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) ((*1 *1 *1) (-4 *1 (-145))))
-(((*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-703)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-703)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1074)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (|has| *2 (-6 (-4185 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1131 *2)) (-4 *4 (-621 *2 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 (-1070 (-874 *4)) (-874 *4))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -4124 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
-(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3633 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-343 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1070 *3)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-1079))) (-5 *1 (-1079)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
-(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)))) ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1055 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1055 *4)) (-4 *5 (-1146 *4)))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-961)) (-5 *2 (-1055 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1131 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1149 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1146 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1842 (*8 $)) (-15 -1852 (*8 $)) (-15 -2254 ($ *8))))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1104 *4 *5 *6 *7))
+ (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107))
+ (-5 *2
+ (-2 (|:| |contp| (-517))
+ (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517)))))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107))
+ (-5 *2
+ (-2 (|:| |contp| (-517))
+ (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517)))))))
+ (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1156 (-517))) (-5 *3 (-517)) (-5 *1 (-1014))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1156 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517))
+ (-5 *1 (-1014)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4))
+ (-4 *3 (-150 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1110)) (-5 *2 (-703))
+ (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4))
+ (-4 *3 (-400 *4))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502))))
+ ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4))
+ (-4 *3 (-729 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-909 *3 *4))
+ (-4 *3 (-910 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-913 *3 *4))
+ (-4 *3 (-914 *4))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-928 *3)) (-4 *3 (-929))))
+ ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-703))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-970 *3)) (-4 *3 (-971)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1156 (-583 (-2 (|:| -3119 (-833 *3)) (|:| -2810 (-1022))))))
+ (-5 *1 (-321 *3 *4)) (-14 *3 (-844)) (-14 *4 (-844))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022))))))
+ (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1071 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022))))))
+ (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-377 (-875 *4))) (-5 *1 (-847 *4 *5 *6 *3))
+ (-4 *3 (-872 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-623 (-377 (-875 *4))))
+ (-5 *1 (-847 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *2 (-583 (-377 (-875 *4))))
+ (-5 *1 (-847 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3866 (-1071 *6)) (|:| -2356 (-517)))))
+ (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3))
+ (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-51)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-787)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-692)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
+ (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-630)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-866 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-406)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-2 (|:| -1622 (-1056 *4)) (|:| -1632 (-1056 *4))))
+ (-5 *1 (-1062 *4)) (-5 *3 (-1056 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-278))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2525 (-703)) (|:| -1451 (-703))))
+ (-5 *1 (-703))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1406 (-109)) (|:| |arg| (-583 (-815 *3)))))
+ (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-815 *4)))
+ (-5 *1 (-815 *4)) (-4 *4 (-1004)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3))
+ (-4 *3 (-13 (-374) (-1096)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))
+ (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156))
+ (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4192 "*"))) (-4 *2 (-962)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779))
+ (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-872 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-583 (-2 (|:| -3866 (-1071 *9)) (|:| -2356 (-517)))))))
+ (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1071 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1058)) (-5 *1 (-276)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 (-349)))
+ (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844))
+ (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
+ (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
+ (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
+ (-5 *1 (-717 *5)))))
(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-973)) (-5 *3 (-1057)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *6)) (-5 *4 (-1154 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1154 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1074))) (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1709 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1073)))) (-5 *1 (-1073)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
-(((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1124 *2 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1131 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1146 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1051 *3)))))
-(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-337 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1074))) (-5 *2 (-1159)) (-5 *1 (-1111)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *4 (-1057)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -3010 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -3010 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -3010 (-703)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3010 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(((*1 *1) (-12 (-4 *1 (-374)) (-2650 (|has| *1 (-6 -4174))) (-2650 (|has| *1 (-6 -4166))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -2705 (-1055 *4)) (|:| -2714 (-1055 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-1055 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1146 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1117 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1115 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1138 *4 *5)) (-4 *6 (-900 *5)))) ((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1074)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)))))
-(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1341 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1341 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1341 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1341 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1044 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1064 (-1074) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1074))) (-4 *2 (-156)) (-4 *4 (-212 (-2290 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *3) (|:| -3010 *4)) (-2 (|:| -3544 *3) (|:| -3010 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) ((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-278)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1154 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1965 *4) (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1965 *3) (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1074)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1074)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1073)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1596 (-107)) (|:| -3207 (-2 (|:| |ints2Floats?| (-107)) (|:| -1659 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1057))) (|:| |callBranch| (-1057)) (|:| |forBranch| (-2 (|:| -2554 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1073)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1214 (-1074)) (|:| |contents| (-583 (-1074))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
-(((*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1341 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-1045 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2240 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1965 *1) (|:| |gap| (-703)) (|:| -2240 *1))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1109)) (-4 *5 (-1109)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1109)) (-4 *3 (-1109)) (-5 *2 (-1055 *3)) (-5 *1 (-1053 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1154 *6)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1154 *5)) (-5 *1 (-1153 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1140 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *3) (|:| -3010 *2)) (-2 (|:| -3544 *3) (|:| -3010 *2)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))))
-(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1074))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2153 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1082 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1131 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1157)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-349)) (-5 *1 (-973)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154 (-632))) (-5 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1095) (-880))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1842 (*8 $)) (-15 -1852 (*8 $)) (-15 -2254 ($ *8))))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1131 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1057))) (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *1 (-215)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1057)) (-5 *2 (-706)) (-5 *1 (-109)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-1078)) (-5 *1 (-1077)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2062 (-623 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-623 *3))))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-962))
+ (-4 *5 (-779)) (-5 *2 (-875 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-962))
+ (-4 *5 (-779)) (-5 *2 (-875 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-1147 *4)) (-4 *4 (-962))
+ (-5 *2 (-875 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-1147 *4)) (-4 *4 (-962))
+ (-5 *2 (-875 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4032 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-517)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844))
+ (-5 *2
+ (-3 (-1071 *4)
+ (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022)))))))
+ (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-543 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-659))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1147 *3)) (-4 *3 (-962)) (-5 *2 (-1056 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2831 (-623 (-377 (-875 *4))))
+ (|:| |vec| (-583 (-377 (-875 *4)))) (|:| -3736 (-703))
+ (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725))
+ (-5 *2
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *4))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *4)))))))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-4 *7 (-872 *4 *6 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1110)) (-5 *1 (-163 *3 *2))
+ (-4 *2 (-610 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6)))
+ (-5 *1 (-568 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058))
+ (|:| |tol| (-199))))
+ (-5 *2 (-107)) (-5 *1 (-186)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(((*1 *2)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1156 *5)) (-5 *3 (-703)) (-5 *4 (-1022)) (-4 *5 (-319))
+ (-5 *1 (-487 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1075)))
+ (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-962))
+ (-4 *5 (-212 (-3533 *3) (-703)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703))
+ (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *1) (-5 *1 (-199)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1071 (-1071 *4))))
+ (-5 *1 (-1109 *4)) (-5 *3 (-1071 (-1071 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 *4))))
+ (-4 *3 (-1004)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-906 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1161))
+ (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-981 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1084 (-844) (-703))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4184)) (-4 *1 (-926 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-781 *3)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1157)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1157)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1070 *1)) (-4 *1 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1095) (-29 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-583 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-236)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1074)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1109)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1074))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3933 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-1126 *4 *3)) (-4 *3 (-1131 *4)))))
+(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-634)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1580 *3) (|:| |gap| (-703)) (|:| -2525 (-714 *3))
+ (|:| -1451 (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2
+ (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -2525 *1)
+ (|:| -1451 *1)))
+ (-4 *1 (-976 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2
+ (-2 (|:| -1580 *1) (|:| |gap| (-703)) (|:| -2525 *1)
+ (|:| -1451 *1)))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779))
+ (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-134))
+ (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-872 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *3))
+ (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $))
+ (-15 -2097 (*7 $))))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1132 (-377 (-517)))) (-5 *1 (-836 *3 *2))
+ (-4 *2 (-1132 (-377 *3))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1022)) (-5 *1 (-104))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1058)) (-5 *1 (-1092)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1047 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2))
+ (-4 *2 (-621 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-131)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004))
+ (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-109)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-875 *8))))
+ (-5 *5 (-703)) (-5 *6 (-1058)) (-4 *8 (-13 (-278) (-134)))
+ (-4 *11 (-872 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1075))))
+ (-4 *10 (-725))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-583
+ (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
+ (|:| |wcond| (-583 (-875 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *8))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *8))))))))))
+ (|:| |rgsz| (-517))))
+ (-5 *1 (-847 *8 *9 *10 *11)) (-5 *7 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1132 *6))
+ (-4 *6 (-13 (-27) (-400 *5)))
+ (-4 *5 (-13 (-779) (-509) (-953 (-517)))) (-4 *8 (-1132 (-377 *7)))
+ (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
+ (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-779)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1052 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-689)))))
+(((*1 *1) (-5 *1 (-131)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-236)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-962) (-779)))
+ (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1075))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-168)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075))) (-5 *5 (-1071 *2))
+ (-4 *2 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1004))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-556 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075)))
+ (-5 *5 (-377 (-1071 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1004)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1110))
+ (-14 *4 (-517)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-155))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -1627 (-583 (-787))) (|:| -1836 (-583 (-787)))
+ (|:| |presup| (-583 (-787))) (|:| -1674 (-583 (-787)))
+ (|:| |args| (-583 (-787)))))
+ (-5 *1 (-1075))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1075)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278))
+ (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5))
+ (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-278)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-5 *1 (-407)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2)
+ (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6))
+ (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2272 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-1132 (-153 *3))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199)))
+ (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1132 *5))
+ (-5 *2
+ (-583
+ (-2 (|:| -2062 (-623 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-623 *6)))))
+ (-5 *1 (-463 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2062 (-623 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-623 *6))))
+ (-4 *7 (-1132 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-953 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-107)) (-5 *1 (-808 *3 *4 *5))
+ (-4 *3 (-1004)) (-4 *5 (-603 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4))
+ (-5 *2 (-2 (|:| -1580 (-377 *5)) (|:| |poly| *3)))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107))
+ (-5 *1 (-186)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 *7))) (-5 *3 (-1071 *7))
+ (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-832)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-5 *1 (-829 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 *5))) (-5 *3 (-1071 *5))
+ (-4 *5 (-1132 *4)) (-4 *4 (-832)) (-5 *1 (-830 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199)))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))))
+(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-844)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-917 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-844)) (-4 *1 (-338))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1004))
+ (-14 *4
+ (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *3))
+ (-2 (|:| -2810 *2) (|:| -2356 *3)))))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-844)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797))
+ (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-167)) (-5 *3 (-517))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-407)) (-5 *1 (-1079)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-628 *3)) (-4 *3 (-1004))
+ (-5 *2 (-583 (-2 (|:| -1860 *3) (|:| -4135 (-703))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-276)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *4) (|:| -1436 (-517))))))) (-4 *4 (-1131 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1057)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
-(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-973)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 (-517)))) (-5 *3 (-1070 (-517))) (-5 *1 (-525)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-831)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1214 (-1074)) (|:| |bounds| (-583 (-3 (|:| S (-1074)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1078)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-1154 (-3 (-437) "undefined"))) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 (-517)))) (-5 *1 (-435)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1155)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-102 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1074)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *9)))) (|:| -2080 (-583 (-1154 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-114 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1070 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1055 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1055 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1) (-4 *1 (-319))))
-(((*1 *1 *2) (-12 (-5 *2 (-1167 (-1074) *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1176 *3 *4)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 *4) (|:| -3625 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1709)))) (-5 *2 (-950)) (-5 *1 (-679)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
-(((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1115 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -4124 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1465 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1057)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1159)) (-5 *1 (-758 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1057)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1057)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1159)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1159)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -1343 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-1156)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1156)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2317 (-703)) (|:| -2240 (-703)))) (-5 *1 (-703)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-787)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-883)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))))
-(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1154 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1070 *13))) (-5 *3 (-1070 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3688 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1154 (-583 (-1070 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-755)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1064 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1041 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4185 "*"))))) (-5 *1 (-824 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))))
-(((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1109)) (-5 *2 (-1159)))))
-(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-1070 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1070 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)) (-5 *1 (-1075 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1154 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1070 *3)))) ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-928)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1070 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-1074))) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1074))) (-14 *7 (-1154 (-623 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1154 (-623 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-1074))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1154 (-623 *3))))) ((*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1074))) (-14 *5 (-1154 (-623 *2))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1080 *5)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1095))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-906)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-998 *4)) (-4 *4 (-1109)) (-5 *1 (-996 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1131 *2)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-1149 *4 *2))
+ (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3))
+ (-4 *3 (-13 (-1096) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-509) (-953 (-517)) (-134)))
+ (-5 *2 (-534 (-377 (-875 *5)))) (-5 *1 (-523 *5))
+ (-5 *3 (-377 (-875 *5))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-421))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-832)) (-5 *1 (-426 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-832)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-953 *2)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1132 *4))
+ (-5 *2 (-1156 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (|has| *1 (-6 -4191)) (-4 *1 (-343 *3))
+ (-4 *3 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-769))))
+ ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-951)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349))))
+ (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-951))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349)))
+ (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-951)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-951))
+ (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349)))
+ (-5 *2 (-951)) (-5 *1 (-769)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-844)) (-4 *5 (-509)) (-5 *2 (-623 *5))
+ (-5 *1 (-878 *5 *3)) (-4 *3 (-593 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-374))
+ (-5 *2 (-844)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3))
+ (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))
+ (-5 *2 (-349)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3))))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071 *1)) (-4 *1 (-929)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-843)) (-5 *2 (-2 (|:| -1580 (-583 *1)) (|:| -1317 *1)))
+ (-5 *3 (-583 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-832)) (-4 *6 (-725))
+ (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-388 (-1071 *8)))
+ (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-1071 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5)))
+ (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1028 *4 *3 *5))) (-4 *4 (-37 (-377 (-517))))
+ (-4 *4 (-962)) (-4 *3 (-779)) (-5 *1 (-1028 *4 *3 *5))
+ (-4 *5 (-872 *4 (-489 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1105 *4))) (-5 *3 (-1075)) (-5 *1 (-1105 *4))
+ (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-962)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779)))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779))
+ (-4 *8 (-872 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-962))
+ (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-962)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-891 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *2 (-724))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1118 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1147 *3))
+ (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1116 *3))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1075))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-583 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1096) (-27) (-400 *8)))
+ (-4 *8 (-13 (-421) (-779) (-134) (-953 *3) (-579 *3)))
+ (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-931 *8 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1149 *3 *2))
+ (-4 *2 (-1147 *3)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-153 (-199))) (-5 *5 (-517))
+ (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1141 *4 *5 *6))
+ (|:| |%expon| (-289 *4 *5 *6))
+ (|:| |%expTerms|
+ (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4))))))
+ (|:| |%type| (-1058))))
+ (-5 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3)))
+ (-14 *5 (-1075)) (-14 *6 *4))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-872 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1)))
+ (-4 *1 (-1132 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-962)) (-5 *2 (-517))
+ (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1132 *5))
+ (-4 *6 (-13 (-374) (-953 *5) (-333) (-1096) (-256)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1132 *4))
+ (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-92)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110))
+ (-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1004))
+ (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9))))
+ (-5 *5 (-107)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-981 *6 *7 *4 *8))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3831 *9))))
+ (-5 *1 (-982 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-556 *3))
+ (-4 *3 (-13 (-400 *5) (-27) (-1096)))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3)))
+ (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1004)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1132 (-153 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1132 *2)) (-4 *2 (-910 *3)) (-5 *1 (-383 *3 *2 *4 *5))
+ (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-953 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1132 *2)) (-4 *2 (-910 *3))
+ (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4))
+ (-14 *6 (-1156 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *2 (-13 (-374) (-953 *5) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1132 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 (-460))) (-5 *3 (-583 (-556 (-460))))
+ (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-844)) (-4 *4 (-319))
+ (-5 *1 (-487 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1132 *4))
+ (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1132 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156))))
+ ((*1 *1 *1) (-4 *1 (-971))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3))
+ (-4 *3 (-1004)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-866 (-199))) (-5 *4 (-797)) (-5 *5 (-844))
+ (-5 *2 (-1161)) (-5 *1 (-437))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-866 (-199))) (-5 *2 (-1161)) (-5 *1 (-437))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-797)) (-5 *5 (-844))
+ (-5 *2 (-1161)) (-5 *1 (-437)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -2312 (-583 (-1075))) (|:| -3704 (-583 (-1075)))))
+ (-5 *1 (-1112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
+ (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *3))))
+ (-5 *1 (-542 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 (-875 *6))) (-4 *6 (-509))
+ (-4 *2 (-872 (-377 (-875 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2))
+ (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-1132 *4)) (-5 *2 (-1 *6 (-583 *6)))
+ (-5 *1 (-1150 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1147 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4191)) (-4 *1 (-456 *3))
+ (-4 *3 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-826 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3298 *6) (|:| |sol?| (-107))) (-517)
+ *6))
+ (-4 *6 (-333)) (-4 *7 (-1132 *6))
+ (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-509)) (-4 *8 (-872 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *9) (|:| |radicand| *9)))
+ (-5 *1 (-876 *5 *6 *7 *8 *9)) (-5 *4 (-703))
+ (-4 *9
+ (-13 (-333)
+ (-10 -8 (-15 -3824 (*8 $)) (-15 -2097 (*8 $)) (-15 -2269 ($ *8))))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-4 *7 (-872 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
+ (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-107)) (-5 *1 (-815 *4))
+ (-4 *4 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-623 (-377 (-875 (-517)))))
+ (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-947))
+ (-5 *3 (-286 (-517))))))
+(((*1 *1 *1) (-4 *1 (-509))))
(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1131 (-153 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) ((*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1) (-5 *1 (-1077))) ((*1 *1) (-5 *1 (-1078))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1465 (-1070 *9)) (|:| |polval| (-1070 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1154 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3534 (-623 *5)) (|:| |vec| (-1154 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1146 *4)) (-5 *1 (-1148 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
-(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
-(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1057)) (|:| |prob| (-1057)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-14 *6 (-1074)) (-14 *7 *3))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1156)) (-5 *1 (-230)))))
-(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))))) ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-367)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1346 *1) (|:| -4170 *1) (|:| |associate| *1))) (-4 *1 (-509)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-517)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
-(((*1 *1) (-5 *1 (-1159))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1109)) (-4 *3 (-961)) (-5 *2 (-623 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1055 (-874 *4)) (-1055 (-874 *4)))) (-5 *1 (-1162 *4)) (-4 *4 (-333)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
-(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1105 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1105 *2)) (-4 *2 (-891)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
-(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1074))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -1376 (-1070 *9)) (|:| -3010 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1070 *9)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1651 (-703)) (|:| |period| (-703)))) (-5 *1 (-1055 *4)) (-4 *4 (-1109)) (-5 *3 (-703)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -4124 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1106)))))
-(((*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1131 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1070 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-1131 *4) (-509) (-10 -8 (-15 -1387 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-1045 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -2682 (-583 (-1074))) (|:| -2722 (-583 (-1074))))) (-5 *1 (-1111)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3167 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1095))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1341 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3244 *1))) (-4 *1 (-781 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2153 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1057)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-517)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1109)) (-5 *2 (-517)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1131 *2)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-92)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-372))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *4 (-556 $)) $)) (-15 -1852 ((-1026 *4 (-556 $)) $)) (-15 -2254 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1070 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))) ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1) (-5 *1 (-849))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -1376 (-1070 *8)) (|:| -3010 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -2080 (-583 (-377 *6))) (|:| -3534 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -2080 (-583 (-377 *6))) (|:| -3534 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1131 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1163 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
-(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1079)) (-5 *1 (-222)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *1 *1) (-4 *1 (-1098))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1083 (-843) (-703))))))
-(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1059 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951))
+ (-5 *1 (-679)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1077 (-377 (-517))))
+ (-5 *1 (-166)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))
+ (-5 *1 (-735)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1071 *4))
+ (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7))
+ (-4 *3 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110))
+ (-4 *7 (-1110))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6))
+ (-4 *3 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-999 (-199)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-943 *5 *6 *7 *8)))))
+ (-5 *1 (-943 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-583 *8))
+ (|:| |towers| (-583 (-1046 *5 *6 *7 *8)))))
+ (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-953 *4)) (-4 *3 (-278))
+ (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-4 *6 (-379 *4 *5))
+ (-14 *7 (-1156 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-910 *3))
+ (-4 *5 (-1132 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1159)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1147 *4))
+ (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-1 (-1056 *4) (-583 (-1056 *4)))) (-5 *1 (-1149 *4 *5)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-885 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509))
+ (-4 *3 (-962)) (-4 *2 (-724))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1071 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-889)) (-4 *2 (-123)) (-5 *1 (-1077 *3)) (-4 *3 (-509))
+ (-4 *3 (-962))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1129 *4 *3)) (-14 *4 (-1075))
+ (-4 *3 (-962)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-278)) (-4 *3 (-910 *2)) (-4 *4 (-1132 *3))
+ (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-953 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-757)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-583 (-1075))) (-4 *5 (-421))
+ (-5 *2
+ (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517)))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1110))
+ (-4 *5 (-343 *4)) (-4 *2 (-343 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-962))
+ (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-999 (-199)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-999 (-199))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
+ ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2581
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1860
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-512))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2581
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (|:| -1860
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349))))))
+ (-5 *1 (-735))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1040 *4 *5))) (-5 *3 (-1 (-107) *5 *5))
+ (-4 *4 (-13 (-1004) (-33))) (-4 *5 (-13 (-1004) (-33)))
+ (-5 *1 (-1041 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-1040 *3 *4))) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 *4))
+ (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703))))
+ (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1132 (-377 *5))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-404)) (-4 *5 (-779))
+ (-5 *1 (-1010 *5 *4)) (-4 *4 (-400 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-768))
+ (-5 *3
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *2 (-951))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-768))
+ (-5 *3
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))
+ (-5 *2 (-951)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-623 (-1071 *8))) (-4 *5 (-962)) (-4 *8 (-962))
+ (-4 *6 (-1132 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8))
+ (-4 *7 (-1132 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-349)) (-5 *1 (-974)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-962)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2356 (-517)))) (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2356 (-815 *3))))
+ (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2356 (-517))))
+ (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $))
+ (-15 -2097 (*7 $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1056 (-875 *4)) (-1056 (-875 *4))))
+ (-5 *1 (-1164 *4)) (-4 *4 (-333)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1110)) (-4 *3 (-962))
+ (-5 *2 (-623 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-940 *3))
+ (-4 *3 (-13 (-777) (-333) (-938)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-978 *2 *3)) (-4 *2 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4032 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1343 (-583 *3)) (|:| -2099 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1131 (-153 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -1343 (-583 *3)) (|:| -2099 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1070 *11))) (-5 *3 (-1070 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1154 (-583 (-1070 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
-(((*1 *2 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1117 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1146 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1117 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1146 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-761)) (-5 *3 (-1057)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1131 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-1154 *6)) (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) ((*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-671)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1074)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-300)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1064 (-1074) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1057)) (-5 *3 (-706)) (-5 *1 (-109)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))))
-(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2497 *5) (|:| -2153 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1154 (-623 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-4 *5 (-333)) (-5 *2 (-1154 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1154 (-623 *4))) (-5 *1 (-991 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1096 *3))) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1159)) (-5 *1 (-1110 *4)))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-891)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -4124 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
-(((*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1106 *3))
+ (-5 *1 (-722 *3)) (-4 *3 (-892))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-107))
+ (-5 *1 (-1106 *2)) (-4 *2 (-892)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421))
+ (-5 *2
+ (-583
+ (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4))))
+ (|:| |eigmult| (-703))
+ (|:| |eigvec| (-583 (-623 (-377 (-875 *4))))))))
+ (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962))
+ (-5 *2 (-583 (-583 (-583 (-866 *3))))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1156 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
+ (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1132 *5))
+ (-5 *2 (-623 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-1064 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1035 (-199))) (-5 *1 (-1158)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *4))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *4)))))))
+ (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *7 (-872 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199))
+ (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 *6)) (-4 *5 (-1114)) (-4 *6 (-1132 *5))
+ (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| *6)))
+ (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1132 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1167 *4 *5 *6 *7)))
+ (-5 *1 (-1167 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509))
+ (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1167 *6 *7 *8 *9)))
+ (-5 *1 (-1167 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-583 *1)) (-4 *1 (-1036 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1131 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1095) (-256))))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
-(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1104 *6)) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1162 *6)) (-5 *5 (-1055 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1057)) (|:| -1214 (-1057)))) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-5 *1 (-973))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1052 *4)) (-4 *4 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 (-1070 *6)) (|:| -3010 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1081 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *2)) (|:| |logand| (-1070 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4183)))))))
-(((*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1157)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-297 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))))
-(((*1 *1) (-5 *1 (-1077))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1159)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-406)))))
-(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *5 (-556 $)) $)) (-15 -1852 ((-1026 *5 (-556 $)) $)) (-15 -2254 ($ (-1026 *5 (-556 $))))))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-377 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *5) (|:| -3633 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1131 (-517))) (-5 *4 (-2 (|:| -3623 *5) (|:| -3633 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1131 (-377 (-517)))) (-5 *4 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *4) (|:| -3633 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3623 *5) (|:| -3633 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1131 *5)) (-5 *4 (-2 (|:| -3623 *5) (|:| -3633 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1131 *5)) (-14 *6 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4184)) (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1074)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1122 (-517))) (|has| *1 (-6 -4184)) (-4 *1 (-588 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4184)) (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1055 (-517))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-5 *1 (-572))))
-(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1074))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4174)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1131 *4)) (-4 *2 (-1146 *4)) (-5 *1 (-1149 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1081 *6)) (-5 *4 (-583 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-742 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-2 (|:| -2062 (-583 (-377 *6))) (|:| -2831 (-623 *5))))
+ (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-742 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2 (-2 (|:| -2062 (-583 (-377 *6))) (|:| -2831 (-623 *5))))
+ (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
+(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-832)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))
+ (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-872 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1071 *7))
+ (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1132 *5))
+ (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1132 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3))
+ (-4 *3 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *4 (-1132 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-583 (-1080))) (-5 *1 (-1037)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-875 (-517)))))
+ (-5 *2
+ (-583
+ (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517))
+ (|:| |radvect| (-583 (-623 (-286 (-517))))))))
+ (-5 *1 (-947)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-509)) (-4 *2 (-872 *3 *5 *4))
+ (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-875 *6))) (-4 *5 (-725))
+ (-4 *4 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3866 *4) (|:| -2769 (-517)))))
+ (-4 *4 (-1132 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-962))
+ (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-779))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-898 *3)) (-4 *3 (-962))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-377 (-517)))) (-5 *1 (-865)) (-5 *3 (-517)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2
+ (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4))
+ (|:| |genIdeal| (-469 *4 *5 *6 *7))))
+ (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-5 *1 (-906 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-5 *1 (-1011 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1132 *5))
+ (-4 *7 (-1132 (-377 *6))) (-4 *8 (-312 *5 *6 *7))
+ (-4 *4 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-107))
+ (-5 *1 (-834 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107))
+ (-5 *1 (-835 *4 *5 *6)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-1167 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1167 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9))))
+ (-5 *5 (-107)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-981 *6 *7 *4 *8))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3831 *9))))
+ (-5 *1 (-1012 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-951)) (-5 *1 (-681)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-779))
+ (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1004)) (-4 *4 (-1110)) (-5 *2 (-107))
+ (-5 *1 (-1056 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *4 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1074)) (-5 *1 (-1078)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1074))) (-5 *1 (-1078)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1113)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1113))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1387 ($ $ $))))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1074)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1070 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1070 *3)) (-4 *7 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1150 *5)) (-14 *5 (-1074)) (-4 *6 (-961)) (-5 *2 (-1128 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1070 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-377 (-1070 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 *4) (|:| -3625 (-517))))) (-4 *4 (-1131 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1057)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-1055 (-199))) (-5 *2 (-583 (-1057))) (-5 *1 (-276)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1146 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1159)) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2221 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1156)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-1109)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1154 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1154 *3))))))
-(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *5)) (-2 (|:| -3544 *2) (|:| -3010 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1046 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
-(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1074)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2148 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2080 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -2080 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-107))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6) (-10 -8 (-15 -2269 ($ *7)))))
+ (-4 *7 (-777))
+ (-4 *8
+ (-13 (-1134 *3 *7) (-333) (-1096)
+ (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))))
+ (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1058)) (-4 *9 (-901 *8))
+ (-14 *10 (-1075)))))
+(((*1 *1 *1 *1) (-5 *1 (-146)))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9))))
+ (-5 *4 (-703)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1161))
+ (-5 *1 (-979 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3831 *9))))
+ (-5 *4 (-703)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1161))
+ (-5 *1 (-1045 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-1156 *4))) (-4 *4 (-962)) (-5 *2 (-623 *4))
+ (-5 *1 (-945 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *1 *1) (-5 *1 (-493))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-732))
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-951)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359)))))
+(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110))
+ (-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2))
+ (-4 *5 (-343 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
+ (-14 *4 (-517)) (-14 *5 (-703))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-703))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-703))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517))
+ (-14 *4 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-219 (-1058))) (-5 *1 (-189 *4))
+ (-4 *4
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ *3)) (-15 -1756 ((-1161) $))
+ (-15 -3177 ((-1161) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-907)) (-5 *1 (-189 *3))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $))
+ (-15 -3177 ((-1161) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1132 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-1132 *2))
+ (-4 *4 (-1132 (-377 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1058)) (-5 *1 (-467))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-572))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1123 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-583 (-815 *4))) (-5 *1 (-815 *4))
+ (-4 *4 (-1004))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-826 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4))
+ (-4 *4 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-844)) (-4 *2 (-333))
+ (-5 *1 (-911 *4 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-927 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-962))
+ (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7))
+ (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-844)) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-5 *1 (-984 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-844)) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-5 *1 (-985 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1007 *3 *4 *5 *6 *7))
+ (-4 *3 (-1004)) (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004))
+ (-4 *7 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004))
+ (-4 *4 (-1004)) (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004))))
+ ((*1 *1 *1 *1) (-4 *1 (-1044)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-377 *1)) (-4 *1 (-1132 *2)) (-4 *2 (-962))
+ (-4 *2 (-333))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-377 *1)) (-4 *1 (-1132 *3)) (-4 *3 (-962))
+ (-4 *3 (-509))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1144 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1144 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
+ (-4 *2 (-13 (-779) (-21))))))
+(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
+ (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-895 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
+ (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-817 *2 *3)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1088 *4 *5))
+ (-4 *4 (-1004)) (-4 *5 (-1004)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1139 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1116 *3))
+ (-5 *2 (-377 (-517))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-690)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1157))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1158)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6))
+ (-4 *6 (-1132 *5)) (-4 *5 (-13 (-333) (-134) (-953 (-517))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
(((*1 *1) (-5 *1 (-755))))
-(((*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1146 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1131 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1146 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1146 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1051 *4)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -3010 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -3010 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3010 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1074)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *2 (-1159)) (-5 *1 (-1077)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1165 *4 *5 *6 *7))) (-5 *1 (-1165 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1165 *6 *7 *8 *9))) (-5 *1 (-1165 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
-(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
-(((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-406)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1157)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1095) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1110 *2)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1131 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -3534 (-623 *5)) (|:| |vec| (-1154 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1095)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1965 (-583 *1)) (|:| -3244 *1))) (-5 *3 (-583 *1)))))
-(((*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-33)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1074)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *1 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-109)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1095))))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-583 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1095))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-922)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3010 (-703)) (|:| -2984 *4) (|:| |num| *4)))) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *3 (-583 (-1074))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *3)) (-2 (|:| -3544 *2) (|:| -3010 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *3 *5))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1341 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1039 *4 *5))) (-5 *1 (-1039 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1341 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1040 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1040 *2 *3))) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1338 *3) (|:| -3223 (-703))))))))
-(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1155)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1154 *4)) (-5 *1 (-578 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1109)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1109)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1081 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4183)) (-4 *1 (-456 *4)) (-4 *4 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2254 (*2 *4)) (-15 -4034 ((-843) *2)) (-15 -2080 ((-1154 *2) (-843))) (-15 -2415 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
-(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-333)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2272) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2272 (QUOTE X)) (-2272) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272) (-2272 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X) (QUOTE EPS)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE EPS)) (-2272 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1074)) (-14 *4 (-1074)) (-14 *5 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2272) (-2272 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272) (-2272 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE X) (QUOTE -1970)) (-2272) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2272 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2272) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2272 (QUOTE X)) (-2272 (QUOTE -1970)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-1041 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *3 (-1154 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1154 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) ((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1140 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) ((*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1176 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1167 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1074)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-14 *5 (-583 (-1074))) (-14 *6 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-632))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1078)) (|:| -3061 (-583 (-300))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1154 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-467)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3544 *3) (|:| -3010 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3544 *3) (|:| -3010 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1965 *3) (|:| -3838 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2554 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1074))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1159)) (-5 *1 (-948 *3)) (-4 *3 (-1109)))) ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1041 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1043)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1072 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-1083 (-1074) (-407))) (-5 *1 (-1078)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1082 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1089 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1104 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1104 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1109)) (-5 *1 (-1107 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1117 *3 *2)) (-4 *2 (-1146 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1109)) (-5 *1 (-1122 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-14 *3 (-1074)) (-5 *1 (-1128 *3 *4)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1138 *3 *2)) (-4 *2 (-1115 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1128 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1150 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1155)))) ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1155)) (-5 *1 (-1158)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1164 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *2) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-4 *1 (-1169 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1172 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -1376 (-1070 *6)) (|:| -3010 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1074))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2290 *3) (-703))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1074))) (-4 *4 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1131 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1131 (-377 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *1 *1) (-4 *1 (-509))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 (-377 *8)) "failed")) (|:| -2080 (-583 (-1154 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1109)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-843)) (-5 *1 (-718)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3226 (-349)) (|:| -1214 (-1057)) (|:| |explanations| (-583 (-1057))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3933 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-844)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-724))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1137 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
+ (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
+ (-4 *2 (-621 *3 *5 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1154 *4)) (|:| |den| *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1041 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1131 (-377 *2))) (-4 *2 (-1131 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-361)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-517)) (-5 *1 (-1092 *4)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-5 *1 (-493))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1057)) (-5 *2 (-1105 (-848))) (-5 *1 (-288)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))))
-(((*1 *2 *3) (-12 (-4 *3 (-1131 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1074)) (|:| |c| (-1174 *3))))) (-5 *1 (-1174 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1176 *3 *4))))) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -1343 (-583 (-2 (|:| |irr| *3) (|:| -1436 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1074))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1095) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *1) (-4 *1 (-1051))))
+(((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3184 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1386 (-377 *6))
+ (|:| |special| (-377 *6))))
+ (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-819 *3 *4))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -3286 *3) (|:| -3298 *3))) (-5 *1 (-819 *3 *5))
+ (-4 *3 (-1132 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-979 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-979 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1045 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107))
+ (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1092)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-962)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-623 *4)) (-4 *4 (-962)) (-5 *1 (-1042 *3 *4))
+ (-14 *3 (-703)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517))))
+ (-4 *2 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-300)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-1004)) (-4 *7 (-823 *6))
+ (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7))
+ (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
+ (-4 *2 (-593 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2))
+ (-4 *5 (-343 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-965 *4 *5 *2 *6 *7))
+ (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1075))) (-4 *6 (-333))
+ (-5 *2 (-583 (-265 (-875 *6)))) (-5 *1 (-495 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
+ (-5 *1 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1075)) (-5 *2 (-107))
+ (-5 *1 (-236)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1030 *4 *3)) (-4 *4 (-1132 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2062 (-583 *1))))
+ (-4 *1 (-337 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-422 *3 *4 *5 *6))
+ (|:| -2062 (-583 (-422 *3 *4 *5 *6)))))
+ (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-828 *4)) (-4 *4 (-1004)) (-5 *2 (-583 (-703)))
+ (-5 *1 (-827 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1132 (-153 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3))
+ (-4 *3 (-1132 (-153 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -1386 (-388 *3)) (|:| |special| (-388 *3))))
+ (-5 *1 (-660 *5 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962))
+ (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199)))
+ (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-844)) (-4 *1 (-212 *3 *4)) (-4 *4 (-962))
+ (-4 *4 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156))
+ (-4 *5 (-212 (-3533 *3) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *5))
+ (-2 (|:| -2810 *2) (|:| -2356 *5))))
+ (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779))
+ (-4 *7 (-872 *4 *5 (-789 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-4 *5 (-333)) (-5 *2 (-583 (-1105 *5)))
+ (-5 *1 (-1164 *5)) (-5 *4 (-1105 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1071 *7)) (-5 *3 (-517)) (-4 *7 (-872 *6 *4 *5))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1013 *5 *6 *7 *8))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-539 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 (-153 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-153 *3)) (-5 *1 (-1100 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-199))) (-5 *2 (-583 (-1058))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517)))))
+ (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-875 *9))))
+ (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517))
+ (-4 *9 (-13 (-278) (-134))) (-4 *12 (-872 *9 *11 *10))
+ (-4 *10 (-13 (-779) (-558 (-1075)))) (-4 *11 (-725))
+ (-5 *2
+ (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
+ (|:| |wcond| (-583 (-875 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *9))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *9)))))))))
+ (-5 *1 (-847 *9 *10 *11 *12)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5)))
+ (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517)))))
+ (-14 *6 (-844)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1071 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
+ (-4 *3 (-872 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| (-583 *3))))
+ (-5 *1 (-876 *5 *6 *7 *3 *8)) (-5 *4 (-703))
+ (-4 *8
+ (-13 (-333)
+ (-10 -8 (-15 -3824 (*3 $)) (-15 -2097 (*3 $)) (-15 -2269 ($ *3))))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-27) (-400 *4)))
+ (-4 *4 (-13 (-779) (-509) (-953 (-517))))
+ (-4 *7 (-1132 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2))
+ (-4 *2 (-312 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-875 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *5))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *5))))))))))
+ (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1075))) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-875 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *5))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *5))))))))))
+ (-5 *1 (-847 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *7)) (-4 *7 (-872 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-875 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *4))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *4))))))))))
+ (-5 *1 (-847 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *5 (-844)) (-4 *9 (-872 *6 *8 *7))
+ (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1075))))
+ (-4 *8 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-875 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *6))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *6))))))))))
+ (-5 *1 (-847 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1075))) (-5 *5 (-844))
+ (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-875 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *6))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *6))))))))))
+ (-5 *1 (-847 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-844)) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-875 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1156 (-377 (-875 *5))))
+ (|:| -2062 (-583 (-1156 (-377 (-875 *5))))))))))
+ (-5 *1 (-847 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1058))
+ (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1075))) (-5 *5 (-1058))
+ (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-5 *4 (-1058)) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-847 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-844))
+ (-5 *6 (-1058)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
+ (-4 *8 (-13 (-779) (-558 (-1075)))) (-4 *9 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1075))) (-5 *5 (-844))
+ (-5 *6 (-1058)) (-4 *10 (-872 *7 *9 *8)) (-4 *7 (-13 (-278) (-134)))
+ (-4 *8 (-13 (-779) (-558 (-1075)))) (-4 *9 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *9)) (-5 *4 (-844)) (-5 *5 (-1058))
+ (-4 *9 (-872 *6 *8 *7)) (-4 *6 (-13 (-278) (-134)))
+ (-4 *7 (-13 (-779) (-558 (-1075)))) (-4 *8 (-725)) (-5 *2 (-517))
+ (-5 *1 (-847 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1075))
+ (|:| |arrayIndex| (-583 (-875 (-517))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1075)) (|:| |rand| (-787))
+ (|:| |ints2Floats?| (-107))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1074)) (|:| |thenClause| (-300))
+ (|:| |elseClause| (-300))))
+ (|:| |returnBranch|
+ (-2 (|:| -3270 (-107))
+ (|:| -3119
+ (-2 (|:| |ints2Floats?| (-107)) (|:| -3711 (-787))))))
+ (|:| |blockBranch| (-583 (-300)))
+ (|:| |commentBranch| (-583 (-1058))) (|:| |callBranch| (-1058))
+ (|:| |forBranch|
+ (-2 (|:| -2192 (-997 (-875 (-517))))
+ (|:| |span| (-875 (-517))) (|:| |body| (-300))))
+ (|:| |labelBranch| (-1022))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1074)) (|:| |body| (-300))))
+ (|:| |commonBranch|
+ (-2 (|:| -2987 (-1075)) (|:| |contents| (-583 (-1075)))))
+ (|:| |printBranch| (-583 (-787)))))
+ (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1004))
+ (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
+ (-5 *1 (-984 *3 *4 *2))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1004)) (-5 *1 (-1065 *3 *2)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-534 *3) *3 (-1075)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1075)))
+ (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-953 *4)) (-4 *3 (-400 *7))
+ (-5 *4 (-1075)) (-4 *7 (-558 (-815 (-517)))) (-4 *7 (-421))
+ (-4 *7 (-809 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3))
+ (-5 *1 (-526 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 *4)) (-4 *4 (-37 *3)) (-4 *4 (-962))
+ (-5 *3 (-377 (-517))) (-5 *1 (-1060 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-89 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1071 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1004))
+ (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3))))
+ (-5 *1 (-984 *3 *4 *2))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1004)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1006 (-1006 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1110))
+ (-4 *5 (-1110)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703))
+ (-4 *7 (-1110)) (-4 *5 (-1110)) (-5 *2 (-214 *6 *5))
+ (-5 *1 (-213 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1110)) (-4 *5 (-1110))
+ (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1004)) (-4 *5 (-1004))
+ (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1110))
+ (-4 *5 (-1110)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-880 *6)) (-4 *6 (-1110))
+ (-4 *5 (-1110)) (-5 *2 (-880 *5)) (-5 *1 (-879 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1056 *6)) (-4 *6 (-1110))
+ (-4 *3 (-1110)) (-5 *2 (-1056 *3)) (-5 *1 (-1054 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1156 *6)) (-4 *6 (-1110))
+ (-4 *5 (-1110)) (-5 *2 (-1156 *5)) (-5 *1 (-1155 *6 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1078)) (-5 *3 (-1075)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962))
+ (-5 *2 (-583 (-583 (-866 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107)) (-4 *4 (-962))
+ (-4 *1 (-1036 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 (-866 *3)))) (-4 *3 (-962))
+ (-4 *1 (-1036 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107))
+ (-4 *1 (-1036 *4)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-583 (-583 (-866 *4)))) (-5 *3 (-107))
+ (-4 *1 (-1036 *4)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155)))
+ (-5 *4 (-155)) (-4 *1 (-1036 *5)) (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-866 *5)))) (-5 *3 (-583 (-155)))
+ (-5 *4 (-155)) (-4 *1 (-1036 *5)) (-4 *5 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517))
+ (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156))
+ (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *9)) (-4 *9 (-962)) (-4 *5 (-779)) (-4 *6 (-725))
+ (-4 *8 (-962)) (-4 *2 (-872 *9 *7 *5))
+ (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725))
+ (-4 *4 (-872 *8 *6 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075))
+ (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1080))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1080))))
+ ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1080))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1080)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3831 *11))))))
+ (-5 *6 (-703))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3831 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9))
+ (-4 *11 (-981 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-5 *1 (-979 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3831 *11))))))
+ (-5 *6 (-703))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3831 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9))
+ (-4 *11 (-1013 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-5 *1 (-1045 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-927 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779))
+ (-5 *1 (-555 *2 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118)))
+ ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-278))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 (-866 *4))) (-4 *1 (-1036 *4)) (-4 *4 (-962))
+ (-5 *2 (-703)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-377 (-875 *5)) (-1065 (-1075) (-875 *5))))
+ (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-875 *5)))))
+ (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-875 *5)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-797)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-670 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1004))))
+ ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))))
(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1146 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1148 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))))
-(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3429 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2565 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3623 *3) (|:| -3633 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1131 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-131)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *1 *1) (-4 *1 (-970))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
-(((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-402 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) (|:| |prim| (-1070 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1074)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1074))) (-5 *5 (-1074)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1965 (-583 (-517))) (|:| |poly| (-583 (-1070 *6))) (|:| |prim| (-1070 *6)))) (-5 *1 (-881 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1103 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1127 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1057)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1057)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1087 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-372))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1159)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-2 (|:| -1406 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109)))
+ ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502)))
+ ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1156 (-583 *3))) (-4 *4 (-278))
+ (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-895 *3 *4 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1004)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-844)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1071 *1))
+ (-4 *1 (-299 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1071 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-4 *2 (-1132 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-1071 *4))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-982 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517)))
+ (-5 *4 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517))) (-5 *4 (-377 (-517)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3286 *5) (|:| -3298 *5)))) (-5 *1 (-936 *3))
+ (-4 *3 (-1132 (-517))) (-5 *4 (-2 (|:| -3286 *5) (|:| -3298 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517))))
+ (-5 *4 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3286 *4) (|:| -3298 *4)))) (-5 *1 (-937 *3))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-377 (-517)))
+ (-5 *2 (-583 (-2 (|:| -3286 *5) (|:| -3298 *5)))) (-5 *1 (-937 *3))
+ (-4 *3 (-1132 *5)) (-5 *4 (-2 (|:| -3286 *5) (|:| -3298 *5))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110))
+ (-4 *2 (-1004)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *6 *5))
+ (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1075))))
+ (-4 *6 (-725)) (-5 *1 (-847 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-4 *6 (-809 *5)) (-5 *2 (-808 *5 *6 (-583 *6)))
+ (-5 *1 (-810 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-815 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-810 *5 *3 *4))
+ (-4 *3 (-953 (-1075))) (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-5 *2 (-583 (-265 (-875 *3))))
+ (-5 *1 (-810 *5 *3 *4)) (-4 *3 (-962))
+ (-2477 (-4 *3 (-953 (-1075)))) (-4 *3 (-809 *5))
+ (-4 *4 (-558 (-815 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-5 *2 (-812 *5 *3)) (-5 *1 (-810 *5 *3 *4))
+ (-2477 (-4 *3 (-953 (-1075)))) (-2477 (-4 *3 (-962)))
+ (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5))))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-583 (-1071 *11))) (-5 *3 (-1071 *11))
+ (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703)))
+ (-5 *7 (-1156 (-583 (-1071 *8)))) (-4 *10 (-779))
+ (-4 *8 (-278)) (-4 *11 (-872 *8 *9 *10)) (-4 *9 (-725))
+ (-5 *1 (-641 *9 *10 *8 *11)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1058)) (-5 *2 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1110))
+ (-4 *4 (-343 *2)) (-4 *5 (-343 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4191)) (-4 *1 (-114 *3))
+ (-4 *3 (-1110))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4191)) (-4 *1 (-114 *3))
+ (-4 *3 (-1110))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1004))
+ (-4 *2 (-1110))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1075)) (-5 *1 (-572))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1123 (-517))) (|has| *1 (-6 -4191)) (-4 *1 (-588 *2))
+ (-4 *2 (-1110))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4191)) (-4 *1 (-927 *2))
+ (-4 *2 (-1110))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2))
+ (-4 *2 (-1110))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *3))
+ (-4 *3 (-1110))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2))
+ (-4 *2 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1104 *2 *3 *4 *5)) (-4 *2 (-509))
+ (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-976 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-951)) (-5 *1 (-688)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-623 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1004)) (-4 *3 (-779))
+ (-4 *2 (-1110))))
+ ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6)
+ (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1712 *6)))
+ (-5 *1 (-933 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3))
+ (-4 *3 (-962))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1171 *4 *3))
+ (-4 *3 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-377 (-517))))
+ (-5 *2 (-2 (|:| -1470 (-1056 *4)) (|:| -1482 (-1056 *4))))
+ (-5 *1 (-1062 *4)) (-5 *3 (-1056 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-880 (-1022)))
+ (-5 *1 (-316 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-866 (-199)) (-199) (-199)))
+ (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
+ (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *4 (-1075))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075))
+ (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
+ (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1147 *5)) (-5 *2 (-583 *6))
+ (-5 *1 (-1149 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1107)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1004)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *1 (-824 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-509) (-953 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| -1306 (-377 (-875 *5))) (|:| |coeff| (-377 (-875 *5)))))
+ (-5 *1 (-523 *5)) (-5 *3 (-377 (-875 *5))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4))
+ (-5 *1 (-389 *4))))
+ ((*1 *1 *1) (-5 *1 (-849)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-849))))
+ ((*1 *1 *1) (-5 *1 (-850)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-999 (-199))) (-5 *1 (-850))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))
+ (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))
+ (-5 *4 (-377 (-517))) (-5 *1 (-937 *3)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517)))))
+ (-5 *1 (-937 *3)) (-4 *3 (-1132 (-377 (-517))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923))))
+ ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -3664 (-703))))
+ (-5 *1 (-714 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3664 (-703))))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1004))
+ (-4 *3 (-150 *6)) (-4 (-875 *6) (-809 *5))
+ (-4 *6 (-13 (-809 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-812 *4 *1)) (-5 *3 (-815 *4)) (-4 *1 (-809 *4))
+ (-4 *4 (-1004))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *6)) (-5 *4 (-815 *5)) (-4 *5 (-1004))
+ (-4 *6 (-13 (-1004) (-953 *3))) (-4 *3 (-809 *5))
+ (-5 *1 (-854 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004))
+ (-4 *3 (-13 (-400 *6) (-558 *4) (-809 *5) (-953 (-556 $))))
+ (-5 *4 (-815 *5)) (-4 *6 (-13 (-509) (-779) (-809 *5)))
+ (-5 *1 (-855 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 (-517) *3)) (-5 *4 (-815 (-517))) (-4 *3 (-502))
+ (-5 *1 (-856 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1004))
+ (-4 *6 (-13 (-779) (-953 (-556 $)) (-558 *4) (-809 *5)))
+ (-5 *4 (-815 *5)) (-5 *1 (-857 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-808 *5 *6 *3)) (-5 *4 (-815 *5)) (-4 *5 (-1004))
+ (-4 *6 (-809 *5)) (-4 *3 (-603 *6)) (-5 *1 (-858 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-812 *6 *3) *8 (-815 *6) (-812 *6 *3)))
+ (-4 *8 (-779)) (-5 *2 (-812 *6 *3)) (-5 *4 (-815 *6))
+ (-4 *6 (-1004)) (-4 *3 (-13 (-872 *9 *7 *8) (-558 *4)))
+ (-4 *7 (-725)) (-4 *9 (-13 (-962) (-779) (-809 *6)))
+ (-5 *1 (-859 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004))
+ (-4 *3 (-13 (-872 *8 *6 *7) (-558 *4))) (-5 *4 (-815 *5))
+ (-4 *7 (-809 *5)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *8 (-13 (-962) (-779) (-809 *5))) (-5 *1 (-859 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 *3)) (-4 *5 (-1004)) (-4 *3 (-910 *6))
+ (-4 *6 (-13 (-509) (-809 *5) (-558 *4))) (-5 *4 (-815 *5))
+ (-5 *1 (-862 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-812 *5 (-1075))) (-5 *3 (-1075)) (-5 *4 (-815 *5))
+ (-4 *5 (-1004)) (-5 *1 (-863 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-583 (-815 *7))) (-5 *5 (-1 *9 (-583 *9)))
+ (-5 *6 (-1 (-812 *7 *9) *9 (-815 *7) (-812 *7 *9))) (-4 *7 (-1004))
+ (-4 *9 (-13 (-962) (-558 (-815 *7)) (-953 *8))) (-5 *2 (-812 *7 *9))
+ (-5 *3 (-583 *9)) (-4 *8 (-13 (-962) (-779)))
+ (-5 *1 (-864 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-639 *3 *4)) (-4 *3 (-1110)) (-4 *4 (-1110)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1110)) (-5 *2 (-703))
+ (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-123))
+ (-5 *2 (-703))))
+ ((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1004))))
+ ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1004))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-4 *5 (-1132 *4)) (-5 *2 (-703))
+ (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9))
+ (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-5 *1 (-895 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-107))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199)))
+ (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-951))
+ (-5 *1 (-687)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2317 *3) (|:| -2240 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))))
-(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -1376 (-517)) (|:| -3010 (-517))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1146 *5)) (-4 *6 (-1131 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1147 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1074)) (-14 *7 *5) (-5 *2 (-377 (-1128 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-694))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))))
-(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1657 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -1657 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1070 (-1070 *5)))) (-5 *1 (-1108 *5)) (-5 *3 (-1070 (-1070 *5))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1154 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1154 *5)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2565 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1131 (-153 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-961)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -2317 *1) (|:| -2240 *1))) (-4 *1 (-1131 *4)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-787)) (-5 *2 (-1159)) (-5 *1 (-788)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1004) (-33))) (-5 *1 (-1040 *3 *2))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 *5))) (-5 *3 (-1071 *5))
+ (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1132 *5))
+ (-4 *5 (-1132 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 (-517)))) (-5 *3 (-1071 (-517)))
+ (-5 *1 (-525))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-1071 *1))) (-5 *3 (-1071 *1))
+ (-4 *1 (-832)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-107)) (-5 *5 (-1006 (-703))) (-5 *6 (-703))
+ (-5 *2
+ (-2 (|:| |contp| (-517))
+ (|:| -1878 (-583 (-2 (|:| |irr| *3) (|:| -2220 (-517)))))))
+ (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962))
+ (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))
+ (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779))
+ (-5 *1 (-526 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-812 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1004)) (-4 *2 (-338)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703)))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1075)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-819 *2 *4))
+ (-4 *2 (-1132 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-962))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962))
+ (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-962)) (-14 *3 (-583 (-1075)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779)))
+ (-14 *3 (-583 (-1075)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1004))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-583 (-1075))) (-4 *3 (-156))
+ (-4 *5 (-212 (-3533 *2) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *4) (|:| -2356 *5))
+ (-2 (|:| -2810 *4) (|:| -2356 *5))))
+ (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779))
+ (-4 *7 (-872 *3 *5 (-789 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-779))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-962))
+ (-4 *3 (-659))))
+ ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-962)) (-4 *3 (-775)))))
+(((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-844)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-765 (-844))) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-844))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-844))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *5))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1042 *3 *4)) (-5 *1 (-911 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-333))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-962))
+ (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5))
+ (-4 *7 (-212 *3 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421))))
+ ((*1 *1 *1 *1) (-4 *1 (-421)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1132 (-517)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-703)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278))
+ (-5 *1 (-839 *3 *4 *5 *2)) (-4 *2 (-872 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *6 *4 *5))
+ (-5 *1 (-839 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-278))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1071 *6)) (-4 *6 (-872 *5 *3 *4)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-839 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1071 *7))) (-4 *4 (-725)) (-4 *5 (-779))
+ (-4 *6 (-278)) (-5 *2 (-1071 *7)) (-5 *1 (-839 *4 *5 *6 *7))
+ (-4 *7 (-872 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-844)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-888 *3 *2))
+ (-4 *2 (-1132 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-779))
+ (-4 *3 (-1004)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $))))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-872 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1141 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5))
+ (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1075)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1004)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779))
+ (-14 *4
+ (-1 (-107) (-2 (|:| -2810 *3) (|:| -2356 *2))
+ (-2 (|:| -2810 *3) (|:| -2356 *2)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-222)))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703)))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-14 *5 (-583 (-1075)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4))))))
+ (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5))))))
+ (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5))))))
+ (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *5)) (|:| -3369 (-583 (-875 *5))))))
+ (-5 *1 (-1180 *5 *6 *7)) (-5 *3 (-583 (-875 *5)))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2
+ (-583 (-2 (|:| -4101 (-1071 *4)) (|:| -3369 (-583 (-875 *4))))))
+ (-5 *1 (-1180 *4 *5 *6)) (-5 *3 (-583 (-875 *4)))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6))
+ (-4 *4 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1132 *2)) (-4 *2 (-1132 *4)) (-5 *1 (-903 *4 *2 *3 *5))
+ (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-962)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1075)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4))
+ (-4 *3 (-13 (-962) (-779))) (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1004)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *5 (-212 (-3533 *3) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *4) (|:| -2356 *5))
+ (-2 (|:| -2810 *4) (|:| -2356 *5))))
+ (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779))
+ (-4 *7 (-872 *2 *5 (-789 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1132 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-962)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779))
+ (-4 *3 (-659))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779))
+ (-4 *2 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-286 (-199))))
+ (-5 *2
+ (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517))
+ (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))))
+ (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1079)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-971))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-971))))
+ ((*1 *1 *1) (-4 *1 (-777)))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)) (-4 *2 (-971))))
+ ((*1 *1 *1) (-4 *1 (-971))) ((*1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1004))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1004))
+ (-5 *1 (-108 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4))))
+ (-5 *1 (-108 *4)) (-4 *4 (-1004)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *1))))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1004))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))
+ (-5 *2 (-583 (-1075))) (-5 *1 (-984 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7))
+ (-4 *4 (-558 (-493))) (-4 *5 (-1110)) (-4 *6 (-1110))
+ (-4 *7 (-1110)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-583 *2)) (-4 *2 (-1004)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1075))) (-4 *4 (-156))
+ (-4 *6 (-212 (-3533 *3) (-703)))
+ (-14 *7
+ (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6))
+ (-2 (|:| -2810 *5) (|:| -2356 *6))))
+ (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-779)) (-4 *8 (-872 *4 *6 (-789 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2))
+ (-4 *3 (-962))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-891 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-724))
+ (-4 *4 (-779)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-951)) (-5 *1 (-682))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-358)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-962)) (-4 *2 (-1004)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421))))
+ ((*1 *1 *1 *1) (-4 *1 (-421))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-805 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-1071 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))
+ (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-509)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962))
+ (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-703)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-509))
+ (-5 *1 (-888 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-962))
+ (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *3))
+ (-4 *3 (-1110))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1104 *4 *5 *3 *2)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-976 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *1 (-1108 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-1075)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-754)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-583 (-1129 *5 *4)))
+ (-5 *1 (-1018 *4 *5)) (-5 *3 (-1129 *5 *4)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107))
+ (-5 *2 (-951)) (-5 *1 (-678)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-962))
+ (-5 *1 (-945 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159))))
+ ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))
+ ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2) (-12 (-5 *2 (-1047 (-1058))) (-5 *1 (-361)))))
+(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-502))))
+ ((*1 *1 *1) (-4 *1 (-971))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *1)) (-5 *4 (-1156 *1)) (-4 *1 (-579 *5))
+ (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -2831 (-623 *5)) (|:| |vec| (-1156 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-962))
+ (-5 *2 (-623 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-333) (-134)))
+ (-5 *2 (-583 (-2 (|:| -2356 (-703)) (|:| -3567 *4) (|:| |num| *4))))
+ (-5 *1 (-369 *3 *4)) (-4 *4 (-1132 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-872 *6 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1005 *3 *4)) (-14 *3 (-844))
+ (-14 *4 (-844)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-107))
+ (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421))
+ (-14 *5 (-583 (-1075))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1022)) (-5 *2 (-1161)) (-5 *1 (-763)))))
+(((*1 *1 *1) (-4 *1 (-217)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1132 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3745 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1110)))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1110)))))
+ ((*1 *1 *1) (-4 *1 (-442)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)))
+ (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)))
+ (-5 *2 (-772 *4)) (-5 *1 (-1142 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1096) (-400 *3))) (-14 *5 (-1075))
+ (-14 *6 *4))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2272 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-57 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-4 *6 (-13 (-509) (-779)))
+ (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6))
+ (-4 *5 (-962))))
+ ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1096)))
+ (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-534 (-377 (-875 *4))))
+ (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1049 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-777))
+ (-4 *2 (-1049 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1169 (-1075) *3)) (-5 *1 (-1176 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-1178 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1004)) (-4 *4 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))
+ ((*1 *1 *1 *1) (-5 *1 (-1022))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1042 *4 *2)) (-14 *4 (-844))
+ (-4 *2 (-13 (-962) (-10 -7 (-6 (-4192 "*"))))) (-5 *1 (-825 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-991 *3)) (-4 *3 (-124)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-4 *1 (-138 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-583 (-2 (|:| -2356 (-703)) (|:| -3567 *4) (|:| |num| *4))))
+ (-4 *4 (-1132 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-5 *3 (-583 (-875 (-517)))) (-5 *4 (-107)) (-5 *1 (-407))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-5 *3 (-583 (-1075))) (-5 *4 (-107)) (-5 *1 (-407))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1056 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-156))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-156))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4))
+ (-4 *4 (-156))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1004))
+ (-5 *1 (-611 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1004))
+ (-14 *4
+ (-1 (-107) (-2 (|:| -2810 *2) (|:| -2356 *3))
+ (-2 (|:| -2810 *2) (|:| -2356 *3))))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 *4))))
+ (-4 *4 (-1004)) (-5 *1 (-812 *3 *4)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1004) (-33)))
+ (-5 *2 (-583 (-1040 *3 *5))) (-5 *1 (-1040 *3 *5))
+ (-4 *3 (-13 (-1004) (-33)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3831 *5))))
+ (-4 *4 (-13 (-1004) (-33))) (-4 *5 (-13 (-1004) (-33)))
+ (-5 *2 (-583 (-1040 *4 *5))) (-5 *1 (-1040 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3831 *4)))
+ (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33)))
+ (-5 *1 (-1040 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1004) (-33)))
+ (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1040 *2 *3))) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))) (-5 *1 (-1041 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1041 *2 *3))) (-5 *1 (-1041 *2 *3))
+ (-4 *2 (-13 (-1004) (-33))) (-4 *3 (-13 (-1004) (-33)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1026 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1071 *6)) (-1071 *6)))
+ (-4 *6 (-333))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| *7) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 *7))))))
+ (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10))
+ (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-981 *5 *6 *7 *8))
+ (-4 *10 (-1013 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6)))
+ (-5 *1 (-568 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1075)))
+ (-5 *2
+ (-583 (-1046 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
+ (-5 *1 (-568 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-943 *5 *6 *7 *8))) (-5 *1 (-943 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1075))) (-5 *2 (-583 (-959 *5 *6)))
+ (-5 *1 (-959 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-583 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-1104 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-827 *4))
+ (-4 *4 (-1004))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-153 (-349)))))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-517)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-153 (-349)))))
+ (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-875 (-517))))
+ (-5 *4 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-627)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-632)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-286 (-634)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-1156 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-623 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1058)) (-5 *1 (-300))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1104 *5 *6 *7 *8)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-107)) (-5 *1 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-107)) (-5 *1 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1080)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-156)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| -3736 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-872 *4 *6 *5)) (-4 *4 (-13 (-278) (-134)))
+ (-4 *5 (-13 (-779) (-558 (-1075)))) (-4 *6 (-725)) (-5 *2 (-703))
+ (-5 *1 (-847 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-333)) (-14 *6 (-1156 (-623 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-844)) (-14 *5 (-583 (-1075)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'JINT 'X 'ELAM) (-2286) (-632))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 'XC) (-632))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 (-2286 'X) (-2286) (-632))) (-5 *1 (-62 *3))
+ (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-623 (-309 (-2286) (-2286 'X 'HESS) (-632))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 (-2286) (-2286 'XC) (-632))) (-5 *1 (-64 *3))
+ (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'X) (-2286 '-2010) (-632))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 'X) (-632))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'X 'EPS) (-2286 '-2010) (-632))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1075)) (-14 *4 (-1075))
+ (-14 *5 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'EPS) (-2286 'YA 'YB) (-632))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1075)) (-14 *4 (-1075))
+ (-14 *5 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 (-2286) (-2286 'X) (-632))) (-5 *1 (-75 *3))
+ (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 (-2286) (-2286 'X) (-632))) (-5 *1 (-76 *3))
+ (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 'XC) (-632))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 'X) (-632))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286) (-2286 'X) (-632))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'X '-2010) (-2286) (-632))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-623 (-309 (-2286 'X '-2010) (-2286) (-632))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-623 (-309 (-2286 'X) (-2286) (-632)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'X) (-2286) (-632))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-309 (-2286 'X) (-2286 '-2010) (-632))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-623 (-309 (-2286 'XL 'XR 'ELAM) (-2286) (-632))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1075))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 (-2286 'X) (-2286 '-2010) (-632))) (-5 *1 (-87 *3))
+ (-14 *3 (-1075))))
+ ((*1 *2 *1) (-12 (-5 *2 (-921 2)) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5))
+ (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5))
+ (-14 *3 (-517)) (-14 *4 (-703))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1042 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156))
+ (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156))
+ (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-623 *4))) (-4 *4 (-156))
+ (-5 *2 (-1156 (-623 (-377 (-875 *4))))) (-5 *1 (-165 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $))
+ (-15 -3177 ((-1161) $)))))
+ (-5 *1 (-189 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-921 10)) (-5 *1 (-192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-997 (-286 *4)))
+ (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-997 (-349)))
+ (-5 *1 (-231 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1132 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1141 *4 *5 *6)) (-4 *4 (-13 (-27) (-1096) (-400 *3)))
+ (-14 *5 (-1075)) (-14 *6 *4)
+ (-4 *3 (-13 (-779) (-953 (-517)) (-579 (-517)) (-421)))
+ (-5 *1 (-283 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5))
+ (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-1075))) (-4 *5 (-357))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2))
+ (-4 *3 (-299 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3))
+ (-4 *3 (-299 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *2 (-1178 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *2 (-1169 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-4 *1 (-353))))
+ ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353))))
+ ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354))))
+ ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-4 *1 (-359))))
+ ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075))
+ (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6))
+ (-14 *3 (-1075)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1075))
+ (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2043 "void")))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1079))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21)))
+ (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517)))))
+ (-4 *3 (-13 (-779) (-21)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-875 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-4 *1 (-400 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-4 *1 (-400 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779))
+ (-4 *1 (-400 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1027 *3 (-556 *1))) (-4 *3 (-962)) (-4 *3 (-779))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-404))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-4 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-632))) (-4 *1 (-409))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1079)) (|:| -2514 (-583 (-300)))))
+ (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-377 (-875 *3)))) (-4 *3 (-156))
+ (-14 *6 (-1156 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-14 *4 (-844)) (-14 *5 (-583 (-1075)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1141 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1075))
+ (-14 *5 *3) (-5 *1 (-443 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-921 16)) (-5 *1 (-454))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-467))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1174 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-5 *1 (-611 *3))
+ (-4 *3 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-880 (-880 (-880 *3)))) (-4 *3 (-1004))
+ (-5 *1 (-611 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3))
+ (-4 *2 (-343 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627))))
+ ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627))))
+ ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627))))
+ ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627))))
+ ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627))))
+ ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632))))
+ ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634))))
+ ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -2810 *3) (|:| -2356 *4)))
+ (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1004))
+ (-14 *5 (-1 (-107) *2 *2))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| -2810 *3) (|:| -2356 *4))) (-4 *3 (-779))
+ (-4 *4 (-1004)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| -1580 *3) (|:| -2423 *4)))) (-4 *3 (-962))
+ (-4 *4 (-659)) (-5 *1 (-668 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-583 (-999 (-772 (-199)))))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+ (-5 *1 (-701))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-583 (-999 (-772 (-199))))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *1 (-701))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *1 (-701))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701))))
+ ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *1 (-740))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-823 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1004))
+ (-14 *4 *3)))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1004)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4))
+ (-4 *2 (-823 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-756))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199))))
+ (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-583 (-286 (-199))))
+ (|:| -2585 (-583 (-199)))))))
+ (-5 *1 (-770))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))
+ (-5 *1 (-770))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *1 (-770))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *3)) (-14 *3 (-1075)) (-5 *1 (-784 *3 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-5 *1 (-790 *3 *4 *5 *6))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-875 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-583 (-703))) (-14 *6 (-703))))
+ ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 (-47)))) (-5 *2 (-286 (-517)))
+ (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-816 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058))
+ (|:| |tol| (-199))))
+ (-5 *1 (-821))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-821))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1097 *3)) (-5 *1 (-824 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1004)) (-5 *1 (-827 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-828 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1004)) (-5 *1 (-828 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-837 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-842 *4))
+ (-4 *4 (-13 (-779) (-509)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-889))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-949 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-949 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-950 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5))
+ (-14 *6 (-583 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-953 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-958 *3)) (-4 *3 (-509))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-623 *5)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-962))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-5 *1 (-1028 *3 *4 *2))
+ (-4 *2 (-872 *3 (-489 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *2 (-779)) (-5 *1 (-1028 *3 *2 *4))
+ (-4 *4 (-872 *3 (-489 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-787))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-623 *4)) (-5 *1 (-1042 *3 *4)) (-14 *3 (-703))
+ (-4 *4 (-962))))
+ ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1044))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1075))
+ (-14 *5 *3) (-5 *1 (-1073 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1074))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1075))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084 (-1075) (-407))) (-5 *1 (-1079))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1083 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1090 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-875 *3)) (-4 *3 (-962)) (-5 *1 (-1105 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1105 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-880 *3)) (-4 *3 (-1110)) (-5 *1 (-1108 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *1 (-1118 *3 *2)) (-4 *2 (-1147 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-999 *3)) (-4 *3 (-1110)) (-5 *1 (-1123 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *3)) (-14 *3 (-1075)) (-5 *1 (-1129 *3 *4))
+ (-4 *4 (-962))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *1 (-1139 *3 *2)) (-4 *2 (-1116 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1129 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1075))
+ (-14 *5 *3) (-5 *1 (-1148 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1152 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1157)) (-5 *1 (-1160))))
+ ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1161))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
+ (-5 *1 (-1166 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-872 *3 *5 *4))
+ (-14 *7 (-583 (-703))) (-14 *8 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-872 *3 *5 *4)) (-5 *1 (-1166 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-962)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4))
+ (-14 *7 (-583 (-703))) (-14 *8 (-703))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1169 *3 *4)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *1 (-1174 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)) (-4 *2 (-775)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517)))
+ (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-690)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1057)) (-5 *1 (-92)))))
-(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1057)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1057))) (-5 *3 (-1057)) (-5 *2 (-282)) (-5 *1 (-267)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1159) (-1154 *5) (-1154 *5) (-349))) (-5 *3 (-1154 (-349))) (-5 *5 (-349)) (-5 *2 (-1159)) (-5 *1 (-720)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1095))))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1059 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1074)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *1 (-235 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1074)) (-5 *2 (-51)) (-5 *1 (-236)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2) (-12 (-5 *2 (-1046 (-1057))) (-5 *1 (-361)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1131 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *4)))) ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1154 *1)) (-4 *1 (-299 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-1154 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1154 *1)) (-4 *1 (-387 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -1261 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1131 *2)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))))
-(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3458 *3) (|:| -1338 *4))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1131 *5)) (-5 *2 (-623 *5)))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-100)))))
-(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1074))) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
-(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-953 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1156 (-583 (-517)))) (-5 *1 (-448))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-788))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-788))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-787)) (-5 *2 (-1161)) (-5 *1 (-788))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1056 *4))
+ (-4 *4 (-1004)) (-4 *4 (-1110)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-4 *3 (-509)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *5 (-1114)) (-4 *6 (-1132 *5))
+ (-4 *7 (-1132 (-377 *6))) (-5 *2 (-583 (-875 *5)))
+ (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1114))
+ (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-4 *4 (-333))
+ (-5 *2 (-583 (-875 *4))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962))
+ (-5 *2 (-449 *4 *5)) (-5 *1 (-867 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502))
+ (-4 *3 (-509))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502))
+ (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502))
+ (-5 *2 (-377 (-517)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-925 *3))
+ (-4 *3 (-953 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *2 (-976 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3))
+ (-4 *3 (-981 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *2 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined"))
+ (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-630))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-199)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-630))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1035 (-199))) (-5 *3 (-1 (-866 (-199)) (-199) (-199)))
+ (-5 *4 (-999 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *1 (-948 *2))
+ (-4 *2 (-13 (-1004) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421))
+ (-14 *6 (-583 (-1075)))
+ (-5 *2
+ (-583 (-1046 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6)))))
+ (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-725)) (-4 *7 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1071 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-818))
+ (-5 *3
+ (-2 (|:| |pde| (-583 (-286 (-199))))
+ (|:| |constraints|
+ (-583
+ (-2 (|:| |start| (-199)) (|:| |finish| (-199))
+ (|:| |grid| (-703)) (|:| |boundaryType| (-517))
+ (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199))))))
+ (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1058))
+ (|:| |tol| (-199))))
+ (-5 *2 (-951)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-955)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))
+ (-4 *4 (-1132 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-836 *4 *5))
+ (-4 *5 (-1132 (-377 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779)))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962))
+ (-5 *2 (-875 *5)) (-5 *1 (-867 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1075)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
(((*1 *1) (-5 *1 (-735))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1109)) (-14 *4 *2))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1074))) (-5 *4 (-1154 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)) (-5 *1 (-265 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1076 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1074)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1074)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) ((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1109)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1109)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1074))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1074)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1095) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1070 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1095) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1070 (-1070 *4)))) (-5 *1 (-1108 *4)) (-5 *3 (-1070 (-1070 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))))
-(((*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1062 *3 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1387 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1077)) (-5 *3 (-1074)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1110 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1131 *4)) (-5 *2 (-388 (-1070 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1070 *5)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1870 *3) (|:| -3010 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1070 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1039 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1131 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1131 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1070 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2153 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2153 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)) (-5 *3 (-1057)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-215)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -3010 (-703)) (|:| -1965 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1131 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))))
-(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1127 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1131 *4)) (-5 *1 (-844 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1074)) (-5 *1 (-493)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1074)) (-5 *1 (-168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1096 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4))))) (-5 *1 (-263 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2153 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1095) (-400 *3))) (-14 *4 (-1074)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1095) (-400 *3) (-10 -8 (-15 -2254 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1133 *2 *4) (-333) (-1095) (-10 -8 (-15 -1248 ($ $)) (-15 -3563 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1074)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-1158)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-1091)))))
-(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1055 *5)) (-583 (-1055 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1055 *5))) (-5 *1 (-1177 *5)) (-4 *5 (-1109)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 (-832 *3)) (|:| -3544 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1070 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1154 (-583 (-2 (|:| -3207 *3) (|:| -3544 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1176 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1169 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-775)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1131 (-517))))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1131 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1095) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2080 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1154 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1154 *5) "failed")) (|:| -2080 (-583 (-1154 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1154 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4184)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2080 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1095) (-880))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1154 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1074)) (-4 *6 (-13 (-29 *5) (-1095) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1154 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1154 *7)) (|:| -2080 (-583 (-1154 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *7 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2080 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1074)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2080 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1095) (-880))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1095) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1154 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1154 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2080 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1154 *6)) (|:| -2080 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1154 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1057)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1080 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1080 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-377 (-874 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1080 *4)) (-5 *3 (-265 (-377 (-874 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2628 (-517)) (|:| -1343 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1074)) (-4 *2 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-493)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-349)))))
-(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-4 *3 (-212 (-2290 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *3)) (-2 (|:| -3544 *5) (|:| -3010 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-265 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1057)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1109)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1131 *9)) (-4 *11 (-1131 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1113)) (-4 *8 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-4 *9 (-1131 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1131 (-377 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1131 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1131 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4124 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -4124 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-547 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1131 *5)) (-4 *2 (-1131 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1131 (-377 *6))) (-4 *8 (-1131 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1645 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1048 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1053 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-4 *8 (-1109)) (-5 *2 (-1055 *8)) (-5 *1 (-1054 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1119 *6 *8 *10)) (-5 *1 (-1114 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-777)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1055 *6)) (-5 *1 (-1121 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1128 *5 *6)) (-14 *5 (-1074)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1128 *7 *8)) (-5 *1 (-1123 *5 *6 *7 *8)) (-14 *7 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1131 *6)) (-5 *1 (-1129 *5 *4 *6 *2)) (-4 *4 (-1131 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1074)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1135 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1074)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1146 *6)) (-5 *1 (-1144 *5 *6 *4 *2)) (-4 *4 (-1146 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1154 *6)) (-5 *1 (-1153 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1175 *3 *4)) (-4 *4 (-775)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
-(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1156 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509))
+ (-5 *2 (-1156 *4)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-374))
+ (-5 *2 (-844)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-377 (-875 (-517))))) (-5 *4 (-583 (-1075)))
+ (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5))
+ (-4 *5 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1075)))
+ (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-1075)) (-5 *1 (-493))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-583 (-1075))) (-5 *2 (-1075)) (-5 *1 (-638 *3))
+ (-4 *3 (-558 (-493))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3))
+ (-4 *3 (-343 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3))
+ (-4 *5 (-343 *2)) (-4 *3 (-343 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *4)) (-4 *4 (-910 *2)) (-4 *2 (-509))
+ (-5 *1 (-626 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-910 *2)) (-4 *2 (-509)) (-5 *1 (-1125 *2 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
+(((*1 *2)
+ (-12 (-4 *3 (-962)) (-5 *2 (-880 (-645 *3 *4))) (-5 *1 (-645 *3 *4))
+ (-4 *4 (-1132 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1056 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-1034 *4 *2))
+ (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4190) (-6 -4191))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-4 *3 (-1110)) (-5 *1 (-1034 *3 *2))
+ (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4190) (-6 -4191)))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-1132 *4))
+ (-4 *5 (-1132 (-377 *3))) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1) (-4 *1 (-1044))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-962)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-962)) (-5 *2 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-872 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-999 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
+ ((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-373 *3)) (-4 *3 (-374))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1056 (-517))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777)))
+ (-5 *2 (-583 (-2 (|:| -1878 (-583 *3)) (|:| -3108 *5))))
+ (-5 *1 (-162 *5 *3)) (-4 *3 (-1132 (-153 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-333) (-777)))
+ (-5 *2 (-583 (-2 (|:| -1878 (-583 *3)) (|:| -3108 *4))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2368 (-714 *3)) (|:| |coef1| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2368 *1) (|:| |coef1| *1)))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1096) (-881))))))
(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1131 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1074)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1074)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1074)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1154 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1131 *4)) (-4 *4 (-1113)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1131 (-377 *3))))))
-(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-4 *4 (-779)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1074)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1154 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-1057)) (-5 *1 (-300)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1057)) (-5 *1 (-276)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1156)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1074)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1155)) (-5 *1 (-229 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1156)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1156)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1156)) (-5 *1 (-233)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
-(((*1 *2) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-1103 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1074))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1074))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-1041 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1235 (-517)) (|:| -2914 (-517)) (|:| |spline| (-517)) (|:| -4141 (-517)) (|:| |axesColor| (-797)) (|:| -3016 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1155)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1110 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1842 ((-1026 *3 (-556 $)) $)) (-15 -1852 ((-1026 *3 (-556 $)) $)) (-15 -2254 ($ (-1026 *3 (-556 $))))))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1154 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1131 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1965 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1168 *4 *5 *2)) (-4 *2 (-1173 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1103 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *5)) (|:| -3589 (-583 (-874 *5)))))) (-5 *1 (-1178 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3614 (-1070 *4)) (|:| -3589 (-583 (-874 *4)))))) (-5 *1 (-1178 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
-(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
-(((*1 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-1154 *1)) (-4 *1 (-312 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *4 (-1131 *3)) (-5 *2 (-2 (|:| -2080 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1131 (-517))) (-5 *2 (-2 (|:| -2080 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2080 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2080 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1163 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1087 *3 *2)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1235 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-4 *5 (-333)) (-5 *2 (-583 (-1104 *5))) (-5 *1 (-1162 *5)) (-5 *4 (-1104 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1131 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1095))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1095))))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
-(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3)
+ (-5 *3 (-517))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3)
+ (-5 *3 (-517))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5))
+ (-5 *3 (-517)) (-4 *5 (-793 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-929)) (-5 *2 (-377 (-517)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-978 *2 *3)) (-4 *2 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1134 *2 *3)) (-4 *3 (-724))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2269 (*2 (-1075))))
+ (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1058)) (-5 *1 (-718)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319))))
+ ((*1 *1) (-4 *1 (-338)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1156 *4)) (-5 *1 (-487 *4))
+ (-4 *4 (-319))))
+ ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502)))
+ ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703)))
+ ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *2 (-828 *4)) (-5 *1 (-827 *4))
+ (-4 *4 (-1004))))
+ ((*1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1132 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278))
+ (-4 *10 (-872 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-583 (-1071 *10)))
+ (|:| |dterm|
+ (-583 (-583 (-2 (|:| -2247 (-703)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
+ (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1071 *10)) (-5 *4 (-583 *6))
+ (-5 *5 (-583 *10)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-4 *3 (-1004))
+ (-5 *2 (-107)))))
+(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1156 *1)) (-4 *1 (-337 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))
+ (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3)))
+ (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-633 *3))
+ (-4 *3 (-278)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-377 (-517))))) (-5 *1 (-236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-999 (-349)))) (-5 *1 (-236)))))
(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1131 *4)) (-5 *2 (-1154 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1131 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1131 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1131 *5)) (-5 *2 (-1070 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1131 *4)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-109)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-1074))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1154 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1131 *6)) (-14 *7 (-843)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) (|partial| -3782 (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-2650 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-502))) (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2650 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -3782 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2650 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1074))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
-(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4183)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
-(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-972)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1131 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2153 *3) (|:| -3819 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1074)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *1) (-5 *1 (-973))))
-(((*1 *2 *2) (-12 (-4 *3 (-1131 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1131 (-377 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-1122 (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1063 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1165 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1165 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))))
-(((*1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2674 ((-388 $) $))))) (-4 *5 (-1131 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1044 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1070 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4183)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-761)))))
-(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
-(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-1038) (-29 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1131 *3)) (-5 *2 (-583 (-1070 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1131 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1159)) (-5 *1 (-1077)))) ((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-1077)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1131 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-1154 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1057)) (-5 *1 (-493)))))
-(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)) (-4 *2 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300))))
+ ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300))))
+ ((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-300)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-894 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421))
+ (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1075))) (-5 *1 (-571 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))
+ (-4 *2 (-421))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-1132 *2))
+ (-4 *4 (-1132 (-377 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-421))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-421))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-872 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-421))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1063 *3 *2))
+ (-4 *2 (-1132 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-517)) (-5 *1 (-1093 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -2866 (-564 *4 *5)) (|:| -3408 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1131 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1081 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1074))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2080 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1154 *6) "failed")) (|:| -2080 (-583 (-1154 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1154 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1070 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1076 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1128 *4 *3)) (-14 *4 (-1074)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1095) (-880))))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1104 *4))) (-5 *3 (-1074)) (-5 *1 (-1104 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1057))) (-5 *2 (-1057)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1131 *2)) (-4 *2 (-1113)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1131 (-377 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4))
+ (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107))))
+ (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4))
+ (-5 *1 (-240)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199))))
+ (-5 *2 (-349)) (-5 *1 (-181)))))
(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1074)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
-(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-583 (-1055 *4)))) (-5 *1 (-1148 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3207 *4) (|:| -2388 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1070 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1095))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -4124 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3680 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2720 "void"))) (-5 *1 (-407)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1070 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1003)) (-4 *2 (-779)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-583 (-1128 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1128 *5 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1109)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1074))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1109)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1109)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (|has| *6 (-6 -4184)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4184)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *5 (-1113)) (-4 *6 (-1131 *5)) (-4 *7 (-1131 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-4 *6 (-1131 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))))
-(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1159)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1159)) (-5 *1 (-1164 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3383 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-4 *1 (-1038))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1095))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1074)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1131 *2)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1095) (-880) (-29 *4))))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1131 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1131 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
-(((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
-(((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3623 (-377 (-517))) (|:| -3633 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1128 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1074)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1159)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1140 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1057)))) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1219 *1) (|:| -1602 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1103 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1081 *4)) (-5 *3 (-583 (-583 *4))))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1057)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1059 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *6 (-212 (-2290 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1070 (-377 (-517)))) (|:| |overan| (-1070 (-47))) (|:| -3689 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-735)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
-(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1131 *4)) (-4 *5 (-1131 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1131 *2)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-3782 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) ((*1 *1 *1 *1) (-4 *1 (-333))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1164 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1131 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1109)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-1063 *3 *4))) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-1070 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1070 *1))) (-5 *3 (-1070 *1)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1095) (-400 *3))) (-14 *5 (-1074)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1078)))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1109)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1057)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1074)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *8)))) (|:| -2080 (-583 (-1154 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1070 *3)) (|:| |logand| (-1070 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1070 *4) (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4183)) (-4 *1 (-456 *3)) (-4 *3 (-1109)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2791 (-583 (-787))) (|:| -3398 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1690 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1070 *6)) (-5 *1 (-291 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-25)))))
-(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1154 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1154 *1)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-4 *1 (-217))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-3782 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1109))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1109))))) ((*1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1057)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1095) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1131 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1107 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-918)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1159)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1077)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1057) (-706))) (-5 *1 (-109)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2080 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -2080 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1131 *6)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1074))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1063 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-2 (|:| -2153 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1124 *4 *5 *3)) (-4 *3 (-1131 *5)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1109)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-437)))))
-(((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3633 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1131 *4)) (-5 *1 (-527 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1154 (-583 (-2 (|:| -3207 *4) (|:| -3544 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1057)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1070 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-333)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1122 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1138 *4 *3)) (-4 *3 (-1115 *4)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1131 *6)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1057)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1074)) (-5 *2 (-407)) (-5 *1 (-1078)))))
-(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4183)))))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-974)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1110)) (-5 *2 (-517)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| -1580 *4) (|:| -2525 *3) (|:| -1451 *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-976 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -1580 *3) (|:| -2525 *1) (|:| -1451 *1)))
+ (-4 *1 (-1132 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *5))
+ (-4 *5 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-377 (-517)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517)))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8))
+ (-5 *5 (-1123 (-377 (-517)))) (-5 *6 (-377 (-517)))
+ (-4 *8 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-377 (-517))))
+ (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1096) (-400 *8)))
+ (-4 *8 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-377 (-517))) (-4 *4 (-962)) (-4 *1 (-1139 *4 *3))
+ (-4 *3 (-1116 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779))
+ (-4 *6 (-976 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2309 *1) (|:| |upper| *1)))
+ (-4 *1 (-894 *4 *5 *3 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-844)) (-4 *5 (-779))
+ (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
+ (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-107)) (-5 *1 (-895 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *4 (-910 *3)) (-5 *1 (-129 *3 *4 *2))
+ (-4 *2 (-343 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-910 *4)) (-4 *2 (-343 *4))
+ (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-910 *4)) (-4 *4 (-509))
+ (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-4 *4 (-910 *3)) (-5 *1 (-1125 *3 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *5))
+ (-4 *5 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-953 *4) (-579 *4)))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 *5) (-579 *5))) (-5 *5 (-517))
+ (-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-517)))
+ (-4 *7 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-517)))
+ (-4 *3 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-517)) (-4 *4 (-962)) (-4 *1 (-1118 *4 *3))
+ (-4 *3 (-1147 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1139 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1116 *3)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-680)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1156 (-1005 *3 *4))) (-5 *1 (-1005 *3 *4))
+ (-14 *3 (-844)) (-14 *4 (-844)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1058)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-583 (-2 (|:| -3286 (-377 (-517))) (|:| -3298 (-377 (-517))))))
+ (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-936 *4))
+ (-4 *4 (-1132 (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-684)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *5))
+ (-4 *5 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-265 *3)) (-5 *5 (-703))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-285 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6))
+ (-4 *6 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1123 (-703)))
+ (-4 *7 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1075)) (-5 *5 (-265 *3)) (-5 *6 (-1123 (-703)))
+ (-4 *3 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-51)) (-5 *1 (-428 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1147 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1004))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349))))
+ ((*1 *1 *1 *1) (-4 *1 (-502)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-982 *5 *6 *7 *3 *4))
+ (-4 *4 (-981 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3831 *4))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
+ (-14 *5 (-583 (-1075))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
+ (-4 *6 (-421))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5))
+ (-14 *5 (-583 (-1075))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6))
+ (-4 *6 (-421)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-959 *5 *6))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-959 *4 *5))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4))
+ (-4 *3 (-1132 (-153 (-517)))) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509))
+ (-4 *7 (-872 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *8) (|:| |radicand| *8)))
+ (-5 *1 (-876 *5 *6 *3 *7 *8)) (-5 *4 (-703))
+ (-4 *8
+ (-13 (-333)
+ (-10 -8 (-15 -3824 (*7 $)) (-15 -2097 (*7 $)) (-15 -2269 ($ *7))))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107))
+ (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3))
+ (-4 *3 (-1004)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2))
+ (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-875 *5)) (-4 *5 (-962)) (-5 *2 (-449 *4 *5))
+ (-5 *1 (-867 *4 *5)) (-14 *4 (-583 (-1075))))))
+(((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3)))))
+(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491))))
+ ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -2356 (-703)))) (-5 *1 (-535 *3))
+ (-4 *3 (-502)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-888 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-388 (-1071 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1071 *1))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3298 *6) (|:| |sol?| (-107))) (-517)
+ *6))
+ (-4 *6 (-333)) (-4 *7 (-1132 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6))
+ (-2 (|:| -1306 (-377 *7)) (|:| |coeff| (-377 *7))) "failed"))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-517))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-517))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1117 *4 *3)) (-4 *3 (-1146 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1159)) (-5 *1 (-1037)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1159)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1074))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1095) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1122 (-703))) (-4 *7 (-13 (-27) (-1095) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1074)) (-5 *5 (-265 *3)) (-5 *6 (-1122 (-703))) (-4 *3 (-13 (-27) (-1095) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1146 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1070 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1070 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1109)) (-5 *2 (-107)) (-5 *1 (-1055 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1070 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1070 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1070 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1074))) (-14 *6 (-1154 (-623 *3))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-1109)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-583 (-1079))) (-5 *1 (-1036)))))
-(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
-(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3167 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1) (-5 *1 (-989))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4183) (-6 -4184)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1109)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4183) (-6 -4184)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1146 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1117 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1115 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1138 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1061 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3) (-12 (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))))
-(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
-(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1074))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
-(((*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1074))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1146 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))))
-(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1021))))
-(((*1 *1 *1) (-4 *1 (-502))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *1) (-5 *1 (-1155))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1131 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1070 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1070 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1095))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2080 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3334 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-4 *1 (-359)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-583
+ (-3 (|:| -2987 (-1075))
+ (|:| |bounds| (-583 (-3 (|:| S (-1075)) (|:| P (-875 (-517))))))))))
+ (-5 *1 (-1079)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-400 *3) (-919))) (-5 *1 (-249 *3 *2))
+ (-4 *3 (-13 (-779) (-509)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1096))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1071 (-517))) (-5 *1 (-865)) (-5 *3 (-517))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1026 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *7 (-1132 *5)) (-4 *4 (-657 *5 *7))
+ (-5 *2 (-2 (|:| -2831 (-623 *6)) (|:| |vec| (-1156 *5))))
+ (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-377 (-517)))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 (-199)))))
+ (|:| |xValues| (-999 (-199))) (|:| |yValues| (-999 (-199)))))
+ (-5 *1 (-140)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-558 (-815 (-517))))
+ (-4 *5 (-809 (-517)))
+ (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-520 *5 *3)) (-4 *3 (-569))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-872 *3 *5 *4))
+ (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1075))))
+ (-4 *5 (-725)) (-5 *1 (-847 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1075)))))
+ (-5 *6 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1008))
+ (-5 *1 (-367))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1075)))))
+ (-5 *6 (-583 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1008))
+ (-5 *1 (-367))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-583 (-1075))) (-5 *5 (-1078)) (-5 *3 (-1075))
+ (-5 *2 (-1008)) (-5 *1 (-367)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-155)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-953 (-517)))
+ (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $))))))))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1156 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333))
+ (-5 *1 (-604 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-333))
+ (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4191))))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191))))
+ (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333))
+ (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-623 *2)) (-5 *4 (-517))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *5 (-1132 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-1132 *4)) (-4 *4 (-962))
+ (-5 *2 (-1156 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-910 *2)) (-4 *4 (-1132 *3)) (-4 *2 (-278))
+ (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-953 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1027 *3 (-556 *1)))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1027 (-517) (-556 (-460)))) (-5 *1 (-460))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4))
+ (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4))
+ (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2585 (-583 (-199)))))
+ (-5 *2 (-583 (-1075))) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *7)) (-4 *7 (-872 *6 *4 *5)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-962)) (-5 *2 (-583 *5))
+ (-5 *1 (-291 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-357))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1075)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-583 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-583 *5))
+ (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-891 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-4 *5 (-779)) (-5 *2 (-583 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1075)))
+ (-5 *1 (-958 *4)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-981 *4 *5 *6 *7))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-517)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-916 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-517) (-199) (-1075) (-1058) (-1080)))
+ (-5 *1 (-1080)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-689)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-345 *4 *2))
+ (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4191)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199)))
+ (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1071 (-377 (-1071 *2)))) (-5 *4 (-556 *2))
+ (-4 *2 (-13 (-400 *5) (-27) (-1096)))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1004))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1071 *1)) (-4 *1 (-872 *4 *5 *3)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *3 (-779))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1071 *4)) (-4 *4 (-962)) (-4 *1 (-872 *4 *5 *3))
+ (-4 *5 (-725)) (-4 *3 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-1071 *2))) (-4 *5 (-725)) (-4 *4 (-779))
+ (-4 *6 (-962))
+ (-4 *2
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $)))))
+ (-5 *1 (-873 *5 *4 *6 *7 *2)) (-4 *7 (-872 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-1071 (-377 (-875 *5))))) (-5 *4 (-1075))
+ (-5 *2 (-377 (-875 *5))) (-5 *1 (-958 *5)) (-4 *5 (-509)))))
+(((*1 *2 *1) (-12 (-4 *1 (-953 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *2)
+ (-12 (-4 *1 (-319))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1004)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1071 (-875 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-5 *2 (-1071 (-875 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-844))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-844))
+ (-4 *2 (-333)) (-14 *5 (-911 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779))
+ (-4 *6 (-212 (-3533 *4) (-703)))
+ (-14 *7
+ (-1 (-107) (-2 (|:| -2810 *5) (|:| -2356 *6))
+ (-2 (|:| -2810 *5) (|:| -2356 *6))))
+ (-14 *4 (-583 (-1075))) (-4 *2 (-156))
+ (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-872 *2 *6 (-789 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-779))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4))
+ (-4 *4 (-1132 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-962)) (-4 *3 (-659))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-962))
+ (-4 *2 (-779))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-872 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-725)) (-4 *6 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-872 *4 *5 *2)) (-4 *4 (-962))
+ (-4 *5 (-725)) (-4 *2 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-891 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-724)) (-4 *6 (-779))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-891 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-724))
+ (-4 *2 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-4 *2 (-823 *5)) (-5 *1 (-625 *5 *2 *3 *4))
+ (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-1127 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2122 *4))) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1132 *4)))))
(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1131 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1131 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1063 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
-(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1109)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4184)))))))
-(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1131 *4)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1074)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))) ((*1 *1 *1) (-4 *1 (-793 *2))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
-(((*1 *1) (-5 *1 (-1156))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1159)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)) (-5 *3 (-199)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1159)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1095) (-918))))) ((*1 *2) (|partial| -12 (-4 *4 (-1113)) (-4 *5 (-1131 (-377 *2))) (-4 *2 (-1131 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1113)) (-4 *4 (-1131 (-377 *2))) (-4 *2 (-1131 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2) (-12 (-5 *2 (-1159)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1055 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1158)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1158)))))
-(((*1 *1 *1) (-5 *1 (-973))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1074)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-319)) (-5 *2 (-1070 *4)) (-5 *1 (-487 *4)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-128)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1131 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1154 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1131 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1159)) (-5 *1 (-788)))))
-(((*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1074))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1074)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *4)))) (|:| -2080 (-583 (-1154 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -2080 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *6)))) (|:| -2080 (-583 (-1154 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1154 (-377 (-874 *5)))) (|:| -2080 (-583 (-1154 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1074))) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1057)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1074)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1074))) (-5 *5 (-843)) (-5 *6 (-1057)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1074)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1057)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1074)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1131 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-218 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1039 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
-(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-1074)) (|:| -1338 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1109)))) ((*1 *1 *2) (-12 (-14 *3 (-583 (-1074))) (-4 *4 (-156)) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *2) (|:| -3010 *5)) (-2 (|:| -3544 *2) (|:| -3010 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1106)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1109)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-219 (-1057))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ *3)) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 ((-1159) $)) (-15 -3600 ((-1159) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1109)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1131 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1057)) (-5 *1 (-467)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-572)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *1) (-4 *1 (-1043))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1074)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1131 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1131 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1133 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1143 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1131 *3)))))
-(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-107)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
-(((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1070 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1076 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-51)) (-5 *1 (-1088)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-961)) (-4 *2 (-1131 *4)) (-5 *1 (-413 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1070 (-286 *5)))) (-5 *3 (-1154 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1095))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4184)) (-4 *1 (-1143 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1109)) (-4 *1 (-212 *3 *4)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1043))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -2993 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2993 (-703)))) (-4 *1 (-975 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1084 *2)) (-4 *2 (-333)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-517)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1122 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1074)))))
-(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *1 *1) (-5 *1 (-437))))
-(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1070 *6)) (-1070 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1341 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1109)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1099 *3 *2)) (-4 *2 (-13 (-27) (-1095) (-400 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4174)) (-4 *1 (-374)) (-5 *2 (-843)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))))
-(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
-(((*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951))
+ (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-4 *3 (-823 *5)) (-5 *2 (-623 *3))
+ (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-583 (-2 (|:| -3567 *5) (|:| -2966 *5))))
+ (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5))
+ (-4 *6 (-593 (-377 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *4 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -3567 *4) (|:| -2966 *4))))
+ (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4))
+ (-4 *6 (-593 (-377 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *5 (-1132 *4)) (-5 *2 (-583 (-2 (|:| -3567 *5) (|:| -2966 *5))))
+ (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5))
+ (-4 *3 (-593 (-377 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *4 (-1132 *5)) (-5 *2 (-583 (-2 (|:| -3567 *4) (|:| -2966 *4))))
+ (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4))
+ (-4 *3 (-593 (-377 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-951))
+ (-5 *1 (-691)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2)
+ (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-844)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797))))
+ ((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 (-517)))))
+ (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-875 (-517))))))
+ (-5 *2 (-583 (-583 (-265 (-875 *4))))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 (-517)))) (-5 *2 (-583 (-265 (-875 *4))))
+ (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-875 (-517)))))
+ (-5 *2 (-583 (-265 (-875 *4)))) (-5 *1 (-350 *4))
+ (-4 *4 (-13 (-777) (-333)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1075))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-4 *4 (-13 (-29 *6) (-1096) (-881)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2062 (-583 *4))))
+ (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1156 *5) "failed"))
+ (|:| -2062 (-583 (-1156 *5)))))
+ (-5 *1 (-604 *5)) (-5 *4 (-1156 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1156 *5) "failed"))
+ (|:| -2062 (-583 (-1156 *5)))))
+ (-5 *1 (-604 *5)) (-5 *4 (-1156 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-583
+ (-2 (|:| |particular| (-3 (-1156 *5) "failed"))
+ (|:| -2062 (-583 (-1156 *5))))))
+ (-5 *1 (-604 *5)) (-5 *4 (-583 (-1156 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333))
+ (-5 *2
+ (-583
+ (-2 (|:| |particular| (-3 (-1156 *5) "failed"))
+ (|:| -2062 (-583 (-1156 *5))))))
+ (-5 *1 (-604 *5)) (-5 *4 (-583 (-1156 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4191))))
+ (-5 *2
+ (-583
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2062 (-583 *7)))))
+ (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7))
+ (-4 *3 (-621 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-702 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-702 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1075))
+ (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1096) (-881)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1075))
+ (-4 *7 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7)))))
+ (-5 *1 (-734 *6 *7)) (-5 *4 (-1156 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1075))
+ (-4 *6 (-13 (-29 *5) (-1096) (-881)))
+ (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-1156 *6))) (-5 *1 (-734 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109)))
+ (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7)))))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109)))
+ (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-2 (|:| |particular| (-1156 *7)) (|:| -2062 (-583 (-1156 *7)))))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1075))
+ (-4 *7 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -2062 (-583 *7))) *7 "failed"))
+ (-5 *1 (-734 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-109)) (-5 *5 (-1075))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -2062 (-583 *3))) *3 "failed"))
+ (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1096) (-881)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1096) (-881))) (-5 *1 (-734 *6 *2))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1096) (-881)))
+ (-4 *6 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-734 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-740)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1156 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4))
+ (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1156 (-286 *4))) (-5 *5 (-583 (-349)))
+ (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-951)) (-5 *1 (-737))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -2062 (-583 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-333)) (-4 *7 (-593 *6))
+ (-5 *2 (-2 (|:| |particular| (-1156 *6)) (|:| -2062 (-623 *6))))
+ (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1156 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-951)) (-5 *1 (-820))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-821)) (-5 *4 (-974)) (-5 *2 (-951)) (-5 *1 (-820))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1058))
+ (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349))
+ (-5 *2 (-951)) (-5 *1 (-820))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1058))
+ (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-951))
+ (-5 *1 (-820))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 (-377 (-517)))) (-5 *2 (-583 (-349)))
+ (-5 *1 (-939)) (-5 *4 (-349))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-939))
+ (-5 *4 (-349))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1030 *3 *4)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4))
+ (-5 *3 (-286 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4))
+ (-5 *3 (-265 (-286 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5))
+ (-5 *3 (-265 (-286 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5))
+ (-5 *3 (-286 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1075)))
+ (-4 *5 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5))
+ (-5 *3 (-583 (-265 (-286 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 *5)))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *5))))))
+ (-5 *1 (-1081 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1075))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *5)))))) (-5 *1 (-1081 *5))
+ (-5 *3 (-583 (-265 (-377 (-875 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-377 (-875 *4)))) (-4 *4 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *4)))))) (-5 *1 (-1081 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-875 *4))))))
+ (-5 *1 (-1081 *4)) (-5 *3 (-583 (-265 (-377 (-875 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-509))
+ (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1081 *5))
+ (-5 *3 (-377 (-875 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-509))
+ (-5 *2 (-583 (-265 (-377 (-875 *5))))) (-5 *1 (-1081 *5))
+ (-5 *3 (-265 (-377 (-875 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4)))))
+ (-5 *1 (-1081 *4)) (-5 *3 (-377 (-875 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-875 *4)))))
+ (-5 *1 (-1081 *4)) (-5 *3 (-265 (-377 (-875 *4)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-837 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-388 (-875 *6))) (-5 *5 (-1075)) (-5 *3 (-875 *6))
+ (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-838 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278))
+ (-4 *3 (-509)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-4 *4 (-333)) (-5 *2 (-1156 *1))
+ (-4 *1 (-299 *4))))
+ ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1156 *1)) (-4 *1 (-299 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-156)) (-4 *4 (-1132 *3)) (-5 *2 (-1156 *1))
+ (-4 *1 (-379 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4))
+ (-5 *2 (-1156 *6)) (-5 *1 (-383 *3 *4 *5 *6))
+ (-4 *6 (-13 (-379 *4 *5) (-953 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-278)) (-4 *4 (-910 *3)) (-4 *5 (-1132 *4))
+ (-5 *2 (-1156 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))
+ (-4 *6 (-379 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1156 *1)) (-4 *1 (-387 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1156 (-1156 *4))) (-5 *1 (-487 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199))))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199)))
+ (-5 *4 (-1 (-199) (-199) (-199) (-199)))
+ (-5 *2 (-1 (-866 (-199)) (-199) (-199))) (-5 *1 (-630)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))
+ ((*1 *1 *1) (-4 *1 (-207)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779))))
+ ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114))
+ (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3))
+ (-4 *3 (-1132 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-333)) (-4 *2 (-823 *3)) (-5 *1 (-534 *2))
+ (-5 *3 (-1075))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-823 *4))
+ (-4 *4 (-1004))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *1 (-823 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *1 (-823 *3)) (-4 *3 (-1004))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1132 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-583 *5))
+ (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1030 *3 *5)) (-4 *3 (-1132 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-815 *4)) (-4 *4 (-1004)) (-5 *1 (-812 *4 *3))
+ (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| A (-623 *5))
+ (|:| |eqs|
+ (-583
+ (-2 (|:| C (-623 *5)) (|:| |g| (-1156 *5)) (|:| -3779 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1156 *5))
+ (-4 *6 (-593 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *6 (-593 *5))
+ (-5 *2 (-2 (|:| -2831 (-623 *6)) (|:| |vec| (-1156 *5))))
+ (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1156 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1132 *4)) (-4 *4 (-1114))
+ (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1132 (-377 *3))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-894 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *5 (-976 *3 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-844))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333)))
+ (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5))) (-4 *7 (-312 *4 *5 *6))
+ (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-844)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-962))
+ (-4 *3 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-962)) (-4 *3 (-779))
+ (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
+ (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6)))
+ (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-953 (-517))))
+ (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703))
+ (-5 *1 (-835 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333))
+ (-4 *7 (-1132 *6)) (-4 *4 (-1132 (-377 *7))) (-4 *8 (-312 *6 *7 *4))
+ (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703))
+ (-5 *1 (-935 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-4 *3 (-509)) (-5 *2 (-703))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-962)) (-4 *2 (-724)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *6 (-1132 *5))
+ (-5 *2 (-583 (-2 (|:| -1384 *5) (|:| -3779 *3))))
+ (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
+ (-4 *7 (-593 (-377 *6))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1058))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1058)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1161))
+ (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-981 *6 *7 *8 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-1156 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-929)) (-5 *2 (-787)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6))
+ (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1147 *5)) (-4 *6 (-1132 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1148 *5 *6 *7)) (-4 *5 (-333))
+ (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-377 (-1129 *6 *5)))
+ (-5 *1 (-792 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1148 *5 *6 *7)) (-4 *5 (-333))
+ (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-377 (-1129 *6 *5)))
+ (-5 *1 (-792 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-1161))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-4 *3 (-976 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *7 *8 *9 *3 *4)) (-4 *4 (-981 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725))
+ (-4 *9 (-779)) (-4 *3 (-976 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *7 *8 *9 *3 *4)) (-4 *4 (-1013 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-779)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-583 (-1071 *7))) (-5 *3 (-1071 *7))
+ (-4 *7 (-872 *5 *6 *4)) (-4 *5 (-832)) (-4 *6 (-725))
+ (-4 *4 (-779)) (-5 *1 (-829 *5 *6 *4 *7)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-5 *1 (-984 *4 *5 *2))
+ (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1004))
+ (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 (-815 *3))))
+ (-5 *1 (-984 *3 *4 *2))
+ (-4 *2 (-13 (-400 *4) (-809 *3) (-558 (-815 *3)))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-962))
+ (-4 *2 (-421))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1132 (-517))) (-5 *2 (-583 (-517)))
+ (-5 *1 (-453 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-421))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779)) (-4 *3 (-421)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-779) (-509) (-953 (-517)))) (-5 *2 (-1161))
+ (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-844))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-844))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-866 *3) (-866 *3))) (-5 *1 (-158 *3))
+ (-4 *3 (-13 (-333) (-1096) (-919))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517)))))
+ (-4 *2 (-13 (-779) (-21))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-828 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962)) (-4 *2 (-333))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2))
+ (-4 *2 (-593 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-5 *2 (-1058)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703))
+ (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-333)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |minor| (-583 (-844))) (|:| -3779 *3)
+ (|:| |minors| (-583 (-583 (-844)))) (|:| |ops| (-583 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-844)) (-4 *3 (-593 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (|has| *1 (-6 -4181)) (-4 *1 (-374))))
+ ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-979 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-361)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1056 *4) (-1056 *4))) (-5 *2 (-1056 *4))
+ (-5 *1 (-1179 *4)) (-4 *4 (-1110))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-583 (-1056 *5)) (-583 (-1056 *5)))) (-5 *4 (-517))
+ (-5 *2 (-583 (-1056 *5))) (-5 *1 (-1179 *5)) (-4 *5 (-1110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-962)) (-4 *3 (-333))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333))
+ (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-844)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1132 *2)) (-4 *2 (-156))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-844)) (-4 *4 (-319))
+ (-5 *1 (-487 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1025 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2))
+ (-4 *5 (-212 *3 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *1 *1) (-5 *1 (-349)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-583 (-1075))) (-4 *2 (-156))
+ (-4 *4 (-212 (-3533 *5) (-703)))
+ (-14 *6
+ (-1 (-107) (-2 (|:| -2810 *3) (|:| -2356 *4))
+ (-2 (|:| -2810 *3) (|:| -2356 *4))))
+ (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779))
+ (-4 *7 (-872 *2 *4 (-789 *5))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2368 (-714 *3)) (|:| |coef1| (-714 *3))
+ (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-509)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-2 (|:| -2368 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4)
+ (-221 *4 (-377 (-517)))))
+ (-14 *4 (-583 (-1075))) (-14 *5 (-703)) (-5 *2 (-107))
+ (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
+ (-5 *1 (-437)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-725)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-951)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349)))
+ (-5 *2 (-951)) (-5 *1 (-769)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-531)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3)) (-4 *3 (-962)) (-5 *2 (-1071 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1079)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9))
+ (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725))
+ (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2551 (-583 *9))))
+ (-5 *3 (-583 *9)) (-4 *1 (-1104 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2551 (-583 *8))))
+ (-5 *3 (-583 *8)) (-4 *1 (-1104 *5 *6 *7 *8)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-1132 (-377 *3))) (-5 *2 (-844))
+ (-5 *1 (-836 *4 *5)) (-4 *5 (-1132 (-377 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1306 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-333)) (-4 *7 (-1132 *6))
+ (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6)))
+ (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1082 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1096) (-881) (-29 *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-960)))))
+(((*1 *2 *2) (-12 (-5 *2 (-999 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1) (-5 *1 (-572))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
+ (-5 *4 (-583 (-844))) (-5 *5 (-583 (-236))) (-5 *1 (-437))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *3 (-583 (-797)))
+ (-5 *4 (-583 (-844))) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-437))))
+ ((*1 *1 *1) (-5 *1 (-437))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1097 *3))) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110)) (-4 *2 (-779))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-779)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-960)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-844))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2 (-1056 (-199))) (-5 *1 (-168))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1075)))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *4 (-583 (-1075)))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-437)) (-5 *4 (-844)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-962)))
+ (-5 *2 (-1058)) (-5 *1 (-758 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-107))
+ (-4 *5 (-13 (-760) (-779) (-962))) (-5 *2 (-1058))
+ (-5 *1 (-758 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-754)) (-5 *4 (-286 *5))
+ (-4 *5 (-13 (-760) (-779) (-962))) (-5 *2 (-1161))
+ (-5 *1 (-758 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107))
+ (-4 *6 (-13 (-760) (-779) (-962))) (-5 *2 (-1161))
+ (-5 *1 (-758 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1058))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1058))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1161))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1161)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-703)) (-4 *4 (-319))
+ (-5 *1 (-487 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-692)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004))
+ (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-659))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1004)) (-5 *2 (-812 *3 *4)) (-5 *1 (-808 *3 *4 *5))
+ (-4 *3 (-1004)) (-4 *5 (-603 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-953 (-517)))) (-4 *5 (-400 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1071 (-377 (-517))))
+ (|:| |overan| (-1071 (-47))) (|:| -3208 (-107))))
+ (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-14 *5 (-583 (-1075))) (-5 *2 (-583 (-583 (-940 (-377 *4)))))
+ (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-107))
+ (-4 *5 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *5))))) (-5 *1 (-1180 *5 *6 *7))
+ (-14 *6 (-583 (-1075))) (-14 *7 (-583 (-1075)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-875 *4)))
+ (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-5 *2 (-583 (-583 (-940 (-377 *4))))) (-5 *1 (-1180 *4 *5 *6))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-583 (-1075))))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-123))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-331 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-356 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-586 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1132 *4)) (-4 *4 (-1114))
+ (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1132 (-377 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1156 *1)) (-4 *4 (-156))
+ (-4 *1 (-337 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1156 *1)) (-4 *4 (-156))
+ (-4 *1 (-340 *4 *5)) (-4 *5 (-1132 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4))
+ (-4 *4 (-1132 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-493)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1132 *4)) (-5 *1 (-742 *4 *2))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1132 *4))
+ (-5 *1 (-742 *4 *2))
+ (-4 *4 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-982 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156))))
+ ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-517)))))
+ (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1132 *3))
+ (-5 *2 (-583 (-1071 *3))) (-5 *1 (-463 *3 *5 *6))
+ (-4 *6 (-1132 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1088 *4 *5))
+ (-4 *4 (-1004)) (-4 *5 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-962)) (-4 *4 (-724))
+ (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004))
+ (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-659)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-623 *2)) (-5 *4 (-703))
+ (-4 *2 (-13 (-278) (-10 -8 (-15 -1581 ((-388 $) $)))))
+ (-4 *5 (-1132 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1071 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-583 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1132 *5))
+ (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1132 *6))
+ (-14 *7 (-844)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1004))
+ (-4 *6 (-1110)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1004))
+ (-4 *2 (-1110)) (-5 *1 (-580 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1004))
+ (-4 *5 (-1110)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1004))
+ (-4 *2 (-1110)) (-5 *1 (-580 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6))
+ (-4 *5 (-1004)) (-4 *6 (-1110)) (-5 *1 (-580 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1004)) (-4 *2 (-1110)) (-5 *1 (-580 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-131)) (-5 *2 (-703)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779))
+ (-4 *4 (-725)) (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1021))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
+ ((*1 *1 *1) (-4 *1 (-1044))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787))
+ (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1004)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-962))
+ (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-787))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1071 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-703)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-51)) (-5 *1 (-1089)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4))
+ (-4 *3 (-13 (-1004) (-33))) (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
+ (-4 *4 (-779)) (-5 *1 (-1082 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 (-517))) (-5 *2 (-517)) (-5 *1 (-865)))))
(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1146 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1148 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1038))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1131 (-517))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1070 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1070 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-843))) ((*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
-(((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1074))) (-14 *3 (-583 (-1074))) (-4 *4 (-357)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1) (-4 *1 (-918))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-928))))
-(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1074))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1965 *3) (|:| -3838 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -3398 (-874 *6)) (|:| -2803 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1131 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1131 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1070 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1070 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1131 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1131 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1070 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1131 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1131 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1131 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1131 (-377 (-874 (-517))))))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1131 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1131 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1070 (-377 *7)))) (-5 *1 (-1069 *4 *5 *6 *7)) (-5 *3 (-1070 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1113)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1074)) (-14 *5 *3))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1092 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1131 (-517))))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1074)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1095) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1106)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1109)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1074))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 (-286 (-199)))) (-5 *4 (-583 (-1074))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1055 (-199))) (-5 *1 (-271)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1131 *4)) (-4 *4 (-961)) (-5 *2 (-1154 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-517)) (-5 *1 (-215)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-953 (-377 *2)))) (-5 *2 (-517))
+ (-5 *1 (-110 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1022)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509))
+ (-4 *8 (-872 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2356 (-703)) (|:| -1580 *3) (|:| |radicand| *3)))
+ (-5 *1 (-876 *5 *6 *7 *8 *3)) (-5 *4 (-703))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -3824 (*8 $)) (-15 -2097 (*8 $)) (-15 -2269 ($ *8))))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))
+ ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-623 *4))) (-4 *4 (-156))
+ (-5 *2 (-1156 (-623 (-875 *4)))) (-5 *1 (-165 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1075)) (-5 *1 (-493)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-1075)) (|:| |c| (-1176 *3)))))
+ (-5 *1 (-1176 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1178 *3 *4)))))
+ (-5 *1 (-1178 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-1159)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *9 (-981 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-979 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
+ (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517))
+ (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1004)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1079)) (-5 *1 (-1078)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-5 *2 (-1071 *3)) (-5 *1 (-1085 *3))
+ (-4 *3 (-333)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-991 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-991 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-156)) (-4 *2 (-1132 *4)) (-5 *1 (-159 *4 *2 *3))
+ (-4 *3 (-657 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-377 (-875 *5)))) (-5 *4 (-1075))
+ (-5 *2 (-875 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-875 *4)))) (-5 *2 (-875 *4))
+ (-5 *1 (-263 *4)) (-4 *4 (-421))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
+ (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1075))
+ (-5 *2 (-875 (-153 (-377 (-517))))) (-5 *1 (-697 *5))
+ (-4 *5 (-13 (-333) (-777)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-875 (-377 (-517))))
+ (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1075))
+ (-5 *2 (-875 (-377 (-517)))) (-5 *1 (-711 *5))
+ (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058)))))
+ (-5 *2 (-951)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3615 (-349)) (|:| -2987 (-1058))
+ (|:| |explanations| (-583 (-1058))) (|:| |extra| (-951))))
+ (-5 *2 (-951)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-215))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1161)) (-5 *1 (-215)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-60 *3)) (-14 *3 (-1075))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-67 *3)) (-14 *3 (-1075))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-70 *3)) (-14 *3 (-1075))))
+ ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1161))))
+ ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1161)) (-5 *1 (-367))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038))))
+ ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1161)) (-5 *1 (-1038))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1161)) (-5 *1 (-1038)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1178 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-751 *3)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1058)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-866 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *3 (-962)) (-4 *1 (-1036 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-866 *3))) (-4 *1 (-1036 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1004)) (-4 *2 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5))
+ (-4 *3 (-1132 *4))
+ (-4 *5 (-13 (-374) (-953 *4) (-333) (-1096) (-256))))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1075))) (-5 *1 (-100)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-51))) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-880 *3)) (-5 *1 (-1063 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509))))
+ ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-685)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-300)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1156 (-632))) (-5 *1 (-276)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-1002 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-361)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199)))))
+ (-5 *1 (-512))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199)))) (|:| |yinit| (-583 (-199)))
+ (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199)))
+ (|:| |abserr| (-199)) (|:| |relerr| (-199)))))
+ (-5 *1 (-735)))))
+(((*1 *2)
+ (-12 (-14 *4 (-703)) (-4 *5 (-1110)) (-5 *2 (-125))
+ (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4))
+ (-4 *3 (-299 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-156))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-962)) (-5 *2 (-844))))
+ ((*1 *2) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1))
+ (-4 *1 (-976 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-517)))))
+ (-5 *1 (-331 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-703)))))
+ (-5 *1 (-356 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| -3866 *3) (|:| -2356 (-517)))))
+ (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3868 (-703)))))
+ (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3367 *5))))
+ (-4 *5 (-1132 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5))
+ (-5 *1 (-191 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| -3866 *5) (|:| -2769 (-517)))))
+ (-5 *4 (-517)) (-4 *5 (-1132 *4)) (-5 *2 (-583 *5))
+ (-5 *1 (-629 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1156 *5))) (-5 *4 (-517)) (-5 *2 (-1156 *5))
+ (-5 *1 (-945 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-1075)) (-4 *6 (-400 *5))
+ (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107))
+ (-5 *1 (-1181 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-832)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-832)) (-4 *5 (-1132 *4)) (-5 *2 (-388 (-1071 *5)))
+ (-5 *1 (-830 *4 *5)) (-5 *3 (-1071 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1161)) (-5 *1 (-361))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-361)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-981 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-981 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-777)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1878 (-388 *3))))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-1132 (-153 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1132 *4))
+ (-5 *2 (-2 (|:| -4156 (-564 *4 *5)) (|:| -2305 (-377 *5))))
+ (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4))
+ (-14 *3 (-844)) (-4 *4 (-962))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-421)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1132 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-512)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-962)) (-4 *4 (-1132 *3)) (-5 *1 (-148 *3 *4 *2))
+ (-4 *2 (-1132 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-703)) (-5 *1 (-1005 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *6))))
+ (-5 *4 (-942 (-772 (-517)))) (-5 *5 (-1075)) (-5 *7 (-377 (-517)))
+ (-4 *6 (-962)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-787)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1132 (-377 *2)))
+ (-4 *2 (-1132 *5)) (-5 *1 (-190 *5 *2 *6 *3))
+ (-4 *3 (-312 *5 *2 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1058) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-1156 (-623 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1169 (-1075) *3)) (-4 *3 (-962)) (-5 *1 (-1176 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *1 (-1178 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3866 *4) (|:| -2769 (-517)))))
+ (-4 *4 (-1132 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1132 *3))
+ (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1147 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1147 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-13 (-509) (-134)))
+ (-5 *1 (-1052 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-583 (-984 *4 *5 *2))) (-4 *4 (-1004))
+ (-4 *5 (-13 (-962) (-809 *4) (-779) (-558 (-815 *4))))
+ (-4 *2 (-13 (-400 *5) (-809 *4) (-558 (-815 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-583 (-984 *5 *6 *2))) (-5 *4 (-844)) (-4 *5 (-1004))
+ (-4 *6 (-13 (-962) (-809 *5) (-779) (-558 (-815 *5))))
+ (-4 *2 (-13 (-400 *6) (-809 *5) (-558 (-815 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-387 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| -2581 (-1075)) (|:| -1860 (-407)))))
+ (-5 *1 (-1079)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-156))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3 *4)) (-4 *3 (-779))
+ (-4 *4 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-517))
+ (-5 *6
+ (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))))
+ (-5 *7 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-517))
+ (-5 *6
+ (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3462 (-349))))
+ (-5 *7 (-1 (-1161) (-1156 *5) (-1156 *5) (-349)))
+ (-5 *3 (-1156 (-349))) (-5 *5 (-349)) (-5 *2 (-1161))
+ (-5 *1 (-720)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096)))))
+ ((*1 *1 *1 *1) (-4 *1 (-725))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-844)) (-5 *1 (-718)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-583
+ (-2
+ (|:| -2581
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1860
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-512))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1110))
+ (-5 *2 (-583 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-4 *7 (-1132 (-377 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3832 *3)))
+ (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2
+ (-2 (|:| |answer| (-377 *6)) (|:| -3832 (-377 *6))
+ (|:| |specpart| (-377 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5))
+ (-4 *3 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1074))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1074))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1074)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))))
-(((*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4185 "*"))) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -3680 (-583 (-199))))) (-5 *2 (-583 (-1074))) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1074))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1074))) (-5 *1 (-957 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))))
-(((*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1079))) (-5 *1 (-1079)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-872 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-583 (-1080))) (-5 *1 (-803)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1004)) (-4 *5 (-1004))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1075)) (-4 *5 (-400 *4))
+ (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-962)) (-4 *4 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517))))
+ (-4 *1 (-400 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-109)) (-4 *4 (-962)) (-4 *4 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517))))
+ (-4 *1 (-400 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-779))
+ (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2356 (-517))))
+ (-4 *1 (-400 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-815 *3)) (|:| -2356 (-703))))
+ (-5 *1 (-815 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2356 (-703))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2356 (-517))))
+ (-5 *1 (-873 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $))
+ (-15 -2097 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1006 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1006 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2))
+ (-4 *2 (-400 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-997 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-143 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-145))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1075)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1110)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199))
+ (-5 *7 (-623 (-517)))
+ (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-517)) (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1132 *5)) (-4 *5 (-278))
+ (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-367)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107))
+ (-4 *4 (-13 (-1096) (-29 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-198 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2368 *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1875 *1) (|:| -4177 *1) (|:| |associate| *1)))
+ (-4 *1 (-509)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-327 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-107))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *3 (-875 *6)) (-5 *4 (-1075))
+ (-5 *5 (-772 *7))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-4 *7 (-13 (-1096) (-29 *6))) (-5 *1 (-198 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1071 *6)) (-5 *4 (-772 *6))
+ (-4 *6 (-13 (-1096) (-29 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-198 *5 *6)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1169 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))
+ (-5 *1 (-601 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1174 *3 *4))
+ (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725))
+ (-4 *6 (-509)) (-4 *7 (-872 *6 *5 *3))
+ (-5 *1 (-431 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-953 (-377 (-517))) (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $))
+ (-15 -2097 (*7 $))))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-951)) (-5 *3 (-1075)) (-5 *1 (-168)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1075)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1111 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-888 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-509)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-919) (-1096)))
+ (-4 *4 (-13 (-509) (-779)))
+ (-4 *2 (-13 (-400 (-153 *4)) (-919) (-1096)))
+ (-5 *1 (-546 *4 *5 *2)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1114)) (-4 *5 (-1132 (-377 *2)))
+ (-4 *2 (-1132 *4)) (-5 *1 (-311 *3 *4 *2 *5))
+ (-4 *3 (-312 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1114))
+ (-4 *4 (-1132 (-377 *2))) (-4 *2 (-1132 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-872 *4 *5 *6)) (-4 *6 (-558 (-1075)))
+ (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *2 (-1065 (-583 (-875 *4)) (-583 (-265 (-875 *4)))))
+ (-5 *1 (-469 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-13 (-333) (-134)))
+ (-5 *1 (-369 *3 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-866 *5)) (-4 *5 (-962)) (-5 *2 (-703))
+ (-5 *1 (-1064 *4 *5)) (-14 *4 (-844))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1064 *4 *5))
+ (-14 *4 (-844)) (-4 *5 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-866 *5)) (-4 *5 (-962))
+ (-5 *1 (-1064 *4 *5)) (-14 *4 (-844)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075)))
+ (-4 *6 (-13 (-509) (-953 *5))) (-4 *5 (-509))
+ (-5 *2 (-583 (-583 (-265 (-377 (-875 *6)))))) (-5 *1 (-954 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1123 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1056 (-1056 *4))) (-5 *2 (-1056 *4)) (-5 *1 (-1060 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *6)) (-4 *6 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-1071 *7)) (-5 *1 (-291 *4 *5 *6 *7))
+ (-4 *7 (-872 *6 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6))
+ (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-872 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-828 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1096) (-400 *3)))
+ (-14 *4 (-1075)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-4 *2 (-13 (-27) (-1096) (-400 *3) (-10 -8 (-15 -2269 ($ *4)))))
+ (-4 *4 (-777))
+ (-4 *5
+ (-13 (-1134 *2 *4) (-333) (-1096)
+ (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $)))))
+ (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-901 *5)) (-14 *7 (-1075)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-962)) (-4 *2 (-1132 *5))
+ (-5 *1 (-1150 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1147 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1077 (-377 (-517)))) (-5 *2 (-377 (-517)))
+ (-5 *1 (-166)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-1026 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-377 (-875 *3))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1040 *4 *5)) (-4 *4 (-13 (-1004) (-33)))
+ (-4 *5 (-13 (-1004) (-33))) (-5 *2 (-107)) (-5 *1 (-1041 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1004)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1077 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-868 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-421))
+ (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1104 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3298 *7) (|:| |sol?| (-107)))
+ (-517) *7))
+ (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1132 *7))
+ (-5 *3 (-377 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1161)) (-5 *1 (-189 *3))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 (*2 $))
+ (-15 -3177 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-364))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-364))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-467))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1091))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1161)) (-5 *1 (-1091)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-815 *3)) (|:| |den| (-815 *3))))
+ (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1724)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240))))
+ ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-919)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273))))
+ ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107))
+ (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-919) (-1096))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1070 (-377 (-1070 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2254 ($ *7)) (-15 -1842 (*7 $)) (-15 -1852 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1070 (-377 (-874 *5))))) (-5 *4 (-1074)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) ((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1376 *3) (|:| -3010 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2643 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-1113)) (-4 *6 (-1131 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
-(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1109)) (-5 *2 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1055 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2554 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2290 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3544 *5) (|:| -3010 *6)) (-2 (|:| -3544 *5) (|:| -3010 *6)))) (-14 *4 (-583 (-1074))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1131 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2984 *5) (|:| -2769 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2984 *4) (|:| -2769 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1131 *4)) (-5 *2 (-583 (-2 (|:| -2984 *5) (|:| -2769 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1131 *5)) (-5 *2 (-583 (-2 (|:| -2984 *4) (|:| -2769 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1095)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 (-153 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1099 *4 *3)) (-4 *3 (-13 (-27) (-1095) (-400 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1074))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158))))
+ ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1158)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1042 *3 *4)) (-14 *3 (-844)) (-4 *4 (-333))
+ (-5 *1 (-911 *3 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2122 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779))
+ (-4 *8 (-872 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1156 (-377 *8)) "failed"))
+ (|:| -2062 (-583 (-1156 (-377 *8))))))
+ (-5 *1 (-606 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-98 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1132 *4))
+ (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1132 *5)) (-14 *6 (-844))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-4 *3 (-338))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-844)) (-5 *1 (-632))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-333)) (-5 *1 (-896 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1159))))
+ ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1159)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1075))) (-4 *6 (-421))
+ (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7))
+ (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-1071 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1071 *3)))
+ (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075))
+ (-5 *2 (-583 *4)) (-5 *1 (-1018 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779))
+ (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8))
+ (-4 *8 (-872 *3 *7 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-972 *4 *3))
+ (-4 *3 (-1132 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *1) (-5 *1 (-1078))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1056 *3)) (-4 *3 (-1004))
+ (-4 *3 (-1110)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8))
+ (-4 *8 (-872 *5 *7 *6)) (-4 *5 (-13 (-278) (-134)))
+ (-4 *6 (-13 (-779) (-558 (-1075)))) (-4 *7 (-725)) (-5 *2 (-107))
+ (-5 *1 (-847 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199)))
+ (-5 *3 (-199)) (-5 *2 (-951)) (-5 *1 (-683)))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349)))
+ ((*1 *1) (-5 *1 (-349))))
+(((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-319)) (-5 *2 (-1071 *4))
+ (-5 *1 (-487 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-955)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-725)) (-4 *3 (-872 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779))
+ (-5 *1 (-418 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-951))
+ (-5 *1 (-687)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1080))) (-5 *1 (-1080))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-583 (-1080))) (-5 *1 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8)))
+ (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3831 *8)))
+ (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-981 *4 *5 *6 *7)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-962)) (-4 *3 (-724))
+ (-4 *2 (-333))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199))))
+ ((*1 *1 *1 *1)
+ (-3745 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1110)))
+ (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1110)))))
+ ((*1 *1 *1 *1) (-4 *1 (-333)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1027 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779))
+ (-4 *1 (-400 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-442)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-493)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4))
+ (-4 *3 (|SubsetCategory| (-659) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4))
+ (-4 *2 (|SubsetCategory| (-659) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4))
+ (-4 *3 (|SubsetCategory| (-659) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))
+ (-4 *2 (|SubsetCategory| (-659) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333))
+ (-4 *2 (-962)) (-14 *3 (-583 (-1075))) (-14 *4 (-583 (-703)))
+ (-14 *5 (-703))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-962))
+ (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-333))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-333)) (-4 *2 (-962)) (-4 *3 (-779))
+ (-4 *4 (-725)) (-14 *6 (-583 *3))
+ (-5 *1 (-1166 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-872 *2 *4 *3))
+ (-14 *7 (-583 (-703))) (-14 *8 (-703))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-333)) (-4 *2 (-962))
+ (-4 *3 (-775)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-377 (-875 (-153 (-517))))))
+ (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-265 (-377 (-875 (-153 (-517)))))))
+ (-5 *2 (-583 (-583 (-265 (-875 (-153 *4)))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 (-153 (-517)))))
+ (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-265 (-377 (-875 (-153 (-517))))))
+ (-5 *2 (-583 (-265 (-875 (-153 *4))))) (-5 *1 (-348 *4))
+ (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1004)) (-4 *2 (-779))
+ (-5 *1 (-108 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-753)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1075))
+ (-4 *2 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *5 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 *8)) (-4 *8 (-872 *5 *7 *6))
+ (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1075))))
+ (-4 *7 (-725))
+ (-5 *2
+ (-583
+ (-2 (|:| -3736 (-703))
+ (|:| |eqns|
+ (-583
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-517)))
+ (|:| |cols| (-583 (-517))))))
+ (|:| |fgb| (-583 *8)))))
+ (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-703)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3)))
+ (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-781 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -2525 *3) (|:| -1451 *3))) (-5 *1 (-782 *5 *3))
+ (-4 *3 (-781 *5)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2))
+ (-4 *2 (-1132 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1132 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-583 *5))
+ (-5 *1 (-813 *4 *5)) (-4 *5 (-1110)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1075)))
+ (-4 *2 (-13 (-400 (-153 *5)) (-919) (-1096)))
+ (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2))
+ (-4 *6 (-13 (-400 *5) (-919) (-1096))))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-125)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-189 *2))
+ (-4 *2
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $))
+ (-15 -3177 ((-1161) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-21)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1071 (-875 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333))
+ (-5 *2 (-1071 (-875 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-815 *4)) (-4 *4 (-1004)) (-5 *2 (-1 (-107) *5))
+ (-5 *1 (-813 *4 *5)) (-4 *5 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1075))) (-4 *5 (-962))
+ (-5 *2 (-221 *4 *5)) (-5 *1 (-867 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1129 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1075))
+ (-5 *2 (-517)) (-5 *1 (-1018 *4 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1058)) (-5 *3 (-517)) (-5 *1 (-215)))))
+(((*1 *1) (-5 *1 (-300))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-962))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-156)) (-4 *2 (-962)) (-5 *1 (-647 *2 *3))
+ (-4 *3 (-585 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1075))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-4 *7 (-910 *4)) (-4 *2 (-621 *7 *8 *9))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2)) (-4 *2 (-278))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-962))
+ (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-189 *2))
+ (-4 *2
+ (-13 (-779)
+ (-10 -8 (-15 -2607 ((-1058) $ (-1075))) (-15 -1756 ((-1161) $))
+ (-15 -3177 ((-1161) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1110))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-123))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2))
+ (-4 *2 (-1132 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-493)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-866 (-199))) (-5 *1 (-1107))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1110)) (-4 *2 (-25)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4))
+ (-4 *4 (-793 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-1118 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-1147 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1118 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1147 *2)))))
(((*1 *1 *1 *1) (-5 *1 (-787))))
-(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1055 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4184)) (-4 *1 (-1143 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
-(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1103 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1095) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1043)) (-5 *3 (-131)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2533 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1131 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1) (-4 *1 (-319)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4))
+ (-4 *4 (-13 (-509) (-779) (-134)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1071 *5)))
+ (|:| |prim| (-1071 *5))))
+ (-5 *1 (-402 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-509) (-779) (-134)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1071 *3))
+ (|:| |pol2| (-1071 *3)) (|:| |prim| (-1071 *3))))
+ (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-1075)) (-4 *5 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517))
+ (|:| |prim| (-1071 *5))))
+ (-5 *1 (-882 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-875 *5))) (-5 *4 (-583 (-1075)))
+ (-4 *5 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 *5)))
+ (|:| |prim| (-1071 *5))))
+ (-5 *1 (-882 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-875 *6))) (-5 *4 (-583 (-1075))) (-5 *5 (-1075))
+ (-4 *6 (-13 (-333) (-134)))
+ (-5 *2
+ (-2 (|:| -1580 (-583 (-517))) (|:| |poly| (-583 (-1071 *6)))
+ (|:| |prim| (-1071 *6))))
+ (-5 *1 (-882 *6)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-1158)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-703)) (-4 *5 (-156))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703))
+ (-4 *4 (-156))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-343 *2))
+ (-4 *4 (-343 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3))
+ (-4 *4 (-343 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1042 *2 *3)) (-14 *2 (-703)) (-4 *3 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-888 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4))
+ (-4 *6 (-1132 *5)) (-4 *7 (-1132 (-377 *6)))
+ (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-953 (-517))))
+ (-5 *2 (-2 (|:| -2053 (-703)) (|:| -2225 *8)))
+ (-5 *1 (-834 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6))
+ (-4 *4 (-1132 (-377 (-517)))) (-4 *5 (-1132 (-377 *4)))
+ (-4 *6 (-312 (-377 (-517)) *4 *5))
+ (-5 *2 (-2 (|:| -2053 (-703)) (|:| -2225 *6)))
+ (-5 *1 (-835 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114))
+ (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-583 (-583 (-155)))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33))))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-999 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-630)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-338))
+ (-5 *2 (-703)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
+ (-5 *1 (-1082 *4)) (-4 *4 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1097 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-1110)) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-914 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-925 *3)) (-4 *3 (-953 (-377 (-517)))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1713 *3))))
+ (-5 *4 (-703)) (-4 *3 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-1058)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349)))))
+(((*1 *1) (-5 *1 (-1157))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4))
+ (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-883 *3)) (-4 *3 (-502)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-725)) (-4 *6 (-872 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779))
+ (-5 *1 (-418 *4 *3 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-971)) (-4 *3 (-1096))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-333))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333))
+ (-5 *2
+ (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6))))
+ (-5 *1 (-896 *6)) (-5 *3 (-623 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1) (-4 *1 (-1044))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-962)) (-5 *1 (-1060 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1148 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1075))
+ (-14 *4 *2))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2))
+ (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-872 *4 *5 *6)) (-5 *2 (-583 (-583 *7)))
+ (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *8 (-872 *5 *6 *7)) (-5 *2 (-583 (-583 *8)))
+ (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3))
+ (-4 *3 (-1132 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3))
+ (-5 *1 (-411 *3)) (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3))
+ (-4 *3 (-1132 (-517)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-924 *3))
+ (-4 *3 (-1132 (-377 (-517))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-388 *3)) (-5 *1 (-1121 *3)) (-4 *3 (-1132 (-517))))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1095) (-918))) (-5 *1 (-158 *3)))))
-(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1159)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1055 (-517))) (-5 *1 (-1059 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1131 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1074)) (-14 *4 *2))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1131 *3) (-509) (-10 -8 (-15 -1387 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1134 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1101 *3 *2)) (-4 *2 (-13 (-400 *3) (-1095))))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3667 ((-1074) $)) (-15 -3518 ((-3 $ "failed") (-1074)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1081 *6)) (-5 *5 (-583 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1057)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1070 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
-(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)) (-5 *3 (-583 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1081 *4)))))
-(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-56 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4183)) (-4 *1 (-138 *2)) (-4 *2 (-1109)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1465 (-1070 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-13 (-509) (-779))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1131 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1131 *2)) (-4 *4 (-1131 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) ((*1 *1 *1) (-5 *1 (-460))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1131 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1053 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1103 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1154 *5)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-1153 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1074)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4124 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1095) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))))
-(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1074))))))
-(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1095))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1070 (-377 (-1070 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1070 *6)) (-4 *7 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-1131 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1131 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1070 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1059 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1057)))))
-(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1074))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1965 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1063 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3458 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1154 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1338 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1261 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1103 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1261 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1103 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-961)) (-4 *1 (-1131 *3)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1437 ((-1057) $ (-1074))) (-15 -1253 (*2 $)) (-15 -3600 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-364)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-467)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1159)) (-5 *1 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-1131 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-1131 *3)) (-4 *5 (-1131 (-377 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1131 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1074)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1065 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1119 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1131 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 *4)) (-14 *4 (-1074)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1074))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1074))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *6 (-583 (-1074))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1178 *5 *6 *7)) (-14 *6 (-583 (-1074))) (-14 *7 (-583 (-1074))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1178 *4 *5 *6)) (-14 *5 (-583 (-1074))) (-14 *6 (-583 (-1074))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1074))) (-5 *3 (-1074)) (-5 *1 (-493)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1074))) (-5 *2 (-1074)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1074)) (|:| |fn| (-286 (-199))) (|:| -2554 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3819 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1131 *5)) (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1131 *6)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1109)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1057)) (-5 *2 (-1159)) (-5 *1 (-1155)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1057)) (-5 *2 (-349)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1131 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1131 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1074))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1074))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-1113)) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| -1965 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1131 (-377 *5))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))))
-(((*1 *1) (-5 *1 (-512))))
-(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1138 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1115 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1064 (-1074) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1074))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1) (-12 (-14 *2 (-583 (-1074))) (-4 *3 (-156)) (-4 *5 (-212 (-2290 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *4) (|:| -3010 *5)) (-2 (|:| -3544 *4) (|:| -3010 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1039 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1040 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1039 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1040 *3 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1159)) (-5 *1 (-1156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1219 (-583 *6)) (|:| -1602 (-583 *6)))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1109)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))) ((*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))) ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4124 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1131 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1074) (-1057) (-1079))) (-5 *1 (-1079)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1057)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-408 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-982 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1074))))
-(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
-(((*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1131 (-517))) (-5 *1 (-453 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3207 *4) (|:| -2099 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1131 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1131 *3)) (-5 *2 (-623 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1057)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1131 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1095))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1131 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1131 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1095) (-256))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1070 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1074))))) ((*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1074))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1074))) (-4 *5 (-212 (-2290 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3544 *4) (|:| -3010 *5)) (-2 (|:| -3544 *4) (|:| -3010 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1131 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1131 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-953 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1) (-4 *1 (-458)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-797))
+ (-5 *5 (-844)) (-5 *6 (-583 (-236))) (-5 *2 (-1157))
+ (-5 *1 (-1160))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-583 (-866 (-199))))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-1157)) (-5 *1 (-1160)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-844)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-236)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-844)) (-5 *1 (-1005 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-875 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
+ ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1004) (-953 *5)))
+ (-4 *5 (-809 *4)) (-4 *4 (-1004)) (-5 *2 (-1 (-107) *5))
+ (-5 *1 (-854 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1085 *2)) (-4 *2 (-333)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131)))
+ ((*1 *1 *1) (-4 *1 (-1044))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-725))
+ (-4 *3 (-13 (-779) (-10 -8 (-15 -3357 ((-1075) $))))) (-4 *5 (-509))
+ (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-872 (-377 (-875 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *3
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-5 *1 (-902 *4 *5 *3 *2)) (-4 *2 (-872 (-875 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *6))
+ (-4 *6
+ (-13 (-779)
+ (-10 -8 (-15 -3357 ((-1075) $))
+ (-15 -3750 ((-3 $ "failed") (-1075))))))
+ (-4 *4 (-962)) (-4 *5 (-725)) (-5 *1 (-902 *4 *5 *6 *2))
+ (-4 *2 (-872 (-875 *4) *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-1159)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-826 *3)) (-4 *3 (-1004)) (-5 *2 (-107))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1004)) (-5 *2 (-107)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-962) (-779)))
+ (-14 *3 (-583 (-1075))))))
+(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1110)) (-5 *1 (-1034 *4 *2))
+ (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4190) (-6 -4191))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-4 *3 (-1110)) (-5 *1 (-1034 *3 *2))
+ (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4190) (-6 -4191)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1082 *4))
+ (-5 *3 (-583 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1075))) (-4 *6 (-421))
+ (-5 *2
+ (-2 (|:| |dpolys| (-583 (-221 *5 *6)))
+ (|:| |coords| (-583 (-517)))))
+ (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1071 (-377 (-875 *3)))) (-5 *1 (-422 *3 *4 *5 *6))
+ (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-844))
+ (-14 *5 (-583 (-1075))) (-14 *6 (-1156 (-623 *3))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1132 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-872 *4 *3 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1058)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-236)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-866 *3)) (-4 *3 (-13 (-333) (-1096) (-919)))
+ (-5 *1 (-158 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071 *1)) (-4 *1 (-929)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *2 (-13 (-374) (-953 *5) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-297 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1110)) (-5 *1 (-480 *3 *4))
+ (-14 *4 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-844)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5))
+ (-14 *3 (-517)) (-14 *4 (-703)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))
+ ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-942 *3)) (-4 *3 (-1110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-872 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 *7)))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1071 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-421)) (-4 *3 (-962)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *2 (-388 *1)) (-4 *1 (-872 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3))
+ (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-872 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421))
+ (-4 *7 (-872 *6 *4 *5)) (-5 *2 (-388 (-1071 (-377 *7))))
+ (-5 *1 (-1070 *4 *5 *6 *7)) (-5 *3 (-1071 (-377 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1114))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1135 *4 *3))
+ (-4 *3 (-13 (-1132 *4) (-509) (-10 -8 (-15 -2368 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-938)))
+ (-14 *5 (-583 (-1075)))
+ (-5 *2
+ (-583 (-1046 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))))
+ (-5 *1 (-1180 *4 *5 *6)) (-14 *6 (-583 (-1075))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1178 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779))
+ (-4 *2 (-156))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-751 *4)) (-4 *1 (-1171 *4 *2)) (-4 *4 (-779))
+ (-4 *2 (-962))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-962)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *3) (-12 (-5 *3 (-866 *2)) (-5 *1 (-900 *2)) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1058)) (-5 *5 (-623 (-199))) (-5 *6 (-199))
+ (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *1 *1 *1) (-5 *1 (-349)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *5)) (-4 *5 (-724)) (-5 *2 (-107))
+ (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-107))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-872 *7 *5 *6))
+ (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-278)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))
+ (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-844))
+ (-14 *4 (-844))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319))
+ (-14 *4
+ (-3 (-1071 *3)
+ (-1156 (-583 (-2 (|:| -3119 *3) (|:| -2810 (-1022)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319))
+ (-14 *4 (-844)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725))
+ (-5 *2 (-107)) (-5 *1 (-905 *3 *4 *5 *6))
+ (-4 *6 (-872 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-688)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-333)) (-4 *3 (-962))
+ (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-951))
+ (-5 *1 (-679)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844)) (-5 *2 (-1071 *4)) (-5 *1 (-327 *4))
+ (-4 *4 (-319)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1132 (-47))))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-703)) (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1141 *3 *4 *5)) (-4 *3 (-13 (-333) (-779)))
+ (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *3 (-1132 *4)) (-4 *2 (-1147 *4))
+ (-5 *1 (-1150 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-888 *4 *2))
+ (-4 *2 (-1132 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-779) (-953 (-517)) (-421) (-579 (-517))))
+ (-5 *2 (-2 (|:| -3725 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517))))) (-4 *6 (-1132 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3779 *3))))
+ (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6))
+ (-4 *7 (-593 (-377 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3779 (-591 *6 (-377 *6))))))
+ (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3))
+ (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2))
+ (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-972 *2 *3))
+ (-4 *3 (-1132 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 (-875 *4))) (-5 *3 (-583 (-1075))) (-4 *4 (-421))
+ (-5 *1 (-841 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-802 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-232 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802 *5)) (-5 *4 (-997 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-232 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-5 *2 (-1035 (-199))) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1035 (-199))) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-805 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-232 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-805 *5)) (-5 *4 (-997 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1035 (-199)))
+ (-5 *1 (-232 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-815 *6)))
+ (-5 *5 (-1 (-812 *6 *8) *8 (-815 *6) (-812 *6 *8))) (-4 *6 (-1004))
+ (-4 *8 (-13 (-962) (-558 (-815 *6)) (-953 *7))) (-5 *2 (-812 *6 *8))
+ (-4 *7 (-13 (-962) (-779))) (-5 *1 (-864 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1156 (-286 (-199)))) (-5 *4 (-583 (-1075)))
+ (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-4 *6 (-823 *5)) (-5 *2 (-623 *6))
+ (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6))
+ (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4190)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3))
+ (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
+ (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6))
+ (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-962))
+ (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1132 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-962))
+ (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1132 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-962))
+ (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703))
+ (-5 *1 (-868 *4 *5)) (-4 *5 (-1132 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-844))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-456 *3)) (-4 *3 (-1110))
+ (-5 *2 (-583 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1056 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1058)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1058)) (-5 *1 (-92)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787)))
+ ((*1 *1)
+ (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725))
+ (-5 *1 (-905 *2 *3 *4 *5)) (-4 *5 (-872 *2 *4 *3))))
+ ((*1 *1)
+ (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1004) (-33)))
+ (-4 *3 (-13 (-1004) (-33)))))
+ ((*1 *1) (-5 *1 (-1078))) ((*1 *1) (-5 *1 (-1079))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-927 *3)) (-4 *3 (-1110)) (-4 *3 (-1004))
+ (-5 *2 (-107)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-779))
+ (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1071 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3))
+ (-4 *3 (-333)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1071 *3))
+ (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3)))
+ (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1071 *3)))
+ (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3)))
+ (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1004)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-218 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3))
+ (-5 *1 (-1126 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1110))
+ (-4 *2 (-1110)) (-5 *1 (-56 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1004)) (|has| *1 (-6 -4190))
+ (-4 *1 (-138 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *2))
+ (-4 *2 (-1110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *2))
+ (-4 *2 (-1110))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-5 *2 (-2 (|:| -1713 (-1071 *4)) (|:| |deg| (-844))))
+ (-5 *1 (-195 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-13 (-509) (-779)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703))
+ (-4 *6 (-1110)) (-4 *2 (-1110)) (-5 *1 (-213 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1132 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1132 *2))
+ (-4 *4 (-1132 (-377 *3))) (-4 *5 (-312 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1110)) (-4 *2 (-1110))
+ (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1004)) (-4 *2 (-1004))
+ (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2))))
+ ((*1 *1 *1) (-5 *1 (-460)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1110))
+ (-4 *2 (-1110)) (-5 *1 (-581 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962))
+ (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2))
+ (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1132 *3)) (-4 *3 (-333))
+ (-4 *3 (-156)) (-4 *1 (-657 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-880 *5)) (-4 *5 (-1110))
+ (-4 *2 (-1110)) (-5 *1 (-879 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-950 *3 *4 *5 *2 *6)) (-4 *2 (-872 *3 *4 *5))
+ (-14 *6 (-583 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962))
+ (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7))
+ (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2))
+ (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1056 *5)) (-4 *5 (-1110))
+ (-4 *2 (-1110)) (-5 *1 (-1054 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2))
+ (-4 *1 (-1104 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725))
+ (-4 *7 (-779)) (-4 *2 (-976 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1156 *5)) (-4 *5 (-1110))
+ (-4 *2 (-1110)) (-5 *1 (-1155 *5 *2)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-844)) (-4 *5 (-278)) (-4 *3 (-1132 *5))
+ (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-997 (-772 *3))) (-4 *3 (-13 (-1096) (-881) (-29 *5)))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-997 (-772 *3))) (-5 *5 (-1058))
+ (-4 *3 (-13 (-1096) (-881) (-29 *6)))
+ (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-997 (-772 (-286 *5))))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-997 (-772 (-286 *6))))
+ (-5 *5 (-1058))
+ (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-997 (-772 (-377 (-875 *5))))) (-5 *3 (-377 (-875 *5)))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-997 (-772 (-377 (-875 *6))))) (-5 *5 (-1058))
+ (-5 *3 (-377 (-875 *6)))
+ (-4 *6 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-194 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3))
+ (-4 *3 (-13 (-1096) (-881) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-443 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *6 (-974)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349))))
+ (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349)))))
+ (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-999 (-772 (-349)))))
+ (-5 *5 (-349)) (-5 *6 (-974)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-997 (-772 (-349))))
+ (-5 *5 (-1058)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-997 (-772 (-349))))
+ (-5 *5 (-1075)) (-5 *2 (-951)) (-5 *1 (-518))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-333) (-134) (-953 (-517)))) (-4 *5 (-1132 *4))
+ (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-1075)) (-4 *5 (-134))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-962)) (-4 *2 (-779))
+ (-4 *3 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-875 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-4 *3 (-962))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-4 *2 (-779))
+ (-5 *1 (-1028 *3 *2 *4)) (-4 *4 (-872 *3 (-489 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962))
+ (-5 *1 (-1060 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1066 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1072 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-1105 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-4 *3 (-962))))
+ ((*1 *1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1116 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1116 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -2096 ((-583 *2) *3)))
+ (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1116 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1120 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1137 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1137 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -2096 ((-583 *2) *3)))
+ (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1137 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1141 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3745
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-517))) (-4 *3 (-881)) (-4 *3 (-1096))
+ (-4 *3 (-37 (-377 (-517))))))
+ (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -2096 ((-583 *2) *3)))
+ (|has| *3 (-15 -1518 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1147 *2)) (-4 *2 (-962)) (-4 *2 (-37 (-377 (-517))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1152 *4)) (-14 *4 (-1075)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-962)) (-14 *5 *3))))
+(((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *2 *3 *4 *5 *6)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *2 (-1004))))
+ ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1057))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1058)) (-5 *1 (-1075)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-844))) (-5 *1 (-1159)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-688))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358))
+ (-5 *4 (-199)) (-5 *2 (-951)) (-5 *1 (-688)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-687)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1004)) (-4 *3 (-1004)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-872 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-725)) (-4 *5 (-962)) (-4 *6 (-872 *5 *4 *2))
+ (-4 *2 (-779)) (-5 *1 (-873 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *6)) (-15 -3824 (*6 $))
+ (-15 -2097 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509))
+ (-5 *2 (-1075)) (-5 *1 (-958 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-832)) (-5 *2 (-388 (-1071 *1))) (-5 *3 (-1071 *1)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1096)))
+ (-4 *5 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-1071 (-377 (-1071 *6)))) (-5 *1 (-513 *5 *6 *7))
+ (-5 *3 (-1071 *6)) (-4 *7 (-1004))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1132 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1132 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1071 *11)) (-5 *6 (-583 *10))
+ (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779))
+ (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-872 *11 *9 *10))
+ (-5 *2 (-583 (-1071 *5))) (-5 *1 (-675 *9 *10 *11 *5))
+ (-5 *3 (-1071 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-872 *3 *4 *5)) (-5 *1 (-950 *3 *4 *5 *2 *6))
+ (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-962)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-94 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3119 *4) (|:| -1463 (-517)))))
+ (-4 *4 (-1004)) (-5 *2 (-1 *4)) (-5 *1 (-934 *4)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1096) (-400 *5)))
+ (-4 *5 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2
+ (-3 (-772 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
+ "failed"))
+ (-5 *1 (-576 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1058))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-772 (-875 *5)))) (-4 *5 (-421))
+ (-5 *2
+ (-3 (-772 (-377 (-875 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-875 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 (-377 (-875 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-577 *5)) (-5 *3 (-377 (-875 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-265 (-377 (-875 *5)))) (-5 *3 (-377 (-875 *5)))
+ (-4 *5 (-421))
+ (-5 *2
+ (-3 (-772 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-772 *3) "failed")))
+ "failed"))
+ (-5 *1 (-577 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-265 (-377 (-875 *6)))) (-5 *5 (-1058))
+ (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3))
+ (-5 *1 (-577 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-942 (-772 (-517))))
+ (-5 *3 (-1056 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-962))
+ (-5 *1 (-542 *4)))))
+(((*1 *2) (-12 (-5 *2 (-844)) (-5 *1 (-142)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-875 (-517))) (-5 *3 (-1075))
+ (-5 *4 (-999 (-377 (-517)))) (-5 *1 (-30)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509))
+ (-5 *2 (-1071 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-999 (-349))) (-5 *2 (-1157))
+ (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1157)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1157)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-866 (-199)) (-199) (-199))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *5 (-583 (-236))) (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-805 (-1 (-199) (-199) (-199)))) (-5 *4 (-999 (-349)))
+ (-5 *2 (-1158)) (-5 *1 (-228))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-265 *7)) (-5 *4 (-1075)) (-5 *5 (-583 (-236)))
+ (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-953 (-517))))
+ (-5 *2 (-1157)) (-5 *1 (-229 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1157))
+ (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1157)) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-800 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1157))
+ (-5 *1 (-232 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-800 *5)) (-5 *4 (-997 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1157))
+ (-5 *1 (-232 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-802 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158))
+ (-5 *1 (-232 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-802 *5)) (-5 *4 (-997 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158))
+ (-5 *1 (-232 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1158))
+ (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-997 (-349))) (-5 *2 (-1158)) (-5 *1 (-232 *3))
+ (-4 *3 (-13 (-558 (-493)) (-1004)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-805 *6)) (-5 *4 (-997 (-349))) (-5 *5 (-583 (-236)))
+ (-4 *6 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158))
+ (-5 *1 (-232 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-805 *5)) (-5 *4 (-997 (-349)))
+ (-4 *5 (-13 (-558 (-493)) (-1004))) (-5 *2 (-1158))
+ (-5 *1 (-232 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1157)) (-5 *1 (-233))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1157))
+ (-5 *1 (-233))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *2 (-1157)) (-5 *1 (-233))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-866 (-199)))) (-5 *4 (-583 (-236)))
+ (-5 *2 (-1157)) (-5 *1 (-233))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158)) (-5 *1 (-233))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1158))
+ (-5 *1 (-233)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1110)) (-5 *2 (-583 *1)) (-4 *1 (-927 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4))
+ (-14 *3 (-844)) (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-4 *1 (-209 *3))))
+ ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3866 (-1071 *6)) (|:| -2356 (-517)))))
+ (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))
+ (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-872 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1147 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-1075))) (-5 *2 (-1161)) (-5 *1 (-1112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-872 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-349)))) (-5 *2 (-999 (-772 (-199))))
+ (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1106 *3)) (-4 *3 (-892)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1114)) (-4 *5 (-1132 *4)) (-4 *6 (-1132 (-377 *5)))
+ (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-703)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *3 (-583 (-236))) (-5 *1 (-234))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *1 (-236))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *2 (-1161)) (-5 *1 (-1158))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3383 (-199))
+ (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199))
+ (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))
+ (-5 *1 (-1158))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-349)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| -2356 (-703)) (|:| -1580 *5) (|:| |radicand| (-583 *5))))
+ (-5 *1 (-290 *5)) (-5 *4 (-703))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-895 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4)))
+ (-14 *4 (-583 (-1075))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6))
+ (-4 *6 (-421)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-951))
+ (-5 *1 (-688)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1110)) (-5 *2 (-1161)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1096))))))
+(((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517))))
+ (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-889))
+ (-5 *3 (-583 (-517))))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-953 *4)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *1 *1) (-4 *1 (-1099))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1096))) (-5 *2 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *4)) (-5 *2 (-107)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *2) (-12 (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-844))
+ (-5 *2 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))
+ (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1071 *1)) (-5 *4 (-1075)) (-4 *1 (-27))
+ (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1071 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-875 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1075)))
+ (-5 *5 (-999 (-772 (-199)))) (-5 *2 (-1056 (-199))) (-5 *1 (-271)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-779))
+ (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1080))) (-5 *1 (-1080)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-951))
+ (-5 *1 (-684)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-5 *2 (-2 (|:| -2581 *3) (|:| -1860 *4))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-843)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1056 *7))) (-4 *6 (-779))
+ (-4 *7 (-872 *5 (-489 *6) *6)) (-4 *5 (-962))
+ (-5 *2 (-1 (-1056 *7) *7)) (-5 *1 (-1028 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-1060 *4)) (-4 *4 (-962))
+ (-5 *3 (-517)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1132 *4)) (-4 *4 (-1114))
+ (-4 *6 (-1132 (-377 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-312 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *6 *7 *8 *3 *4)) (-4 *4 (-981 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-979 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779))
+ (-4 *3 (-976 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3831 *4))))))
+ (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-894 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *6 (-779)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 (-866 (-199))))) (-5 *1 (-1106 *3))
+ (-4 *3 (-892)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-131)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-962)))))
+(((*1 *1) (-5 *1 (-107))))
+(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1110))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-4 *1 (-1144 *3)) (-4 *3 (-1110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1075)) (-5 *1 (-611 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1096))))))
+(((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779))
+ (-4 *4 (-509)) (-5 *2 (-377 (-1071 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1096)))
+ (-4 *6 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2 (-1071 (-377 (-1071 *3)))) (-5 *1 (-513 *6 *3 *7))
+ (-5 *5 (-1071 *3)) (-4 *7 (-1004))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1152 *5)) (-14 *5 (-1075)) (-4 *6 (-962))
+ (-5 *2 (-1129 *5 (-875 *6))) (-5 *1 (-870 *5 *6)) (-5 *3 (-875 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-872 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-5 *2 (-1071 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-962)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1071 *1))
+ (-4 *1 (-872 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-962))
+ (-4 *7 (-872 *6 *5 *4)) (-5 *2 (-377 (-1071 *3)))
+ (-5 *1 (-873 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1071 *3))
+ (-4 *3
+ (-13 (-333)
+ (-10 -8 (-15 -2269 ($ *7)) (-15 -3824 (*7 $)) (-15 -2097 (*7 $)))))
+ (-4 *7 (-872 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-962))
+ (-5 *1 (-873 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075)) (-4 *5 (-509))
+ (-5 *2 (-377 (-1071 (-377 (-875 *5))))) (-5 *1 (-958 *5))
+ (-5 *3 (-377 (-875 *5))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1) (-5 *1 (-974))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-493)) (-5 *1 (-492 *4))
+ (-4 *4 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1093 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1132 *5)) (-4 *5 (-333))
+ (-5 *2 (-2 (|:| -1306 (-377 *6)) (|:| |coeff| (-377 *6))))
+ (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-107))
+ (-4 *6 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6) (-10 -8 (-15 -2269 ($ *7)))))
+ (-4 *7 (-777))
+ (-4 *8
+ (-13 (-1134 *3 *7) (-333) (-1096)
+ (-10 -8 (-15 -2059 ($ $)) (-15 -1518 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1058)) (|:| |prob| (-1058))))))
+ (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1058)) (-4 *9 (-901 *8))
+ (-14 *10 (-1075)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-981 *6 *7 *8 *9))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8))
+ (-5 *2
+ (-583
+ (-2 (|:| -3779 (-583 *9)) (|:| -3831 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-906 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-981 *6 *7 *8 *9))
+ (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-976 *6 *7 *8))
+ (-5 *2
+ (-583
+ (-2 (|:| -3779 (-583 *9)) (|:| -3831 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-1011 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
(((*1 *1) (-5 *1 (-407))))
-(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1074)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1057))) (-5 *1 (-364)))))
-((-1186 . 682218) (-1187 . 682060) (-1188 . 681789) (-1189 . 681687) (-1190 . 681539) (-1191 . 681511) (-1192 . 681330) (-1193 . 680225) (-1194 . 680117) (-1195 . 679849) (-1196 . 679764) (-1197 . 679662) (-1198 . 679514) (-1199 . 679276) (-1200 . 679174) (-1201 . 679042) (-1202 . 678965) (-1203 . 678609) (-1204 . 678553) (-1205 . 678237) (-1206 . 678128) (-1207 . 678043) (-1208 . 677841) (-1209 . 677760) (-1210 . 677632) (-1211 . 677546) (-1212 . 677482) (-1213 . 677375) (-1214 . 676973) (-1215 . 676884) (-1216 . 676525) (-1217 . 675709) (-1218 . 675533) (-1219 . 675376) (-1220 . 675080) (-1221 . 674010) (-1222 . 673925) (-1223 . 673712) (-1224 . 673473) (-1225 . 673385) (-1226 . 673295) (-1227 . 673267) (-1228 . 672959) (-1229 . 672801) (-1230 . 672560) (-1231 . 672327) (-1232 . 672193) (-1233 . 672108) (-1234 . 671875) (-1235 . 671784) (-1236 . 671705) (-1237 . 671630) (-1238 . 671519) (-1239 . 671353) (-1240 . 671275) (-1241 . 671127) (-1242 . 670896) (-1243 . 670811) (-1244 . 670596) (-1245 . 670167) (-1246 . 668979) (-1247 . 668828) (-1248 . 666774) (-1249 . 666591) (-1250 . 666283) (-1251 . 666201) (-1252 . 665880) (-1253 . 665223) (-1254 . 665135) (-1255 . 665060) (-1256 . 664985) (-1257 . 664510) (-1258 . 664087) (-1259 . 663854) (-1260 . 663756) (-1261 . 663699) (-1262 . 663563) (-1263 . 663473) (-1264 . 663373) (-1265 . 663282) (-1266 . 663149) (-1267 . 663013) (-1268 . 662928) (-1269 . 662695) (-1270 . 662642) (-1271 . 662556) (-1272 . 662370) (-1273 . 662264) (-1274 . 662153) (-1275 . 662062) (-1276 . 662010) (-1277 . 661956) (-1278 . 661904) (-1279 . 661666) (-1280 . 661576) (-1281 . 661524) (-1282 . 661431) (-1283 . 660635) (-1284 . 660541) (-1285 . 660420) (-1286 . 660204) (-1287 . 660098) (-1288 . 659865) (-1289 . 659450) (-1290 . 659360) (-1291 . 659287) (-1292 . 655850) (-1293 . 655743) (-1294 . 655644) (-1295 . 655516) (-1296 . 655364) (-1297 . 655312) (-1298 . 655235) (-1299 . 654928) (-1300 . 654738) (-1301 . 654142) (-1302 . 654038) (-1303 . 653965) (-1304 . 653913) (-1305 . 653861) (-1306 . 653646) (-1307 . 653276) (-1308 . 653113) (-1309 . 652973) (-1310 . 652879) (-1311 . 652559) (-1312 . 652465) (-1313 . 652392) (-1314 . 652200) (-1315 . 652096) (-1316 . 652041) (-1317 . 651989) (-1318 . 651868) (-1319 . 651737) (-1320 . 651663) (-1321 . 651589) (-1322 . 651260) (-1323 . 651066) (-1324 . 651001) (-1325 . 650749) (-1326 . 650592) (-1327 . 650509) (-1328 . 650475) (-1329 . 650360) (-1330 . 650052) (-1331 . 650003) (-1332 . 649947) (-1333 . 649429) (-1334 . 649363) (-1335 . 648526) (-1336 . 646989) (-1337 . 646924) (-1338 . 645992) (-1339 . 645921) (-1340 . 645792) (-1341 . 645730) (-1342 . 645524) (-1343 . 645095) (-1344 . 644813) (-1345 . 644665) (-1346 . 644480) (-1347 . 643669) (-1348 . 643521) (-1349 . 643469) (-1350 . 643355) (-1351 . 643224) (-1352 . 643158) (-1353 . 643032) (-1354 . 642971) (-1355 . 642913) (-1356 . 642668) (-1357 . 641458) (-1358 . 640959) (-1359 . 640851) (-1360 . 640765) (-1361 . 640415) (-1362 . 640356) (-1363 . 640285) (-1364 . 640192) (-1365 . 639715) (-1366 . 639481) (-1367 . 639407) (-1368 . 639156) (-1369 . 638852) (-1370 . 638769) (-1371 . 638451) (-1372 . 638373) (-1373 . 638178) (-1374 . 638097) (-1375 . 637972) (-1376 . 632782) (-1377 . 632554) (-1378 . 632192) (-1379 . 632090) (-1380 . 631977) (-1381 . 631902) (-1382 . 631689) (-1383 . 631585) (-1384 . 631483) (-1385 . 631428) (-1386 . 631051) (-1387 . 630002) (-1388 . 629767) (-1389 . 629608) (-1390 . 629490) (-1391 . 629420) (-1392 . 629368) (-1393 . 629016) (-1394 . 628954) (-1395 . 628767) (-1396 . 628669) (-1397 . 628580) (-1398 . 628141) (-1399 . 627997) (-1400 . 627647) (-1401 . 627211) (-1402 . 627006) (-1403 . 626742) (-1404 . 626547) (-1405 . 626397) (-1406 . 626025) (-1407 . 625918) (-1408 . 625841) (-1409 . 625768) (-1410 . 625433) (-1411 . 625381) (-1412 . 625353) (-1413 . 625030) (-1414 . 624971) (-1415 . 624818) (-1416 . 624744) (-1417 . 624670) (-1418 . 624563) (-1419 . 624271) (-1420 . 624186) (-1421 . 624108) (-1422 . 624011) (-1423 . 623942) (-1424 . 623869) (-1425 . 623627) (-1426 . 623559) (-1427 . 623477) (-1428 . 623321) (-1429 . 623199) (-1430 . 623146) (-1431 . 623090) (-1432 . 623038) (-1433 . 622928) (-1434 . 622872) (-1435 . 622728) (-1436 . 622626) (-1437 . 617772) (-1438 . 617663) (-1439 . 617573) (-1440 . 617469) (-1441 . 617062) (-1442 . 616971) (-1443 . 616693) (-1444 . 616544) (-1445 . 616432) (-1446 . 616213) (-1447 . 616044) (-1448 . 615963) (-1449 . 615911) (-1450 . 615810) (-1451 . 615758) (-1452 . 615705) (-1453 . 615624) (-1454 . 615476) (-1455 . 615420) (-1456 . 611682) (-1457 . 611417) (-1458 . 611343) (-1459 . 611193) (-1460 . 611047) (-1461 . 610981) (-1462 . 610574) (-1463 . 610465) (-1464 . 610390) (-1465 . 610297) (-1466 . 610161) (-1467 . 610130) (-1468 . 609780) (-1469 . 609652) (-1470 . 609599) (-1471 . 609507) (-1472 . 609439) (-1473 . 609250) (-1474 . 609121) (-1475 . 609038) (-1476 . 608680) (-1477 . 608627) (-1478 . 608518) (-1479 . 608285) (-1480 . 608178) (-1481 . 608093) (-1482 . 607485) (-1483 . 607423) (-1484 . 607374) (-1485 . 607345) (-1486 . 607039) (-1487 . 606903) (-1488 . 606489) (-1489 . 606376) (-1490 . 606278) (-1491 . 606157) (-1492 . 606108) (-1493 . 605976) (-1494 . 605822) (-1495 . 605701) (-1496 . 605583) (-1497 . 605412) (-1498 . 605355) (-1499 . 605302) (-1500 . 605240) (-1501 . 605076) (-1502 . 604796) (-1503 . 604430) (-1504 . 604347) (-1505 . 604295) (-1506 . 604167) (-1507 . 604098) (-1508 . 604019) (-1509 . 603439) (-1510 . 603337) (-1511 . 603285) (-1512 . 603048) (-1513 . 602989) (-1514 . 602646) (-1515 . 602031) (-1516 . 601604) (-1517 . 601473) (-1518 . 601399) (-1519 . 601309) (-1520 . 601202) (-1521 . 601171) (-1522 . 601111) (-1523 . 600712) (-1524 . 600479) (-1525 . 600398) (-1526 . 600328) (-1527 . 600203) (-1528 . 600025) (-1529 . 599959) (-1530 . 599709) (-1531 . 599643) (-1532 . 599552) (-1533 . 599007) (-1534 . 598743) (-1535 . 598662) (-1536 . 598579) (-1537 . 598294) (-1538 . 598187) (-1539 . 598081) (-1540 . 597875) (-1541 . 597248) (-1542 . 597220) (-1543 . 596675) (-1544 . 596331) (-1545 . 596098) (-1546 . 596046) (-1547 . 595963) (-1548 . 595838) (-1549 . 595810) (-1550 . 595694) (-1551 . 595429) (-1552 . 595224) (-1553 . 595045) (-1554 . 594968) (-1555 . 594760) (-1556 . 594688) (-1557 . 594144) (-1558 . 593844) (-1559 . 593482) (-1560 . 593399) (-1561 . 593320) (-1562 . 593211) (-1563 . 593092) (-1564 . 592992) (-1565 . 591268) (-1566 . 591194) (-1567 . 591068) (-1568 . 590994) (-1569 . 590807) (-1570 . 590263) (-1571 . 590177) (-1572 . 590073) (-1573 . 589935) (-1574 . 589785) (-1575 . 589641) (-1576 . 589543) (-1577 . 589401) (-1578 . 589349) (-1579 . 587928) (-1580 . 587826) (-1581 . 587418) (-1582 . 587365) (-1583 . 587243) (-1584 . 586699) (-1585 . 586542) (-1586 . 586472) (-1587 . 586418) (-1588 . 586270) (-1589 . 586218) (-1590 . 586146) (-1591 . 585968) (-1592 . 585806) (-1593 . 585757) (-1594 . 584303) (-1595 . 584211) (-1596 . 583918) (-1597 . 583335) (-1598 . 583242) (-1599 . 582698) (-1600 . 582612) (-1601 . 581652) (-1602 . 581486) (-1603 . 581120) (-1604 . 580977) (-1605 . 580788) (-1606 . 580620) (-1607 . 580554) (-1608 . 580365) (-1609 . 580239) (-1610 . 580208) (-1611 . 580130) (-1612 . 580028) (-1613 . 579656) (-1614 . 579112) (-1615 . 578961) (-1616 . 578843) (-1617 . 578024) (-1618 . 577831) (-1619 . 577717) (-1620 . 577524) (-1621 . 577449) (-1622 . 577145) (-1623 . 576854) (-1624 . 576744) (-1625 . 575015) (-1626 . 574946) (-1627 . 574895) (-1628 . 574824) (-1629 . 574502) (-1630 . 574324) (-1631 . 573674) (-1632 . 573619) (-1633 . 573518) (-1634 . 572759) (-1635 . 572643) (-1636 . 572587) (-1637 . 572419) (-1638 . 572057) (-1639 . 571351) (-1640 . 571292) (-1641 . 571222) (-1642 . 571139) (-1643 . 570959) (-1644 . 570811) (-1645 . 569682) (-1646 . 569654) (-1647 . 569515) (-1648 . 569359) (-1649 . 569115) (-1650 . 569040) (-1651 . 568978) (-1652 . 568762) (-1653 . 568463) (-1654 . 568314) (-1655 . 568201) (-1656 . 568046) (-1657 . 567891) (-1658 . 567382) (-1659 . 567249) (-1660 . 567130) (-1661 . 566736) (-1662 . 566630) (-1663 . 565502) (-1664 . 565297) (-1665 . 565223) (-1666 . 565148) (-1667 . 565012) (-1668 . 564951) (-1669 . 564799) (-1670 . 564677) (-1671 . 564552) (-1672 . 564154) (-1673 . 563945) (-1674 . 563411) (-1675 . 563331) (-1676 . 562814) (-1677 . 562683) (-1678 . 560596) (-1679 . 560530) (-1680 . 559807) (-1681 . 559739) (-1682 . 559664) (-1683 . 559614) (-1684 . 559518) (-1685 . 559396) (-1686 . 559174) (-1687 . 558573) (-1688 . 558479) (-1689 . 558154) (-1690 . 558120) (-1691 . 558019) (-1692 . 557576) (-1693 . 557523) (-1694 . 557387) (-1695 . 557014) (-1696 . 556901) (-1697 . 556785) (-1698 . 556591) (-1699 . 556482) (-1700 . 556300) (-1701 . 555934) (-1702 . 555765) (-1703 . 555566) (-1704 . 555417) (-1705 . 555344) (-1706 . 554974) (-1707 . 554758) (-1708 . 554692) (-1709 . 554617) (-1710 . 554501) (-1711 . 554370) (-1712 . 554314) (-1713 . 554014) (-1714 . 553958) (-1715 . 553836) (-1716 . 553684) (-1717 . 553551) (-1718 . 553385) (-1719 . 552429) (-1720 . 552267) (-1721 . 551758) (-1722 . 551649) (-1723 . 551328) (-1724 . 550847) (-1725 . 550740) (-1726 . 550552) (-1727 . 550413) (-1728 . 550291) (-1729 . 550106) (-1730 . 550022) (-1731 . 549860) (-1732 . 549502) (-1733 . 549315) (-1734 . 548980) (-1735 . 548143) (-1736 . 548053) (-1737 . 546954) (-1738 . 546824) (-1739 . 546734) (-1740 . 546634) (-1741 . 546564) (-1742 . 546396) (-1743 . 546307) (-1744 . 546203) (-1745 . 546129) (-1746 . 546041) (-1747 . 545844) (-1748 . 545297) (-1749 . 545206) (-1750 . 544690) (-1751 . 544544) (-1752 . 544194) (-1753 . 544058) (-1754 . 543932) (-1755 . 543773) (-1756 . 543706) (-1757 . 543432) (-1758 . 543354) (-1759 . 543241) (-1760 . 543175) (-1761 . 542764) (-1762 . 542625) (-1763 . 542360) (-1764 . 542323) (-1765 . 542213) (-1766 . 542080) (-1767 . 542049) (-1768 . 541956) (-1769 . 541824) (-1770 . 541762) (-1771 . 541463) (-1772 . 541300) (-1773 . 540952) (-1774 . 540575) (-1775 . 540504) (-1776 . 540035) (-1777 . 539973) (-1778 . 539413) (-1779 . 538516) (-1780 . 538418) (-1781 . 538020) (-1782 . 537992) (-1783 . 537898) (-1784 . 537797) (-1785 . 537744) (-1786 . 537470) (-1787 . 537384) (-1788 . 537259) (-1789 . 537155) (-1790 . 537058) (-1791 . 536950) (-1792 . 536874) (-1793 . 536703) (-1794 . 536651) (-1795 . 536496) (-1796 . 536378) (-1797 . 536230) (-1798 . 535927) (-1799 . 535853) (-1800 . 535669) (-1801 . 535473) (-1802 . 535360) (-1803 . 535191) (-1804 . 535124) (-1805 . 534976) (-1806 . 534762) (-1807 . 534680) (-1808 . 534277) (-1809 . 534097) (-1810 . 534063) (-1811 . 533982) (-1812 . 533805) (-1813 . 533753) (-1814 . 533701) (-1815 . 533356) (-1816 . 533204) (-1817 . 532939) (-1818 . 532872) (-1819 . 532521) (-1820 . 532487) (-1821 . 532409) (-1822 . 532310) (-1823 . 532282) (-1824 . 532111) (-1825 . 531933) (-1826 . 531590) (-1827 . 531367) (-1828 . 531193) (-1829 . 531091) (-1830 . 530870) (-1831 . 530780) (-1832 . 530450) (-1833 . 530227) (-1834 . 530104) (-1835 . 529393) (-1836 . 529266) (-1837 . 525112) (-1838 . 525019) (-1839 . 524963) (-1840 . 524845) (-1841 . 524532) (-1842 . 523862) (-1843 . 523672) (-1844 . 523415) (-1845 . 523180) (-1846 . 523128) (-1847 . 523026) (-1848 . 522925) (-1849 . 522795) (-1850 . 522636) (-1851 . 522427) (-1852 . 521776) (-1853 . 521659) (-1854 . 521582) (-1855 . 521447) (-1856 . 521357) (-1857 . 521279) (-1858 . 521159) (-1859 . 520999) (-1860 . 520913) (-1861 . 520806) (-1862 . 520667) (-1863 . 520565) (-1864 . 520492) (-1865 . 520439) (-1866 . 519521) (-1867 . 519276) (-1868 . 518059) (-1869 . 517933) (-1870 . 517693) (-1871 . 517582) (-1872 . 517501) (-1873 . 517352) (-1874 . 517182) (-1875 . 516008) (-1876 . 515896) (-1877 . 515823) (-1878 . 515600) (-1879 . 515425) (-1880 . 515223) (-1881 . 515157) (-1882 . 515088) (-1883 . 514769) (-1884 . 514360) (-1885 . 514163) (-1886 . 514066) (-1887 . 513942) (-1888 . 513749) (-1889 . 513592) (-1890 . 513414) (-1891 . 513292) (-1892 . 513087) (-1893 . 512788) (-1894 . 512721) (-1895 . 512564) (-1896 . 512481) (-1897 . 512415) (-1898 . 512297) (-1899 . 511856) (-1900 . 511594) (-1901 . 511521) (-1902 . 511382) (-1903 . 507541) (-1904 . 507473) (-1905 . 507421) (-1906 . 504755) (-1907 . 504642) (-1908 . 504540) (-1909 . 504411) (-1910 . 504302) (-1911 . 504224) (-1912 . 504151) (-1913 . 504003) (-1914 . 503851) (-1915 . 503683) (-1916 . 503271) (-1917 . 503122) (-1918 . 503064) (-1919 . 502893) (-1920 . 502563) (-1921 . 502410) (-1922 . 502255) (-1923 . 502181) (-1924 . 501152) (-1925 . 501043) (-1926 . 500945) (-1927 . 500782) (-1928 . 500754) (-1929 . 500652) (-1930 . 500534) (-1931 . 500414) (-1932 . 500201) (-1933 . 500148) (-1934 . 500092) (-1935 . 499910) (-1936 . 499708) (-1937 . 499472) (-1938 . 499391) (-1939 . 486154) (-1940 . 486096) (-1941 . 483877) (-1942 . 483607) (-1943 . 482851) (-1944 . 482253) (-1945 . 482065) (-1946 . 481963) (-1947 . 481772) (-1948 . 481657) (-1949 . 481594) (-1950 . 481511) (-1951 . 481317) (-1952 . 481200) (-1953 . 481113) (-1954 . 481042) (-1955 . 472181) (-1956 . 472030) (-1957 . 471917) (-1958 . 471789) (-1959 . 471714) (-1960 . 471616) (-1961 . 471452) (-1962 . 471399) (-1963 . 471269) (-1964 . 471195) (-1965 . 470857) (-1966 . 470359) (-1967 . 469943) (-1968 . 469696) (-1969 . 469372) (-1970 . 469114) (-1971 . 469029) (-1972 . 468975) (-1973 . 468709) (-1974 . 468656) (-1975 . 468454) (-1976 . 468352) (-1977 . 467868) (-1978 . 467654) (-1979 . 467552) (-1980 . 467418) (-1981 . 467268) (-1982 . 467162) (-1983 . 467107) (-1984 . 466932) (-1985 . 466792) (-1986 . 466718) (-1987 . 466619) (-1988 . 466544) (-1989 . 466446) (-1990 . 466372) (-1991 . 466317) (-1992 . 465970) (-1993 . 465899) (-1994 . 465774) (-1995 . 465672) (-1996 . 465574) (-1997 . 465479) (-1998 . 465448) (-1999 . 465349) (-2000 . 465094) (-2001 . 465011) (-2002 . 464925) (-2003 . 464708) (-2004 . 464526) (-2005 . 464417) (-2006 . 464328) (-2007 . 463711) (-2008 . 463170) (-2009 . 463025) (-2010 . 462860) (-2011 . 462807) (-2012 . 462736) (-2013 . 462687) (-2014 . 462653) (-2015 . 462483) (-2016 . 462408) (-2017 . 460729) (-2018 . 460626) (-2019 . 460492) (-2020 . 460371) (-2021 . 460283) (-2022 . 460142) (-2023 . 459960) (-2024 . 459678) (-2025 . 459571) (-2026 . 459319) (-2027 . 459241) (-2028 . 458880) (-2029 . 458380) (-2030 . 458331) (-2031 . 458065) (-2032 . 457975) (-2033 . 457873) (-2034 . 457735) (-2035 . 457655) (-2036 . 457530) (-2037 . 457441) (-2038 . 456880) (-2039 . 456638) (-2040 . 456521) (-2041 . 456104) (-2042 . 456044) (-2043 . 455865) (-2044 . 455792) (-2045 . 455595) (-2046 . 455529) (-2047 . 455461) (-2048 . 455400) (-2049 . 451596) (-2050 . 451026) (-2051 . 450886) (-2052 . 450821) (-2053 . 450723) (-2054 . 450623) (-2055 . 450543) (-2056 . 450383) (-2057 . 450355) (-2058 . 450216) (-2059 . 450014) (-2060 . 449959) (-2061 . 449889) (-2062 . 449760) (-2063 . 449636) (-2064 . 449501) (-2065 . 449278) (-2066 . 449028) (-2067 . 448720) (-2068 . 448663) (-2069 . 448448) (-2070 . 448379) (-2071 . 448059) (-2072 . 447908) (-2073 . 447804) (-2074 . 447674) (-2075 . 447484) (-2076 . 447386) (-2077 . 447314) (-2078 . 447243) (-2079 . 447031) (-2080 . 446209) (-2081 . 446157) (-2082 . 446083) (-2083 . 446001) (-2084 . 445738) (-2085 . 445680) (-2086 . 445596) (-2087 . 445390) (-2088 . 445340) (-2089 . 445202) (-2090 . 444997) (-2091 . 444827) (-2092 . 444687) (-2093 . 444523) (-2094 . 444450) (-2095 . 444360) (-2096 . 444227) (-2097 . 444056) (-2098 . 442839) (-2099 . 442540) (-2100 . 442422) (-2101 . 442305) (-2102 . 441979) (-2103 . 441846) (-2104 . 441715) (-2105 . 441581) (-2106 . 441191) (-2107 . 440952) (-2108 . 440894) (-2109 . 440736) (-2110 . 440596) (-2111 . 440463) (-2112 . 440429) (-2113 . 440107) (-2114 . 440045) (-2115 . 439960) (-2116 . 439843) (-2117 . 439680) (-2118 . 439337) (-2119 . 439146) (-2120 . 438910) (-2121 . 438855) (-2122 . 438781) (-2123 . 438680) (-2124 . 438600) (-2125 . 438425) (-2126 . 438315) (-2127 . 438218) (-2128 . 438030) (-2129 . 437940) (-2130 . 437780) (-2131 . 437696) (-2132 . 437542) (-2133 . 437440) (-2134 . 437305) (-2135 . 437203) (-2136 . 436781) (-2137 . 436502) (-2138 . 436419) (-2139 . 436367) (-2140 . 436280) (-2141 . 436168) (-2142 . 436137) (-2143 . 436084) (-2144 . 435930) (-2145 . 435896) (-2146 . 435398) (-2147 . 435298) (-2148 . 435226) (-2149 . 435145) (-2150 . 435074) (-2151 . 434982) (-2152 . 434825) (-2153 . 434674) (-2154 . 434404) (-2155 . 434353) (-2156 . 434283) (-2157 . 434217) (-2158 . 434010) (-2159 . 433951) (-2160 . 433483) (-2161 . 433430) (-2162 . 433319) (-2163 . 433223) (-2164 . 433195) (-2165 . 432013) (-2166 . 431947) (-2167 . 431866) (-2168 . 431718) (-2169 . 431322) (-2170 . 430256) (-2171 . 430201) (-2172 . 429860) (-2173 . 429772) (-2174 . 429663) (-2175 . 429569) (-2176 . 428087) (-2177 . 427975) (-2178 . 427903) (-2179 . 427875) (-2180 . 427647) (-2181 . 427575) (-2182 . 427516) (-2183 . 427391) (-2184 . 427284) (-2185 . 427185) (-2186 . 427013) (-2187 . 426850) (-2188 . 426756) (-2189 . 426523) (-2190 . 426445) (-2191 . 426393) (-2192 . 426067) (-2193 . 425904) (-2194 . 425655) (-2195 . 425383) (-2196 . 425115) (-2197 . 424898) (-2198 . 424746) (-2199 . 424503) (-2200 . 424444) (-2201 . 424321) (-2202 . 424202) (-2203 . 424098) (-2204 . 422965) (-2205 . 422910) (-2206 . 422195) (-2207 . 421952) (-2208 . 421921) (-2209 . 421834) (-2210 . 421784) (-2211 . 421707) (-2212 . 421556) (-2213 . 421401) (-2214 . 421300) (-2215 . 421204) (-2216 . 421046) (-2217 . 420971) (-2218 . 420706) (-2219 . 420654) (-2220 . 420502) (-2221 . 420230) (-2222 . 420025) (-2223 . 419748) (-2224 . 419670) (-2225 . 419530) (-2226 . 419471) (-2227 . 419173) (-2228 . 419000) (-2229 . 418886) (-2230 . 418818) (-2231 . 418548) (-2232 . 417845) (-2233 . 417786) (-2234 . 417528) (-2235 . 417450) (-2236 . 417276) (-2237 . 417158) (-2238 . 416979) (-2239 . 416948) (-2240 . 416750) (-2241 . 416154) (-2242 . 415936) (-2243 . 415765) (-2244 . 415694) (-2245 . 415590) (-2246 . 415412) (-2247 . 415118) (-2248 . 415087) (-2249 . 414825) (-2250 . 414749) (-2251 . 414398) (-2252 . 414147) (-2253 . 414029) (-2254 . 392694) (-2255 . 392606) (-2256 . 392403) (-2257 . 392295) (-2258 . 392176) (-2259 . 392095) (-2260 . 391991) (-2261 . 391939) (-2262 . 391806) (-2263 . 390969) (-2264 . 390821) (-2265 . 390734) (-2266 . 390663) (-2267 . 390539) (-2268 . 390387) (-2269 . 390316) (-2270 . 390233) (-2271 . 390123) (-2272 . 387585) (-2273 . 386951) (-2274 . 386923) (-2275 . 386859) (-2276 . 386791) (-2277 . 386701) (-2278 . 386625) (-2279 . 386544) (-2280 . 386367) (-2281 . 386293) (-2282 . 386124) (-2283 . 385129) (-2284 . 384971) (-2285 . 384875) (-2286 . 384800) (-2287 . 384579) (-2288 . 384464) (-2289 . 384415) (-2290 . 384111) (-2291 . 384057) (-2292 . 383988) (-2293 . 383706) (-2294 . 383651) (-2295 . 383295) (-2296 . 383129) (-2297 . 383047) (-2298 . 382954) (-2299 . 382849) (-2300 . 382581) (-2301 . 382452) (-2302 . 382365) (-2303 . 382312) (-2304 . 382223) (-2305 . 382096) (-2306 . 381806) (-2307 . 381740) (-2308 . 381578) (-2309 . 381375) (-2310 . 381041) (-2311 . 380850) (-2312 . 380756) (-2313 . 380475) (-2314 . 380357) (-2315 . 380035) (-2316 . 379822) (-2317 . 379583) (-2318 . 379336) (-2319 . 379123) (-2320 . 379086) (-2321 . 379035) (-2322 . 378985) (-2323 . 378911) (-2324 . 378883) (-2325 . 378817) (-2326 . 378741) (-2327 . 378642) (-2328 . 378247) (-2329 . 378113) (-2330 . 378055) (-2331 . 377818) (-2332 . 377651) (-2333 . 377513) (-2334 . 377456) (-2335 . 376989) (-2336 . 376639) (-2337 . 376130) (-2338 . 375631) (-2339 . 375240) (-2340 . 373205) (-2341 . 373177) (-2342 . 372819) (-2343 . 372672) (-2344 . 372537) (-2345 . 372484) (-2346 . 372208) (-2347 . 371922) (-2348 . 371807) (-2349 . 371753) (-2350 . 371725) (-2351 . 371660) (-2352 . 371556) (-2353 . 371430) (-2354 . 371378) (-2355 . 371306) (-2356 . 371231) (-2357 . 370967) (-2358 . 370915) (-2359 . 370845) (-2360 . 370656) (-2361 . 370590) (-2362 . 370528) (-2363 . 370441) (-2364 . 370218) (-2365 . 368981) (-2366 . 368901) (-2367 . 368658) (-2368 . 368587) (-2369 . 368520) (-2370 . 368321) (-2371 . 368269) (-2372 . 368220) (-2373 . 368140) (-2374 . 366825) (-2375 . 365918) (-2376 . 365795) (-2377 . 365375) (-2378 . 365134) (-2379 . 365002) (-2380 . 364913) (-2381 . 364445) (-2382 . 364229) (-2383 . 364163) (-2384 . 364132) (-2385 . 364004) (-2386 . 363872) (-2387 . 363790) (-2388 . 363368) (-2389 . 363316) (-2390 . 363261) (-2391 . 363059) (-2392 . 362993) (-2393 . 362655) (-2394 . 362447) (-2395 . 362326) (-2396 . 362252) (-2397 . 362076) (-2398 . 361908) (-2399 . 361721) (-2400 . 361530) (-2401 . 361446) (-2402 . 361310) (-2403 . 361244) (-2404 . 361178) (-2405 . 360867) (-2406 . 360815) (-2407 . 360713) (-2408 . 360660) (-2409 . 360565) (-2410 . 360425) (-2411 . 360182) (-2412 . 358945) (-2413 . 358674) (-2414 . 358574) (-2415 . 358281) (-2416 . 358215) (-2417 . 358125) (-2418 . 358066) (-2419 . 357964) (-2420 . 357883) (-2421 . 356556) (-2422 . 356503) (-2423 . 356173) (-2424 . 356107) (-2425 . 356053) (-2426 . 355955) (-2427 . 355849) (-2428 . 355761) (-2429 . 355453) (-2430 . 355123) (-2431 . 355054) (-2432 . 354964) (-2433 . 354813) (-2434 . 354715) (-2435 . 354398) (-2436 . 354316) (-2437 . 354232) (-2438 . 354166) (-2439 . 353953) (-2440 . 353804) (-2441 . 353775) (-2442 . 353611) (-2443 . 353545) (-2444 . 353472) (-2445 . 353358) (-2446 . 353174) (-2447 . 352954) (-2448 . 352899) (-2449 . 352754) (-2450 . 352645) (-2451 . 352450) (-2452 . 352416) (-2453 . 352011) (-2454 . 351318) (-2455 . 350708) (-2456 . 350643) (-2457 . 350615) (-2458 . 350436) (-2459 . 350402) (-2460 . 350313) (-2461 . 350258) (-2462 . 350226) (-2463 . 350094) (-2464 . 349728) (-2465 . 349616) (-2466 . 349505) (-2467 . 349367) (-2468 . 349213) (-2469 . 349145) (-2470 . 349056) (-2471 . 348819) (-2472 . 348565) (-2473 . 348513) (-2474 . 348363) (-2475 . 348307) (-2476 . 348239) (-2477 . 347928) (-2478 . 347735) (-2479 . 347676) (-2480 . 347297) (-2481 . 347206) (-2482 . 347072) (-2483 . 346261) (-2484 . 346181) (-2485 . 346089) (-2486 . 345961) (-2487 . 345906) (-2488 . 345853) (-2489 . 345801) (-2490 . 345612) (-2491 . 345517) (-2492 . 345162) (-2493 . 344929) (-2494 . 344775) (-2495 . 344606) (-2496 . 344486) (-2497 . 344089) (-2498 . 344037) (-2499 . 343969) (-2500 . 343720) (-2501 . 343603) (-2502 . 343421) (-2503 . 343338) (-2504 . 343255) (-2505 . 343181) (-2506 . 342546) (-2507 . 341886) (-2508 . 341647) (-2509 . 341551) (-2510 . 341425) (-2511 . 341354) (-2512 . 341071) (-2513 . 340884) (-2514 . 340581) (-2515 . 340485) (-2516 . 340411) (-2517 . 340226) (-2518 . 340170) (-2519 . 340034) (-2520 . 339963) (-2521 . 339907) (-2522 . 339837) (-2523 . 339577) (-2524 . 339504) (-2525 . 339221) (-2526 . 338279) (-2527 . 338159) (-2528 . 338081) (-2529 . 338029) (-2530 . 337891) (-2531 . 337842) (-2532 . 337746) (-2533 . 337650) (-2534 . 337498) (-2535 . 337380) (-2536 . 337327) (-2537 . 337254) (-2538 . 336651) (-2539 . 336553) (-2540 . 336501) (-2541 . 336418) (-2542 . 336349) (-2543 . 336165) (-2544 . 335960) (-2545 . 335870) (-2546 . 335842) (-2547 . 335683) (-2548 . 335525) (-2549 . 335386) (-2550 . 335293) (-2551 . 335197) (-2552 . 334706) (-2553 . 334378) (-2554 . 334242) (-2555 . 334144) (-2556 . 334061) (-2557 . 333936) (-2558 . 333800) (-2559 . 333724) (-2560 . 333633) (-2561 . 333060) (-2562 . 332982) (-2563 . 332929) (-2564 . 332837) (-2565 . 332762) (-2566 . 332471) (-2567 . 332396) (-2568 . 332313) (-2569 . 332175) (-2570 . 331846) (-2571 . 331791) (-2572 . 331614) (-2573 . 331498) (-2574 . 331446) (-2575 . 331329) (-2576 . 331270) (-2577 . 331188) (-2578 . 331136) (-2579 . 331018) (-2580 . 330314) (-2581 . 330261) (-2582 . 330170) (-2583 . 330049) (-2584 . 329582) (-2585 . 329428) (-2586 . 329235) (-2587 . 329116) (-2588 . 329039) (-2589 . 328955) (-2590 . 328251) (-2591 . 327446) (-2592 . 326895) (-2593 . 326675) (-2594 . 325845) (-2595 . 325728) (-2596 . 325574) (-2597 . 325285) (-2598 . 324451) (-2599 . 324373) (-2600 . 324288) (-2601 . 323323) (-2602 . 322671) (-2603 . 322340) (-2604 . 321335) (-2605 . 321188) (-2606 . 321138) (-2607 . 320940) (-2608 . 320089) (-2609 . 319717) (-2610 . 319628) (-2611 . 318986) (-2612 . 318723) (-2613 . 318484) (-2614 . 317938) (-2615 . 317846) (-2616 . 317763) (-2617 . 317604) (-2618 . 317576) (-2619 . 317494) (-2620 . 317445) (-2621 . 317417) (-2622 . 317265) (-2623 . 317169) (-2624 . 316669) (-2625 . 316638) (-2626 . 316092) (-2627 . 316039) (-2628 . 315956) (-2629 . 315800) (-2630 . 315655) (-2631 . 315461) (-2632 . 315371) (-2633 . 315303) (-2634 . 315220) (-2635 . 315165) (-2636 . 315014) (-2637 . 314905) (-2638 . 314359) (-2639 . 314268) (-2640 . 314130) (-2641 . 314077) (-2642 . 313861) (-2643 . 312714) (-2644 . 312492) (-2645 . 312380) (-2646 . 312336) (-2647 . 312281) (-2648 . 312166) (-2649 . 312110) (-2650 . 311994) (-2651 . 311344) (-2652 . 311289) (-2653 . 311237) (-2654 . 310884) (-2655 . 310750) (-2656 . 310474) (-2657 . 310391) (-2658 . 310256) (-2659 . 310190) (-2660 . 309540) (-2661 . 309450) (-2662 . 309331) (-2663 . 308901) (-2664 . 308825) (-2665 . 308572) (-2666 . 308497) (-2667 . 308426) (-2668 . 308301) (-2669 . 307968) (-2670 . 307256) (-2671 . 307154) (-2672 . 307004) (-2673 . 306949) (-2674 . 305738) (-2675 . 305707) (-2676 . 305535) (-2677 . 305452) (-2678 . 304908) (-2679 . 304543) (-2680 . 304375) (-2681 . 304326) (-2682 . 304270) (-2683 . 304148) (-2684 . 304095) (-2685 . 304013) (-2686 . 303836) (-2687 . 303703) (-2688 . 303159) (-2689 . 302836) (-2690 . 302754) (-2691 . 302651) (-2692 . 302439) (-2693 . 302333) (-2694 . 302267) (-2695 . 302116) (-2696 . 301828) (-2697 . 301715) (-2698 . 301171) (-2699 . 300975) (-2700 . 300823) (-2701 . 300644) (-2702 . 300478) (-2703 . 300387) (-2704 . 300316) (-2705 . 299665) (-2706 . 299476) (-2707 . 299225) (-2708 . 299119) (-2709 . 299007) (-2710 . 298871) (-2711 . 298651) (-2712 . 298487) (-2713 . 298368) (-2714 . 297717) (-2715 . 297597) (-2716 . 297515) (-2717 . 297423) (-2718 . 297360) (-2719 . 297267) (-2720 . 297238) (-2721 . 297187) (-2722 . 297131) (-2723 . 297017) (-2724 . 296859) (-2725 . 296208) (-2726 . 296107) (-2727 . 296079) (-2728 . 295853) (-2729 . 295793) (-2730 . 295687) (-2731 . 295554) (-2732 . 295328) (-2733 . 295257) (-2734 . 294986) (-2735 . 294441) (-2736 . 294359) (-2737 . 294219) (-2738 . 293426) (-2739 . 293217) (-2740 . 292912) (-2741 . 292857) (-2742 . 292684) (-2743 . 292508) (-2744 . 292453) (-2745 . 292379) (-2746 . 292266) (-2747 . 292140) (-2748 . 292031) (-2749 . 291790) (-2750 . 291551) (-2751 . 291453) (-2752 . 291200) (-2753 . 291147) (-2754 . 290776) (-2755 . 290421) (-2756 . 290111) (-2757 . 289890) (-2758 . 289814) (-2759 . 289549) (-2760 . 289015) (-2761 . 288842) (-2762 . 288745) (-2763 . 288686) (-2764 . 288400) (-2765 . 288248) (-2766 . 288185) (-2767 . 288132) (-2768 . 288024) (-2769 . 287806) (-2770 . 287515) (-2771 . 287436) (-2772 . 287290) (-2773 . 286341) (-2774 . 286231) (-2775 . 286142) (-2776 . 285994) (-2777 . 285928) (-2778 . 285642) (-2779 . 285500) (-2780 . 285026) (-2781 . 284924) (-2782 . 284846) (-2783 . 284663) (-2784 . 284574) (-2785 . 284180) (-2786 . 284059) (-2787 . 283940) (-2788 . 283798) (-2789 . 283596) (-2790 . 283431) (-2791 . 283397) (-2792 . 283307) (-2793 . 283192) (-2794 . 282327) (-2795 . 282044) (-2796 . 281796) (-2797 . 281706) (-2798 . 281578) (-2799 . 281445) (-2800 . 281307) (-2801 . 280949) (-2802 . 280827) (-2803 . 280758) (-2804 . 280684) (-2805 . 280611) (-2806 . 280506) (-2807 . 280117) (-2808 . 279934) (-2809 . 279696) (-2810 . 279603) (-2811 . 279405) (-2812 . 279255) (-2813 . 279137) (-2814 . 279085) (-2815 . 278933) (-2816 . 278521) (-2817 . 278136) (-2818 . 277987) (-2819 . 277838) (-2820 . 277754) (-2821 . 277650) (-2822 . 276879) (-2823 . 276683) (-2824 . 276489) (-2825 . 276352) (-2826 . 276239) (-2827 . 276137) (-2828 . 275872) (-2829 . 275763) (-2830 . 275535) (-2831 . 275480) (-2832 . 275397) (-2833 . 275320) (-2834 . 275190) (-2835 . 275077) (-2836 . 274925) (-2837 . 274641) (-2838 . 274368) (-2839 . 274316) (-2840 . 274216) (-2841 . 274112) (-2842 . 273779) (-2843 . 273673) (-2844 . 273175) (-2845 . 273024) (-2846 . 272972) (-2847 . 272917) (-2848 . 272862) (-2849 . 272805) (-2850 . 272552) (-2851 . 272374) (-2852 . 272302) (-2853 . 272065) (-2854 . 271894) (-2855 . 271792) (-2856 . 271640) (-2857 . 271464) (-2858 . 271436) (-2859 . 271366) (-2860 . 271184) (-2861 . 271015) (-2862 . 270879) (-2863 . 270674) (-2864 . 270526) (-2865 . 270352) (-2866 . 270262) (-2867 . 270206) (-2868 . 270064) (-2869 . 270011) (-2870 . 269844) (-2871 . 269763) (-2872 . 269682) (-2873 . 269587) (-2874 . 269102) (-2875 . 268535) (-2876 . 268433) (-2877 . 268227) (-2878 . 268128) (-2879 . 267578) (-2880 . 267381) (-2881 . 267257) (-2882 . 267183) (-2883 . 267087) (-2884 . 266992) (-2885 . 266820) (-2886 . 266554) (-2887 . 266487) (-2888 . 266453) (-2889 . 265679) (-2890 . 265543) (-2891 . 265258) (-2892 . 265166) (-2893 . 265083) (-2894 . 264985) (-2895 . 264828) (-2896 . 264703) (-2897 . 264553) (-2898 . 264362) (-2899 . 263909) (-2900 . 263819) (-2901 . 263754) (-2902 . 263635) (-2903 . 263534) (-2904 . 263117) (-2905 . 263033) (-2906 . 262974) (-2907 . 262903) (-2908 . 262805) (-2909 . 262701) (-2910 . 262539) (-2911 . 262419) (-2912 . 262329) (-2913 . 261999) (-2914 . 261908) (-2915 . 261812) (-2916 . 261706) (-2917 . 261639) (-2918 . 261505) (-2919 . 261007) (-2920 . 260887) (-2921 . 260785) (-2922 . 260623) (-2923 . 260120) (-2924 . 259968) (-2925 . 259897) (-2926 . 259523) (-2927 . 259452) (-2928 . 259329) (-2929 . 259217) (-2930 . 259057) (-2931 . 258843) (-2932 . 258747) (-2933 . 258590) (-2934 . 258535) (-2935 . 258372) (-2936 . 258199) (-2937 . 258073) (-2938 . 257920) (-2939 . 257681) (-2940 . 257570) (-2941 . 257453) (-2942 . 257248) (-2943 . 257189) (-2944 . 257000) (-2945 . 256859) (-2946 . 256764) (-2947 . 256691) (-2948 . 256603) (-2949 . 256475) (-2950 . 256382) (-2951 . 256221) (-2952 . 256137) (-2953 . 256015) (-2954 . 255932) (-2955 . 255837) (-2956 . 255480) (-2957 . 255308) (-2958 . 255234) (-2959 . 255164) (-2960 . 255057) (-2961 . 254983) (-2962 . 253275) (-2963 . 253160) (-2964 . 252943) (-2965 . 252845) (-2966 . 252757) (-2967 . 252192) (-2968 . 252005) (-2969 . 251878) (-2970 . 251743) (-2971 . 251605) (-2972 . 251275) (-2973 . 251176) (-2974 . 251078) (-2975 . 250895) (-2976 . 250787) (-2977 . 250653) (-2978 . 250580) (-2979 . 250507) (-2980 . 250426) (-2981 . 250294) (-2982 . 250193) (-2983 . 249991) (-2984 . 249672) (-2985 . 249449) (-2986 . 249260) (-2987 . 249045) (-2988 . 248888) (-2989 . 248518) (-2990 . 248405) (-2991 . 248263) (-2992 . 247948) (-2993 . 247855) (-2994 . 247676) (-2995 . 247594) (-2996 . 247520) (-2997 . 247420) (-2998 . 247263) (-2999 . 247017) (-3000 . 246884) (-3001 . 246784) (-3002 . 246756) (-3003 . 246455) (-3004 . 246304) (-3005 . 246124) (-3006 . 246069) (-3007 . 246016) (-3008 . 245831) (-3009 . 245738) (-3010 . 245280) (-3011 . 245182) (-3012 . 245109) (-3013 . 245052) (-3014 . 243921) (-3015 . 243854) (-3016 . 243480) (-3017 . 243359) (-3018 . 243270) (-3019 . 242958) (-3020 . 242875) (-3021 . 242718) (-3022 . 242618) (-3023 . 242517) (-3024 . 242464) (-3025 . 242364) (-3026 . 242307) (-3027 . 242144) (-3028 . 242056) (-3029 . 241937) (-3030 . 241729) (-3031 . 241615) (-3032 . 241456) (-3033 . 241354) (-3034 . 241078) (-3035 . 240974) (-3036 . 240846) (-3037 . 240789) (-3038 . 240737) (-3039 . 240530) (-3040 . 240460) (-3041 . 240404) (-3042 . 240241) (-3043 . 240079) (-3044 . 240026) (-3045 . 239919) (-3046 . 239853) (-3047 . 239642) (-3048 . 239407) (-3049 . 239307) (-3050 . 239229) (-3051 . 239177) (-3052 . 239085) (-3053 . 238852) (-3054 . 238696) (-3055 . 238627) (-3056 . 238264) (-3057 . 238166) (-3058 . 238062) (-3059 . 237877) (-3060 . 237638) (-3061 . 236681) (-3062 . 236518) (-3063 . 236465) (-3064 . 236064) (-3065 . 235993) (-3066 . 235837) (-3067 . 235733) (-3068 . 235529) (-3069 . 235343) (-3070 . 235224) (-3071 . 235050) (-3072 . 234852) (-3073 . 234704) (-3074 . 234648) (-3075 . 234568) (-3076 . 234303) (-3077 . 234206) (-3078 . 234067) (-3079 . 233942) (-3080 . 233846) (-3081 . 233742) (-3082 . 233543) (-3083 . 233177) (-3084 . 233087) (-3085 . 232931) (-3086 . 232661) (-3087 . 232205) (-3088 . 232128) (-3089 . 232018) (-3090 . 231894) (-3091 . 231788) (-3092 . 231009) (-3093 . 230909) (-3094 . 230601) (-3095 . 230545) (-3096 . 229806) (-3097 . 229663) (-3098 . 229339) (-3099 . 229235) (** . 226277) (-3101 . 226111) (-3102 . 226058) (-3103 . 225887) (-3104 . 225740) (-3105 . 225469) (-3106 . 224511) (-3107 . 224433) (-3108 . 224333) (-3109 . 224130) (-3110 . 224020) (-3111 . 223916) (-3112 . 223867) (-3113 . 223776) (-3114 . 223386) (-3115 . 223232) (-3116 . 222829) (-3117 . 222589) (-3118 . 222518) (-3119 . 222095) (-3120 . 222014) (-3121 . 221892) (-3122 . 221767) (-3123 . 221368) (-3124 . 221063) (-3125 . 221011) (-3126 . 220856) (-3127 . 220590) (-3128 . 220472) (-3129 . 220393) (-3130 . 220264) (-3131 . 220096) (-3132 . 219989) (-3133 . 219846) (-3134 . 219775) (-3135 . 219604) (-3136 . 219531) (-3137 . 219420) (-3138 . 219285) (-3139 . 219233) (-3140 . 218925) (-3141 . 218846) (-3142 . 218753) (-3143 . 218619) (-3144 . 218106) (-3145 . 218031) (-3146 . 217950) (-3147 . 217861) (-3148 . 217797) (-3149 . 217745) (-3150 . 217690) (-3151 . 217594) (-3152 . 217563) (-3153 . 217482) (-3154 . 217345) (-3155 . 217037) (-3156 . 216890) (-3157 . 216512) (-3158 . 215968) (-3159 . 215830) (-3160 . 215732) (-3161 . 215661) (-3162 . 215423) (-3163 . 215279) (-3164 . 214997) (-3165 . 214516) (-3166 . 214310) (-3167 . 213944) (-3168 . 213806) (-3169 . 213655) (-3170 . 213530) (-3171 . 213320) (-3172 . 213250) (-3173 . 213035) (-3174 . 212917) (-3175 . 212800) (-3176 . 212699) (-3177 . 212619) (-3178 . 212563) (-3179 . 212282) (-3180 . 212139) (-3181 . 212073) (-3182 . 211857) (-3183 . 211756) (-3184 . 211486) (-3185 . 211378) (-3186 . 211145) (-3187 . 210698) (-3188 . 210255) (-3189 . 210153) (-3190 . 209898) (-3191 . 209797) (-3192 . 209724) (-3193 . 209485) (-3194 . 209346) (-3195 . 209227) (-3196 . 209175) (-3197 . 208996) (-3198 . 208888) (-3199 . 208812) (-3200 . 208575) (-3201 . 208471) (-3202 . 208164) (-3203 . 208090) (-3204 . 207983) (-3205 . 207870) (-3206 . 207782) (-3207 . 207530) (-3208 . 207432) (-3209 . 207300) (-3210 . 207247) (-3211 . 207159) (-3212 . 207071) (-3213 . 206889) (-3214 . 206694) (-3215 . 206594) (-3216 . 206463) (-3217 . 206290) (-3218 . 206186) (-3219 . 206009) (-3220 . 205900) (-3221 . 205757) (-3222 . 205665) (-3223 . 205437) (-3224 . 205247) (-3225 . 204972) (-3226 . 202033) (-3227 . 201908) (-3228 . 201651) (-3229 . 201585) (-3230 . 201461) (-3231 . 201405) (-3232 . 196558) (-3233 . 196359) (-3234 . 196271) (-3235 . 196145) (-3236 . 195995) (-3237 . 195921) (-3238 . 195382) (-3239 . 194935) (-3240 . 194727) (-3241 . 194660) (-3242 . 194594) (-3243 . 194422) (-3244 . 193847) (-3245 . 193517) (-3246 . 193256) (-3247 . 193148) (-3248 . 193030) (-3249 . 192288) (-3250 . 192182) (-3251 . 192078) (-3252 . 192025) (-3253 . 191958) (-3254 . 191854) (-3255 . 191713) (-3256 . 191607) (-3257 . 191289) (-3258 . 189436) (-3259 . 189292) (-3260 . 189240) (-3261 . 189109) (-3262 . 189033) (-3263 . 188945) (-3264 . 188751) (-3265 . 188663) (-3266 . 188580) (-3267 . 188445) (-3268 . 188293) (-3269 . 188196) (-3270 . 187681) (-3271 . 187629) (-3272 . 187504) (-3273 . 187393) (-3274 . 187335) (-3275 . 187237) (-3276 . 186964) (-3277 . 186764) (-3278 . 186681) (-3279 . 186322) (-3280 . 186259) (-3281 . 186186) (-3282 . 185776) (-3283 . 185660) (-3284 . 185364) (-3285 . 185216) (-3286 . 185134) (-3287 . 184927) (-3288 . 184557) (-3289 . 184455) (-3290 . 184353) (-3291 . 184165) (-3292 . 184075) (-3293 . 183737) (-3294 . 183504) (-3295 . 183432) (-3296 . 183318) (-3297 . 183228) (-3298 . 183155) (-3299 . 182858) (-3300 . 182756) (-3301 . 182439) (-3302 . 182362) (-3303 . 182279) (-3304 . 182074) (-3305 . 181941) (-3306 . 181818) (-3307 . 181616) (-3308 . 181464) (-3309 . 181360) (-3310 . 181256) (-3311 . 181126) (-3312 . 180921) (-3313 . 180696) (-3314 . 180615) (-3315 . 180245) (-3316 . 180193) (-3317 . 179998) (-3318 . 179928) (-3319 . 179836) (-3320 . 179164) (-3321 . 178137) (-3322 . 177974) (-3323 . 177741) (-3324 . 177456) (-3325 . 177330) (-3326 . 177288) (-3327 . 176871) (-3328 . 176790) (-3329 . 176709) (-3330 . 176681) (-3331 . 176596) (-3332 . 176496) (-3333 . 175957) (-3334 . 174773) (-3335 . 174635) (-3336 . 174469) (-3337 . 174354) (-3338 . 174263) (-3339 . 174192) (-3340 . 174107) (-3341 . 173762) (-3342 . 173734) (-3343 . 173624) (-3344 . 173329) (-3345 . 172064) (-3346 . 171428) (-3347 . 171237) (-3348 . 171071) (-3349 . 171015) (-3350 . 170987) (-3351 . 170934) (-3352 . 170849) (-3353 . 170702) (-3354 . 170164) (-3355 . 170053) (-3356 . 169981) (-3357 . 169900) (-3358 . 169325) (-3359 . 169041) (-3360 . 168970) (-3361 . 168886) (-3362 . 168720) (-3363 . 168647) (-3364 . 168562) (-3365 . 168453) (-3366 . 168364) (-3367 . 168193) (-3368 . 168138) (-3369 . 168086) (-3370 . 167873) (-3371 . 167820) (-3372 . 167456) (-3373 . 167400) (-3374 . 167285) (-3375 . 167188) (-3376 . 167103) (-3377 . 167032) (-3378 . 166949) (-3379 . 166840) (-3380 . 166363) (-3381 . 166209) (-3382 . 165790) (-3383 . 165118) (-3384 . 165065) (-3385 . 165014) (-3386 . 164810) (-3387 . 164569) (-3388 . 164488) (-3389 . 164397) (-3390 . 164263) (-3391 . 163980) (-3392 . 163830) (-3393 . 163754) (-3394 . 163650) (-3395 . 163196) (-3396 . 163111) (-3397 . 162876) (-3398 . 162776) (-3399 . 162646) (-3400 . 162276) (-3401 . 162187) (-3402 . 161954) (-3403 . 161800) (-3404 . 161664) (-3405 . 161025) (-3406 . 160903) (-3407 . 160715) (-3408 . 160556) (-3409 . 160370) (-3410 . 160285) (-3411 . 158898) (-3412 . 158816) (-3413 . 158699) (-3414 . 158604) (-3415 . 158526) (-3416 . 158448) (-3417 . 158390) (-3418 . 158058) (-3419 . 157975) (-3420 . 157875) (-3421 . 157790) (-3422 . 157735) (-3423 . 157674) (-3424 . 157601) (-3425 . 157463) (-3426 . 157230) (-3427 . 157178) (-3428 . 157039) (-3429 . 156983) (-3430 . 156807) (-3431 . 156568) (-3432 . 156483) (-3433 . 156367) (-3434 . 156336) (-3435 . 156222) (-3436 . 156145) (-3437 . 156072) (-3438 . 155945) (-3439 . 155820) (-3440 . 155665) (-3441 . 155580) (-3442 . 155208) (-3443 . 154992) (-3444 . 154916) (-3445 . 154187) (-3446 . 154135) (-3447 . 153084) (-3448 . 152888) (-3449 . 152750) (-3450 . 152380) (-3451 . 152295) (-3452 . 152098) (-3453 . 151994) (-3454 . 151865) (-3455 . 151741) (-3456 . 151653) (-3457 . 151542) (-3458 . 151390) (-3459 . 151276) (-3460 . 151205) (-3461 . 151120) (-3462 . 151028) (-3463 . 150825) (-3464 . 150718) (-3465 . 150633) (-3466 . 150559) (-3467 . 150388) (-3468 . 150315) (-3469 . 150084) (-3470 . 149999) (-3471 . 149885) (-3472 . 149519) (-3473 . 149394) (-3474 . 148896) (-3475 . 148292) (-3476 . 148207) (-3477 . 148137) (-3478 . 148066) (-3479 . 148010) (-3480 . 147904) (-3481 . 147720) (-3482 . 147649) (-3483 . 147437) (-3484 . 147285) (-3485 . 147169) (-3486 . 147084) (-3487 . 146695) (-3488 . 146643) (-3489 . 146549) (-3490 . 146334) (-3491 . 145558) (-3492 . 145346) (-3493 . 145040) (-3494 . 144972) (-3495 . 144898) (-3496 . 144766) (-3497 . 144562) (-3498 . 144363) (-3499 . 144211) (-3500 . 144014) (-3501 . 143931) (-3502 . 143804) (-3503 . 143731) (-3504 . 143631) (-3505 . 143499) (-3506 . 143400) (-3507 . 143034) (-3508 . 142909) (-3509 . 142875) (-3510 . 142739) (-3511 . 142520) (-3512 . 142371) (-3513 . 142285) (-3514 . 142212) (-3515 . 142118) (-3516 . 141800) (-3517 . 141686) (-3518 . 141280) (-3519 . 141208) (-3520 . 141127) (-3521 . 140980) (-3522 . 140840) (-3523 . 139888) (-3524 . 139838) (-3525 . 139736) (-3526 . 139535) (-3527 . 139421) (-3528 . 139299) (-3529 . 139218) (-3530 . 138957) (-3531 . 138905) (-3532 . 138789) (-3533 . 138627) (-3534 . 138528) (-3535 . 138326) (-3536 . 138191) (-3537 . 137871) (-3538 . 137709) (-3539 . 137617) (-3540 . 137491) (-3541 . 137394) (-3542 . 137317) (-3543 . 137215) (-3544 . 136909) (-3545 . 136747) (-3546 . 136613) (-3547 . 136540) (-3548 . 136455) (-3549 . 136190) (-3550 . 136121) (-3551 . 136054) (-3552 . 135985) (-3553 . 135914) (-3554 . 135594) (-3555 . 135131) (-3556 . 134349) (-3557 . 134317) (-3558 . 134165) (-3559 . 134080) (-3560 . 133630) (-3561 . 133541) (-3562 . 133131) (-3563 . 126589) (-3564 . 126561) (-3565 . 126358) (-3566 . 126266) (-3567 . 126085) (-3568 . 125952) (-3569 . 125834) (-3570 . 125800) (-3571 . 125766) (-3572 . 125707) (-3573 . 125633) (-3574 . 125584) (-3575 . 125016) (-3576 . 124856) (-3577 . 124785) (-3578 . 124362) (-3579 . 123485) (-3580 . 123366) (-3581 . 123211) (-3582 . 123059) (-3583 . 122909) (-3584 . 122856) (-3585 . 122595) (-3586 . 121002) (-3587 . 120730) (-3588 . 120567) (-3589 . 119434) (-3590 . 119296) (-3591 . 119239) (-3592 . 119183) (-3593 . 119021) (-3594 . 118693) (-3595 . 118555) (-3596 . 118242) (-3597 . 118044) (-3598 . 117965) (-3599 . 117857) (-3600 . 117477) (-3601 . 117424) (-3602 . 117329) (-3603 . 117243) (-3604 . 116984) (-3605 . 116859) (-3606 . 116382) (-3607 . 115689) (-3608 . 115528) (-3609 . 115391) (-3610 . 115239) (-3611 . 115166) (-3612 . 115095) (-3613 . 114539) (-3614 . 114238) (-3615 . 114147) (-3616 . 114009) (-3617 . 113857) (-3618 . 113559) (-3619 . 113261) (-3620 . 112767) (-3621 . 112656) (-3622 . 112360) (-3623 . 112033) (-3624 . 111942) (-3625 . 109933) (-3626 . 109796) (-3627 . 109672) (-3628 . 109339) (-3629 . 109235) (-3630 . 108846) (-3631 . 108672) (-3632 . 108591) (-3633 . 108264) (-3634 . 108179) (-3635 . 108101) (-3636 . 108027) (-3637 . 107971) (-3638 . 107727) (-3639 . 107699) (-3640 . 107529) (-3641 . 107431) (-3642 . 107279) (-3643 . 107198) (-3644 . 106938) (-3645 . 106843) (-3646 . 106791) (-3647 . 106692) (-3648 . 106626) (-3649 . 106454) (-3650 . 106031) (-3651 . 105951) (-3652 . 105845) (-3653 . 105772) (-3654 . 105681) (-3655 . 105623) (-3656 . 105418) (-3657 . 105265) (-3658 . 104907) (-3659 . 104633) (-3660 . 104573) (-3661 . 104458) (-3662 . 104330) (-3663 . 104241) (-3664 . 104124) (-3665 . 104056) (-3666 . 103533) (-3667 . 98849) (-3668 . 98170) (-3669 . 98119) (-3670 . 98040) (-3671 . 97896) (-3672 . 97602) (-3673 . 97457) (-3674 . 97342) (-3675 . 97234) (-3676 . 95388) (-3677 . 95305) (-3678 . 95135) (-3679 . 95001) (-3680 . 94884) (-3681 . 94766) (-3682 . 94630) (-3683 . 94531) (-3684 . 94237) (-3685 . 94178) (-3686 . 93878) (-3687 . 93776) (-3688 . 93671) (-3689 . 93509) (-3690 . 93478) (-3691 . 93407) (-3692 . 93236) (-3693 . 92749) (-3694 . 92612) (-3695 . 92468) (-3696 . 92252) (-3697 . 91959) (-3698 . 91658) (-3699 . 91417) (-3700 . 91332) (-3701 . 91230) (-3702 . 91144) (-3703 . 91053) (-3704 . 90861) (-3705 . 90640) (-3706 . 90034) (-3707 . 89957) (-3708 . 89848) (-3709 . 89681) (-3710 . 89439) (-3711 . 89366) (-3712 . 89307) (-3713 . 89186) (-3714 . 89090) (-3715 . 88902) (-3716 . 88700) (-3717 . 88600) (-3718 . 88400) (-3719 . 88148) (-3720 . 88009) (-3721 . 87864) (-3722 . 87704) (-3723 . 87631) (-3724 . 87548) (-3725 . 87496) (-3726 . 87343) (-3727 . 87291) (-3728 . 87238) (-3729 . 87182) (-3730 . 85043) (-3731 . 83287) (-3732 . 83109) (-3733 . 82876) (-3734 . 82729) (-3735 . 82610) (-3736 . 82520) (-3737 . 82439) (-3738 . 82371) (-3739 . 81655) (-3740 . 81605) (-3741 . 81457) (-3742 . 81339) (-3743 . 81137) (-3744 . 80914) (-3745 . 80840) (-3746 . 80642) (-3747 . 80506) (-3748 . 80406) (-3749 . 80372) (-3750 . 80306) (-3751 . 80163) (-3752 . 79934) (-3753 . 79751) (-3754 . 79561) (-3755 . 79294) (-3756 . 78750) (-3757 . 78529) (-3758 . 78430) (-3759 . 78287) (-3760 . 78234) (-3761 . 78100) (-3762 . 77948) (-3763 . 77801) (-3764 . 77727) (-3765 . 77646) (-3766 . 77407) (-3767 . 77356) (-3768 . 77264) (-3769 . 77075) (-3770 . 76840) (-3771 . 76340) (-3772 . 76159) (-3773 . 76103) (-3774 . 76031) (-3775 . 74897) (-3776 . 74701) (-3777 . 74620) (-3778 . 73816) (-3779 . 73646) (-3780 . 73498) (-3781 . 73178) (-3782 . 73023) (-3783 . 72926) (-3784 . 72838) (-3785 . 72779) (-3786 . 72698) (-3787 . 72631) (-3788 . 72510) (-3789 . 71974) (-3790 . 71788) (-3791 . 71714) (-3792 . 71640) (-12 . 71485) (-3794 . 71406) (-3795 . 71356) (-3796 . 71265) (-3797 . 71143) (-3798 . 70991) (-3799 . 70939) (-3800 . 70849) (-3801 . 70284) (-3802 . 70170) (-3803 . 70115) (-3804 . 70017) (-3805 . 69878) (-3806 . 69812) (-3807 . 69448) (-3808 . 69249) (-3809 . 69156) (-3810 . 68940) (-3811 . 68865) (-3812 . 68747) (-3813 . 68599) (-3814 . 68496) (-3815 . 68402) (-3816 . 68279) (-3817 . 68204) (-3818 . 68126) (-3819 . 68050) (-3820 . 67488) (-3821 . 67398) (-3822 . 67317) (-3823 . 67259) (-3824 . 67155) (-3825 . 67076) (-3826 . 66906) (-3827 . 66774) (-3828 . 66515) (-3829 . 66408) (-3830 . 66037) (-3831 . 65940) (-3832 . 65676) (-3833 . 65607) (-3834 . 64500) (-3835 . 64012) (-3836 . 63873) (-3837 . 63632) (-3838 . 63373) (-3839 . 63307) (-3840 . 62983) (-3841 . 62899) (-3842 . 62393) (-3843 . 62259) (-3844 . 62169) (-3845 . 61970) (-3846 . 61409) (-3847 . 60736) (-3848 . 60641) (-3849 . 60549) (-3850 . 60362) (-3851 . 60227) (-3852 . 60176) (-3853 . 59868) (-3854 . 59754) (-3855 . 59669) (-3856 . 58969) (-3857 . 58894) (-3858 . 58823) (-3859 . 58767) (-3860 . 58307) (-3861 . 58255) (-3862 . 58120) (-3863 . 58047) (-3864 . 57949) (-3865 . 57818) (-3866 . 57737) (-3867 . 57677) (-3868 . 57607) (-3869 . 57551) (-3870 . 57493) (-3871 . 57360) (-3872 . 57304) (-3873 . 57252) (-3874 . 57136) (-3875 . 56884) (-3876 . 56440) (-3877 . 56287) (-3878 . 56221) (-3879 . 56141) (-3880 . 56085) (-3881 . 55823) (-3882 . 55792) (-3883 . 55718) (-3884 . 55628) (-3885 . 55528) (-3886 . 55132) (-3887 . 55057) (-3888 . 54649) (-3889 . 54098) (-3890 . 53900) (* . 49569) (-3892 . 49432) (-3893 . 49088) (-3894 . 48968) (-3895 . 48916) (-3896 . 48794) (-3897 . 48760) (-3898 . 48477) (-3899 . 48375) (-3900 . 48077) (-3901 . 48026) (-3902 . 47507) (-3903 . 47403) (-3904 . 47305) (-3905 . 47102) (-3906 . 46845) (-3907 . 46647) (-3908 . 46334) (-3909 . 46240) (-3910 . 46102) (-3911 . 46049) (-3912 . 45426) (-3913 . 45398) (-3914 . 45315) (-3915 . 45190) (-3916 . 44960) (-3917 . 44847) (-3918 . 44774) (-3919 . 44700) (-3920 . 44610) (-3921 . 44160) (-3922 . 43773) (-3923 . 43700) (-3924 . 43666) (-3925 . 43519) (-3926 . 43420) (-3927 . 43319) (-3928 . 43228) (-3929 . 43079) (-3930 . 42957) (-3931 . 42865) (-3932 . 42725) (-3933 . 42630) (-3934 . 42488) (-3935 . 42413) (-3936 . 42045) (-3937 . 41293) (-3938 . 41220) (-3939 . 41126) (-3940 . 41050) (-3941 . 40852) (-3942 . 40645) (-3943 . 40575) (-3944 . 40272) (-3945 . 39979) (-3946 . 39694) (-3947 . 39594) (-3948 . 39397) (-3949 . 38347) (-3950 . 38310) (-3951 . 38200) (-3952 . 37999) (-3953 . 37910) (-3954 . 37759) (-3955 . 37565) (-3956 . 37330) (-3957 . 37277) (-3958 . 37042) (-3959 . 36757) (-3960 . 36704) (-3961 . 36626) (-3962 . 36558) (-3963 . 36396) (-3964 . 36307) (-3965 . 36215) (-3966 . 36074) (-3967 . 35993) (-3968 . 35723) (-3969 . 35652) (-3970 . 35232) (-3971 . 35133) (-3972 . 35063) (-3973 . 34868) (-3974 . 34834) (-3975 . 32695) (-3976 . 32230) (-3977 . 32147) (-3978 . 32066) (-3979 . 31908) (-3980 . 31837) (-3981 . 31672) (-3982 . 31462) (-3983 . 31388) (-3984 . 30980) (-3985 . 30800) (-3986 . 30734) (-3987 . 30585) (-3988 . 30464) (-3989 . 30159) (-3990 . 29347) (-3991 . 29246) (-3992 . 29174) (-3993 . 29054) (-3994 . 28979) (-3995 . 28898) (-3996 . 28779) (-3997 . 28435) (-3998 . 28369) (-3999 . 28186) (-4000 . 27984) (-4001 . 27899) (-4002 . 27644) (-4003 . 27510) (-4004 . 27447) (-4005 . 27244) (-4006 . 27048) (-4007 . 26844) (-4008 . 26771) (-4009 . 26644) (-4010 . 26569) (-4011 . 26460) (-4012 . 26291) (-4013 . 26209) (-4014 . 26160) (-4015 . 25978) (-4016 . 23229) (-4017 . 23155) (-4018 . 23058) (-4019 . 22933) (-4020 . 22859) (-4021 . 22711) (-4022 . 22604) (-4023 . 22552) (-4024 . 22456) (-4025 . 22374) (-4026 . 22188) (-4027 . 22136) (-4028 . 22083) (-4029 . 21931) (-4030 . 21795) (-4031 . 21743) (-4032 . 21647) (-4033 . 21341) (-4034 . 21203) (-4035 . 21131) (-4036 . 21060) (-4037 . 20971) (-4038 . 20870) (-4039 . 20689) (-4040 . 20617) (-4041 . 20441) (-4042 . 20169) (-4043 . 20011) (-4044 . 19600) (-4045 . 19548) (-4046 . 19465) (-4047 . 18893) (-4048 . 18655) (-4049 . 18310) (-4050 . 18168) (-4051 . 18115) (-4052 . 18043) (-4053 . 17947) (-4054 . 17836) (-4055 . 17565) (-4056 . 17468) (-4057 . 17415) (-4058 . 17264) (-4059 . 16682) (-4060 . 16545) (-4061 . 16421) (-4062 . 16324) (-4063 . 16136) (-4064 . 15562) (-4065 . 15402) (-4066 . 15268) (-4067 . 15212) (-4068 . 15062) (-4069 . 14827) (-4070 . 14723) (-4071 . 14649) (-4072 . 14394) (-4073 . 14315) (-4074 . 14229) (-4075 . 14052) (-4076 . 13942) (-4077 . 13808) (-4078 . 13756) (-4079 . 13604) (-4080 . 13494) (-4081 . 13346) (-4082 . 13256) (-4083 . 13043) (-4084 . 13014) (-4085 . 12873) (-4086 . 12718) (-4087 . 12614) (-4088 . 12538) (-4089 . 12488) (-4090 . 12420) (-4091 . 11886) (-4092 . 11779) (-4093 . 11686) (-4094 . 11586) (-4095 . 11436) (-4096 . 11281) (-4097 . 11206) (-4098 . 10774) (-4099 . 10234) (-4100 . 9612) (-4101 . 9575) (-4102 . 9538) (-4103 . 9396) (-4104 . 7891) (-4105 . 7796) (-4106 . 7735) (-4107 . 7664) (-4108 . 7579) (-4109 . 7424) (-4110 . 7108) (-4111 . 6920) (-4112 . 6771) (-4113 . 6625) (-4114 . 6550) (-4115 . 6457) (-4116 . 6338) (-4117 . 6194) (-4118 . 6109) (-4119 . 5995) (-4120 . 5920) (-4121 . 5765) (-4122 . 5672) (-4123 . 5498) (-4124 . 5443) (-4125 . 5339) (-4126 . 5268) (-4127 . 5153) (-4128 . 4792) (-4129 . 4707) (-4130 . 4543) (-4131 . 4428) (-4132 . 4400) (-4133 . 4372) (-4134 . 4281) (-4135 . 4166) (-4136 . 4060) (-4137 . 3938) (-4138 . 3806) (-4139 . 3546) (-4140 . 3446) (-4141 . 3198) (-4142 . 3005) (-4143 . 2881) (-4144 . 2772) (-4145 . 2694) (-4146 . 2645) (-4147 . 2527) (-4148 . 2395) (-4149 . 2331) (-4150 . 2242) (-4151 . 2095) (-4152 . 1726) (-4153 . 1572) (-4154 . 1304) (-4155 . 1141) (-4156 . 1041) (-4157 . 947) (-4158 . 885) (-4159 . 800) (-4160 . 696) (-4161 . 599) (-4162 . 546) (-4163 . 30)) \ No newline at end of file
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4190)) (-4 *1 (-138 *2)) (-4 *2 (-1110))
+ (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4190)) (-4 *1 (-138 *3))
+ (-4 *3 (-1110))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1110))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1004))
+ (-5 *1 (-670 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1004) (-33)))
+ (-4 *4 (-13 (-1004) (-33))) (-5 *1 (-1041 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-569)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919) (-1096))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1110)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *2 (-703))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-779) (-278) (-953 (-517)) (-579 (-517)) (-134)))
+ (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1096) (-881)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787)))
+ ((*1 *1 *1) (-5 *1 (-787)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1056 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *4)) (-4 *4 (-962)) (-4 *2 (-1132 *4))
+ (-5 *1 (-413 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-377 (-1071 (-286 *5)))) (-5 *3 (-1156 (-286 *5)))
+ (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1032 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156))
+ (-4 *5 (-1132 *4)) (-5 *2 (-623 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1132 *3))
+ (-5 *2 (-623 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1075)) (-5 *6 (-107))
+ (-4 *7 (-13 (-278) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-4 *3 (-13 (-1096) (-881) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779))
+ (-4 *3 (-976 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3831 *4))))
+ (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-981 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2551 (-583 *7))))
+ (-5 *1 (-895 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333))
+ (-4 *5 (-509)) (-5 *2 (-1156 *5)) (-5 *1 (-578 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1156 *4)) (-4 *4 (-579 *5))
+ (-2477 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1156 (-377 *5)))
+ (-5 *1 (-578 *5 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-123)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-623 (-286 (-199))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))))
+ (-5 *1 (-181)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-343 *2)) (-4 *2 (-1110))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-962)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| -2525 *1) (|:| -1451 *1))) (-4 *1 (-1132 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-892)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1004) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1040 *4 *5)) (-4 *4 (-13 (-1004) (-33))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156))
+ (-5 *2 (-1156 (-623 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-1156 (-623 *4))) (-5 *1 (-386 *3 *4))
+ (-4 *3 (-387 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1156 (-623 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1075))) (-4 *5 (-333))
+ (-5 *2 (-1156 (-623 (-377 (-875 *5))))) (-5 *1 (-992 *5))
+ (-5 *4 (-623 (-377 (-875 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1075))) (-4 *5 (-333))
+ (-5 *2 (-1156 (-623 (-875 *5)))) (-5 *1 (-992 *5))
+ (-5 *4 (-623 (-875 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333))
+ (-5 *2 (-1156 (-623 *4))) (-5 *1 (-992 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-623 (-875 *4))) (-5 *1 (-944 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-844)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3))
+ (-4 *3 (-558 (-349)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349)))
+ (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-153 *5)) (-5 *4 (-844)) (-4 *5 (-156))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349)))
+ (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-156))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-875 *4)) (-4 *4 (-962)) (-4 *4 (-558 (-349)))
+ (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-875 *5)) (-5 *4 (-844)) (-4 *5 (-962))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349)))
+ (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-377 (-875 (-153 *4)))) (-4 *4 (-509))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-377 (-875 (-153 *5)))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 *5)) (-5 *4 (-844)) (-4 *5 (-509)) (-4 *5 (-779))
+ (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779))
+ (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-844)) (-4 *5 (-509))
+ (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349)))
+ (-5 *1 (-717 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-752)) (-14 *5 (-1075)) (-5 *2 (-583 (-1129 *5 *4)))
+ (-5 *1 (-1018 *4 *5)) (-5 *3 (-1129 *5 *4)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1)))
+ (-4 *1 (-981 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199))
+ (-5 *2 (-951)) (-5 *1 (-682)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-556 *3)) (-4 *3 (-779))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779))
+ (-5 *1 (-556 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1132 (-517))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1075)) (-5 *2 (-556 *6))
+ (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4192 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2))
+ (-4 *2 (-962)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1132 *2))
+ (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *6 (-583 (-556 *3)))
+ (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1096) (-400 *7)))
+ (-4 *7 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-2 (|:| -1306 *3) (|:| |coeff| *3)))
+ (-5 *1 (-510 *7 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-725)) (-4 *2 (-872 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2))
+ (-4 *4 (-421)) (-4 *6 (-779)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-1075))) (-5 *3 (-51)) (-5 *1 (-815 *4))
+ (-4 *4 (-1004)))))
+(((*1 *2)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-1116 *4)) (-4 *4 (-962)) (-4 *4 (-509))
+ (-5 *2 (-377 (-875 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-517)) (-4 *1 (-1116 *4)) (-4 *4 (-962)) (-4 *4 (-509))
+ (-5 *2 (-377 (-875 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-278))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6))
+ (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-416 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6))
+ (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-416 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-349))) (-5 *1 (-955)) (-5 *3 (-349)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1004)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-617 *4 *5)) (-4 *4 (-1004))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-779)) (-5 *1 (-852 *3 *2)) (-4 *2 (-400 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-286 (-517))) (-5 *1 (-853))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-779)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-910 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3))
+ (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-910 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-623 *5)) (-4 *5 (-910 *4)) (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4)))
+ (-5 *1 (-626 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-4 *6 (-1132 *5))
+ (-5 *2 (-2 (|:| -3779 *7) (|:| |rh| (-583 (-377 *6)))))
+ (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6)))
+ (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-509)) (-4 *5 (-910 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1125 *4 *5 *3))
+ (-4 *3 (-1132 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-265 (-875 (-517))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-583 (-1075)))
+ (|:| |inhom| (-3 (-583 (-1156 (-703))) "failed"))
+ (|:| |hom| (-583 (-1156 (-703))))))
+ (-5 *1 (-210)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2272 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3))))
+ (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-906 *4 *5 *6 *7 *3))
+ (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-981 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-906 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-981 *5 *6 *7 *8)) (-4 *5 (-421))
+ (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-107))
+ (-5 *1 (-1011 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-583
+ (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1071 *2))
+ (|:| |logand| (-1071 *2)))))
+ (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-333)) (-5 *1 (-534 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1071 *4)) (-4 *4 (-319))
+ (-5 *2 (-1156 (-583 (-2 (|:| -3119 *4) (|:| -2810 (-1022))))))
+ (-5 *1 (-316 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4191)) (-4 *1 (-927 *3))
+ (-4 *3 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4))) (-4 *6 (-312 *3 *4 *5))
+ (-5 *2 (-383 *4 (-377 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *6)) (-4 *6 (-13 (-379 *4 *5) (-953 *4)))
+ (-4 *4 (-910 *3)) (-4 *5 (-1132 *4)) (-4 *3 (-278))
+ (-5 *1 (-383 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1157)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-583
+ (-2
+ (|:| -2581
+ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199))
+ (|:| |fn| (-1156 (-286 (-199))))
+ (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199)))
+ (|:| |g| (-286 (-199))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (|:| -1860
+ (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349))
+ (|:| |expense| (-349)) (|:| |accuracy| (-349))
+ (|:| |intermediateResults| (-349)))))))
+ (-5 *1 (-735)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199))
+ (-5 *2 (-583 (-866 *4))) (-5 *1 (-1107)) (-5 *3 (-866 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))
+ (-4 *7 (-910 *4)) (-4 *2 (-621 *7 *8 *9))
+ (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6))
+ (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-962))
+ (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3))
+ (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2))
+ (-4 *2 (-621 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-962))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1025 *2 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1082 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-962)) (-5 *1 (-624 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))
+ ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-364)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *2 (-779))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-725))
+ (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-671)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1156 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-875 (-517))) (-5 *2 (-300))
+ (-5 *1 (-302)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1104 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *2 (-976 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-947)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1075))
+ (-4 *5 (-13 (-421) (-779) (-134) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1083 (-583 *4))) (-4 *4 (-779))
+ (-5 *2 (-583 (-583 *4))) (-5 *1 (-1082 *4)))))
+(((*1 *1 *1) (-5 *1 (-199)))
+ ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *1 *1) (-4 *1 (-1039))) ((*1 *1 *1 *1) (-4 *1 (-1039))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-779))
+ (-5 *2
+ (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4))))
+ (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4))))))
+ (-5 *1 (-1082 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-962))
+ (-5 *2 (-751 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1110)) (-5 *2 (-583 *1)) (-4 *1 (-927 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349))
+ (-5 *2
+ (-2 (|:| -3119 *4) (|:| -3108 *4) (|:| |totalpts| (-517))
+ (|:| |success| (-107))))
+ (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-951)) (-5 *1 (-681)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2368 *3)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779))
+ (-4 *5 (-953 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-400 *5))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *5 (-556 $)) $))
+ (-15 -2097 ((-1027 *5 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *5 (-556 $))))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1004)) (-4 *4 (-13 (-962) (-809 *3) (-779) (-558 *2)))
+ (-5 *2 (-815 *3)) (-5 *1 (-984 *3 *4 *5))
+ (-4 *5 (-13 (-400 *4) (-809 *3) (-558 *2))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1056 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1004)) (-4 *6 (-1004))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1004)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-1132 *3))
+ (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-2 (|:| |num| (-1156 *4)) (|:| |den| *4))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-509)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-278))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1317 *1)))
+ (-4 *1 (-278)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-583 *7) *7 (-1071 *7))) (-5 *5 (-1 (-388 *7) *7))
+ (-4 *7 (-1132 *6)) (-4 *6 (-13 (-333) (-134) (-953 (-377 (-517)))))
+ (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3779 *3))))
+ (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7))
+ (-4 *8 (-593 (-377 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-13 (-333) (-134) (-953 (-517)) (-953 (-377 (-517)))))
+ (-5 *2
+ (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3779 (-591 *6 (-377 *6))))))
+ (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-199))
+ (-5 *2
+ (-2 (|:| |brans| (-583 (-583 (-866 *4)))) (|:| |xValues| (-999 *4))
+ (|:| |yValues| (-999 *4))))
+ (-5 *1 (-140)) (-5 *3 (-583 (-583 (-866 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-889)) (-5 *1 (-828 *3)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-703)) (-5 *4 (-1156 *2)) (-4 *5 (-278))
+ (-4 *6 (-910 *5)) (-4 *2 (-13 (-379 *6 *7) (-953 *6)))
+ (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1132 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-999 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-998 *3)) (-4 *3 (-1110)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1075))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-583 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1306 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1096) (-27) (-400 *8)))
+ (-4 *8 (-13 (-421) (-779) (-134) (-953 *3) (-579 *3)))
+ (-5 *3 (-517))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3298 *4) (|:| |sol?| (-107))))
+ (-5 *1 (-930 *8 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1058)))))
+(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-828 *3)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-978 *4 *3)) (-4 *4 (-13 (-777) (-333)))
+ (-4 *3 (-1132 *4)) (-5 *2 (-517))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1019 *4 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-772 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))
+ (-4 *6 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1019 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-1058))
+ (-4 *6 (-13 (-509) (-779) (-953 *2) (-579 *2) (-421)))
+ (-5 *2 (-517)) (-5 *1 (-1019 *6 *3))
+ (-4 *3 (-13 (-27) (-1096) (-400 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-377 (-875 *4))) (-4 *4 (-421)) (-5 *2 (-517))
+ (-5 *1 (-1020 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-772 (-377 (-875 *6))))
+ (-5 *3 (-377 (-875 *6))) (-4 *6 (-421)) (-5 *2 (-517))
+ (-5 *1 (-1020 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-377 (-875 *6))) (-5 *4 (-1075))
+ (-5 *5 (-1058)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1020 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1093 *3)) (-4 *3 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-875 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1110)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-349)) (-5 *1 (-974)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 (-828 *3))) (-4 *3 (-1004)) (-5 *1 (-827 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-962) (-779)))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333))
+ (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-4 *2 (-312 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-156))))
+ ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1132 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-790 *4 *5 *6 *7))
+ (-4 *4 (-962)) (-14 *5 (-583 (-1075))) (-14 *6 (-583 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-962)) (-4 *5 (-779)) (-4 *6 (-725))
+ (-14 *8 (-583 *5)) (-5 *2 (-1161))
+ (-5 *1 (-1166 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-872 *4 *6 *5))
+ (-14 *9 (-583 *3)) (-14 *10 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-866 *4)) (-4 *4 (-962)) (-5 *1 (-1064 *3 *4))
+ (-14 *3 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-517))) (-5 *4 (-828 (-517)))
+ (-5 *2 (-623 (-517))) (-5 *1 (-538))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517))))
+ (-5 *1 (-538))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-828 (-517))))
+ (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-1144 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-509) (-779) (-953 (-517))))
+ (-4 *5 (-400 *4)) (-5 *2 (-388 (-1071 (-377 (-517)))))
+ (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-895 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-976 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-895 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-827 *3)) (-4 *3 (-1004)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1004)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-962))
+ (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-872 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-877)) (-5 *2 (-583 (-583 (-866 (-199)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-892)) (-5 *2 (-583 (-583 (-866 (-199))))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6))
+ (-4 *5 (-13 (-1004) (-33))) (-4 *6 (-13 (-1004) (-33)))
+ (-5 *2 (-107)) (-5 *1 (-1040 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1129 *5 *4)) (-5 *1 (-1073 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1075)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-703)) (-5 *2 (-1129 *5 *4)) (-5 *1 (-1148 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1075)) (-14 *6 *4))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-517))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-725)) (-4 *4 (-872 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779))
+ (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *1 *1 *1) (-4 *1 (-130)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2))
+ (-4 *2 (-400 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1058)) (-5 *2 (-1161)) (-5 *1 (-1158)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1004))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-962)) (-4 *2 (-333)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-974)) (-5 *3 (-1058)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-107)) (-5 *1 (-109))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1075)) (-5 *2 (-107))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1004)) (-5 *2 (-107)) (-5 *1 (-810 *5 *3 *4))
+ (-4 *3 (-809 *5)) (-4 *4 (-558 (-815 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-809 *5)) (-4 *5 (-1004))
+ (-5 *2 (-107)) (-5 *1 (-810 *5 *6 *4)) (-4 *4 (-558 (-815 *5))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-114 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))
+ ((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-509)) (-4 *2 (-278))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-377 (-517))) (-5 *1 (-921 *3)) (-14 *3 (-517))))
+ ((*1 *1 *1) (-4 *1 (-971))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1004)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4))
+ (-4 *3 (-337 *4))))
+ ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-621 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1132 *4)) (-4 *5 (-343 *4))
+ (-4 *6 (-343 *4)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1075)) (|:| |fn| (-286 (-199)))
+ (|:| -2192 (-999 (-772 (-199)))) (|:| |abserr| (-199))
+ (|:| |relerr| (-199))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1056 (-199)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2192
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-512)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-388 *6)) (-4 *6 (-1132 *5))
+ (-4 *5 (-962)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1132 *6))
+ (-4 *6 (-13 (-27) (-400 *5)))
+ (-4 *5 (-13 (-779) (-509) (-953 (-517)))) (-4 *8 (-1132 (-377 *7)))
+ (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3))
+ (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-437)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-509))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2272 *4)))
+ (-5 *1 (-888 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-999 (-199))) (-5 *6 (-517)) (-5 *2 (-1106 (-849)))
+ (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-999 (-199))) (-5 *6 (-517)) (-5 *7 (-1058))
+ (-5 *2 (-1106 (-849))) (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-999 (-199))) (-5 *6 (-199)) (-5 *7 (-517))
+ (-5 *2 (-1106 (-849))) (-5 *1 (-288))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199)))
+ (-5 *5 (-999 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1058))
+ (-5 *2 (-1106 (-849))) (-5 *1 (-288)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1078)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-901 *2)) (-4 *2 (-1096)))))
+(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2)
+ (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-387 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-333))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-199)) (-5 *4 (-517))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-951))
+ (-5 *1 (-681)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4191)) (-4 *1 (-114 *2)) (-4 *2 (-1110)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1058)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1161))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *3 (-1004)) (-4 *4 (-1004))
+ (-4 *5 (-1004)) (-4 *6 (-1004)) (-4 *7 (-1004)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-509))
+ (-4 *6 (-725)) (-4 *7 (-779))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-895 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-421))
+ (-5 *2
+ (-583
+ (-2 (|:| |eigval| (-3 (-377 (-875 *4)) (-1065 (-1075) (-875 *4))))
+ (|:| |geneigvec| (-583 (-623 (-377 (-875 *4))))))))
+ (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-875 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-222)))))
+(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1004)) (-4 *5 (-1004))
+ (-4 *6 (-1004)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-1071 *4))
+ (-4 *4 (-13 (-400 *7) (-27) (-1096)))
+ (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1071 *4)))
+ (-4 *4 (-13 (-400 *7) (-27) (-1096)))
+ (-4 *7 (-13 (-421) (-953 (-517)) (-779) (-134) (-579 (-517))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2062 (-583 *4))))
+ (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1004)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-153 (-377 (-517)))))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 (-153 *4)))))))
+ (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-837 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199))
+ (-5 *2 (-951)) (-5 *1 (-685)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))
+ (-5 *1 (-1101 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-779))
+ (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-107)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1004))
+ (-4 *4 (-1004)))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-779)) (-5 *2 (-1083 (-583 *4))) (-5 *1 (-1082 *4))
+ (-5 *3 (-583 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-333)) (-4 *4 (-1132 *3)) (-4 *5 (-1132 (-377 *4)))
+ (-5 *2 (-1156 *6)) (-5 *1 (-306 *3 *4 *5 *6))
+ (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199)))
+ (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-951)) (-5 *1 (-686)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107)))))
+ (-4 *2 (-13 (-400 *4) (-919))) (-4 *4 (-13 (-779) (-509)))
+ (-5 *1 (-249 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1058)) (-5 *1 (-199)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1056 (-583 (-517)))) (-5 *1 (-806))
+ (-5 *3 (-583 (-517))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1118 *3 *2)) (-4 *3 (-962))
+ (-4 *2 (-1147 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1161)) (-5 *1 (-349))))
+ ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-349)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1161)) (-5 *1 (-1078)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1096)))
+ (-5 *1 (-532 *4 *2))
+ (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-534 (-377 (-875 *4))))
+ (-4 *4 (-13 (-421) (-953 (-517)) (-779) (-579 (-517))))
+ (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-827 (-517))) (-5 *1 (-840))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-517))) (-5 *2 (-827 (-517))) (-5 *1 (-840)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058))
+ (-4 *4 (-13 (-421) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1096) (-29 *4))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1097 *2)) (-4 *2 (-1004))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1004)) (-5 *1 (-1097 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-583 (-1097 *2))) (-5 *1 (-1097 *2)) (-4 *2 (-1004)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1058))) (-5 *2 (-1058)) (-5 *1 (-168))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-894 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-725))
+ (-4 *3 (-779)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-906 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-421))
+ (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107))
+ (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-981 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-300)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1064 *3 *4)) (-14 *3 (-844))
+ (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-962)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-1132 *3)) (-4 *3 (-278))
+ (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1064 3 *3)) (-4 *3 (-962)) (-4 *1 (-1036 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-919)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1147 *3))
+ (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1118 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1116 *3))
+ (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1139 *3 *4)) (-4 *5 (-901 *4))))
+ ((*1 *1 *1) (-4 *1 (-256)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 *4)) (-4 *4 (-509))
+ (-5 *2 (-583 (-2 (|:| -1580 (-703)) (|:| |logand| *4))))
+ (-5 *1 (-290 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1075)))
+ (-14 *3 (-583 (-1075))) (-4 *4 (-357))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779))
+ (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-844))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1061 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1056 *3)) (-4 *3 (-37 (-377 (-517))))
+ (-5 *1 (-1062 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-703)) (-4 *4 (-13 (-962) (-650 (-377 (-517)))))
+ (-4 *5 (-779)) (-5 *1 (-1170 *4 *5 *2)) (-4 *2 (-1175 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4))
+ (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319))
+ (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3367 *3))))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-1132 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-583 (-1058))) (-5 *1 (-761)) (-5 *3 (-1058)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-509) (-779) (-953 (-517)) (-579 (-517))))
+ (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1096) (-400 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-703)) (-4 *5 (-509))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-888 *5 *3)) (-4 *3 (-1132 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-894 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-725))
+ (-4 *5 (-779)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-509))
+ (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725))
+ (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-872 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779))
+ (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-872 *3 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *1 (-534 *2)) (-4 *2 (-953 *3))
+ (-4 *2 (-333))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))
+ (-4 *2 (-13 (-400 *4) (-919) (-1096)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-400 *4) (-919) (-1096)))
+ (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-881)) (-5 *2 (-1075))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-881)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))
+ ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779))
+ (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-844))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-779)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159))))
+ ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1159)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1110))
+ (-4 *3 (-1004))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-343 *3)) (-4 *3 (-1110)) (-4 *3 (-1004))
+ (-5 *2 (-517))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1110))
+ (-5 *2 (-517))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-517)) (-5 *3 (-128))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199))
+ (-5 *2 (-951)) (-5 *1 (-684)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-929)) (-5 *2 (-787)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517)))))))
+ (-5 *1 (-1030 *3 *2)) (-4 *3 (-1132 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1058)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962))
+ (-4 *2 (-13 (-374) (-953 *4) (-333) (-1096) (-256)))
+ (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1132 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1064 *4 *5))
+ (-14 *4 (-844)) (-4 *5 (-962)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1102 *3 *2))
+ (-4 *2 (-13 (-400 *3) (-1096))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1064 *2 *3)) (-14 *2 (-844)) (-4 *3 (-962)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1071 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338))
+ (-5 *2 (-1071 *3)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-286 (-199))) (|:| -2585 (-583 (-199)))
+ (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199))))
+ (|:| |ub| (-583 (-772 (-199))))))
+ (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1058)) (-5 *4 (-517)) (-5 *5 (-623 (-199)))
+ (-5 *2 (-951)) (-5 *1 (-687)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517))
+ (-5 *2 (-623 *6)) (-5 *1 (-945 *6)) (-4 *6 (-333)) (-4 *6 (-962))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-945 *4))
+ (-4 *4 (-333)) (-4 *4 (-962))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5))
+ (-5 *1 (-945 *5)) (-4 *5 (-333)) (-4 *5 (-962)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-875 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4))
+ (-14 *4 (-583 (-1075)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-872 *3 *4 *5)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1058)) (-4 *7 (-872 *4 *5 *6))
+ (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779))
+ (-5 *1 (-419 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779))
+ (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-872 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421))
+ (-14 *4 (-583 (-1075))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-333) (-273)
+ (-10 -8 (-15 -3824 ((-1027 *3 (-556 $)) $))
+ (-15 -2097 ((-1027 *3 (-556 $)) $))
+ (-15 -2269 ($ (-1027 *3 (-556 $))))))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1014)) (-5 *3 (-517)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-951)) (-5 *3 (-1075)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-623 (-377 (-517))))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| *4) (|:| |outmult| (-517))
+ (|:| |outvect| (-583 (-623 *4))))))
+ (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3831 *7))))
+ (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3831 *7))))
+ (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-981 *3 *4 *5 *6)) (-4 *3 (-421))
+ (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-623 *5)) (-4 *5 (-962)) (-5 *1 (-966 *3 *4 *5))
+ (-14 *3 (-703)) (-14 *4 (-703)))))
+((-1188 . 721344) (-1189 . 720919) (-1190 . 720702) (-1191 . 720631)
+ (-1192 . 720548) (-1193 . 720320) (-1194 . 720188) (-1195 . 719371)
+ (-1196 . 718958) (-1197 . 718827) (-1198 . 718608) (-1199 . 718406)
+ (-1200 . 718329) (-1201 . 718220) (-1202 . 718097) (-1203 . 717956)
+ (-1204 . 717871) (-1205 . 717816) (-1206 . 717767) (-1207 . 717696)
+ (-1208 . 717557) (-1209 . 717502) (-1210 . 717375) (-1211 . 716854)
+ (-1212 . 716753) (-1213 . 716380) (-1214 . 716309) (-1215 . 716258)
+ (-1216 . 716149) (-1217 . 715620) (-1218 . 715349) (-1219 . 715193)
+ (-1220 . 715012) (-1221 . 714708) (-1222 . 714620) (-1223 . 714542)
+ (-1224 . 714403) (-1225 . 713166) (-1226 . 713114) (-1227 . 713059)
+ (-1228 . 712929) (-1229 . 712811) (-1230 . 712740) (-1231 . 712645)
+ (-1232 . 712592) (-1233 . 712209) (-1234 . 712068) (-1235 . 711933)
+ (-1236 . 711715) (-1237 . 711546) (-1238 . 711391) (-1239 . 711083)
+ (-1240 . 711055) (-1241 . 710865) (-1242 . 710814) (-1243 . 710698)
+ (-1244 . 710602) (-1245 . 710505) (-1246 . 710452) (-1247 . 710345)
+ (-1248 . 710154) (-1249 . 709984) (-1250 . 709940) (-1251 . 709780)
+ (-1252 . 709675) (-1253 . 709619) (-1254 . 709526) (-1255 . 709391)
+ (-1256 . 709258) (-1257 . 709125) (-1258 . 709055) (-1259 . 709003)
+ (-1260 . 708765) (-1261 . 708113) (-1262 . 707970) (-1263 . 707936)
+ (-1264 . 707883) (-1265 . 707641) (-1266 . 707588) (-1267 . 707349)
+ (-1268 . 707196) (-1269 . 706809) (-1270 . 706726) (-1271 . 706559)
+ (-1272 . 706489) (-1273 . 706348) (-1274 . 706253) (-1275 . 706198)
+ (-1276 . 706132) (-1277 . 706013) (-1278 . 705263) (-1279 . 705099)
+ (-1280 . 704949) (-1281 . 704878) (-1282 . 704631) (-1283 . 704495)
+ (-1284 . 703200) (-1285 . 703044) (-1286 . 702886) (-1287 . 702790)
+ (-1288 . 702442) (-1289 . 702359) (-1290 . 701704) (-1291 . 701581)
+ (-1292 . 701500) (-1293 . 701427) (-1294 . 701357) (-1295 . 701305)
+ (-1296 . 701187) (-1297 . 701114) (-1298 . 700929) (-1299 . 700820)
+ (-1300 . 700567) (-1301 . 700297) (-1302 . 700245) (-1303 . 700061)
+ (-1304 . 699917) (-1305 . 699779) (-1306 . 699724) (-1307 . 699553)
+ (-1308 . 699466) (-1309 . 699132) (-1310 . 698991) (-1311 . 698805)
+ (-1312 . 698721) (-1313 . 698396) (-1314 . 698344) (-1315 . 698243)
+ (-1316 . 697865) (-1317 . 697256) (-1318 . 697173) (-1319 . 697099)
+ (-1320 . 697040) (-1321 . 697006) (-1322 . 696932) (-1323 . 695567)
+ (-1324 . 695514) (-1325 . 694995) (-1326 . 694921) (-1327 . 694676)
+ (-1328 . 694493) (-1329 . 694422) (-1330 . 694206) (-1331 . 693635)
+ (-1332 . 693477) (-1333 . 693411) (-1334 . 693198) (-1335 . 693116)
+ (-1336 . 693035) (-1337 . 692869) (-1338 . 692729) (-1339 . 692648)
+ (-1340 . 692468) (-1341 . 692128) (-1342 . 691998) (-1343 . 691899)
+ (-1344 . 691680) (-1345 . 691606) (-1346 . 691437) (-1347 . 691200)
+ (-1348 . 691129) (-1349 . 691004) (-1350 . 690617) (-1351 . 690505)
+ (-1352 . 690446) (-1353 . 690390) (-1354 . 690337) (-1355 . 690145)
+ (-1356 . 690079) (-1357 . 690030) (-1358 . 689903) (-1359 . 689805)
+ (-1360 . 689724) (-1361 . 689655) (-1362 . 689603) (-1363 . 689404)
+ (-1364 . 689344) (-1365 . 689256) (-1366 . 689176) (-1367 . 689019)
+ (-1368 . 688056) (-1369 . 687969) (-1370 . 687827) (-1371 . 687281)
+ (-1372 . 687188) (-1373 . 686711) (-1374 . 686607) (-1375 . 686224)
+ (-1376 . 686079) (-1377 . 685833) (-1378 . 685771) (-1379 . 685043)
+ (-1380 . 684956) (-1381 . 684795) (-1382 . 684578) (-1383 . 683709)
+ (-1384 . 683299) (-1385 . 683226) (-1386 . 683149) (-1387 . 682683)
+ (-1388 . 682444) (-1389 . 682310) (-1390 . 682206) (-1391 . 681983)
+ (-1392 . 681690) (-1393 . 681509) (-1394 . 681363) (-1395 . 681283)
+ (-1396 . 680976) (-1397 . 680713) (-1398 . 680555) (-1399 . 680420)
+ (-1400 . 678290) (-1401 . 678190) (-1402 . 677492) (-1403 . 677340)
+ (-1404 . 677284) (-1405 . 677162) (-1406 . 677084) (-1407 . 676859)
+ (-1408 . 676806) (-1409 . 676653) (-1410 . 676552) (-1411 . 676233)
+ (-1412 . 676001) (-1413 . 675935) (-1414 . 675720) (-1415 . 675379)
+ (-1416 . 675159) (-1417 . 674906) (-1418 . 674565) (-1419 . 674441)
+ (-1420 . 674197) (-1421 . 674053) (-1422 . 673454) (-1423 . 673392)
+ (-1424 . 673364) (-1425 . 672741) (-1426 . 672681) (-1427 . 672596)
+ (-1428 . 672525) (-1429 . 672034) (-1430 . 671831) (-1431 . 671794)
+ (-1432 . 671711) (-1433 . 671656) (-1434 . 671412) (-1435 . 671338)
+ (-1436 . 671246) (-1437 . 671127) (-1438 . 671096) (-1439 . 671038)
+ (-1440 . 669637) (-1441 . 669550) (-1442 . 669494) (-1443 . 669425)
+ (-1444 . 669345) (-1445 . 669024) (-1446 . 668996) (-1447 . 668909)
+ (-1448 . 668872) (-1449 . 668798) (-1450 . 668701) (-1451 . 668495)
+ (-1452 . 667385) (-1453 . 667159) (-1454 . 667060) (-1455 . 666870)
+ (-1456 . 666802) (-1457 . 666721) (-1458 . 666583) (-1459 . 666439)
+ (-1460 . 666330) (-1461 . 666269) (-1462 . 666125) (-1463 . 665689)
+ (-1464 . 665116) (-1465 . 664959) (-1466 . 664904) (-1467 . 664848)
+ (-1468 . 664767) (-1469 . 664520) (-1470 . 663779) (-1471 . 663650)
+ (-1472 . 663543) (-1473 . 663515) (-1474 . 663422) (-1475 . 663329)
+ (-1476 . 663301) (-1477 . 663232) (-1478 . 663108) (-1479 . 662993)
+ (-1480 . 662813) (-1481 . 662675) (-1482 . 661934) (-1483 . 661847)
+ (-1484 . 661617) (-1485 . 660277) (-1486 . 660004) (-1487 . 659883)
+ (-1488 . 659783) (-1489 . 659639) (-1490 . 659480) (-1491 . 659398)
+ (-1492 . 659138) (-1493 . 658450) (-1494 . 658325) (-1495 . 658167)
+ (-1496 . 658052) (-1497 . 657871) (-1498 . 653833) (-1499 . 653739)
+ (-1500 . 653619) (-1501 . 653570) (-1502 . 653424) (-1503 . 652114)
+ (-1504 . 652035) (-1505 . 651904) (-1506 . 651328) (-1507 . 651099)
+ (-1508 . 650253) (-1509 . 650147) (-1510 . 650063) (-1511 . 650011)
+ (-1512 . 649536) (-1513 . 649459) (-1514 . 649353) (-1515 . 648817)
+ (-1516 . 648702) (-1517 . 648432) (-1518 . 641494) (-1519 . 640918)
+ (-1520 . 640736) (-1521 . 637126) (-1522 . 637012) (-1523 . 636860)
+ (-1524 . 636777) (-1525 . 636177) (-1526 . 636080) (-1527 . 635963)
+ (-1528 . 635868) (-1529 . 635545) (-1530 . 635474) (-1531 . 635403)
+ (-1532 . 634827) (-1533 . 634686) (-1534 . 634603) (-1535 . 634384)
+ (-1536 . 634303) (-1537 . 634195) (-1538 . 634065) (-1539 . 633607)
+ (-1540 . 633402) (-1541 . 633331) (-1542 . 633273) (-1543 . 632978)
+ (-1544 . 632834) (-1545 . 632535) (-1546 . 632261) (-1547 . 631575)
+ (-1548 . 631229) (-1549 . 628900) (-1550 . 628784) (-1551 . 628673)
+ (-1552 . 628578) (-1553 . 628422) (-1554 . 627906) (-1555 . 627693)
+ (-1556 . 627590) (-1557 . 627556) (-1558 . 627430) (-1559 . 627227)
+ (-1560 . 627141) (-1561 . 626455) (-1562 . 626404) (-1563 . 626326)
+ (-1564 . 626232) (-1565 . 626106) (-1566 . 625924) (-1567 . 625826)
+ (-1568 . 625696) (-1569 . 625421) (-1570 . 624942) (-1571 . 624780)
+ (-1572 . 624536) (-1573 . 624447) (-1574 . 624331) (-1575 . 623582)
+ (-1576 . 623455) (-1577 . 623272) (-1578 . 623163) (-1579 . 623090)
+ (-1580 . 622735) (-1581 . 621465) (-1582 . 621413) (-1583 . 621145)
+ (-1584 . 621029) (-1585 . 620816) (-1586 . 620746) (-1587 . 620576)
+ (-1588 . 620002) (-1589 . 619916) (-1590 . 619618) (-1591 . 619552)
+ (-1592 . 619453) (-1593 . 619322) (-1594 . 619175) (-1595 . 619123)
+ (-1596 . 619037) (-1597 . 618850) (-1598 . 618732) (-1599 . 618158)
+ (-1600 . 617908) (-1601 . 617853) (-1602 . 617749) (-1603 . 617653)
+ (-1604 . 617357) (-1605 . 617183) (-1606 . 617083) (-1607 . 616777)
+ (-1608 . 616703) (-1609 . 616586) (-1610 . 615931) (-1611 . 615845)
+ (-1612 . 615271) (-1613 . 615205) (-1614 . 615131) (-1615 . 615062)
+ (-1616 . 614896) (-1617 . 614809) (-1618 . 614726) (-1619 . 614622)
+ (-1620 . 614493) (-1621 . 614213) (-1622 . 613526) (-1623 . 613333)
+ (-1624 . 613281) (-1625 . 612484) (-1626 . 612104) (-1627 . 612070)
+ (-1628 . 611958) (-1629 . 611799) (-1630 . 611558) (-1631 . 611447)
+ (-1632 . 610760) (-1633 . 610589) (-1634 . 610534) (-1635 . 610485)
+ (-1636 . 610407) (-1637 . 610375) (-1638 . 610317) (-1639 . 609958)
+ (-1640 . 609826) (-1641 . 609739) (-1642 . 609711) (-1643 . 609640)
+ (-1644 . 609401) (-1645 . 609324) (-1646 . 608637) (-1647 . 608559)
+ (-1648 . 608453) (-1649 . 608330) (-1650 . 608301) (-1651 . 608233)
+ (-1652 . 608108) (-1653 . 607904) (-1654 . 607256) (-1655 . 607184)
+ (-1656 . 606609) (-1657 . 606468) (-1658 . 606350) (-1659 . 606193)
+ (-1660 . 606017) (-1661 . 605899) (-1662 . 605776) (-1663 . 605689)
+ (-1664 . 605558) (-1665 . 605400) (-1666 . 604853) (-1667 . 604750)
+ (-1668 . 604699) (-1669 . 604124) (-1670 . 603638) (-1671 . 603244)
+ (-1672 . 602079) (-1673 . 602013) (-1674 . 601979) (-1675 . 601385)
+ (-1676 . 601300) (-1677 . 600116) (-1678 . 600031) (-1679 . 599960)
+ (-1680 . 599145) (-1681 . 598949) (-1682 . 598374) (-1683 . 597795)
+ (-1684 . 597767) (-1685 . 597696) (-1686 . 597575) (-1687 . 597446)
+ (-1688 . 597275) (-1689 . 597154) (-1690 . 596772) (-1691 . 595594)
+ (-1692 . 595370) (-1693 . 595254) (-1694 . 595068) (-1695 . 594494)
+ (-1696 . 594085) (-1697 . 593671) (-1698 . 593457) (-1699 . 593404)
+ (-1700 . 593300) (-1701 . 592648) (-1702 . 592571) (-1703 . 590373)
+ (-1704 . 589920) (-1705 . 589776) (-1706 . 589663) (-1707 . 589610)
+ (-1708 . 589036) (-1709 . 588959) (-1710 . 588872) (-1711 . 588633)
+ (-1712 . 588561) (-1713 . 588463) (-1714 . 588407) (-1715 . 588322)
+ (-1716 . 588116) (-1717 . 587892) (-1718 . 587531) (-1719 . 587446)
+ (-1720 . 587356) (-1721 . 586782) (-1722 . 586753) (-1723 . 586594)
+ (-1724 . 586517) (-1725 . 586358) (-1726 . 586115) (-1727 . 586002)
+ (-1728 . 585796) (-1729 . 585733) (-1730 . 585553) (-1731 . 585429)
+ (-1732 . 585395) (-1733 . 584905) (-1734 . 584706) (-1735 . 584132)
+ (-1736 . 584066) (-1737 . 583950) (-1738 . 583756) (-1739 . 583454)
+ (-1740 . 583376) (-1741 . 583289) (-1742 . 583236) (-1743 . 582958)
+ (-1744 . 582793) (-1745 . 582637) (-1746 . 582536) (-1747 . 582435)
+ (-1748 . 582358) (-1749 . 582257) (-1750 . 582205) (-1751 . 582120)
+ (-1752 . 581216) (-1753 . 580925) (-1754 . 580760) (-1755 . 580556)
+ (-1756 . 579869) (-1757 . 579795) (-1758 . 579309) (-1759 . 579030)
+ (-1760 . 578901) (-1761 . 578801) (-1762 . 578717) (-1763 . 578640)
+ (-1764 . 578495) (-1765 . 578319) (-1766 . 578108) (-1767 . 578011)
+ (-1768 . 577920) (-1769 . 577776) (-1770 . 577260) (-1771 . 577038)
+ (-1772 . 576874) (-1773 . 576767) (-1774 . 576695) (-1775 . 576501)
+ (-1776 . 576140) (-1777 . 576027) (-1778 . 575999) (-1779 . 575912)
+ (-1780 . 575685) (-1781 . 575651) (-1782 . 575376) (-1783 . 575188)
+ (-1784 . 574922) (-1785 . 574866) (-1786 . 574797) (-1787 . 574656)
+ (-1788 . 574607) (-1789 . 574554) (-1790 . 574481) (-1791 . 574282)
+ (-1792 . 574208) (-1793 . 573964) (-1794 . 573721) (-1795 . 573416)
+ (-1796 . 573192) (-1797 . 572734) (-1798 . 572463) (-1799 . 572357)
+ (-1800 . 572207) (-1801 . 572036) (-1802 . 571941) (-1803 . 571718)
+ (-1804 . 571658) (-1805 . 571540) (-1806 . 571137) (-1807 . 570712)
+ (-1808 . 570585) (-1809 . 570430) (-1810 . 570094) (-1811 . 569942)
+ (-1812 . 568871) (-1813 . 568764) (-1814 . 568698) (-1815 . 568643)
+ (-1816 . 568518) (-1817 . 568397) (-1818 . 568319) (-1819 . 568070)
+ (-1820 . 567950) (-1821 . 567898) (-1822 . 567603) (-1823 . 567544)
+ (-1824 . 567389) (-1825 . 567227) (-1826 . 567167) (-1827 . 566716)
+ (-1828 . 566663) (-1829 . 566583) (-1830 . 566511) (-1831 . 564970)
+ (-1832 . 564936) (-1833 . 564801) (-1834 . 564714) (-1835 . 564646)
+ (-1836 . 564545) (-1837 . 563910) (-1838 . 563882) (-1839 . 563339)
+ (-1840 . 563266) (-1841 . 562991) (-1842 . 562882) (-1843 . 562691)
+ (-1844 . 562589) (-1845 . 562494) (-1846 . 562054) (-1847 . 561608)
+ (-1848 . 561403) (-1849 . 561219) (-1850 . 561095) (-1851 . 561026)
+ (-1852 . 560863) (-1853 . 560808) (-1854 . 560701) (-1855 . 560493)
+ (-1856 . 560384) (-1857 . 560289) (-1858 . 560131) (-1859 . 560007)
+ (-1860 . 558806) (-1861 . 558701) (-1862 . 558280) (-1863 . 558123)
+ (-1864 . 558054) (-1865 . 557816) (-1866 . 557651) (-1867 . 557374)
+ (-1868 . 557239) (-1869 . 556977) (-1870 . 556681) (-1871 . 556579)
+ (-1872 . 556436) (-1873 . 556283) (-1874 . 555971) (-1875 . 555782)
+ (-1876 . 555702) (-1877 . 555649) (-1878 . 555197) (-1879 . 555083)
+ (-1880 . 554349) (-1881 . 553755) (-1882 . 553705) (-1883 . 553576)
+ (-1884 . 553492) (-1885 . 553379) (-1886 . 553306) (-1887 . 553185)
+ (-1888 . 553064) (-1889 . 552960) (-1890 . 552878) (-1891 . 552821)
+ (-1892 . 552665) (-1893 . 552585) (-1894 . 552136) (-1895 . 552082)
+ (-1896 . 551528) (-1897 . 550977) (-1898 . 550832) (-1899 . 550499)
+ (-1900 . 549414) (-1901 . 549195) (-1902 . 549028) (-1903 . 548930)
+ (-1904 . 548857) (-1905 . 548633) (-1906 . 548428) (-1907 . 548216)
+ (-1908 . 547796) (-1909 . 547695) (-1910 . 547441) (-1911 . 547364)
+ (-1912 . 547245) (-1913 . 547146) (-1914 . 546815) (-1915 . 546706)
+ (-1916 . 546635) (-1917 . 546515) (-1918 . 546442) (-1919 . 546390)
+ (-1920 . 546313) (-1921 . 546192) (-1922 . 546121) (-1923 . 545998)
+ (-1924 . 545930) (-1925 . 545823) (-1926 . 545752) (-1927 . 545192)
+ (-1928 . 545127) (-1929 . 545041) (-1930 . 544970) (-1931 . 544892)
+ (-1932 . 544758) (-1933 . 544673) (-1934 . 544341) (-1935 . 543468)
+ (-1936 . 543359) (-1937 . 543194) (-1938 . 543120) (-1939 . 543013)
+ (-1940 . 542939) (-1941 . 542751) (-1942 . 542475) (-1943 . 542362)
+ (-1944 . 542027) (-1945 . 541941) (-1946 . 541746) (-1947 . 541359)
+ (-1948 . 541272) (-1949 . 540958) (-1950 . 540895) (-1951 . 540818)
+ (-1952 . 540660) (-1953 . 540063) (-1954 . 539693) (-1955 . 539628)
+ (-1956 . 538754) (-1957 . 538658) (-1958 . 538419) (-1959 . 538297)
+ (-1960 . 537767) (-1961 . 537684) (-1962 . 537634) (-1963 . 537537)
+ (-1964 . 536728) (-1965 . 536677) (-1966 . 536585) (-1967 . 536519)
+ (-1968 . 536401) (-1969 . 535890) (-1970 . 535807) (-1971 . 535735)
+ (-1972 . 535654) (-1973 . 535593) (-1974 . 535375) (-1975 . 535223)
+ (-1976 . 535164) (-1977 . 534920) (-1978 . 534833) (-1979 . 534748)
+ (-1980 . 534363) (-1981 . 534278) (-1982 . 534104) (-1983 . 534038)
+ (-1984 . 533954) (-1985 . 533861) (-1986 . 533648) (-1987 . 533405)
+ (-1988 . 533231) (-1989 . 533148) (-1990 . 532888) (-1991 . 532801)
+ (-1992 . 532671) (-1993 . 532563) (-1994 . 532047) (-1995 . 531937)
+ (-1996 . 531858) (-1997 . 531804) (-1998 . 531727) (-1999 . 531658)
+ (-2000 . 531482) (-2001 . 531246) (-2002 . 531143) (-2003 . 530945)
+ (-2004 . 530595) (-2005 . 530302) (-2006 . 529759) (-2007 . 529627)
+ (-2008 . 529202) (-2009 . 528993) (-2010 . 528724) (-2011 . 528674)
+ (-2012 . 528254) (-2013 . 528065) (-2014 . 527843) (-2015 . 527734)
+ (-2016 . 527647) (-2017 . 527538) (-2018 . 527299) (-2019 . 527229)
+ (-2020 . 527116) (-2021 . 527064) (-2022 . 527012) (-2023 . 526916)
+ (-2024 . 526739) (-2025 . 526652) (-2026 . 526578) (-2027 . 526494)
+ (-2028 . 526441) (-2029 . 526322) (-2030 . 526208) (-2031 . 526064)
+ (-2032 . 525977) (-2033 . 525679) (-2034 . 525558) (-2035 . 525179)
+ (-2036 . 525117) (-2037 . 525014) (-2038 . 524626) (-2039 . 524433)
+ (-2040 . 524359) (-2041 . 522641) (-2042 . 522576) (-2043 . 522547)
+ (-2044 . 522011) (-2045 . 521949) (-2046 . 521875) (-2047 . 521798)
+ (-2048 . 521601) (-2049 . 521524) (-2050 . 521387) (-2051 . 521134)
+ (-2052 . 521031) (-2053 . 518784) (-2054 . 518658) (-2055 . 518524)
+ (-2056 . 518052) (-2057 . 517948) (-2058 . 517692) (-2059 . 515540)
+ (-2060 . 515370) (-2061 . 515232) (-2062 . 514367) (-2063 . 514010)
+ (-2064 . 504480) (-2065 . 504357) (-2066 . 504202) (-2067 . 504058)
+ (-2068 . 503961) (-2069 . 503077) (-2070 . 502903) (-2071 . 502794)
+ (-2072 . 502665) (-2073 . 502613) (-2074 . 502465) (-2075 . 502317)
+ (-2076 . 502164) (-2077 . 500545) (-2078 . 500163) (-2079 . 500078)
+ (-2080 . 499990) (-2081 . 499899) (-2082 . 499819) (-2083 . 499680)
+ (-2084 . 499609) (-2085 . 499416) (-2086 . 498555) (-2087 . 498373)
+ (-2088 . 498264) (-2089 . 498127) (-2090 . 497997) (-2091 . 497903)
+ (-2092 . 497749) (-2093 . 497675) (-2094 . 497060) (-2095 . 496914)
+ (-2096 . 495626) (-2097 . 494949) (-2098 . 494770) (-2099 . 494672)
+ (-2100 . 494481) (-2101 . 493898) (-2102 . 493597) (-2103 . 493545)
+ (-2104 . 493468) (-2105 . 493373) (-2106 . 492770) (-2107 . 492585)
+ (-2108 . 492505) (-2109 . 492188) (-2110 . 491794) (-2111 . 491582)
+ (-2112 . 491529) (-2113 . 491417) (-2114 . 491212) (-2115 . 490947)
+ (-2116 . 490881) (-2117 . 490701) (-2118 . 490647) (-2119 . 490578)
+ (-2120 . 490228) (-2121 . 490011) (-2122 . 489911) (-2123 . 489721)
+ (-2124 . 489614) (-2125 . 489520) (-2126 . 489362) (-2127 . 489267)
+ (-2128 . 489141) (-2129 . 489038) (-2130 . 488934) (-2131 . 488835)
+ (-2132 . 488563) (-2133 . 488247) (-2134 . 487860) (-2135 . 487222)
+ (-2136 . 486901) (-2137 . 486513) (-2138 . 486418) (-2139 . 486145)
+ (-2140 . 485896) (-2141 . 485744) (-2142 . 485498) (-2143 . 485387)
+ (-2144 . 483559) (-2145 . 483486) (-2146 . 483353) (-2147 . 483282)
+ (-2148 . 483103) (-2149 . 483006) (-2150 . 482907) (-2151 . 482799)
+ (-2152 . 482699) (-2153 . 481198) (-2154 . 481091) (-2155 . 481039)
+ (-2156 . 480912) (-2157 . 480856) (-2158 . 480416) (-2159 . 480229)
+ (-2160 . 480102) (-2161 . 480017) (-2162 . 479588) (-2163 . 479522)
+ (-2164 . 477982) (-2165 . 477558) (-2166 . 477488) (-2167 . 477417)
+ (-2168 . 477273) (-2169 . 477220) (-2170 . 477134) (-2171 . 477097)
+ (-2172 . 476805) (-2173 . 476579) (-2174 . 476523) (-2175 . 476409)
+ (-2176 . 476337) (-2177 . 476230) (-2178 . 476041) (-2179 . 475897)
+ (-2180 . 475844) (-2181 . 475778) (-2182 . 475750) (-2183 . 475684)
+ (-2184 . 475441) (-2185 . 475349) (-2186 . 474758) (-2187 . 474598)
+ (-2188 . 474411) (-2189 . 474358) (-2190 . 473981) (-2191 . 473929)
+ (-2192 . 473792) (-2193 . 473495) (-2194 . 473272) (-2195 . 473185)
+ (-2196 . 473129) (-2197 . 473058) (-2198 . 472963) (-2199 . 472554)
+ (-2200 . 471904) (-2201 . 471836) (-2202 . 471163) (-2203 . 471135)
+ (-2204 . 470964) (-2205 . 470667) (-2206 . 470321) (-2207 . 470006)
+ (-2208 . 469903) (-2209 . 469717) (-2210 . 469259) (-2211 . 469185)
+ (-2212 . 469153) (-2213 . 469060) (-2214 . 468808) (-2215 . 468512)
+ (-2216 . 468435) (-2217 . 468352) (-2218 . 468238) (-2219 . 468133)
+ (-2220 . 468026) (-2221 . 467974) (-2222 . 467552) (-2223 . 467482)
+ (-2224 . 467389) (-2225 . 466943) (-2226 . 466828) (-2227 . 466770)
+ (-2228 . 466483) (-2229 . 466389) (-2230 . 466257) (-2231 . 466229)
+ (-2232 . 466176) (-2233 . 466113) (-2234 . 466057) (-2235 . 465931)
+ (-2236 . 465429) (-2237 . 465377) (-2238 . 465198) (-2239 . 465142)
+ (-2240 . 465048) (-2241 . 464999) (-2242 . 464571) (-2243 . 464427)
+ (-2244 . 464333) (-2245 . 464095) (-2246 . 463872) (-2247 . 463762)
+ (-2248 . 463689) (-2249 . 463147) (-2250 . 463009) (-2251 . 462862)
+ (-2252 . 462703) (-2253 . 461888) (-2254 . 461832) (-2255 . 461703)
+ (-2256 . 461545) (-2257 . 461415) (-2258 . 461063) (-2259 . 460901)
+ (-2260 . 460845) (-2261 . 460751) (-2262 . 460696) (-2263 . 460364)
+ (-2264 . 460049) (-2265 . 459840) (-2266 . 459806) (-2267 . 459653)
+ (-2268 . 459545) (-2269 . 437011) (-2270 . 436940) (-2271 . 436547)
+ (-2272 . 436166) (-2273 . 435834) (-2274 . 435689) (-2275 . 435610)
+ (-2276 . 435408) (-2277 . 435355) (-2278 . 435321) (-2279 . 435243)
+ (-2280 . 432462) (-2281 . 432374) (-2282 . 432206) (-2283 . 430254)
+ (-2284 . 429964) (-2285 . 429834) (-2286 . 427160) (-2287 . 427092)
+ (-2288 . 426959) (-2289 . 426892) (-2290 . 426837) (-2291 . 426771)
+ (-2292 . 426673) (-2293 . 426530) (-2294 . 425525) (-2295 . 425381)
+ (-2296 . 425251) (-2297 . 424800) (-2298 . 424064) (-2299 . 423992)
+ (-2300 . 423730) (-2301 . 423615) (-2302 . 423512) (-2303 . 423368)
+ (-2304 . 423201) (-2305 . 423034) (-2306 . 422779) (-2307 . 422706)
+ (-2308 . 422545) (-2309 . 422446) (-2310 . 422388) (-2311 . 422162)
+ (-2312 . 422106) (-2313 . 421939) (-2314 . 421838) (-2315 . 421732)
+ (-2316 . 421614) (-2317 . 421479) (-2318 . 421344) (-2319 . 421218)
+ (-2320 . 421133) (-2321 . 421080) (-2322 . 420965) (-2323 . 420870)
+ (-2324 . 420384) (-2325 . 420281) (-2326 . 420207) (-2327 . 419352)
+ (-2328 . 419258) (-2329 . 419040) (-2330 . 418953) (-2331 . 418688)
+ (-2332 . 418147) (-2333 . 417509) (-2334 . 417432) (-2335 . 417267)
+ (-2336 . 417065) (-2337 . 416617) (-2338 . 416289) (-2339 . 415792)
+ (-2340 . 415629) (-2341 . 415499) (-2342 . 415370) (-2343 . 415248)
+ (-2344 . 415035) (-2345 . 413875) (-2346 . 413755) (-2347 . 413678)
+ (-2348 . 413502) (-2349 . 413374) (-2350 . 413152) (-2351 . 413012)
+ (-2352 . 411716) (-2353 . 411601) (-2354 . 411504) (-2355 . 411451)
+ (-2356 . 410970) (-2357 . 410801) (-2358 . 410687) (-2359 . 410386)
+ (-2360 . 410309) (-2361 . 410147) (-2362 . 410010) (-2363 . 409957)
+ (-2364 . 409850) (-2365 . 409771) (-2366 . 409684) (-2367 . 409601)
+ (-2368 . 408501) (-2369 . 408071) (-2370 . 407740) (-2371 . 406617)
+ (-2372 . 406503) (-2373 . 406390) (-2374 . 406002) (-2375 . 405902)
+ (-2376 . 405778) (-2377 . 405696) (-2378 . 405599) (-2379 . 405546)
+ (-2380 . 405302) (-2381 . 405231) (-2382 . 404870) (-2383 . 404729)
+ (-2384 . 404603) (-2385 . 404369) (-2386 . 404284) (-2387 . 403796)
+ (-2388 . 403638) (-2389 . 403533) (-2390 . 403474) (-2391 . 403389)
+ (-2392 . 403262) (-2393 . 403076) (-2394 . 403048) (-2395 . 402821)
+ (-2396 . 402769) (-2397 . 401767) (-2398 . 401637) (-2399 . 399385)
+ (-2400 . 399072) (-2401 . 398909) (-2402 . 398810) (-2403 . 397747)
+ (-2404 . 397521) (-2405 . 397282) (-2406 . 397169) (-2407 . 397092)
+ (-2408 . 397008) (-2409 . 396909) (-2410 . 396705) (-2411 . 396534)
+ (-2412 . 396433) (-2413 . 396262) (-2414 . 396118) (-2415 . 396038)
+ (-2416 . 395840) (-2417 . 395752) (-2418 . 395679) (-2419 . 395552)
+ (-2420 . 395372) (-2421 . 395270) (-2422 . 395115) (-2423 . 394842)
+ (-2424 . 394629) (-2425 . 394318) (-2426 . 394287) (-2427 . 393750)
+ (-2428 . 393551) (-2429 . 393292) (-2430 . 393184) (-2431 . 393128)
+ (-2432 . 393076) (-2433 . 392867) (-2434 . 392623) (-2435 . 392378)
+ (-2436 . 392229) (-2437 . 391803) (-2438 . 391736) (-2439 . 391625)
+ (-2440 . 391524) (-2441 . 391441) (-2442 . 391354) (-2443 . 390053)
+ (-2444 . 389855) (-2445 . 389772) (-2446 . 389710) (-2447 . 389365)
+ (-2448 . 388660) (-2449 . 388564) (-2450 . 388365) (-2451 . 388226)
+ (-2452 . 388142) (-2453 . 388043) (-2454 . 386619) (-2455 . 386232)
+ (-2456 . 385857) (-2457 . 385789) (-2458 . 385648) (-2459 . 385503)
+ (-2460 . 385177) (-2461 . 385125) (-2462 . 384857) (-2463 . 384806)
+ (-2464 . 384722) (-2465 . 384607) (-2466 . 384542) (-2467 . 384490)
+ (-2468 . 384389) (-2469 . 384210) (-2470 . 384052) (-2471 . 383668)
+ (-2472 . 383475) (-2473 . 383371) (-2474 . 383319) (-2475 . 383264)
+ (-2476 . 383120) (-2477 . 383003) (-2478 . 382908) (-2479 . 382837)
+ (-2480 . 382803) (-2481 . 382694) (-2482 . 382611) (-2483 . 382538)
+ (-2484 . 382431) (-2485 . 382346) (-2486 . 382230) (-2487 . 382123)
+ (-2488 . 381325) (-2489 . 381117) (-2490 . 380999) (-2491 . 380870)
+ (-2492 . 380709) (-2493 . 380624) (-2494 . 380575) (-2495 . 380416)
+ (-2496 . 380017) (-2497 . 379217) (-2498 . 379135) (-2499 . 377954)
+ (-2500 . 377890) (-2501 . 377803) (-2502 . 377645) (-2503 . 376881)
+ (-2504 . 376796) (-2505 . 376487) (-2506 . 376386) (-2507 . 376303)
+ (-2508 . 376209) (-2509 . 376136) (-2510 . 376083) (-2511 . 375961)
+ (-2512 . 375585) (-2513 . 375276) (-2514 . 374094) (-2515 . 369934)
+ (-2516 . 369897) (-2517 . 369817) (-2518 . 369566) (-2519 . 369239)
+ (-2520 . 369124) (-2521 . 368951) (-2522 . 368317) (-2523 . 368066)
+ (-2524 . 367741) (-2525 . 367491) (-2526 . 367282) (-2527 . 367119)
+ (-2528 . 366994) (-2529 . 366910) (-2530 . 366784) (-2531 . 366347)
+ (-2532 . 366268) (-2533 . 366176) (-2534 . 365972) (-2535 . 365846)
+ (-2536 . 365744) (-2537 . 365691) (-2538 . 365663) (-2539 . 365590)
+ (-2540 . 365349) (-2541 . 365170) (-2542 . 365002) (-2543 . 364797)
+ (-2544 . 364637) (-2545 . 364585) (-2546 . 364533) (-2547 . 364274)
+ (-2548 . 364170) (-2549 . 364114) (-2550 . 363972) (-2551 . 363915)
+ (-2552 . 363842) (-2553 . 363731) (-2554 . 363638) (-2555 . 363531)
+ (-2556 . 363123) (-2557 . 363038) (-2558 . 362744) (-2559 . 362646)
+ (-2560 . 362593) (-2561 . 362499) (-2562 . 362311) (-2563 . 361977)
+ (-2564 . 361868) (-2565 . 361691) (-2566 . 361639) (-2567 . 361444)
+ (-2568 . 361388) (-2569 . 361279) (-2570 . 361194) (-2571 . 361141)
+ (-2572 . 361035) (-2573 . 360978) (-2574 . 360921) (-2575 . 360855)
+ (-2576 . 360749) (-2577 . 360602) (-2578 . 360504) (-2579 . 360310)
+ (-2580 . 360256) (-2581 . 360102) (-2582 . 358533) (-2583 . 358432)
+ (-2584 . 358375) (-2585 . 358252) (-2586 . 358200) (-2587 . 358044)
+ (-2588 . 357794) (-2589 . 357639) (-2590 . 357611) (-2591 . 357319)
+ (-2592 . 357011) (-2593 . 356917) (-2594 . 356677) (-2595 . 356540)
+ (-2596 . 356441) (-2597 . 356313) (-2598 . 356176) (-2599 . 356071)
+ (-2600 . 355946) (-2601 . 355880) (-2602 . 355764) (-2603 . 355604)
+ (-2604 . 354856) (-2605 . 354625) (-2606 . 354506) (-2607 . 349407)
+ (-2608 . 349330) (-2609 . 349265) (-2610 . 349206) (-2611 . 348914)
+ (-2612 . 348883) (-2613 . 348777) (-2614 . 348672) (-2615 . 348172)
+ (-2616 . 348089) (-2617 . 348005) (-2618 . 347514) (-2619 . 347407)
+ (-2620 . 347355) (-2621 . 347241) (-2622 . 347178) (-2623 . 347061)
+ (-2624 . 346867) (-2625 . 346812) (-2626 . 346760) (-2627 . 346651)
+ (-2628 . 346599) (-2629 . 346358) (-2630 . 346226) (-2631 . 346068)
+ (-2632 . 345996) (-2633 . 345470) (-2634 . 345439) (-2635 . 345065)
+ (-2636 . 344632) (-2637 . 344285) (-2638 . 344031) (-2639 . 343894)
+ (-2640 . 342708) (-2641 . 342444) (-2642 . 342251) (-2643 . 342039)
+ (-2644 . 341960) (-2645 . 341823) (-2646 . 341482) (-2647 . 341286)
+ (-2648 . 341148) (-2649 . 341095) (-2650 . 340966) (-2651 . 339946)
+ (-2652 . 339887) (-2653 . 339853) (-2654 . 339727) (-2655 . 339668)
+ (-2656 . 339616) (-2657 . 339516) (-2658 . 339354) (-2659 . 339280)
+ (-2660 . 338865) (-2661 . 338756) (-2662 . 338693) (-2663 . 338613)
+ (-2664 . 338560) (-2665 . 338481) (-2666 . 338270) (-2667 . 338097)
+ (-2668 . 337981) (-2669 . 337687) (-2670 . 337618) (-2671 . 337569)
+ (-2672 . 337514) (-2673 . 337244) (-2674 . 337216) (-2675 . 337089)
+ (-2676 . 336933) (-2677 . 336792) (-2678 . 336633) (-2679 . 336473)
+ (-2680 . 336373) (-2681 . 336289) (-2682 . 336021) (-2683 . 335790)
+ (-2684 . 335735) (-2685 . 335577) (-2686 . 335450) (-2687 . 335147)
+ (-2688 . 335049) (-2689 . 334959) (-2690 . 334834) (-2691 . 334767)
+ (-2692 . 334184) (-2693 . 334132) (-2694 . 334030) (-2695 . 333956)
+ (-2696 . 333925) (-2697 . 333830) (-2698 . 333603) (-2699 . 333235)
+ (-2700 . 333116) (-2701 . 332926) (-2702 . 332764) (-2703 . 332454)
+ (-2704 . 330040) (-2705 . 329845) (-2706 . 329779) (-2707 . 329663)
+ (-2708 . 329413) (-2709 . 329215) (-2710 . 329059) (-2711 . 328999)
+ (-2712 . 328937) (-2713 . 328794) (-2714 . 328302) (-2715 . 328135)
+ (-2716 . 328020) (-2717 . 327660) (-2718 . 327159) (-2719 . 327043)
+ (-2720 . 326994) (-2721 . 326682) (-2722 . 326584) (-2723 . 326438)
+ (-2724 . 325959) (-2725 . 325862) (-2726 . 325649) (-2727 . 325490)
+ (-2728 . 325431) (-2729 . 325400) (-2730 . 325258) (-2731 . 325199)
+ (-2732 . 325090) (-2733 . 324981) (-2734 . 324880) (-2735 . 324616)
+ (-2736 . 324278) (-2737 . 324122) (-2738 . 324006) (-2739 . 323835)
+ (-2740 . 323555) (-2741 . 323481) (-2742 . 323372) (-2743 . 323319)
+ (-2744 . 323092) (-2745 . 322940) (-2746 . 322729) (-2747 . 322618)
+ (-2748 . 322467) (-2749 . 322326) (-2750 . 322216) (-2751 . 321889)
+ (-2752 . 321806) (-2753 . 321702) (-2754 . 319923) (-2755 . 319652)
+ (-2756 . 319128) (-2757 . 318896) (-2758 . 318847) (-2759 . 318519)
+ (-2760 . 318269) (-2761 . 317794) (-2762 . 317687) (-2763 . 317614)
+ (-2764 . 317495) (-2765 . 317396) (-2766 . 317177) (-2767 . 316657)
+ (-2768 . 316504) (-2769 . 314404) (-2770 . 314331) (-2771 . 314197)
+ (-2772 . 314067) (-2773 . 313754) (-2774 . 313684) (-2775 . 313367)
+ (-2776 . 313257) (-2777 . 313146) (-2778 . 313050) (-2779 . 312914)
+ (-2780 . 312848) (-2781 . 312444) (-2782 . 312361) (-2783 . 312284)
+ (-2784 . 312066) (-2785 . 312014) (-2786 . 311667) (-2787 . 311573)
+ (-2788 . 311443) (-2789 . 310771) (-2790 . 310667) (-2791 . 310507)
+ (-2792 . 310422) (-2793 . 310163) (-2794 . 309814) (-2795 . 309783)
+ (-2796 . 309660) (-2797 . 309482) (-2798 . 309397) (-2799 . 309273)
+ (-2800 . 309206) (-2801 . 309027) (-2802 . 308999) (-2803 . 308751)
+ (-2804 . 308636) (-2805 . 308564) (-2806 . 308341) (-2807 . 308270)
+ (-2808 . 308242) (-2809 . 308084) (-2810 . 307757) (-2811 . 307683)
+ (-2812 . 307589) (-2813 . 307317) (-2814 . 307169) (-2815 . 306838)
+ (-2816 . 306722) (-2817 . 306656) (-2818 . 306544) (-2819 . 306385)
+ (-2820 . 306302) (-2821 . 306225) (-2822 . 305651) (-2823 . 305544)
+ (-2824 . 305378) (-2825 . 305344) (-2826 . 305135) (-2827 . 305045)
+ (-2828 . 304765) (-2829 . 304663) (-2830 . 304334) (-2831 . 304230)
+ (-2832 . 304162) (-2833 . 304060) (-2834 . 303930) (-2835 . 303781)
+ (-2836 . 303626) (-2837 . 303568) (-2838 . 303431) (-2839 . 303338)
+ (-2840 . 302927) (-2841 . 302649) (-2842 . 302597) (-2843 . 302517)
+ (-2844 . 302353) (-2845 . 301749) (-2846 . 301259) (-2847 . 301141)
+ (-2848 . 301033) (-2849 . 300746) (-2850 . 300578) (-2851 . 300472)
+ (-2852 . 300026) (-2853 . 299919) (-2854 . 299823) (-2855 . 299576)
+ (-2856 . 298956) (-2857 . 298900) (-2858 . 298517) (-2859 . 298407)
+ (-2860 . 298288) (-2861 . 298207) (-2862 . 298157) (-2863 . 298004)
+ (-2864 . 297927) (-2865 . 297844) (-2866 . 297655) (-2867 . 297551)
+ (-2868 . 297401) (-2869 . 297222) (-2870 . 297156) (-2871 . 296997)
+ (-2872 . 296914) (-2873 . 296785) (-2874 . 296623) (-2875 . 296018)
+ (-2876 . 295957) (-2877 . 295783) (-2878 . 295662) (-2879 . 295121)
+ (-2880 . 294906) (-2881 . 294816) (-2882 . 294717) (-2883 . 294644)
+ (-2884 . 294591) (-2885 . 294524) (-2886 . 294440) (-2887 . 294103)
+ (-2888 . 294023) (-2889 . 293732) (-2890 . 293649) (-2891 . 293506)
+ (-2892 . 293454) (-2893 . 293332) (-2894 . 293135) (-2895 . 293024)
+ (-2896 . 292653) (-2897 . 292537) (-2898 . 292364) (-2899 . 292188)
+ (-2900 . 292117) (-2901 . 291689) (-2902 . 291612) (-2903 . 291441)
+ (-2904 . 291346) (-2905 . 291236) (-2906 . 290788) (-2907 . 290285)
+ (-2908 . 290119) (-2909 . 290022) (-2910 . 289875) (-2911 . 289727)
+ (-2912 . 289305) (-2913 . 289126) (-2914 . 289071) (-2915 . 288825)
+ (-2916 . 288794) (-2917 . 286940) (-2918 . 286830) (-2919 . 286723)
+ (-2920 . 286655) (-2921 . 286337) (-2922 . 286242) (-2923 . 286176)
+ (-2924 . 285781) (-2925 . 285548) (-2926 . 285292) (-2927 . 285202)
+ (-2928 . 284767) (-2929 . 284689) (-2930 . 284617) (-2931 . 284464)
+ (-2932 . 284383) (-2933 . 284168) (-2934 . 284013) (-2935 . 283944)
+ (-2936 . 283839) (-2937 . 283696) (-2938 . 283477) (-2939 . 283383)
+ (-2940 . 283333) (-2941 . 283280) (-2942 . 283228) (-2943 . 282881)
+ (-2944 . 282678) (-2945 . 282071) (-2946 . 281970) (-2947 . 281874)
+ (-2948 . 281821) (-2949 . 281381) (-2950 . 280525) (-2951 . 280334)
+ (-2952 . 279955) (-2953 . 279777) (-2954 . 279640) (-2955 . 279588)
+ (-2956 . 279470) (-2957 . 279375) (-2958 . 279088) (-2959 . 278930)
+ (-2960 . 278881) (-2961 . 278789) (-2962 . 278585) (-2963 . 278196)
+ (-2964 . 278055) (-2965 . 277885) (-2966 . 277660) (-2967 . 277577)
+ (-2968 . 277382) (-2969 . 277316) (-2970 . 277139) (-2971 . 276998)
+ (-2972 . 276944) (-2973 . 276857) (-2974 . 276643) (-2975 . 275540)
+ (-2976 . 275446) (-2977 . 275275) (-2978 . 275127) (-2979 . 275016)
+ (-2980 . 274871) (-2981 . 274598) (-2982 . 274503) (-2983 . 274423)
+ (-2984 . 274184) (-2985 . 274066) (-2986 . 273923) (-2987 . 273513)
+ (-2988 . 273123) (-2989 . 273071) (-2990 . 272986) (-2991 . 272793)
+ (-2992 . 272762) (-2993 . 272645) (-2994 . 272561) (-2995 . 272409)
+ (-2996 . 272124) (-2997 . 271917) (-2998 . 271614) (-2999 . 271514)
+ (-3000 . 271421) (-3001 . 271316) (-3002 . 271243) (-3003 . 271172)
+ (-3004 . 271065) (-3005 . 270808) (-3006 . 270699) (-3007 . 270615)
+ (-3008 . 270553) (-3009 . 270353) (-3010 . 270171) (-3011 . 270013)
+ (-3012 . 269837) (-3013 . 269718) (-3014 . 269562) (-3015 . 269041)
+ (-3016 . 268985) (-3017 . 268787) (-3018 . 268445) (-3019 . 268290)
+ (-3020 . 268046) (-3021 . 267905) (-3022 . 267871) (-3023 . 267564)
+ (-3024 . 267373) (-3025 . 267289) (-3026 . 267010) (-3027 . 266837)
+ (-3028 . 266779) (-3029 . 266664) (-3030 . 266512) (-3031 . 266417)
+ (-3032 . 266239) (-3033 . 266107) (-3034 . 265071) (-3035 . 264849)
+ (-3036 . 264558) (-3037 . 264488) (-3038 . 264348) (-3039 . 264178)
+ (-3040 . 264019) (-3041 . 263802) (-3042 . 263611) (-3043 . 263481)
+ (-3044 . 263335) (-3045 . 263261) (-3046 . 263084) (-3047 . 262873)
+ (-3048 . 262766) (-3049 . 262522) (-3050 . 262374) (-3051 . 262301)
+ (-3052 . 261703) (-3053 . 261604) (-3054 . 261484) (-3055 . 260982)
+ (-3056 . 260788) (-3057 . 259790) (-3058 . 259663) (-3059 . 259569)
+ (-3060 . 259503) (-3061 . 259472) (-3062 . 259358) (-3063 . 259243)
+ (-3064 . 259091) (-3065 . 258936) (-3066 . 258820) (-3067 . 258722)
+ (-3068 . 258663) (-3069 . 258447) (-3070 . 258345) (-3071 . 258222)
+ (-3072 . 257863) (-3073 . 257648) (-3074 . 257563) (-3075 . 257191)
+ (-3076 . 257138) (-3077 . 257015) (-3078 . 256963) (-3079 . 256782)
+ (-3080 . 256661) (-3081 . 256560) (-3082 . 256269) (-3083 . 256071)
+ (-3084 . 255936) (-3085 . 255856) (-3086 . 255786) (-3087 . 255643)
+ (-3088 . 255199) (-3089 . 254690) (-3090 . 254568) (-3091 . 254047)
+ (-3092 . 253774) (-3093 . 253680) (-3094 . 253481) (-3095 . 253407)
+ (-3096 . 253356) (-3097 . 252871) (-3098 . 252672) (-3099 . 252360)
+ (-3100 . 251944) (-3101 . 251910) (-3102 . 251809) (-3103 . 251701)
+ (-3104 . 251643) (-3105 . 251363) (-3106 . 251154) (-3107 . 251055)
+ (-3108 . 250746) (-3109 . 250645) (-3110 . 250522) (-3111 . 249603)
+ (-3112 . 249520) (-3113 . 249468) (-3114 . 249311) (-3115 . 249152)
+ (-3116 . 248899) (-3117 . 248790) (-3118 . 248722) (-3119 . 248462)
+ (-3120 . 248206) (-3121 . 248026) (-3122 . 247775) (-3123 . 247688)
+ (-3124 . 247363) (-3125 . 247225) (-3126 . 247048) (-3127 . 246942)
+ (-3128 . 246876) (-3129 . 246767) (-3130 . 246601) (-3131 . 246549)
+ (-3132 . 245969) (-3133 . 245747) (-3134 . 245617) (-3135 . 245230)
+ (-3136 . 245157) (-3137 . 245063) (-3138 . 244929) (-3139 . 244855)
+ (-3140 . 244718) (-3141 . 244611) (-3142 . 244439) (-3143 . 244298)
+ (-3144 . 244246) (-3145 . 244175) (-3146 . 244063) (-3147 . 243984)
+ (-3148 . 243518) (-3149 . 243411) (-3150 . 243302) (-3151 . 243133)
+ (-3152 . 243026) (-3153 . 242955) (-3154 . 242889) (-3155 . 242806)
+ (-3156 . 242476) (-3157 . 242331) (-3158 . 242198) (-3159 . 241975)
+ (-3160 . 241851) (-3161 . 241766) (-3162 . 241698) (-3163 . 240486)
+ (-3164 . 240403) (-3165 . 240333) (-3166 . 240259) (-3167 . 239599)
+ (-3168 . 239477) (-3169 . 239364) (-3170 . 239291) (-3171 . 239142)
+ (-3172 . 238942) (-3173 . 238824) (-3174 . 238753) (-3175 . 238563)
+ (-3176 . 238337) (-3177 . 237915) (-3178 . 237696) (-3179 . 237606)
+ (-3180 . 237552) (-3181 . 237473) (-3182 . 237333) (-3183 . 237117)
+ (-3184 . 237061) (-3185 . 236967) (-3186 . 236781) (-3187 . 236646)
+ (-3188 . 236545) (-3189 . 236300) (-3190 . 236119) (-3191 . 235911)
+ (-3192 . 235771) (-3193 . 235584) (-3194 . 235529) (-3195 . 235245)
+ (-3196 . 234895) (-3197 . 234810) (-3198 . 234687) (** . 231610)
+ (-3200 . 231510) (-3201 . 231308) (-3202 . 231063) (-3203 . 230922)
+ (-3204 . 230861) (-3205 . 230733) (-3206 . 230639) (-3207 . 230472)
+ (-3208 . 230304) (-3209 . 230042) (-3210 . 229670) (-3211 . 229047)
+ (-3212 . 228963) (-3213 . 227967) (-3214 . 227912) (-3215 . 227803)
+ (-3216 . 227001) (-3217 . 226891) (-3218 . 226747) (-3219 . 226575)
+ (-3220 . 226522) (-3221 . 226448) (-3222 . 226295) (-3223 . 225989)
+ (-3224 . 225940) (-3225 . 225866) (-3226 . 221345) (-3227 . 221292)
+ (-3228 . 221212) (-3229 . 220966) (-3230 . 220899) (-3231 . 220600)
+ (-3232 . 220173) (-3233 . 220050) (-3234 . 219957) (-3235 . 219566)
+ (-3236 . 219444) (-3237 . 219323) (-3238 . 219220) (-3239 . 218920)
+ (-3240 . 218670) (-3241 . 218585) (-3242 . 218422) (-3243 . 218319)
+ (-3244 . 218173) (-3245 . 218118) (-3246 . 218013) (-3247 . 217912)
+ (-3248 . 217839) (-3249 . 217727) (-3250 . 217584) (-3251 . 217424)
+ (-3252 . 217344) (-3253 . 217270) (-3254 . 217161) (-3255 . 217065)
+ (-3256 . 216682) (-3257 . 215730) (-3258 . 215647) (-3259 . 215560)
+ (-3260 . 215418) (-3261 . 215319) (-3262 . 215189) (-3263 . 215038)
+ (-3264 . 214866) (-3265 . 214725) (-3266 . 214277) (-3267 . 214193)
+ (-3268 . 214091) (-3269 . 213885) (-3270 . 213580) (-3271 . 213408)
+ (-3272 . 213301) (-3273 . 213189) (-3274 . 213080) (-3275 . 212940)
+ (-3276 . 212852) (-3277 . 212780) (-3278 . 212685) (-3279 . 212552)
+ (-3280 . 212262) (-3281 . 212091) (-3282 . 211984) (-3283 . 211708)
+ (-3284 . 211536) (-3285 . 211480) (-3286 . 211143) (-3287 . 210959)
+ (-3288 . 210888) (-3289 . 210450) (-3290 . 210398) (-3291 . 210274)
+ (-3292 . 209914) (-3293 . 209776) (-3294 . 209665) (-3295 . 209567)
+ (-3296 . 209395) (-3297 . 209169) (-3298 . 208832) (-3299 . 208777)
+ (-3300 . 208654) (-3301 . 208537) (-3302 . 208411) (-3303 . 208356)
+ (-3304 . 208289) (-3305 . 208215) (-3306 . 208062) (-3307 . 207924)
+ (-3308 . 193869) (-3309 . 193817) (-3310 . 193710) (-3311 . 193579)
+ (-3312 . 193460) (-3313 . 193391) (-3314 . 193294) (-3315 . 193081)
+ (-3316 . 193008) (-3317 . 192903) (-3318 . 192775) (-3319 . 192668)
+ (-3320 . 192562) (-3321 . 191907) (-3322 . 191840) (-3323 . 191787)
+ (-3324 . 191737) (-3325 . 191709) (-3326 . 190999) (-3327 . 190814)
+ (-3328 . 190731) (-3329 . 190479) (-3330 . 190451) (-3331 . 190372)
+ (-3332 . 190314) (-3333 . 190189) (-3334 . 189899) (-3335 . 189787)
+ (-3336 . 189295) (-3337 . 189116) (-3338 . 188839) (-3339 . 188426)
+ (-3340 . 187597) (-3341 . 187545) (-3342 . 187363) (-3343 . 187227)
+ (-3344 . 187154) (-3345 . 187030) (-3346 . 187002) (-3347 . 186921)
+ (-3348 . 186781) (-3349 . 186402) (-3350 . 186305) (-3351 . 186226)
+ (-3352 . 186119) (-3353 . 186020) (-3354 . 185801) (-3355 . 185748)
+ (-3356 . 184841) (-3357 . 180142) (-3358 . 180071) (-3359 . 180034)
+ (-3360 . 179899) (-3361 . 179797) (-3362 . 179745) (-3363 . 179660)
+ (-3364 . 179587) (-3365 . 178772) (-3366 . 178654) (-3367 . 178557)
+ (-3368 . 178529) (-3369 . 177338) (-3370 . 177025) (-3371 . 176928)
+ (-3372 . 176841) (-3373 . 176676) (-3374 . 176161) (-3375 . 176078)
+ (-3376 . 175966) (-3377 . 175914) (-3378 . 175844) (-3379 . 175660)
+ (-3380 . 175586) (-3381 . 175256) (-3382 . 175032) (-3383 . 174753)
+ (-3384 . 174658) (-3385 . 174572) (-3386 . 174449) (-3387 . 174364)
+ (-3388 . 169049) (-3389 . 168961) (-3390 . 168895) (-3391 . 168714)
+ (-3392 . 168642) (-3393 . 168589) (-3394 . 168504) (-3395 . 168156)
+ (-3396 . 167982) (-3397 . 167428) (-3398 . 167304) (-3399 . 167208)
+ (-3400 . 167040) (-3401 . 166887) (-3402 . 166765) (-3403 . 166526)
+ (-3404 . 166407) (-3405 . 166263) (-3406 . 165965) (-3407 . 165707)
+ (-3408 . 165500) (-3409 . 165282) (-3410 . 164691) (-3411 . 164475)
+ (-3412 . 164335) (-3413 . 164267) (-3414 . 163641) (-3415 . 163575)
+ (-3416 . 163296) (-3417 . 163130) (-3418 . 162935) (-3419 . 162880)
+ (-3420 . 162824) (-3421 . 162742) (-3422 . 162518) (-3423 . 162336)
+ (-3424 . 162284) (-3425 . 162067) (-3426 . 162012) (-3427 . 161871)
+ (-3428 . 161472) (-3429 . 161389) (-3430 . 161176) (-3431 . 158268)
+ (-3432 . 157664) (-3433 . 156600) (-3434 . 156382) (-3435 . 156193)
+ (-3436 . 156079) (-3437 . 155942) (-3438 . 155830) (-3439 . 155727)
+ (-3440 . 155675) (-3441 . 155531) (-3442 . 155287) (-3443 . 155213)
+ (-3444 . 155089) (-3445 . 154983) (-3446 . 154830) (-3447 . 154580)
+ (-3448 . 154501) (-3449 . 154400) (-3450 . 154288) (-3451 . 154179)
+ (-3452 . 152719) (-3453 . 152600) (-3454 . 152456) (-3455 . 152403)
+ (-3456 . 152124) (-3457 . 152002) (-3458 . 151672) (-3459 . 151470)
+ (-3460 . 151367) (-3461 . 151301) (-3462 . 151245) (-3463 . 151075)
+ (-3464 . 150969) (-3465 . 150846) (-3466 . 150642) (-3467 . 150559)
+ (-3468 . 150379) (-3469 . 150327) (-3470 . 150109) (-3471 . 149979)
+ (-3472 . 149881) (-3473 . 149726) (-3474 . 149471) (-3475 . 149372)
+ (-3476 . 149219) (-3477 . 149076) (-3478 . 148759) (-3479 . 148647)
+ (-3480 . 148523) (-3481 . 148357) (-3482 . 148227) (-3483 . 148126)
+ (-3484 . 147781) (-3485 . 147732) (-3486 . 147580) (-3487 . 147006)
+ (-3488 . 146942) (-3489 . 146824) (-3490 . 146638) (-3491 . 146551)
+ (-3492 . 146496) (-3493 . 146435) (-3494 . 146297) (-3495 . 146244)
+ (-3496 . 146124) (-3497 . 146065) (-3498 . 145922) (-3499 . 145870)
+ (-3500 . 145703) (-3501 . 145496) (-3502 . 145217) (-3503 . 145090)
+ (-3504 . 144937) (-3505 . 144077) (-3506 . 144004) (-3507 . 143799)
+ (-3508 . 143700) (-3509 . 143512) (-3510 . 143398) (-3511 . 142989)
+ (-3512 . 142891) (-3513 . 142660) (-3514 . 142506) (-3515 . 142262)
+ (-3516 . 142185) (-3517 . 141516) (-3518 . 141231) (-3519 . 140943)
+ (-3520 . 140915) (-3521 . 140701) (-3522 . 136713) (-3523 . 136466)
+ (-3524 . 136182) (-3525 . 135835) (-3526 . 135765) (-3527 . 135661)
+ (-3528 . 135297) (-3529 . 135245) (-3530 . 135038) (-3531 . 134973)
+ (-3532 . 134893) (-3533 . 134577) (-3534 . 134368) (-3535 . 134298)
+ (-3536 . 134200) (-3537 . 133990) (-3538 . 133757) (-3539 . 132999)
+ (-3540 . 132768) (-3541 . 132583) (-3542 . 132433) (-3543 . 132269)
+ (-3544 . 131661) (-3545 . 131575) (-3546 . 131472) (-3547 . 131366)
+ (-3548 . 131314) (-3549 . 131241) (-3550 . 131086) (-3551 . 130923)
+ (-3552 . 130561) (-3553 . 130345) (-3554 . 130204) (-3555 . 130051)
+ (-3556 . 128896) (-3557 . 128605) (-3558 . 128265) (-3559 . 128162)
+ (-3560 . 127971) (-3561 . 126526) (-3562 . 126436) (-3563 . 126202)
+ (-3564 . 126023) (-3565 . 125856) (-3566 . 125596) (-3567 . 125268)
+ (-3568 . 125201) (-3569 . 125079) (-3570 . 125008) (-3571 . 124955)
+ (-3572 . 124913) (-3573 . 124814) (-3574 . 124712) (-3575 . 124684)
+ (-3576 . 124592) (-3577 . 124255) (-3578 . 124203) (-3579 . 123678)
+ (-3580 . 123331) (-3581 . 122952) (-3582 . 122549) (-3583 . 122319)
+ (-3584 . 122291) (-3585 . 122204) (-3586 . 121710) (-3587 . 121382)
+ (-3588 . 120989) (-3589 . 120803) (-3590 . 120748) (-3591 . 120684)
+ (-3592 . 120084) (-3593 . 119341) (-3594 . 118920) (-3595 . 118756)
+ (-3596 . 118633) (-3597 . 118414) (-3598 . 118355) (-3599 . 118215)
+ (-3600 . 118049) (-3601 . 117738) (-3602 . 117351) (-3603 . 117012)
+ (-3604 . 116825) (-3605 . 116711) (-3606 . 116659) (-3607 . 116606)
+ (-3608 . 116435) (-3609 . 116273) (-3610 . 115914) (-3611 . 115819)
+ (-3612 . 115704) (-3613 . 115496) (-3614 . 115426) (-3615 . 112143)
+ (-3616 . 111735) (-3617 . 111488) (-3618 . 111426) (-3619 . 111256)
+ (-3620 . 111123) (-3621 . 111063) (-3622 . 110411) (-3623 . 110274)
+ (-3624 . 110165) (-3625 . 110080) (-3626 . 110046) (-3627 . 109966)
+ (-3628 . 109884) (-3629 . 109729) (-3630 . 108479) (-3631 . 108412)
+ (-3632 . 108310) (-3633 . 108154) (-3634 . 108047) (-3635 . 107930)
+ (-3636 . 107846) (-3637 . 107705) (-3638 . 107631) (-3639 . 107533)
+ (-3640 . 107499) (-3641 . 107310) (-3642 . 107195) (-3643 . 106824)
+ (-3644 . 106752) (-3645 . 106589) (-3646 . 106222) (-3647 . 106137)
+ (-3648 . 106023) (-3649 . 105782) (-3650 . 105705) (-3651 . 105331)
+ (-3652 . 104620) (-3653 . 104392) (-3654 . 104222) (-3655 . 103862)
+ (-3656 . 103759) (-3657 . 103408) (-3658 . 103301) (-3659 . 103017)
+ (-3660 . 102701) (-3661 . 102631) (-3662 . 102572) (-3663 . 102442)
+ (-3664 . 102344) (-3665 . 102070) (-3666 . 101865) (-3667 . 101787)
+ (-3668 . 101684) (-3669 . 101548) (-3670 . 101439) (-3671 . 101352)
+ (-3672 . 101267) (-3673 . 101190) (-3674 . 101016) (-3675 . 100884)
+ (-3676 . 100811) (-3677 . 100626) (-3678 . 100490) (-3679 . 100328)
+ (-3680 . 99657) (-3681 . 99570) (-3682 . 99304) (-3683 . 99167)
+ (-3684 . 99024) (-3685 . 98905) (-3686 . 98741) (-3687 . 98638)
+ (-3688 . 98507) (-3689 . 98402) (-3690 . 97973) (-3691 . 97706)
+ (-3692 . 97602) (-3693 . 97460) (-3694 . 97393) (-3695 . 97281)
+ (-3696 . 97158) (-3697 . 97056) (-3698 . 96990) (-3699 . 96893)
+ (-3700 . 96687) (-3701 . 96634) (-3702 . 96474) (-3703 . 96173)
+ (-3704 . 96117) (-3705 . 95962) (-3706 . 95834) (-3707 . 95751)
+ (-3708 . 93900) (-3709 . 93716) (-3710 . 93638) (-3711 . 93500)
+ (-3712 . 93306) (-3713 . 93163) (-3714 . 92947) (-3715 . 92810)
+ (-3716 . 92737) (-3717 . 92649) (-3718 . 92391) (-3719 . 92332)
+ (-3720 . 92275) (-3721 . 91959) (-3722 . 91801) (-3723 . 91773)
+ (-3724 . 91699) (-3725 . 91600) (-3726 . 91444) (-3727 . 91351)
+ (-3728 . 91277) (-3729 . 90888) (-3730 . 90801) (-3731 . 90733)
+ (-3732 . 90619) (-3733 . 90429) (-3734 . 90230) (-3735 . 90135)
+ (-3736 . 88888) (-3737 . 88808) (-3738 . 88173) (-3739 . 88018)
+ (-3740 . 87802) (-3741 . 87627) (-3742 . 87502) (-3743 . 87324)
+ (-3744 . 87275) (-3745 . 87103) (-3746 . 86793) (-3747 . 86765)
+ (-3748 . 86555) (-3749 . 86333) (-3750 . 85915) (-3751 . 85858)
+ (-3752 . 85806) (-3753 . 85732) (-3754 . 85460) (-3755 . 85401)
+ (-12 . 85229) (-3757 . 85086) (-3758 . 84959) (-3759 . 84627)
+ (-3760 . 84487) (-3761 . 84190) (-3762 . 84104) (-3763 . 83983)
+ (-3764 . 83825) (-3765 . 83494) (-3766 . 83244) (-3767 . 83149)
+ (-3768 . 83071) (-3769 . 83014) (-3770 . 82940) (-3771 . 82778)
+ (-3772 . 82003) (-3773 . 81913) (-3774 . 81322) (-3775 . 81076)
+ (-3776 . 80941) (-3777 . 80892) (-3778 . 80750) (-3779 . 80594)
+ (-3780 . 80482) (-3781 . 80408) (-3782 . 80325) (-3783 . 80238)
+ (-3784 . 79913) (-3785 . 79806) (-3786 . 79754) (-3787 . 79645)
+ (-3788 . 79532) (-3789 . 79334) (-3790 . 79233) (-3791 . 79139)
+ (-3792 . 79037) (-3793 . 78963) (-3794 . 78079) (-3795 . 77895)
+ (-3796 . 77693) (-3797 . 77586) (-3798 . 77054) (-3799 . 77001)
+ (-3800 . 76892) (-3801 . 76841) (-3802 . 76664) (-3803 . 76598)
+ (-3804 . 76454) (-3805 . 75875) (-3806 . 75819) (-3807 . 75212)
+ (-3808 . 74965) (-3809 . 74856) (-3810 . 74106) (-3811 . 73928)
+ (-3812 . 73798) (-3813 . 73675) (-3814 . 73208) (-3815 . 73142)
+ (-3816 . 72799) (-3817 . 72729) (-3818 . 72582) (-3819 . 72423)
+ (-3820 . 72355) (-3821 . 72013) (-3822 . 71910) (-3823 . 71844)
+ (-3824 . 71145) (-3825 . 71074) (-3826 . 71008) (-3827 . 70821)
+ (-3828 . 70440) (-3829 . 70372) (-3830 . 70224) (-3831 . 70162)
+ (-3832 . 69984) (-3833 . 69877) (-3834 . 69660) (-3835 . 69328)
+ (-3836 . 69138) (-3837 . 69025) (-3838 . 68928) (-3839 . 68552)
+ (-3840 . 67966) (-3841 . 67871) (-3842 . 67742) (-3843 . 67495)
+ (-3844 . 67325) (-3845 . 67010) (-3846 . 66752) (-3847 . 66682)
+ (-3848 . 66436) (-3849 . 66352) (-3850 . 66235) (-3851 . 66089)
+ (* . 61566) (-3853 . 61459) (-3854 . 61377) (-3855 . 60539)
+ (-3856 . 60359) (-3857 . 60230) (-3858 . 59784) (-3859 . 59706)
+ (-3860 . 59611) (-3861 . 59278) (-3862 . 59206) (-3863 . 59124)
+ (-3864 . 59057) (-3865 . 57907) (-3866 . 52401) (-3867 . 52322)
+ (-3868 . 51112) (-3869 . 51056) (-3870 . 50910) (-3871 . 50779)
+ (-3872 . 50612) (-3873 . 50581) (-3874 . 50095) (-3875 . 49889)
+ (-3876 . 49861) (-3877 . 49756) (-3878 . 49701) (-3879 . 49313)
+ (-3880 . 49158) (-3881 . 49130) (-3882 . 48887) (-3883 . 48713)
+ (-3884 . 48157) (-3885 . 47966) (-3886 . 47898) (-3887 . 47840)
+ (-3888 . 47787) (-3889 . 47716) (-3890 . 47579) (-3891 . 47126)
+ (-3892 . 47010) (-3893 . 46979) (-3894 . 46894) (-3895 . 46796)
+ (-3896 . 46744) (-3897 . 46592) (-3898 . 46467) (-3899 . 46321)
+ (-3900 . 46229) (-3901 . 45976) (-3902 . 45910) (-3903 . 45844)
+ (-3904 . 45497) (-3905 . 45296) (-3906 . 45086) (-3907 . 45006)
+ (-3908 . 44953) (-3909 . 44882) (-3910 . 44766) (-3911 . 44620)
+ (-3912 . 43335) (-3913 . 43056) (-3914 . 42964) (-3915 . 42879)
+ (-3916 . 42791) (-3917 . 42720) (-3918 . 42347) (-3919 . 42174)
+ (-3920 . 42074) (-3921 . 41898) (-3922 . 41614) (-3923 . 41509)
+ (-3924 . 41412) (-3925 . 41326) (-3926 . 41170) (-3927 . 41055)
+ (-3928 . 40948) (-3929 . 40611) (-3930 . 40503) (-3931 . 40430)
+ (-3932 . 40316) (-3933 . 40165) (-3934 . 40113) (-3935 . 40040)
+ (-3936 . 39468) (-3937 . 39330) (-3938 . 39094) (-3939 . 39042)
+ (-3940 . 38753) (-3941 . 38619) (-3942 . 38438) (-3943 . 38345)
+ (-3944 . 38249) (-3945 . 38104) (-3946 . 38052) (-3947 . 37969)
+ (-3948 . 37870) (-3949 . 37574) (-3950 . 37494) (-3951 . 37330)
+ (-3952 . 35755) (-3953 . 35593) (-3954 . 35500) (-3955 . 35441)
+ (-3956 . 35386) (-3957 . 35287) (-3958 . 35259) (-3959 . 35148)
+ (-3960 . 35074) (-3961 . 34874) (-3962 . 34767) (-3963 . 34693)
+ (-3964 . 34573) (-3965 . 34514) (-3966 . 34407) (-3967 . 34284)
+ (-3968 . 34107) (-3969 . 33814) (-3970 . 33640) (-3971 . 33507)
+ (-3972 . 33187) (-3973 . 32911) (-3974 . 32390) (-3975 . 32252)
+ (-3976 . 31288) (-3977 . 31191) (-3978 . 31135) (-3979 . 31040)
+ (-3980 . 30829) (-3981 . 30756) (-3982 . 30390) (-3983 . 30047)
+ (-3984 . 29804) (-3985 . 29719) (-3986 . 29318) (-3987 . 29225)
+ (-3988 . 29152) (-3989 . 28838) (-3990 . 28724) (-3991 . 28564)
+ (-3992 . 28467) (-3993 . 28146) (-3994 . 28094) (-3995 . 27991)
+ (-3996 . 27747) (-3997 . 27681) (-3998 . 27626) (-3999 . 27186)
+ (-4000 . 26932) (-4001 . 26762) (-4002 . 26604) (-4003 . 26495)
+ (-4004 . 26464) (-4005 . 26384) (-4006 . 26092) (-4007 . 26039)
+ (-4008 . 25723) (-4009 . 25498) (-4010 . 25391) (-4011 . 25139)
+ (-4012 . 25084) (-4013 . 25053) (-4014 . 24829) (-4015 . 24539)
+ (-4016 . 24467) (-4017 . 24325) (-4018 . 24273) (-4019 . 24148)
+ (-4020 . 23789) (-4021 . 23736) (-4022 . 23544) (-4023 . 23482)
+ (-4024 . 23304) (-4025 . 23167) (-4026 . 23021) (-4027 . 22868)
+ (-4028 . 22786) (-4029 . 22662) (-4030 . 22523) (-4031 . 22304)
+ (-4032 . 21603) (-4033 . 21485) (-4034 . 21370) (-4035 . 21223)
+ (-4036 . 21167) (-4037 . 21027) (-4038 . 20865) (-4039 . 20794)
+ (-4040 . 20683) (-4041 . 20569) (-4042 . 20516) (-4043 . 20255)
+ (-4044 . 20152) (-4045 . 19902) (-4046 . 19828) (-4047 . 19800)
+ (-4048 . 19674) (-4049 . 19577) (-4050 . 19284) (-4051 . 19148)
+ (-4052 . 19015) (-4053 . 18984) (-4054 . 18554) (-4055 . 18179)
+ (-4056 . 18009) (-4057 . 17957) (-4058 . 17879) (-4059 . 17554)
+ (-4060 . 17454) (-4061 . 17219) (-4062 . 17063) (-4063 . 16952)
+ (-4064 . 16921) (-4065 . 16781) (-4066 . 16484) (-4067 . 16401)
+ (-4068 . 16256) (-4069 . 15927) (-4070 . 15259) (-4071 . 15042)
+ (-4072 . 14884) (-4073 . 14726) (-4074 . 14585) (-4075 . 14476)
+ (-4076 . 14420) (-4077 . 14367) (-4078 . 14215) (-4079 . 14159)
+ (-4080 . 14088) (-4081 . 14015) (-4082 . 13735) (-4083 . 13661)
+ (-4084 . 13608) (-4085 . 13157) (-4086 . 13054) (-4087 . 11292)
+ (-4088 . 11212) (-4089 . 11139) (-4090 . 11028) (-4091 . 10978)
+ (-4092 . 10926) (-4093 . 10704) (-4094 . 10652) (-4095 . 10602)
+ (-4096 . 10505) (-4097 . 10431) (-4098 . 10305) (-4099 . 10271)
+ (-4100 . 10242) (-4101 . 9927) (-4102 . 9843) (-4103 . 9744)
+ (-4104 . 9648) (-4105 . 9545) (-4106 . 9493) (-4107 . 9437)
+ (-4108 . 8813) (-4109 . 8723) (-4110 . 8530) (-4111 . 8330)
+ (-4112 . 8253) (-4113 . 7870) (-4114 . 7756) (-4115 . 7671)
+ (-4116 . 7599) (-4117 . 7508) (-4118 . 7216) (-4119 . 7120)
+ (-4120 . 7030) (-4121 . 6932) (-4122 . 6876) (-4123 . 6678)
+ (-4124 . 6605) (-4125 . 6374) (-4126 . 5852) (-4127 . 5801)
+ (-4128 . 5689) (-4129 . 5606) (-4130 . 5556) (-4131 . 5498)
+ (-4132 . 5389) (-4133 . 5192) (-4134 . 5091) (-4135 . 4852)
+ (-4136 . 4757) (-4137 . 4655) (-4138 . 4568) (-4139 . 4425)
+ (-4140 . 4369) (-4141 . 4205) (-4142 . 4008) (-4143 . 3644)
+ (-4144 . 3542) (-4145 . 3486) (-4146 . 2607) (-4147 . 2548)
+ (-4148 . 2462) (-4149 . 2268) (-4150 . 2168) (-4151 . 2071)
+ (-4152 . 1941) (-4153 . 1805) (-4154 . 1734) (-4155 . 1660)
+ (-4156 . 1565) (-4157 . 1406) (-4158 . 1265) (-4159 . 1199)
+ (-4160 . 1062) (-4161 . 939) (-4162 . 841) (-4163 . 768) (-4164 . 711)
+ (-4165 . 562) (-4166 . 450) (-4167 . 381) (-4168 . 317) (-4169 . 152)
+ (-4170 . 30)) \ No newline at end of file